Science.gov

Sample records for 18ffdg pet imaging

  1. Trends in PET imaging

    SciTech Connect

    Moses, William W.

    2000-11-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT).

  2. [Oncology PET imaging].

    PubMed

    Inubushi, Masayuki

    2014-01-01

    At the beginning of this article, likening medical images to "Where is Waldo?" I indicate the concept of diagnostic process of PET/CT imaging, so that medical physics specialists could understand the role of each imaging modality and infer our distress for image diagnosis. Then, I state the present situation of PET imaging and the basics (e.g. health insurance coverage, clinical significance, principle, protocol, and pitfall) of oncology FDG-PET imaging which accounts for more than 99% of all clinical PET examinations in Japan. Finally, I would like to give a wishful prospect of oncology PET that will expand to be more cancer-specific in order to assess therapeutic effects of emerging molecular targeted drugs targeting the "hallmarks of cancer". PMID:25199271

  3. PET/CT imaging artifacts.

    PubMed

    Sureshbabu, Waheeda; Mawlawi, Osama

    2005-09-01

    The purpose of this paper is to introduce the principles of PET/CT imaging and describe the artifacts associated with it. PET/CT is a new imaging modality that integrates functional (PET) and structural (CT) information into a single scanning session, allowing excellent fusion of the PET and CT images and thus improving lesion localization and interpretation accuracy. Moreover, the CT data can also be used for attenuation correction, ultimately leading to high patient throughput. These combined advantages have rendered PET/CT a preferred imaging modality over dedicated PET. Although PET/CT imaging offers many advantages, this dual-modality imaging also poses some challenges. CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET emission images. For instance, the use of contrast medium and the presence of metallic implants can be associated with focal radiotracer uptake. Furthermore, the patient's breathing can introduce mismatches between the CT attenuation map and the PET emission data, and the discrepancy between the CT and PET fields of view can lead to truncation artifacts. After reading this article, the technologist should be able to describe the principles of PET/CT imaging, identify at least 3 types of image artifacts, and describe the differences between PET/CT artifacts of different causes: metallic implants, respiratory motion, contrast medium, and truncation. PMID:16145223

  4. PET Imaging of Inflammation Biomarkers

    PubMed Central

    Wu, Chenxi; Li, Fang; Niu, Gang; Chen, Xiaoyuan

    2013-01-01

    Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using 18F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed. PMID:23843893

  5. PET Imaging in Huntington's Disease.

    PubMed

    Roussakis, Andreas-Antonios; Piccini, Paola

    2015-01-01

    To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington's disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene-carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson's disease, Alzheimer's and HD. In absence of HD-specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD-gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow-up studies with novel selective PET radiotracers such as 11C-IMA-107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time. PMID:26683130

  6. PET/MR Imaging in Heart Disease.

    PubMed

    Rischpler, Christoph; Nekolla, Stephan G

    2016-10-01

    Hybrid PET/MR imaging is a complex imaging modality that has raised high expectations not only for oncological and neurologic imaging applications, but also for cardiac imaging applications. Initially, physicians and physicists had to become accustomed to technical challenges including attenuation correction, gating, and more complex workflow and more elaborate image analysis as compared with PET/CT or standalone MR imaging. PET/MR imaging seems to be particularly valuable to assess inflammatory myocardial diseases (such as sarcoidosis), to cross-validate PET versus MR imaging data (eg, myocardial perfusion imaging), and to help validate novel biomarkers of various disease states (eg, postinfarction inflammation). PMID:27593250

  7. Biomedical Imaging: SPECT and PET

    SciTech Connect

    Lecomte, Roger

    2007-11-26

    Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are non-invasive nuclear imaging techniques relying on the use of tomographic reconstruction methods to provide 3D representations of the distribution of radiolabeled molecules in vivo. Differences in the underlying physical principles determine the achievable spatial resolution, sensitivity, specificity and observation time span of these two imaging modalities. Their specific characteristics are described and the current technology developments and design tradeoffs are reviewed.

  8. PET imaging: An overview and instrumentation

    SciTech Connect

    Daghighian, F.; Sumida, R.; Phelps, M.E. )

    1990-03-01

    This is the first article of a four-part series on positron emission tomography (PET). Upon completing the article, the reader should be able to: (1) comprehend the basic principles of PET; (2) explain various technical aspects; and (3) identify radiopharmaceuticals used in PET imaging.

  9. Quantitative simultaneous PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Ouyang, Jinsong; Petibon, Yoann; Huang, Chuan; Reese, Timothy G.; Kolnick, Aleksandra L.; El Fakhri, Georges

    2014-06-01

    Whole-body PET is currently limited by the degradation due to patient motion. Respiratory motion degrades imaging studies of the abdomen. Similarly, both respiratory and cardiac motions significantly hamper the assessment of myocardial ischemia and/or metabolism in perfusion and viability cardiac PET studies. Based on simultaneous PET-MR, we have developed robust and accurate MRI methods allowing the tracking and measurement of both respiratory and cardiac motions during abdominal or cardiac studies. Our list-mode iterative PET reconstruction framework incorporates the measured motion fields into PET emission system matrix as well as the time-dependent PET attenuation map and the position dependent point spread function. Our method significantly enhances the PET image quality as compared to conventional methods.

  10. Principles of PET/MR Imaging.

    PubMed

    Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J

    2014-05-12

    Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. PMID:24819419

  11. Proton Therapy Verification with PET Imaging

    PubMed Central

    Zhu, Xuping; Fakhri, Georges El

    2013-01-01

    Proton therapy is very sensitive to uncertainties introduced during treatment planning and dose delivery. PET imaging of proton induced positron emitter distributions is the only practical approach for in vivo, in situ verification of proton therapy. This article reviews the current status of proton therapy verification with PET imaging. The different data detecting systems (in-beam, in-room and off-line PET), calculation methods for the prediction of proton induced PET activity distributions, and approaches for data evaluation are discussed. PMID:24312147

  12. MR Imaging-Guided Partial Volume Correction of PET Data in PET/MR Imaging.

    PubMed

    Erlandsson, Kjell; Dickson, John; Arridge, Simon; Atkinson, David; Ourselin, Sebastien; Hutton, Brian F

    2016-04-01

    Partial volume effects are caused by the limited spatial resolution of the PET system. There is increasing evidence that partial volume correction (PVC) is necessary to guarantee quantitative accuracy in PET; however, there is reluctance to apply PVC routinely in clinical practice, partly because of uncertainty regarding the method of choice. To perform accurate PVC, it is necessary to introduce information from high-resolution anatomic images, such as MR imaging. All the methods rely on accurate coregistration between the anatomic image and the PET image. PET/MR imaging offers clear advantages for PVC and can help alleviate the image registration issues. PMID:26952729

  13. Quantitative PET imaging with the 3T MR-BrainPET

    NASA Astrophysics Data System (ADS)

    Weirich, C.; Scheins, J.; Lohmann, P.; Tellmann, L.; Byars, L.; Michel, C.; Rota Kops, E.; Brenner, D.; Herzog, H.; Shah, N. J.

    2013-02-01

    The new hybrid imaging technology of MR-PET allows for simultaneous acquisition of versatile MRI contrasts and the quantitative metabolic imaging with PET. In order to achieve the quantification of PET images with minimal residual error the application of several corrections is crucial. In this work we present our results on quantification with the 3T MR BrainPET scanner.

  14. FDG-PET imaging in hematological malignancies.

    PubMed

    Valls, L; Badve, C; Avril, S; Herrmann, K; Faulhaber, P; O'Donnell, J; Avril, N

    2016-07-01

    The majority of aggressive lymphomas is characterized by an up regulated glycolytic activity, which enables the visualization by F-18 FDG-PET/CT. One-stop hybrid FDG-PET/CT combines the functional and morphologic information, outperforming both, CT and FDG-PET as separate imaging modalities. This has resulted in several recommendations using FDG-PET/CT for staging, restaging, monitoring during therapy, and assessment of treatment response as well as identification of malignant transformation. FDG-PET/CT may obviate the need for a bone marrow biopsy in patients with Hodgkin's lymphoma and diffuse large B cell lymphoma. FDG-PET/CT response assessment is recommended for FDG-avid lymphomas, whereas CT-based response evaluation remains important in lymphomas with low or variable FDG avidity. The treatment induced change in metabolic activity allows for assessment of response after completion of therapy as well as prediction of outcome early during therapy. The five-point scale Deauville Criteria allows the assessment of treatment response based on visual FDG-PET analysis. Although the use of FDG-PET/CT for prediction of therapeutic response is promising it should only be conducted in the context of clinical trials. Surveillance FDG-PET/CT after complete remission is discouraged due to the relative high number of false-positive findings, which in turn may result in further unnecessary investigations. Future directions include the use of new PET tracers such as F-18 fluorothymidine (FLT), a surrogate biomarker of cellular proliferation and Ga-68 CXCR4, a chemokine receptor imaging biomarker as well as innovative digital PET/CT and PET/MRI techniques. PMID:27090170

  15. PET Imaging: Basics and New Trends

    NASA Astrophysics Data System (ADS)

    Dahlbom, Magnus

    Positron Emission Tomography or PET is a noninvasive molecular imaging method used both in research to study biology and disease, and clinically as a routine diagnostic imaging tool. In PET imaging, the subject is injected with a tracer labeled with a positron-emitting isotope and is then placed in a scanner to localize the radioactive tracer in the body. The localization of the tracer utilizes the unique decay characteristics of isotopes decaying by positron emission. In the PET scanner, a large number of scintillation detectors use coincidence detection of the annihilation radiation that is emitted as a result of the positron decay. By collecting a large number of these coincidence events, together with tomographic image reconstruction methods, the 3-D distribution of the radioactive tracer in the body can be reconstructed. Depending on the type of tracer used, the distribution will reflect a particular biological process, such as glucose metabolism when fluoro-deoxyglucose is used. PET has evolved from a relatively inefficient single-slice imaging system with relatively poor spatial resolution to an efficient, high-resolution imaging modality which can acquire a whole-body scan in a few minutes. This chapter will describe the basic physics and instrumentation used in PET. The various corrections that are necessary to apply to the acquired data in order to produce quantitative images are also described. Finally, some of the latest trends in instrumentation development are also discussed.

  16. PET Image Reconstruction Using Kernel Method

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Image reconstruction from low-count PET projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization (EM) algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4D dynamic PET patient dataset showed promising results. PMID:25095249

  17. PET image reconstruction using kernel method.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2015-01-01

    Image reconstruction from low-count positron emission tomography (PET) projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4-D dynamic PET patient dataset showed promising results. PMID:25095249

  18. Novel Developments in Instrumentation for PET Imaging

    NASA Astrophysics Data System (ADS)

    Karp, Joel

    2013-04-01

    Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.

  19. PET and PET/CT imaging of skeletal metastases

    PubMed Central

    2010-01-01

    Abstract Bone scintigraphy augmented with radiographs or cross-sectional imaging, such as computed tomography (CT) or magnetic resonance imaging (MRI), has remained the commonest method to diagnose and follow up skeletal metastases. However, bone scintigraphy is associated with relatively poor spatial resolution, limited diagnostic specificity and reduced sensitivity for bone marrow disease. It also shows limited diagnostic accuracy in assessing response to therapy in a clinically useful time period. With the advent of hybrid positron emission tomography (PET)/CT scanners there has been an increasing interest in using various PET tracers to evaluate skeletal disease including [18F]fluoride (NaF) as a bone-specific tracer and [18F]fluorodeoxyglucose and [18F]choline as tumour-specific tracers. There is also early work exploring the receptor status of skeletal metastases with somatostatin receptor analogues. This review describes the potential utility of these tracers in the assessment of skeletal metastases. PMID:20663736

  20. Development of PhytoPET: A plant imaging PET system

    SciTech Connect

    Dong, H; Lee, S J; McKisson, J; Xi, W; Zorn, C; Howell, C R; Crowell, A S; Cumberbatch, L; Reid, C D; Smith, M F; Stolin, A

    2012-02-01

    The development and initial evaluation of a high-resolution positron emission tomography (PET) system to image the biodistribution of positron emitting tracers in live plants is underway. The positron emitting {sup 11}CO{sub 2} tracer is used in plant biology research investigating carbon sequestration in biomass, optimization of plant productivity and biofuel development. This PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single 5 cm x 5 cm Hamamatsu H8500 position sensitive photomultiplier tubes. Each H8500 is coupled to a LYSO:Ce scintillator array composed of 48 x 48 elements that are 10 mm thick arranged with a 1.0 mm pitch. An Ethernet based 12-bit flash analog to digital data acquisition system with onboard coincident matrix definition is under development to digitize the signals. The detector modules of the PhytoPET system can be arranged and stacked to accommodate various sized plants and plant structures.

  1. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  2. Modular strategies for PET imaging agents

    SciTech Connect

    Hooker, , J.M.

    2010-03-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  3. Quantitative preclinical PET imaging: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Kuntner, Claudia; Stout, David

    2014-02-01

    PET imaging of metabolism involves many choices, from hardware settings, software options to animal handling considerations. How to decide what settings or conditions to use is not straightforward, as the experimental design is dependent on the particular science being investigated. There is no single answer, yet there are factors that are common to all experiments that are the subject of this review. From physics to physiology, there are many factors to consider, each of which can have a significant impact upon measurements of metabolism in vivo. This review examines the most common factors related to all types of quantitative PET imaging.

  4. Molecular Imaging of Prostate Cancer: PET Radiotracers

    PubMed Central

    Jadvar, Hossein

    2012-01-01

    OBJECTIVE Recent advances in the fundamental understanding of the complex biology of prostate cancer have provided an increasing number of potential targets for imaging and treatment. The imaging evaluation of prostate cancer needs to be tailored to the various phases of this remarkably heterogeneous disease. CONCLUSION In this article, I review the current state of affairs on a range of PET radiotracers for potential use in the imaging evaluation of men with prostate cancer. PMID:22826388

  5. Pitfalls in PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Rondogianni, Ph; Papathanasiou, N.; Giannopoulou, Ch

    2011-09-01

    PET with 2-[fluorine 18] fluoro-2-deoxy-d-glucose (FDG), has been a clinical tool for the evaluation of various cancers providing valuable metabolic information clinically helpful in the diagnosis, initial staging, therapy monitoring and restaging. However, FDG is not specific for neoplastic processes. Unless anatomic correlation is available to delineate normal structures, pathologic sites of FDG accumulation can easily be confused with normal physiological uptake, leading to false-positive or false-negative findings. Coregistration of PET scans (functional and morphologic information) with computed tomographic (CT) scans (anatomic information) using a combined PET-CT scanner improves the overall sensitivity and specificity of information provided by PET or CT alone. In this paper, we discuss the probable causes of false negative images and pitfalls due to technical reasons, inflammatory processes or benign lesions as well as the utility of PET-CT in differentiating malignant from inflammatory and benign processes, since in some cases such differentiation cannot be made, with certainty, using FDG PET alone.

  6. PET Imaging - from Physics to Clinical Molecular Imaging

    NASA Astrophysics Data System (ADS)

    Majewski, Stan

    2008-03-01

    From the beginnings many years ago in a few physics laboratories and first applications as a research brain function imager, PET became lately a leading molecular imaging modality used in diagnosis, staging and therapy monitoring of cancer, as well as has increased use in assessment of brain function (early diagnosis of Alzheimer's, etc) and in cardiac function. To assist with anatomic structure map and with absorption correction CT is often used with PET in a duo system. Growing interest in the last 5-10 years in dedicated organ specific PET imagers (breast, prostate, brain, etc) presents again an opportunity to the particle physics instrumentation community to contribute to the important field of medical imaging. In addition to the bulky standard ring structures, compact, economical and high performance mobile imagers are being proposed and build. The latest development in standard PET imaging is introduction of the well known TOF concept enabling clearer tomographic pictures of the patient organs. Development and availability of novel photodetectors such as Silicon PMT immune to magnetic fields offers an exciting opportunity to use PET in conjunction with MRI and fMRI. As before with avalanche photodiodes, particle physics community plays a leading role in developing these devices. The presentation will mostly focus on present and future opportunities for better PET designs based on new technologies and methods: new scintillators, photodetectors, readout, software.

