Science.gov

Sample records for 18f-fluorodeoxyglucose positron emission

  1. [Basic principles of 18F-fluorodeoxyglucose positron emission tomography].

    PubMed

    Standke, R

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. PMID:12506765

  2. Predicting Outcome in Patients with Rhabdomyosarcoma: Role of [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography

    SciTech Connect

    Casey, Dana L.; Wexler, Leonard H.; Fox, Josef J.; Dharmarajan, Kavita V.; Schoder, Heiko; Price, Alison N.; Wolden, Suzanne L.

    2014-12-01

    Purpose: To evaluate whether [{sup 18}F]fluorodeoxyglucose positron emission tomography (FDG-PET) response of the primary tumor after induction chemotherapy predicts outcomes in rhabdomyosarcoma (RMS). Methods and Materials: After excluding those with initial tumor resection, 107 patients who underwent FDG-PET after induction chemotherapy at Memorial Sloan Kettering Cancer Center from 2002 to 2013 were reviewed. Local control (LC), progression-free survival (PFS), and overall survival (OS) were calculated according to FDG-PET response and maximum standardized uptake value (SUV) at baseline (PET1/SUV1), after induction chemotherapy (PET2/SUV2), and after local therapy (PET3/SUV3). Receiver operator characteristic curves were used to determine the optimal cutoff for dichotomization of SUV1 and SUV2 values. Results: The SUV1 (<9.5 vs ≥9.5) was predictive of PFS (P=.02) and OS (P=.02), but not LC. After 12 weeks (median) of induction chemotherapy, 45 patients had negative PET2 scans and 62 had positive scans: 3-year PFS was 72% versus 44%, respectively (P=.01). The SUV2 (<1.5 vs ≥1.5) was similarly predictive of PFS (P=.005) and was associated with LC (P=.02) and OS (P=.03). A positive PET3 scan was predictive of worse PFS (P=.0009), LC (P=.05), and OS (P=.03). Conclusions: [{sup 18}F]fluorodeoxyglucose positron emission tomography is an early indicator of outcomes in patients with RMS. Future prospective trials may incorporate FDG-PET response data for risk-adapted therapy and early assessment of new treatment regimens.

  3. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  4. Detecting Metastatic Bladder Cancer Using 18F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography

    PubMed Central

    Öztürk, Hakan

    2015-01-01

    Purpose The purpose of this study was to retrospectively investigate the contribution of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) to detection of metastatic bladder cancer. Materials and Methods The present study included 79 patients (69 men and 10 women) undergoing 18F-FDG-PET/CT upon suspicion of metastatic bladder cancer between July 2007 and April 2013. The mean age was 66.1 years with a standard deviation of 10.7 years (range, 21 to 85 years). Patients were required to fast for 6 hours prior to scanning, and whole-body PET scanning from the skull base to the upper thighs was performed approximately 1 hour after intravenous injection of 555 MBq of 18F-FDG. Whole body CT scanning was performed in the cranio-caudal direction. FDG-PET images were reconstructed using CT data for attenuation correction. Suspicious recurrent or metastatic lesions were confirmed by histopathology or clinical follow-up. Results The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 18F-FDG-PET/CT were 89%, 78%, 90%, 75%, and 86%, respectively. Conclusion 18F-FDG-PET/CT can detect metastases with high sensitivity and positive predictive values in patients with metastatic bladder carcinoma. PMID:25687863

  5. The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography in Thyroid Neoplasms

    PubMed Central

    Law, Tsz Ting

    2011-01-01

    18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has established itself as an important imaging modality in many oncological and nononcological specialties and, as a consequence, it is increasingly being used in clinical practice. Since the first report of FDG being taken up by metastatic differentiated thyroid carcinoma (DTC) cells >20 years ago, various groups of investigators have explored the potential role of FDG-PET scanning in patients with benign and malignant thyroid neoplasms. With the increasing demand for FDG-PET scanning, clinicians are faced with the challenge of managing an increasing number of FDG-PET–detected thyroid incidentalomas because their significance remains unclear. The aims of this review are to address some of these issues, specifically, the clinical significance of FDG-PET–detected thyroid incidentalomas, the ability of FDG-PET to characterize thyroid nodules, especially those with indeterminate fine needle aspiration cytology results, and the role of FDG-PET in patients with confirmed primary DTC and with suspected recurrent DTC, by reviewing the current literature. PMID:21378078

  6. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons

    PubMed Central

    Knopman, David S.; Jack, Clifford R.; Wiste, Heather J.; Lundt, Emily S.; Weigand, Stephen D.; Vemuri, Prashanthi; Lowe, Val J.; Kantarci, Kejal; Gunter, Jeffrey L.; Senjem, Matthew L.; Mielke, Michelle M.; Roberts, Rosebud O.; Boeve, Bradley F.; Petersen, Ronald C.

    2014-01-01

    Our objective was to examine associations between glucose metabolism, as measured by 18F-fluorodeoxyglucose positron emission tomography (FDG PET), and age and to evaluate the impact of carriage of an apolipoprotein E (APOE) ε4 allele on glucose metabolism and on the associations between glucose metabolism and age. We studied 806 cognitively normal (CN) and 70 amyloid-imaging-positive cognitively impaired participants (35 with mild cognitive impairment and 35 with Alzheimer’s disease [AD] dementia) from the Mayo Clinic Study of Aging, Mayo Alzheimer’s Disease Research Center and an ancillary study who had undergone structural MRI, FDG PET, and 11C-Pittsburgh compound B (PiB) PET. Using partial volume corrected and uncorrected FDG PET glucose uptake ratios, we evaluated associations of regional FDG ratios with age and carriage of an APOE ε4 allele in CN participants between the ages of 30 and 95 years, and compared those findings with the cognitively impaired participants. In region-of-interest (ROI) analyses, we found modest but statistically significant declines in FDG ratio in most cortical and subcortical regions as a function of age. We also found a main effect of APOE ε4 genotype on FDG ratio, with greater uptake in ε4 noncarriers compared with carriers but only in the posterior cingulate and/or precuneus, lateral parietal, and AD-signature meta-ROI. The latter consisted of voxels from posterior cingulate and/or precuneus, lateral parietal, and inferior temporal. In age- and sex-matched CN participants the magnitude of the difference in partial volume corrected FDG ratio in the AD-signature meta-ROI for APOE ε4 carriers compared with noncarriers was about 4 times smaller than the magnitude of the difference between age- and sex-matched elderly APOE ε4 carrier CN compared with AD dementia participants. In an analysis in participants older than 70 years (31.3% of whom had elevated PiB), there was no interaction between PiB status and APOE ε4 genotype

  7. Clinical usefulness of post-operative 18F-fluorodeoxyglucose positron emission tomography-computed tomography in canine hemangiosarcoma

    PubMed Central

    Lee, Gahyun; Kwon, Seong Young; Son, Kyuyeol; Park, Seungjo; Lee, Ju-hwan; Cho, Kyoung-Oh; Min, Jung-Joon

    2016-01-01

    This report describes the usefulness of positron emission tomography-computed tomography (PET-CT) for evaluating recurrent or residual tumors following surgery. CT and 18F-fluorodeoxyglucose PET-CT were pre- and post-operatively applied to multiple masses in a dog with hemangiosarcoma. The distinction between the left subcutaneous mass and the peritoneum was clarified on pre-operative CT examination, and malignancy was suspected based on PET-CT. A recurrent or residual tumor in the left subcutaneous region was suspected on post-operative PET-CT, and confirmed through histopathologic examination. PMID:26645332

  8. 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma

    PubMed Central

    Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.

    2016-01-01

    Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0

  9. Forced diuresis 18F-fluorodeoxyglucose positron emission tomography/contrast enhanced in detection of carcinoma of urinary bladder diverticulum

    PubMed Central

    Soundararajan, Ramya; Singh, Harmandeep; Arora, Saurabh; Nayak, Brusabhanu; Shamim, Shamim Ahmed; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Urinary bladder diverticular carcinomas are uncommon with a lesser incidence of 0.8–10% and its diagnosis still remains a challenge. Cystoscopy is the most reliable method, but evaluating diverticulum with narrow orifices is difficult. Before the initiation of appropriate treatment, proper detection of bladder diverticular carcinoma and its locoregional and distant sites of involvement is necessary. Here, we present a case of 48-year-old male with urinary bladder diverticular carcinoma detected by forced diuretic 18F-fluorodeoxyglucose positron emission tomography/computerized tomography (18F-FDG PET/CT). This case also highlights the significance of forced diuretic 18F-FDG PET/CT in the detection, staging, and response evaluation of bladder diverticular carcinoma. PMID:25589819

  10. Surgical strategy for aortic prosthetic graft infection with (18)F-fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Yamanaka, Katsuhiro; Matsueda, Takashi; Miyahara, Shunsuke; Nomura, Yoshikatsu; Sakamoto, Toshihito; Morimoto, Naoto; Inoue, Takeshi; Matsumori, Masamichi; Okada, Kenji; Okita, Yutaka

    2016-09-01

    A 30-year-old man with Marfan syndrome who underwent Crawford type II extension aneurysm repair about 9 years ago was referred to our hospital with persistent fever. Computed tomography (CT) showed air around the mid-descending aortic prosthetic graft. Because the air did not disappear in spite of intravenous antibiotics, (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was performed. FDG-PET/CT revealed four high-uptake lesions. After dissecting the aortic graft particularly focusing on the high-uptake lesions, this patient underwent in situ graft re-replacement of descending aortic graft with a rifampicin-bonded gelatin-impregnated Dacron graft and omentopexy. The patient remains well without recurrent infection at 3 months after surgery. PMID:25563707

  11. Realizing the potential of positron emission tomography with 18F-fluorodeoxyglucose to improve the treatment of Alzheimer's disease.

    PubMed

    Foster, Norman L; Wang, Angela Y; Tasdizen, Tolga; Fletcher, P Thomas; Hoffman, John M; Koeppe, Robert A

    2008-01-01

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG-PET) thus far rarely has been used to advance the development of new treatments for Alzheimer's disease (AD). Now that FDG-PET with standard acquisition protocols for dementia is widely available, change in cerebral glucose metabolism is a feasible outcome variable for clinical drug trials. Individual analysis of FDG-PET results also might prove valuable. FDG-PET can detect metabolic changes very early in the course of AD and identify subjects for earlier treatment. FDG-PET reliably distinguishes AD from frontotemporal dementia so that only those most likely to benefit are enrolled in trials. Finally, objectively identifying phenotypic variations of AD with FDG-PET might have pathogenic and prognostic implications that can be used for personalized treatment approaches. The judicious use of FDG-PET is needed to accelerate the evaluation of promising new drugs and more rationally target treatments for dementing diseases. PMID:18631997

  12. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (/sup 18/F)fluorodeoxyglucose

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Ganz, E.; Yano, Y.; Mathis, C.A.; Koss, B.; Ober, B.A.; Huesman, R.H.; Derenzo, S.E.

    1983-08-01

    Alzheimer disease is the most common cause of dementia in adults. Despite recent advances in our understanding of its anatomy and chemistry, we remain largely ignorant of its pathogenesis, physiology, diagnosis, and treatment. Dynamic positron emission tomography using (/sup 18/F)fluorodeoxyglucose (FDG) was performed on the Donner 280-crystal ring in 10 subjects with dementia of the Alzheimer type and six healthy age-matched controls. Ratios comparing mean counts per resolution element in frontal, temporoparietal, and entire cortex regions in brain sections 10 mm thick obtained 40-70 min following FDG injection showed relatively less FDG uptake in the temporoparietal cortex bilaterally in all the Alzheimer subjects (p less than 0.01). Left-right alterations were less prominent than the anteroposterior changes. This diminished uptake was due to lowered rates of FDG use and suggests that the metabolic effects of Alzheimer disease are most concentrated in the temporoparietal cortex. Positron emission tomography is a most powerful tool for the noninvasive in vivo assessment of cerebral pathophysiology in dementia.

  13. Gaussian Mixture Models and Model Selection for [18F] Fluorodeoxyglucose Positron Emission Tomography Classification in Alzheimer’s Disease

    PubMed Central

    Yakushev, Igor; Förster, Stefan; Kurz, Alexander; Drzezga, Alexander; Kramer, Stefan

    2015-01-01

    We present a method to discover discriminative brain metabolism patterns in [18F] fluorodeoxyglucose positron emission tomography (PET) scans, facilitating the clinical diagnosis of Alzheimer’s disease. In the work, the term “pattern” stands for a certain brain region that characterizes a target group of patients and can be used for a classification as well as interpretation purposes. Thus, it can be understood as a so-called “region of interest (ROI)”. In the literature, an ROI is often found by a given brain atlas that defines a number of brain regions, which corresponds to an anatomical approach. The present work introduces a semi-data-driven approach that is based on learning the characteristics of the given data, given some prior anatomical knowledge. A Gaussian Mixture Model (GMM) and model selection are combined to return a clustering of voxels that may serve for the definition of ROIs. Experiments on both an in-house dataset and data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that the proposed approach arrives at a better diagnosis than a merely anatomical approach or conventional statistical hypothesis testing. PMID:25919662

  14. Irbesartan attenuates atherosclerosis in Watanabe heritable hyperlipidemic rabbits: noninvasive imaging of inflammation by 18F-fluorodeoxyglucose positron emission tomography.

    PubMed

    Zhao, Yan; Fukao, Keita; Zhao, Songji; Watanabe, Ayahisa; Hamada, Tadateru; Yamasaki, Kazuaki; Shimizu, Yoichi; Kubo, Naoki; Ukon, Naoyuki; Nakano, Toru; Tamaki, Nagara; Kuge, Yuji

    2015-01-01

    The purpose of this study was to assess the usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in evaluating the antiatherogenic effects of irbesartan, an angiotensin II type 1 receptor blocker. Watanabe heritable hyperlipidemic rabbits were divided into the irbesartan-treated group (75 mg/kg/d; n  =  14) and the control group (n  =  14). After a 9-month treatment, rabbits underwent 18F-FDG PET. Using the aortic lesions, autoradiography and histologic examinations were performed. PET imaging clearly visualized the thoracic lesions of control rabbits and showed a significant decrease in the 18F-FDG uptake level of irbesartan-treated rabbits (78.8% of controls; p < .05). Irbesartan treatment significantly reduced the plaque size (43.1% of controls) and intraplaque macrophage infiltration level (48.1% of controls). The 18F-FDG uptake level in plaques positively correlated with the plaque size (r  =  .65, p < .05) and macrophage infiltration level (r  =  .57, p < .05). Noninvasive imaging by 18F-FDG PET is useful for evaluating the therapeutic effects of irbesartan and reflects inflammation, a key factor involved in the therapeutic effects. PMID:25812568

  15. Gaussian Mixture Models and Model Selection for [18F] Fluorodeoxyglucose Positron Emission Tomography Classification in Alzheimer's Disease.

    PubMed

    Li, Rui; Perneczky, Robert; Yakushev, Igor; Förster, Stefan; Kurz, Alexander; Drzezga, Alexander; Kramer, Stefan

    2014-01-01

    We present a method to discover discriminative brain metabolism patterns in [18F] fluorodeoxyglucose positron emission tomography (PET) scans, facilitating the clinical diagnosis of Alzheimer's disease. In the work, the term "pattern" stands for a certain brain region that characterizes a target group of patients and can be used for a classification as well as interpretation purposes. Thus, it can be understood as a so-called "region of interest (ROI)". In the literature, an ROI is often found by a given brain atlas that defines a number of brain regions, which corresponds to an anatomical approach. The present work introduces a semi-data-driven approach that is based on learning the characteristics of the given data, given some prior anatomical knowledge. A Gaussian Mixture Model (GMM) and model selection are combined to return a clustering of voxels that may serve for the definition of ROIs. Experiments on both an in-house dataset and data of the Alzheimer's Disease Neuroimaging Initiative (ADNI) suggest that the proposed approach arrives at a better diagnosis than a merely anatomical approach or conventional statistical hypothesis testing. PMID:25919662

  16. Clinical significance of focal and diffuse thyroid diseases identified by (18)F-fluorodeoxyglucose positron emission tomography.

    PubMed

    Salvatori, M; Melis, L; Castaldi, P; Maussier, M L; Rufini, V; Perotti, G; Rubello, D

    2007-09-01

    (18)F-Fluorodeoxyglucose positron emission tomography (FDG-PET) thyroid incidentalomas are defined abnormal FDG uptake in the thyroid gland found at PET scan performed as part of a staging protocol and follow-up of patients with various kinds of malignancies. In the present study we report two cases of FDG PET thyroid incidentalomas, and review the literature with regard to the meaning of this new category of thyroid "disease". Since the advent of whole body FDG PET scan, a relatively high incidence of cases of thyroid FDG uptake has been reported as an incidental finding as in one of our patient. Focal uptake was found to be more likely associated to a malignant lesion, while a diffuse thyroid uptake to a benign thyroid disease. However, differential diagnosis is difficult, and reported data in literature are somewhat discordant. A focal thyroid uptake of FDG incidentally discovered at PET scan cannot be invariably considered a malignant thyroid nodule, however a prompt and complete work-up including laboratory examinations, ultrasonography and fine needle aspiration cytology, should be obtained to exclude a thyroid carcinoma. On the other hand, patients with a PET finding of diffuse FDG uptake can be considered at low risk of malignancy, being more likely associated to chronic thyroiditis or diffuse thyroid autonomy. PMID:17604940

  17. [(18)F]-fluorodeoxyglucose positron emission tomography of the cat brain: A feasibility study to investigate osteoarthritis-associated pain.

    PubMed

    Guillot, Martin; Chartrand, Gabriel; Chav, Ramnada; Rousseau, Jacques; Beaudoin, Jean-François; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lecomte, Roger; de Guise, Jacques A; Troncy, Eric

    2015-06-01

    The objective of this pilot study was to investigate central nervous system (CNS) changes related to osteoarthritis (OA)-associated chronic pain in cats using [(18)F]-fluorodeoxyglucose ((18)FDG) positron emission tomography (PET) imaging. The brains of five normal, healthy (non-OA) cats and seven cats with pain associated with naturally occurring OA were imaged using (18)FDG-PET during a standardized mild anesthesia protocol. The PET images were co-registered over a magnetic resonance image of a cat brain segmented into several regions of interest. Brain metabolism was assessed in these regions using standardized uptake values. The brain metabolism in the secondary somatosensory cortex, thalamus and periaqueductal gray matter was increased significantly (P ≤ 0.005) in OA cats compared with non-OA cats. This study indicates that (18)FDG-PET brain imaging in cats is feasible to investigate CNS changes related to chronic pain. The results also suggest that OA is associated with sustained nociceptive inputs and increased activity of the descending modulatory pathways. PMID:25951988

  18. Pulmonary suture abscess with false-positive 18F-fluorodeoxyglucose positron emission scan mimicking lung cancer recurrence.

    PubMed

    Iwasaki, Teruo; Nakagawa, Katsuhiro; Katsura, Hiroshi; Nakane, Shigeru; Kawahara, Kunimitsu; Fukuda, Haruyuki

    2006-08-01

    We present the case of a 57-year-old woman with pulmonary suture abscess. She had undergone right S3 segmentectomy for early lung adenocarcinoma 7 years before and right breast-conserving surgery for invasive ductal carcinoma 5 months previously, followed by irradiation plus endocrine therapy. Chest radiography and computed tomography revealed an irregular mass (3.5 cm in diameter) between the residual S1 segment and the middle lobe, neighboring the staple line of the segmentectomy. 18F-fluorodeoxyglucose uptake into the mass increased, seen by positron emission scans. Therefore, we could not rule out the possibility of local recurrence of lung cancer and resected it. Pathologically and microbiologically, the mass was a suture abscess arising around the nylon suture of the previous segmentectomy. This lesion was the result of a foreign-body reaction, as confirmed by polarized microscopy. Moreover, titanium staples at the segmentectomy and breast-conserving surgery may also have contributed to this condition. PMID:16972643

  19. 18F-fluorodeoxyglucose positron emission tomography might be useful for diagnosis of hepatic amyloidosis

    PubMed Central

    Tawada, Akinobu; Kanda, Tatsuo; Oide, Takashi; Tsuyuguchi, Toshio; Imazeki, Fumio; Nakatani, Yukio; Yokosuka, Osamu

    2014-01-01

    We report on a woman with hepatic involvement of primary systemic (immunoglobulin light chain, AL) amyloidosis. Her diagnosis was confirmed by liver biopsy. Clinical symptoms of hepatic amyloidosis are generally mild at its first stage, with most frequent findings being hepatomegaly and alkaline phosphatase elevation. Recent advances in the understanding of the pathophysiology of systemic amyloidosis have made several treatments available. However, its prognosis is occasionally poor. Because liver biopsy is not always safe, other modalities for the diagnosis are needed. Of interest was that fluorodeoxyglucose (FDG) uptake into the liver was observed, compared with that into the spleen, in this patient, indicating that FDG positron emission tomography and computed tomography might be useful for the diagnosis of hepatic amyloidosis with mild liver dysfunction. PMID:25018655

  20. The use of molecular sieves to simulate hot lesions in (18)F-fluorodeoxyglucose--positron emission tomography imaging.

    PubMed

    Matheoud, R; Secco, C; Ridone, S; Inglese, E; Brambilla, M

    2008-04-21

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The (18)F-fluorodeoxyglucose ((18)F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1,520 mg) and of the activity concentration of the (18)F-FDG solution (1-37 MBq ml(-1)), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the (18)F-FDG uptake were assessed. The fit of the regression model is good (r(2) = 0.83). This relation allows the production of zeolites of a desired (18)F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the (18)F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the (18)F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the (18)F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of (18)F-FDG. These features, together with their variable dimensions and shapes, make them ideal (18)F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging. PMID:18379022

  1. 30. Follow-up of Patients with Single Pulmonary Nodules and Negative 18F-Fluorodeoxyglucose Positron Emission Tomography Scans.

    PubMed

    Abou-Zied; Zubeldia; Nabi

    2000-07-01

    Purpose: Positron Emission Tomography with 18F-Fluorodeoxyglucose (18FDG-PET) is becoming the noninvasive test of choice to evaluate patients with single pulmonary nodules (SPN). While positive scans yield a high sensitivity for malignancy, the significance of negative scans remains unclear. The purpose of this study was to evaluate the prognostic value of negative 18FDG-PET in patients with SPN.Methods: From January 1998 to January 2000, 59 patients with non-calcified parenchymal SPN underwent 18FDG-PET evaluations. From a total of 14 pathologically proven tumors 12 patients had positive 18FDG-PET scans (sensitivity 86%, PPV 100%) with a mean SUV of 5.6. A total of 24 patients (41%) with negative 18FDG-PET scans were followed up with serial chest x-ray (CXR) and/or Computed tomography (CT) for a period of 6 to 24 months (mean 10.4 months). Histology specimens were available in 5 patients. Two patients had a second PET scan.Results: Nineteen of the 24 negative 18FDG-PET patients (79.2%) had no evidence of intrathoracic neoplasia at subsequent follow up by CT and/or CXR, for an overall NPV of 86.3%. Two patients (8.3%) had transthoracic needle biopsies that were positive for malignancy after the PET scan. The remaining 3 patients developed intrathoracic malignancies during the follow up period (6, 6, and 9 months respectively) by CT and/or CXR. Repeat 18FDG-PET scans were positive in 2 patients.Conclusion: 18FDG-PET appears to effectively characterize patients at low risk for malignant transformation of SPN discovered by CT. Blinded, randomized controlled trials are needed for further evaluation. PMID:11150787

  2. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis of post-transplant lymphoproliferative disorder.

    PubMed

    Panagiotidis, Emmanouil; Quigley, Ann-Marie; Pencharz, Deborah; Ardeshna, Kirit; Syed, Rizwan; Sajjan, Rakesh; Bomanji, Jamshed

    2014-03-01

    The aim of the present study was to investigate the role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) in the diagnosis of post-transplant lymphoproliferative disorder (PTLD), a serious complication of solid organ and bone marrow transplant. Between January 2004 and January 2012, 40 patients (22 males; median age 52 ± 17.4 years, range 11-77 years) underwent (18)F-FDG PET/CT scans in our department for diagnostic evaluation of PTLD. Twenty-three (57.5%) patients had negative (18)F-FDG PET/CT and 17 (42.5%) had a positive examination. In five patients PET/CT revealed extranodal disease (adrenal, pleural, spleen, liver, lung, esophagus and bone involvement). On the basis of our results, (18)F-FDG PET/CT had a sensitivity of 88.2% (95% confidence interval [CI] 0.62-0.98), a specificity of 91.3% (CI 0.70-0.98), a positive predictive value of 88.2% (CI 0.62-0.98) and a negative predictive value of 91.3% (CI 0.70-0.98). The diagnostic performance of CT in patient-based analysis was: a sensitivity of 87.5% (CI 0.60-0.97), a specificity of 88.8% (CI 0.64-0.98), a positive predictive value of 87.5% (CI 0.60-0.97) and a negative predictive value of 88.8% (CI 0.64-0.98). PET/CT in five cases revealed more findings than CT, upstaging the disease, and revealed three extranodal findings, not visualized in conventional imaging. (18)F-FDG PET/CT plays a significant role in the setting of PTLD diagnosis, demonstrating its high accuracy in detecting PTLD. PMID:23772644

  3. Occupational per-patient radiation dose from a conservative protocol for veterinary (18) F-fluorodeoxyglucose positron emission tomography.

    PubMed

    Martinez, Nicole E; Kraft, Susan L; Gibbons, Debra S; Arceneaux, Billie K; Stewart, Jeffrey A; Mama, Khursheed R; Johnson, Thomas E

    2012-01-01

    The occupational external radiation dose to human medical personnel from positron emission tomography (PET) radiopharmaceuticals has been documented, but to date no corresponding veterinary staff dose data are available. Electronic personal dosimeters (EPDs) were used in this study to measure the per-patient external radiation doses to veterinary staff using a PET/CT (PET combined with computed tomography) protocol in which the patient radiopharmaceutical dose was injected after anesthetic induction. Radiation doses were recorded for the nuclear medicine technologists, the on-duty anesthesiology technologist, and an occasional observer from 19 veterinary (18) F-fluorodeoxyglucose PET/CT studies. Patient mass range was 2.8 to 61.0 kg (22.3 kg mean) and injected activity averaged 6 MBq kg(-1) . The dose range received by nuclear medicine technologists per procedure was 0-30 μSv (9.1 μSv mean), by anesthetists 1-22 μSv (8.2 μSv mean), and by the observer 0-2 μSv (0.5 μSv mean). In both feline and canine studies, placement of the EPD on staff was a significant predictor of radiation dose. Additional significant predictors of staff radiation dose from canine studies included job position and injected activity. The per-patient occupational radiation doses to veterinary PET/CT technologists were slightly greater than those reported for human nuclear medicine PET/CT technologists, but were comparable to estimated radiation doses for nurses caring for nonambulatory human PET/CT patients. Efforts toward maintaining staff radiation doses as low as reasonably achievable (ALARA) will be important as veterinary PET/CT caseload increases. PMID:22703227

  4. Role of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Evaluation of Cytologically Indeterminate Thyroid Nodules

    PubMed Central

    Buyukdereli, Gulgun; Aktar, Yasemin; Kara, Ertan; Uguz, Aysun; Sonmez, Husnu

    2016-01-01

    Background: Thyroid nodules with indeterminate fine-needle aspiration biopsy (FNAB) results remain a diagnostic dilemma, because 70 - 85% of these nodules have been found to be benign after thyroid surgery. Objectives: The purpose of this study was to evaluate the usefulness of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in the preoperative diagnosis of cytologically indeterminate nodules. Patients and Methods: Forty-six patients were included in this study. These individuals had undergone FDG PET/CTs for the preoperative evaluation of thyroid nodules with indeterminate FNAB results. The results of the preoperative PET/CT scans were compared with the postoperative pathological results and statistically analyzed. Results: Of the 46 patients included in our study, the histopathology of the surgical specimens revealed thyroid cancer in 17 individuals (37%, 17/46). The PET/CT scan showed a positive result in 27 patients. Of these, 16 patients (59.3%) were found to have thyroid carcinomas. In addition, the PET/CT scan was considered to be negative in 19 patients, 18 (94.7%) of whom had benign lesions. For the detection of malignant lesions, the values for the sensitivity and specificity, and the positive predictive and negative predictive values were 94%, 62%, 59%, and 95%, respectively. Conclusion: The FDG PET/CT showed a high sensitivity and a high negative predictive value for identifying malignancies in thyroid nodules with indeterminate FNAB results. Therefore, the FDG PET/CT may be a helpful tool in the clinical management of these nodules. When an FDG positive lesion is detected, further examination is recommended. PMID:27110335

  5. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis

    PubMed Central

    de Boysson, Hubert; Liozon, Eric; Lambert, Marc; Parienti, Jean-Jacques; Artigues, Nicolas; Geffray, Loïk; Boutemy, Jonathan; Ollivier, Yann; Maigné, Gwénola; Ly, Kim; Huglo, Damien; Hachulla, Eric; Hatron, Pierre-Yves; Aouba, Achille; Manrique, Alain; Bienvenu, Boris

    2016-01-01

    Abstract Previous studies reported a 2- to 17-fold higher risk of aortic complications (dilation or dissection) in patients with giant-cell arteritis (GCA). We aimed to determine whether or not GCA patients with large-vessel involvement demonstrated by positron emission tomography with 18F-fluorodeoxyglucose combined with computed tomography (FDG-PET/CT) have a higher risk of aortic complications. We conducted a retrospective multicenter study between 1995 and 2014. Patients were included if they fulfilled at least 3 American College of Rheumatology criteria for GCA, or 2 criteria associated with extratemporal biopsy-proven giant-cell vasculitis; they underwent at least 1 FDG-PET/CT scan at diagnosis or during follow-up; and the morphology of the aorta was assessed by medical imaging at diagnosis. Patients with an aortic complication at the time of diagnosis were excluded. Of the 130 patients included [85 women (65%), median age 70 (50–86)], GCA was biopsy proven in 77 (59%). FDG-PET/CT was performed at diagnosis in 63 (48%) patients and during the follow-up period in the 67 (52%) remaining patients. FDG-PET/CT was positive in 38/63 (60%) patients at diagnosis and in 31/67 (46%) patients when performed during follow-up (P = NS). One hundred four patients (80%) underwent at least 1 morphological assessment of the aorta during follow-up. Nine (9%) patients developed aortic complications (dilation in all and dissection in 1) at a median time of 33 (6–129) months after diagnosis. All of them displayed large-vessel inflammation on previous FDG-PET/CT. A positive FDG-PET/CT was significantly associated with a higher risk of aortic complications (P = 0.004). In our study, a positive FDG-PET/CT was associated with an increased risk of aortic complications at 5 years. PMID:27367985

  6. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography

    PubMed Central

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was

  7. Late metastatic recurrence of penile carcinoma after 10 years: Demonstration with 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Sharma, Punit

    2016-01-01

    Penile cancer is rare cancer. While inguinal and pelvic nodal metastasis is common, distant metastasis is rare. We here present the interesting case of a 59-year-old male patient with penile carcinoma, previously treated with penectomy and inguinal lymphadenectomy 10 years earlier. He presented with bone pains and given history of malignancy he was referred for an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). PET/CT demonstrated multiple 18F-FDG avid bone and lung metastases. No locoregional disease was seen. Biopsy from a lung nodule confirmed the diagnosis, and the patient was started on palliative chemotherapy. PMID:27385892

  8. Endobronchial ultrasound-guided transbronchial needle aspiration of hilar and mediastinal lymph nodes detected on 18F-fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Minami, Daisuke; Takigawa, Nagio; Oda, Naohiro; Ninomiya, Takashi; Kubo, Toshio; Ohashi, Kadoaki; Sato, Akiko; Hotta, Katsuyuki; Tabata, Masahiro; Kaji, Mitsumasa; Tanimoto, Mitsune; Kiura, Katsuyuki

    2016-01-01

    Objective Endobronchial ultrasound-guided transbronchial needle aspiration is of diagnostic value in hilar/mediastinal (N1/N2) lymph node staging. We assessed the utility of endobronchial ultrasound-guided transbronchial needle aspiration in lung cancer patients with N1/N2 lymph nodes detected on 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Methods Fifty lung cancer patients with N1/N2 disease on 18F-fluorodeoxyglucose positron emission tomography/computed tomography underwent endobronchial ultrasound-guided transbronchial needle aspiration for pathological lymph nodes between November 2012 and April 2015. The diagnostic performance of endobronchial ultrasound-guided transbronchial needle aspiration, lymph node site and size, number of needle passes and complications were evaluated retrospectively from patients' medical records. Malignancy was defined as a maximum standardized uptake value (SUVmax) >2.5. Results The median longest diameter of the 61 lymph nodes (29 subcarinal, 21 right lower paratracheal, 6 left lower paratracheal, 4 right hilar and 1 upper paratracheal) was 23.4 mm (range: 10.4–45.7); the median number of needle passes was 2 (range: 1–5). There were no severe complications. A definitive diagnosis was made by endobronchial ultrasound-guided transbronchial needle aspiration in 39 patients (31 adenocarcinomas, 3 small-cell carcinomas, 2 squamous-cell carcinomas, 3 large-cell neuroendocrine carcinomas). In the remaining 11 patients, the diagnosis was indefinite: insufficient endobronchial ultrasound-guided transbronchial needle aspiration material was collected in two patients and non-specific lymphadenopathy was confirmed by endobronchial ultrasound-guided transbronchial needle aspiration or thoracotomy in the other nine patients. The mean lymph node SUVmax was 7.09 (range: 2.90–26.9) and was significantly higher in true-positive than in false-positive nodes (P < 0.05, t-test). Non-specific lymphadenopathy was

  9. 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a case of malignant peripheral nerve sheath tumor: An unusual presentation

    PubMed Central

    D’souza, Maria M; Jaimini, Abhinav; Kumar Dhali, Tapan; D'souza, Paschal; Saw, Sanjiv; Sharma, Rajnish; Mondal, Anupam

    2013-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are rare tumors, with an estimated incidence of 0.1/100,000/year. They are regarded as a rare variety of soft-tissue sarcomas that derive from peripheral nerves or from cells associated with the nerve sheath. Until 50% of observed MPNSTs occur in patients with neurofibromatosis 1 (NF1). The typical presenting signs and symptoms of a PNST are a palpable mass involving a peripheral nerve, loss of nerve function and/or pain. Recently, positron emission tomography (PET) has been used to detect 18F-fluorodeoxyglucose uptake in these tumors. Most of the PET studies have been reported in patients with NF1. We report a case of sporadic MPNST masquerading as infectious dermatoses, with an unusual PET/computed tomography presentation. PMID:24250026

  10. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Positive Lymph Node Endometriosis Masquerading as Lymph Node Metastasis of a Malignant Tumor

    PubMed Central

    Mori, Taisuke; Matsushima, Hiroshi; Sawada, Morio

    2014-01-01

    Endometriosis is defined as the presence of endometrium-like tissues at extrauterine sites, most commonly in the abdominal cavity. Lymph node endometriosis is a rare but clinically important type of endometriosis that can mimic lymph node metastasis of a malignant tumor. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a useful tool for diagnosing malignant tumors, although it occasionally shows false positive results in tissues with high metabolic activity caused by severe inflammation. In the present report, we describe a case of lymph node endometriosis that mimicked lymph node metastasis of a malignant tumor and showed a positive result on 18F-FDG PET/CT. The findings of the present case suggest that lymph node endometriosis could present as swollen lymph nodes with 18F-FDG PET/CT-positive results and provide important information for determining an appropriate treatment strategy. PMID:25180115

  11. Multiple 18F-Fluorodeoxyglucose Positron Emission Tomography Scans Showing Progression of Abdominal Aortic Aneurysm: A Case Report.