  7. Translational Coronary Atherosclerosis Imaging with PET.

    PubMed

    Adamson, Philip D; Newby, David E; Dweck, Marc R

    2016-02-01

    Although still in its infancy, coronary atherosclerosis imaging with PET holds promise in improving understanding of the pathophysiologic processes that underlie plaque progression and adverse cardiovascular events. Fludeoxyglucose F 18 offers the potential to measure inflammatory activity within the plaque itself whereas fluoride F 18 allows detection of microcalcification, both of which are key characteristics of plaques at risk of rupture. Further work is required to improve these imaging techniques and to assess their ability to predict cardiac events prospectively. PMID:26590788

  8. PET Imaging in Huntington’s Disease

    PubMed Central

    Roussakis, Andreas-Antonios; Piccini, Paola

    2015-01-01

    To date, little is known about how neurodegeneration and neuroinflammation propagate in Huntington’s disease (HD). Unfortunately, no treatment is available to cure or reverse the progressive decline of function caused by the disease, thus considering HD a fatal disease. Mutation gene carriers typically remain asymptomatic for many years although alterations in the basal ganglia and cortex occur early on in mutant HD gene–carriers. Positron Emission Tomography (PET) is a functional imaging technique of nuclear medicine which enables in vivo visualization of numerous biological molecules expressed in several human tissues. Brain PET is most powerful to study in vivo neuronal and glial cells function as well as cerebral blood flow in a plethora of neurodegenerative disorders including Parkinson’s disease, Alzheimer’s and HD. In absence of HD–specific biomarkers for monitoring disease progression, previous PET studies in HD were merely focused on the study of dopaminergic terminals, cerebral blood flow and glucose metabolism in manifest and premanifest HD–gene carriers. More recently, research interest has been exploring novel PET targets in HD including the state of phosphodiesterse expression and the role of activated microglia. Hence, a better understanding of the HD pathogenesis mechanisms may lead to the development of targeted therapies. PET imaging follow–up studies with novel selective PET radiotracers such as 11C-IMA–107 and 11C-PBR28 may provide insight on disease progression and identify prognostic biomarkers, elucidate the underlying HD pathology and assess novel pharmaceutical agents and over time. PMID:26683130

  9. Current Status of Hybrid PET/MRI in Oncologic Imaging

    PubMed Central

    Rosenkrantz, Andrew B.; Friedman, Kent; Chandarana, Hersh; Melsaether, Amy; Moy, Linda; Ding, Yu-Shin; Jhaveri, Komal; Beltran, Luis; Jain, Rajan

    2016-01-01

    OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI. PMID:26491894

  10. Imaging of enzyme replacement therapy using PET

    PubMed Central

    Phenix, Christopher P.; Rempel, Brian P.; Colobong, Karen; Doudet, Doris J.; Adam, Michael J.; Clarke, Lorne A.; Withers, Stephen G.

    2010-01-01

    Direct enzyme replacement therapy (ERT) has been introduced as a means to treat a number of rare, complex genetic conditions associated with lysosomal dysfunction. Gaucher disease was the first for which this therapy was applied and remains the prototypical example. Although ERT using recombinant lysosomal enzymes has been shown to be effective in altering the clinical course of Gaucher disease, Fabry disease, Hurler syndrome, Hunter syndrome, Maroteaux-Lamy syndrome, and Pompe disease, the recalcitrance of certain disease manifestations underscores important unanswered questions related to dosing regimes, tissue half-life of the recombinant enzyme and the ability of intravenously administered enzyme to reach critical sites of known disease pathology. We have developed an innovative method for tagging acid β-glucocerebrosidase (GCase), the recombinant enzyme formulated in Cerezyme® used to treat Gaucher disease, using an 18F-labeled substrate analogue that becomes trapped within the active site of the enzyme. Using micro-PET we show that the tissue distribution of injected enzyme can be imaged in a murine model and that the PET data correlate with tissue 18F counts. Further we show that PET imaging readily monitors pharmacokinetic changes effected by receptor blocking. The ability to 18F-label GCase to monitor the enzyme distribution and tissue half-life in vivo by PET provides a powerful research tool with an immediate clinical application to Gaucher disease and a clear path for application to other ERTs. PMID:20534487

  11. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain

    SciTech Connect

    Jung, Jin Ho; Choi, Yong Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk

    2015-05-15

    Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was

  12. Hybrid PET/MR imaging: physics and technical considerations.

    PubMed

    Shah, Shetal N; Huang, Steve S

    2015-08-01

    In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition. PMID:25985965

  13. MR-based Motion Correction for PET Imaging

    PubMed Central

    Ouyang, Jinsong; Li, Quanzheng; Fakhri, Georges El

    2012-01-01

    PET image quality is limited by patient motion. Emission data are blurred due to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be a low as 1 cm due to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating is used to “freeze” the motion, but leads to significantly increased noise level. Simultaneous PET-MR modality offers a new way to perform PET motion correction. MR can be used to measure 3D motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a non-rigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in-vivo animal PET-MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET-MR improves image quality and lesion detectability compared to gating and to no motion correction. PMID:23178089

  14. Inter-subject MR-PET image registration and integration

    SciTech Connect

    Lin, K.P.; Chen, T.S.; Yao, W.F.

    1996-12-31

    A MR-PET inter-subject image integration technique is developed to provide more precise anatomical location based on a template MR image, and to examine the anatomical variation in sensory-motor stimulation or to obtain cross-subject signal averaging to enhance the delectability of focal brain activity detected by different subject PET images. In this study, a multimodality intrasubject image registration procedure is firstly applied to align MR and PET images of the same subject. The second procedure is to estimate an elastic image transformation that can nonlinearly deform each 3D brain MR image and map them to the template MR image. The estimation procedure of the elastic image transformation is based on a strategy that searches the best local image match to achieve an optimal global image match, iteratively. The final elastic image transformation estimated for each subject will then be used to deform the MR-PET registered PET image. After the nonlinear PET image deformation, MR-PET intersubject mapping, averaging, and fusing are simultaneously accomplished. The developed technique has been implemented to an UNIX based workstation with Motif window system. The software named Elastic-IRIS has few requirements of user interaction. The registered anatomical location of 10 different subjects has a standard deviation of {approximately}2mm. in the x, y, and z directions. The processing time for one MR-PET inter-subject registration ranged from 20 to 30 minutes on a SUN SPARC-20.

  15. PET/CT imaging in neuroblastoma.

    PubMed

    Piccardo, A; Lopci, E; Conte, M; Foppiani, L; Garaventa, A; Cabria, M; Villavecchia, G; Fanti, S; Cistaro, A

    2013-03-01

    123Iodine-metaiodobenzylguanidine (123I-MIBG) scintigraphy is currently the tracer of choice for neuroblastoma (NB). It has high diagnostic accuracy and prognostic value for the assessment of patients after chemotherapy. A positive 123I-MIBG scan is also used for the basis of targeted radionuclide therapy with 131I-MIBG. I-123 MIBG scan however has some limitations which should be taken into account. Moreover the reasons for false negative MIBG results have not been entirely elucidated. Meticulous correlation with radiological examinations and recognition of the normal distribution pattern of 123I-MIBG in children is vital to obtain optimal results. With its technical superiorities, positron emission tomography/computed tomography (PET/CT) can be successfully introduced into the diagnostic workup of NB. Different PET tracers have been offered for imaging in patients with NB, and the efficacy of this modality has been compared with that of 123I-MIBG scan. Our review aims to analyze the present role of PET/CT imaging and radiopharmaceuticals in NB. PMID:23474633

  16. Fusion of PET and CT images using wavelet transform.

    PubMed

    Shalchian, Bahareh; Rajabi, Hossein; Soltanian-zadeh, Hamid

    2009-01-01

    While information about anatomy is available in CT images, information about physiology and metabolism is available in PET images. To integrate both information, the two images are fused. Image fusion methods include simple methods like pixel averaging and sophisticated methods like wavelet transformation. An advantage of using wavelet transformation is that it preserves significant parts of each image. After creating lesions of 10, 8, 6 mm in a NURBS (non-uniform rational B-splines) based cardiac torso (NCAT) phantom, PET images were simulated using SimSET simulator. Attenuation maps of the activity phantom were used as CT images. Each of the PET and CT images was divided into an approximation image and three detailed images by the wavelet transform. The corresponding transformed images generated from the PET and CT images were fused in nine different ways to generate composite images, which were compared to the original images. The basis of comparison is the lesion-to-tissue contrast in the fused image in comparison to the lesion-to-tissue contrast in the original PET and CT images. Our results showed that except for one method, the lesion-to-tissue contrast in the fused image was higher than that of the CT images. In the first six methods, the lesion-to-tissue contrast in the fused image was less than the contrast, in the PET image. In the other three methods, the contrast in the fused image was higher than in the PET image. This was true in cases of 10, 8, 6 mm lesions. In conclusion, we have show that the approximation image produced a better ultimate image and that the lesion-to-tissue contrast in the fused image was also better than that of the original PET and CT images. This is because the approximation image is comprised of fundamental information of the signal (low frequency) that directly affects the image contrast. PMID:19936335

  17. Breast Cancer Imaging with Novel PET Tracers.

    PubMed

    Mankoff, David A; Lee, Jean H; Eubank, William B

    2009-10-01

    Whereas (18)F-fluorodeoxyglucose (FDG)-PET/computed tomography has proven to be valuable for breast cancer diagnosis and response evaluation, it is likely that PET radiopharmaceuticals beyond FDG will contribute further to the understanding of breast cancer and thereby further direct breast cancer care. Increasingly specific and quantitative approaches will help direct treatment selection from an ever-expanding and increasing array of targeted breast cancer therapies. This article highlights 4 areas of ongoing research where preliminary patient results look promising: (1) tumor perfusion and angiogenesis, (2) drug delivery and transport, (3) tumor receptor imaging, and (4) early response evaluation. For each area, the biologic background is reviewed and early results are highlighted. PMID:27157306

  18. Dual-Modality PET/Ultrasound imaging of the Prostate

    SciTech Connect

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  19. Advanced Tracers in PET Imaging of Cardiovascular Disease

    PubMed Central

    Zhang, Wei; Wu, Hua; Liu, Gang

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases. PMID:25389529

  20. PET imaging of adoptive progenitor cell therapies.

    SciTech Connect

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  1. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    SciTech Connect

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  2. Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET

    PubMed Central

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  3. Development of a PET scanner for simultaneously imaging small animals with MRI and PET.

    PubMed

    Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna

    2014-01-01

    Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157

  4. PET/MR Imaging in Cancers of the Gastrointestinal Tract.

    PubMed

    Paspulati, Raj Mohan; Gupta, Amit

    2016-10-01

    PET/computed tomography (PET/CT) is an established hybrid imaging technique for staging and follow-up of gastrointestinal (GI) tract malignancies, especially for colorectal carcinoma. Dedicated hybrid PET/MR imaging scanners are currently available for clinical use. Although they will not replace regular use of PET/CT, they may have utility in selected cases of GI tract malignancies. The superior soft tissue contrast resolution and depiction of anatomy and the functional information obtained from diffusion-weighted imaging (DWI) provided by MR imaging in PET/MR imaging are advantages over CT of PET/CT for T staging and follow-up of rectal carcinoma and for better characterization of liver lesions. Functional information from DWI and use of liver-specific MR imaging contrast agents are an added advantage in follow-up of liver metastases after systemic and locoregional treatment. New radiotracers will improve the utility of PET/MR imaging in staging and follow-up of tumors, which may not be [18F]-2-fluoro-2-deoxy-d-glucose avid, such as hepatocellular carcinoma and neuroendocrine tumors. PET/MR imaging also has application in selected cases of cholangiocarcinoma, gallbladder cancer, and pancreatic carcinoma for initial staging and follow-up assessment. PMID:27593246

  5. PET/MR Imaging in Vascular Disease: Atherosclerosis and Inflammation.

    PubMed

    Ripa, Rasmus Sejersten; Pedersen, Sune Folke; Kjær, Andreas

    2016-10-01

    For imaging of atherosclerotic disease, lumenography using computed tomography, ultrasonography, or invasive angiography is still the backbone of evaluation. However, these methods are less effective to predict the likelihood of future thromboembolic events caused by vulnerability of plaques. PET and MR imaging have been used separately with success for plaque characterization. Where MR imaging has the ability to reveal plaque composition, PET has the ability to visualize plaque activity. Together this leads to a comprehensive evaluation of plaque vulnerability. In this review, the authors go through data and arguments that support increased use of PET/MR imaging in atherosclerotic imaging. PMID:27593251

  6. Quantitative evaluation of PET image using event information bootstrap

    NASA Astrophysics Data System (ADS)

    Song, Hankyeol; Kwak, Shin Hye; Kim, Kyeong Min; Kang, Joo Hyun; Chung, Yong Hyun; Woo, Sang-Keun

    2016-04-01

    The purpose of this study was to enhance the effect in the PET image quality according to event bootstrap of small animal PET data. In order to investigate the time difference condition, realigned sinograms were generated from randomly sampled data set using bootstrap. List-mode data was obtained from small animal PET scanner for Ge-68 30 sec, Y-90 20 min and Y-90 60 min. PET image was reconstructed by Ordered Subset Expectation Maximization(OSEM) 2D with the list-mode format. Image analysis was investigated by Signal to Noise Ratio(SNR) of Ge-68 and Y-90 image. Non-parametric resampled PET image SNR percent change for the Ge-68 30 sec, Y-90 60 min, and Y-90 20 min was 1.69 %, 7.03 %, and 4.78 %, respectively. SNR percent change of non-parametric resampled PET image with time difference condition was 1.08 % for the Ge-68 30 sec, 6.74 % for the Y-90 60 min and 10.94 % for the Y-90 29 min. The result indicated that the bootstrap with time difference condition had a potential to improve a noisy Y-90 PET image quality. This method should be expected to reduce Y-90 PET measurement time and to enhance its accuracy.

  7. Body-wide anatomy recognition in PET/CT images

    NASA Astrophysics Data System (ADS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.

    2015-03-01

    With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.

  8. Sparsity-constrained PET image reconstruction with learned dictionaries.

    PubMed

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging. PMID:27494441

  9. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  10. PET/MRI in Oncological Imaging: State of the Art

    PubMed Central

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  11. PET/MRI in Oncological Imaging: State of the Art.

    PubMed

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  12. Utility of Combining PET and MR Imaging of Carotid Plaque.

    PubMed

    Vesey, Alex T; Dweck, Marc R; Fayad, Zahi A

    2016-02-01

    By harnessing the versatility and soft tissue imaging capabilities of MR imaging alongside the unmatched sensitivity and biomolecular flexibility of PET, the potential to provide detailed multiparametric plaque characterization in the carotid arteries is clear. The ability to acquire simultaneous, and dynamic multimodal data is perhaps PET/MR's greatest strength that will be of major interest to researchers investigating carotid and coronary atherosclerosis alike. This review summarizes the current status of dedicated hybrid PET/MR imaging; to crystallize the rationale for and advantages of this technique with respect to carotid atherosclerosis; and to discuss current limitations, challenges, and future directions. PMID:26610660

  13. Improving PET imaging for breast cancer using virtual pinhole PET half-ring insert

    NASA Astrophysics Data System (ADS)

    Mathews, Aswin John; Komarov, Sergey; Wu, Heyu; O'Sullivan, Joseph A.; Tai, Yuan-Chuan

    2013-09-01

    A PET insert with detector having smaller crystals and placed near a region of interest in a conventional PET scanner can improve image resolution locally due to the virtual-pinhole PET (VP-PET) effect. This improvement is from the higher spatial sampling of the imaging area near the detector. We have built a prototype half-ring PET insert for head-and-neck cancer imaging applications. In this paper, we extend the use of the insert to breast imaging and show that such a system provides high resolution images of breast and axillary lymph nodes while maintaining the full imaging field of view capability of a clinical PET scanner. We characterize the resolution and contrast recovery for tumors across the imaging field of view. First, we model the system using Monte Carlo methods to determine its theoretical limit of improvement. Simulations were conducted with hot spherical tumors embedded in background activity at tumor-to-background contrast ranging from 3:1 to 12:1. Tumors are arranged in a Derenzo-like pattern with their diameters ranging from 2 to 12 mm. Experimental studies were performed using a chest phantom with cylindrical breast attachment. Tumors of different sizes arranged in a Derenzo-like pattern with tumor-to-background ratio of 6:1 are inserted into the breast phantom. Imaging capability of mediastinum and axillary lymph nodes is explored. Both Monte Carlo simulations and experiment show clear improvement in image resolution and contrast recovery with VP-PET half-ring insert. The degree of improvement in resolution and contrast recovery depends on location of the tumor. The full field of view imaging capability is shown to be maintained. Minor artifacts are introduced in certain regions.

  14. Development of a PET/Cerenkov-light hybrid imaging system

    SciTech Connect

    Yamamoto, Seiichi Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid

  15. Thoracic cancer imaging with PET/CT in radiation oncology

    NASA Astrophysics Data System (ADS)

    Chi, Pai-Chun Melinda

    Significance. Respiratory motion has been shown to cause artifacts in PET/CT imaging. This breathing artifact can have a significant impact on PET quantification and it can lead to large uncertainties when using PET for radiation therapy planning. We have demonstrated a promising solution to resolve the breathing artifact by acquiring respiration-averaged CT (ACT) for PET/CT. The purpose of this work was to optimize the ACT acquisition for clinical implementation and to evaluate the impact of ACT on PET/CT quantification. The hypothesis was that ACT is an effective method in removing the breathing artifact when compared to our current clinical protocol. Methods. Phase and cine approaches for acquiring ACT were investigated and the results of these two approaches were compared to the ACT generated from clinical 4DCT data sets (abbreviated as ACT10phs ). In the phase approach, ACT was generated based on combinations of selected respiratory phases; in the cine approach, ACT was generated based on cine images acquired over a fixed cine duration. The phase combination and cine duration that best approximated the ACT10phs were determined to be the optimized scanning parameters. 216 thoracic PET/CT patients were scanned with both current clinical and the ACT protocols. The effects of ACT on PET/CT quantification were assessed by comparing clinical PET/CT and ACT PET/CT using 3 metrics: PET/CT image alignment, maximum standardized uptake value (SUVmax), and threshold segmented gross tumor volume (GTV). Results. ACT10phs can be best approximated to within 2% of SUV variation by phase averaging based on 4 representative phases, and to within 3% by cine image averaging based on >3s of cine duration. We implemented the cine approach on the PET/CT scanners and acquired 216 patient data sets. 68% of patients had breathing artifacts in their clinical PET/CT and the artifacts were removed/reduced in all corresponding ACT PET/CT. PET/CT quantification for lesions <50 cm3 and

  16. PET IMAGING STUDIES IN DRUG ABUSE RESEARCH.

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Ding, Y.S.; Logan, J.; Wang, G.J.

    2001-01-29

    There is overwhelming evidence that addiction is a disease of the brain (Leshner, 1997). Yet public perception that addiction is a reflection of moral weakness or a lack of willpower persists. The insidious consequence of this perception is that we lose sight of the fact that there are enormous medical consequences of addiction including the fact that a large fraction of the total deaths from cancer and heart disease are caused by smoking addiction. Ironically the medical school that educates physicians in addiction medicine and the cancer hospital that has a smoking cessation clinic are vanishingly rare and efforts at harm reduction are frequently met with a public indignation. Meanwhile the number of people addicted to substances is enormous and increasing particularly the addictions to cigarettes and alcohol. It is particularly tragic that addiction usually begins in adolescence and becomes a chronic relapsing problem and there are basically no completely effective treatments. Clearly we need to understand how drugs of abuse affect the brain and we need to be creative in using this information to develop effective treatments. Imaging technologies have played a major role in the conceptualization of addiction as a disease of the brain (Fowler et al., 1998a; Fowler et al., 1999a). New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology and medicine. This topic cuts across the medical specialties of neurology, psychiatry, cancer and heart disease because of the high medical, social and economic toll that drugs of abuse, including and especially the legal drugs, cigarettes and alcohol, take on society. In this chapter we will begin by highlighting the important role that chemistry has played in making it possible to quantitatively image the movement of drugs as well as their effects on the human brain

  17. Current image acquisition options in PET/MR.

    PubMed

    Boellaard, Ronald; Quick, Harald H

    2015-05-01

    Whole-body PET/MR hybrid imaging combines excellent soft tissue contrast and various functional imaging parameters provided by MR with high sensitivity and quantification of radiotracer uptake provided by PET. Although clinical evaluation now is under way, PET/MR demands for new technologies and innovative solutions, currently subject to interdisciplinary research. Attenuation correction (AC) of human soft tissues and of hardware components has to be MR based to maintain quantification of PET imaging as CT attenuation information is missing. MR-based AC is inherently associated with the following challenges: patient tissues are segmented into only few tissue classes, providing discrete attenuation coefficients; bone is substituted as soft tissue in MR-based AC; the limited field of view in MRI leads to truncations in body imaging and, consequently, in MR-based AC; and correct segmentation of lung tissue may be hampered by breathing artifacts. Use of time of flight during PET image acquisition and reconstruction, however, may improve the accuracy of AC. This article provides a status of current image acquisition options in PET/MR hybrid imaging. PMID:25841274

  18. Future image acquisition trends for PET/MRI.

    PubMed

    Boss, Andreas; Weiger, Markus; Wiesinger, Florian

    2015-05-01

    Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques. PMID:25841275

  19. A generalized method of converting CT image to PET linear attenuation coefficient distribution in PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wu, Li-Wei; Wei, Le; Gao, Juan; Sun, Cui-Li; Chai, Pei; Li, Dao-Wu

    2014-02-01

    The accuracy of attenuation correction in positron emission tomography scanners depends mainly on deriving the reliable 511-keV linear attenuation coefficient distribution in the scanned objects. In the PET/CT system, the linear attenuation distribution is usually obtained from the intensities of the CT image. However, the intensities of the CT image relate to the attenuation of photons in an energy range of 40 keV-140 keV. Before implementing PET attenuation correction, the intensities of CT images must be transformed into the PET 511-keV linear attenuation coefficients. However, the CT scan parameters can affect the effective energy of CT X-ray photons and thus affect the intensities of the CT image. Therefore, for PET/CT attenuation correction, it is crucial to determine the conversion curve with a given set of CT scan parameters and convert the CT image into a PET linear attenuation coefficient distribution. A generalized method is proposed for converting a CT image into a PET linear attenuation coefficient distribution. Instead of some parameter-dependent phantom calibration experiments, the conversion curve is calculated directly by employing the consistency conditions to yield the most consistent attenuation map with the measured PET data. The method is evaluated with phantom experiments and small animal experiments. In phantom studies, the estimated conversion curve fits the true attenuation coefficients accurately, and accurate PET attenuation maps are obtained by the estimated conversion curves and provide nearly the same correction results as the true attenuation map. In small animal studies, a more complicated attenuation distribution of the mouse is obtained successfully to remove the attenuation artifact and improve the PET image contrast efficiently.

  20. Towards optimal imaging with PET: an in silico feasibility study

    NASA Astrophysics Data System (ADS)

    McNamara, A. L.; Toghyani, M.; Gillam, J. E.; Wu, K.; Kuncic, Z.

    2014-12-01

    The efficacy of Positron Emission Tomography (PET) imaging relies fundamentally on the ability of the system to accurately identify true coincidence events. With existing systems, this is currently accomplished with an energy acceptance criterion followed by correction techniques to remove suspected false coincidence events. These corrections generally result in signal and contrast loss and thus limit the PET system’s ability to achieve optimum image quality. A key property of annihilation radiation is that the photons are polarised with respect to each other. This polarisation correlation offers a potentially powerful discriminator, independent of energy, to accurately identify true events. In this proof of concept study, we investigate how photon polarisation information can be exploited in PET imaging by developing a method to discriminate true coincidences using the polarisation correlation of annihilation pairs. We implement this method using a Geant4 PET simulation of a GE Advance/Discovery LS system and demonstrate the potential advantages of the polarisation coincidence selection method over a standard energy criterion method. Current PET ring detectors are not capable of exploiting the polarisation correlation of the photon pairs. Compton PET systems, however are promising candidates for this application. We demonstrate the feasibility of a two-component Compton camera system in identifying true coincidences with Monte Carlo simulations. Our study demonstrates the potential of improving signal gain using polarisation, particularly for high photon emission rates. We also demonstrate the ability of the Compton camera at exploiting this polarisation correlation in PET.

  1. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    PubMed Central

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  2. Thresholding in PET images of static and moving targets

    NASA Astrophysics Data System (ADS)

    Yaremko, Brian; Riauka, Terence; Robinson, Don; Murray, Brad; Alexander, Abraham; McEwan, Alexander; Roa, Wilson

    2005-12-01

    Continued therapeutic gain in the treatment of non-small-cell lung cancer (NSCLC) will depend upon our ability to escalate the dose to the primary tumour while minimizing normal tissue toxicity. Both these objectives are facilitated by the accurate definition of a target volume that is as small as possible. To this end, both tumour immobilizations via deep inspiratory breath-hold, along with positron emission tomography (PET), have emerged as two promising approaches. Though PET is an excellent means of defining the general location of a tumour focus, its ability to define exactly the geometric extent of such a focus strongly depends upon selection of an appropriate image threshold. However, in clinical practice, the image threshold is typically not chosen according to consistent, well-established criteria. This study explores the relationship between image threshold and the resultant PET-defined volume using a series of F-18 radiotracer-filled hollow spheres of known internal volumes, both static and under oscillatory motion. The effects of both image threshold and tumour motion on the resultant PET image are examined. Imaging data are further collected from a series of simulated gated PET acquisitions in order to test the feasibility of a patient-controlled gating mechanism during deep inspiratory breath-hold. This study illustrates quantitatively considerable variability in resultant PET-defined tumour volumes depending upon numerous factors, including image threshold, size of the lesion, the presence of tumour motion and the scanning protocol. In this regard, when using PET in treatment planning for NSCLC, the radiation oncologist must select the image threshold very carefully to avoid either under-dosing the tumour or overdosing normal tissues.

  3. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold?

    PubMed

    de Galiza Barbosa, F; Delso, G; Ter Voert, E E G W; Huellner, M W; Herrmann, K; Veit-Haibach, P

    2016-07-01

    Integrated positron-emission tomography and computed tomography (PET/CT) is one of the most important imaging techniques to have emerged in oncological practice in the last decade. Hybrid imaging, in general, remains a rapidly growing field, not only in developing countries, but also in western industrialised healthcare systems. A great deal of technological development and research is focused on improving hybrid imaging technology further and introducing new techniques, e.g., integrated PET and magnetic resonance imaging (PET/MRI). Additionally, there are several new PET tracers on the horizon, which have the potential to broaden clinical applications in hybrid imaging for diagnosis as well as therapy. This article aims to highlight some of the major technical and clinical advances that are currently taking place in PET/CT and PET/MRI that will potentially maintain the position of hybrid techniques at the forefront of medical imaging technologies. PMID:27108800

  4. Bayesian PET image reconstruction incorporating anato-functional joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2009-12-01

    We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff. Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

  5. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  6. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    PubMed

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. PMID:26080302

  7. Joint model of motion and anatomy for PET image reconstruction

    SciTech Connect

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-12-15

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem.

  8. Ready for prime time? Dual tracer PET and SPECT imaging

    PubMed Central

    Fakhri, Georges El

    2012-01-01

    Dual isotope single photon emission computed tomography (SPECT) and dual tracer positron emission tomography (PET) imaging have great potential in clinical and molecular applications in the pediatric as well as the adult populations in many areas of brain, cardiac, and oncologic imaging as it allows the exploration of different physiological and molecular functions (e.g., perfusion, neurotransmission, metabolism, apoptosis, angiogenesis) under the same physiological and physical conditions. This is crucial when the physiological functions studied depend on each other (e.g., perfusion and metabolism) hence requiring simultaneous assessment under identical conditions, and can reduce greatly the quantitation errors associated with physical factors that can change between acquisitions (e.g., human subject or animal motion, change in the attenuation map as a function of time) as is detailed in this editorial. The clinical potential of simultaneous dual isotope SPECT, dual tracer PET and dual SPECT/PET imaging are explored and summarized. In this issue of AJNMMI (http://www.ajnmmi.us), Chapman et al. explore the feasibility of simultaneous and sequential SPECT/PET imaging and conclude that down-scatter and crosstalk from 511 keV photons preclude obtaining useful SPECT information in the presence of PET radiotracers. They report on an alternative strategy that consists of performing sequential SPECT and PET studies in hybrid microPET/SPECT/CT scanners, now widely available for molecular imaging. They validate their approach in a phantom consisting of a 96-well plate with variable 99mTc and 18F concentrations and illustrate the utility of such approaches in two sequential SPECT-PET/CT studies that include 99mTc-MAA/18F-NaF and 99mTc-Pentetate/18F-NaF. These approaches will need to be proven reproducible, accurate and robust to variations in the experimental conditions before they can be accepted by the molecular imaging community and be implemented in routine molecular

  9. Fusion of PET and MRI for Hybrid Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  10. The Basic Principles of FDG-PET/CT Imaging.

    PubMed

    Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming

    2014-10-01

    Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. PMID:26050942

  11. Innovations in Small-Animal PET/MR Imaging Instrumentation.

    PubMed

    Tsoumpas, Charalampos; Visvikis, Dimitris; Loudos, George

    2016-04-01

    Multimodal imaging has led to a more detailed exploration of different physiologic processes with integrated PET/MR imaging being the most recent entry. Although the clinical need is still questioned, it is well recognized that it represents one of the most active and promising fields of medical imaging research in terms of software and hardware. The hardware developments have moved from small detector components to high-performance PET inserts and new concepts in full systems. Conversely, the software focuses on the efficient performance of necessary corrections without the use of CT data. The most recent developments in both directions are reviewed. PMID:26952725

  12. PET/CT imaging in lung cancer: indications and findings*

    PubMed Central

    Hochhegger, Bruno; Alves, Giordano Rafael Tronco; Irion, Klaus Loureiro; Fritscher, Carlos Cezar; Fritscher, Leandro Genehr; Concatto, Natália Henz; Marchiori, Edson

    2015-01-01

    The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer. PMID:26176525

  13. Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging

    PubMed Central

    Guérin, B.; Cho, S.; Chun, S. Y.; Zhu, X.; Alpert, N. M.; El Fakhri, G.; Reese, T.; Catana, C.

    2011-01-01

    Purpose: We propose a novel approach for PET respiratory motion correction using tagged-MRI and simultaneous PET-MRI acquisitions.Methods: We use a tagged-MRI acquisition followed by motion tracking in the phase domain to estimate the nonrigid deformation of biological tissues during breathing. In order to accurately estimate motion even in the presence of noise and susceptibility artifacts, we regularize the traditional HARP tracking strategy using a quadratic roughness penalty on neighboring displacement vectors (R-HARP). We then incorporate the motion fields estimated with R-HARP in the system matrix of an MLEM PET reconstruction algorithm formulated both for sinogram and list-mode data representations. This approach allows reconstruction of all detected coincidences in a single image while modeling the effect of motion both in the emission and the attenuation maps. At present, tagged-MRI does not allow estimation of motion in the lungs and our approach is therefore limited to motion correction in soft tissues. Since it is difficult to assess the accuracy of motion correction approaches in vivo, we evaluated the proposed approach in numerical simulations of simultaneous PET-MRI acquisitions using the NCAT phantom. We also assessed its practical feasibility in PET-MRI acquisitions of a small deformable phantom that mimics the complex deformation pattern of a lung that we imaged on a combined PET-MRI brain scanner.Results: Simulations showed that the R-HARP tracking strategy accurately estimated realistic respiratory motion fields for different levels of noise in the tagged-MRI simulation. In simulations of tumors exhibiting increased uptake, contrast estimation was 20% more accurate with motion correction than without. Signal-to-noise ratio (SNR) was more than 100% greater when performing motion-corrected reconstruction which included all counts, compared to when reconstructing only coincidences detected in the first of eight gated frames. These results were

  14. Monitoring proton radiation therapy with in-room PET imaging

    PubMed Central

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R; El Fakhri, Georges

    2011-01-01

    Purpose We used a mobile PET scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Methods and materials Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 minutes during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. Results The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 min to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. Conclusions In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary. PMID:21677366

  15. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    PubMed Central

    Gargiulo, Sara; Greco, Adelaide; Gramanzini, Matteo; Petretta, Maria Piera; Ferro, Adele; Larobina, Michele; Panico, Mariarosaria; Brunetti, Arturo; Cuocolo, Alberto

    2012-01-01

    Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing. PMID:22505813

  16. PET/CT imaging in mouse models of myocardial ischemia.

    PubMed

    Gargiulo, Sara; Greco, Adelaide; Gramanzini, Matteo; Petretta, Maria Piera; Ferro, Adele; Larobina, Michele; Panico, Mariarosaria; Brunetti, Arturo; Cuocolo, Alberto

    2012-01-01

    Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing. PMID:22505813

  17. PET imaging in ectopic Cushing syndrome: a systematic review.

    PubMed

    Santhanam, Prasanna; Taieb, David; Giovanella, Luca; Treglia, Giorgio

    2015-11-01

    Cushing syndrome due to endogenous hypercortisolism may cause significant morbidity and mortality. The source of excess cortisol may be adrenal, pituitary, or ectopic. Ectopic Cushing syndrome is sometimes difficult to localize on conventional imaging like CT and MRI. After performing a multilevel thoracoabdominal imaging with CT, the evidence regarding the use of radiotracers for PET imaging is unclear due to significant molecular and etiological heterogeneity of potential causes of ectopic Cushing's syndrome. In our systematic review of literature, it appears that GalLium-based (Ga68) somatostatin receptor analogs have better sensitivity in diagnosis of bronchial carcinoids causing Cushing syndrome and FDG PET appears superior for small-cell lung cancers and other aggressive tumors. Further large-scale studies are needed to identify the best PET tracer for this condition. PMID:26206753

  18. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Watabe, Tadashi; Watabe, Hiroshi; Aoki, Masaaki; Sugiyama, Eiji; Imaizumi, Masao; Kanai, Yasukazu; Shimosegawa, Eku; Hatazawa, Jun

    2012-01-01

    The silicon photomultiplier (Si-PM) is a promising photo-detector for PET for use in magnetic resonance imaging (MRI) systems because it has high gain and is insensitive to static magnetic fields. Recently we developed a Si-PM-based depth-of-interaction PET system for small animals and performed simultaneous measurements by combining the Si-PM-based PET and the 0.15 T permanent MRI to test the interferences between the Si-PM-based PET and an MRI. When the Si-PM was inside the MRI and installed around the radio frequency (RF) coil of the MRI, significant noise from the RF sequence of the MRI was observed in the analog signals of the PET detectors. However, we did not observe any artifacts in the PET images; fluctuation increased in the count rate of the Si-PM-based PET system. On the MRI side, there was significant degradation of the signal-to-noise ratio (S/N) in the MRI images compared with those without PET. By applying noise reduction procedures, the degradation of the S/N was reduced. With this condition, simultaneous measurements of a rat brain using a Si-PM-based PET and an MRI were made with some degradation in the MRI images. We conclude that simultaneous measurements are possible using Si-PM-based PET and MRI.