    PubMed

    Tsuruda, Toshihiro; Nagamachi, Shigeki; Nishimura, Masanori; Nakamura, Kunihide; Kitamura, Kazuo

    2016-05-01

    Although the precise mechanisms underlying the pathogenesis of abdominal aortic aneurysm (AAA) remain unclear, aortic wall inflammation has been implicated in AAA development. Several studies have reported the use of fluoro-deoxyglucose (F-FDG)/positron emission tomography (PET) to assess the nature of AAA.We present a case of 77-year-old Japanese male with juxta-anastomotic AAA who was followed up with multiple F-FDG-PET/CT scans over 7 years. The scans revealed chronological changes in aortic wall inflammation leading to progress and eventual rupture.This case supports a notion that aortic wall inflammation plays a role in AAA progression and rupture. PMID:27175690

  12. Interim 18F-fluorodeoxyglucose positron emission tomography in diffuse large B-cell lymphoma: qualitative or quantitative interpretation--where do we stand?

    PubMed

    Meignan, Michel; Itti, Emmanuel; Gallamini, Andrea; Haioun, Corinne

    2009-11-01

    Interim 18F-fluorodeoxyglucose positron emission tomography performed early during the course of therapy in diffuse large B-cell lymphoma is highly predictive of outcome and now used in many clinical trials to validate risk-adapted strategies. However, interpretation criteria of interim PET are not yet appropriately defined for the evaluation of tumor response and chemosensitivity. From the results of our studies, a quantitative approach based on SUV(max) reduction between baseline PET (PET0) and interim PET demonstrated a higher predictive value than visual analysis when PET was performed at two cycles (PET2) but was equivalent to visual analysis at four cycles (PET4). The SUV(max) reduction index at PET2 seems to be the best predictor of the response compared to clinical or molecular prognostic indices. When visual analysis is necessary, the use of an online independent reading network may solve the interobserver variability, but the hurdles of visual analysis deserve an international validation study to confirm the newly proposed criteria. PMID:19863178

  13. 18F-Fluorodeoxyglucose Positron-Emission Tomography Findings with Anti-N-Methyl-D-Aspartate Receptor Encephalitis that Showed Variable Degrees of Catatonia: Three Cases Report

    PubMed Central

    Lee, Eun Mi; Kang, Joong Koo; Oh, Jungsu S.; Kim, Jae Seung; Shin, Yong-Wook; Kim, Chang-Yoon

    2014-01-01

    Catatonia is one of the main symptoms of anti-N-Methyl-D-aspartate receptor (NMDAR) encephalitis. However, it is unknown whether metabolic changes observed with 18F-Fluorodeoxyglucose positron-emission tomography (FDG-PET) are correlated with the severity of the catatonic symptoms and clinical course. Three patients with anti-NMDAR encephalitis showing variable degrees of catatonia were performed with FDG-PET scans during the acute and recovery phase. PET findings showed hypermetabolism in the frontotemporoparietal regions and bilateral basal ganglia in the patient with mild catatonia, but more widespread hypermetabolic regions including the thalamus and brainstem were observed in the patients with more severe catatonia. Follow-up PET scans in one patient showed mild hypermetabolism in the right basal ganglia that correlated with mild rigidity and tonic posturing in the left extremities. Extent of cerebral metabolic changes correlates with the severity of catatonia accompanied by behavioural, motor, autonomic, and breathing abnormalities in anti-NMDAR encephalitis. PMID:25625091

  14. Detection of bone marrow involvement in newly diagnosed post-transplant lymphoproliferative disorder: (18)F-fluorodeoxyglucose positron emission tomography/computed tomography versus bone marrow biopsy.

    PubMed

    Gheysens, Olivier; Thielemans, Sanne; Morscio, Julie; Boeckx, Nancy; Goffin, Karolien E; Deroose, Christophe M; Sagaert, Xavier; Wlodarska, Iwona; Verhoef, Gregor; Dierickx, Daan; Tousseyn, Thomas

    2016-10-01

    Detecting bone marrow involvement (BMI) in lymphoma is important as it adversely affects stage. Bone marrow biopsy (BMB) remains the standard to detect BMI but is prone to sampling error. We retrospectively investigated whether (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG-PET/CT) could identify BMI in patients with post-transplant lymphoproliferative disorder (PTLD) with sufficient accuracy in comparison with staging BMB. Twenty-five patients diagnosed with PTLD who underwent (18)F-FDG-PET/CT and BMB within one month were evaluated. Based on our criteria, six patients (24%) were considered positive for BMI on (18)F-FDG-PET/CT compared to one by BMB. Although we cannot completely exclude false positive results on (18)F-FDG-PET/CT, our data indicate a significantly higher sensitivity of (18)F-FDG-PET/CT compared to BMB (100% vs 17%) but similar specificity. These data confirm the high diagnostic performance of (18)F-FDG-PET/CT for detecting BMI, but prospective studies are needed to determine whether (18)F-FDG-PET/CT could indeed replace staging BMB in PTLD. PMID:26854937

  15. Bone Scan or 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography; Which Modality Better Shows Bone Metastases of Breast Cancer?

    PubMed Central

    Balci, Tansel A.; Koc, Zehra P.; Komek, Halil

    2012-01-01

    Background In this multicenter study, we aimed to compare concurrent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and bone scan results of breast cancer patient. Patients and Methods 162 patients with breast cancer (158 female, 4 male; mean age 50.6 years) were included in the study. FDG PET/CT examination was performed in all patients, and concurrent bone scintigraphy in 68 patients. The results of FDG PET/CT and bone scan were compared. Results 132 of the 162 patients were operated on because of breast cancer. 89 patients had metastasis, and 4 had recurrent disease according to FDG PET/CT results. Metastatic sites in order of frequency were lymph nodes, bone, lung, liver, adrenal gland, local skin or muscle, brain, and peritoneum (peritonitis carcinomatosa). The sensitivity, specificity, accuracy, and negative and positive predictive value of bone scintigraphy versus FDG PET/CT were 96 vs. 100%, 100 vs. 98%, 100 vs. 83%, 100 vs. 100%, and 90 vs. 100%, respectively. Conclusion Although the 2 modalities were in concordance with each other, in 5 (21%) cases, FDG PET/CT could not show bone metastasis which were detected on bone scintigraphy. Hence, bone scintigraphy was superior to FDG PET/CT in the determination of bone metastasis derived from breast cancer. However, FDG PET/CT should be considered for soft tissue metastasis. PMID:24647778

  16. Impact of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Before and After Definitive Radiation Therapy in Patients With Apparently Solitary Plasmacytoma

    SciTech Connect

    Kim, Paul J.; Hicks, Rodney J.; Wirth, Andrew; Ryan, Gail; Seymour, John F.; Prince, H. Miles

    2009-07-01

    Purpose: To evaluate the impact of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) on management of patients with apparently isolated plasmacytoma. Methods and Materials: Twenty-one patients with apparently solitary plasmacytoma who underwent FDG-PET for staging or restaging were identified from a central PET database. They were either candidates for or had received definitive radiation therapy (RT). Results: Seventeen patients had initial staging scans for bone (n = 11) or soft tissue (n = 6) plasmacytomas, and 11 had PET scans after RT. Only 1 of 14 known untreated sites of plasmacytoma was not identified on staging PET (lesion sensitivity = 93%). Three plasmacytomas were excised before PET. Staging PET influenced management in 6 of 17 patients (35%) by showing multiple myeloma (n = 1), discouraging RT after complete resection (n = 1), excluding plasmacytoma at a second site (n = 1), by increasing RT fields (n = 2), or by suggesting sarcoidosis (n = 1). Fifteen of 17 patients with initial staging PET scans received definitive RT. Restaging PET scans after RT showed complete metabolic response in 8 of 11 cases and progressive disease in 2. Two patients with either no response or partial metabolic response had late responses. Staging sestamibi and PET scans were concordant in five of six occasions (one sestamibi scan was false negative). Conclusions: FDG-PET has value for staging and RT planning in plasmacytoma and potentially could have a role in response-assessment after RT. Slow resolution of FDG uptake posttreatment does not necessarily imply an adverse prognosis.

  17. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for primary thyroid langerhans histiocytosis: A case report and literature review.

    PubMed

    Long, Qi; Shaoyan, Wang; Hui, Wang

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare clonal proliferative disease, with an incidence rate of 4.0-5.4/1 million individuals. LCH encompasses a spectrum of disorders with diverse clinical presentations ranging from a single organ to multiple organ involvement. LCH rarely involves the thyroid gland. We presented a case with LCH of thyroid gland. The patient had painless progressive neck enlargement and then diabetes insipidus. Ultrasonic scan and magnetic resonance imaging scan revealed nodular goiter and pituitary stalk enlargement, respectively. Histopathological analysis revealed features of histiocytoid cells. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) was performed in order to rule out the presence of whole body infiltration. 18F-FDG PET/CT also demonstrated increased uptake in the thickening pituitary stalk and maxillofacial skin lesion, in addition to the bilateral thyroid nodules, CT showed the left lung nodule and the skull destruction without 18F-FDG uptake. This report emphasizes the role of 18F-FDG PET/CT in multiple organs involvement of patients with LCH. PMID:26430317

  18. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for primary thyroid langerhans histiocytosis: A case report and literature review

    PubMed Central

    Long, Qi; Shaoyan, Wang; Hui, Wang

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare clonal proliferative disease, with an incidence rate of 4.0–5.4/1 million individuals. LCH encompasses a spectrum of disorders with diverse clinical presentations ranging from a single organ to multiple organ involvement. LCH rarely involves the thyroid gland. We presented a case with LCH of thyroid gland. The patient had painless progressive neck enlargement and then diabetes insipidus. Ultrasonic scan and magnetic resonance imaging scan revealed nodular goiter and pituitary stalk enlargement, respectively. Histopathological analysis revealed features of histiocytoid cells. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) was performed in order to rule out the presence of whole body infiltration. 18F-FDG PET/CT also demonstrated increased uptake in the thickening pituitary stalk and maxillofacial skin lesion, in addition to the bilateral thyroid nodules, CT showed the left lung nodule and the skull destruction without 18F-FDG uptake. This report emphasizes the role of 18F-FDG PET/CT in multiple organs involvement of patients with LCH. PMID:26430317

  19. Quantification of the activity of tritium produced during the routine synthesis of (18)F fluorodeoxyglucose for positron emission tomography.

    PubMed

    Marshall, C; Talboys, M A; Bukhari, S; Evans, W D

    2014-06-01

    Gamma emitting radioactive by-products generated during the cyclotron irradiation of (18)O labelled water by protons to produce (18)FDG (fluorodeoxyglucose) for positron emission tomography are well characterised. However, the production of tritium ((3)H) through the (18)O(p,t)(16)O nuclear reaction has not been investigated in detail. The aim of this study was to measure tritium activity produced during a large number of (18)FDG production runs in order to obtain a better perspective on its impact on radioactive waste management, particularly as regards storage and disposal. Tritium was assayed by liquid scintillation counting in recovered (18)O water from 24 separate production runs. The mean (SD) values of activity and activity concentration were 170 (20) kBq and 81 (8) kBq ml(-1) respectively. Both quantities were positively correlated with the activity of (18)F. Tritium was detected in much lower concentration in water used to rinse the target vessel. The activity of tritium is such that it is exempt from regulatory control and may be combined with bulk non-active waste for disposal as Very Low Level Waste. However, variations in the irradiation conditions or the procedures for the collection of recovered water might result in its classification as Low Level Waste, necessitating a more complex disposal regime. PMID:24894021

  20. Use of dynamic (18)F-fluorodeoxyglucose positron emission tomography to investigate choroid plexus function in Alzheimer's disease.

    PubMed

    Daouk, Joël; Bouzerar, Roger; Chaarani, Bader; Zmudka, Jadwiga; Meyer, Marc-Etienne; Balédent, Olivier

    2016-05-01

    Choroid plexuses (CPs) are structures involved in CSF production and cerebral regulation and present atypical glucose metabolism. In addition, CPs impairment may be related to Alzheimer disease (AD). In the present study, we present the first results pointing out glucose metabolism in the CP with dynamic fluorodeoxyglucose positron emission tomography (dynamic (18)F-FDG-PET). We studied 47 elderly adults who were classified into three classes: healthy subjects (HS), amnestic mild cognitive impairment (aMCI) and AD. All participants have undergone dynamic (18)F-FDG-PET for 45min. Acquisitions were divided into 34 frames to extract tissue time-activity curves (TTACs) in various structures including CSF and CPs. Results showed a decreased CPs (18)F-FDG metabolism in AD compared with aMCI and HS. Conversely, dynamic uptake was higher in CSF for AD compared with the other groups. ROC analysis showed that CPs TTACs are a promising tool as it yielded sensitivity of 85.7% and a specificity of 83.3%. Our study showed a disturbance of glucose exchange at the blood-CSF barrier level which is in favour of a key-role of the CPs in AD. PMID:26899566

  1. {sup 18}-F-Fluorodeoxyglucose-Positron Emission Tomography Evaluation of Early Metabolic Response During Radiation Therapy for Cervical Cancer

    SciTech Connect

    Schwarz, Julie K.; Lin, Lillie L.; Siegel, Barry A.; Miller, Tom R.; Grigsby, Perry W.

    2008-12-01

    Purpose: To document changes in cervical tumor {sup 18}-F-fluorodeoxyglocose (FDG) uptake during radiation therapy and to correlate those changes with post-treatment tumor response and survival outcome. Methods and Materials: A total of 36 patients with Stage Ib1 to IIIb cervical cancer were enrolled in an institutional protocol examining the use of fluorodeoxyglucose-positron emission tomography (FDG-PET) for brachytherapy treatment planning. As part of this study, FDG-PET or PET/computed tomograpy (CT) images were obtained before, during, and after the completion of radiation therapy. Tumor metabolic responses were assessed qualitatively and semi-quantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Post-treatment FDG-PET images were obtained for 36 patients in this study. Of the patients, 29 patients had a complete metabolic response on the post-treatment PET, 4 had a partial metabolic response, and 3 had new sites of FDG uptake. Six patients had a complete metabolic response observed during radiation therapy, 26 had a partial metabolic response and 4 had stable or increased tumor metabolic activity. For patients with complete metabolic response during radiation therapy, median time to complete response was 29.5 days (range, 18-43 days). The mean cervical tumor SUV{sub max} decreased from 11.2 (SD, 6.3; range, 2.1-38.0) pretreatment to 2.4 (SD, 2.7; range, 0-8.8) mid treatment, and 0.5 (SD, 1.7; range, 0-8.3) post-treatment. Conclusions: During radiation therapy for cervical cancer, FDG-PET can be used to monitor treatment response. Complete metabolic response during radiation therapy was observed for a subset of patients. Recommendations regarding the optimal timing of FDG-PET during treatment for cervical cancer will require further systematic study.

  2. Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension.

    PubMed

    Frille, Armin; Steinhoff, Karen Geva; Hesse, Swen; Grachtrup, Sabine; Wald, Alexandra; Wirtz, Hubert; Sabri, Osama; Seyfarth, Hans-Juergen

    2016-06-01

    Positron emission tomography (PET) visualizes increased cellular [F]fluorodeoxyglucose ([F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH.Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated.The [F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≥25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≥480 dyn·s/cm (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r = 0.55, r = 0.42, respectively).Pulmonary and cardiac [F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to

  3. Efficacy of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography in restaging muscle-invasive bladder cancer following radical cystectomy

    PubMed Central

    ÖZTÜRK, HAKAN; KARAPOLAT, İNANÇ

    2015-01-01

    The aim of the present study was to retrospectively evaluate the contribution and effectiveness of 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT) scans in the restaging of patients following radical cystectomy due to muscle-invasive bladder carcinoma (MIBC). A total of 51 patients (45 males and six females) who underwent radical cystectomy due to invasive bladder cancer, and had an 18F-FDG-PET/CT scan for restaging between July 2007 and April 2013, were included in the present study. The mean age was 62.3±9.79 years (range, 40–82 years). Patients underwent a six-hour fast prior to scanning, and whole-body PET scanning from the skull base to the upper thighs was performed ~1 h after the intravenous injection of 555 MBq 18F-FDG. Whole-body CT scanning was performed in a cranio-caudal direction. 18F-FDG-PET images were reconstructed using CT data for attenuation correction. Histopathology or clinical follow-up was used to confirm any suspicious recurrent or metastatic lesions. The results for sensitivity, specificity, positive predictive value (PPV), negative predictive value and accuracy of 18F-FDG-PET/CT were 92, 83, 94, 77 and 90%, respectively. In conclusion, 18F-FDG-PET/CT efficiently detects local recurrence and distant metastases with high sensitivity and PPV in the restaging of patients who underwent radical cystectomy due to invasive bladder cancer. This procedure could play an important role in rendering decisions regarding radiotherapy or chemotherapy and post-operative follow-up, and could influence the entire decision-making process. PMID:25667618

  4. Clinical Usefulness of {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography in Patients With Locally Advanced Pancreatic Cancer Planned to Undergo Concurrent Chemoradiation Therapy

    SciTech Connect

    Chang, Jee Suk; Choi, Seo Hee; Lee, Youngin; Kim, Kyung Hwan; Park, Jeong Youp; Song, Si Young; Cho, Arthur; Yun, Mijin; Lee, Jong Doo; Seong, Jinsil

    2014-09-01

    Purpose: To assess the role of coregistered {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) in detecting radiographically occult distant metastasis (DM) at staging in patients with locally advanced pancreatic cancer (LAPC) and to study whether FDG-PET parameters can predict relatively long-term survival in patients who are more likely to benefit from chemoradiation therapy (CRT). Methods and Materials: From our institutional database, we identified 388 LAPC patients with M0 on conventional computed tomography (CT) who were planned to undergo CRT. Coregistered FDG-PET staging was offered to all patients, and follow-up FDG-PET was used at the clinical discretion of the physician. Results: FDG-PET detected unsuspected CT-occult DM in 33% of all 388 patients and allowed them to receive systemic therapy immediately. The remaining 260 patients (PET-M0) underwent CRT selectively as an initial treatment. Early DM arose in 13.1% of 260 patients, and the 1-year estimated locoregional recurrence rate was 5.4%. Median overall survival (OS) and progression-free survival (PFS) were 14.6 and 9.3 months, respectively, at a median follow-up time of 32.3 months (range, 10-99.1 months). Patients with a baseline standardized uptake value (SUV) <3.5 and/or SUV decline ≥60% had significantly better OS and PFS than those having none, even after adjustment for all potential confounding variables (all P<.001). Conclusions: FDG-PET can detect radiographically occult DM at staging in one-third of patients and spare them from the potentially toxic therapy. Additionally, FDG-PET parameters including baseline SUV and SUV changes may serve as useful clinical markers for predicting the prognosis in LAPC patients.

  5. Impact of Pretransplantation (18)F-Fluorodeoxyglucose-Positron Emission Tomography on Survival Outcomes after T Cell-Depleted Allogeneic Transplantation for Hodgkin Lymphoma.

    PubMed

    Reyal, Yasmin; Kayani, Irfan; Bloor, Adrian J C; Fox, Christopher P; Chakraverty, Ronjon; Sjursen, Ann-Marie; Fielding, Adele K; Ben Taylor, Marcus; Bishton, Mark J; Morris, Emma C; Thomson, Kirsty J; Russell, Nigel; Mackinnon, Stephen; Peggs, Karl S

    2016-07-01

    Pretransplant (18)F-fluorodeoxyglucose (FDG) positron emission tomography status is an important prognostic factor for outcomes after autologous stem cell transplantation (SCT) in Hodgkin lymphoma (HL), but its impact on outcomes after allogeneic SCT remains unclear. We retrospectively evaluated outcomes after T cell-depleted allogeneic SCT of 116 patients with nonprogressive HL according to pretransplant Deauville scores. Endpoints were overall survival (OS), progression-free survival (PFS), relapse rate (RR), and nonrelapse-related mortality (NRM). OS, PFS, and RR did not differ significantly between the Deauville 1 to 2 and Deauville 3 to 5 cohorts (OS: 77.5% versus 67.3%, P = .49; PFS: 59.4% versus 55.7%, P = .43; RR: 20.9% versus 22.6%, P = .28 at 4 years). Differences in PFS remained statistically nonsignificant when comparisons were made between Deauville 1 to 3 and Deauville 4 to 5 cohorts (60.9% versus 51.4%, P = .10), and RR remained very similar (21.5% versus 23.8%, P = .42). Multivariate analyses demonstrated trends toward significance for an effect of Deauville score on PFS (hazard ratio 1.82 for Deauville 4 to 5, P = .06) and for number of lines of prior therapy on OS (hazard ratio 2.34 for >5 lines, P = .10). The latter effect appeared to be driven by higher NRM rather than increased RR. Our findings suggest that Deauville score before allogeneic SCT in patients with nonprogressive HL has a relatively modest impact on survival outcomes in comparison with the impact in autologous SCT and that predictive values for the individual patient remain low, indicating that residual FDG-avid disease should not preclude allogeneic SCT. Furthermore, our findings bring into question the importance of attainment of metabolic complete response in this setting if it is at the expense of increasing NRM risk. PMID:27095691

  6. Clinical Significance of Postradiotherapy [{sup 18}F]-Fluorodeoxyglucose Positron Emission Tomography Imaging in Management of Head-and-Neck Cancer-A Long-Term Outcome Report

    SciTech Connect

    Yao Min Smith, Russell B.; Hoffman, Henry T.; Funk, Gerry F.; Lu Minggen; Menda, Yusuf; Graham, Michael M.; Buatti, John M.

    2009-05-01

    Purpose: To determine the accuracy and prognostic significance of post-treatment [{sup 18}F]-fluorodeoxyglucose positron emission tomography (FDG-PET) in head-and-neck squamous cell carcinoma after radiotherapy (RT). Methods and Materials: This was a retrospective study of 188 patients with head-and-neck squamous cell carcinoma who had undergone FDG-PET within 12 months after completing RT. All living patients had {>=}1 year of follow-up after FDG-PET. All patients had undergone intensity-modulated RT, 128 with definitive and 60 with postoperative intensity-modulated RT. Results: For all patients, the median follow-up after RT completion was 32.6 months and after FDG-PET was 29.2 months. For the neck, 171 patients had negative FDG-PET findings. Of these results, two were falsely negative. Seventeen patients had positive FDG-PET findings, of which 12 were true-positive findings. The sensitivity, specificity, positive predictive value, and negative predictive value for FDG-PET in the assessment of the treatment response in the neck was 86%, 97%, 71%, and 99%, respectively. For the primary site, 151 patients had negative FDG-PET findings, of which two were falsely negative. Thirty-seven patients had positive FDG-PET findings, of which 12 were true-positive findings. The sensitivity, specificity, positive predictive value, and negative predictive value for FDG-PET in the assessment of the treatment response in the primary site was 86%, 86%, 32.4%, and 98.7%, respectively. Patients with positive post-RT PET findings had significantly worse 3-year overall survival and disease-free survival. Conclusion: The results of our study have shown that the findings of post-RT FDG-PET have a high negative predictive value and are a significant prognostic factor. It can provide guidance for the management of head-and-neck cancer after definitive treatment.

  7. Diagnostic Accuracy of 18F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in the Evaluation of Carcinoma of Unknown Primary

    PubMed Central

    Riaz, Saima; Nawaz, Muhammad Khalid; Faruqui, Zia S; Saeed Kazmi, Syed Ather; Loya, Asif; Bashir, Humayun

    2016-01-01

    Objective: Detection of primary tumor site in patients with carcinoma of unknown primary (CUP) syndrome has always been a diagnostic dilemma, necessitating extensive workup. Early detection of primary tumor site coupled with specific therapy improves prognosis. The low detection rate of the primary tumor site can be attributed to the biological behavior or the small size of the primary tumor to be detected by conventional imaging. The objective of this study was to evaluate the diagnostic accuracy of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-computed tomography (PET-CT) in detecting CUP. Methods: A retrospective, cross-sectional analysis of 100 PET-CT scans of patients with CUP syndrome between November 2009 and December 2013 was performed. Eighteen patients whose final histopathology results could not be obtained for correlation were excluded from analysis. The hypermetabolic sites were assessed in correlation with histopathology. The diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive values were assessed for PET-CT. Results: Out of the 82 patients, primary tumor was correctly identified in 57.3% patients by 18F-FDG PET-CT (true positive). The PET-CT scan results were negative for primary site localization in 15% of patients (false negative). While 21% had true negative results, 7.3% displayed false positive results. PET-CT scan upstaged the disease in 27% cases. Overall, the diagnostic accuracy was found to be 78%, sensitivity 80%, specificity 74%, positive predictive value 88.7% and negative predictive value 59%. Conclusion: Our data supports the utility of 18F-FDG PET-CT scan in the localization and staging of CUP syndrome.

  8. The Clinical Usefulness of 18F-Fluorodeoxyglucose Positron Emission Tomography (PET) to Predict Oncologic Outcomes and PET-Based Radiotherapeutic Considerations in Locally Advanced Nasopharyngeal Carcinoma

    PubMed Central

    Yoon, Hong In; Kim, Kyung Hwan; Lee, Jeongshim; Roh, Yun Ho; Yun, Mijin; Cho, Byoung Chul; Lee, Chang Geol; Keum, Ki Chang

    2016-01-01

    Purpose We investigated 18F-fluorodeoxyglucose positron emission tomography (PET)-derived parameters as prognostic indices for disease progression and survival in locally advanced nasopharyngeal carcinoma (NPC) and the effect of high-dose radiotherapy for a subpopulation with PET-based poor prognoses. Materials and Methods Ninety-seven stage III and Iva-b NPC patients who underwent definitive treatment and PET were reviewed. For each primary, nodal, and whole tumor, maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis (TLG) were evaluated. Results Based on the C-index (0.666) and incremental area under the curve (0.669), the whole tumor TLGwas the most useful predictorfor progression-free survival (PFS); thewhole tumor TLG cut-off value showing the best predictive performance was 322.7. In multivariate analysis, whole tumor TLG was a significant prognostic factor for PFS (hazard ratio [HR], 0.3; 95% confidence interval [CI], 0.14 to 0.65; p=0.002) and OS (HR, 0.29; 95% CI, 0.11 to 0.79; p=0.02). Patients with low whole tumor TLG showed the higher 5-year PFS in the subgroup for only patients receiving intensity modulated radiotherapy (77.4% vs. 53.0%, p=0.01). In the subgroup of patients with high whole tumor TLG, patients receiving an EQD2 ≥ 70 Gy showed significantly greater complete remission rates (71.4% vs. 33.3%, p=0.03) and higher 5-year OS (74.7% vs. 19.6%, p=0.02). Conclusion Our findings demonstrated that whole tumor TLG could be an independent prognostic factor and high-dose radiotherapy could improve outcomes for NPC showing high whole tumor TLG. PMID:26693913

  9. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    SciTech Connect

    Ng, Sweet Ping; David, Steven; Alamgeer, Muhammad; Ganju, Vinod

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  10. Usefulness of 18F-Fluorodeoxyglucose Positron Emission Tomography for Follow-Up of 13-cis-Retinoic Acid Treatment for Residual Neuroblastoma After Myeloablative Chemotherapy

    PubMed Central

    Sato, Yuya; Kurosawa, Hidemitsu; Sakamoto, Setsu; Kuwashima, Shigeko; Hashimoto, Teisuke; Okamoto, Kentaro; Tsuchioka, Takashi; Fukushima, Keitaro; Arisaka, Osamu

    2015-01-01

    Abstract 13-cis-retinoic acid (13-cis-RA) treatment is used as a second-line treatment for residual or recurrent neuroblastoma. However, determining the duration of 13-cis-RA treatment for residual and recurrent neuroblastoma can be a problem because it is difficult to evaluate the effectiveness of the treatment. We performed 13-cis-RA treatment to remove residual active neuroblastoma cells in an 8-year-old boy with stage 4 neuroblastoma that developed from a left sympathetic ganglion and had been treated with chemotherapy, surgery, autologous peripheral blood stem-cell transplantation, and radiotherapy. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and iodine-123 metaiodobenzylguanidine (123I-MIBG) scintigraphy obtained immediately before 13-cis-RA treatment both showed positive findings in the area of the primary lesion. At 18 months after 13-cis-RA treatment, there was accumulation on 123I-MIBG scintigraphy but no uptake on 18F-FDG-PET, and 13-cis-RA treatment was suspended. The patient has been in complete remission for 3 years. In comparing the effectiveness of the 2 imaging modalities for monitoring the response to 13-cis-RA treatment, we considered that 18F-FDG-PET was superior to 123I-MIBG scintigraphy because 18F-FDG-PET images were not affected by the cell differentiation induced by 13-cis-RA treatment in our case. Thus, 18F-FDG-PET was useful for determining the treatment response and outcomes. We have reported a case of residual neuroblastoma treated with differentiation-inducing 13-cis-RA therapy. Different results were produced with 18F-FDG-PET and 123I-MIBG scintigraphy. The cessation of 13-cis-RA treatment was based on 18F-FDG-PET findings and there has been no relapse for 3 years. PMID:26252303

  11. Diagnostic importance of contrast enhanced 18F-fluorodeoxyglucose positron emission computed tomography in patients with tumor induced osteomalacia: Our experience

    PubMed Central

    Jain, Avani S.; Shelley, Simon; Muthukrishnan, Indirani; Kalal, Shilpa; Amalachandran, Jaykanth; Chandran, Sureshkumar

    2016-01-01

    Aims and Objectives: To assess the diagnostic utility of contrast-enhanced 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-ceCT) in localization of tumors in patients with clinical diagnosis of tumor-induced osteomalacia (TIO), in correlation with histopathological results. Materials and Methods: Eight patients (five male and three female) aged 24–60 (mean 42) years with a clinical diagnosis of TIO were included in this prospective study. They underwent whole body (head to toe) FDG PET-ceCT following a standard protocol on Philips GEMINI TF PET-CT scanner. The FDG PET-ceCT results were correlated with postoperative histology findings and clinical follow-up. Results: All the patients had an abnormal PET-ceCT study. The sensitivity of PET-ceCT was 87.5%, and positive predictive value was 100%. The tumor was located in the craniofacial region in 6/8 patients and in bone in 2/8 patients. Hemangiopericytoma was the most common reported histology. All patients underwent surgery, following which they demonstrated clinical improvement. However, one patient with atypical findings on histology did not show any clinical improvement, hence, underwent 68Gallium-DOTANOC PET-ceCT scan for relocalization of the site of the tumor. Conclusion: The tumors causing TIO are small in size and usually located in obscure sites in the body. Hence, head to toe protocol should be followed for FDG PET-ceCT scans with the inclusion of upper limbs. Once the tumor is localized, regional magnetic resonance imaging can be performed for better characterization of soft tissue lesion. Imaging with FDG PET-ceCT plays an important role in detecting the site of the tumor and thereby facilitating timely management. PMID:26917888

  12. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography in patients with Kikuchi-Fujimoto disease: a nine-case series in China

    PubMed Central

    Zhang, Jun; Dong, Meng-Jie; Liu, Kan-Feng; Xu, Li-Ming; Zhao, Kui; Yang, Jun; Weng, Wan-Wen; Qiu, Hong; Lin, Li-Li; Zhu, Yang-Jun

    2015-01-01

    This study observed the image characteristics and clinico-imaging relationships of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in the patients with Kikuchi-Fujimoto disease (KFD). Nine consecutive patients with histologically proven KFD who underwent 18F-FDG PET/CT were recruited. The 18F-FDG uptakes of bone marrow (BM), spleen and lymph nodes (LNs) were systematically evaluated and maximum standardized uptake values (SUVmax) were measured. The number, locations and size factors of LNs were also assessed. The correlations were calculated between 18F-FDG uptake and laboratory data and size factors of LNs, and the findings of LNs were compared between subgroups with different clinical features. 18F-FDG uptakes were positive in the BM (SUVmax, 3.2 ± 1.2), spleen (SUVmax, 2.8 ± 0.7) and 122 affected LNs (SUVmax, 4.2 ± 2.2) for all patients. The affected LNs presented a systemically (region, 4 ± 1), multiple (number, 14 ± 5) and small-sized (long axis diameter, 11.4 ± 2.7 mm; short axis diameter, 8.0 ± 2.1 mm; area, 81.1 ± 44.6 mm2) pattern. The SUVmax of BM correlated to neutrophil count, and the SUVmax of affected LNs correlated to size factors and was lower in patients with long imaging interval and positive anti-nuclear antibody (ANA) (P < 0.05). We conclude that 18F-FDG PET/CT can be characterized by the generalized distribution of relatively small-sized LNs and involvement of BM and spleen with high 18F-FDG avidity in patients with KFD. The imaging interval, neutrophil count and ANA level should be synthetically considered during imaging evaluation. PMID:26885034

  13. Prognostic value of volumetric metabolic parameters measured by [18F]Fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer

    PubMed Central

    2014-01-01

    Background We evaluated the prognostic value of volume-based metabolic positron emission tomography (PET) parameters in patients with small cell lung cancer (SCLC) compared with other factors. Methods The subjects were 202 patients with pathologically proven SCLC who underwent pretreatment 18F-fluorodeoxyglucose (FDG) PET/computed tomography (CT). Volumetric metabolic parameters of intrathoracic malignant hypermetabolic lesions, including maximum and average standardized uptake value, sum of metabolic tumor volume (MTV), and sum of total lesion glycolysis (TLG) were measured. Results 164 patients had died during follow-up (median 17.4 months) and median overall survival was 14 months. On univariate survival analysis, age, stage, treatment modality, sum of MTV (cutoff = 100 cm3), and sum of TLG (cutoff = 555) were significant predictors of survival. There was a very high correlation between the sum of MTV and the sum of TLG (r = 0.963, P < 0.001). On multivariate survival analysis, age (HR = 1.04, P < 0.001), stage (HR = 2.442, P < 0.001), and sum of MTV (HR = 1.662, P = 0.002) were independent prognostic factors. On subgroup analysis based on limited disease (LD) and extensive disease (ED), sum of MTV and sum of TLG were significant prognostic factors only in LD. Conclusion Both sum of MTV and sum of TLG of intrathoracic malignant hypermetabolic lesions are important independent prognostic factors for survival in patients with SCLC, in addition to age and clinical stage. However, it may be more useful in limited disease rather than in extensive disease. PMID:25609313

  14. 12. Patterns of Adrenal Gland Involvement from Lung Cancer Shown by 18F-Fluorodeoxyglucose Positron Emission Tomography Compared to Computed Tomography and Magnetic Resonance Imaging.