  19. Influence of Iterative Reconstruction Algorithms on PET Image Resolution

    NASA Astrophysics Data System (ADS)

    Karpetas, G. E.; Michail, C. M.; Fountos, G. P.; Valais, I. G.; Nikolopoulos, D.; Kandarakis, I. S.; Panayiotakis, G. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction. The simulated PET scanner was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the modulation transfer function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL, the ordered subsets separable paraboloidal surrogate (OSSPS), the median root prior (MRP) and OSMAPOSL with quadratic prior, algorithms. OSMAPOSL reconstruction was assessed by using fixed subsets and various iterations, as well as by using various beta (hyper) parameter values. MTF values were found to increase with increasing iterations. MTF also improves by using lower beta values. The simulated PET evaluation method, based on the TLC plane source, can be useful in the resolution assessment of PET scanners.

  20. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  1. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  2. Pulmonary imaging using respiratory motion compensated simultaneous PET/MR

    PubMed Central

    Dutta, Joyita; Huang, Chuan; Li, Quanzheng; El Fakhri, Georges

    2015-01-01

    Purpose: Pulmonary positron emission tomography (PET) imaging is confounded by blurring artifacts caused by respiratory motion. These artifacts degrade both image quality and quantitative accuracy. In this paper, the authors present a complete data acquisition and processing framework for respiratory motion compensated image reconstruction (MCIR) using simultaneous whole body PET/magnetic resonance (MR) and validate it through simulation and clinical patient studies. Methods: The authors have developed an MCIR framework based on maximum a posteriori or MAP estimation. For fast acquisition of high quality 4D MR images, the authors developed a novel Golden-angle RAdial Navigated Gradient Echo (GRANGE) pulse sequence and used it in conjunction with sparsity-enforcing k-t FOCUSS reconstruction. The authors use a 1D slice-projection navigator signal encapsulated within this pulse sequence along with a histogram-based gate assignment technique to retrospectively sort the MR and PET data into individual gates. The authors compute deformation fields for each gate via nonrigid registration. The deformation fields are incorporated into the PET data model as well as utilized for generating dynamic attenuation maps. The framework was validated using simulation studies on the 4D XCAT phantom and three clinical patient studies that were performed on the Biograph mMR, a simultaneous whole body PET/MR scanner. Results: The authors compared MCIR (MC) results with ungated (UG) and one-gate (OG) reconstruction results. The XCAT study revealed contrast-to-noise ratio (CNR) improvements for MC relative to UG in the range of 21%–107% for 14 mm diameter lung lesions and 39%–120% for 10 mm diameter lung lesions. A strategy for regularization parameter selection was proposed, validated using XCAT simulations, and applied to the clinical studies. The authors’ results show that the MC image yields 19%–190% increase in the CNR of high-intensity features of interest affected by

  3. PET imaging of cardiac hypoxia: Opportunities and challenges

    PubMed Central

    Handley, M.G.; Medina, R.A.; Nagel, E.; Blower, P.J.; Southworth, R.

    2012-01-01

    Myocardial hypoxia is a major factor in the pathology of cardiac ischemia and myocardial infarction. Hypoxia also occurs in microvascular disease and cardiac hypertrophy, and is thought to be a prime determinant of the progression to heart failure, as well as the driving force for compensatory angiogenesis. The non-invasive delineation and quantification of hypoxia in cardiac tissue therefore has the potential to be an invaluable experimental, diagnostic and prognostic biomarker for applications in cardiology. However, at this time there are no validated methodologies sufficiently sensitive or reliable for clinical use. PET imaging provides real-time spatial information on the biodistribution of injected radiolabeled tracer molecules. Its inherent high sensitivity allows quantitative imaging of these tracers, even when injected at sub-pharmacological (≥pM) concentrations, allowing the non-invasive investigation of biological systems without perturbing them. PET is therefore an attractive approach for the delineation and quantification of cardiac hypoxia and ischemia. In this review we discuss the key concepts which must be considered when imaging hypoxia in the heart. We summarize the PET tracers which are currently available, and we look forward to the next generation of hypoxia-specific PET imaging agents currently being developed. We describe their potential advantages and shortcomings compared to existing imaging approaches, and what is needed in terms of validation and characterization before these agents can be exploited clinically. PMID:21781973

  4. Improving PET spatial resolution and detectability for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.

    2014-08-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.

  5. Bootstrapped DEPICT for error estimation in PET functional imaging.

    PubMed

    Kukreja, Sunil L; Gunn, Roger N

    2004-03-01

    Basis pursuit denoising is a new approach for data-driven estimation of parametric images from dynamic positron emission tomography (PET) data. At present, this kinetic modeling technique does not allow for the estimation of the errors on the parameters. These estimates are useful when performing subsequent statistical analysis, such as, inference across a group of subjects or when applying partial volume correction algorithms. The difficulty with calculating the error estimates is a consequence of using an overcomplete dictionary of kinetic basis functions. In this paper, a bootstrap approach for the estimation of parameter errors from dynamic PET data is presented. This paper shows that the bootstrap can be used successfully to compute parameter errors on a region of interest or parametric image basis. Validation studies evaluate the methods performance on simulated and measured PET data ([(11)C]Diprenorphine-opiate receptor and [(11)C]Raclopride-dopamine D(2) receptor). The method is presented in the context of PET neuroreceptor binding studies, however, it has general applicability to a wide range of PET/SPET radiotracers in neurology, oncology and cardiology. PMID:15006677

  6. Towards automatic determination of total tumor burden from PET images

    NASA Astrophysics Data System (ADS)

    Renisch, Steffen; Opfer, Roland; Wiemker, Rafael

    2010-03-01

    Quantification of potentially cancerous lesions from imaging modalities, most prominently from CT or PET images, plays a crucial role both in diagnosing and staging of cancer as well as in the assessment of the response of a cancer to a therapy, e.g. for lymphoma or lung cancer. For PET imaging, several quantifications which might bear great discriminating potential (e.g. total tumor burden or total tumor glycolysis) involve the segmentation of the entirety of all of the cancerous lesions. However, this particular task of segmenting the entirety of all cancerous lesions might be very tedious if it has to be done manually, in particular if the disease is scattered or metastasized and thus consists of numerous foci; this is one of the reasons why only few clinical studies on those quantifications are available. In this work, we investigate a way to aid the easy determination of the entirety of cancerous lesions in a PET image of a human. The approach is designed to detect all hot spots within a PET image and rank their probability of being a cancerous lesion. The basis of this component is a modified watershed algorithm; the ranking is performed on a combination of several, primarily morphological measures derived from the individual basins. This component is embedded in a software suite to assess response to a therapy based on PET images. As a preprocessing step, potential lesions are segmented and indicated to the user, who can select the foci which constitute the tumor and discard the false positives. This procedure substantially simplifies the segmentation of the entire tumor burden of a patient. This approach of semi-automatic hot spot detection is evaluated on 17 clinical datasets.

  7. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  8. Metabolic PET Imaging in Cancer Detection and Therapy Response

    PubMed Central

    Zhu, Aizhi; Lee, Daniel; Shim, Hyunsuk

    2010-01-01

    Positron emission tomography (PET) is a noninvasive imaging technique that provides a functional or metabolic assessment of normal tissue or disease conditions. 18F-fluorodeoxyglucose PET imaging (FDG-PET) is widely used clinically for tumor imaging due to increased glucose metabolism in most types of tumors, and has been shown to improve the diagnosis and subsequent treatment of cancers. In this chapter, we review its use in cancer diagnosis, staging, restaging, and assessment of response to treatment. In addition, other metabolic PET imaging agents in research or clinical trial stages are discussed, including amino acid analogs based on increased protein synthesis, and choline, which is based on increased membrane lipid synthesis. Amino acid analogs and choline are more specific to tumor cells than FDG, so they play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with low FDG uptake or high background FDG uptake. For decades, researchers have shown that tumors have altered metabolic profiles and display elevated uptake of glucose, amino acids, and lipids, which can be used for cancer diagnosis and monitoring of the therapeutic response with excellent signal-to-noise ratios. PMID:21362516

  9. PET Image Reconstruction Using Information Theoretic Anatomical Priors

    PubMed Central

    Somayajula, Sangeetha; Panagiotou, Christos; Rangarajan, Anand; Li, Quanzheng; Arridge, Simon R.

    2011-01-01

    We describe a nonparametric framework for incorporating information from co-registered anatomical images into positron emission tomographic (PET) image reconstruction through priors based on information theoretic similarity measures. We compare and evaluate the use of mutual information (MI) and joint entropy (JE) between feature vectors extracted from the anatomical and PET images as priors in PET reconstruction. Scale-space theory provides a framework for the analysis of images at different levels of detail, and we use this approach to define feature vectors that emphasize prominent boundaries in the anatomical and functional images, and attach less importance to detail and noise that is less likely to be correlated in the two images. Through simulations that model the best case scenario of perfect agreement between the anatomical and functional images, and a more realistic situation with a real magnetic resonance image and a PET phantom that has partial volumes and a smooth variation of intensities, we evaluate the performance of MI and JE based priors in comparison to a Gaussian quadratic prior, which does not use any anatomical information. We also apply this method to clinical brain scan data using F18 Fallypride, a tracer that binds to dopamine receptors and therefore localizes mainly in the striatum. We present an efficient method of computing these priors and their derivatives based on fast Fourier transforms that reduce the complexity of their convolution-like expressions. Our results indicate that while sensitive to initialization and choice of hyperparameters, information theoretic priors can reconstruct images with higher contrast and superior quantitation than quadratic priors. PMID:20851790

  10. Cardiovascular PET-CT imaging: a new frontier?

    PubMed

    Adamson, P D; Williams, M C; Newby, D E

    2016-07-01

    Cardiovascular positron-emission tomography combined with computed tomography (PET-CT) has recently emerged as an imaging technology with the potential to simultaneously describe both anatomical structures and physiological processes in vivo. The scope for clinical application of this technique is vast, but to date this promise has not been realised. Nonetheless, significant research activity is underway to explore these possibilities and it is likely that the knowledge gained will have important diagnostic and therapeutic implications in due course. This review provides a brief overview of the current state of cardiovascular PET-CT and the likely direction of future developments. PMID:26951964

  11. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures.

  12. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation.

    PubMed

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S; Lin, Weili; Shen, Dinggang

    2016-01-21

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures. PMID:26732849

  13. Region of interest motion compensation for PET image reconstruction.

    PubMed

    Qiao, Feng; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2007-05-21

    A motion-incorporated reconstruction (MIR) method for gated PET imaging has recently been developed by several authors to correct for respiratory motion artifacts in PET imaging. This method however relies on a motion map derived from images (4D PET or 4D CT) of the entire field of view (FOV). In this study we present a region of interest (ROI)-based extension to this method, whereby only the motion map of a user-defined ROI is required and motion incorporation during image reconstruction is solely performed within the ROI. A phantom study and an NCAT computer simulation study were performed to test the feasibility of this method. The phantom study showed that the ROI-based MIR produced results that are within 1.26% of those obtained by the full image-based MIR approach when using the same accurate motion information. The NCAT phantom study on the other hand, further verified that motion of features of interest in an image can be estimated more efficiently and potentially more accurately using the ROI-based approach. A reduction of motion estimation time from 450 s to 30 and 73 s was achieved for two different ROIs respectively. In addition, the ROI-based approach showed a reduction in registration error of 43% for one ROI, which effectively reduced quantification bias by 44% and 32% using mean and maximum voxel values, respectively. PMID:17473344

  14. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    PubMed Central

    Sogbein, Oyebola O.; Pelletier-Galarneau, Matthieu; Schindler, Thomas H.; Wei, Lihui; Wells, R. Glenn; Ruddy, Terrence D.

    2014-01-01

    Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI) continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed. PMID:24901002

  15. Parametric myocardial perfusion PET imaging using physiological clustering

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Karakatsanis, Nikolaos A.; Lodge, Martin A.; Tang, Jing; Rahmim, Arman

    2014-03-01

    We propose a novel framework of robust kinetic parameter estimation applied to absolute ow quanti cation in dynamic PET imaging. Kinetic parameter estimation is formulated as a nonlinear least squares with spatial constraints problem (NLLS-SC) where the spatial constraints are computed from a physiologically driven clustering of dynamic images, and used to reduce noise contamination. An ideal clustering of dynamic images depends on the underlying physiology of functional regions, and in turn, physiological processes are quanti ed by kinetic parameter estimation. Physiologically driven clustering of dynamic images is performed using a clustering algorithm (e.g. K-means, Spectral Clustering etc) with Kinetic modeling in an iterative handshaking fashion. This gives a map of labels where each functionally homogenous cluster is represented by mean kinetics (cluster centroid). Parametric images are acquired by solving the NLLS-SC problem for each voxel which penalizes spatial variations from its mean kinetics. This substantially reduces noise in the estimation process for each voxel by utilizing kinetic information from physiologically similar voxels (cluster members). Resolution degradation is also substantially minimized as no spatial smoothing between heterogeneous functional regions is performed. The proposed framework is shown to improve the quantitative accuracy of Myocardial Perfusion (MP) PET imaging, and in turn, has the long-term potential to enhance capabilities of MP PET in the detection, staging and management of coronary artery disease.

  16. The Emerging Role of PET/MR Imaging in Gynecologic Cancers.

    PubMed

    Ponisio, Maria Rosana; Fowler, Kathryn J; Dehdashti, Farrokh

    2016-10-01

    This article summarizes recent advances in PET/MR imaging in gynecologic cancers and the emerging clinical value of PET/MR imaging in the management of the 3 most common gynecologic malignancies: cervical, endometrial, and ovarian cancers. PET/MR imaging offers superior soft tissue contrast, improved assessment of primary tumor involvement because of high-resolution multiplanar reformats, and functional MR techniques such as diffusion-weighted MR imaging and dynamic contrast-enhanced MR imaging. This article discusses the challenges, future directions, and technical advances of PET/MR imaging, and the emerging new multimodality, multiparametric imaging techniques for integrating morphologic, functional, and molecular imaging data. PMID:27593247

  17. Imaging results and TOF studies with axial PET detectors

    NASA Astrophysics Data System (ADS)

    Joram, Christian

    2013-12-01

    We have developed a fully operational PET demonstrator setup which allows true 3D reconstruction of the 511 keV photons and therefore leads to practically parallax free images. The AX-PET concept is based on thin 100 mm long scintillation crystals (LYSO), axially oriented and arranged in layers around the field of view. Layers of wavelength shifting plastic strips mounted in between the crystal layers give the axial coordinate. Both crystals and WLS strips are individually read out by G-APD (SiPM) photodetectors. The fully scalable concept overcomes the dilemma of sensitivity versus spatial resolution which is inherent to classical PET designs. A demonstrator set-up based on two axial modules was exhaustively characterized using point-like sources, phantoms filled with radiotracer and finally rats and a mouse. The results entirely meet the performance expectations (<2 mm FWHM in all three coordinates over the complete field of view) and also demonstrated the ability to include Compton interactions (inter-crystal scatter) in the reconstruction without noticeable performance loss. Our recent studies focus on a TOF extension of the AX-PET concept making use of the novel digital SiPM detectors by Philips. After reproducing comparable energy and spatial resolution on a small digital AX-PET set-up with 100 mm long crystals, we demonstrated a coincidence resolving time of about 210 ps FWHM.

  18. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  19. Data Acquisition and Image Reconstruction Systems from the miniPET Scanners to the CARDIOTOM Camera

    SciTech Connect

    Valastvan, I.; Imrek, J.; Hegyesi, G.; Molnar, J.; Novak, D.; Bone, D.; Kerek, A.

    2007-11-26

    Nuclear imaging devices play an important role in medical diagnosis as well as drug research. The first and second generation data acquisition systems and the image reconstruction library developed provide a unified hardware and software platform for the miniPET-I, miniPET-II small animal PET scanners and for the CARDIOTOM{sup TM}.

  20. Factors affecting accuracy and precision in PET volume imaging

    SciTech Connect

    Karp, J.S.; Daube-Witherspoon, M.E.; Muehllehner, G. )

    1991-03-01

    Volume imaging positron emission tomographic (PET) scanners with no septa and a large axial acceptance angle offer several advantages over multiring PET scanners. A volume imaging scanner combines high sensitivity with fine axial sampling and spatial resolution. The fine axial sampling minimizes the partial volume effect, which affects the measured concentration of an object. Even if the size of an object is large compared to the slice spacing in a multiring scanner, significant variation in the concentration is measured as a function of the axial position of the object. With a volume imaging scanner, it is necessary to use a three-dimensional reconstruction algorithm in order to avoid variations in the axial resolution as a function of the distance from the center of the scanner. In addition, good energy resolution is needed in order to use a high energy threshold to reduce the coincident scattered radiation.

  1. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk; Kim, Byung-Tae

    2011-08-01

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  2. PET image reconstruction: mean, variance, and optimal minimax criterion

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Gao, Fei; Guo, Min; Xue, Liying; Nie, Jing; Shi, Pengcheng

    2015-04-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min-max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential.

  3. Parametric dynamic F-18-FDG PET/CT breast imaging

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Feiglin, David; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Krol, Andrzej

    2008-03-01

    This study was undertaken to estimate metabolic tissue properties from dynamic breast F-18-FDG PET/CT image series and to display them as 3D parametric images. Each temporal PET series was obtained immediately after injection of 10 mCi of F-18-FDG and consisted of fifty 1- minute frames. Each consecutive frame was nonrigidly registered to the first frame using a finite element method (FEM) based model and fiducial skin markers. Nonlinear curve fitting of activity vs. time based on a realistic two-compartment model was performed for each voxel of the volume. Curve fitting was accomplished by application of the Levenburg-Marquardt algorithm (LMA) that minimized X2. We evaluated which parameters are most suitable to determine the spatial extent and malignancy in suspicious lesions. In addition, Patlak modeling was applied to the data. A mixture model was constructed and provided a classification system for the breast tissue. It produced unbiased estimation of the spatial extent of the lesions. We conclude that nonrigid registration followed by voxel-by-voxel based nonlinear fitting to a realistic two-compartment model yields better quality parametric images, as compared to unprocessed dynamic breast PET time series. By comparison with the mixture model, we established that the total cumulated activity and maximum activity parametric images provide the best delineation of suspicious breast tissue lesions and hyperactive subregions within the lesion that cannot be discerned in unprocessed images.

  4. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.

    PubMed

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-04-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. PMID:26952727

  5. BIODISTRIBUTION AND PET IMAGING OF [18F]-FLUOROADENOSINE DERIVATIVES

    PubMed Central

    Alauddin, Mian M.; Shahinian, Antranik; Park, Ryan; Tohme, Michael; Fissekis, John D.; Conti, Peter S.

    2007-01-01

    Introduction: Many fluorinated analogues of adenosine nucleoside have been synthesized and studied as potential antitumor and antiviral agents. Earlier we reported radiosynthesis of 2′-deoxy-2′-[18F]fluoro-1-β-D-arabinofuranosyl-adenine ([18F]-FAA) and 3′-deoxy-3′-[18F]fluoro-1-β-D-xylofuranosyl-adenine ([18F]FXA). Now we report their in vivo studies including blood clearance, biodistribution and micro-PET imaging in tumor-bearing nude mice. Methods: Tumors were grown in six weeks old athymic nude mice (Harlan, Indianapolis, IN) by inoculation of HT-29 cells, wild type cells in the left flank and transduced cells with HSV-tk on the right flank. When the tumor was about 1 cm in size, animals were injected with these radiotracers for in vivo studies, including blood clearance, micro-PET imaging and biodistribution. Results: Uptake of [18F]FAA in tumor was 3.3-fold higher than blood, with highest uptake in the spleen. Maximum uptake of [18F]FXA was observed in the heart compared to other organs. There was no tumor uptake of [18F]FXA. Biodistribution results were supported by micro-PET images, which also showed very high uptake of [18F]FAA in spleen and visualization of tumors, and high uptake of [18F]FXA in the heart. Conclusion: These results suggest that [18F]FAA may be useful for tumor imaging, while [18F]FXA may have potential as a heart imaging agent with PET. PMID:17383576

  6. Quantitative PET Imaging Using A Comprehensive Monte Carlo System Model

    SciTech Connect

    Southekal, S.; Vaska, P.; Southekal, s.; Purschke, M.L.; Schlyer, d.J.; Vaska, P.

    2011-10-01

    We present the complete image generation methodology developed for the RatCAP PET scanner, which can be extended to other PET systems for which a Monte Carlo-based system model is feasible. The miniature RatCAP presents a unique set of advantages as well as challenges for image processing, and a combination of conventional methods and novel ideas developed specifically for this tomograph have been implemented. The crux of our approach is a low-noise Monte Carlo-generated probability matrix with integrated corrections for all physical effects that impact PET image quality. The generation and optimization of this matrix are discussed in detail, along with the estimation of correction factors and their incorporation into the reconstruction framework. Phantom studies and Monte Carlo simulations are used to evaluate the reconstruction as well as individual corrections for random coincidences, photon scatter, attenuation, and detector efficiency variations in terms of bias and noise. Finally, a realistic rat brain phantom study reconstructed using this methodology is shown to recover >; 90% of the contrast for hot as well as cold regions. The goal has been to realize the potential of quantitative neuroreceptor imaging with the RatCAP.

  7. Hybrid PET/MR Imaging and Brain Connectivity.

    PubMed

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity. PMID:26973446

  8. Hybrid PET/MR Imaging and Brain Connectivity

    PubMed Central

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity. PMID:26973446

  9. High resolution PET breast imager with improved detection efficiency

    DOEpatents

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  10. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    PubMed Central

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanner. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present an LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3-D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the nonnegative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  11. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  12. PET/MR Imaging for Chest Diseases: Review of Initial Studies on Pulmonary Nodules and Lung Cancers.

    PubMed

    Yoon, Soon Ho; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Cheon, Gi Jeong

    2015-05-01

    PET/MR imaging, a new hybrid modality, is thought to have great potential in oncologic imaging because it provides advantages of both PET, which allows functional imaging capability, and MR imaging, which allows high spatial resolution imaging without radiation exposure. Despite the inherent weakness of MR imaging in lung imaging, initial studies on lung cancer revealed that PET/MR imaging showed highly correlated standardized uptake values of lesions and equivalent performance in terms of lesion detection and staging compared with PET/computed tomography (CT). Thus, to affirm the actual clinical benefits of dedicated PET/MR imaging over PET/CT, prospective studies with more patients are warranted. PMID:25952518

  13. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.

    PubMed

    Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P

    2016-04-01

    PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. PMID:26774390

  14. PET Imaging with 89Zr: From Radiochemistry to the Clinic

    PubMed Central

    Deri, Melissa A.; Zeglis, Brian M.; Francesconi, Lynn C.; Lewis, Jason S.

    2012-01-01

    The advent of antibody-based cancer therapeutics has led to the concomitant rise in the development of companion diagnostics for these therapies, particularly nuclear imaging agents. A number of radioisotopes have been employed for antibody-based PET and SPECT imaging, notably 64Cu, 124I, 111In, and 99mTc; in recent years, however, the field has increasingly focused on 89Zr, a radiometal with near ideal physical and chemical properties for immunoPET imaging. In the review at hand, we seek to provide a comprehensive portrait of the current state of 89Zr radiochemical and imaging research, including work into the production and purification of the isotope, the synthesis of new chelators, the development of new bioconjugation strategies, the creation of novel 89Zr-based agents for preclinical imaging studies, and the translation of 89Zr-labeled radiopharmaceuticals to the clinic. Particular attention will also be dedicated to emerging trends in the field, 89Zr-based imaging applications using vectors other than antibodies, the comparative advantages and limitations of 89Zr-based imaging compared to that with other isotopes, and areas that would benefit from more extensive investigation. At bottom, it is hoped that this review will provide both the experienced investigator and new scientist with a full and critical overview of this exciting and fast-developing field. PMID:22998840

  15. Patient-adaptive lesion metabolism analysis by dynamic PET images.

    PubMed

    Gao, Fei; Liu, Huafeng; Shi, Pengcheng

    2012-01-01

    Dynamic PET imaging provides important spatial-temporal information for metabolism analysis of organs and tissues, and generates a great reference for clinical diagnosis and pharmacokinetic analysis. Due to poor statistical properties of the measurement data in low count dynamic PET acquisition and disturbances from surrounding tissues, identifying small lesions inside the human body is still a challenging issue. The uncertainties in estimating the arterial input function will also limit the accuracy and reliability of the metabolism analysis of lesions. Furthermore, the sizes of the patients and the motions during PET acquisition will yield mismatch against general purpose reconstruction system matrix, this will also affect the quantitative accuracy of metabolism analyses of lesions. In this paper, we present a dynamic PET metabolism analysis framework by defining a patient adaptive system matrix to improve the lesion metabolism analysis. Both patient size information and potential small lesions are incorporated by simulations of phantoms of different sizes and individual point source responses. The new framework improves the quantitative accuracy of lesion metabolism analysis, and makes the lesion identification more precisely. The requirement of accurate input functions is also reduced. Experiments are conducted on Monte Carlo simulated data set for quantitative analysis and validation, and on real patient scans for assessment of clinical potential. PMID:23286175

  16. Advances in multimodality imaging through a hybrid PET/MRI system.

    PubMed

    Fatemi-Ardekani, Ali; Samavati, Navid; Tang, Jin; Kamath, Markad V

    2009-01-01

    The development of integrated imaging systems for magnetic resonance imaging (MRI) and positron emission tomography (PET) is currently being explored in a number of laboratories and industrial settings. PET/MRI scanners for both preclinical and human research applications are being developed. PET/MRI overcomes many limitations of PET/computed tomography (CT), such as limited tissue contrast and high radiation doses delivered to the patient or the animal being studied. In addition, recent PET/MRI designs allow for simultaneous rather than sequential acquisition of PET and MRI data, which could not have been achieved through a combination of PET and CT scanners. In a combined PET/CT scanner, while both scanners share a common patient bed, they are hard-wired back-to-back and therefore do not allow simultaneous data acquisition. While PET/MRI offers the possibility of novel imaging strategies, it also creates considerable challenges for acquiring artifact-free images from both modalities. In this review, we discuss motivations, challenges, and potential research applications of developing PET/MRI technology. A brief overview of both MRI and PET is presented and preclinical and clinical applications of PET/MRI are identified. Finally, issues and concerns about image quality, clinical practice, and economic feasibility are discussed. PMID:20565381

  17. PET Imaging of Epigenetic Influences on Alzheimer's Disease

    PubMed Central

    Couto, Paul J.; Millis, Richard M.

    2015-01-01

    The precise role of environment-gene interactions (epigenetics) in the development and progression of Alzheimer's disease (AD) is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB) images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD. PMID:26600964

  18. Motion compensation for PET image reconstruction using deformable tetrahedral meshes

    NASA Astrophysics Data System (ADS)

    Manescu, P.; Ladjal, H.; Azencot, J.; Beuve, M.; Shariat, B.

    2015-12-01

    Respiratory-induced organ motion is a technical challenge to PET imaging. This motion induces displacements and deformation of the organs tissues, which need to be taken into account when reconstructing the spatial radiation activity. Classical image-based methods that describe motion using deformable image registration (DIR) algorithms cannot fully take into account the non-reproducibility of the respiratory internal organ motion nor the tissue volume variations that occur during breathing. In order to overcome these limitations, various biomechanical models of the respiratory system have been developed in the past decade as an alternative to DIR approaches. In this paper, we describe a new method of correcting motion artefacts in PET image reconstruction adapted to motion estimation models such as those based on the finite element method. In contrast with the DIR-based approaches, the radiation activity was reconstructed on deforming tetrahedral meshes. For this, we have re-formulated the tomographic reconstruction problem by introducing a time-dependent system matrix based calculated using tetrahedral meshes instead of voxelized images. The MLEM algorithm was chosen as the reconstruction method. The simulations performed in this study show that the motion compensated reconstruction based on tetrahedral deformable meshes has the capability to correct motion artefacts. Results demonstrate that, in the case of complex deformations, when large volume variations occur, the developed tetrahedral based method is more appropriate than the classical DIR-based one. This method can be used, together with biomechanical models controlled by external surrogates, to correct motion artefacts in PET images and thus reducing the need for additional internal imaging during the acquisition.

  19. Image reconstruction for PET/CT scanners: past achievements and future challenges

    PubMed Central

    Tong, Shan; Alessio, Adam M; Kinahan, Paul E

    2011-01-01

    PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831

  20. Exploring the nature of atheroma and cardiovascular inflammation in vivo using positron emission tomography (PET).

    PubMed

    Buscombe, J R

    2015-09-01

    Positron emission tomography (PET) has become widely established in oncology. Subsequently, a whole new “toolbox” of tracers have become available to look at different aspects of cancer cell function and dysfunction, including cell protein production, DNA synthesis, hypoxia and angiogenesis. In the past 5 years, these tools have been used increasingly to look at the other great killer of the developed world: cardiovascular disease. For example, inflammation of the unstable plaque can be imaged with 18-fludeoxyglucose (18F-FDG), and this uptake can be quantified to show the effect that statins have in reducing inflammation and explains how these drugs can reduce the risk of stroke. 18F-FDG has also become established in diagnosing and monitoring large-vessel vasculitis and has now entered routine practice. Other agents such as gallium-68 (68Ga) octreotide have been shown to identify vascular inflammation possibly more specifically than 18FFDG.Hypoxia within the plaque can be imaged with 18F-fluoromisonidazole and resulting angiogenesis with 18F-RGD peptides. Active calcification such as that found in unstable atheromatous plaques can be imaged with 18F-NaF. PET imaging enables us to understand the mechanisms by which cardiovascular disease, including atheroma, leads tomorbidity and death and thus increases the chance of finding new and effective treatments. PMID:26110339

  1. Lung PET scan

    MedlinePlus

    ... emission tomography; PET - chest; PET - lung; PET - tumor imaging ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2015: ...

  2. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET

    NASA Astrophysics Data System (ADS)

    Goorden, Marlies C.; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J.

    2016-05-01

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning 99mTc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes (‘multiple-pinhole paths’ (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging 18F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.

  3. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging.

    PubMed

    Zhang, Jing

    2015-01-01

    Recent findings have led to a renewed interest and support for an active role of inflammation in neurodegenerative dementias and related neurologic disorders. Detection of neuroinflammation in vivo throughout the course of neurodegenerative diseases is of great clinical interest. Studies have shown that microglia activation (an indicator of neuroinflammation) may present at early stages of frontotemporal dementia (FTD), but the role of neuroinflammation in the pathogenesis of FTD is largely unknown. The first-generation translocator protein (TSPO) ligand ([(11)C]-PK11195) has been used to detect microglia activation in FTD, and the second-generation TSPO ligands have imaged neuroinflammation in vivo with improved pharmacokinetic properties. This paper reviews related literature and technical issues on mapping neuroinflammation in FTD with positron-emission tomography (PET) imaging. Early detection of neuroinflammation in FTD may identify new tools for diagnosis, novel treatment targets, and means to monitor therapeutic efficacy. More studies are needed to image and track neuroinflammation in FTD. It is anticipated that the advances of TSPO PET imaging will overcome technical difficulties, and molecular imaging of neuroinflammation will aid in the characterization of neuroinflammation in FTD. Such knowledge has the potential to shed light on the poorly understood pathogenesis of FTD and related dementias, and provide imaging markers to guide the development and assessment of new therapies. PMID:26022249

  4. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET).

    PubMed

    Apostolova, Ivayla; Wedel, Florian; Brenner, Winfried

    2016-01-01

    Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches. PMID:27557539

  5. Tumor hypoxia: a new PET imaging biomarker in clinical oncology.

    PubMed

    Tamaki, Nagara; Hirata, Kenji

    2016-08-01

    Tumor hypoxia is associated with tumor progression and resistance to various treatments. Noninvasive imaging using positron emission tomography (PET) and F-18-labeled fluoromisonidazole (FMISO) was recently introduced in order to define and quantify tumor hypoxia. The FMISO uptake was closely correlated with pimonidazole immunohistochemistry and hypoxia-inducible factor 1 expression in basic studies. Tumor hypoxia in head and neck cancers and other tumors in a clinical setting may also indicate resistance to radiation and/or chemotherapy. Hypoxic imaging may thus play a new and important role for suitable radiation planning, including dose escalation and dose reduction based on the image findings. Such radiation-dose painting based on the findings of hypoxia may require high-performance PET imaging to provide high target-to-background ratio images and an optimal quantitative parameter to define the hypoxic region. A multicenter prospective study using data from a large number of patients is also warranted to test the clinical value of hypoxic imaging. PMID:26577447

  6. Optimizing modelling in iterative image reconstruction for preclinical pinhole PET.

    PubMed

    Goorden, Marlies C; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J

    2016-05-21

    The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning (99m)Tc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes ('multiple-pinhole paths' (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging (18)F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport. PMID:27082049

  7. Simultaneous water activation and glucose metabolic rate imaging with PET

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Jeroen; Reader, Andrew J.