    PubMed

    Zubeldia; Abou-Zied; Nabi

    2000-07-01

    Purpose: The frequency of adrenal metastases from non-small cell lung cancer (NSCLC) varies between 4 to 25%. Adrenal metastases are frequently missed (78%) by Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). The purpose of this study was to characterize the patterns of adrenal gland involvement from lung cancer by 18-F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET).Methods: Retrospective review of patients evaluated for known or suspected lung carcinoma. Results of 18FDG-PET, CT, MRI, and scans were compared.Results: From February 1996 to May 2000, 91 patients with known (85 patients) or suspected (6 patients) lung cancer were evaluated with 18FDG-PET scan. Twenty-two patients (mean age 63, range 38-88 years) had abnormal adrenal glands by either 18FDG-PET (16 patients), CT (12 patients) or MRI (1 patient). In 13 cases 18FDG-PET scan was ordered to clarify CT or MRI findings. Only 7 patients showed adrenal gland involvement: 5 patients (5.5%) with unilateral disease and 2 patients (2.2%) with bilateral disease. PET depicted unsuspected findings in 9 patients: 8 patients (8.8%) with unilateral disease and 1 patient (1.1%) with bilateral disease.(18)FDG-PET upstaged 9 patients from limited (N1M0) to widespread disease (M1), thus obviating surgical intervention.Conclusion: This study demonstrates the potential of 18FDG-PET scanning in revealing unsuspected adrenal metastases in patients with early stages of NSCLC as well as characterizing CT or MRI equivocal adrenal masses. PMID:11150769

  15. [{sup 18}F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (PET/CT) Physiologic Imaging of Choroidal Melanoma: Before and After Ophthalmic Plaque Radiation Therapy

    SciTech Connect

    Finger, Paul T.; Chin, Kimberly J.

    2011-01-01

    Purpose: To evaluate changes in [{sup 18}F]fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) standardized uptake values (SUV) in uveal melanoma before and after plaque brachytherapy. Methods and Materials: A cohort of 217 patients diagnosed with uveal melanoma and eligible for ophthalmic plaque brachytherapy underwent preoperative PET/CT to evaluate their intraocular tumor and screen for metastasis. Subsequent to undergoing plaque brachytherapy, patients' PET/CT SUV were periodically reevaluated over 42 months. Results: In this series, 37 (17%) choroidal melanoma patients were found to have an SUV of >2.0. Of these, 18 patients were able to undergo interval follow-up PET/CT scanning. There were 3 patients with T2, 11 patients with T3, and 4 patients with T4 melanomas according to 7th edition AJCC-UICC criteria. Mean apical thickness was 8.8 mm (range, 3-12.3 mm), and the largest mean tumor diameter was 15.1 mm (range, 12-19.9 mm). The mean initial SUV was 3.7 (range, 2.1-7.3). Patients were followed for a median 16 months (range, 6-42 months). The median time to a tumor SUV of 0 was 8.0 months (range, 6-18 months). There was one case of one interval increase in SUV that diminished after circumferential laser treatment. Conclusions: Intraocular PET/CT imaging provides a physiological assessment of tumor metabolism that can be used to evaluate changes after treatment. In this study, ophthalmic plaque radiation therapy was associated with extinguished tumor PET/CT SUV over time. PET/CT imaging can be used to assess choroidal melanomas for their response to treatment.

  16. Changes in 18F-Fluorodeoxyglucose Uptake in the Spinal Cord in a Healthy Population on Serial Positron Emission Tomography/Computed Tomography

    PubMed Central

    Chong, Ari; Byun, Byung-Hyun; Hong, Sun-Pyo; Min, Jung-Joon; Bom, Hee-Seung; Ha, Jung-Min; Lee, Jung-Kil

    2013-01-01

    We aimed to determine the changes in 18F-fluorodeoxyglucose (FDG) uptake in the spinal cord on two serial positron emission tomography/computed tomography (PET/CT) scans in a healthy population. We retrospectively enrolled healthy people who underwent PET/CT twice for cancer screening. We excluded those who had degenerative vertebral disease, neurologic disease, or a history of a vertebral operation. The standardized uptake value (SUVmax) of the spinal cord of each mid-vertebral body was obtained by drawing a region of interest on an axial image of PET/CT. For analysis, the cord-to-background ratio (CTB) was used (CTB=SUVmax of each level/SUVmax of L5 level). Differences in pattern, sex, age, and intervals of the two serial PET/CT scans were analyzed. A total of 60 PET/CT images of 30 people were analyzed. The mean interval between the two PET/CT imaging studies was 2.80±0.94 years. On the follow-up PET/CT, significant change was shown only at the level of the C6 and T10 vertebrae (p<0.005). Mean CTB showed a decreasing pattern from cervical to lumbar vertebrae. There were two peaks at the lower cervical level (C4-6) and at the lower thoracic level (T12). Neither sex nor age significantly affected CTB. The FDG uptake of the spinal cord changed significantly on follow-up PET/CT only at the level of the C6 and T10 vertebrae. This finding is valuable as a baseline reference in the follow-up of metabolic changes in the spinal cord. PMID:23678476

  17. Integrated 18F-fluorodeoxyglucose-positron emission tomography/dynamic contrast-enhanced computed tomography to phenotype non-small cell lung carcinoma.

    PubMed

    Shastry, Manu; Miles, Kenneth A; Win, Thida; Janes, Sam M; Endozo, Raymond; Meagher, Marie; Ell, Peter J; Groves, Ashley M

    2012-01-01

    We applied modern molecular and functional imaging to the pretreatment assessment of lung cancer using combined dynamic contrast-enhanced computed tomography (DCE-CT) and (18)F-fluorodeoxyglucose-positron emission tomography ((18)F-FDG-PET) to phenotype tumors. Seventy-four lung cancer patients were prospectively recruited for (18)F-FDG-PET/DCE-CT using PET/64-detector CT. After technical failures, there were 64 patients (35 males, 29 females; mean age [± SD] 67.5 ± 7.9 years). DCE-CT yielded tumor peak enhancement (PE) and standardized perfusion value (SPV). The uptake of (18)F-FDG quantified on PET as the standardized uptake value (SUV(max)) assessed tumor metabolism. The median values for SUV(max) and SPV were used to define four vascular-metabolic phenotypes. There were associations (Spearman rank correlation [rs]) between tumor size and vascular-metabolic parameters: SUV(max) versus size (rs  =  .40, p  =  .001) and SUV/PE versus size (r  =  .43, p < .001). Patients with earlier-stage (I-IIA, n  =  30) disease had mean (± SD) SUV/PE 0.36 ± 0.28 versus 0.56 ± 0.32 in later-stage (stage IIB-IV, n  =  34) disease (p  =  .007). The low metabolism with high vascularity phenotype was significantly more common among adenocarcinomas (p  =  .018), whereas the high metabolism with high vascularity phenotype was more common among squamous cell carcinomas (p  =  .024). Other non-small cell lung carcinoma tumor types demonstrated a high prevalence of the high metabolism with low vascularity phenotype (p  =  .028). We show that tumor subtypes have different vascular-metabolic associations, which can be helpful clinically in managing lung cancer patients to hone targeted therapy. PMID:22954179

  18. Using 18F Fluorodeoxyglucose Positron Emission Tomography (FDG PET) to Monitor Clinical Outcomes in Patients Treated with Neoadjuvant Chemo-Radiotherapy for Locally Advanced Pancreatic Cancer

    PubMed Central

    Choi, Minsig; Heilbrun, Lance K.; Venkatramanamoorthy, Raghu; Lawhorn-Crews, Jawana M.; Zalupski, Mark M.; Shields, Anthony F.

    2013-01-01

    BACKGROUND Pancreatic cancer ranks as the fourth leading cause of cancer death in the United States with five year survival ranging from 1-5%. Positron emission tomography (PET) is a metabolic imaging system that is widely used for the initial staging of cancer and detecting residual disease after treatment. There are limited data, however, on the use of this molecular imaging technique to assess early tumor response after treatment in pancreatic cancer. METHODS The objective of the study was to explore the relationship of early treatment response using the 18 F- fluorodeoxyglucose (FDG) PET with surgical outcome and overall survival in patients with locally advanced pancreatic cancer. FDG-PET measurements of maximum standardized uptake value (SUV) and kinetic parameters were compared to the clinical outcome. RESULTS Twenty patients were enrolled in the study evaluating neoadjuvant induction chemotherapy followed by concurrent chemoradiotherapy (chemo-RT) for locally advanced pancreatic cancer. All twenty patients had pre-study PET scans and a total of fifty PET scans were performed. Among patients who were PET responders (≥50% decrease in SUV after cycle 1), 100% (2/2) had complete surgical resection. Only 6% (1/16) had surgical resection in the PET non-responders (<50% decrease). Two patients did not have the second PET scan due to clinical progression or treatment toxicity. Mean survival was 23.2 months for PET responders and 11.3 months for non-responders (p=0.234). Similar differences in survival were also noted when response was measured using Patlak analysis. CONCLUSION FDG-PET can aid in monitoring the clinical outcome of patients with locally advanced pancreatic cancer treated with neoadjuvant chemo-RT. FDG-PET may be used to aid patients who could have complete surgical resection as well as prognosticate patients’ survival. PMID:19806035

  19. Using {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography to Estimate the Length of Gross Tumor in Patients With Squamous Cell Carcinoma of the Esophagus

    SciTech Connect

    Zhong Xiaojun; Yu Jinming Zhang Baijiang; Mu Dianbin; Zhang Weidi; Li Daotang; Han Anqin; Song Pingping; Li Hui; Yang Guoren; Kong Fengming; Fu Zheng

    2009-01-01

    Purpose: To determine the optimal method of using {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) to estimate gross tumor length in esophageal carcinoma. Methods and Materials: Thirty-six patients with esophageal squamous cell carcinoma treated with radical surgery were enrolled. Gross tumor volumes (GTVs) were delineated using three different methods: visual interpretation, standardized uptake value (SUV) 2.5, and 40% of maximum standard uptake value (SUV{sub max}) on FDG-PET imaging. The length of tumors on PET scan were measured and recorded as Length{sub vis}, Length{sub 2.5}, and Length{sub 40}, respectively, and compared with the length of gross tumor in the resected specimen (Length{sub gross}). All PET data were reviewed again postoperatively, and the GTV was delineated using various percentages of SUV{sub max}. The optimal-threshold SUV was generated when the length of PET matched the Length{sub gross}. Results: The mean ({+-}SD) Length{sub gross} was 5.48 {+-} 1.98 cm. The mean Length{sub vis}, Length{sub 2.5}, and Length{sub 40} were 5.18 {+-} 1.93 cm, 5.49 {+-} 1.79 cm, and 4.34 {+-} 1.54 cm, respectively. The mean Length{sub vis} (p = 0.123) and Length{sub 2.5} (p = 0.957) were not significantly different from Length{sub gross}, and Length{sub 2.5} seems more approximate to Length{sub gross.} The mean Length{sub 40} was significantly shorter than Length{sub gross} (p < 0.001). The mean optimal threshold was 23.81% {+-} 11.29% for all tumors, and it was 19.78% {+-} 8.59%, 30.92% {+-} 12.28% for tumors {>=}5 cm, and <5 cm, respectively (p = 0.009). The correlation coefficients of the optimal threshold were -0.802 and -0.561 with SUV{sub max} and Length{sub gross}, respectively. Conclusions: The optimal PET method to estimate the length of gross tumor varies with tumor length and SUV{sub max}; an SUV cutoff of 2.5 provided the closest estimation in this study.

  20. Positron emission tomography response criteria in solid tumours criteria for quantitative analysis of [18F]-fluorodeoxyglucose positron emission tomography with integrated computed tomography for treatment response assessment in metastasised solid tumours: All that glitters is not gold.

    PubMed

    Willemsen, Annelieke E C A B; Vlenterie, Myrella; van Herpen, Carla M L; van Erp, Nielka P; van der Graaf, Winette T A; de Geus-Oei, Lioe-Fee; Oyen, Wim J G

    2016-03-01

    For solid tumours, quantitative analysis of [(18)F]-fluorodeoxyglucose positron emission tomography with integrated computed tomography potentially can have significant value in early response assessment and thereby discrimination between responders and non-responders at an early stage of treatment. Standardised strategies for this analysis have been proposed, and the positron emission tomography response criteria in solid tumours (PERCIST) criteria can be regarded as the current standard to perform quantitative analysis in a research setting, yet is not implemented in daily practice. However, several exceptions and limitations limit the feasibility of PERCIST criteria. In this article, we point out dilemmas that arise when applying proposed criteria like PERCIST on an expansive set of patients with metastasised solid tumours. Clinicians and scientists should be aware of these limitations to prevent that methodological issues impede successful introduction of research data into clinical practice. Therefore, to deliver on the high potential of quantitative imaging, consensus should be reached on a standardised, feasible and clinically useful analysis methodology. This methodology should be applicable in the majority of patients, tumour types and treatments. PMID:26808297

  1. Prognostic value of the standardized uptake value maximum change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography imaging in patients with advanced non-small-cell lung cancer

    PubMed Central

    Jin, Feng; Zhu, Hui; Fu, Zheng; Kong, Li; Yu, Jinming

    2016-01-01

    Purpose The purpose of this study was to investigate the prognostic value of the standardized uptake value maximum (SUVmax) change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography (PET) imaging in patients with advanced non-small-cell lung cancer (NSCLC). Patients and methods We conducted a retrospective review of 115 patients with advanced NSCLC who underwent pretreatment dual-time-point 18F-fluorodeoxyglucose PET acquired at 1 and 2 hours after injection. The SUVmax from early images (SUVmax1) and SUVmax from delayed images (SUVmax2) were recorded and used to calculate the SUVmax changes, including the SUVmax increment (ΔSUVmax) and percent change of the SUVmax (%ΔSUVmax). Progression-free survival (PFS) and overall survival (OS) were determined by the Kaplan–Meier method and were compared with the studied PET parameters, and the clinicopathological prognostic factors in univariate analyses and multivariate analyses were constructed using Cox proportional hazards regression. Results One hundred and fifteen consecutive patients were reviewed, and the median follow-up time was 12.5 months. The estimated median PFS and OS were 3.8 and 9.6 months, respectively. In univariate analysis, SUVmax1, SUVmax2, ΔSUVmax, %ΔSUVmax, clinical stage, and Eastern Cooperative Oncology Group (ECOG) scores were significant prognostic factors for PFS. Similar results were significantly correlated with OS, except %ΔSUVmax. In multivariate analysis, ΔSUVmax and %ΔSUVmax were significant factors for PFS. On the other hand, ECOG scores were only identified as independent predictors of OS. Conclusion Our results demonstrated the prognostic value of the SUVmax change in predicting the PFS of patients with advanced NSCLC. However, SUVmax change could not predict OS. PMID:27284249

  2. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    SciTech Connect

    Nakajima, Naomi; Kataoka, Masaaki; Sugawara, Yoshifumi; Ochi, Takashi; Kiyoto, Sachiko; Ohsumi, Shozo; Mochizuki, Teruhito

    2013-11-15

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients. Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (≥53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ≥53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has

  3. The relative prognostic utility of standardized uptake value, gross tumor volume, and metabolic tumor volume in oropharyngeal cancer patients treated with platinum based concurrent chemoradiation with a pre-treatment [18F] fluorodeoxyglucose positron emission tomography scan

    PubMed Central

    Romesser, Paul B.; Lim, Remy; Spratt, Daniel E.; Setton, Jeremy; Riaz, Nadeem; Lok, Benjamin; Rao, Shyam; Sherman, Eric J.; Schöder, Heiko; Lee, Nancy Y.

    2016-01-01

    Objectives This study compared the relative prognostic utility of the gross tumor volume (GTV), maximum standardized uptake value (SUVmax), and metabolic tumor volume (MTV) in a uniform cohort of oropharyngeal squamous cell carcinoma (OPSCC) patients treated with platinum-based concurrent chemoradiation therapy (CCRT). Methods and Materials One-hundred OPSCC with a pretreatment [18F] fluorodeoxyglucose (FDG) positron emission tomography positron-emission tomography computed-tomography (PET-CT) were treated with CCRT. Kaplan-Meier curves and Cox proportional hazard models were generated. Results When dichotomized by the median, a smaller MTV correlated with improved 5-year locoregional control (LRC) (98.0% versus 87.0%, p = .049), freedom from distant metastasis (FDM) (91.7% versus 65.0%, p = .005), progression-free survival (PFS) (80.3% versus 56.7%, p = .015), and overall survival (OS) (84.1% versus 57.8%, p = .008), whereas a smaller GTV correlated with improved PFS (80.3% versus 57.4%, p = .040) and OS (82.1% versus 60.1%, p = .025). SUVmax failed to correlate with any outcome. On multivariate analysis, when adjusted for GTV, T-stage, and N-stage a smaller MTV remained independently correlated with improved FDM, PFS, and OS. GTV failed to reach significance in the multivariate model. Conclusions A smaller MTV correlates with improved LRC, FDM, PFS, and OS in OPSCC patients undergoing platinum-based CCRT. PMID:25043882

  4. A rare case of extensive skeletal muscle metastases in adenocarcinoma cervix identified by 18F-fluorodeoxyglucose positron emission tomography/computed tomography scan

    PubMed Central

    Vishnoi, Madan Gopal; Jain, Anurag; John, Arun Ravi; Paliwal, Dharmesh

    2016-01-01

    Adenocarcinoma cervix is an uncommon histological subtype of carcinoma cervix; further incidence of skeletal muscle metastases is even rarer. We report the identification of extensive fluorodeoxyglucose (FDG) avid metastatic skeletal muscle deposits in a known case of adenocarcinoma cervix. The largest lesion representative of muscle deposit in the right deltoid was histopathologically confirmed to be metastatic poorly differentiated carcinoma. This report also serves to highlight the importance of 18F-FDG positron emission tomography/computed tomography (CT) as compared to conventional imaging modalities such as CT and ultrasonography and comments better over the description of invasiveness as well as the extent of disease in carcinoma cervix. PMID:27385895

  5. Hypertrophic pulmonary osteoarthropathy on bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with lung adenocarcinoma

    PubMed Central

    Cengiz, Arzu; Eren, Mine Şencan; Polatli, Mehmet; Yürekli, Yakup

    2015-01-01

    Hypertrophic pulmonary osteoarthropathy (HPOA) is not an uncommon paraneoplastic syndrome that is frequently associated with lung cancer. A 54-year-old male patient with lung adenocarcinoma underwent bone scintigraphy and fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scanning for initial staging. Bone scintigraphy revealed increased periosteal activity in lower extremities. FDG PET/CT revealed hypermetabolic right lung mass, mediastinal lymph nodes, and mildly increased periosteal FDG uptake in both femurs and tibias. The findings in lower extremities on bone scan and FDG PET/CT were interpreted as HPOA. PMID:26170569

  6. Hypertrophic pulmonary osteoarthropathy on bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with lung adenocarcinoma.

    PubMed

    Cengiz, Arzu; Eren, Mine Şencan; Polatli, Mehmet; Yürekli, Yakup

    2015-01-01

    Hypertrophic pulmonary osteoarthropathy (HPOA) is not an uncommon paraneoplastic syndrome that is frequently associated with lung cancer. A 54-year-old male patient with lung adenocarcinoma underwent bone scintigraphy and fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) scanning for initial staging. Bone scintigraphy revealed increased periosteal activity in lower extremities. FDG PET/CT revealed hypermetabolic right lung mass, mediastinal lymph nodes, and mildly increased periosteal FDG uptake in both femurs and tibias. The findings in lower extremities on bone scan and FDG PET/CT were interpreted as HPOA. PMID:26170569

  7. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection

    PubMed Central

    ZHOU, PU; TANG, JINLIANG; ZHANG, DONG; LI, GUANGHUI

    2016-01-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose (18F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants. PMID:27123290

  8. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Accuracy in the Staging of Non-Small Cell Lung Cancer: Review and Cost-Effectiveness

    PubMed Central

    Gómez León, Nieves; Escalona, Sofía; Bandrés, Beatriz; Belda, Cristobal; Callejo, Daniel; Blasco, Juan Antonio

    2014-01-01

    Aim of the performed clinical study was to compare the accuracy and cost-effectiveness of PET/CT in the staging of non-small cell lung cancer (NSCLC). Material and Methods. Cross-sectional and prospective study including 103 patients with histologically confirmed NSCLC. All patients were examined using PET/CT with intravenous contrast medium. Those with disease stage ≤IIB underwent surgery (n = 40). Disease stage was confirmed based on histology results, which were compared with those of PET/CT and positron emission tomography (PET) and computed tomography (CT) separately. 63 patients classified with ≥IIIA disease stage by PET/CT did not undergo surgery. The cost-effectiveness of PET/CT for disease classification was examined using a decision tree analysis. Results. Compared with histology, the accuracy of PET/CT for disease staging has a positive predictive value of 80%, a negative predictive value of 95%, a sensitivity of 94%, and a specificity of 82%. For PET alone, these values are 53%, 66%, 60%, and 50%, whereas for CT alone they are 68%, 86%, 76%, and 72%, respectively. Incremental cost-effectiveness of PET/CT over CT alone was €17,412 quality-adjusted life-year (QALY). Conclusion. In our clinical study, PET/CT using intravenous contrast medium was an accurate and cost-effective method for staging of patients with NSCLC. PMID:25431665

  9. Cost-effectiveness of 18F-fluorodeoxyglucose positron emission tomography in the assessment of early dementia from a Belgian and European perspective.

    PubMed

    Moulin-Romsee, G; Maes, A; Silverman, D; Mortelmans, L; Van Laere, K

    2005-04-01

    (18)F-fluoro-deoxyglucose positron emission tomography (FDG PET) can aid to predict AD in an early stage. The aim of this study was to estimate the economic effects of incorporating FDG PET in the diagnostic work-up of AD in a Belgian and European setting. A decision tree analysis was followed comparing a conventional algorithm using diagnostic clinical criteria and one that also incorporates PET. Major outcome terms were overall cost per patient in either strategy; diagnostic accuracy and cost per accurate diagnosis. A sensitivity analysis was performed for four critical variables: cost of PET, sensitivity and specificity of PET and delay in cognitive decline because of appropriate medication. Cost-savings per accurate diagnosis ranged from 623-6110 Euro in favour of the proposed algorithm with PET. For the same cost, more accurate diagnoses were made, resulting in benefit for patients and society. The positive results were maintained over a wide range of values for the critical variables and were expandable to other European countries with a similar health system. Therefore, incorporation of FDG PET into the clinical diagnostic work up of patients with early symptoms of cognitive decline can be advocated. PMID:15804241

  10. Usefulness of 18F-fluorodeoxyglucose positron emission tomography scan in the assessment of periprosthetic collections: report of 2 cases with opposite management.

    PubMed

    Choufani, Camille; Pierret, Charles; Gontier, Eric; Mlynski, Amélie; de Kerangal, Xavier; Chapuis, Olivier

    2014-04-01

    Vascular prosthetic infection is a rare but serious complication of vascular surgery that requires rapid diagnosis and treatment. It is associated with high rates of amputation and death. The diagnosis is difficult when faced with a chronic nonspecific clinical presentation. We report 2 cases showing the diagnostic usefulness of positron emission tomography (PET). In 1 case, PET excluded with certainty the septic character of a periprosthetic collection fistulized with the skin by showing a periprosthetic fixation insufficient to diagnose an infection. In the other case, it confirmed the prosthetic infection in association with an evocative clinical picture by revealing a pathologic periprosthetic hyperfixation. PET scan therefore drew aside the diagnosis of prosthetic infection faced with a mild clinical and paraclinical presentation in the first case, and made it possible to pose it with certainty in the second case. This examination made it possible to save valuable time in 1 case and to elucidate the periprosthetic collection in the other case. Therefore, the rule of surgical explantation of any prosthesis with flow or periprosthetic collection is no more univocal. PMID:24211410

  11. The Accuracy of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Evaluation of Bone Lesions of Undetermined Origin

    PubMed Central

    Tamam, Cuneyt; Tamam, Muge; Mulazimoglu, Mehmet

    2016-01-01

    The aim of the current study was to determine the diagnostic accuracy of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting carcinoma of unknown primary (CUP) with bone metastases. We evaluated 87 patients who were referred to FDG-PET/CT imaging and reported to have skeletal lesions with suspicion of malignancy. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. The median survival rate was measured to evaluate the prognostic value of the FDG-PET/CT findings. In the search for a primary, FDG-PET/CT findings correctly diagnosed lesions as the site of the primary true positive (TP) in 64 (73%) cases, 4 (5%) findings diagnosed no site of a primary, and none were subsequently proven to be true negative (TN); 14 (16%) diagnoses were false positive (FP) and 5 (6%) diagnoses were false negative (FN). Life expectancy was between 2 months and 25 months. Whole-body FDG-PET/CT imaging may be a useful method in assessing the bone lesions with suspicion of bone metastases. PMID:27134563

  12. Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, X.; Renaut, R.; Alexander, G. E.; Bandy, D.; Guo, H.; Reiman, E. M.

    2007-12-01

    We previously developed a noninvasive technique for the quantification of fluorodeoxyglucose (FDG) positron emission tomography (PET) images using an image-derived input function obtained from a manually drawn carotid artery region. Here, we investigate the use of independent component analysis (ICA) for more objective identification of the carotid artery and surrounding tissue regions. Using FDG PET data from 22 subjects, ICA was applied to an easily defined cubical region including the carotid artery and neighboring tissue. Carotid artery and tissue time activity curves and three venous samples were used to generate spillover and partial volume-corrected input functions and to calculate the parametric images of the cerebral metabolic rate for glucose (CMRgl). Different from a blood-sampling-free ICA approach, the results from our ICA approach are numerically well matched to those based on the arterial blood sampled input function. In fact, the ICA-derived input functions and CMRgl measurements were not only highly correlated (correlation coefficients >0.99) to, but also highly comparable (regression slopes between 0.92 and 1.09), with those generated using arterial blood sampling. Moreover, the reliability of the ICA-derived input function remained high despite variations in the location and size of the cubical region. The ICA procedure makes it possible to quantify FDG PET images in an objective and reproducible manner. Image-derived input function by ICA for FDG-PET.

  13. Usefulness of 18F-Fluorodeoxyglucose Positron Emission Tomography for Follow-Up of 13-cis-Retinoic Acid Treatment for Residual Neuroblastoma After Myeloablative Chemotherapy.

    PubMed

    Sato, Yuya; Kurosawa, Hidemitsu; Sakamoto, Setsu; Kuwashima, Shigeko; Hashimoto, Teisuke; Okamoto, Kentaro; Tsuchioka, Takashi; Fukushima, Keitaro; Arisaka, Osamu

    2015-08-01

    13-cis-retinoic acid (13-cis-RA) treatment is used as a second-line treatment for residual or recurrent neuroblastoma. However, determining the duration of 13-cis-RA treatment for residual and recurrent neuroblastoma can be a problem because it is difficult to evaluate the effectiveness of the treatment.We performed 13-cis-RA treatment to remove residual active neuroblastoma cells in an 8-year-old boy with stage 4 neuroblastoma that developed from a left sympathetic ganglion and had been treated with chemotherapy, surgery, autologous peripheral blood stem-cell transplantation, and radiotherapy. F-fluorodeoxyglucose positron emission tomography (F-FDG-PET) and iodine-123 metaiodobenzylguanidine (I-MIBG) scintigraphy obtained immediately before 13-cis-RA treatment both showed positive findings in the area of the primary lesion. At 18 months after 13-cis-RA treatment, there was accumulation on I-MIBG scintigraphy but no uptake on F-FDG-PET, and 13-cis-RA treatment was suspended. The patient has been in complete remission for 3 years. In comparing the effectiveness of the 2 imaging modalities for monitoring the response to 13-cis-RA treatment, we considered that F-FDG-PET was superior to I-MIBG scintigraphy because F-FDG-PET images were not affected by the cell differentiation induced by 13-cis-RA treatment in our case. Thus, F-FDG-PET was useful for determining the treatment response and outcomes.We have reported a case of residual neuroblastoma treated with differentiation-inducing 13-cis-RA therapy. Different results were produced with F-FDG-PET and I-MIBG scintigraphy. The cessation of 13-cis-RA treatment was based on F-FDG-PET findings and there has been no relapse for 3 years. PMID:26252303

  14. Contrast-enhanced [18F] fluorodeoxyglucose-positron emission tomography-computed tomography as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin

    PubMed Central

    Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth

    2015-01-01

    Background: To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). Materials and Methods: A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. Results: PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. Conclusions: F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT. PMID:26170563

  15. Contrast-Enhanced [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Staging and Radiotherapy Planning in Patients With Anal Cancer

    SciTech Connect

    Bannas, Peter; Weber, Christoph; Adam, Gerhard; Frenzel, Thorsten; Derlin, Thorsten; Mester, Janos; Klutmann, Susanne

    2011-10-01

    Purpose: The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG)-positron emission tomography/computed tomography (PET/CT) for staging and radiotherapy planning of anal cancer. Methods and Materials: A total of 22 consecutive patients (median age, 61 years old) with anal cancer underwent complete staging evaluation including physical examination, biopsy of the primary tumor, and contrast-enhanced (ce)-PET/CT. Patients were positioned as they would be for their subsequent radiotherapy. PET and CT images were evaluated independently for detectability and localization of the primary tumor, pelvic and inguinal lymph nodes, and distant metastasis. The stage, determined by CT or PET alone, and the proposed therapy planning were compared with the stage and management determined by ce-PET/CT. Data from ce-PET/CT were used for radiotherapy planning. Results: ce-PET/CT revealed locoregional lymph node metastasis in 11 of 22 patients (50%). After simultaneous reading of PET and CT data sets by experienced observers, 3 patients (14%) were found to have sites of disease not seen on CT that were identified on PET. Two patients had sites of disease not seen on PET that were identified on CT. In summary, 2 patients were upstaged, and 4 patients were downstaged due to ce-PET/CT. However, radiotherapy fields were changed due to the results from ce-PET/CT in 23% of cases compared to CT or PET results alone. Conclusions: ce-PET/CT is superior to PET or CT alone for staging of anal cancer, with significant impact on therapy planning.

  16. In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with [68Ga]annexin A5 and [18F]fluorodeoxyglucose positron emission tomography.

    PubMed

    Lehner, Sebastian; Todica, Andrei; Vanchev, Yordan; Uebleis, Christopher; Wang, Hao; Herrler, Tanja; Wängler, Carmen; Cumming, Paul; Böning, Guido; Franz, Wolfgang M; Bartenstein, Peter; Hacker, Marcus; Brunner, Stefan

    2014-01-01

    [68Ga]Annexin A5 positron emission tomography (PET) reveals the externalization of phosphatidylserine as a surrogate marker for apoptosis. We tested this technique for therapy monitoring in a murine model of myocardial infarction (MI) including parathyroid hormone (PTH) treatment. MI was induced in mice, and they were assigned to the saline or the PTH group. On day 2, they received [68Ga]annexin A5 PET or histofluorescence TUNEL staining. Mice had 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-PET examinations on days 6 and 30 for calculation of the left ventricular ejection fraction and infarct area. [68Ga]Annexin A5 uptake was 7.4 ± 1.3 %ID/g within the infarction for the controls and 4.5 ± 1.9 %ID/g for the PTH group (p  =  .013). TUNEL staining revealed significantly more apoptotic cells in the infarct area on day 2 in the controls (64 ± 9%) compared to the treatment group (52 ± 4%; p  =  .045). FDG-PET revealed a significant decrease in infarct size in the treatment group and an increase in the controls. Examinations of left ventricular ejection fraction on days 6 and 30 did not reveal treatment effects. [68Ga]Annexin A5 PET can detect the effects of PTH treatment as a marker of apoptosis 2 days after MI; ex vivo examination confirmed significant rescue of myocardiocytes. FDG-PET showed a small but significant reduction in infarct size but no functional improvement. PMID:25249170

  17. A comparison study of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography-computed tomography scans in evaluation of patients with recurrent brain tumors

    PubMed Central

    Sharma, Rajnish; D’Souza, Maria; Jaimini, Abhinav; Hazari, Puja Panwar; Saw, Sanjeev; Pandey, Santosh; Singh, Dinesh; Solanki, Yachna; Kumar, Nitin; Mishra, Anil K.; Mondal, Anupam

    2016-01-01

    Introduction: 11C-methonine ([11C]-MET) positron emission tomography-computed tomography (PET-CT) is a well-established technique for evaluation of tumor for diagnosis and treatment planning in neurooncology. [11C]-MET reflects amino acid transport and has been shown to be more sensitive than magnetic resonance imaging (MRI) in stereotactic biopsy planning. This study compared fluorodeoxyglucose (FDG) PET-CT and MET PET-CT in the detection of various brain tumors. Materials and Methods: Sixty-four subjects of brain tumor treated by surgery, chemotherapy, and/or radiotherapy were subjected to [18F]-FDG, [11C]-MET, and MRI scan. The lesion was analyzed semiquantitatively using tumor to normal contralateral ratio. The diagnosis was confirmed by surgery, stereotactic biopsy, clinical follow-up, MRI, or CT scans. Results: Tumor recurrence was found in 5 out of 22 patients on [F-18] FDG scan while [11C]-MET was able to detect recurrence in 18 out of 22 patients in low-grade gliomas. Two of these patients were false positive for the presence of recurrence of tumor and later found to be harboring necrosis. Among oligodendroglioma, medulloblastoma and high-grade glioma out of 42 patients 39 were found to be concordant MET and FDG scans. On semiquantitative analysis, mean T/NT ratio was found to be 2.96 ± 0.94 for lesions positive for recurrence of tumors and 1.18 ± 0.74 for lesions negative for recurrence of tumor on [11C]-MET scan. While the ratio for FDG scan on semiquantitative analysis was found to be 2.05 ± 1.04 for lesions positive for recurrence of tumors and 0.52 ± 0.15 for lesions negative for recurrence of tumors. Conclusion: The study highlight that [11C]-MET is superior to [18F]-FDG PET scans to detect recurrence in low-grade glioma. A cut-off value of target to nontarget value of 1.47 is a useful parameter to distinguish benign from malignant lesion on an [11C]-MET Scan. Both [18F]-FDG and [11C]-MET scans were found to be useful in high-grade astrocytoma

  18. Prognostic Significance of Tumor Response as Assessed by Sequential {sup 18}F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography During Concurrent Chemoradiation Therapy for Cervical Cancer

    SciTech Connect

    Oh, Dongryul; Lee, Jeong Eun; Huh, Seung Jae; Park, Won; Nam, Heerim; Choi, Joon Young; Kim, Byung-Tae

    2013-11-01

    Purpose: To investigate the prognostic role of metabolic response by the use of serial sets of positron emission tomography/computed tomography (PET/CT) in patients with cervical cancer who were treated with concurrent chemoradiation therapy (CCRT). Methods and Materials: A total of 60 patients who were treated with CCRT between February 2009 and December 2010 were analyzed. Three sequential PET/CT images were acquired for each patient: pre-CCRT, during-CCRT at 4 weeks of CCRT, and 1 month post-CCRT PET/CT. Metabolic responses were assessed qualitatively. The percentage changes in the maximum values of standardized uptake value (ΔSUV{sub max}%) from the PET/CT images acquired pre-CCRT and during-CCRT were calculated. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether ΔSUV{sub max}% could predict complete response (CR) on the post-CCRT PET/CT and to identify the best cutoff value. Prognostic factors of progression-free survival (PFS) were analyzed. Results: During-CCRT PET/CT showed that 8 patients (13%) had CR, and the other 52 patients (87%) had partial response (PR). On the post-CCRT PET/CT, 43 patients (73%) had CR, 12 patients (20%) had PR, and 4 patients (7%) had progressive disease. The average SUV{sub max} in primary tumors was 16.3 (range, 6.4-53.0) on the pre-CCRT PET/CT images and 5.3 (range, 0-19.4) on the during-CCRT PET/CT images. According to ROC curve analysis, ΔSUV{sub max}% could predict CR response on post-CCRT PET/CT (P<.001, cutoff value of 59.7%). In all patients, the PFS rate was 71.9% at 2 years. Multivariate analysis showed that ΔSUV{sub max}% ≥60% (P=.045) and CR response on the post-CCRT PET/CT (P=.012) were statistically significant predictors of PFS. Conclusion: Metabolic responses on the during-CCRT images at 4 weeks of treatment and 1-month post-CCRT PET/CT images may predict treatment outcomes in patients with cervical cancer. ΔSUV{sub max}% ≥60% at 4 weeks of CCRT may predict CR response

  19. The role of positron emission tomography with 18F-fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation.

    PubMed

    Patriarca, Francesca; Carobolante, Francesca; Zamagni, Elena; Montefusco, Vittorio; Bruno, Benedetto; Englaro, Emanuaela; Nanni, Cristina; Geatti, Onelio; Isola, Miriam; Sperotto, Alessandra; Buttignol, Silvia; Stocchi, Raffaella; Corradini, Paolo; Cavo, Michele; Fanin, Renato

    2015-06-01

    Positron emission tomography (PET) integrated with computed tomography (PET/CT) has been reported to be useful for screening myelomatous lesions at diagnosis in patients with multiple myeloma (MM) and for monitoring response to autologous stem cell transplantation (auto-SCT). The aim of the study was to evaluate the prognostic significance of PET/CT in MM patients who received allogeneic stem cell transplantation (allo-SCT). Patients who underwent upfront auto-SCT followed by allo-SCT, either as consolidation or salvage treatment, were studied with PET/CT before and/or within 6 months after allo-SCT. The number, the maximum standard uptake value (SUV), and the location (medullary or extramedullary) of focal lesions (FLs) were recorded and investigated as predictors of progression-free survival (PFS) and overall survival (OS) by univariate and multivariate analyses. Fifty-four patients had a PET/CT scan before allo-SCT. Of these, 22 patients (41%) had a negative PET/CT scan, 11 patients (20%) showed 1 to 3 FLs, and 21 patients (39%) had either a diffuse bone marrow involvement or more than 3 FLs. SUV was >4.2 in 21 patients (39%) and extramedullary disease (EMD) was present in 6 patients (11%). Multivariate analysis of prognostic factors before allo-SCT showed that persistence of EMD at transplantation was an independent predictor of poor PFS, whereas OS was negatively influenced by unrelated donor and SUV > 4.2. Fifty-nine patients had a PET/CT scan within 6 months after allo-SCT. Multivariate analysis of post-treatment variables showed that persistence of EMD and failure to obtain complete response or very good partial response after allo-SCT were strongly associated with shorter PFS and OS. Of the 46 patients with evaluable PET/CT scans both before and 6 months after allo-SCT, the 23 patients who maintained or reached a PET complete remission showed a significantly prolonged PFS and OS compared with the 23 patients with persistence of any PET positivity (2-year

  20. Preoperative [18F]Fluorodeoxyglucose Positron Emission Tomography Standardized Uptake Value of Neck Lymph Nodes Predicts Neck Cancer Control and Survival Rates in Patients With Oral Cavity Squamous Cell Carcinoma and Pathologically Positive Lymph Nodes

    SciTech Connect

    Liao, C.-T.; Chang, J.T.-C.; Wang, H.-M.; Ng, S.-H.; Hsueh, C.; Lee, L.-Y.; Lin, C.-H.; Chen, I-H.; Huang, S.-F.

    2009-07-15

    Purpose: Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. Methods and Materials: A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence of pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. Results: The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max {>=}5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max {>=}5.7 identified patients with the worst prognosis. Conclusion: A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.

  1. A Pilot Trial of Serial 18F-Fluorodeoxyglucose Positron Emission Tomography in Patients With Medically Inoperable Stage I Non-Small-Cell Lung Cancer Treated With Hypofractionated Stereotactic Body Radiotherapy

    SciTech Connect

    Henderson, Mark A.; Hoopes, David J.; Fletcher, James W.; Lin, P.-F.; Tann, Mark; Yiannoutsos, Constantin T.; Williams, Mark D.; Fakiris, Achilles J.; McGarry, Ronald C.; Timmerman, Robert D.

    2010-03-01

    Purpose: Routine assessment was made of tumor metabolic activity as measured by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in Stage I non-small-cell lung cancer (NSCLC). This report describes PET correlates prospectively collected after stereotactic body radiotherapy (SBRT) for patients with medically inoperable NSCLC. Methods and Materials: 14 consecutive patients with medically inoperable Stage I NSCLC were enrolled. All patients received SBRT to 60-66 Gy in three fractions. Patients underwent serial planned FDG-PET/computed tomography fusion imaging before SBRT and at 2, 26, and 52 weeks after SBRT. Results: With median follow-up of 30.2 months, no patients experienced local failure. One patient developed regional failure, 1 developed distant failure, and 1 developed a second primary. The median tumor maximum standardized uptake value (SUV{sub max}) before SBRT was 8.70. The median SUV{sub max} values at 2, 26, and 52 weeks after SBRT were 6.04, 2.80, and 3.58, respectively. Patients with low pre-SBRT SUV were more likely to experience initial 2-week rises in SUV, whereas patients with high pre-SBRT SUV commonly had SUV declines 2 weeks after treatment (p = 0.036). Six of 13 patients had primary tumor SUV{sub max} >3.5 at 12 months after SBRT but remained without evidence of local disease failure on further follow-up. Conclusions: A substantial proportion of patients may have moderately elevated FDG-PET SUV{sub max} at 12 months without evidence of local failure on further follow-up. Thus, slightly elevated PET SUV{sub max} should not be considered a surrogate for local treatment failure. Our data do not support routine serial FDG-PET/computed tomography for follow-up of patients receiving SBRT for Stage I NSCLC.

  2. Proposal of new expanded selection criteria using total tumor size and 18F-fluorodeoxyglucose - positron emission tomography/computed tomography for living donor liver transplantation in patients with hepatocellular carcinoma: The National Cancer Center Korea criteria

    PubMed Central

    Lee, Seung Duk; Lee, Bora; Kim, Seong Hoon; Joo, Jungnam; Kim, Seok-Ki; Kim, Young-Kyu; Park, Sang-Jae

    2016-01-01

    AIM: To expand the living donor liver transplantation (LT) pool of eligible patients with hepatocellular carcinoma (HCC) using new morphological and biological criteria. METHODS: Patients with HCC who underwent living donor LT (LDLT) from March 2005 to May 2013 at the National Cancer Center Korea (NCCK) were enrolled. We performed the 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) before LDLT. Overall and disease-free survival analysis was done in patients to evaluate the usefulness of new NCCK criteria using PET/CT and total tumor size (10 cm). RESULTS: We enrolled a total of 280 patients who pathologically confirmed to have HCC and performed the PET/CT before transplantation. Among them, 164 (58.6%) patients fulfilled the NCCK criteria and 132 patients (47.1%) met the Milan criteria. Five-year overall and disease-free survival rates for patients who fulfilled the NCCK criteria showed 85.2% and 84.0%, respectively, and were significantly higher than those beyond the NCCK criteria (60.2% and 44.4%, respectively; P < 0.001). The correlation analysis between preoperative imaging tests and pathologic reports using Cohen’s Kappa demonstrated the better results in the NCCK criteria than those in the Milan criteria (0.850 vs 0.583). The comparison of disease-free analysis among the NCCK, Milan, and University of California, San Francisco (UCSF) criteria using the receiver operating characteristics curves revealed the similar area under the curve value criteria (NCCK vs Milan, P = 0.484; NCCK vs UCSF, P = 0.189 at 5-years). CONCLUSION: The NCCK criteria using hybrid concept of both morphological and biological parameters showed an excellent agreement between preoperative imaging and pathological results, and favorable survival outcomes. These new criteria might select the optimal patients with HCC waiting LDLT and expand the selection pool. PMID:27358787

  3. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study

    PubMed Central

    Gagel, Bernd; Reinartz, Patrick; Demirel, Cengiz; Kaiser, Hans J; Zimny, Michael; Piroth, Marc; Pinkawa, Michael; Stanzel, Sven; Asadpour, Branka; Hamacher, Kurt; Coenen, Heinz H; Buell, Ulrich; Eble, Michael J

    2006-01-01

    Background Experimental and clinical evidence suggest that hypoxia in solid tumours reduces their sensitivity to conventional treatment modalities modulating response to ionizing radiation or chemotherapeutic agents. The aim of the present study was to show the feasibility of determining radiotherapeutically relevant hypoxia and early tumour response by ([18F] Fluoromisonidazole (FMISO) and [18F]-2-fluoro-2'-deoxyglucose (FDG) PET. Methods Eight patients with non-small-cell lung cancer underwent PET scans. Tumour tissue oxygenation was measured with FMISO PET, whereas tumour glucose metabolism was measured with FDG PET. All PET studies were carried out with an ECAT EXACT 922/47® scanner with an axial field of view of 16.2 cm. FMISO PET consisted of one static scan of the relevant region, performed 180 min after intravenous administration of the tracer. The acquisition and reconstruction parameters were as follows: 30 min emission scanning and 4 min transmission scanning with 68-Ge/68-Ga rod sources. The patients were treated with chemotherapy, consisting of 2 cycles of gemcitabine (1200 mg/m2) and vinorelbine (30 mg/m2) followed by concurrent radio- (2.0 Gy/d; total dose 66.0 Gy) and chemotherapy with gemcitabine (300–500 mg/m2) every two weeks. FMISO PET and FDG PET were performed in all patients 3 days before and 14 days after finishing chemotherapy. Results FMISO PET allowed for the qualitative and quantitative definition of hypoxic sub-areas which may correspond to a localization of local recurrences. In addition, changes in FMISO and FDG PET measure the early response to therapy, and in this way, may predict freedom from disease, as well as overall survival. Conclusion These preliminary results warrant validation in larger trials. If confirmed, several novel treatment strategies may be considered, including the early use of PET to evaluate the effectiveness of the selected therapy. PMID:16515707

  4. 18F-fluorodeoxyglucose Positron Emisson Tomography/Computed Tomography Guided Conformal Brachytherapy for Cervical Cancer

    SciTech Connect

    Nam, Heerim; Huh, Seung Jae; Ju, Sang Gyu; Park, Won; Lee, Jeong Eun; Choi, Joon Young; Kim, Byung-Tae; Kim, Chan Kyo; Park, Byung Kwan

    2012-09-01

    Purpose: To evaluate the feasibility of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT)-guided conformal brachytherapy treatment planning in patients with cervical cancer. Methods and Materials: Pretreatment FDG-PET/CT was performed for 12 patients with cervical cancer. Brachytherapy simulation was performed after an external-beam radiation therapy median dose of 4140 cGy. Patients underwent FDG-PET/CT scans with placement of tandem and ovoid applicators. The gross tumor volume (GTV) was determined by adjusting the window and level to a reasonable value and outlining the edge of the enhancing area, which was done in consultation with a nuclear medicine physician. A standardized uptake value profile of the tumor margin was taken for each patient relative to the maximum uptake value of each tumor and analyzed. The plan was designed to deliver 400 cGy to point A (point A plan) or to cover the clinical target volume (CTV) (PET/CT plan). Results: The median dose that encompassed 95% of the target volume (D95) of the CTV was 323.0 cGy for the point A plan vs 399.0 cGy for the PET/CT plan (P=.001). The maximum standardized uptake values (SUV{sub max}) of the tumors were reduced by a median of 57% (range, 13%-80%). All but 1 patient presented with discernable residual uptake within the tumors. The median value of the thresholds of the tumors contoured by simple visual analysis was 41% (range, 23%-71%). Conclusions: In this study, the PET/CT plan was better than the conventional point A plan in terms of target coverage without increasing the dose to the normal tissue, making optimized 3-dimensional brachytherapy treatment planning possible. In comparison with the previously reported study with PET or CT alone, we found that visual target localization was facilitated by PET fusion on indeterminate CT masses. Further studies are needed to characterize the metabolic activity detected during radiation therapy for more reliable targeting.

  5. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  6. Metabolic Response of Lymph Nodes Immediately After RT Is Related With Survival Outcome of Patients With Pelvic Node-Positive Cervical Cancer Using Consecutive [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    SciTech Connect

    Yoon, Mee Sun; Ahn, Sung-Ja; Nah, Byung-Sik; Chung, Woong-Ki; Song, Ho-Chun; Yoo, Su Woong; Song, Ju-Young; Jeong, Jae-Uk; Nam, Taek-Keun

    2012-11-15

    Purpose: To evaluate the metabolic response of uterine cervix and pelvic lymph nodes (LNs) using consecutive {sup 18}F-fluorodeoxyglucose-positron emission tomography/computed tomography (PET/CT) immediately after RT and to correlate survival outcome with the metabolic response. Methods and Materials: We retrospectively reviewed 48 patients with cervical cancer who had positive pelvic LNs by preradiation therapy (pre-RT) PET/CT. All patients underwent PET/CT scans immediately after RT (inter-RT PET/CT) after median 63 Gy to the gross LNs. The metabolic response of the LNs was assessed quantitatively and semiquantitatively by measurement of the maximal standardized uptake value (SUV{sub max}). Results: Classifying the metabolic response of all nodal lesions, 37 patients (77%) had LNs with complete metabolic response on the inter-RT PET/CT (LNCMRi), and 11 patients had a non-LNCMRi, including 4 patients with progressive metabolic disease. The overall 3-year survival rates were 83% for the patients with LNCMRi and 73% for the non-LNCMRi group (P=.038). The disease-free survival for patients with LNCMRi were significantly better than that for the non-LNCMRi group (71% vs 18%, respectively, P<.001). The 3-year distant metastasis-free survival rates were 79% for the patients with LNCMRi and 27% for the non-LNCMRi group (P<.001). There were no statistically significant differences in overall survival (76% vs 86%, respectively, P=.954) and disease-free survival rates (58% vs 61%, respectively, P=.818) between the CMR of primary cervical tumor and the non-CMR groups. Conclusions: The results showed a significant correlation between survival outcome and the interim metabolic response of pelvic LNs. CMR of nodal lesion on inter-RT PET/CT had excellent overall survival, disease-free survival and distant metastasis-free survival rates. This suggested that PET/CT immediately after RT can be a useful tool for the evaluation of the interim response of the LNs and identify a subset

  7. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    SciTech Connect

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-11-15

    Purpose: {sup 18}F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV{sub CT}) and on fused PET/CT images (GTV{sub PETCT}). The mean percentage volume change (PVC) between GTV{sub CT} and GTV{sub PETCT} for the radiation oncologists and the PVC between GTV{sub CT} and GTV{sub PETCT} for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV{sub CT} and GTV{sub PETCT} in a single measurement. Results: For all patients, a significant difference in PVC from GTV{sub CT} to GTV{sub PETCT} exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV{sub CT} and GTV{sub FUSED} for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV{sub CT} to GTV{sub PETCT} were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  8. Predictive value of early 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) during salvage chemotherapy in relapsing/refractory Hodgkin lymphoma (HL) treated with high-dose chemotherapy.

    PubMed

    Castagna, Luca; Bramanti, Stefania; Balzarotti, Monica; Sarina, Barbara; Todisco, Elisabetta; Anastasia, Antonella; Magagnoli, Massimo; Mazza, Rita; Nozza, Andrea; Giordano, Laura; Rodari, Marcello; Rinifilo, Eva; Chiti, Arturo; Santoro, Armando

    2009-05-01

    This retrospective study evaluated whether early 2-[fluorine-18]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) after two cycles of salvage chemotherapy (PET2) could predict survival after high-dose chemotherapy (HDC). Twenty-four Hodgkin lymphoma (HL) patients were included. PET2 was negative in 58% and positive in 42% of patients. Ninety per cent of patients (9/10) with positive PET2 relapsed after HDC while all but one patient with negative PET2 maintained a complete remission. The 2-year progression-free survival was 93% vs. 10% for patients with negative and positive PET2, respectively (P < 0.001). This study shows that interim PET can predict the outcome after high-dose chemotherapy in HL patients. PMID:19344403

  9. Benefits of adopting good radiation practices in reducing the whole body radiation dose to the nuclear medicine personnel during 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging

    PubMed Central

    Verma, Shashwat; Kheruka, Subhash Chand; Maurya, Anil Kumar; Kumar, Narvesh; Gambhir, Sanjay; Kumari, Sarita

    2016-01-01

    Introduction: Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may likely to receive higher whole body doses than those working only in conventional nuclear medicine. The radiation exposure to the personnel occurs in dispensing the dose, administration of activity, patient positioning, and while removing the intravenous (i.v.) cannula. The estimation of radiation dose to Nuclear Medicine Physician (NMP) involved during administration of activity to the patient and technical staff assisting in these procedures in a positron emission tomography/computed tomography (PET/CT) facility was carried out. Materials and Methods: An i.v access was secured for the patient by putting the cannula and blood sugar was monitored. The activity was then dispensed and measured in the dose calibrator and administered to the patient by NMP. Personnel doses received by NMP and technical staff were measured using electronic pocket dosimeter. The radiation exposure levels at various working locations were assessed with the help of gamma survey meter. Results and Discussion: The radiation level at working distance while administering the radioactivity was found to be 106–170 μSv/h with a mean value of 126.5 ± 14.88 μSv/h which was reduced to 4.2–14.2 μSv/h with a mean value of 7.16 ± 2.29 μSv/h with introduction of L-bench for administration of radioactivity. This shows a mean exposure level reduction of 94.45 ± 1.03%. The radiation level at working distance, while removing the i.v. cannula postscanning was found to be 25–70 μSv/h with a mean value of 37.4 ± 13.16 μSv/h which was reduced to 1.0–5.0 μSv/h with a mean value of 2.77 ± 1.3 μSv/h with introduction of L-bench for removal of i.v cannula. This shows a mean exposure level reduction of

  10. Pelvic Lymph Node Status Assessed by 18F-Fluorodeoxyglucose Positron Emission Tomography Predicts Low-Risk Group for Distant Recurrence in Locally Advanced Cervical Cancer: A Prospective Study

    SciTech Connect

    Kang, Sokbom; Park, Jung-Yeol; Lim, Myung-Chul; Song, Yong-Joong; Park, Se-Hyun; Kim, Seok-Ki; Chung, Dae-Chul; Seo, Sang-Soo; Kim, Joo-Young; Park, Sang-Yoon

    2011-03-01

    Purpose: To develop a prediction model to identify a low-risk group for distant recurrence in patients with locally advanced cervical cancer treated by concurrent chemoradiation. Methods and Materials: Prospectively, 62 patients with locally advanced cervical cancer were recruited as a training cohort. Clinical variables and parameters obtained from positron emission tomography (PET) and magnetic resonance imaging were analyzed by logistic regression. For the test set, 54 patients were recruited independently. To identify the low-risk group, negative likelihood ratio (LR) less than 0.2 was set to be a cutoff. Results: Among the training cohort, multivariate logistic analysis revealed that advanced International Federation of Gynecology and Obstetrics (FIGO) stage and a high serum squamous cancer cell (SCC) antigen level were significant risk factors (p = 0.015 and 0.025, respectively). Using the two parameters, criteria to determine a low-risk subset for distant recurrence were postulated: (1) FIGO Stage IIB or less and (2) pretreatment SCC < 2.4 (Model A). Positive pelvic node on PET completely predicted all cases with distant recurrence and thus was considered as another prediction model (Model B). In the test cohort, although Model A did not showed diagnostic performance, Model B completely predicted all cases with distant recurrence and showed a sensitivity of 100% with negative LR of 0. Across the training and test cohort (n = 116), the false negative rate was 0 (95% confidence interval 0%-7.6%). Conclusions: Positive pelvic node on PET is a useful marker in prediction of distant recurrence in patients with locally advanced cervical cancer who are treated with concurrent chemoradiation.

  11. Emission computed tomography of /sup 18/F-fluorodeoxyglucose and /sup 13/N-ammonia in stroke and epilepsy

    SciTech Connect

    Kuhl, D.E.; Phelps, M.E.; Engel, J. Jr.

    1980-01-01

    The ECAT Positron Tomograph was used to scan normal control subjects, stroke patients at various times during recovery, and patients with partial epilepsy during EEG monitoring. /sup 18/F-fluorodeoxyglucose (/sup 18/FDG) and /sup 13/N-Ammonia (/sup 13/NH/sub 3/) were used as indicators of abnormalities in local cerebral glucose utilization (LCMR/sub glc/) and relative perfusion, respectively. Hypometabolism, due to deactivation or minimal damage, was demonstrated with the /sup 18/FDG scan in deep structures and broad zones of cerebral cortex which appeared normal on x-ray CT (XCT) and /sup 99m/Tc pertechnetate scans. In patients with partial epilepsy, who had unilateral or focal electrical abnormalities, interictal /sup 18/FDG scan patterns clearly showed localized regions of decreased (20 to 50%) LCMR/sub glc/, which correlated anatomically with the eventual EEG localization.

  12. Change of Maximum Standardized Uptake Value Slope in Dynamic Triphasic [{sup 18}F]-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Distinguishes Malignancy From Postradiation Inflammation in Head-and-Neck Squamous Cell Carcinoma: A Prospective Trial

    SciTech Connect

    Anderson, Carryn M.; Chang, Tangel; Graham, Michael M.; Marquardt, Michael D.; Button, Anna; Smith, Brian J.; Menda, Yusuf; Sun, Wenqing; Pagedar, Nitin A.; Buatti, John M.

    2015-03-01

    Purpose: To evaluate dynamic [{sup 18}F]-fluorodeoxyglucose (FDG) uptake methodology as a post–radiation therapy (RT) response assessment tool, potentially enabling accurate tumor and therapy-related inflammation differentiation, improving the posttherapy value of FDG–positron emission tomography/computed tomography (FDG-PET/CT). Methods and Materials: We prospectively enrolled head-and-neck squamous cell carcinoma patients who completed RT, with scheduled 3-month post-RT FDG-PET/CT. Patients underwent our standard whole-body PET/CT scan at 90 minutes, with the addition of head-and-neck PET/CT scans at 60 and 120 minutes. Maximum standardized uptake values (SUV{sub max}) of regions of interest were measured at 60, 90, and 120 minutes. The SUV{sub max} slope between 60 and 120 minutes and change of SUV{sub max} slope before and after 90 minutes were calculated. Data were analyzed by primary site and nodal site disease status using the Cox regression model and Wilcoxon rank sum test. Outcomes were based on pathologic and clinical follow-up. Results: A total of 84 patients were enrolled, with 79 primary and 43 nodal evaluable sites. Twenty-eight sites were interpreted as positive or equivocal (18 primary, 8 nodal, 2 distant) on 3-month 90-minute FDG-PET/CT. Median follow-up was 13.3 months. All measured SUV endpoints predicted recurrence. Change of SUV{sub max} slope after 90 minutes more accurately identified nonrecurrence in positive or equivocal sites than our current standard of SUV{sub max} ≥2.5 (P=.02). Conclusions: The positive predictive value of post-RT FDG-PET/CT may significantly improve using novel second derivative analysis of dynamic triphasic FDG-PET/CT SUV{sub max} slope, accurately distinguishing tumor from inflammation on positive and equivocal scans.

  13. Usefulness of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in dermatofibrosarcoma protuberans on treatment with imatinib.

    PubMed

    Kashyap, Raghava; Muddu, Vamshi Krishna; Anantamakula, Sameera; Sri, Satya

    2016-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a rare locally aggressive tumor with distant metastases being unusual. We present a case of metastatic DFSP treated with imatinib showing complete metabolic response to treatment. PMID:27385888

  14. Feasibility of iodine contrast enhanced CT-scan during a 18F-fluorodeoxyglucose Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Houzard, C.; Tychyj, C.; Morelec, I.; Ricard, F.; Got, P.; Cotton, F.; Giammarile, F.; Maintas, D.

    2009-06-01

    OBJECTIVE: this prospective study evaluates the feasibility in current clinical practice of contrast enhanced CT-scan for diagnosis purpose, performed during 18FDG PET-CT study with a PET/CT tomography. METHOD: 25 patients underwent FDG imaging for lymphoma staging. The PET scan was done immediately after the usual low dose CT (lCT). A second CT scan was consequently acquired, by using classical diagnosis CT parameters (dCT) and iodinated contrast. For each patient, all CT attenuation correction (CTAC) PET images were visually compared. Density in Hounsfield units (HU) and maximum Standardized Uptake Value (SUVmax) were then measured on different organs and up to 5 specific lymphoma localizations (total of 294 measurements). RESULTS: Visual analysis was similar for the 2 modalities, without discordant interpretation for the pathologic sites. SUVmax means and standard deviation of each organ for lCTAC and dCTAC were comparable. The equation of the fitted multiple linear regression model was: dCT=0.0748191 + 1.17024*lCT (98.71%; p < 0.01). CONCLUSION: These first results allow the use of injected CT scan, before the PET scan acquisition for lymphoma staging with this PET-CT scan, not affected by the height atomic number and elevated density. A great benefit is therefore obtained on diagnostic, logistic and radioprotection purposes.

  15. Usefulness of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in dermatofibrosarcoma protuberans on treatment with imatinib

    PubMed Central

    Kashyap, Raghava; Muddu, Vamshi Krishna; Anantamakula, Sameera; Sri, Satya

    2016-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a rare locally aggressive tumor with distant metastases being unusual. We present a case of metastatic DFSP treated with imatinib showing complete metabolic response to treatment. PMID:27385888

  16. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of {sup 18}F-Fluorodeoxyglucose After Radiation Treatment

    SciTech Connect

    Wilson, George D.; Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L.; Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John; Oliver Wong, Ching Yee; Yan, Di; Marples, Brian; Huang, Jiayi

    2014-11-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm{sup 3} they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: {sup 18}F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism.

  17. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics

    PubMed Central

    Türkcan, Silvan; Nguyen, Julia; Vilalta, Marta; Shen, Bin; Chin, Frederick T.; Pratx, Guillem; Abbyad, Paul

    2015-01-01

    Radiolabels can be used to detect small biomolecules with high sensitivity and specificity, and without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner. PMID:26035453

  18. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics.

    PubMed

    Türkcan, Silvan; Nguyen, Julia; Vilalta, Marta; Shen, Bin; Chin, Frederick T; Pratx, Guillem; Abbyad, Paul

    2015-07-01

    Radiolabels can be used to detect small biomolecules with high sensitivity and specificity without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging, and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner. PMID:26035453

  19. [Clinicopathological study of small lung cancer (diameter of 2 cm or less) by uptake value of 18F-fluorodeoxyglucose].

    PubMed

    Nakano, Tomoyuki; Endo, Shunsuke; Mitsuda, Sayaka; Endo, Tetsuya; Tezuka, Yasuhiro; Kanai, Yoshihiko; Otani, Shin-ichi; Yamamoto, Shin-ichi; Tetsuka, Kenji; Hasegawa, Tsuyoshi; Ishikawa, Shigemi; Saito, Noriko

    2012-01-01

    18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) for lung cancer may be a biomarker for malignancy as well as a useful tool for detection of nodal involvement and distant metastasis. The goal of this study was to clarify a relationship between clinicopathological findings and maximum standardized uptake value( SUVmax) obtained by preoperative PET in patients with non-small cell lung cancer in diameter of 2 cm or less. Between January 2008 and April 2011, 124 patients( 54 men and 70 women) with non-small cell lung cancer in diameter of 2 cm or less undergoing lobectomy or segmentectomy were enrolled. The relationship between SUVmax and clinicopathological findings as tumor diameter, histological type, pleural invasion, vascular invasion, lymphatic permeation and nodal involvement were analyzed. Correlation between SUVmax and findings such as vascular invasion and lymphatic permeation showed relatively strong in the patients with adenocarcinoma, on the contrary to the correlation in the patients with non-adenocarcinoma. No tumor showing SUVmax of 2 or less showed vascular invasion and/or lymphatic permeation as well as nodal involvement in any patients with adenocarcinoma. SUVmax of the primary tumor in diameter of 2 cm or less, can be a useful biomarker which indicates a surgical candidate for sublobar pulmonary resection as well as mediastinal nodal dissection, especially in patients with adenocarcinoma. PMID:22314152

  20. 11. Evaluation of Patients with Known Mesothelioma with 18F-Fluorodeoxyglucose and PET. Comparison with Computed Tomography.