    2013-02-01

    A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org

  8. PET/MRI: THE NEXT GENERATION OF MULTI-MODALITY IMAGING?

    PubMed Central

    Pichler, Bernd; Wehrl, Hans F; Kolb, Armin; Judenhofer, Martin S

    2009-01-01

    Multi-modal imaging is now well-established in routine clinical practice. Especially in the field of Nuclear Medicine, new PET installations are comprised almost exclusively of combined PET/CT scanners rather than PET-only systems. However, PET/CT has certain notable shortcomings, including the inability to perform simultaneous data acquisition and the significant radiation dose to the patient contributed by CT. MRI offers, compared to CT, better contrast among soft tissues as well as functional-imaging capabilities. Therefore, the combination of PET with MRI provides many advantages which go far beyond simply combining functional PET information with structural MRI information. Many technical challenges, including possible interference between these modalities, have to be solved when combining PET and MRI and various approaches have been adapted to resolving these issues. Here we present an overview of current working prototypes of combined PET/MRI scanners from different groups. In addition, besides PET/MR images of mice, the first such images of a rat PET/MR, acquired with the first commercial clinical PET/MRI scanner, are presented. The combination of PET and MR is a promising tool in pre-clinical research and will certainly progress to clinical application. PMID:18396179

  9. Imaging of Scrub Typhus by PET/CT.

    PubMed

    Lv, Jing; Liu, Shuai; Pan, Yu; Ju, Huijun; Zhang, Yifan

    2015-10-01

    A 19-year-old man had an unexplained fever, dizziness, headache, fatigue, and pain in the scrotum. An FDG PET/CT imaging was acquired to assess fever of unknown origin. The images showed multiple foci of increased FDG activity in the enlarged lymph nodes in the body. In addition, mildly increased activity in the enlarged spleen and lung bases was also noted. The patient was eventually diagnosed with scrub typhus based on positive results of the Weil-Felix agglutination test, eschar in the scrotum, and effective therapy. PMID:26252322

  10. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  11. Will PET amyloid imaging lead to overdiagnosis of Alzheimer dementia?

    PubMed

    Dubroff, Jacob G; Nasrallah, Ilya M

    2015-08-01

    Alzheimer disease (AD), a progressive neurodegenerative disease that causes dementia, affects millions of elderly Americans and represents a growing problem with the aging of the population. There has been an increasing effort for improved and earlier diagnosis for AD. Several newly developed radiolabeled compounds targeting β-amyloid plaques, one of the major pathologic biomarkers of AD, have recently become available for clinical use. These radiopharmaceuticals allow for in vivo noninvasive visualization of abnormal β-amyloid deposits in the brain using positron emission tomography (PET). Amyloid PET imaging has demonstrated high sensitivity for pathologic cerebral amyloid deposition in multiple studies. Principal drawbacks to this new diagnostic test are declining specificity in older age groups and uncertain clinical role given lack of disease-modifying therapy for AD. Although there is strong evidence for the utility of amyloid PET in certain situations, detailed in a set of guidelines for appropriate use from the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging, the question of overdiagnosis, the diagnosis of a disease that would result in neither symptoms nor deaths, using this new medical tool needs to be carefully considered in light of efforts to secure reimbursement for the new technology that is already widely available for use as a clinical tool. PMID:26100192

  12. Microfluidics for Positron Emission Tomography (PET) Imaging Probe Development

    PubMed Central

    Wang, Ming-Wei; Lin, Wei-Yu; Liu, Kan; Masterman-Smith, Michael; Shen, Clifton Kwang-Fu

    2012-01-01

    Due to increased needs for Positron Emission Tomography (PET) scanning, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidic-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates and easier purification processes with greater yield and higher specific activity of desired probes. Several ‘proof-of-principle’ examples, along with basics of device architecture and operation, and potential limitations of each design are discussed here. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”), an easy-to-use, standalone, flexible, fully-automated radiochemical microfluidic platform can open up to simpler and more cost-effective procedures for molecular imaging using PET. PMID:20643021

  13. Imaging Microglial Activation with TSPO PET: Lighting Up Neurologic Diseases?

    PubMed

    Vivash, Lucy; O'Brien, Terence J

    2016-02-01

    Neuroinflammation is implicated in the pathogenesis of a wide range of neurologic and neuropsychiatric diseases. For over 20 years, (11)C-PK11195 PET, which aims to image expression of the translocator protein (TSPO) on activated microglia in the brain, has been used in preclinical and clinical research to investigate neuroinflammation in vivo in patients with brain diseases. However, (11)C-PK11195 suffers from two major limitations: its low brain permeability and high nonspecific and plasma binding results in a low signal-to-noise ratio, and the use of (11)C restricts its use to PET research centers and hospitals with an on-site cyclotron. In recent years, there has been a great deal of work into the development of new TSPO-specific PET radiotracers. This work has focused on fluorinated radiotracers, which would enable wider use and improved signal-to-noise ratios. These radiotracers have been utilized in preclinical and clinical studies of several neurologic diseases with varying degrees of success. Unfortunately, the application of these second-generation TSPO radiotracers has revealed additional problems, including a polymorphism that affects TSPO binding. In this review, the developments in TSPO imaging are discussed, and current limitations and suggestions for future directions are explored. PMID:26697963

  14. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    SciTech Connect

    Takahashi, Akihiko Sasaki, Masayuki; Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao; Baba, Shingo

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  15. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  16. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET.

    PubMed

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E; Rose, Sean; Sidky, Emil Y; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-21

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications. PMID:27452653

  17. Pretargeted PET Imaging Using a Site-Specifically Labeled Immunoconjugate.

    PubMed

    Cook, Brendon E; Adumeau, Pierre; Membreno, Rosemery; Carnazza, Kathryn E; Brand, Christian; Reiner, Thomas; Agnew, Brian J; Lewis, Jason S; Zeglis, Brian M

    2016-08-17

    In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate. PMID:27356886

  18. Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a Fibrin-targeted Dual PET/MR Probe—Feasibility Study in Rat Model

    PubMed Central

    Uppal, Ritika; Catana, Ciprian; Ay, Ilknur; Benner, Thomas; Sorensen, A. Gregory

    2011-01-01

    Purpose: To image thrombus by using magnetic resonance (MR) imaging and positron emission tomography (PET) simultaneously in a rat arterial thrombus model with a dual PET/MR probe. Materials and Methods: Animal studies were approved by the institutional animal use committee. A dual PET/MR probe was synthesized by means of partial exchange of gadolinium for copper 64 (64Cu) in the fibrin-targeted MR probe EP-2104R. A preformed 25-mm thrombus was injected into the right internal carotid artery of a rat. Imaging was performed with a clinical 3.0-T MR imager with an MR-compatible human PET imager. Rats (n = 5) were imaged prior to and after systemic administration of the dual probe by using simultaneous PET/MR. The organ distribution of 64Cu and gadolinium was determined ex vivo (n = 8), 2 hours after injection by using well counting and inductively coupled plasma mass spectrometry, respectively. Signal intensity ratios (SIRs) between the thrombus-containing and contralateral vessel were computed from PET images and MR data before and after probe administration. Results: The dual probe was synthesized with greater than 98% radiochemical purity. Thrombus enhancement was observed in all five animals at both MR (SIR[postprobe]/SIR[preprobe] = 1.71 ± 0.35, P = .0053) and PET (SIR = 1.85 ± 0.48, P = .0087) after injection of the dual PET/MR probe. Ex vivo analysis at 2 hours after injection showed the highest 64Cu and gadolinium concentrations, after the excretory organs (kidney and liver), to be in the thrombus. Conclusion: A fibrin-targeted dual PET/MR probe enables simultaneous, direct MR and PET imaging of thrombus. © RSNA, 2010 PMID:21177389

  19. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    SciTech Connect

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong; Ackerman, Jerome L.; Petibon, Yoann

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.

  20. Clinical PET-MR Imaging in Breast Cancer and Lung Cancer.

    PubMed

    Rice, Samuel L; Friedman, Kent P

    2016-10-01

    Hybrid imaging systems have dramatically improved thoracic oncology patient care over the past 2 decades. PET-MR imaging systems have the potential to further improve imaging of thoracic neoplasms, resulting in diagnostic and therapeutic advantages compared with current MR imaging and PET-computed tomography systems. Increasing soft tissue contrast and lesion sensitivity, improved image registration, reduced radiation exposure, and improved patient convenience are immediate clinical advantages. Multiparametric quantitative imaging capabilities of PET-MR imaging have the potential to improve understanding of the molecular mechanisms of cancer and treatment effects, potentially guiding improvements in diagnosis and therapy. PMID:27593245

  1. Feasibility of using respiration-averaged MR images for attenuation correction of cardiac PET/MR imaging.

    PubMed

    Ai, Hua; Pan, Tinsu

    2015-01-01

    Cardiac imaging is a promising application for combined PET/MR imaging. However, current MR imaging protocols for whole-body attenuation correction can produce spatial mismatch between PET and MR-derived attenuation data owing to a disparity between the two modalities' imaging speeds. We assessed the feasibility of using a respiration-averaged MR (AMR) method for attenuation correction of cardiac PET data in PET/MR images. First, to demonstrate the feasibility of motion imaging with MR, we used a 3T MR system and a two-dimensional fast spoiled gradient-recalled echo (SPGR) sequence to obtain AMR images ofa moving phantom. Then, we used the same sequence to obtain AMR images of a patient's thorax under free-breathing conditions. MR images were converted into PET attenuation maps using a three-class tissue segmentation method with two sets of predetermined CT numbers, one calculated from the patient-specific (PS) CT images and the other from a reference group (RG) containing 54 patient CT datasets. The MR-derived attenuation images were then used for attenuation correction of the cardiac PET data, which were compared to the PET data corrected with average CT (ACT) images. In the myocardium, the voxel-by-voxel differences and the differences in mean slice activity between the AMR-corrected PET data and the ACT-corrected PET data were found to be small (less than 7%). The use of AMR-derived attenuation images in place of ACT images for attenuation correction did not affect the summed stress score. These results demonstrate the feasibility of using the proposed SPGR-based MR imaging protocol to obtain patient AMR images and using those images for cardiac PET attenuation correction. Additional studies with more clinical data are warranted to further evaluate the method. PMID:26218995

  2. Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging

    PubMed Central

    Yu, Xingjian; Chen, Shuhang; Hu, Zhenghui; Liu, Meng; Chen, Yunmei; Shi, Pengcheng; Liu, Huafeng

    2015-01-01

    In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets. PMID:26540274

  3. Physiological imaging with PET and SPECT in Dementia

    SciTech Connect

    Jagust, W.J. . Dept. of Neurology Lawrence Berkeley Lab., CA )

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  4. Detector Technologies for Sub-500um High-Sensitivity PET Imaging via a Novel PET Insert Approach

    SciTech Connect

    Tai, Yuan-Chuan

    2011-12-21

    The objective of this project was to develop detector technologies that would enable an ultrahigh resolution Virtual Pinhole (VP) PET insert device to provide sub-500 um resolution high-sensitivity PET imaging of a mouse in the future. To achieve this goal, we proposed to develop and characterize finely pixellated cadmium zinc telluride (CZT) detectors and the associated readout electronics with the following specific aims: 1. Develop pixellated CZT detectors with 350um pitches using 2-5 mm substrates; characterize their spatial, energy and timing performance through experiments; and optimize the anode design with steering grid if found necessary. 2. Develop a high-bandwidth readout system using a novel ASIC that can be directly bonded to CZT detectors with 2048 anodes of 350um pitches; optimize its overall performance for VP-PET applications considering the tradeoffs between spatial resolution (in 3D), count rate capability, timing and energy resolutions. 3. Evaluate the performance of a VP-PET insert based on the proposed detector technology through Monte Carlo simulation and experimental validation. Overall, we have completed all three specific aims and demonstrated that pixelated CZT detectors of 350um pitches, combined with VP-PET geometry, can provide PET image resolution of ~460 um FWHM for small animal imaging applications.

  5. Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System

    PubMed Central

    Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.

    2015-01-01

    Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591

  6. Comparison of Imaging Characteristics of 124I PET for Determination of Optimal Energy Window on the Siemens Inveon PET

    PubMed Central

    Yu, A Ram; Kim, Hee-Joung; Lim, Sang Moo; Kim, Jin Su

    2016-01-01

    Purpose. 124I has a half-life of 4.2 days, which makes it suitable for imaging over several days over its uptake and washout phases. However, it has a low positron branching ratio (23%), because of prompt gamma coincidence due to high-energy γ-photons (602 to 1,691 keV), which are emitted in cascade with positrons. Methods. In this study, we investigated the optimal PET energy window for 124I PET based on image characteristics of reconstructed PET. Image characteristics such as nonuniformities, recovery coefficients (RCs), and the spillover ratios (SORs) of 124I were measured as described in NEMA NU 4-2008 standards. Results. The maximum and minimum prompt gamma coincidence fraction (PGF) were 33% and 2% in 350~800 and 400~590 keV, respectively. The difference between best and worst uniformity in the various energy windows was less than 1%. The lowest SORs of 124I were obtained at 350~750 keV in nonradioactive water compartment. Conclusion. Optimal energy window should be determined based on image characteristics. Our developed correction method would be useful for the correction of high-energy prompt gamma photon in 124I PET. In terms of the image quality of 124I PET, our findings indicate that an energy window of 350~750 keV would be optimal. PMID:27127782

  7. Fluorine-18 labeled maltohexaose images bacterial infections by PET

    PubMed Central

    Lee, Seungjun; Takemiya, Kiyoko; Rafi, Mohammad; Feng, Xuli; Weiss, Daiana; Wang, Xiaojian; Williams, Larry; Camp, Vernon M.; Eugene, Malveaux; Goodman, Mark; Murthy, Niren

    2015-01-01

    A new positron emission tomography (PET) tracer, composed of 18F labeled maltohexaose (MH18F), can image bacteria in vivo with a sensitivity and specificity that is orders of magnitude better than fluorodeoxyglucose (18FDG). MH18F can detect early stage infections composed of as few as 105 E.coli colony forming units (CFUs), and can identify drug resistance in bacteria in vivo. MH18F has the potential to improve the diagnosis of bacterial infections given its unique combination of high specificity and sensitivity for bacteria. PMID:25330976

  8. Molecular imaging of cancer with radiolabeled peptides and PET.

    PubMed

    Vāvere, Amy L; Rossin, Raffaella

    2012-06-01

    Radiolabeled peptides hold promise for diagnosis and therapy of cancer as well as for early monitoring of therapy outcomes, patient stratification, etc. This manuscript focuses on the development of peptides labeled with 18F, 64Cu, 68Ga and other positron-emitting radionuclides for PET imaging. The major techniques for radionuclide incorporation are briefly discussed. Then, examples of positron-emitting peptides targeting somatostatin receptors, integrins, gastrin-releasing peptide receptors, vasointestinal peptide receptors, melanocortin 1 receptors and others are reviewed. PMID:22292762

  9. Clinical PET Myocardial Perfusion Imaging and Flow Quantification.

    PubMed

    Juneau, Daniel; Erthal, Fernanda; Ohira, Hiroshi; Mc Ardle, Brian; Hessian, Renée; deKemp, Robert A; Beanlands, Rob S B

    2016-02-01

    Cardiac PET imaging is a powerful tool for the assessment of coronary artery disease. Many tracers with different advantages and disadvantages are available. It has several advantages over single photon emission computed tomography, including superior accuracy and lower radiation exposure. It provides powerful prognostic information, which can help to stratify patients and guide clinicians. The addition of flow quantification enables better detection of multivessel disease while providing incremental prognostic information. Flow quantification provides important physiologic information, which may be useful to individualize patient therapy. This approach is being applied in some centers, but requires standardization before it is more widely applied. PMID:26590781

  10. PET and MR imaging of neuroinflammation in hepatic encephalopathy.

    PubMed

    Su, Yun Yan; Yang, Gui Fen; Lu, Guang Ming; Wu, Shawn; Zhang, Long Jiang

    2015-02-01

    Neurological or psychiatric abnormalities associated with hepatic encephalopathy (HE) range from subclinical findings to coma. HE is commonly accompanied with the accumulation of toxic substances in bloodstream. The toxicity effect of hyperammonemia on astrocyte, such as the alteration in neurotransmission, oxidative stress, astrocyte swelling, is considered as an important factor in the pathogenesis of HE. Besides, neuroinflammation has captured more attention in the process of HE, but the mechanism of neuroinflammation leading to HE remains unclear. Molecular imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) targeting activated microglia and/ or other mediators appear to be promising noninvasive approaches to assess HE. This review focuses on novel imaging and therapy strategies of neuroinflammation in HE. PMID:25514861

  11. Radiolabeling of Nanoparticles and Polymers for PET Imaging

    PubMed Central

    Stockhofe, Katharina; Postema, Johannes M.; Schieferstein, Hanno; Ross, Tobias L.