    PubMed

    Zubeldia; Abou-Zied; Nabi

    2000-07-01

    Purpose: Positron Emission Tomography (PET) using 18F-Fluorodeoxyglucose (18FDG) has been extensively used to stage patients with different malignancies. The purpose of our study was to compare 18FDG-PET to Computed Tomography (CT) in the management of patients with malignant mesothelioma.Methods: Eight patients (6 males, 2 females; mean age 67, range 53 to 78 years) underwent 18FDG-PET scan between March 1997 and November 1998. PET scan of the neck, thorax and upper abdomen was performed 45 minutes after the intravenous injection of 10 mCi of FDG in fasted patients; attenuation correction was applied in all cases. The findings were compared with CT and pathology.Results: PET and CT were concordant in 3 patients. PET was superior to CT in 5 cases (1 patient was downgraded from widespread to localized disease, 2 patients were upstaged from localized to widespread disease, PET confirmed equivocal findings by CT in 2 cases). In 1 patient PET and CT missed local spread of tumor to diaphragm and pericardium, showing instead disease confined to pleural space.Conclusions: Our results suggest that PET is more accurate than CT in the staging of patients with mesothelioma. PMID:11150768

  1. Association between histopathological subtype, 18F-fluorodeoxyglucose uptake and epidermal growth factor receptor mutations in lung adenocarcinoma

    PubMed Central

    QIANG, GUANGLIANG; HUANG, WEI; LIANG, CHAOYANG; XU, RUI; YAN, JUE; XU, YANYAN; WANG, YE; DA, JIPING; SHI, BIN; GUO, YONGQING; LIU, DERUO

    2016-01-01

    The aim of the present study was to investigate the association between histopathological subtypes, epidermal growth factor receptor (EGFR) mutations and 18F-fluorodeoxyglucose (FDG) uptake in patients with lung adenocarcinoma (ADC). The cases of 97 patients with lung ADC who underwent 18F-FDG positron emission tomography-computed tomography prior to surgical resection were retrospectively reviewed. The patients were stratified according to the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) classification, and graded using a histopathological scoring system. EGFR mutations were identified. Clinicopathological characteristics associated with EGFR mutation status were evaluated using univariate and multivariate analyses. EGFR mutation was identified in 45.4% of the patients and was associated with gender, smoking history, maximum standardized uptake value (SUVmax) and histopathological score. ADC patients with a low SUVmax were more likely to exhibit EGFR mutations compared with patients with a high SUVmax (P=0.018). Patients with a lower histopathological score possessed a significantly lower SUVmax compared with patients with a higher score (P<0.001). Furthermore, the histopathological score and smoking history of the patients were identified to be independent predictors for EGFR mutations, according to multivariate logistic regression analysis. In conclusion, SUVmax and EGFR mutations were associated with lung ADC patients stratified according to the IASLC/ATS/ERS classification. Overall, SUVmax has the potential to be a useful marker in stratifying pre-operative patients with lung ADC and identifying EGFR mutations. PMID:26998075

  2. Localized 18F-fluorodeoxyglucose uptake at the pancreatic head during remission phase of autoimmune pancreatitis: A case report

    PubMed Central

    Yonenaga, Yoshikuni; Kushihata, Fumiki; Watanabe, Jota; Tohyama, Taiji; Inoue, Hitoshi; Sugita, Atsuro; Takada, Yasutsugu

    2016-01-01

    Autoimmune pancreatitis (AIP) is a unique form of pancreatitis, histopathologically characterized by dense lymphoplasmacytic infiltration and fibrosis of the pancreas with obliterative phlebitis. AIP is associated with a good response to steroid therapy. Differentiation between AIP and pancreatic cancer to determine a preoperative diagnosis is often challenging, despite the use of various diagnostic modalities, including computed tomography (CT), magnetic resonance imaging and endoscopic retrograde cholangiopancreatography. It has been reported that 18F-fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET)/CT may be a useful tool for distinguishing between the two diseases. In the present case report, a 71-year-old male patient presented with a well-circumscribed, solitary, nodular and homogenous 18F-FDG uptake at the pancreatic head, while receiving maintenance steroid therapy in the remission phase of AIP; preoperatively, the patient had been strongly suspected of having pancreatic cancer. Pathological examination revealed post-treatment relapse of AIP. The present case highlights the diagnostic and management difficulties with AIP in the remission phase. In certain cases, it remains challenging to differentiate the two diseases, even using the latest modalities.

  3. THE USE OF 18F-FLUORODEOXYGLUCOSE POSITRON EMISSION TOMOGRAPHY TO ASSESS CLINICAL OUTCOMES OF PATIENTS WITH BORDERLINE RESECTABLE PANCREATIC CANCER.

    PubMed

    Durmus, A; Yilmaz, A; Malya, F; Ozturk, G; Bektasoglu, H; Ertugrul, G; Karyagar, S; Karatepe, O

    2016-04-01

    The aim of this study is to evaluate the effect of 18FDG PET on preoperative staging and clinical management of pancreatic cancer. Between December 2011 and February 2015, 28 consecutive patients with borderline resectable pancreatic cancer were evaluated with both 18FDG PET scans and conventional preoperative imaging studies. Medical records of all patients were noted prospectively. 18FDG PET findings were compared with conventional imaging studies and over-staging or down-staging rates with changes in clinical management were evaluated. The correlation of 18FDG PET with conventional imaging studies was evaluated with a kappa agreement coefficient. A number of 22 (78.5%) patients had pancreatic head cancer and 6 (21.4%) patients had pancreatic body and tail cancers. Based on 18FDG PET, additional lesions were found in 4 (14.28%) of the patients which were lung and peritoneal lesions as metastasis. No hepatic metastasis or supraclavicular lymph node involvement was confirmed in patients. Routine use of 18FDG PET for preoperative staging has not an effect on cancer management in 96.8% of our patients. In conclusion, 18FDG PET has additional value over conventional radiologic techniques for monitoring the treatment response in locally advanced pancreatic cancer patients. It is feasible to predict early metastasis and patient outcome early (after one course of IC) during therapy. PMID:27249430

  4. Assessment of tumour response with 18F-fluorodeoxyglucose positron emission tomography using three-dimensional measures compared to SUVmax—a phantom study

    NASA Astrophysics Data System (ADS)

    Boucek, J. A.; Francis, R. J.; Jones, C. G.; Khan, N.; Turlach, B. A.; Green, A. J.

    2008-08-01

    SUVmax is currently the most common semi-quantitative method of response assessment on FDG PET. By defining the tumour volume of interest (VOI), a measure of total glycolytic volume (TGV) may be obtained. We aimed to comprehensively examine, in a phantom setting, the accuracy of TGV in reflecting actual lesion activity and to compare TGV with SUVmax for response assessment. The algorithms for VOI generation from which TGV was derived included fixed threshold techniques at 50% of maximum (MAX50), 70% of maximum (MAX70), an adaptive threshold of 50% of (maximum + background)/2 (BM50) and a semi-automated iterative region-growing algorithm, GRAB. Comparison with both actual lesion activity and response scenarios was performed. SUVmax correlated poorly with actual lesion activity (r = 0.651) and change in lesion activity (r = 0.605). In a response matrix scenario SUVmax performed poorly when all scenarios were considered, but performed well when only clinically likely scenarios were included. The TGV derived using MAX50 and MAX70 algorithms performed poorly in evaluation of lesion change. The TGV derived from BM50 and GRAB algorithms however performed extremely well in correlation with actual lesion activity (r = 0.993 and r = 0.982, respectively), change in lesion activity (r = 0.972 and r = 0.963, respectively) and in the response scenario matrix. TGVGRAB demonstrated narrow confidence bands when modelled with actual lesion activity. Measures of TGV generated by iterative algorithms such as GRAB show potential for increased sensitivity of metabolic response monitoring compared to SUVmax, which may have important implications for improved patient care.

  5. Assessment of tumour response with (18)F-fluorodeoxyglucose positron emission tomography using three-dimensional measures compared to SUVmax--a phantom study.

    PubMed

    Boucek, J A; Francis, R J; Jones, C G; Khan, N; Turlach, B A; Green, A J

    2008-08-21

    SUVmax is currently the most common semi-quantitative method of response assessment on FDG PET. By defining the tumour volume of interest (VOI), a measure of total glycolytic volume (TGV) may be obtained. We aimed to comprehensively examine, in a phantom setting, the accuracy of TGV in reflecting actual lesion activity and to compare TGV with SUVmax for response assessment. The algorithms for VOI generation from which TGV was derived included fixed threshold techniques at 50% of maximum (MAX50), 70% of maximum (MAX70), an adaptive threshold of 50% of (maximum + background)/2 (BM50) and a semi-automated iterative region-growing algorithm, GRAB. Comparison with both actual lesion activity and response scenarios was performed. SUVmax correlated poorly with actual lesion activity (r = 0.651) and change in lesion activity (r = 0.605). In a response matrix scenario SUVmax performed poorly when all scenarios were considered, but performed well when only clinically likely scenarios were included. The TGV derived using MAX50 and MAX70 algorithms performed poorly in evaluation of lesion change. The TGV derived from BM50 and GRAB algorithms however performed extremely well in correlation with actual lesion activity (r = 0.993 and r = 0.982, respectively), change in lesion activity (r = 0.972 and r = 0.963, respectively) and in the response scenario matrix. TGV(GRAB) demonstrated narrow confidence bands when modelled with actual lesion activity. Measures of TGV generated by iterative algorithms such as GRAB show potential for increased sensitivity of metabolic response monitoring compared to SUVmax, which may have important implications for improved patient care. PMID:18653927

  6. Impact of [{sup 18}F] Fluorodeoxyglucose Positron Emission Tomography on Staging and Management of Early-Stage Follicular Non-Hodgkin Lymphoma

    SciTech Connect

    Wirth, Andrew Foo, Marcus; Seymour, John F.; MacManus, Michael P.; Hicks, Rodney J.

    2008-05-01

    Purpose: Accurate staging is critical to select patients with early-stage (I-II) follicular lymphoma (ESFL) suitable for involved-field radiotherapy (IFRT) and to define the radiotherapy portal. We evaluated the impact of fluorodeoxyglucose (FDG) PET on staging, treatment, and outcome for patients with ESFL on conventional staging. Methods and Materials: Forty-two patients with untreated ESFL (World Health Organization Grade I-IIIa, or 'low grade') following a minimum of physical examination, computerized tomography, and bone marrow examination (conventional assessment) and who had staging PET from June 1997 to June 2006 were studied retrospectively. Stage allocation was based on routine imaging reports. Disease sites, stage, and management plan were recorded based on conventional assessment or conventional assessment plus PET. Results: FDG avidity was demonstrated in 97% of patients in whom disease was evident on conventional assessment after biopsy. PET findings suggested a change of stage or management in 19 patients: 13 (31%) who were upstaged to Stage III-IV, altering ideal management from IFRT to systemic therapy, and 6 (14%) who had the involved field enlarged, including 4 upstaged from Stage I to II. Of these 19 cases, PET findings were considered true positive in 8 patients, indeterminate in 10, and false positive in only 1 patient. Conclusions: Our data confirm that ESFL is usually FDG-avid. In routine practice, PET has the potential to upstage and thereby alter management in a high proportion of patients with apparent ESFL.

  7. Prognostic Impact of Ultrasonography Features and 18F-Fluorodeoxyglucose Uptake in Patients With Papillary Thyroid Microcarcinoma

    PubMed Central

    Seo, Ji Won; Hwang, Sang Hyun; Cho, Arthur; Lee, Hye Sun; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kwak, Jin Young

    2016-01-01

    Objectives To evaluate the prognostic impact of ultrasonography (US) features and 18F-fluorodeoxyglucose (18F-FDG) uptake in patients with papillary thyroid microcarcinoma (PTMC). Methods This study included 74 patients with a single PTMC diagnosed pathologically. Patients underwent total thyroidectomy, or near-total thyroidectomy and staging thyroid US and positron emission tomography (PET) were performed prior to surgery. US features of thyroid nodules were reviewed retrospectively and the maximum standard uptake value (SUV) of nodules was semiquantitatively analyzed on 18F-FDG PET/computed tomography (CT). Patients were followed-up for recurrence, which was defined as PTC on cytology results, elevated serum thyroglobulin (Tg) or anti-Tg antibody levels, or uptake on whole-body scintigraphy. We used univariate and multivariate analyses to evaluate whether poor prognostic outcomes were associated with US features or SUV values derived from PET/CT of nodules. In addition, subjects were divided into 2 groups for subgroup analyses: one with nodules equal to or larger than 5 mm and one with nodules smaller than 5 mm. Results Among the 74 patients, there was no recurrence. Thus we evaluated the correlation between SUV value and US features with poor prognostic factors of PTMC which included extrathyroid extension, central and lateral lymph node (LN) metastasis. However no clinicopathologic factors were associated with extrathyroid extension, central LN metastasis, or lateral LN metastasis. Conclusion In patients with PTMC, US features and SUV values on FDG-PET were not related to extrathyroid extension or LN metastasis. However, future studies with a larger sample size and longer follow-up should be performed to verify the results of this study. PMID:26976029

  8. Genetic deletion in uncoupling protein 3 augments 18F-fluorodeoxyglucose cardiac uptake in the ischemic heart

    PubMed Central

    2014-01-01

    Background We investigated the effects of uncoupling protein 3 (UCP3) genetic deletion on 18F-fluorodeoxyglucose (FDG) cardiac uptake by positron emission tomography (PET)/computed tomography (CT) dedicated animal system after permanent coronary artery ligation. Methods Cardiac 18F-FDG PET/CT was performed in UCP3 knockout (UCP3−/−) and wild-type (WT) mice one week after induction of myocardial infarction or sham procedure. Results In sham-operated mice no difference in left ventricular (LV) volume was detectable between WT and UCP3−/−. After myocardial infarction, LV volume was higher in both WT and UCP3−/− compared to sham animals, with a significant interaction (p < 0.05) between genotype and myocardial infarction. In sham-operated animals no difference in FDG standardized uptake value (SUV) was detectable between WT (1.8 ± 0.6) and UCP3−/− (1.8 ± 0.6). After myocardial infarction SUV was significantly higher in remote areas than in infarcted territories in both UCP3−/− and WT mice (both p < 0.01). Moreover, in remote areas, SUV was significantly higher (p < 0.001) in UCP3−/− as compared to WT, while in the infarcted territory SUV was comparable (p = 0.29). A significant relationship (r = 0.68, p < 0.001) between LV volume and SUV was found. Conclusions In a mice model of permanent coronary occlusion, UCP3 deficiency results in a metabolic shift that favored glycolytic metabolism and increased FDG uptake in remote areas. PMID:25103673

  9. Implication of 18F-fluorodeoxyglucose uptake by affected lymph nodes in cases with differentiated thyroid cancer

    PubMed Central

    Fujii, Takaaki; Yajima, Reina; Tatsuki, Hironori; Kuwano, Hiroyuki

    2016-01-01

    In this study, we evaluated the usefulness of positron emission tomography using 18F-fluorodeoxyglucose (FDG-PET) to detect metastatic lymph nodes in differentiated thyroid cancer. We also investigated whether certain factors, including the size of the metastasis to the lymph nodes, are associated with FDG avidity. A total of 22 consecutive patients with differentiated thyroid cancer who underwent FDG-PET preoperatively were enrolled in this study. Lymph node metastasis was diagnosed in the final pathology in 10 of the 22 patients (45.5%). The mean maximum standardized uptake value of the metastatic lymph nodes was 4.53 (range, 0–23.5). The 22 cases with differentiated thyroid cancer were divided into two groups based on lymph node metastasis. Clinicopathological variables other than FDG uptake of metastatic lymph nodes were not predictors of lymph node metastasis of thyroid cancer. The sensitivity, specificity, overall accuracy and false-negative rates of preoperative FDG-PET in the prediction of lymph node status were 40.0, 100, 72.7 and 60.0%, respectively. The false-positive rate of FDG-PET evaluation was 0%. The mean largest dimension of metastasis was 23.0 mm for FDG-positive cases and 10.9 mm for FDG-negative cases. There was a marked difference in the size of metastases between FDG-positive and -negative cases; however, even in patients with node metastasis >10 mm, the false-negative rate was 50.0%. Therefore, FDG-PET imaging was not found to be sufficient for the evaluation of lymph node status, particularly in cases with small metastases. Our findings indicate that preoperative FDG-PET evaluation of the lymph nodes cannot be considered predictive of the final pathology. PMID:27600496

  10. Conflict Processing in the Rat Brain: Behavioral Analysis and Functional μPET Imaging Using [18F]Fluorodeoxyglucose

    PubMed Central

    Marx, Christine; Lex, Björn; Calaminus, Carsten; Hauber, Wolfgang; Backes, Heiko; Neumaier, Bernd; Mies, Günter; Graf, Rudolf; Endepols, Heike

    2012-01-01

    Conflicts in spatial stimulus–response tasks occur when the task-relevant feature of a stimulus implies a response toward a certain location which does not match the location of stimulus presentation. This conflict leads to increased error rates and longer reaction times, which has been termed Simon effect. A model of dual route processing (automatic and intentional) of stimulus features has been proposed, predicting response conflicts if the two routes are incongruent. Although there is evidence that the prefrontal cortex, notably the anterior cingulate cortex (ACC), plays a crucial role in conflict processing, the neuronal basis of dual route architecture is still unknown. In this study, we pursue a novel approach using positron emission tomography (PET) to identify relevant brain areas in a rat model of an auditory Simon task, a neuropsychological interference task, which is commonly used to study conflict processing in humans. For combination with PET we used the metabolic tracer [18F]fluorodeoxyglucose, which accumulates in metabolically active brain cells during the behavioral task. Brain areas involved in conflict processing are supposed to be activated when automatic and intentional route processing lead to different responses (dual route model). Analysis of PET data revealed specific activation patterns for different task settings applicable to the dual route model as established for response conflict processing. The rat motor cortex (M1) may be part of the automatic route or involved in its facilitation, while premotor (M2), prelimbic, and ACC seemed to be essential for inhibiting the incorrect, automatic response, indicating conflict monitoring functions. Our findings and the remarkable similarities to the pattern of activated regions reported during conflict processing in humans demonstrate that our rodent model opens novel opportunities to investigate the anatomical basis of conflict processing and dual route architecture. PMID:22363272

  11. Positron Emission Tomography.

    PubMed

    Lameka, Katherine; Farwell, Michael D; Ichise, Masanori

    2016-01-01

    Positron emission tomography (PET) is a minimally invasive imaging procedure with a wide range of clinical and research applications. PET allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals such as (18)F-fluorodeoxyglucose (for imaging glucose metabolism). PET enables the study of biologic function in both health and disease, in contrast to magnetic resonance imaging (MRI) and computed tomography (CT), that are more suited to study a body's morphologic changes, although functional MRI can also be used to study certain brain functions by measuring blood flow changes during task performance. This chapter first provides an overview of the basic physics principles and instrumentation behind PET methodology, with an introduction to the merits of merging functional PET imaging with anatomic CT or MRI imaging. We then focus on clinical neurologic disorders, and reference research on relevant PET radiopharmaceuticals when applicable. We then provide an overview of PET scan interpretation and findings in several specific neurologic disorders such as dementias, epilepsy, movement disorders, infection, cerebrovascular disorders, and brain tumors. PMID:27432667

  12. Physiologic [18F]fluorodeoxyglucose uptake of floor of mouth muscles in PET/CT imaging: a problem of body position during FDG uptake?

    PubMed Central

    Hany, Thomas F.; Ahmad, Nader; Burger, Irene; Huber, Gerhard F.; Schmid, Daniel T.

    2013-01-01

    Abstract Objective: Assess the influence of 2 different patient positions during [18F]fluorodeoxyglucose (FDG) uptake phase on physiologic FDG accumulation of the floor of mouth (FOM) muscles. Study design: A prospective study design was used. Methods: Two hundred prospectively enrolled patients were included in the study: (a) head and neck cancer (HNC) patients in supine or (b) sitting position, (c) patients with other malignant tumours in supine or (d) sitting position. An intra-individual analysis was done on patients (b) and (d) when such scans were available. Maximum standardized uptake values without correction and corrected for blood pool activity were assessed. Results: The inter-individual analysis (sitting vs supine) revealed no significant differences (P = 0.17 and P = 0.56). The subgroup analysis on the patients with HNC (P = 0.56 and P = 0.15) and in patients with other malignancies (P = 0.14 and P = 0.08) revealed no significant difference; neither did the intra-individual analysis. Conclusions: The supine or sitting position during the uptake phase for FDG-positron emission tomography/computed tomography has no effect on the amount and distribution of physiologic FDG activity in the muscles of the FOM. PMID:23425816

  13. Clusters of Low (18)F-Fluorodeoxyglucose Uptake Voxels in Combat Veterans with Traumatic Brain Injury and Post-Traumatic Stress Disorder.

    PubMed

    Buchsbaum, Monte S; Simmons, Alan N; DeCastro, Alex; Farid, Nikdokht; Matthews, Scott C

    2015-11-15

    Individuals with mild traumatic brain injury (TBI) show diminished metabolic activity when studied with positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG). Since blast injury may not be localized in the same specific anatomical areas in every patient or may be diffuse, significance probability mapping may be vulnerable to false-negative detection of abnormalities. To address this problem, we used an anatomically independent measure to assess PET scans: increased numbers of contiguous voxels that are 2 standard deviations below values found in an uninjured control group. We examined this in three age-matched groups of male patients: 16 veterans with a history of mild TBI, 17 veterans with both mild TBI and post-traumatic stress disorder (PTSD), and 15 veterans without either condition. After FDG administration, subjects performed a modified version of the California Verbal Learning Task. Clusters of low uptake voxels were identified by computing the mean and standard deviation for each voxel in the healthy combat veteran group and then determining the voxel-based z-score for the patient groups. Abnormal clusters were defined as those that contained contiguous voxels with a z-score <-2. Patients with mild TBI alone and patients with TBI+PTSD had larger clusters of low uptake voxels, and cluster size significantly differentiated the mild TBI groups from combat controls. Clusters were more irregular in shape in patients, and patients also had a larger number of low-activity voxels throughout the brain. In mild TBI and TBI+PTSD patients, but not healthy subjects, cluster volume was significantly correlated with verbal learning during FDG uptake. PMID:25915799

  14. Probe-guided localization of cancer deposits using [18F]fluorodeoxyglucose.

    PubMed

    Piert, M; Carey, J; Clinthorne, N

    2008-03-01

    In recent years, several probes have been developed to allow for the intraoperative detection of tumour tissue using [18F]fluorodeoxyglucose (FDG). Detector designs include high-energy gamma and beta probes, as well as combination devices with background rejection capabilities. Some laboratory prototypes and commercialized systems have demonstrated reasonable sensitivities for 511 keV photons and /or b particles emitted from 18F for in vivo use. This review focuses on the ability of these devices to detect tumour deposits in the low-contrast environment of the operating room . Important technical and biological factors that influence tumour-to-background contrast are discussed and potential future applications and developments are highlighted. In addition, we evaluate the limited data on absorbed doses resulting from [18F] FDG administration immediately prior to surgery that indicate acceptable levels of radiation exposure to operating room personnel. PMID:17657203

  15. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with ( sup 18 F)fluorodeoxyglucose

    SciTech Connect

    Kuwabara, H.; Evans, A.C.; Gjedde, A. )

    1990-03-01

    In the three-compartment model of transfer of native glucose and (18F)fluorodeoxyglucose (FDG) into brain, both transport across the blood-brain barrier and phosphorylation by hexokinase can be described by the Michaelis-Menten equation. This permits the use of fixed transport (tau = K*1/K1) and phosphorylation (psi = k*3/k3) ratios and a common partition volume (Ve = K1/k2) for tracer and glucose. By substituting transfer constants of FDG for those of glucose, using tau and psi, the lumped constant was determined directly by positron tomography. The same constraints also eliminated k*2 and k*3 from the model, thus limiting the parameters to K* (equivalent to K*1k*3/(k*2 + k*3)), K*1, and the cerebral vascular volume (Vo). In six healthy elderly men (aged 61 +/- 5 years), time-activity records of cerebral cortical regions were analyzed with tau = 1.1 and psi = 0.3. The results were compared with those of the conventional FDG method. At 20 min, the goodness of fit by the new equation was as good as that of the conventional method at 45 min. The estimates obtained by the constrained method had stable coefficients of variation. After 20 min, regional differences between the estimates were independent of time, although we observed steady decreases of K* and (k*3). The decrease strongly suggested dephosphorylation of FDG-6-phosphate, particularly after 20 min. All estimates of variables with the constrained method were more accurate than those of the conventional method, including the cerebral glucose metabolic rate itself, as well as physiologically more meaningful, particularly with respect to k*2 and k*3.

  16. Newer positron emission tomography radiopharmaceuticals for radiotherapy planning: an overview

    PubMed Central

    Mukherjee, Anirban

    2016-01-01

    Positron emission tomography-computed tomography (PET-CT) has changed cancer imaging in the last decade, for better. It can be employed for radiation treatment planning of different cancers with improved accuracy and outcomes as compared to conventional imaging methods. 18F-fluorodeoxyglucose remains the most widely used though relatively non-specific cancer imaging PET tracer. A wide array of newer PET radiopharmaceuticals has been developed for targeted imaging of different cancers. PET-CT with such new PET radiopharmaceuticals has also been used for radiotherapy planning with encouraging results. In the present review we have briefly outlined the role of PET-CT with newer radiopharmaceuticals for radiotherapy planning and briefly reviewed the available literature in this regard. PMID:26904575

  17. Long-term quality assurance of [(18)F]-fluorodeoxyglucose (FDG) manufacturing.

    PubMed

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of (18)F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade "A" isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade "A" isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [(18)F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102

  18. Long-term quality assurance of [18F]-fluorodeoxyglucose (FDG) manufacturing

    PubMed Central

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of 18F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade “A” isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade “A” isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [18F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102

  19. The effect of nifedipine on myocardial perfusion and metabolism in systemic sclerosis. A positron emission tomographic study

    SciTech Connect

    Duboc, D.; Kahan, A.; Maziere, B.; Loc'h, C.; Crouzel, C.; Menkes, C.J.; Amor, B.; Strauch, G.; Guerin, F.; Syrota, A. )

    1991-02-01

    We assessed the effect of nifedipine on myocardial perfusion and metabolism in 9 patients with systemic sclerosis, using positron emission tomography with a perfusion tracer (potassium-38) and a metabolic tracer (18F-fluorodeoxyglucose (18FDG)). Nifedipine, 20 mg 3 times daily for 1 week, induced a significant increase in 38K myocardial uptake, a significant decrease in 18FDG myocardial uptake, and a significant increase in the myocardial 38K: 18FDG ratio. These results indicate that the increase in myocardial perfusion is associated with modifications in myocardial energy metabolism, which probably result from a beneficial anti-ischemic effect of nifedipine in patients with systemic sclerosis.

  20. Integrated 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging (18F-FDG PET/MRI), a multimodality approach for comprehensive evaluation of dementia patients: A pictorial essay

    PubMed Central

    Jena, Amarnath; Renjen, Pushpendra Nath; Taneja, Sangeeta; Gambhir, Aashish; Negi, Pradeep

    2015-01-01

    Dementia, caused by irreversible neurodegenerative disorders such as Alzheimer's disease or reversible non-degenerative conditions, is rapidly becoming one of the most alarming health problems in our aging society. This cognitive disorder associated with a multitude of clinical differentials with overlapping clinical, pathological, and imaging features is difficult to diagnose and treat, as it often presents late after significant neuronal damage has already occurred. Novel disease-modifying treatments being developed will have to be corroborated with innovative imaging biomarkers so that earlier reliable diagnosis can be made and treatment initiated upon. Along with new specific PET radiotracers, integrated PET/MRI with combined methodological advantage and simultaneously acquired structural-cum-functional information may help achieve this goal. The present pictorial essay details our experiences with PET/MRI in dementing disorders, along with reviewing recent advances and future scope. PMID:26752814

  1. Autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma: what 18F-fluorodeoxyglucose positron emission tomography/computed tomography can do in the management of these patients? Suggestions from a case report.

    PubMed

    Cistaro, A; Pazè, F; Durando, S; Cogoni, M; Faletti, R; Vesco, S; Vallero, S; Quartuccio, N; Treglia, G; Ramenghi, U

    2014-01-01

    A young patient with undefined autoimmune lymphoproliferative syndrome (ALPS-U) and low back pain underwent a CT and MRI study that showed enhancing vertebral lesions, some pulmonary nodules and diffuse latero-cervical lymphadenopathy. A (18)F-FDG-PET/CT scan showed many areas of intense (18)F-FDG uptake in multiple vertebrae, in some ribs, in the sacrum, in the liver, in both lungs, in multiple lymph nodes spread in the cervical, thoracic and abdominal chains. A bone marrow biopsy showed a "lymphomatoid granulomatosis", a rare variant of B-cell non-Hodgkin lymphoma (NHL). After the treatment, the (18)F-FDG-PET/CT scan showed a complete metabolic response. PMID:23845452

  2. Value of sequential 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in prediction of the overall survival of esophageal cancer patients treated with chemoradiotherapy

    PubMed Central

    Li, Yimin; Lin, Qin; Luo, Zuoming; Zhao, Long; Zhu, Luchao; Sun, Long; Wu, Hua

    2015-01-01

    This study is to investigate the value of the metabolic parameters measured by sequential FDG PET/CT in predicting the overall survival of patients with esophageal squamous cell carcinoma (ESCC). A total of 160 patients who were newly diagnosed as ESCC patients and treated with chemoradiotherapy were included in this study. The FDG PET/CT was carried out prior to radiotherapy (PET1), when the cumulative dose of radiotherapy reached 50 Gy (PET2), at the end of radiotherapy (PET3) and 1 month after radiotherapy (PET4). The max of the standard uptake value (SUVmax) of the primary tumor, the metabolic tumor volume (MTV) and the total lesion glycolisis (TLG) prior to treatment were measured. The correlation of the measured parameters and the derived parameters of SUVmax with the overall survival was analyzed. The relatively reduced percentage of the SUVmax of PET3 and PET4 to the SUVmax of PET1 and PET2, had predictive value for the overall survival. The area under researcher operation curve (ROC) was between 0.62 and 0.73 (P < 0.01). The MTV and TLG prior to treatment might be used to predict the overall survival, and the area under ROC were both 0.69 (P < 0.001). Sequential FDG PET/CT scanning is useful to predict the overall survival of chemoradiotherapy for ESCC. The metabolic parameters and the derived parameters of FDG PET/CT have predictive values for overall survival. PMID:26379889

  3. Value of sequential 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in prediction of the overall survival of esophageal cancer patients treated with chemoradiotherapy.

    PubMed

    Li, Yimin; Lin, Qin; Luo, Zuoming; Zhao, Long; Zhu, Luchao; Sun, Long; Wu, Hua

    2015-01-01

    This study is to investigate the value of the metabolic parameters measured by sequential FDG PET/CT in predicting the overall survival of patients with esophageal squamous cell carcinoma (ESCC). A total of 160 patients who were newly diagnosed as ESCC patients and treated with chemoradiotherapy were included in this study. The FDG PET/CT was carried out prior to radiotherapy (PET1), when the cumulative dose of radiotherapy reached 50 Gy (PET2), at the end of radiotherapy (PET3) and 1 month after radiotherapy (PET4). The max of the standard uptake value (SUVmax) of the primary tumor, the metabolic tumor volume (MTV) and the total lesion glycolisis (TLG) prior to treatment were measured. The correlation of the measured parameters and the derived parameters of SUVmax with the overall survival was analyzed. The relatively reduced percentage of the SUVmax of PET3 and PET4 to the SUVmax of PET1 and PET2, had predictive value for the overall survival. The area under researcher operation curve (ROC) was between 0.62 and 0.73 (P < 0.01). The MTV and TLG prior to treatment might be used to predict the overall survival, and the area under ROC were both 0.69 (P < 0.001). Sequential FDG PET/CT scanning is useful to predict the overall survival of chemoradiotherapy for ESCC. The metabolic parameters and the derived parameters of FDG PET/CT have predictive values for overall survival. PMID:26379889

  4. Integrated (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging ((18)F-FDG PET/MRI), a multimodality approach for comprehensive evaluation of dementia patients: A pictorial essay.

    PubMed

    Jena, Amarnath; Renjen, Pushpendra Nath; Taneja, Sangeeta; Gambhir, Aashish; Negi, Pradeep

    2015-01-01

    Dementia, caused by irreversible neurodegenerative disorders such as Alzheimer's disease or reversible non-degenerative conditions, is rapidly becoming one of the most alarming health problems in our aging society. This cognitive disorder associated with a multitude of clinical differentials with overlapping clinical, pathological, and imaging features is difficult to diagnose and treat, as it often presents late after significant neuronal damage has already occurred. Novel disease-modifying treatments being developed will have to be corroborated with innovative imaging biomarkers so that earlier reliable diagnosis can be made and treatment initiated upon. Along with new specific PET radiotracers, integrated PET/MRI with combined methodological advantage and simultaneously acquired structural-cum-functional information may help achieve this goal. The present pictorial essay details our experiences with PET/MRI in dementing disorders, along with reviewing recent advances and future scope. PMID:26752814

  5. Differentiation between Polymyalgia Rheumatica (PMR) and Elderly-Onset Rheumatoid Arthritis Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Is Enthesitis a New Pathological Lesion in PMR?

    PubMed Central

    Wakura, Daisuke; Kotani, Takuya; Takeuchi, Tohru; Komori, Tsuyoshi; Yoshida, Shuzo; Makino, Shigeki; Hanafusa, Toshiaki

    2016-01-01

    Background It is difficult to differentiate polymyalgia rheumatica (PMR) from elderly-onset rheumatoid arthritis (EORA) in clinical practice. We compared FDG-PET/CT findings between patients with PMR and those with EORA and extracted factors useful for differentiating the two disorders. Methods We compared abnormal FDG accumulation sites and maximum standardized uptake value (SUVmax) between 15 patients with PMR and 7 with EORA in whom FDG-PET/CT was performed. Results The proportion of patients in the PMR group with abnormal FDG accumulation at the following 9 sites on FDG-PET/CT was significantly higher than that in the EORA group: periarticular region of the scapulohumeral joint, enthesis of the pectineus muscle, vicinity of the enthesis of the rectus femoris muscle, lateral side of the greater trochanter, ischial tuberosity, hip joint, spinous process of the lower cervical vertebra, intervertebral joint of the lumbar vertebra, and spinous process of the lumbar vertebra. The PET/CT score was evaluated at 9 sites consisting of the abovementioned sites. The median score in the PMR group was 8, which was significantly higher than that of 0 in the EORA group (P = 0.0003). ROC curve analysis was performed with the PET/CT scores, and a score of 5 was shown to maximize the area under the ROC curve (sensitivity: 86.7%, specificity: 86.7%). Conclusions FDG-PET/CT is useful for differentiating PMR from EORA. In patients with PMR, abnormal FDG accumulation was observed at the entheses, suggesting the presence of enthesitis in addition to bursitis and synovitis. PMID:27384410

  6. Utility of [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT) in the Initial Staging and Response Assessment of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy.

    PubMed

    Hulikal, Narendra; Gajjala, Sivanath Reddy; Kalawat, Teck Chand; Kottu, Radhika; Amancharla Yadagiri, Lakshmi

    2015-12-01

    In India up to 50 % of breast cancer patients still present as locally advanced breast cancer (LABC). The conventional methods of metastatic work up include physical examination, bone scan, chest & abdominal imaging, and biochemical tests. It is likely that the conventional staging underestimates the extent of initial spread and there is a need for more sophisticated staging procedure. The PET/CT can detect extra-axillary and occult distant metastases and also aid in predicting response to chemotherapy at an early point in time. To evaluate the utility of FDG PET/CT in initial staging and response assessment of patients with LABC receiving NACT. A prospective study of all biopsy confirmed female patients diagnosed with LABC receiving NACT from April 2013 to May 2014. The conventional work up included serum chemistry, CECT chest and abdomen and bone scan. A baseline whole body PET/CT was done in all patients. A repeat staging evaluation and a whole body PET/CT was done after 2/3rd cycle of NACT in non-responders and after 3/4 cycles in clinical responders. The histopathology report of the operative specimen was used to document the pathological response. The FDG PET/CT reported distant metastases in 11 of 38 patients, where as conventional imaging revealed metastases in only 6. Almost all the distant lesions detected by conventional imaging were detected with PET/CT, which showed additional sites of metastasis in 3 patients. In 2 patients, PET/CT detected osteolytic bone metastasis which were not detected by bone scan. In 5 patients PET CT detected N3 disease which were missed on conventional imaging. A total of 14 patients had second PET/CT done to assess the response to NACT and 11 patients underwent surgery. Two patients had complete pathological response. Of these 1 patient had complete metabolic and morphologic response and other had complete metabolic and partial morphologic response on second PET/CT scan. The 18 FDG PET/CT can detect more number of metastasis as well as additional sites of metastasis compared to conventional methods. The response assessment resulted in change of treatment regimen in 14 % of patients. PMID:27065657

  7. pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia?

    PubMed Central

    Gagel, Bernd; Piroth, Marc; Pinkawa, Michael; Reinartz, Patrick; Zimny, Michael; Kaiser, Hans J; Stanzel, Sven; Asadpour, Branka; Demirel, Cengiz; Hamacher, Kurt; Coenen, Heinz H; Scholbach, Thomas; Maneschi, Payam; DiMartino, Ercole; Eble, Michael J

    2007-01-01

    Background The present study was conducted to analyze the value of ([18F] fluoromisonidazole (FMISO) and [18F]-2-fluoro-2'-deoxyglucose (FDG) PET as well as color pixel density (CPD) and tumor perfusion (TP) assessed by color duplex sonography (CDS) for determination of therapeutic relevant hypoxia. As a standard for measuring tissue oxygenation in human tumors, the invasive, computerized polarographic needle electrode system (pO2 histography) was used for comparing the different non invasive measurements. Methods Until now a total of 38 Patients with malignancies of the head and neck were examined. Tumor tissue pO2 was measured using a pO2-histograph. The needle electrode was placed CT-controlled in the tumor without general or local anesthesia. To assess the biological and clinical relevance of oxygenation measurement, the relative frequency of pO2 readings, with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as mean and median pO2 were stated. FMISO PET consisted of one static scan of the relevant region, performed 120 min after intravenous administration. FMISO tumor to muscle ratios (FMISOT/M) and tumor to blood ratios (FMISOT/B) were calculated. FDG PET of the lymph node metastases was performed 71 ± 17 min after intravenous administration. To visualize as many vessels as possible by CDS, a contrast enhancer (Levovist®, Schering Corp., Germany) was administered. Color pixel density (CPD) was defined as the ratio of colored to grey pixels in a region of interest. From CDS signals two parameters were extracted: color hue – defining velocity (v) and color area – defining perfused area (A). Signal intensity as a measure of tissue perfusion (TP) was quantified as follows: TP = vmean × Amean. Results In order to investigate the degree of linear association, we calculated the Pearson correlation coefficient. Slight (|r| > 0.4) to moderate (|r| > 0.6) correlation was found between the parameters of pO2 polarography (pO2 readings with values ≤ 2.5, ≤ 5.0 and ≤ 10.0 mmHg, as well as median pO2), CPD and FMISOT/M. Only a slight correlation between TP and the fraction of pO2 values ≤ 10.0 mmHg, median and mean pO2 could be detected. After exclusion of four outliers the absolute values of the Pearson correlation coefficients increased clearly. There was no relevant association between mean or maximum FDG uptake and the different polarographic- as well as the CDS parameters. Conclusion CDS and FMISO PET represent different approaches for estimation of therapy relevant tumor hypoxia. Each of these approaches is methodologically limited, making evaluation of clinical potential in prospective studies necessary. PMID:17598907

  8. Positron emission tomography in generalized seizures

    SciTech Connect

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  9. 18F-fluorodeoxyglucose (FDG) PET/CT after two cycles of neoadjuvant therapy may predict response in HER2-negative, but not in HER2-positive breast cancer

    PubMed Central

    Mo, Miao; Bao, Xiao; Zhang, Yingjian; Liu, Guangyu; Zhang, Jun; Geng, Daoying

    2015-01-01

    The aim of this prospective study was to assess the ability of 18F-fluorodeoxyglucose (18FDG) positron emission tomography/computed tomography (PET/CT) scanning to predict pathological complete response (pCR) in breast cancer, and to investigate whether timing of the scan and trastuzumab treatment influence the accuracy of pCR prediction in human epidermal growth factor receptor 2 (HER2) positive breast cancer patients. We treated 81 locally advanced breast cancer patients with four cycles of neoadjuvant chemotherapy (NAC). HER2-negative breast cancer patients received NAC alone, while HER2-positive breast cancer patients received NAC plus trastuzumab. 18FDG PET/CT scans were scheduled at baseline and after the second cycle of NAC. Axillary lymph node (ALN) dissection was performed after the last cycle of neoadjuvant therapy. Relative changes in standardized uptake values (SUV) between the two PET/CT scans (ΔSUV) in primary tumors and ALN metastases were calculated. There were 75 patients with 150 PET/CT scans in the final analysis, including 41 HER2-negative and 34 HER2-positive cases. In the HER2-negative group, the ΔSUV predicted overall and ALN pCR; the receiver operating characteristics-areas under curve (ROC-AUC) were 0.87 and 0.80 (P = 0.0014 and 0.031, respectively) and the negative predictive values were 94% and 89% respectively. However, in the HER2-positive group, ΔSUV could predict neither overall nor ALN pCR; the ROC-AUCs were only 0.56 and 0.53, with P = 0.53 and 0.84, respectively. Hence, the ΔSUV after two cycles of neoadjuvant therapy could predict pCR in HER2-negative patients treated with NAC alone, but not in HER2-positive patients treated with NAC plus trastuzumab. PMID:26336821

  10. False-positive Uptake on Positron Emission Tomography/Computed Tomography Immediately After Lung Biopsy

    PubMed Central

    Bae, Jung Min; Lee, Ho Yun; Choi, Joon Young

    2015-01-01

    Abstract 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is an evolving tool in the field of oncology. 18F-fluorodeoxyglucose, however, is not a specific tool for malignant tumor that it may also accumulate in benign processes. To avoid false-positive interpretation of 18F-FDG-PET/computed tomography (CT), having knowledge of the potential pitfalls is important. The authors present a case of a patient with a lung mass who underwent fluoroscopy-guided transthoracic lung biopsy followed by 18F-FDG-PET/CT scan with a 4-hour interval between biopsy and scanning. Abnormally increased FDG uptake in the mass and pleural effusion was detected. Pathologic examination of the specimen, however, revealed only fibrous tissues with chronic inflammatory cells. On performing CT imaging, 1 month later, the mass and effusion had spontaneously resolved without treatment. Our findings suggest that PET/CT performed immediately following invasive procedures can result in false-positive results and thus mislead diagnosis. Therefore, the interval and order, in which PET/CT and invasive procedures are performed, should be carefully considered in oncologic work-up. PMID:26554786

  11. Assessment of sup 18 F gaseous releases during the production of sup 18 F-fluorodeoxyglucose

    SciTech Connect

    Kleck, J.H.; Benedict, S.H.; Cook, J.S.; Birdsall, R.L.; Satyamurthy, N. )

    1991-05-01

    Fluorodeoxyglucose labeled with {sup 18}F ({sup 18}F-FDG) is the most commonly used radiopharmaceutical in positron emission tomography (PET). Fluorine-18-labeled FDG is used as a diagnostic tool in PET studies to monitor the physiology of the brain, diagnose heart function and disease, and to image cancerous tumors. At the University of California, Los Angeles (UCLA), three cyclotrons produce ({sup 18}F)-fluoride ion using {sup 18}O-enriched water targets. Fluorine-18, which has a half-life of 109.8 min, is produced using an {sup 18}O(p.n.){sup 18}F reaction and is chemically processed to yield {sup 18}F-FDG. This study presents data which demonstrate that during the radiochemical processes involved in the production of {sup 18}F-FDG, gaseous effluent containing {sup 18}F is released. Forty cyclotron production runs with average end of cyclotron bombardment activities of 15.9 +/- 1.88 GBq (430 +/- 50.8 mCi) and end of radiochemical synthesis activities of 5.40 +/- 1.27 GBq (146 +/- 34.3 mCi) yield {sup 18}F gaseous effluent releases ranging from 0 to 2560 MBq (0 to 69.2 mCi) with a mean of 437 MBq (11.8 mCi). Temporal correlation of the {sup 18}F gaseous releases during {sup 18}F-FDG radiochemical production has tied the {sup 18}F release to the addition of the glucose precursor (mannotriflate) and ethyl ether in the radiochemical processing. The results are presented in terms of activities released and dilution factors required from the release stack point to maintain controlled (occupational) and uncontrolled (public) area limits in accordance with the recommendations of the International Commission on Radiological Protection and the regulatory requirements of the federal government.

  12. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    SciTech Connect

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. )

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  13. Methods and applications of positron-based medical imaging

    NASA Astrophysics Data System (ADS)

    Herzog, H.

    2007-02-01

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV γ-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with 11C, 13N, 15O, or 18F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [ 18F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  14. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  15. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    SciTech Connect

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  16. [{sup 18}F]fluorodeoxyglucose Uptake Patterns in Lung Before Radiotherapy Identify Areas More Susceptible to Radiation-Induced Lung Toxicity in Non-Small-Cell Lung Cancer Patients

    SciTech Connect

    Petit, Steven F.; Elmpt, Wouter J.C. van; Oberije, Cary J.G.; Vegt, Erik; Dingemans, Anne-Marie C.; Lambin, Philippe; Dekker, Andre L.A.J.; De Ruysscher, Dirk

    2011-11-01

    Purpose: Our hypothesis was that pretreatment inflammation in the lung makes pulmonary tissue more susceptible to radiation damage. The relationship between pretreatment [{sup 18}F]fluorodeoxyglucose ([{sup 18}F]FDG) uptake in the lungs (as a surrogate for inflammation) and the delivered radiation dose and radiation-induced lung toxicity (RILT) was investigated. Methods and Materials: We retrospectively studied a prospectively obtained cohort of 101 non-small-cell lung cancer patients treated with (chemo)radiation therapy (RT). [{sup 18}F]FDG-positron emission tomography-computed tomography (PET-CT) scans used for treatment planning were studied. Different parameters were used to describe [{sup 18}F]FDG uptake patterns in the lungs, excluding clinical target volumes, and the interaction with radiation dose. An increase in the dyspnea grade of 1 (Common Terminology Criteria for Adverse Events version 3.0) or more points compared to the pre-RT score was used as an endpoint for analysis of RILT. The effect of [{sup 18}F]FDG and CT-based variables, dose, and other patient or treatment characteristics that effected RILT was studied using logistic regression. Results: Increased lung density and pretreatment [{sup 18}F]FDG uptake were related to RILT after RT with univariable logistic regression. The 95th percentile of the [{sup 18}F]FDG uptake in the lungs remained significant in multivariable logistic regression (p = 0.016; odds ratio [OR] = 4.3), together with age (p = 0.029; OR = 1.06), and a pre-RT dyspnea score of {>=}1 (p = 0.005; OR = 0.20). Significant interaction effects were demonstrated among the 80th, 90th, and 95th percentiles and the relative lung volume receiving more than 2 and 5 Gy. Conclusions: The risk of RILT increased with the 95th percentile of the [{sup 18}F]FDG uptake in the lungs, excluding clinical tumor volume (OR = 4.3). The effect became more pronounced as the fraction of the 5%, 10%, and 20% highest standardized uptake value voxels that

  17. Kinetic Modeling and Graphical Analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the Fiscrimination between High-Grade Glioma and Radiation Necrosis in Rats

    PubMed Central

    Lybaert, Kelly; Moerman, Lieselotte; Descamps, Benedicte; Deblaere, Karel; Boterberg, Tom; Kalala, Jean-Pierre; Van den Broecke, Caroline; De Vos, Filip; Vanhove, Christian; Goethals, Ingeborg

    2016-01-01

    Background Discrimination between glioblastoma (GB) and radiation necrosis (RN) post-irradiation remains challenging but has a large impact on further treatment and prognosis. In this study, the uptake mechanisms of 18F-fluorodeoxyglucose (18F-FDG), 18F-fluoroethyltyrosine (18F-FET) and 18F-fluoromethylcholine (18F-FCho) positron emission tomography (PET) tracers were investigated in a F98 GB and RN rat model applying kinetic modeling (KM) and graphical analysis (GA) to clarify our previous results. Methods Dynamic 18F-FDG (GB n = 6 and RN n = 5), 18F-FET (GB n = 5 and RN n = 5) and 18F-FCho PET (GB n = 5 and RN n = 5) were acquired with continuous arterial blood sampling. Arterial input function (AIF) corrections, KM and GA were performed. Results The influx rate (Ki) of 18F-FDG uptake described by a 2-compartmental model (CM) or using Patlak GA, showed more trapping (k3) in GB (0.07 min-1) compared to RN (0.04 min-1) (p = 0.017). K1 of 18F-FET was significantly higher in GB (0.06 ml/ccm/min) compared to RN (0.02 ml/ccm/min), quantified using a 1-CM and Logan GA (p = 0.036). 18F-FCho was rapidly oxidized complicating data interpretation. Using a 1-CM and Logan GA no clear differences were found to discriminate GB from RN. Conclusions Based on our results we concluded that using KM and GA both 18F-FDG and 18F-FET were able to discriminate GB from RN. Using a 2-CM model more trapping of 18F-FDG was found in GB compared to RN. Secondly, the influx of 18F-FET was higher in GB compared to RN using a 1-CM model. Important correlations were found between SUV and kinetic or graphical measures for 18F-FDG and 18F-FET. 18F-FCho PET did not allow discrimination between GB and RN. PMID:27559736

  18. Comparison of {sup 18}F-Fluorothymidine and {sup 18}F-Fluorodeoxyglucose PET/CT in Delineating Gross Tumor Volume by Optimal Threshold in Patients With Squamous Cell Carcinoma of Thoracic Esophagus

    SciTech Connect

    Han Dali; Yu Jinming; Yu Yonghua; Zhang Guifang; Zhong Xiaojun; Lu Jie; Yin Yong; Fu Zheng; Mu Dianbin; Zhang Baijiang; He Wei; Huo Zhijun; Liu Xijun; Kong Lei; Zhao Shuqiang; Sun Xiangyu

    2010-03-15

    Purpose: To determine the optimal method of using {sup 18}F-fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) simulation to delineate the gross tumor volume (GTV) in esophageal squamous cell carcinoma verified by pathologic examination and compare the results with those using {sup 18}F-fluorodeoxyglucose (FDG) PET/CT. Methods and Materials: A total of 22 patients were enrolled and underwent both FLT and FDG PET/CT. The GTVs with biologic information were delineated using seven different methods in FLT PET/CT and three different methods in FDG PET/CT. The results were compared with the pathologic gross tumor length, and the optimal threshold was obtained. Next, we compared the simulation plans using the optimal threshold of FLT and FDG PET/CT. The radiation dose was prescribed as 60 Gy in 30 fractions with a precise radiotherapy technique. Results: The mean +- standard deviation pathologic gross tumor length was 4.94 +- 2.21 cm. On FLT PET/CT, the length of the standardized uptake value 1.4 was 4.91 +- 2.43 cm. On FDG PET/CT, the length of the standardized uptake value 2.5 was 5.10 +- 2.18 cm, both of which seemed more approximate to the pathologic gross tumor length. The differences in the bilateral lung volume receiving >=20 Gy, heart volume receiving >=40 Gy, and the maximal dose received by spinal cord between FLT and FDG were not significant. However, the values for mean lung dose, bilateral lung volume receiving >=5, >=10, >=30, >=40, and >=50 Gy, mean heart dose, and heart volume receiving >=30 Gy using FLT PET/CT-based planning were significant lower than those using FDG PET/CT. Conclusion: A standardized uptake value cutoff of 1.4 on FLT PET/CT and one of 2.5 on FDG PET/CT provided the closest estimation of GTV length. Finally, FLT PET/CT-based treatment planning provided potential benefits to the lungs and heart.

  19. SU-E-I-85: Exploring the 18F-Fluorodeoxyglucose PET Characteristics in Staging of Esophageal Squamous Cell Carcinoma

    SciTech Connect

    Ma, C; Yin, Y

    2014-06-01

    Purpose: The aim of this study was to explore the characteristics derived from 18F-fluorodeoxyglucose (18F-FDG) PET image and assess its capacity in staging of esophageal squamous cell carcinoma (ESCC). Methods: 26 patients with newly diagnosed ESCC who underwent 18F-FDG PET scan were included in this study. Different image-derived indices including the standardized uptake value (SUV), gross tumor length, texture features and shape feature were considered. Taken the histopathologic examination as the gold standard, the extracted capacities of indices in staging of ESCC were assessed by Kruskal-Wallis test and Mann-Whitney test. Specificity and sensitivity for each of the studied parameters were derived using receiver-operating characteristic curves. Results: 18F-FDG SUVmax and SUVmean showed statistically significant capability in AJCC and TNM stages. Texture features such as ENT and CORR were significant factors for N stages(p=0.040, p=0.029). Both FDG PET Longitudinal length and shape feature Eccentricity (EC) (p≤0.010) provided powerful stratification in the primary ESCC AJCC and TNM stages than SUV and texture features. Receiver-operating-characteristic curve analysis showed that tumor textural analysis can capability M stages with higher sensitivity than SUV measurement but lower in T and N stages. Conclusion: The 18F-FDG image-derived characteristics of SUV, textural features and shape feature allow for good stratification AJCC and TNM stage in ESCC patients.

  20. Functional imaging of the brain with/sup 18/F-fluorodeoxyglucose

    SciTech Connect

    Reivich, M; Greenberg, J; Alavi, A; Hand, P; Rintelmann, W; Rosenquist, A; Christman, D; Fowler, J; MacGregor, R; Wolf, A

    1980-01-01

    A techniques is reported by which it is possible to determine which regions of the human brain become functionally active in response to a specific stimulus. The method utilizes /sup 18/F-2-fluoro-2-deoxyglucose ((/sup 18/F)-FDG) administered as a bolus. (/sup 18/F)-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation. The subject is then scanned during administration of a physiologic stimulus by position emission tomography and the three-dimensional distribution of /sup 18/F activity in the brain determined. (ACR)

  1. High 18F-fluorodeoxyglucose (18F-FDG) uptake in microscopic peritoneal tumors requires physiological hypoxia

    PubMed Central

    Li, Xiao-Feng; Ma, Yuanyuan; Sun, Xiaorong; Humm, John L.; Ling, C. Clifton; O’Donoghue, Joseph A.

    2010-01-01

    The objective of this study was to examine 18F-fluorodeoxyglucose (18F-FDG) uptake in microscopic tumors grown intraperitoneally in nude mice and to relate this to physiological hypoxia and glucose transporter-1 (GLUT-1) expression. Methods Human colon cancer HT29 and HCT-8 cells were injected intraperitoneally into nude mice to generate disseminated tumors of varying sizes. Following overnight fasting, animals, either breathing air or carbogen (95% O2+ 5% CO2), were intravenously administered 18F-FDG together with the hypoxia marker pimonidazole (PIMO) and the cellular proliferation marker bromodeoxyuridine (BrdUrd) one hour before sacrifice. Hoechst 33342, a perfusion marker, was administered one minute before sacrifice. Following sacrifice, the intratumoral distribution of 18F-FDG was assessed by digital autoradiography of frozen tissue sections. This was compared with the distributions of PIMO, GLUT-1 expression, BrdUrd and Hoechst 33342 as visualized by immunofluorescent microscopy. Results Small tumors (< 1 mm diameter) had high 18F-FDG accumulation and were severely hypoxic with high GLUT-1 expression. Larger tumors (1–4 mm diameter) generally had low 18F-FDG accumulation and were not significantly hypoxic with low GLUT1 expression. Carbogen breathing significantly decreased 18F-FDG accumulation and tumor hypoxia in microscopic tumors but had little effect on GLUT1 expression. Conclusion There was high 18F-FDG uptake in microscopic tumors which was spatially associated with physiological hypoxia and high GLUT-1 expression. This enhanced uptake was abrogated by carbogen breathing, indicating that in the absence of physiological hypoxia, high GLUT1 expression, by itself, was insufficient to ensure high 18F-FDG uptake. PMID:20351353

  2. Suivi in situ de cultures tridimensionnelles en bioreacteur a perfusion grace a la tomographie d'emission par positrons

    NASA Astrophysics Data System (ADS)

    Chouinard, Julie

    The continuous assessment of developing tissue substitutes is crucial to understand their evolution over time. However, this represents quite a challenge when thick samples must be evaluated with standard microscopy techniques. Common characterization methods are time consuming and usually result in the destruction of the culture. Real-time, in situ, non-invasive and non-destructives methods are needed to monitor the growth of large non-transparent constructs in tissue engineering. Medical imaging modalities, which can provide information on the structure and function of internal organs and tissues in living organisms, have the potential of allowing repetitive monitoring of these 3D cultures in vitro. The working hypothesis of this thesis was to establish standard noninvasive and nondestructive real-time bioreactor imaging protocols for in situ monitoring of the viability and metabolism of endothelial cells when grown in perfused 3D fibrin gel scaffolds. To achieve this goal, a culture chamber with hollow fibers was designed and a pulsatile perfusion bioreactor system, able to promote cell survival and proliferation, was constructed and validated. Standard imaging protocols in Positron Emission Tomography (PET) are not adapted to image bioreactor systems. A suitable method had to be devised using the well-known radiotracer 18F-fluorodeoxyglucose ( 18FDG), a marker of glucose metabolism. Optimal uptake conditions were determined using cell monolayers and the best parameters were then applied on perfused 3D cultures to evaluate perfusion, cell viability and emerging cell structures. After only 12 hours of culture, the cell density could be estimated and cell structures were localized within the fibrin gels after 1-2 weeks of culture. PET is a promising tool for tissue engineering with many specific tracers available that might eventually be able to reveal new information on tissue development. Key words: Endothelial cells, Perfusion bioreactor, Positron Emission

  3. Positron emission tomography/computed tomography.

    PubMed

    Townsend, David W

    2008-05-01

    Accurate anatomical localization of functional abnormalities obtained with the use of positron emission tomography (PET) is known to be problematic. Although tracers such as (18)F-fluorodeoxyglucose ((18)F-FDG) visualize certain normal anatomical structures, the spatial resolution is generally inadequate for accurate anatomic localization of pathology. Combining PET with a high-resolution anatomical imaging modality such as computed tomography (CT) can resolve the localization issue as long as the images from the two modalities are accurately coregistered. However, software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. Acquiring both CT and PET images in the same scanner obviates the need for software registration and routinely provides accurately aligned images of anatomy and function in a single scan. A CT scanner positioned in line with a PET scanner and with a common patient couch and operating console has provided a practical solution to anatomical and functional image registration. Axial translation of the couch between the 2 modalities enables both CT and PET data to be acquired during a single imaging session. In addition, the CT images can be used to generate essentially noiseless attenuation correction factors for the PET emission data. By minimizing patient movement between the CT and PET scans and accounting for the axial separation of the two modalities, accurately registered anatomical and functional images can be obtained. Since the introduction of the first PET/CT prototype more than 6 years ago, numerous patients with cancer have been scanned on commercial PET/CT devices worldwide. The commercial designs feature multidetector spiral CT and high-performance PET components. Experience has demonstrated an increased level of accuracy and confidence in the

  4. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina

    SciTech Connect

    Camici, P.; Araujo, L.I.; Spinks, T.; Lammertsma, A.A.; Kaski, J.C.; Shea, M.J.; Selwyn, A.P.; Jones, T.; Maseri, A.

    1986-07-01

    Regional myocardial perfusion and exogenous glucose uptake were assessed with rubidium-82 (82Rb) and 18F-2-fluoro-2-deoxyglucose (FDG) in 10 normal volunteers and 12 patients with coronary artery disease and stable angina pectoris by means of positron emission tomography. In patients at rest, the myocardial uptake of /sup 82/Rb and FDG did not differ significantly from that measured in normal subjects. The exercise test performed within the positron camera in eight patients produced typical chest pain and ischemic electrocardiographic changes in all. In each of the eight patients a region of reduced cation uptake was demonstrated in the /sup 82/Rb scan recorded at peak exercise, after which uptake of /sup 82/Rb returned to the control value 5 to 14 min after the end of the exercise. In these patients, FDG was injected in the recovery phase when all the variables that were altered during exercise, including regional myocardial /sup 82/Rb uptake, had returned to control values. In all but one patient, FDG accumulation in the regions of reduced /sup 82/Rb uptake during exercise was significantly higher than that in the nonischemic regions, i.e., the ones with a normal increment of /sup 82/Rb uptake on exercise. In the nonischemic areas, FDG uptake was not significantly different from that found in normal subjects after exercise. In conclusion, myocardial glucose transport and phosphorylation seem to be enhanced in the postischemic myocardium of patients with exercise-induced ischemia.

  5. Positron emission tomography in imaging evaluation of staging, restaging, treatment response, and prognosis in prostate cancer.

    PubMed

    Jadvar, Hossein

    2016-05-01

    Prostate cancer is a prevalent public health problem worldwide. While imaging has played a major role in this disease, there still remain many challenges and opportunities. Positron emission tomography with various physiologically based radiotracers is fundamentally suited to interrogate this biologically and clinically heterogeneous disease along the course of its natural history. In this article, I review briefly the published evidence for the use of positron emission tomography with 18F-fluorodeoxyglucose, 11C-acetate, and 18F- or 11C-choline in the imaging evaluation of prostate cancer. Although the focus of the article will be on these radiotracers given the accumulated experience with them, but I will also comment on the outlook for the use of other emerging PET radiotracers such as those targeted to the prostate-specific membrane antigen and the amino acid metabolism pathway. It is anticipated that PET will play major role in the evaluation of prostate cancer in the current evidence-based medicine environment. There will also be exciting novel prospects for the use of therapeutic-diagnostic (theransotic) pairs in the management of patients with prostate cancer. PMID:27193789

  6. The role of positron emission tomography-computed tomography and magnetic resonance imaging in diagnosis and follow up of multiple myeloma

    PubMed Central

    Caers, Jo; Withofs, Nadia; Hillengass, Jens; Simoni, Paolo; Zamagni, Elena; Hustinx, Roland; Beguin, Yves

    2014-01-01

    Multiple myeloma is the second most common hematologic malignancy and occurs most commonly in elderly patients. Almost all multiple myeloma patients develop bone lesions in the course of their disease or have evidence of bone loss at initial diagnosis. Whole-body conventional radiography remains the gold standard in the diagnostic evaluation, but computed tomography, magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography are increasingly used as complementary techniques in the detection of bone lesions. Moreover, the number of lesions detected and the presence of extramedullary disease give strong prognostic information. These new techniques may help to assess treatment response in solitary plasmacytoma or in multiple myeloma. In this article, we review recent data on the different imaging techniques used at diagnosis and in the assessment of treatment response, and discuss some current issues. PMID:24688111

  7. A Novel Method to Evaluate Local Control of Lung Cancer in Stereotactic Body Radiation Therapy (SBRT) Treatment Using 18F-FDG Positron Emission Tomography (PET)

    NASA Astrophysics Data System (ADS)

    Kathriarachchi, Vindu Wathsala

    An improved method is introduced for prediction of local tumor control following lung stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) patients using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). A normalized background-corrected tumor maximum Standard Uptake Value (SUVcmax) is introduced using the mean uptake of adjacent aorta (SUVref), instead of the maximum uptake of lung tumor (SUVmax). This method minimizes the variations associated with SUVmax and objectively demonstrates a strong correlation between the low SUVcmax (< 2.5-3.0) and local control of post lung SBRT. The false positive rates of both SUVmax and SUVcmax increase with inclusion of early (<6 months) PET scans, therefore such inclusion is not recommended for assessing local tumor control of post lung SBRT.

  8. Evaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin

    PubMed Central

    Takahashi, Yasuyuki; Mochiki, Mizuki; Koyama, Keiko; Ino, Toshihiko; Yamaji, Hiroyuki; Kawakami, Atsuko

    2016-01-01

    Objective(s): Use of a positron emission tomography (PET)/single-photon emission computed tomography (SPECT) system facilitates the simultaneous acquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) and technetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511 keV Compton-scattered photons are detected in the 99mTc energy window. Therefore, in this study, we aimed to investigate the consequences of these facts. Methods: The crosstalk correction for images in the 99mTc energy window involved the dual energy window (DEW) subtraction method. In phantom studies, changes in the count of uniform parts in a phantom (due to attenuation from decay), signal detectability in the hot-rod part of the phantom, and the defect contrast ratio in a cardiac phantom were examined. Results: For 18F-FDG in the step-and-shoot mode, nearly a 9% difference was observed in the count of projection data between the start and end positions of acquisition in the uniform part of the phantom. Based on the findings, the detectability of 12 mm hot rods was relatively poor. In the continuous acquisition mode, the count difference was corrected, and detectability of the hot rods was improved. The crosstalk from 18F to the 99mTc energy window was approximately 13%. In the cardiac phantom, the defect contrast in 99mTc images from simultaneous dual-radionuclide acquisition was improved by approximately 9% after DEW correction; the contrast after correction was similar to acquisition with 99mTc alone. Conclusion: Based on the findings, the continuous mode is useful for 18F-FDG acquisition, and DEW crosstalk correction is necessary for 99mTc-tetrofosmin imaging. PMID:27408894

  9. Assessment of myocardial perfusion and viability by positron emission tomography.

    PubMed

    Anagnostopoulos, Constantinos; Georgakopoulos, Alexandros; Pianou, Nikoletta; Nekolla, Stephan G

    2013-09-01

    An important evolution has taken place recently in the field of cardiovascular Positron Emission Tomography (PET) imaging. Being originally a highly versatile research tool that has contributed significantly to advance our understanding of cardiovascular physiology and pathophysiology, PET has gradually been incorporated into the clinical cardiac imaging portfolio contributing to diagnosis and management of patients investigated for coronary artery disease (CAD). PET myocardial perfusion imaging (MPI) has an average sensitivity and specificity around 90% for the detection of angiographically significant CAD and it is also a very accurate technique for prognostication of patients with suspected or known CAD. In clinical practice, Rubidium-82 ((82)Rb) is the most widely used radiopharmaceutical for MPI that affords also accurate and reproducible quantification in absolute terms (ml/min/g) comparable to that obtained by cyclotron produced tracers such as Nitrogen-13 ammonia ((13)N-ammonia) and Oxygen-15 labeled water ((15)O-water). Quantification increases sensitivity for detection of multivessel CAD and it may also be helpful for detection of early stages of atherosclerosis or microvascular dysfunction. PET imaging combining perfusion with myocardial metabolism using (18)F-Fluorodeoxyglucose ((18)F FDG), a glucose analog, is an accurate standard for assessment of myocardial hibernation and risk stratification of patients with left ventricular dysfunction of ischemic etiology. It is helpful for guiding management decisions regarding revascularization or medical treatment and predicting improvement of symptoms, exercise capacity and quality of life post-revascularization. The strengths of PET can be increased further with the introduction of hybrid scanners, which combine PET with computed tomography (PET/CT) or with magnetic resonance imaging (PET/MRI) offering integrated morphological, biological and physiological information and hence, comprehensive evaluation of

  10. Positron Emission Tomography Imaging of Cancer Biology: Current Status and Future Prospects

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2011-01-01

    Positron emission tomography (PET) is one of the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. The principal goal of PET imaging is to visualize, characterize, and measure biological processes at the cellular, subcellular, and molecular levels in living subjects using noninvasive procedures. PET imaging takes advantage of the traditional diagnostic imaging techniques and introduces positron-emitting probes to determine the expression of indicative molecular targets at different stages of cancer progression. Although [18F]fluorodeoxyglucose ([18F]FDG)-PET has been widely utilized for staging and restaging of cancer, evaluation of response to treatment, differentiation of post-therapy alterations from residual or recurrent tumor, and assessment of prognosis, [18F]FDG is not a target-specific PET tracer. Over the last decade, numerous target-specific PET tracers have been developed and evaluated in preclinical and clinical studies. This review provides an overview of the current status and trends in the development of non-[18F]FDG PET probes in oncology and their application in the investigation of cancer biology. PMID:21362517

  11. Positron emission tomography.

    PubMed

    Hoffman, E J; Phelps, M E

    1979-01-01

    Conventional nuclear imaging techniques utilizing lead collimation rely on radioactive tracers with little role in human physiology. The principles of imaging based on coincidence detection of the annihilation radiation produced in positron decay indicate that this mode of detection is uniquely suited for use in emission computed tomography. The only gamma-ray-emitting isotopes of carbon, nitrogen, and oxygen are positron emitters, which yield energies too high for conventional imaging techniques. Thus development of positron emitters in nuclear medicine imaging would make possible the use of a new class of physiologically active, positron-emitting radiopharmaceuticals. The application of these principles is described in the use of a physiologically active compound labeled with a positron emitter and positron-emission computed tomography to measure the local cerebral metabolic rate in humans. PMID:440173

  12. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography.