    2014-01-01

    Nanomedicine has become an emerging field in imaging and therapy of malignancies. Nanodimensional drug delivery systems have already been used in the clinic, as carriers for sensitive chemotherapeutics or highly toxic substances. In addition, those nanodimensional structures are further able to carry and deliver radionuclides. In the development process, non-invasive imaging by means of positron emission tomography (PET) represents an ideal tool for investigations of pharmacological profiles and to find the optimal nanodimensional architecture of the aimed-at drug delivery system. Furthermore, in a personalized therapy approach, molecular imaging modalities are essential for patient screening/selection and monitoring. Hence, labeling methods for potential drug delivery systems are an indispensable need to provide the radiolabeled analog. In this review, we describe and discuss various approaches and methods for the labeling of potential drug delivery systems using positron emitters. PMID:24699244

  12. Attenuation correction of emission PET images with average CT: Interpolation from breath-hold CT

    NASA Astrophysics Data System (ADS)

    Huang, Tzung-Chi; Zhang, Geoffrey; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Tung-Hsin

    2011-05-01

    Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.

  13. Development of PET imaging-based dose-painting prescriptions

    NASA Astrophysics Data System (ADS)

    Bowen, Stephen R.

    Historically, prescriptions in radiation therapy are based on physician experience drawn from the results of extensive clinical trials in order to establish standard-of-care guidelines. The doses of radiation are generally uniform across target volumes to reflect a fixed level of local neoplastic disease control of the population mean. However, inter-patient and intra-tumor variation in response to uniform doses can result in diminished tumor control and poor clinical outcome for certain patients. Recent research endeavors are emphasizing the need to individualize prescriptions by incorporating patient-specific biological markers with prognostic and predictive value. Quantitative imaging with positron emission tomography (PET) of tumor glucose metabolism, cell proliferation, and hypoxia has been suggested as a sensitive and specific technique to tailor patient prescriptions in a manner that may significantly improve clinical outcome. The concept of prescribing and delivering non-uniform dose based on molecular imaging, termed dose painting, hinges on the establishment of a dose-response relationship at the image voxel scale that optimizes a particular clinical endpoint. This doctoral thesis presented two methods of defining dose-painting prescriptions based on PET imaging: the first was a heuristic model derivation of hypoxia dose-painting prescriptions in head-and-neck cancer patients; the second was an empirical imaging surrogate endpoint derivation of prescriptions in veterinary sinonasal cancer patients. The clinical implementation of these dose painting prescriptions was investigated, which emphasized treatment planning and delivery solutions. Lastly, a summary and discussion of the future of dose painting to forge links between tumor biology and clinical outcome was presented. The compelling dose painting concept is fast becoming a clinical reality that may positively impact cancer patient lives.

  14. Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E.

    1994-06-01

    In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

  15. Recent advances in PET imaging for evaluation of Parkinson's disease.

    PubMed

    Sioka, Chrissa; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2010-08-01

    Parkinson's disease (PD) consists of loss of pigmented dopamine-secreting neurons in the pars compacta of the midbrain substantia nigra. These neurons project to the striatum (putamen and caudate nucleus) and their loss leads to alterations in the activity of the neural circuits that regulate movement. In a simplified model, two dopamine pathways are involved: the direct pathway, which is mediated through facilitation of the D(1) receptors, and the indirect pathway through D(2) receptors (inhibitory). Positron emission tomography (PET) tracers to image the presynaptic sites of the dopaminergic system include 6-[(18)F]FDOPA and 6-[(18)F]FMT, [(11)C]dihydrotetrabenazine, [(11)C]nomifensine and various radiolabelled cocaine derivatives. Postsynaptically, for the dopamine D(1) subtype the most commonly used ligands are [(11)C]SCH 23390 or [(11)C]NNC 112 and for the D(2) subtype [(11)C]raclopride, [(11)C]MNPA and [(18)F]DMFP. PET is a sensitive and specific non-invasive molecular imaging technique that may be helpful for evaluation of PD and its differential diagnosis from other parkinsonian syndromes. PMID:20107789

  16. PET imaging predicts future body weight and cocaine preference

    SciTech Connect

    Michaelides M.; Wang G.; Michaelides M.; Thanos P.K. Kim R.; Cho J.; Ananth M.; Wang G.-J.; Volkow N.D.

    2011-08-28

    Deficits in dopamine D2/D3 receptor (D2R/D3R) binding availability using PET imaging have been reported in obese humans and rodents. Similar deficits have been reported in cocaine-addicts and cocaine-exposed primates. We found that D2R/D3R binding availability negatively correlated with measures of body weight at the time of scan (ventral striatum), at 1 (ventral striatum) and 2 months (dorsal and ventral striatum) post scan in rats. Cocaine preference was negatively correlated with D2R/D3R binding availability 2 months (ventral striatum) post scan. Our findings suggest that inherent deficits in striatal D2R/D3R signaling are related to obesity and drug addiction susceptibility and that ventral and dorsal striatum serve dissociable roles in maintaining weight gain and cocaine preference. Measuring D2R/D3R binding availability provides a way for assessing susceptibility to weight gain and cocaine abuse in rodents and given the translational nature of PET imaging, potentially primates and humans.

  17. QIN. Early experiences in establishing a regional quantitative imaging network for PET/CT clinical trials

    PubMed Central

    Doot, Robert K.; Thompson, Tove; Greer, Benjamin E.; Allberg, Keith C.; Linden, Hannah M.; Mankoff, David A.; Kinahan, Paul E.

    2012-01-01

    The Seattle Cancer Care Alliance (SCCA) is a Pacific Northwest regional network that enables patients from community cancer centers to participate in multicenter oncology clinical trials where patients can receive some trial-related procedures at their local center. Results of positron emission tomography (PET) scans performed at community cancer centers are not currently used in SCCA Network trials since clinical trials customarily accept results from only trial-accredited PET imaging centers located at academic and large hospitals. Oncologists would prefer the option of using standard clinical PET scans from Network sites in multicenter clinical trials to increase accrual of patients for whom additional travel requirements for imaging is a barrier to recruitment. In an effort to increase accrual of rural and other underserved populations to Network trials, researchers and clinicians at the University of Washington, SCCA and its Network are assessing feasibility of using PET scans from all Network sites in their oncology clinical trials. A feasibility study is required because the reproducibility of multicenter PET measurements ranges from approximately 3% to 40% at national academic centers. Early experiences from both national and local PET phantom imaging trials are discussed and next steps are proposed for including patient PET scans from the emerging regional quantitative imaging network in clinical trials. There are feasible methods to determine and characterize PET quantitation errors and improve data quality by either prospective scanner calibration or retrospective post hoc corrections. These methods should be developed and implemented in multicenter clinical trials employing quantitative PET imaging of patients. PMID:22795929

  18. Tau PET: the next frontier in molecular imaging of dementia.

    PubMed

    Xia, Chenjie; Dickerson, Bradford C

    2016-09-01

    We have arrived at an exciting juncture in dementia research: the second major pathological hallmark of Alzheimer's disease (AD)-tau-can now be seen for the first time in the living human brain. The major proteinopathies in AD include amyloid-β plaques and neurofibrillary tangles (NFTs) made of hyperphosphorylated paired helical filament (PHF) tau. Since its advent more than a decade ago, amyloid PET imaging has revolutionized the field of dementia research, enabling more confident diagnosis of the likely pathology in patients with a variety of clinical dementia syndromes, paving the way for the identification of people with preclinical or prodromal AD pathology, and serving as a minimally invasive molecular readout in clinical trials of putative disease-modifying interventions. Now that we are on the brink of a second revolution in molecular imaging in dementia, it is worth considering the likely potential impact of this development on the field. PMID:27334648

  19. Positron emission tomography: a technology assessment of PET imaging--past, present, and future.

    PubMed

    Frazee, David

    2004-01-01

    Emerging from its origins in the basements of research laboratories, positron emission tomography (PET), has established itself as a premier clinical imaging modality. It just took 50 years to get there. PET and the ever-popular, dual imaging modality combination of positron emission tomography/computed tomography (PET/CT) have taken hold of the spotlight at the national meetings of the Radiological Society of North America (RSNA) and the Society of Nuclear Medicine (SNM)--and they are not about to give it up. Many major imaging manufacturers--those companies that make up the majority of imaging sales in the US--now offer some type of PET and or PET/CT scanner. The technology of PET imaging continues to improve in image resolution, speed, and acceptance by its skeptical, but continually growing, referral base. With the increasing number of regional cyclotron facilities throughout the US each year, the abundance of mobile PET companies competing for business, and, most important, the number of clinical procedures that now qualify for reimbursement, more facilities now have the ability to implement PETimaging. This article discusses the progress of PET, from its beginnings 50 years ago, to where it is today--and the direction it is headed in the future. PMID:15633509

  20. PET imaging using gamma camera systems: a review.

    PubMed

    Jarritt, P H; Acton, P D

    1996-09-01

    Optimized positron emission tomographs have begun to demonstrate an ever widening range of clinical applications for positron labelled pharmaceuticals. This potential has led to a renewed interest in the use of the more widely available Anger gamma camera detectors for imaging the 511 keV photons from the positron decay process. Two forms of detection can be considered: either the detection of the 511 keV photons as single events or the detection of coincidence events from the opposed pair annihilation photons. The widespread availability of dual, opposed-pair, large field-of-view detectors has promoted the development of coincidence detection without collimation. With detector rotation, positron emission tomography (PET) can be performed. An alternative and lower cost option has been the universal development of ultra high-energy collimators to perform single photon emission tomography (SPET) with 511 keV photons. This review outlines the currently available performance characteristics of these two approaches and compares them with those from two- and three-dimensional PET optimized systems. The limitations on the development of these systems is discussed through the analysis of the principles underlying both single photon and coincidence detection. Preliminary clinical experience indicates that limitations in the performance characteristics of these systems has implications for their potential role, although applications in cardiology and oncology are being pursued. PMID:8895903

  1. Heterogeneity in stabilization phenomena in FLT PET images of canines.

    PubMed

    Simoncic, Urban; Jeraj, Robert

    2014-12-21

    3'-((18)F)fluoro-3'-deoxy-L-thymidine (FLT) is a PET marker of cellular proliferation. Its tissue uptake rate is often quantified with a Standardized Uptake Value (SUV), although kinetic analysis provides a more accurate quantification. The purpose of this study is to investigate the heterogeneity in FLT stabilization phenomena. The study was done on 15 canines with spontaneously occurring sinonasal tumours. They were imaged dynamically for 90 min with FLT PET/CT twice; before and during the radiotherapy. Images were analyzed for kinetics on a voxel basis through compartmental analysis. Stabilization curves were calculated as a time-dependant correlation between the time-dependant SUV and the kinetic parameters (voxel values within the tumour were correlated). Stabilization curves were analyzed for stabilization speed, maximal correlation and correlation decrease following the maximal correlation. These stabilization parameters were correlated with the region-averaged kinetic parameters. The FLT SUV was highly correlated with vasculature fraction immediately post-injection, followed by maximum in correlation with the perfusion/permeability. At later times post-injection the FLT SUV was highly correlated (Pearson correlation coefficient above 0.95) with the FLT influx parameter for cases with tumour-averaged SUV(30-50 min) above 2, while others were indeterminate (correlation coefficients from 0.1 to 0.97). All cases with highly correlated SUV and FLT influx parameter had correlation coefficient within 0.5% of its maximum in the period of 30-50 min post-injection. Stabilization time was inversely proportional to the FLT influx rate. Correlation between the FLT SUV and FLT influx parameter dropped at later times post-injection with drop being proportional to the dephosphorylation rate. The FLT was found to be metabolically stable in canines. FLT PET imaging protocol should define minimal and maximal FLT uptake period, which would be 30-50 min for our patients

  2. Heterogeneity in stabilization phenomena in FLT PET images of canines

    NASA Astrophysics Data System (ADS)

    Simoncic, Urban; Jeraj, Robert

    2014-12-01

    3ʹ-(18F)fluoro-3ʹ-deoxy-L-thymidine (FLT) is a PET marker of cellular proliferation. Its tissue uptake rate is often quantified with a Standardized Uptake Value (SUV), although kinetic analysis provides a more accurate quantification. The purpose of this study is to investigate the heterogeneity in FLT stabilization phenomena. The study was done on 15 canines with spontaneously occurring sinonasal tumours. They were imaged dynamically for 90 min with FLT PET/CT twice; before and during the radiotherapy. Images were analyzed for kinetics on a voxel basis through compartmental analysis. Stabilization curves were calculated as a time-dependant correlation between the time-dependant SUV and the kinetic parameters (voxel values within the tumour were correlated). Stabilization curves were analyzed for stabilization speed, maximal correlation and correlation decrease following the maximal correlation. These stabilization parameters were correlated with the region-averaged kinetic parameters. The FLT SUV was highly correlated with vasculature fraction immediately post-injection, followed by maximum in correlation with the perfusion/permeability. At later times post-injection the FLT SUV was highly correlated (Pearson correlation coefficient above 0.95) with the FLT influx parameter for cases with tumour-averaged SUV30-50 min above 2, while others were indeterminate (correlation coefficients from 0.1 to 0.97). All cases with highly correlated SUV and FLT influx parameter had correlation coefficient within 0.5% of its maximum in the period of 30-50 min post-injection. Stabilization time was inversely proportional to the FLT influx rate. Correlation between the FLT SUV and FLT influx parameter dropped at later times post-injection with drop being proportional to the dephosphorylation rate. The FLT was found to be metabolically stable in canines. FLT PET imaging protocol should define minimal and maximal FLT uptake period, which would be 30-50 min for our patients

  3. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning

    SciTech Connect

    Paulus, Daniel H.; Thorwath, Daniela; Schmidt, Holger; Quick, Harald H.

    2014-07-15

    Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. Methods: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrix RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. Results: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. Conclusions: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the

  4. PET Imaging of Skeletal Metastases and Its Role in Personalizing Further Management.

    PubMed

    Mahajan, Abhishek; Azad, Gurdip Kaur; Cook, Gary J

    2016-07-01

    In oncology, the skeleton is one of the most frequently encountered sites for metastatic disease and thus early detection not only has an impact on an individual patient's management but also on the overall outcome. Multiparametric and multimodal hybrid PET/computed tomography and PET/MR imaging have revolutionized imaging for bone metastases, but irrespective of tumor biology or morphology of the bone lesion it remains unclear which imaging modality is the most clinically relevant to guide individualized cancer care. In this review, we highlight the current clinical challenges of PET imaging in evaluation and quantification of skeletal tumor burden and its impact on personalized cancer management. PMID:27321034

  5. Imaging in head and neck squamous cell carcinoma: the potential role of PET/MRI

    PubMed Central

    Zaidi, Habib

    2014-01-01

    In head and neck oncology, the information provided by positron emission tomography (PET)/CT and MRI is often complementary because both the methods are based on different biophysical foundations. Therefore, combining diagnostic information from both modalities can provide additional diagnostic gain. Debates about integrated PET/MRI systems have become fashionable during the past few years, since the introduction and wide adoption of software-based multimodality image registration and fusion and the hardware implementation of integrated hybrid PET/MRI systems in pre-clinical and clinical settings. However, combining PET with MRI has proven to be technically and clinically more challenging than initially expected and, as such, research into the potential clinical role of PET/MRI in comparison with PET/CT, diffusion-weighted MRI (DW MRI) or the combination thereof is still ongoing. This review focuses on the clinical applications of PET/MRI in head and neck squamous cell carcinoma (HNSCC). We first discuss current evidence about the use of combined PET/CT and DW MRI, and, then, we explain the rationale and principles of PET/MR image fusion before summarizing the state-of-the-art knowledge regarding the diagnostic performance of PET/MRI in HNSCC. Feasibility and quantification issues, diagnostic pitfalls and challenges in clinical settings as well as ongoing research and potential future applications are also discussed. PMID:24649835

  6. EXPLORER: Changing the molecular imaging paradigm with total-body PET/CT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cherry, Simon R.; Badawi, Ramsey D.; Jones, Terry

    2016-04-01

    Positron emission tomography (PET) is the highest sensitivity technique for human whole-body imaging studies. However, current clinical PET scanners do not make full use of the available signal, as they only permit imaging of a 15-25 cm segment of the body at one time. Given the limited sensitive region, whole-body imaging with clinical PET scanners requires relatively long scan times and subjects the patient to higher than necessary radiation doses. The EXPLORER initiative aims to build a 2-meter axial length PET scanner to allow imaging the entire subject at once, capturing nearly the entire available PET signal. EXPLORER will acquire data with ~40-fold greater sensitivity leading to a six-fold increase in reconstructed signal-to-noise ratio for imaging the total body. Alternatively, total-body images with the EXPLORER scanner will be able to be acquired in ~30 seconds or with ~0.15 mSv injected dose, while maintaining current PET image quality. The superior sensitivity will open many new avenues for biomedical research. Specifically for cancer applications, high sensitivity PET will enable detection of smaller lesions. Additionally, greater sensitivity will allow imaging out to 10 half-lives of positron emitting radiotracers. This will enable 1) metabolic ultra-staging with FDG by extending the uptake and clearance time to 3-5 hours to significantly improve contrast and 2) improved kinetic imaging with short-lived radioisotopes such as C-11, crucial for drug development studies. Frequent imaging studies of the same subject to study disease progression or to track response to therapy will be possible with the low dose capabilities of the EXPLORER scanner. The low dose capabilities will also open up new imaging possibilities in pediatrics and adolescents to better study developmental disorders. This talk will review the basis for developing total-body PET, potential applications, and review progress to date in developing EXPLORER, the first total-body PET scanner.