    PubMed Central

    Eidelberg, D; Dhawan, V; Moeller, J R; Sidtis, J J; Ginos, J Z; Strother, S C; Cederbaum, J; Greene, P; Fahn, S; Powers, J M

    1991-01-01

    Regional metabolic rate for glucose (rCMRGlc) was estimated using [18F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) in five patients (four men, one woman; mean age 68; mean disease duration 2.4 years) with clinical findings consistent with the syndrome of cortico-basal ganglionic degeneration (CBGD). Left-right rCMRGlc asymmetry, (L-R)/(L + R) x 100, was calculated for 13 grey matter regions and compared with regional metabolic data from 18 normal volunteers and nine patients with asymmetrical Parkinson's disease (PD). In the CBGD group mean metabolic asymmetry values in the thalamus, inferior parietal lobule and hippocampus were greater than those measured in normal control subjects and patients with asymmetrical PD (p less than 0.02). Parietal lobe asymmetry of 5% or more was evident in all CBGD patients, whereas in PD patients and normal controls, all regional asymmetry measures were less than 5% in absolute value. Measures of frontal, parietal and hemispheric metabolic asymmetry were found to be positively correlated with asymmetries in thalamic rCMRGlc (p less than 0.05). The presence of cortico-thalamic metabolic asymmetry is consistent with the focal neuropathological changes reported in CBGD brains. Our findings suggest that metabolic asymmetries detected with FDG/PET may support a diagnosis of CBGD in life. Images PMID:1744638

  13. Positron emission tomography in aging and dementia: effect of cerebral atrophy

    SciTech Connect

    Chawluk, J.B.; Alavi, A.; Dann, R.; Hurtig, H.I.; Bais, S.; Kushner, M.J.; Zimmerman, R.A.; Reivich, M.

    1987-04-01

    The spatial resolution of current positron emission tomography (PET) scanners does not allow a distinction between cerebrospinal fluid (CSF) containing spaces and contiguous brain tissue. Data analysis strategies which therefore purport to quantify cerebral metabolism per unit mass brain tissue are in fact measuring a value which may be artifactually reduced due to contamination by CSF. We studied cerebral glucose metabolism (CMRglc) in 17 healthy elderly individuals and 24 patients with Alzheimer's dementia using (/sup 18/F)fluorodeoxyglucose and PET. All subjects underwent x-ray computed tomography (XCT) scanning at the time of their PET study. The XCT scans were analyzed volumetrically, in order to determine relative areas for ventricles, sulci, and brain tissue. Global CMRglc was calculated before and after correction for contamination by CSF (cerebral atrophy). A greater increase in global CMRglc after atrophy correction was seen in demented individuals compared with elderly controls (16.9% versus 9.0%, p less than 0.0005). Additional preliminary data suggest that volumetric analysis of proton-NMR images may prove superior to analysis of XCT data in quantifying the degree of atrophy. Appropriate corrections for atrophy should be employed if current PET scanners are to accurately measure actual brain tissue metabolism in various pathologic states.

  14. Evaluation of Glucose Uptake in Normal and Cancer Cell Lines by Positron Emission Tomography.

    PubMed

    Maddalena, Francesca; Lettini, Giacomo; Gallicchio, Rosj; Sisinni, Lorenza; Simeon, Vittorio; Nardelli, Anna; Venetucci, Angela Assunta; Storto, Giovanni; Landriscina, Matteo

    2015-01-01

    To date, there is no definitive demonstration of the utility of positron emission tomography (PET) in studying glucose metabolism in cultured cell lines. Thus, this study was designed to compare PET to more standardized methods for the quantitative assessment of glucose uptake in nontransformed and transformed living cells and to validate PET for metabolic studies in vitro. Human colon and breast carcinoma cell lines and mouse embryo fibroblasts were evaluated for [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake by PET and autoradiography and 2-deoxyglucose (2-DG) incorporation by colorimetric assay and analyzed for the radiotoxic effects of [(18)F]FDG and the expression levels of glucose transporters. Indeed, [(18)F]FDG incorporation on PET was comparable to [(18)F]FDG uptake by autoradiography and 2-DG incorporation by colorimetric assay, although radiotracer-based methods exhibited more pronounced differences between individual cell lines. As expected, these data correlated with glucose transporters 1 to 4 and hexokinase II expression in tumor cell lines and mouse fibroblasts. Notably, [(18)F]FDG incorporation resulted in low apoptotic rates, with fibroblasts being slightly more sensitive to radiotracer-induced cell death. The quantitative analysis of [(18)F]FDG uptake in living cells by PET represents a valuable and reproducible method to study tumor cell metabolism in vitro, being representative of the differences in the molecular profile of normal and tumor cell lines. PMID:26461458

  15. Positron emission tomographic studies of sensory stimuli, cognitive processes and anxiety.

    PubMed

    Reivich, M; Gur, R; Alavi, A

    1983-01-01

    Research in detecting regional changes in brain metabolism related to functional activity is reviewed and supplemented by original results from positron emission tomography (PET) and the 18F-fluorodeoxyglucose method (FDG). A formula for calculating the value of local cerebral glucose metabolism (LCMRGlc) is discussed. Results concerning auditory stimulation suggest that metabolic responses are determined by the stimulus content and analysis strategy used by the subject rather than the side of stimulation. Tactile stimulation of the hand and fingers caused asymmetrical increases in LCMRGlc confirming topographic maps of the postcentral gyrus and other functional studies. Data from visually stimulated normal subjects show how the visual hemifields project to the opposite calcarine cortex. Studies of patients with hemianopsia or various field defects demonstrated that metabolic scanning can reveal alterations of cortical function not detectable by CT scan. Data obtained reveal the ability of metabolic mapping to subdivide the occipital cortex into distinct regions. Such measurements may also anticipate the course of visual recovery. Findings of increased overall right-hemispheric metabolism during the performance of verbal and spatial cognitive tasks are consistent with earlier results from right-handed males. Results for the frontal eye fields provide the first experimental evidence that lateralized metabolic activity, produced by cognitive tasks, causes similarly lateralized activity within a motor region. It is further demonstrated that FDG is able to provide information on such states as vigilance and anxiety. PMID:6603451

  16. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study.

    PubMed

    Park, So Hyeon; Park, Hyun Soo; Kim, Sang Eun

    2016-08-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after (18)F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  17. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    PubMed Central

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  18. Positron emission tomography neuroimaging in amyotrophic lateral sclerosis: what is new?

    PubMed

    Quartuccio, N; Van Weehaeghe, D; Cistaro, A; Jonsson, C; Van Laere, K; Pagani, M

    2014-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving upper and lower motor neurons, extra-motor neurons, microglia and astrocytes. The neurodegenerative process results in progressive muscle paralysis and even in cognitive impairment. Within the complex diagnostic work-up, positron emission tomography (PET) represents a valuable imaging tool in the assessment of patients with ALS. PET, by means of different radiotracers (i.e. 18F-fluorodeoxyglucose, 6-[18F]fluoro-L-dopa, [11C]flumazenil) can assess the status of the wide range of brain regions and neural circuits, which can be affected by ALS. Furthermore, experimental radiocompounds have been developed for the evaluation of white matter, which plays a role in the progression of the disease. Here we present a comprehensive review including in different sections the most relevant PET studies: studies investigating ALS and ALS-mimicking conditions (especially primary lateral sclerosis and other neurodegenerative diseases), articles selecting specific subsets of patients (with bulbar or spinal onset), studies investigating patients with familial type of ALS, studies evaluating the role of the white matter in ALS and papers evaluating the diagnostic sensitivity of PET in ALS patients. PMID:25375229

  19. Permeability of gloves used in nuclear medicine departments to [(99m)Tc]-pertechnetate and [(18)F]-fluorodeoxyglucose: radiation protection considerations.

    PubMed

    Ridone, S; Matheoud, R; Valzano, S; Di Martino, R; Vigna, L; Brambilla, M

    2013-09-01

    In order to evaluate the safety of the individual protection devices, the permeability of four different types of disposable gloves, commonly used in hospitals, was tested in relation to [(99m)Tc]-pertechnetate and to [(18)F]-fluorodeoxyglucose ([(18)F]-FDG). From these radiopharmaceutical solutions, a drop was deposited on the external surface of the glove which was opened and stretched with the external surface placed upward. The smear test technique permitted to evaluate the activity onto the inner surface of the glove at different times. The smear tests were measured in a well sodium iodide detector calibrated in efficiency for (99m)Tc and (18)F. The permeability was tested on ten samples of each type of gloves and was expressed as the ratio of the activity onto the inner surface at each time interval to the activity deposited on the external surface of the glove. For each type of gloves and for each sampling time, mean value, standard deviation and percentage coefficient of variation of permeability were evaluated. One type of gloves showed a low resistance to permeation of both radiopharmaceuticals, while another one only to pertechnetate. The other gloves were good performers. The results of this study suggest to test permeability for gloves used for handling radiopharmaceuticals, before their adoption in the clinical routine. This practice will provide a more careful service of radiation protection for nuclear medicine department staff. PMID:23419926

  20. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  1. Tumor Hypoxia Detected by Positron Emission Tomography with 60Cu-ATSM as a Predictor of Response and Survival in Patients Undergoing Neoadjuvant Chemoradiotherapy for Rectal Carcinoma: A Pilot Study

    PubMed Central

    Dietz, David W.; Dehdashti, Farrokh; Grigsby, Perry W.; Malyapa, Robert S.; Myerson, Robert J.; Picus, Joel; Ritter, Jon; Lewis, Jason S.; Welch, Michael J.; Siegel, Barry A.

    2016-01-01

    PURPOSE The response of rectal cancers to neoadjuvant chemoradiotherapy is variable. Tumor hypoxia reduces the effectiveness of both radiation therapy and chemotherapy and is a well-known risk factor for tumor radioresistence. We hypothesized that imaging with the novel hypoxia-detecting agent, 60Cu-diacetyl-bis (N4-methylthiosemicarbazone) (60Cu-ATSM), previously validated in cervical and lung cancers, would predict the response of rectal cancers to neoadjuvant chemoradiotherapy and prognosis. METHODS Patients with locally invasive (T2–4) primary or node-positive rectal cancer located <12 cm from the anal verge were recruited for this pilot study. Pretreatment tumor size and stage were determined by endorectal ultrasonography, CT, and magnetic resonance imaging. Eleven patients also underwent clinical positron emission tomography with 18F-fluorodeoxyglucose at the discretion of the treating clinician. The primary tumor was imaged by positron emission tomography with 60Cu-ATSM, and accumulation of the tracer was measured semiquantitatively by determining the tumor-to-muscle activity ratio. Neoadjuvant chemoradiotherapy was then administered (within 2 weeks of 60Cu-ATSM-positron emission tomography) and consisted of 45 Gy given in 25 fractions to the pelvis with continuous intravenous infusion of 5-fluorouracil (225 mg/m2/day). Proctectomy was performed six to eight weeks after neoadjuvant chemoradiotherapy and the tumor submitted to pathology for size measurement and staging. Tumor-to-muscle activity ratios were compared with tumor 18F-fluorodeoxyglucose uptake, tumor response to neoadjuvant chemoradiotherapy, and with patient survival. RESULTS Nineteen patients were enrolled in the study, two of whom were excluded from final analysis (1 death during neoadjuvant chemoradiotherapy and 1 tumor perforation during neoadjuvant chemoradiotherapy requiring emergent surgery). Of the 17 remaining patients, 14 had a reduction in tumor size and 13 were downstaged. The

  2. Evaluation of pulmonary nodules and lung cancer with one-inch crystal gamma coincidence positron emission tomography/CT versus dedicated positron emission tomography/CT.

    PubMed

    Moodie, K; Cherk, M H; Lau, E; Turlakow, A; Skinner, S; Hicks, R J; Kelly, M J; Kalff, V

    2009-02-01

    Dedicated positron emission tomography (PET)/CT scanners using BGO and related detectors (d-PET) have become standard imaging instruments in many malignancies. Hybrid gamma camera systems using NaI detectors in coincidence mode (g-PET) have been compared to d-PET but reported usefulness has been variable when gamma cameras with half-inch to three-fourth-inch thick crystals have been used without CT. Our aim was to compare g-PET with a 1-in.-thick crystal and inbuilt CT for lesion localization and attenuation correction (g-PET/CT) and d-PET/CT in patients presenting with potential and confirmed lung malignancies. One hour after (18)F-fluorodeoxyglucose (FDG), patients underwent BGO d-PET/CT from jaw to proximal thigh. This was followed by one to two bed position g-PET/CT 194 +/- 27 min after FDG. Each study pair was independently analysed with concurrent CT. d-PET/CT was interpreted by a radiologist experienced in both PET and CT, and g-PET/CT by consensus reading of an experienced PET physician and an experienced CT radiologist. A TNM score was assigned and studies were then unblinded and compared. Fifty-seven patients underwent 58 scan pairs over 2 years. Eighty-nine per cent concordance was shown between g-PET/CT and d-PET/CT for the assessment of intrapulmonary lesions, with 100% concordance for intrapulmonary lesions >10 mm (36 of 36). Eighty-eight per cent (51 of 58) concordance was shown between g-PET/CT and d-PET/CT for TNM staging. Coincidence imaging using an optimized dual-head 1-in.-thick crystal gamma camera with inbuilt CT compares reasonably well with dedicated PET/CT for evaluation of indeterminate pulmonary lesions and staging of pulmonary malignancies and may be of some value when d-PET/CT is not readily available. PMID:19453526

  3. Influence of the partial volume correction method on 18F-fluorodeoxyglucose brain kinetic modelling from dynamic PET images reconstructed with resolution model based OSEM

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian

    2013-10-01

    Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose (18F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most

  4. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography

    PubMed Central

    Schöll, Michael; Carter, Stephen F.; Westman, Eric; Rodriguez-Vieitez, Elena; Almkvist, Ove; Thordardottir, Steinunn; Wall, Anders; Graff, Caroline; Långström, Bengt; Nordberg, Agneta

    2015-01-01

    Studying autosomal dominant Alzheimer’s disease (ADAD), caused by gene mutations yielding nearly complete penetrance and a distinct age of symptom onset, allows investigation of presymptomatic pathological processes that can identify a therapeutic window for disease-modifying therapies. Astrocyte activation may occur in presymptomatic Alzheimer’s disease (AD) because reactive astrocytes surround β-amyloid (Aβ) plaques in autopsy brain tissue. Positron emission tomography was performed to investigate fibrillar Aβ, astrocytosis and cerebral glucose metabolism with the radiotracers 11C-Pittsburgh compound-B (PIB), 11C-deuterium-L-deprenyl (DED) and 18F-fluorodeoxyglucose (FDG) respectively in presymptomatic and symptomatic ADAD participants (n = 21), patients with mild cognitive impairment (n = 11) and sporadic AD (n = 7). Multivariate analysis using the combined data from all radiotracers clearly separated the different groups along the first and second principal components according to increased PIB retention/decreased FDG uptake (component 1) and increased DED binding (component 2). Presymptomatic ADAD mutation carriers showed significantly higher PIB retention than non-carriers in all brain regions except the hippocampus. DED binding was highest in presymptomatic ADAD mutation carriers. This suggests that non-fibrillar Aβ or early stage plaque depostion might interact with inflammatory responses indicating astrocytosis as an early contributory driving force in AD pathology. The novelty of this finding will be investigated in longitudinal follow-up studies. PMID:26553227

  5. Interrogating Tumor Metabolism and Tumor Microenvironments Using Molecular Positron Emission Tomography Imaging. Theranostic Approaches to Improve Therapeutics

    PubMed Central

    Jacobson, Orit

    2013-01-01

    Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [18F]fluorodeoxyglucose ([18F]FDG), which measures glucose metabolism. However, [18F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[18F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications. PMID:24064460

  6. Feasibility study of the use of similarity maps in the evaluation of oncological dynamic positron emission tomography images.

    PubMed

    Thireou, T; Kontaxakis, G; Strauss, L G; Dimitrakopoulou-Strauss, A; Pavlopoulos, S; Santos, A

    2005-01-01

    A preliminary study is presented on the potential role of similarity mapping (SM) in the evaluation of oncological dynamic 18F-fluorodeoxyglucose positron emission tomography studies, mainly in lesion localisation and detectability. Similarity maps were calculated using previously described (correlation coefficient (COR) and normalised correlation coefficient (NCOR)) and newly introduced similarity measures (sum of squares coefficient (SSQ), squared sum coefficient (SQS), sum of cubes coefficient (SC) and cubed sum coefficient (CS)). The results were evaluated using simulated and clinical data. The study revealed that the best-suited similarity measure for such applications was the CS similarity coefficient, which provided the best parametric images, delineating structures of interest and supporting the visual interpretation of data sets. It was shown that SM and standardised uptake value (SUV) images had comparable diagnostic performance, although SM was able to offer additional time-related information in a single image. For the case of colorectal recurrences (17 cases), the measured contrast values for the CS and SUV images were 2.36 +/- 0.47 and 4.12 +/- 0.42, respectively, whereas, for three cases of giant cell tumours, these values were 11.6 +/- 2.1 and 11.9 +/- 1.8, respectively. PMID:15742716

  7. Cardiac positron emission tomography

    SciTech Connect

    Geltman, E.M.

    1985-12-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. 16 references, 9 figures, 2 tables.

  8. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  9. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  10. Positron emission tomography (PET) for assessing aerosol deposition of orally inhaled drug products.

    PubMed

    Dolovich, Myrna B; Bailey, Dale L

    2012-12-01

    The topical distribution of inhaled therapies in the lung can be viewed using radionuclides and imaging. Positron emission tomography (PET) is a three-dimensional functional imaging technique providing quantitatively accurate localization of the quantity and distribution of an inhaled or injected PET radiotracer in the lung. A series of transaxial slices through the lungs are obtained, comparable to an X-ray computed tomography (CT) scan. Subsequent reformatting allows coronal and sagittal images of the distribution of radioactivity to be viewed. This article describes procedures for administering [(18)F]-fluorodeoxyglucose aerosol to human subjects for the purpose of determining dose and distribution following inhalation from an aerosol drug delivery device (ADDD). The advantages of using direct-labeled PET drugs in the ADDD are discussed with reference to the literature. The methods for designing the inhalation system, determining proper radiation shielding, calibration, and validation of administered radioactivity, scanner setup, and data handling procedures are described. Obtaining an X-ray CT or radionuclide transmission scan to provide accurate geometry of the lung and also correct for tissue attenuation of the PET radiotracer is discussed. Protocols for producing accurate images, including factors that need to be incorporated into the data calibration, are described, as well as a proposed standard method for partitioning the lung into regions of interest. Alternate methods are described for more detailed assessments. Radiation dosimetry/risk calculations for the procedures are appended, as well as a sample data collection form and spreadsheet for calculations. This article should provide guidance for those interested in using PET to determine quantity and distribution of inhaled therapeutics. PMID:23215847

  11. Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions

    SciTech Connect

    Aristophanous, Michalis; Killoran, Joseph H.; Chen, Aileen B.; Berbeco, Ross I.

    2011-07-01

    Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of both the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.

  12. Positron emission mammography imaging

    SciTech Connect

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  13. Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of ( sup 18 F)fluorodeoxyglucose uptake in the human brain

    SciTech Connect

    Hoffman, E.J.; Cutler, P.D.; Guerrero, T.M.; Digby, W.M.; Mazziotta, J.C. )

    1991-03-01

    A three-dimensional brain phantom has been developed to simulate the activity distributions found in human brain studies currently employed in positron emission tomography (PET). The phantom has a single contiguous chamber and utilizes thin layers of lucite to provide apparent relative concentrations of 5, 1, and 0 for gray matter, white matter, and CSF structures, respectively. The phantom and an ideal image set were created from the same set of data. Thus, the user has a basis for comparing measured images with an ideal set that allows a quantitative evaluation of errors in PET studies with an activity distribution similar to that found in patients. The phantom was employed in a study of the effect of deadtime and scatter on accuracy in quantitation on a current PET system. Deadtime correction factors were found to be significant (1.1-2.5) at count rates found in clinical studies. Deadtime correction techniques were found to be accurate to within 5%. Scatter in emission and attenuation correction data consistently caused 5-15% errors in quantitation, whereas correction for scatter in both types of data reduced errors in accuracy to less than 5%.

  14. A follow-up analysis of positron emission tomography/computed tomography in detecting hidden malignancies at the time of diagnosis of membranous nephropathy

    PubMed Central

    Feng, Zhonglin; Wang, Shuxia; Huang, Yanlin; Liang, Xinling; Shi, Wei; Zhang, Bin

    2016-01-01

    Membranous nephropathy (MN) is the most common kidney disease reported in a variety of malignant diseases. Search for an occult malignancy in MN has presented special challenges. 124 MN patients with a physical examination not suspicious for cancer underwent screening for an occult malignancy with either 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scanning (n = 49) or conventional screening (n = 75) at the time of diagnosis of MN, and were followed up (median,28 months). 154 patients who refused to undergo any screening were followed up (median, 30 months). In FDG-PET/CT cohort, 5 (10.20%) patients were screened and confirmed as malignancy, in contrast, 1 (1.33%) patient in conventional screening cohort. During follow-up, none of malignancy was detected in FDG-PET/CT cohort, 3(4.05%) patients in conventional screening cohort, and 8(5.19%) patients in no-screening cohort. All 6 cases of cancer were detected at early stages and underwent curative resection, and after the resection, proteinuria decreased. In contrast, 11 cases of cancer detected during follow-up died without any remission of proteinuria. These preliminary data provide the first evidence for a potential cancer surveillance that the malignancy screening either through conventional or by PET-CT at the diagnosis of MN led to an early diagnosis and curative treatment. PMID:27009881

  15. The Synthesis and Evaluations of the 68Ga-Lissamine Rhodamine B (LRB) as a New Radiotracer for Imaging Tumors by Positron Emission Tomography

    PubMed Central

    Li, Xuena; Yin, Yafu; Du, Bulin; Li, Na; Li, Yaming

    2016-01-01

    Purpose. The aim of this study is to synthesize and evaluate 68Ga-labeled Lissamine Rhodamine B (LRB) as a new radiotracer for imaging MDA-MB-231 and MCF-7 cells induced tumor mice by positron emission tomography (PET). Methods. Firstly, we performed the radio synthesis and microPET imaging of 68Ga(DOTA-LRB) in athymic nude mice bearing MDA-MB-231 and MCF-7 human breast cancer xenografts. Additionally, the evaluations of 18F-fluorodeoxyglucose (FDG), as a glucose metabolism radiotracer for imaging tumors in the same xenografts, have been conducted as a comparison. Results. The radiochemical purity of 68Ga(DOTA-LRB) was >95%. MicroPET dynamic imaging revealed that the uptake of 68Ga(DOTA-LRB) was mainly in normal organs, such as kidney, heart, liver, and brain and mainly excreted from kidney. The MDA-MB-231 and MCF-7 tumors were not clearly visible in PET images at 5, 15, 30, 40, 50, and 60 min after injection of 68Ga(DOTA-LRB). The tumor uptake values of 18F-FDG were 3.79 ± 0.57 and 1.93 ± 0.48%ID/g in MDA-MB-231 and MCF-7 tumor xenografts, respectively. Conclusions. 68Ga(DOTA-LRB) can be easily synthesized with high radiochemical purity and stability; however, it may be not an ideal PET radiotracer for imaging of MDR-positive tumors. PMID:26949707

  16. Synthesis and preliminary evaluation in tumor bearing mice of new (18)F-labeled arylsulfone matrix metalloproteinase inhibitors as tracers for positron emission tomography.

    PubMed

    Casalini, Francesca; Fugazza, Lorenza; Esposito, Giovanna; Cabella, Claudia; Brioschi, Chiara; Cordaro, Alessia; D'Angeli, Luca; Bartoli, Antonietta; Filannino, Azzurra M; Gringeri, Concetta V; Longo, Dario L; Muzio, Valeria; Nuti, Elisa; Orlandini, Elisabetta; Figlia, Gianluca; Quattrini, Angelo; Tei, Lorenzo; Digilio, Giuseppe; Rossello, Armando; Maiocchi, Alessandro

    2013-03-28

    New fluorinated, arylsulfone-based matrix metalloproteinase (MMP) inhibitors containing carboxylate as the zinc binding group were synthesized as radiotracers for positron emission tomography. Inhibitors were characterized by Ki for MMP-2 in the nanomolar range and by a fair selectivity for MMP-2/9/12/13 over MMP-1/3/14. Two of these compounds were obtained in the (18)F-radiolabeled form, with radiochemical purity and yield suitable for preliminary studies in mice xenografted with a human U-87 MG glioblastoma. Target density in xenografts was assessed by Western blot, yielding Bmax/Kd = 14. The biodistribution of the tracer was dominated by liver uptake and hepatobiliary clearance. Tumor uptake of (18)F-labeled MMP inhibitors was about 30% that of [(18)F]fluorodeoxyglucose. Accumulation of radioactivity within the tumor periphery colocalized with MMP-2 activity (evaluated by in situ zimography). However, specific tumor uptake accounted for only 18% of total uptake. The aspecific uptake was ascribed to the high binding affinity between the radiotracer and serum albumin. PMID:23458498

  17. Comparison of Positron Emission Tomography Scanning and Sentinel Node Biopsy in the Detection of Inguinal Node Metastases in Patients With Anal Cancer

    SciTech Connect

    Mistrangelo, Massimiliano; Pelosi, Ettore; Bello, Marilena; Castellano, Isabella; Cassoni, Paola; Ricardi, Umberto; Munoz, Fernando; Racca, Patrizia; Contu, Viviana; Beltramo, Giancarlo; Morino, Mario; Mussa, Antonio

    2010-05-01

    Background: Inguinal lymph node metastases in patients with anal cancer are an independent prognostic factor for local failure and overall mortality. Inguinal lymph node status can be adequately assessed with sentinel node biopsy, and the radiotherapy strategy can subsequently be changed. We compared this technique vs. dedicated 18F-fluorodeoxyglucose positron emission tomography (PET) to determine which was the better tool for staging inguinal lymph nodes. Methods and Materials: In our department, 27 patients (9 men and 18 women) underwent both inguinal sentinel node biopsy and PET-CT. PET-CT was performed before treatment and then at 1 and 3 months after treatment. Results: PET-CT scans detected no inguinal metastases in 20 of 27 patients and metastases in the remaining 7. Histologic analysis of the sentinel lymph node detected metastases in only three patients (four PET-CT false positives). HIV status was not found to influence the results. None of the patients negative at sentinel node biopsy developed metastases during the follow-up period. PET-CT had a sensitivity of 100%, with a negative predictive value of 100%. Owing to the high number of false positives, PET-CT specificity was 83%, and positive predictive value was 43%. Conclusions: In this series of patients with anal cancer, inguinal sentinel node biopsy was superior to PET-CT for staging inguinal lymph nodes.

  18. [Fundamentals of positron emission tomography].

    PubMed

    Ostertag, H

    1989-07-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The method is based on: (1) radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. PMID:2667029

  19. Instrumentation for positron emission tomography.

    PubMed

    Budinger, T F; Derenzo, S E; Huesman, R H

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers . Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the trade off between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints. PMID:6611124

  20. 18F-FLT Positron Emission Tomography/Computed Tomography Imaging in Pancreatic Cancer: Determination of Tumor Proliferative Activity and Comparison with Glycolytic Activity as Measured by 18F-FDG Positron Emission Tomography/Computed Tomography Imaging

    PubMed Central

    Debebe, Senait Aknaw; Goryawala, Mohammed; Adjouadi, Malek; Mcgoron, Anthony J.; Güleç, Seza A.

    2016-01-01

    Objective: This phase-I imaging study examined the imaging characteristic of 3’-deoxy-3’-(18F)-fluorothymidine (18F-FLT) positron emission tomography (PET) in patients with pancreatic cancer and comparisons were made with (18F)-fluorodeoxyglucose (18F-FDG). The ultimate aim was to develop a molecular imaging tool that could better define the biologic characteristics of pancreas cancer, and to identify the patients who could potentially benefit from surgical resection who were deemed inoperable by conventional means of staging. Methods: Six patients with newly diagnosed pancreatic cancer underwent a combined FLT and FDG computed tomography (CT) PET/CT imaging protocol. The FLT PET/CT scan was performed within 1 week of FDG PET/CT imaging. Tumor uptake of a tracer was determined and compared using various techniques; statistical thresholding (z score=2.5), and fixed standardized uptake value (SUV) thresholds of 1.4 and 2.5, and applying a threshold of 40% of maximum SUV (SUVmax) and mean SUV (SUVmean). The correlation of functional tumor volumes (FTV) between 18F-FDG and 18F-FLT was assessed using linear regression analysis. Results: It was found that there is a correlation in FTV due to metabolic and proliferation activity when using a threshold of SUV 2.5 for FDG and 1.4 for FLT (r=0.698, p=ns), but a better correlation was obtained when using SUV of 2.5 for both tracers (r=0.698, p=ns). The z score thresholding (z=2.5) method showed lower correlation between the FTVs (r=0.698, p=ns) of FDG and FLT PET. Conclusion: Different tumor segmentation techniques yielded varying degrees of correlation in FTV between FLT and FDG-PET images. FLT imaging may have a different meaning in determining tumor biology and prognosis. PMID:27299286

  1. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea.

    PubMed

    Kwon, Hyun Woo; Kim, Jong Phil; Lee, Hong Jae; Paeng, Jin Chul; Lee, Jae Sung; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook

    2016-02-01

    The purpose of this study was to estimate average radiation exposure from (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  2. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to estimate average radiation exposure from 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  3. Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma

    PubMed Central

    Chang, Hsiu-Hao; Lu, Ching-Chu; Lin, Dong-Tsamn; Jou, Shiann-Tarng; Yang, Yung-Li; Lee, Ya-Ling; Huang, Shiu-Feng; Jeng, Yung-Ming; Lee, Hsinyu; Miser, James S.; Lin, Kai-Hsin; Liao, Yung-Feng; Hsu, Wen-Ming; Tzen, Kai-Yuan

    2016-01-01

    Neuroblastoma (NB) is a heterogeneous childhood cancer that requires multiple imaging modalities for accurate staging and surveillances. This study aims to investigate the utility of positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and 18F-fluoro-dihydroxyphenylalanine (FDOPA) in determining the prognosis of NB. During 2007–2014, forty-two NB patients (male:female, 28:14; median age, 2.0 years) undergoing paired FDG and FDOPA PET scans at diagnosis were evaluated for the maximum standardized uptake value (SUVmax) of FDG or FDOPA by the primary tumor. Patients with older age, advanced stages, or MYCN amplification showed higher FDG and lower FDOPA SUVmax (all P < 0.02). Receiver operating characteristics analysis identified FDG SUVmax≥ 3.31 and FDOPA SUVmax < 4.12 as an ultra-high-risk feature (PET-UHR) that distinguished the most unfavorable genomic types, i.e. segmental chromosomal alterations and/or MYCN amplification, at a sensitivity of 81.3% (54.4%–96.0%) and a specificity of 93.3% (68.1%–99.8%). Considering with age, stage, MYCN status, and anatomical image-defined risk factor, PET-UHR was an independent predictor of inferior event-free survival (multivariate hazard ratio, 4.9 [1.9–30.1]; P = 0.012). Meanwhile, the ratio between FDG and FDOPA SUVmax (G:D) correlated positively with HK2 (Spearman's ρ = 0.86, P < 0.0001) and negatively with DDC (ρ = −0.58, P = 0.02) gene expression levels, which might suggest higher glycolytic activity and less catecholaminergic differentiation in NB tumors taking up higher FDG and lower FDOPA. In conclusion, the intensity of FDG and FDOPA uptake on diagnostic PET scans may predict the tumor behavior and complement the current risk stratification systems of NB. PMID:26959748

  4. Instrumentation in positron emission tomography

    SciTech Connect

    Not Available

    1988-03-11

    Positron emission tomography (PET) is a three-dimensional medical imaging technique that noninvasively measures the concentration of radiopharmaceuticals in the body that are labeled with positron emitters. With the proper compounds, PET can be used to measure metabolism, blood flow, or other physiological values in vivo. The technique is based on the physics of positron annihilation and detection and the mathematical formulations developed for x-ray computed tomography. Modern PET systems can provide three-dimensional images of the brain, the heart, and other internal organs with resolutions on the order of 4 to 6 mm. With the selectivity provided by a choice of injected compounds, PET has the power to provide unique diagnostic information that is not available with any other imaging modality. This is the first five reports on the nature and uses of PET that have been prepared for the American Medical Association's Council on Scientific Affairs by an authoritative panel.

  5. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    SciTech Connect

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-11-15

    The increased interest in {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an 'analysis region' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of

  6. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer.

    PubMed

    Lind, Peter; Kohlfürst, Susanne

    2006-07-01

    Depending on the iodine supply of an area, the incidence of thyroid cancer ranges between 4 and 12/100,000 per year. To detect thyroid cancer in an early stage, the assessment of thyroid nodules includes ultrasonography, ultrasonography-guided fine-needle aspiration biopsy, and conventional scintigraphic methods using (99m)Tc-pertechnetate, (99m)Tc-sestamibi or -tetrofosmin, and (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) in selected cases. After treatment of thyroid cancer, a consequent follow-up is necessary over a period of several years. For following up low-risk patients, recombinant thyroid-stimulating hormone-stimulated thyroglobulin and ultrasonography is sufficient in most cases. After total thyroidectomy and radioiodine ablation therapy, thyroid-stimulating hormone-stimulated thyroglobulin should be below the detection limit (eg, <0.5 ng/mL, R: 70-130). An increase of thyroglobulin over time is suspicious for recurrent or metastatic disease. Especially in high-risk patients, aside from the use of ultrasonography for the detection of local recurrence and cervial lymph node metastases, nuclear medicine methods such as radioiodine imaging and FDG-PET are the methods of choice for localizing metastatic disease. Radioiodine imaging detects well-differentiated recurrences and metastases with a high specificity but only moderate sensitivity. The sensitivity of radioiodine imaging depends on the activity administered. Therefore a low activity diagnostic (131)I whole-body scan (74-185 MBq) has a lower detection rate than a high activity post-therapy scan (3700-7400 MBq). In patients with low or dedifferentiated thyroid cancer and after several courses of radioiodine therapy caused by metastatic disease, iodine negative metastases may develop. In these cases, despite clearly elevated levels of thyroglobulin, radioiodine imaging is negative or demonstrates only faint iodine uptake. The method of choice to image these iodine negative metastases is

  7. Diagnostic Performance of Positron Emission Tomography/Computed Tomography Using Fluorine-18 Fluorodeoxyglucose in Detecting Locoregional Nodal Involvement in Patients with Anal Canal Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Annunziata, Salvatore; Treglia, Giorgio; Sadeghi, Ramin; Ayati, Narjes; Giovanella, Luca

    2014-01-01

    Purpose. The diagnostic performance of positron emission tomography using 18F-fluorodeoxyglucose (FDG-PET) in detecting nodal involvement in patients with anal canal cancer (ACC) has been investigated by several studies with conflicting results. The aim of our study is to systematically review and meta-analyze published data about this topic. Methods. A comprehensive computer literature search of PubMed/MEDLINE, Scopus, and Embase databases was carried out on July 10 to find relevant articles concerning the diagnostic performance of FDG-PET in detecting locoregional nodal involvement in patients with ACC. No language restriction was used. Pooled diagnostic performance on a lesion-based analysis was calculated. Results. Seven retrospective and five prospective studies have been reviewed. Six studies allowed assessing pooled sensitivity; five studies allowed assessing pooled specificity. Sensitivity and specificity values of FDG-PET/CT on a lesion-based analysis ranged from 31 to 100% and from 53 to 98%, with pooled estimates of 56% (95% CI: 45–67%) and 90% (95% CI: 86–93%), respectively. Conclusions. Our meta-analysis demonstrates that FDG-PET is a specific diagnostic tool in detecting locoregional lymph node involvement in patients with ACC. Low sensitivity is a major concern; however, higher sensitivity could be reached combining FDG-PET with MR scan. PMID:24672298

  8. Positron emission tomography and autoradiography

    SciTech Connect

    Mazziotta, J.; Schelbert, H.R.

    1985-01-01

    This a text on cerebral and myocardial imaging using positron emission tomography and autoradiography. Authorities in nuclear medicine and biophysics define the central principles of these complex and rapidly evolving imagine technologies-their theoretical foundations, the nature of the biochemical events being measured, the basis for constructing tracer kinetic models, the criteria governing radiopharmaceutical design, and the rationale for PET in the clinical setting. After reviewing the characteristics of cerebral and myocardial hemodynamics, transport, and metabolism, the contributors detail the theory of PET and autoradiography, the instrumentation required, and the procedures involved.

  9. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  10. Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography.

    PubMed

    Yu, Iwae; Inaji, Motoki; Maeda, Jun; Okauchi, Takashi; Nariai, Tadashi; Ohno, Kikuo; Higuchi, Makoto; Suhara, Tetsuya

    2010-08-01

    Traumatic brain injury (TBI) is one of the most acute degenerative pathologies in the central nervous system, and in vivo indices enabling an assessment of TBI on a mechanistic basis have yet to be established. The aim of this work was to pursue neuroinflammatory changes and their link to functional disruptions of traumatically-damaged neurons in a rat model of TBI by longitudinal positron emission tomographic (PET) assays. TBI was induced in the unilateral frontal cortex of craniotomied rats according to a lateral fluid percussion brain injury protocol. The use of [(18)F]fluoroethyl-DAA1106 as a PET tracer for translocator protein (TSPO) permitted demonstration of the inflammatory response to the injury, peaking at 1 week after impact. This alteration was parallel to metabolic deficits assessed by PET with [(18)F]fluorodeoxyglucose, but the difference in TSPO levels between impacted and non-impacted frontal cortices was more than threefold of the interlateral metabolic difference, indicating superiority of TSPO imaging for sensitive detection of post-traumatic pathologies. Comparative PET, autoradiographic. and immunohistochemical investigations illustrated the primary contribution of hypertrophic microglia and macrophages to acute TSPO signals in the vicinity of the impact. Astrocytes also formed a TSPO-positive glial scar encompassing necrotic inflammation, and were clustered with PET-detectable TSPO signals in the bilateral external and internal capsules at late stages, putatively reacting with diffuse axonal injury. These observations support the applicability of TSPO-PET as an imaging-based preclinical and clinical biomarker assay in TBI, and indicate its potential capability to clarify aggressive and protective roles of glial responses to injury when combined with emerging anti-inflammatory and immunomodulatory treatments. PMID:20504160

  11. ⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment.

    PubMed

    Pang, Bo; Zhao, Yongfeng; Luehmann, Hannah; Yang, Xuan; Detering, Lisa; You, Meng; Zhang, Chao; Zhang, Lei; Li, Zhi-Yuan; Ren, Qiushi; Liu, Yongjian; Xia, Younan

    2016-03-22

    This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy. PMID:26824412

  12. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  13. Imaging local brain function with emission computed tomography

    SciTech Connect

    Kuhl, D.E.

    1984-03-01

    Positron emission tomography (PET) using /sup 18/F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed.

  14. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  15. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  16. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2010-01-08

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  17. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (/sup 18/F)-2-fluoro-2-deoxy-D-glucose

    SciTech Connect

    Heiss, W.D.; Pawlik, G.; Herholz, K.; Wagner, R.; Goeldner, H.; Wienhard, K.

    1984-06-01

    Using dynamic (18F)fluorodeoxyglucose (FDG) positron emission tomography with a high-resolution, seven-slice positron camera, the kinetic constants of the original three-compartment model of Sokoloff and co-workers (1977) were determined in 43 distinct topographic brain regions of seven healthy male volunteers aged 28-38 years. Regional averages of the cerebral metabolic rate for glucose (CMRglu) were calculated both from individually fitted rate constants (CMRglukinetic) and from activity maps recorded 30-40 min after FDG injection, employing a four-parameter operational equation with standard rate constants from the literature (CMRgluautoradiographic). Metabolic rates and kinetic constants varied significantly among regions and subjects, but not between hemispheres. k1 ranged between 0.0485 +/- 0.00778 min-1 in the oval center and 0.0990 +/- 0.01347 min-1 in the primary visual cortex. k2 ranged from 0.1198 +/- 0.01533 min-1 in the temporal white matter to 0.1472 +/- 0.01817 min-1 in the cerebellar dentate nucleus. k3 was lowest (0.0386 +/- 0.01482 min-1) in temporal white matter and highest (0.0823 +/- 0.02552 min-1) in the caudate nucleus. Maximum likelihood cluster analysis revealed four homogeneous groups of brain regions according to their respective kinetic constants: (1) white matter and mixed brainstem structures; (2) cerebellar gray matter and hippocampal formations; (3) basal ganglia and frontolateral and primary visual cortex; and (4) other cerebral cortex and thalamus. Across the entire brain, k1 and k2 were positively correlated (r . 0.79); k1 and k3 showed some correlation (r . 0.59); but no significant linear association was found between k2 and k3. A strong correlation with CMRglu could be demonstrated for k1 (r . 0.88) and k3 (r . 0.90), but k2 was loosely correlated (r . 0.56).

  18. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  19. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  20. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  1. Positron emission tomography: An overview

    PubMed Central

    Shukla, A. K.; Kumar, Utham

    2006-01-01

    The rate of glucose utilization in tumor cells is significantly enhanced as compared to normal cells and this biochemical characteristic is utilized in PET imaging using FDG as a major workhorse. The PET systems as well as cyclotrons producing positron emitting radiopharmaceuticals have undergone continuous technological refinements. While PET (CT) systems enable fusion images as well as precise attenuation correction, the self-shielded cyclotrons developed provide dedicated systems for in-house production of a large number of PET radiopharmaceuticals. The application of PET images in oncology includes those of pulmonary, colorectal, breast, lymphoma, head & neck, bone, ovarian and GI cancers. The PET has been recognized as promising diagnostic tool to predict biological and physiological changes at the molecular level and hence offer a potential area for future applications including Stem Cell research. PMID:21206635

  2. 18F-fluorodeoxyglucose PET/CT for detection of disease in patients with prostate-specific antigen relapse following radical treatment of a local-stage prostate cancer

    PubMed Central

    ÖZTÜRK, HAKAN; KARAPOLAT, İNANÇ

    2016-01-01

    The present study aimed to retrospectively review the contribution of 18F-fluorodeoxygluose-positron emission tomography/computed tomography (18F-FDG PET/CT) in the assessment of biochemical recurrence in patients with a diagnosis of local-stage prostate cancer (PCa) who underwent radical prostatectomy (RP) or received external beam radiation therapy (EBRT). A total of 28 patients who underwent RP or received EBRT for PCa between July 2007 and April 2013, and who underwent 18F-FDG PET/CT scanning for re-staging due to biochemical recurrence were included in the present study. The mean age of the patients was 65.07 years and the standard deviation was 7.51 years (range, 51–82 years). Of the 28 patients, 23 (82.1%) underwent RP and 5 (17.9%) received definitive EBRT. Prior to scanning, all patients were required to fast for 6 h, and ~1 h after the intravenous injection of 555 MBq 18F-FDG, whole-body PET scans were performed from the skull base to the upper thighs. Whole-body CT scans were performed in the craniocaudal direction. 18F-FDG PET images were reconstructed using CT data for attenuation correction. Histopathology examination or clinical follow-up was used to confirm any suspicious recurrent or metastatic lesions. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 18F-FDG PET/CT were 61.6, 75.0, 61.6, 75.0 and 71.4%, respectively. 18F-FDG PET/CT can detect local and distant metastases with a high accuracy in the assessment of biochemical recurrence, thus detecting occult metastases and allowing the re-staging of PCa in the patients receiving definitive treatment. It is considered that 18F-FDG PET/CT may be useful in re-assessing the patients with PCa receiving definitive treatment. PMID:26870210

  3. A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET{sub CONV}WB) versus the new brain (BR) PET system using semiconductor detectors (PET{sub NEW}BR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [{sup 18}F]Fluorodeoxyglucose-PET images were acquired using both the PET{sub NEW}BR and the PET{sub CONV}WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET{sub CONV}WB and PET{sub NEW}BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET{sub CONV}WB (GTV{sub CONV}) images or PET{sub NEW}BR (GTV{sub NEW}) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume ({+-}standard deviation [SD]) of GTV{sub NEW} was 15.7 ml ({+-}9.9) ml, and that of GTV{sub CONV} was 34.0 ({+-}20.5) ml. The average GTV{sub NEW} was significantly smaller than that of GTV{sub CONV} (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN{sub NEW}) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy

  4. Positron emission tomography imaging of coronary atherosclerosis.

    PubMed

    Moss, Alastair J; Adamson, Philip D; Newby, David E; Dweck, Marc R

    2016-07-01

    Inflammation has a central role in the progression of coronary atherosclerosis. Recent developments in cardiovascular imaging with the advent of hybrid positron emission tomography have provided a window into the molecular pathophysiology underlying coronary plaque inflammation. Using novel radiotracers targeted at specific cellular pathways, the potential exists to observe inflammation, apoptosis, cellular hypoxia, microcalcification and angiogenesis in vivo. Several clinical studies are now underway assessing the ability of this hybrid imaging modality to inform about atherosclerotic disease activity and the prediction of future cardiovascular risk. A better understanding of the molecular mechanisms governing coronary atherosclerosis may be the first step toward offering patients a more stratified, personalized approach to treatment. PMID:27322032

  5. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  6. Neurologic applications of positron emission tomography.

    PubMed

    Lenzi, G L; Pantano, P

    1984-11-01

    The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential. PMID:6335222

  7. Malignant pheochromocytoma of the anterior mediastinum: PET findings with [{sup 18}F]FDG and {sup 82}Rb

    SciTech Connect

    Neumann, D.R.; Basile, K.E.; Chen, E.Q.; Go, R.T.; Bravo, E.L.

    1996-03-01

    A case of a malignant pheochromocytoma arising from the anterior mediastinum is presented. We report the use of positron emission tomography with {sup 82}Rb, and [{sup 18}F]fluorodeoxyglucose to successfully image this neoplasm. 17 refs., 7 figs.

  8. Positron emission tomography tracers for imaging angiogenesis

    PubMed Central

    Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2013-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or αvβ3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging αvβ3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. PMID:20559632

  9. Single-photon emission tomography.

    PubMed

    Goffin, Karolien; van Laere, Koen

    2016-01-01

    Single-photon emission computed tomography (SPECT) is a functional nuclear imaging technique that allows visualization and quantification of different in vivo physiologic and pathologic features of brain neurobiology. It has been used for many years in diagnosis of several neurologic and psychiatric disorders. In this chapter, we discuss the current state-of-the-art of SPECT imaging of brain perfusion and dopamine transporter (DAT) imaging. Brain perfusion SPECT imaging plays an important role in the localization of the seizure onset zone in patients with refractory epilepsy. In cerebrovascular disease, it can be useful in determining the cerebrovascular reserve. After traumatic brain injury, SPECT has shown perfusion abnormalities despite normal morphology. In the context of organ donation, the diagnosis of brain death can be made with high accuracy. In neurodegeneration, while amyloid or (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) are the nuclear diagnostic tools of preference for early and differential diagnosis of dementia, perfusion SPECT imaging can be useful, albeit with slightly lower accuracy. SPECT imaging of the dopamine transporter system is widely available in Europe and Asia, but since recently also in the USA, and has been accepted as an important diagnostic tool in the early and differential diagnosis of parkinsonism in patients with unclear clinical features. The combination of perfusion SPECT (or FDG-PET) and DAT imaging provides differential diagnosis between idiopathic Parkinson's disease, Parkinson-plus syndromes, dementia with Lewy bodies, and essential tremor. PMID:27432669

  10. Use of micro-positron emission tomography with (18)F-fallypride to measure the levels of dopamine receptor-D2 and (18)F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats.

    PubMed

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with (18)F-fallypride and (18)F-fluorodeoxyglucose ((18)F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with (18)F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with (18)F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with (18)F-fallypride and (18)F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment. PMID:27103832

  11. Use of micro-positron emission tomography with 18F-fallypride to measure the levels of dopamine receptor-D2 and 18F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats

    PubMed Central

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with 18F-fallypride and 18F-fluorodeoxyglucose (18F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with 18F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with 18F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with 18F-fallypride and 18F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment. PMID:27103832

  12. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  13. Imaging Tumor Metabolism Using Positron Emission Tomography

    PubMed Central

    Lewis, David Y.; Soloviev, Dmitry; Brindle, Kevin M.

    2015-01-01

    Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabelled PET substrates can be traced at sub-physiological concentrations, allowing non-invasive imaging of metabolism and intra-tumoral heterogeneity in systems ranging from advanced cancer models to cancer patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of tumor metabolism, including carbohydrate, amino acid and fatty acid metabolism. In this review we will briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism will be considered alongside new technical developments, such as combined PET/MRI machines, that could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine. PMID:25815854

  14. Positron Emission Tomography of the Heart

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  15. Imaging tumor metabolism using positron emission tomography.

    PubMed

    Lewis, David Y; Soloviev, Dmitry; Brindle, Kevin M

    2015-01-01

    Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine. PMID:25815854

  16. Positron emission tomography and radiation oncology

    NASA Astrophysics Data System (ADS)

    Fullerton, PhD, Gary D.; Fox, MD, Peter; Phillips, MD, William T.

    2001-10-01

    Medical physics research is providing new avenues for addressing the fundamental problem of radiation therapy-how to provide a tumor-killing dose while reducing the dose to a non-lethal level for critical organs in adjacent portions of the patient anatomy. This talk reviews the revolutionary impact of Positron Emission Tomography on the practice of radiation oncology. The concepts of PET imaging and the development of "tumor" imaging methods using 18F-DG flouro-deoxyglucose are presented to provide the foundation for contemporary research and application to therapy. PET imaging influences radiation therapy decisions in multiple ways. Imaging of occult but viable tumor metastases eliminates misguided therapy attempts. The ability to distinguish viable tumor from scar tissue and necroses allows reduction of treatment portals and more selective treatments. Much research remains before the clinical benefits of these advances are fully realized.

  17. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  18. Tumor Quantification in Clinical Positron Emission Tomography

    PubMed Central

    Bai, Bing; Bading, James; Conti, Peter S

    2013-01-01

    Positron emission tomography (PET) is used extensively in clinical oncology for tumor detection, staging and therapy response assessment. Quantitative measurements of tumor uptake, usually in the form of standardized uptake values (SUVs), have enhanced or replaced qualitative interpretation. In this paper we review the current status of tumor quantification methods and their applications to clinical oncology. Factors that impede quantitative assessment and limit its accuracy and reproducibility are summarized, with special emphasis on SUV analysis. We describe current efforts to improve the accuracy of tumor uptake measurements, characterize overall metabolic tumor burden and heterogeneity of tumor uptake, and account for the effects of image noise. We also summarize recent developments in PET instrumentation and image reconstruction and their impact on tumor quantification. Finally, we offer our assessment of the current development needs in PET tumor quantification, including practical techniques for fully quantitative, pharmacokinetic measurements. PMID:24312151

  19. Imaging tumour hypoxia with positron emission tomography

    PubMed Central

    Fleming, I N; Manavaki, R; Blower, P J; West, C; Williams, K J; Harris, A L; Domarkas, J; Lord, S; Baldry, C; Gilbert, F J

    2015-01-01

    Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers. PMID:25514380

  20. Instrumentation optimization for positron emission mammography

    SciTech Connect

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  1. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  2. Diagnostic and prognostic evaluation of fluorodeoxyglucose positron emission tomography/computed tomography and its correlation with serum cancer antigen-125 (CA125) in a large cohort of ovarian cancer patients

    PubMed Central

    Evangelista, Laura; Palma, Maurizia Dalla; Gregianin, Michele; Nardin, Margherita; Roma, Anna; Nicoletto, Maria Ornella; Nardelli, Giovanni Battista; Zagonel, Vittorina

    2015-01-01

    Objective We evaluated the efficacy of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in recurrent disease, response to therapy, and long-term follow-up of ovarian cancer (OC) patients in relation to cancer antigen-125 (CA125) levels and the prognostic meaning of this modality in this subset of subjects. Material and Methods Between 2005 and 2015, we retrospectively evaluated 125 patients affected by OC who underwent FDG PET/CT imaging at our institution. The indications for PET/CT were recurrence of disease in 78 patients, therapy response assessment in 29, and follow-up in 18. The results of FDG PET/CT were compared with those of histopathology and clinical and radiological progression during follow-up for at least 6 months. The median long-term follow-up was 33 months. The diagnostic accuracies for the different clinical settings were evaluated. The relationships among global survival (GS), FDG PET/CT results, and CA125 levels were evaluated by both Kaplan–Meier and Cox regression analysis. Results CA125 results were positive (>35 UI/mL) in 62 patients and negative in 63 (49% vs. 51%). The sensitivity and specificity of CA125 were 72% and 91%, respectively. PET/CT imaging showed a sensitivity of 98.6% and a specificity of 77.8% for the assessment of recurrent disease, and a sensitivity of 72.7% and a specificity of 88.9% for therapy evaluation. Meanwhile, in 18 patients evaluated during follow-up, the specificity was 82.3%. GS was significantly higher in case of negative CA125 values at the time of FDG PET/CT, of a negative PET/CT scan and when no evidence of peritoneum recurrence and distant metastases was determined by PET. Multivariate regression analysis showed that only age and peritoneum recurrence as determined by PET were identified as independent predictors of poor prognosis. Conclusion Metabolic imaging with FDG PET/CT proved useful in patients where OC recurrence was suspected, even when the value of tumor

  3. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    SciTech Connect

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A.; Fowler, Kathryn J.; Narra, Vamsi; Garcia-Ramirez, Jose L.; Schwarz, Julie K.; Grigsby, Perry W.

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  4. Data acquisition with a positron emission tomograph

    SciTech Connect

    Freifelder, R.; Karp, J.S.

    1997-12-31

    Positron Emission Tomography (PET) is a clinical imaging modality used in Nuclear Medicine. PET measures functionality rather than anatomical features and is therefore invaluable in the treatment of diseases which are characterized by functional changes in organs rather than anatomical changes. Typical diseases for which PET is used are cancer, epilepsy, and heart disease. While the scanners are not very complex, the performance demands on the devices are high. Excellent spatial resolution, 4-5 mm, and high sensitivity are key to maintaining high image quality. Compensation or suppression of scattered radiation is also necessary for good image quality. The ability to acquire data under high counting rates is also necessary in order to minimize the injected dose to the patient, minimize the patient`s time in the scanner, and finally to minimize blurring due to patient motion. We have adapted various techniques in our data acquisition system which will be reported on in this talk. These include pulse clipping using lumped delay lines, flash ADCs with short sampling time, the use of a local positioning algorithm to limit the number of data words being used in subsequent second level software triggers and calculations, and finally the use of high speed dedicated calculator boards for on-line rebinning and reduction of the data. Modifications to the system to allow for transmission scanning will also be discussed.

  5. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  6. Functional cardiac imaging: positron emission tomography

    SciTech Connect

    Mullani, N.A.; Gould, K.L.

    1984-02-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures.

  7. Utility of positron emission tomography in schwannomatosis.

    PubMed

    Lieber, Bryan; Han, ByoungJun; Allen, Jeffrey; Fatterpekar, Girish; Agarwal, Nitin; Kazemi, Noojan; Zagzag, David

    2016-08-01

    Schwannomatosis is characterized by multiple non-intradermal schwannomas with patients often presenting with a painful mass in their extremities. In this syndrome malignant transformation of schwannomas is rare in spite of their large size at presentation. Non-invasive measures of assessing the biological behavior of plexiform neurofibromas in neurofibromatosis type 1 such as positron emission tomography (PET), CT scanning and MRI are well characterized but little information has been published on the use of PET imaging in schwannomatosis. We report a unique clinical presentation portraying the use of PET imaging in schwannomatosis. A 27-year-old woman presented with multiple, rapidly growing, large and painful schwannomas confirmed to be related to a constitutional mutation in the SMARCB1 complex. Whole body PET/MRI revealed numerous PET-avid tumors suggestive of malignant peripheral nerve sheath tumors. Surgery was performed on multiple tumors and none of them had histologic evidence of malignant transformation. Overall, PET imaging may not be a reliable predictor of malignant transformation in schwannomatosis, tempering enthusiasm for surgical interventions for tumors not producing significant clinical signs or symptoms. PMID:26960263

  8. Positron Emission Tomography Imaging of Atherosclerosis

    PubMed Central

    Orbay, Hakan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2013-01-01

    Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients. PMID:24312158

  9. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  10. The Role of Chemistry in Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Feliu, Anthony L.

    1988-01-01

    Investigates use of positron emission tomography (PET) to study in-vivo metabolic processes. Discusses methodology of PET and medical uses. Outlines the production of different radioisotopes used in PET radiotracers. Includes selected bibliography. (ML)

  11. Future direction of renal positron emission tomography.

    PubMed

    Szabo, Zsolt; Xia, Jinsong; Mathews, William B; Brown, Phillip R

    2006-01-01

    Positron emission tomography (PET) is perfectly suited for quantitative imaging of the kidneys, and the recent improvements in detector technology, computer hardware, and image processing software add to its appeal. Multiple positron emitting radioisotopes can be used for renal imaging. Some, including carbon-11, nitrogen-13, and oxygen-15, can be used at institutions with an on-site cyclotron. Other radioisotopes that may be even more useful in a clinical setting are those that either can be obtained from radionuclide generators (rubidium-82, copper-62) or have a sufficiently long half-life for transportation (fluorine-18). The clinical use of functional renal PET studies (blood flow, glomerular filtration rate) has been slow, in part because of the success of concurrent technologies, including single-photon emission computed tomography (SPECT) and planar gamma camera imaging. Renal blood flow studies can be performed with O-15-labeled water, N-13-labeled ammonia, rubidium-82, and copper-labeled PTSM. With these tracers, renal blood flow can be quantified using a modified microsphere kinetic model. Glomerular filtration can be imaged and quantified with gallium-68 EDTA or cobalt-55 EDTA. Measurements of renal blood flow with PET have potential applications in renovascular disease, in transplant rejection or acute tubular necrosis, in drug-induced nephropathies, ureteral obstruction, before and after revascularization, and before and after the placement of ureteral stents. The most important clinical application for imaging glomerular function with PET would be renovascular hypertension. Molecular imaging of the kidneys with PET is rather limited. At present, research is focused on the investigation of metabolism (acetate), membrane transporters (organic cation and anion transporters, pepT1 and pepT2, GLUT, SGLT), enzymes (ACE), and receptors (AT1R). Because many nephrological and urological disorders are initiated at the molecular and organelle levels and may

  12. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FDG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three- dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  13. Positron Emission Mammography with Multiple Angle Acquisition

    SciTech Connect

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activity concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.

  14. Application of mathematical removal of positron range blurring in Positron Emission Tomography

    SciTech Connect

    Haber, S.F.; Derenzo, S.E.; Uber, D.

    1990-04-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in Positron Emission Tomography. In this work we applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-Crystal Positron Tomograph. Using phantom data, we found significant improvement in the image quality and the FWHM for both {sup 68}Ga and {sup 82}Rb. These were successfully corrected so that the images and FWHM almost matched those of {sup 18}F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph. 10 refs., 6 figs., 3 tabs.

  15. Application of mathematical removal of positron range blurring in positron emission tomography

    SciTech Connect

    Haber, S.F.; Derenzo, S.E.; Uber, D. )

    1990-06-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in positron emission tomography. In this work the authors have applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-crystal positron tomograph. Using phantom data, the authors have found significant improvement in the image quality and the FWHM for both {sup 68}Ga and {sup 82}Rb. These were successfully corrected so that the images and FWHM almost matched those of {sup 18}F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph.

  16. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  17. Positron emission tomography and bone metastases.

    PubMed

    Fogelman, Ignac; Cook, Gary; Israel, Ora; Van der Wall, Hans

    2005-04-01

    The use of 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in the evaluation and management of patients with malignancy continues to increase. However, its role in the identification of bone metastases is far from clear. FDG has the advantage of demonstrating all metastatic sites, and in the skeleton it is assumed that its uptake is directly into tumor cells. It is probable that for breast and lung carcinoma, FDG-PET has similar sensitivity, although poorer specificity, when compared with the isotope bone scan, although there is conflicting evidence, with several articles suggesting that it is less sensitive than conventional imaging in breast cancer. There is convincing evidence that for prostate cancer, FDG-PET is less sensitive than the bone scan and this may be tumor specific. There is very little data relating to lymphoma, but FDG-PET seems to perform better than the bone scan. There is an increasing body of evidence relating to the valuable role of FDG-PET in myeloma, where it is clearly better than the bone scan, presumably because FDG is identifying marrow-based disease at an early stage. There are, however, several other important variables that should be considered. The morphology of the metastasis itself appears to be relevant. At least in breast cancer, different patterns of FDG uptake have been shown in sclerotic, lytic, or lesions with a mixed pattern, Furthermore, the precise localization of a metastasis in the skeleton may be important with regard to the extent of the metabolic response induced. Previous treatment is highly relevant and it has been found that although the majority of untreated bone metastases are positive on PET scans and have a lytic pattern on computed tomography (CT), after treatment, incongruent CT-positive/PET-negative lesions are significantly more prevalent and generally are blastic, which presumably reflects a direct effect of treatment. Finally, the aggressiveness of the tumor itself may be relevant

  18. Positron Emission Tomography/Magnetic Resonance Imaging of Gastrointestinal Cancers.

    PubMed

    Goh, Vicky; Prezzi, Davide; Mallia, Andrew; Bashir, Usman; Stirling, J James; John, Joemon; Charles-Edwards, Geoff; MacKewn, Jane; Cook, Gary

    2016-08-01

    As an integrated system, hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is able to provide simultaneously complementary high-resolution anatomic, molecular, and functional information, allowing comprehensive cancer phenotyping in a single imaging examination. In addition to an improved patient experience by combining 2 separate imaging examinations and streamlining the patient pathway, the superior soft tissue contrast resolution of MRI and the ability to acquire multiparametric MRI data is advantageous over computed tomography. For gastrointestinal cancers, this would improve tumor staging, assessment of neoadjuvant response, and of the likelihood of a complete (R0) resection in comparison with positron emission tomography or computed tomography. PMID:27342899

  19. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J. )

    1990-05-01

    Sites of uptake, storage, and metabolism of ({sup 18}F)fluorodopamine and excretion of ({sup 18}F)fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of ({sup 18}F)-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of ({sup 18}F)fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function.

  20. Positron Emission Tomography: Human Brain Function and Biochemistry.

    ERIC Educational Resources Information Center

    Phelps, Michael E.; Mazziotta, John C.

    1985-01-01

    Describes the method, present status, and application of positron emission tomography (PET), an analytical imaging technique for "in vivo" measurements of the anatomical distribution and rates of specific biochemical reactions. Measurements and image dynamic biochemistry link basic and clinical neurosciences with clinical findings suggesting…

  1. Probable Syphilitic Aortitis Documented by Positron Emission Tomography.

    PubMed

    Joseph Davey, Dvora; Acosta, Lourdes Del Rocio Carrera; Gupta, Pawan; Konda, Kelika A; Caceres, Carlos F; Klausner, Jeffrey D

    2016-03-01

    Positron emission tomography (PET) has been used to aid in diagnosis of inflammatory and infectious disease. We describe the case of a patient with early latent syphilis with increased metabolic activity along the aorta detected via PET, suggesting probable aortitis. Three months after treatment, the PET showed apparent resolution of the aortitis. PMID:26859808

  2. Reduction of Positron Range Effects by the Application of a Magnetic Field: for Use with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond Robert

    The process of positron emission tomography has become a valuable medical research tool. This procedure involves the administration of a radiopharmaceutical labelled with a positron-emitting isotope to a living organism. Upon the emission and subsequent annihilation of a positron, the gamma rays produced are detected to create an image of metabolic activity within the subject. Many factors such as Compton scattering and photoelectric absorption of the gamma rays tend to limit the quality of these images. Another important limitation is the non-negligible distance the positron travels prior to annihilation. This phenomenon leads to the misplacement of data in the final image. A method for reducing this effect utilizing a magnetic field has been tested and evaluated. The application of a magnetic field constrains the positrons to travel in helical paths instead of their relatively straight courses. Thus, the effective distance the positrons travel from their point of emission is reduced. Results indicate that this technique is successful in reducing the blurring caused in PET images by positron range. The results also indicate that the amount of resolution improvement depends upon the choice of positron emitter and scanner resolution. Reduction of this blurring helps to produce clearer PET images which can allow for more precise localization of tumors, in addition to better measurement of metabolic rate constants. The use of a magnetic field to reduce the range of positrons will lead to more useful images produced by positron emission tomography.

  3. Positron emission tomographic imaging of tumors using monoclonal antibodies

    SciTech Connect

    Zalutsky, M.R. . Dept. of Radiology)

    1989-12-01

    The overall objective of this research project is to develop methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). Both diagnostic and therapeutic applications of labeled MAbs could be improved as a result of knowledge obtained through the exploitation of the advantageous imaging characteristics associated with PET. By labeling MAbs with positron-emitting nuclides, it should be possible to quantitate the dynamics of their three-dimensional distribution in vivo. Our long-term goals are to apply this approach. 3 tabs.

  4. Positron Emission Tomography: Principles, Technology, and Recent Developments

    NASA Astrophysics Data System (ADS)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  5. Pure hemidystonia with basal ganglion abnormalities on positron emission tomography

    SciTech Connect

    Perlmutter, J.S.; Raichle, M.E.

    1984-03-01

    We present a patient with hemidystonia and an abnormality of the contralateral basal ganglion seen only with positron emission tomography. A 50-year-old sinistral man suffered minor trauma to the right side of his head and neck. Within 20 minutes he developed paroxysmal intermittent dystonic posturing of his right face, forearm, hand, and foot, with weaker contractions of the left foot, lasting several seconds and recurring every few minutes. Neurological findings between spells were normal. The following were also normal: electrolyte, calcium, magnesium, and arterial blood gas levels, and findings of drug screen, cerebrospinal fluid examination, electroencephalography with nasopharyngeal leads, computed tomographic scanning (initially and four weeks later), and cerebral angiography. Positron emission tomographic scanning revealed abnormalities in the left basal ganglion region, including decreased oxygen metabolism, decreased oxygen extraction, increased blood volume, and increased blood flow.

  6. Positron emission tomographic map reconstruction using fuzzy-median filter

    SciTech Connect

    Mondal, Partha Pratim

    2006-10-09

    Positron emission tomography is widely used in medical physics for the reconstruction of the distribution of radionuclei molecules for analyzing regional physiological functions. The existing maximum a posteriori reconstruction methodologies produce artifacts such as oversmoothing and streaking. In this letter, the author proposes a potential function based on fuzzy-median filter for noise-free image reconstruction. The reconstruction methodology is therefore very useful for obtaining artifact-free reconstruction of biomedical specimens.

  7. A novel clustering approach to positron emission particle tracking

    NASA Astrophysics Data System (ADS)

    Wiggins, Cody; Santos, Roque; Ruggles, Arthur

    2016-03-01

    A novel approach to positron emission particle tracking is presented based on determining regions of space with high density of line of response crossing via clustering. The method is shown to be able to accurately track multiple particles in systems where the number of particles is unknown and in which particles can enter and leave the field of view of the scanning system. This method is explored in various environments and its parametric dependence is studied.

  8. Atlas of positron emission tomography of the brain

    SciTech Connect

    Heiss, W.; Beil, C.; Herholz, K.; Pavlik, G.; Wagner, R.; Weinhard, K.

    1985-01-01

    The aim and scope of this atlas are expressed in its title. The text and legends of the book are presented in both German and English. The book contains 12 high-quality color illustrations culled from nine tomography centers across Europe and North America. Almost two-thirds of the book is devoted to the measurement of regional cerebral glucose metabolism and cerebral blood flow. The remainder manages to cover all of the other cerebral applications of positron emission tomography (PET). The authors discuss that PET is being used principally in research and that its future, although theoretically unlimited, depends on the development of ''further labeled compounds.''

  9. Quantitative simultaneous positron emission tomography and magnetic resonance imaging

    PubMed Central

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-01-01

    Abstract. Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055

  10. Quantitative simultaneous positron emission tomography and magnetic resonance imaging.

    PubMed

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G; Kolnick, Aleksandra L; El Fakhri, Georges

    2014-10-01

    Simultaneous positron emission tomography and magnetic resonance imaging (PET-MR) is an innovative and promising imaging modality that is generating substantial interest in the medical imaging community, while offering many challenges and opportunities. In this study, we investigated whether MR surface coils need to be accounted for in PET attenuation correction. Furthermore, we integrated motion correction, attenuation correction, and point spread function modeling into a single PET reconstruction framework. We applied our reconstruction framework to in vivo animal and patient PET-MR studies. We have demonstrated that our approach greatly improved PET image quality. PMID:26158055