  7. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  8. Hybrid CAD scheme for lung nodule detection in PET/CT images

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Fujita, Hiroshi; Tomita, Yoya; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo; Hayashi, Naoki; Tamai, Shinichi; Nishio, Masami; Chen, Wei-Ping; Kobayashi, Toshiki

    2011-03-01

    Lung cancer is the leading cause of death among male in the world. PET/CT is useful for the detection of early lung cancer since it is an imaging technique that has functional and anatomical information. However, radiologist has to examine using the large number of images. Therefore reduction of radiologist's load is strongly desired. In this study, hybrid CAD scheme has been proposed to detect lung nodule in PET/CT images. Proposed method detects the lung nodule from both CT and PET images. As for the detection in CT images, solitary nodules are detected using Cylindrical Filter that we developed. PET images are binarized based on standard uptake value (SUV); highly uptake regions are detected. FP reduction is performed using seven characteristic features and Support Vector Machine. Finally by integrating these results, candidate regions are obtained. In the experiment, we evaluated proposed method using 50 cases of PET/CT images obtained for the cancer-screening program. We evaluated true-positive fraction (TPF) and the number of false positives / case (FPs/case). As a result, TPFs for CT and PET were 0.67 and 0.38, respectively. By integrating the both results, TPF was improved to 0.80. These results indicate that our method may be useful for the lung cancer detection using PET/CT images.

  9. [2D imaging simulations of a small animal PET scanner with DOI measurement: jPET-RD.].

    PubMed

    Yamaya, Taiga; Kitamura, Keishi; Hagiwara, Naoki; Obi, Takashi; Hasegawa, Tomoyuki; Yoshida, Eiji; Tsuda, Tomoaki; Inadama, Naoko; Wada, Yasuhiro; Murayama, Hideo

    2005-01-01

    We present a preliminary study on the design of a high sensitivity small animal DOI-PET scanner: jPET-RD (for Rodents with DOI detectors), which will contribute to molecular imaging. The 4-layer DOI block detector for the jPET-RD that consists of scintillation crystals (1.4 mm x 1.4 mm x 4.5 mm) and a flat panel position-sensitive photomultiplier tube (52 mm x 52 mm) was previously proposed. In this paper, we investigate imaging performance of the jPET-RD through numerical simulations. The scanner has a hexagonal geometry with a small diameter and a large axial aperture. Therefore DOI information is expected to improve resolution uniformity in the whole field of view (FOV). We simulate the scanner for various parameters of the number of DOI channels and the crystal length. Simulated data are reconstructed using the maximum likelihood expectation maximization with accurate system modeling. The trade-off results between background noise and spatial resolution show that only shortening the length of crystal does not improve the trade-off at all, and that 4-layer DOI information improves uniformity of spatial resolution in the whole FOV. Excellent performance of the jPET-RD can be expected based on the numerical simulation results. PMID:15961924

  10. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging

    PubMed Central

    Li, Yusheng; Matej, Samuel; Metzler, Scott D.

    2014-01-01

    Purpose: Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. Methods: The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Results: Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The

  11. Colorectal Cancer Liver Metastases: Diagnostic Performance and Prognostic Value of PET/MR Imaging.

    PubMed

    Lee, Dong Ho; Lee, Jeong Min; Hur, Bo Yun; Joo, Ijin; Yi, Nam-Joon; Suh, Kyung-Suk; Kang, Keon Wook; Han, Joon Koo

    2016-09-01

    Purpose To evaluate the diagnostic performance of combined positron emission tomography (PET) and magnetic resonace (MR) imaging (hereafter, PET/MR imaging) in the detection of liver metastases and to assess its prognostic value in patients with colorectal cancer liver metastases (CRLMs). Materials and Methods Institutional review board approval was obtained for this retrospective study, with waiver of informed consent. A total of 55 patients with 98 CRLMs who underwent PET/MR imaging and multidetector computed tomography (CT) between January 2013 and June 2014 comprised the study population. Of these patients, 34 underwent hepatic resection, 18 of whom also underwent neoadjuvant chemotherapy (NAC). Two board-certificated radiologists independently assessed the four image sets (ie, multidetector CT, whole-body PET, MR imaging with a liver-specific contrast agent [hereafter, EOB MR imaging], and PET/MR imaging). To compare the diagnostic performance of each imaging modality, jackknife alternative free-response receiver operating characteristic and generalized estimating equations were used. To assess prognostic value, recurrence-free survival of the 18 patients who underwent NAC followed by hepatic resection was analyzed by using the Kaplan-Meier method and log-rank test. Results The reader-averaged figure of merit of PET/MR imaging was significantly higher than that of either multidetector CT (P = .003) or PET (P = .020) in the detection of CRLMs. However, no significant difference was observed between figure of merit for PET/MR imaging and that for EOB MR imaging (P = .231). After NAC, six of the 18 patients had isometabolic CRLMs on PET images, and 12 patients had hypermetabolic CRLMs. The 1-year recurrence-free survival rate was 80% in patients with isometabolic CRLMs and 14% in patients with hypermetabolic CRLMs, showing a significant difference (P = .026). Conclusion PET/MR imaging can yield significantly higher diagnostic performance in the detection of CRLMs

  12. Respiration-Averaged CT for Attenuation Correction of PET Images – Impact on PET Texture Features in Non-Small Cell Lung Cancer Patients

    PubMed Central

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li

    2016-01-01

    Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211

  13. Edge-Preserving PET Image Reconstruction Using Trust Optimization Transfer

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Iterative image reconstruction for positron emission tomography (PET) can improve image quality by using spatial regularization. The most commonly used quadratic penalty often over-smoothes sharp edges and fine features in reconstructed images, while non-quadratic penalties can preserve edges and achieve higher contrast recovery. Existing optimization algorithms such as the expectation maximization (EM) and preconditioned conjugate gradient (PCG) algorithms work well for the quadratic penalty, but are less efficient for high-curvature or non-smooth edge-preserving regularizations. This paper proposes a new algorithm to accelerate edge-preserving image reconstruction by using two strategies: trust surrogate and optimization transfer descent. Trust surrogate approximates the original penalty by a smoother function at each iteration, but guarantees the algorithm to descend monotonically; Optimization transfer descent accelerates a conventional optimization transfer algorithm by using conjugate gradient and line search. Results of computer simulations and real 3D data show that the proposed algorithm converges much faster than the conventional EM and PCG for smooth edge-preserving regularization and can also be more efficient than the current state-of-art algorithms for the non-smooth ℓ1 regularization. PMID:25438302

  14. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    SciTech Connect

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  15. Evolution of imaging in rectal cancer: multimodality imaging with MDCT, MRI, and PET.

    PubMed

    Raman, Siva P; Chen, Yifei; Fishman, Elliot K

    2015-04-01

    Magnetic resonance imaging (MRI), multidetector computed tomography (MDCT), and positron emission tomography (PET) are complementary imaging modalities in the preoperative staging of patients with rectal cancer, and each offers their own individual strengths and weaknesses. MRI is the best available radiologic modality for the local staging of rectal cancers, and can play an important role in accurately distinguishing which patients should receive preoperative chemoradiation prior to total mesorectal excision. Alternatively, both MDCT and PET are considered primary modalities when performing preoperative distant staging, but are limited in their ability to locally stage rectal malignancies. This review details the role of each of these three modalities in rectal cancer staging, and how the three imaging modalities can be used in conjunction. PMID:25830037

  16. Evolution of imaging in rectal cancer: multimodality imaging with MDCT, MRI, and PET

    PubMed Central

    Chen, Yifei; Fishman, Elliot K.

    2015-01-01

    Magnetic resonance imaging (MRI), multidetector computed tomography (MDCT), and positron emission tomography (PET) are complementary imaging modalities in the preoperative staging of patients with rectal cancer, and each offers their own individual strengths and weaknesses. MRI is the best available radiologic modality for the local staging of rectal cancers, and can play an important role in accurately distinguishing which patients should receive preoperative chemoradiation prior to total mesorectal excision. Alternatively, both MDCT and PET are considered primary modalities when performing preoperative distant staging, but are limited in their ability to locally stage rectal malignancies. This review details the role of each of these three modalities in rectal cancer staging, and how the three imaging modalities can be used in conjunction. PMID:25830037

  17. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease

    PubMed Central

    Sehlin, Dag; Fang, Xiaotian T.; Cato, Linda; Antoni, Gunnar; Lannfelt, Lars; Syvänen, Stina

    2016-01-01

    Owing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood–brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimer's disease. The amyloid β (Aβ) antibody mAb158 is radiolabelled and conjugated to a transferrin receptor antibody to enable receptor-mediated transcytosis across the BBB. PET imaging of two different mouse models with Aβ pathology clearly visualize Aβ in the brain. The PET signal increases with age and correlates closely with brain Aβ levels. Thus, we demonstrate that antibody-based PET ligands can be successfully used for brain imaging. PMID:26892305

  18. Analytical modeling of PET imaging with correlated functional and structural images

    SciTech Connect

    Ma, Y.; Evans, A.C.

    1996-12-31

    Objective evaluation of dynamic imaging protocols needs a realistic simulation tool to model the data acquisition and image reconstruction of a PET system. Availability of correlated functional and anatomical images in many centers allows the creation of highly realistic objects to represent brain activity and attenuation distribution for each study. We have developed an analytical model incorporating key physical factors inherent in coincidence detection along with spatially variant 3-D detector response and detection efficiency. In this paper we use MR and PET data of a 3-D Hoffman brain phantom to demonstrate and validate our simulation methods. The simulated total projection, attenuation factor, and scatter profiles are in excellent agreement with the experimental measurements. Regional analysis shows a discrepancy of {le} 8.5 % in the gray matter and white matter activity concentrations between the real and simulated images. Our results also reveal quantitative distortions due to partial volume effects with the same magnitude as in clinical PET scans. This tool is particularly useful in evaluating projection data processing and image reconstruction algorithms.

  19. PET Imaging and biodistribution of chemically modified bacteriophage MS2.

    PubMed

    Farkas, Michelle E; Aanei, Ioana L; Behrens, Christopher R; Tong, Gary J; Murphy, Stephanie T; O'Neil, James P; Francis, Matthew B

    2013-01-01

    The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups. PMID:23214968

  20. RT_Image: an open-source tool for investigating PET in radiation oncology.

    PubMed

    Graves, Edward E; Quon, Andrew; Loo, Billy W

    2007-04-01

    Positron emission tomography (PET) has emerged as a valuable imaging modality for the diagnosis and staging of cancer. However, despite evidence that PET may be useful for defining target volumes for radiation therapy, no standardized methodology for accomplishing this task exists. To facilitate the investigation of the utility of PET imaging in radiotherapy treatment planning and accelerate its integration into clinical radiation oncology, we have developed software for exploratory analysis and segmentation of functional imaging datasets. The application, RT_Image, allows display of multiple imaging datasets and associated three-dimensional regions-of-interest (ROIs) at arbitrary view angles and fields of view. It also includes semi-automated image segmentation tools for defining metabolically active tumor volumes that may aid creation of target volumes for treatment planning. RT_Image is DICOM compliant, permitting the transfer of imaging data and DICOM-RT structure sets between the application and treatment planning software. RT_Image has been used by radiation oncologists, nuclear medicine physicians, and radiation physicists to analyze over 200 PET datasets. Novel segmentation techniques have been implemented within this programming framework for therapy planning and for evaluation of molecular imaging-derived parameters as prognostic indicators. RT_Image represents a freely-available software base on which further investigations of the utlity of PET and molecular imaging in radiation oncology may be built. The development of tools such as this is critical in order to realize the potential of molecular imaging-guided radiation therapy. PMID:17375973

  1. FDG PET/MRI Imaging of an Angiosarcoma in a Popliteal Aneurysm and Tibial Head After Popliteal Graft.

    PubMed

    Bader, Thomas; Strobel, Klaus; Egger-Sigg, Michèle; Diebold, Joachim; Beck, Martin

    2016-09-01

    Angiosarcomas are rare aggressive neoplasms with a wide variety of anatomic locations, one third of them presenting multifocal. Molecular imaging with PET/CT and PET/MR plays an emerging role in staging sarcomas. This case demonstrates the value of PET/MR imaging of an angiosarcoma with involvement of the tibial head and a popliteal aneurysm with histopathologic correlation. PMID:27405038

  2. What Does PET Imaging Add to Conventional Staging of Head and Neck Cancer Patients?

    SciTech Connect

    Pohar, Surjeet . E-mail: poharss@evms.edu; Brown, Robert B.S.; Newman, Nancy; Koniarczyk, Michael; Hsu, Jack; Feiglin, David

    2007-06-01

    Purpose: To determine the value of PET scans in the staging of patients with head and neck carcinoma. Methods and Materials: The charts of 25 patients who underwent neck dissection, computed tomography (CT) scan, and F-18-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging as part of their initial work-up for a head and neck squamous cell cancer between 2000-2003 were reviewed. All patients underwent clinical examination, triple endoscopy, and chest radiograph as part of their clinical staging, adhering to American Joint Commission for Cancer criteria. In addition to the clinical nodal (N) stage, PET findings were incorporated to determine a second type of N staging: clinical N + PET stage. The number of neck sides and nodal levels involved on CT or PET and on pathologic examination were recorded. Results: The sensitivity and specificity for detection of nodal disease were similar for CT and FDG-PET. Positive and negative likelihood ratios were similar for both diagnostic tests. None of our 25 patients had unsuspected distant disease detected by PET. Conclusion: The addition of PET imaging did not improve diagnostic accuracy in our patients compared with CT. PET scanning did not alter clinical management in any of the patients.

  3. Transmission imaging for integrated PET-MR systems

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer L.; Fuin, Niccolò; Levine, Michael A.; Catana, Ciprian

    2016-08-01

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method’s performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with 18F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm‑1 was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly

  4. Transmission imaging for integrated PET-MR systems.

    PubMed

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-01

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly

  5. Online image corrections applied to a dedicated breast PET

    NASA Astrophysics Data System (ADS)

    Moliner, L.; González, A. J.; Correcher, C.; Benlloch, J. M.

    2016-03-01

    In this work, we present the online implementation of attenuation, scatter and random corrections using the LMEM algorithm for the dedicated breast PET named MAMMI. The attenuation correction is based on image segmentation, the random correction is derived from the rate estimation of single photon events and the scatter correction is determined by the dual energy window method. These three corrections are estimated and implemented in the reconstruction process without almost increasing the reconstruction time. The image quality is evaluated in terms of image uniformity and contrast using the reconstructed images of two custom-designed phantoms. When we apply the three corrections, the measured uniformity in the whole field of view is (10± 1)% compared to (17± 1)% without corrections. The adapted recovery contrast coefficients (normalized to 1) are approximately (0.80± 0.02) in hot areas, improving the value of (0.66± 0.07) obtained without corrections. The reconstruction processing time is also studied, finding an increment of around 7% when the three corrections are simultaneously included. Finally, 25 breast image datasets are also analyzed. The average acquisition time per patient is around 1200 seconds and the reconstruction times with corrections vary from 100 to 400 seconds using (1× 1× 1) mm3 voxel size and from 300 to 1800 seconds using (0.5× 0.5× 0.5) mm3 voxel size. These reconstructions are performed with a virtual pixel size of (1.6× 1.6) mm2 and twelve iterations.

  6. Evaluating image reconstruction methods for tumor detection performance in whole-body PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Kinahan, Paul E.; Comtat, Claude; Lin, Michael; Swensson, Richard G.; Trebossen, Regine; Bendriem, Bernard

    2000-04-01

    This work presents initial results from observer detection performance studies using the same volume visualization software tools that are used in clinical PET oncology imaging. Research into the FORE+OSEM and FORE+AWOSEM statistical image reconstruction methods tailored to whole- body 3D PET oncology imaging have indicated potential improvements in image SNR compared to currently used analytic reconstruction methods (FBP). To assess the resulting impact of these reconstruction methods on the performance of human observers in detecting and localizing tumors, we use a non- Monte Carlo technique to generate multiple statistically accurate realizations of 3D whole-body PET data, based on an extended MCAT phantom and with clinically realistic levels of statistical noise. For each realization, we add a fixed number of randomly located 1 cm diam. lesions whose contrast is varied among pre-calibrated values so that the range of true positive fractions is well sampled. The observer is told the number of tumors and, similar to the AFROC method, asked to localize all of them. The true positive fraction for the three algorithms (FBP, FORE+OSEM, FORE+AWOSEM) as a function of lesion contrast is calculated, although other protocols could be compared. A confidence level for each tumor is also recorded for incorporation into later AFROC analysis.

  7. A perspective on the future role of brain pet imaging in exercise science.

    PubMed

    Boecker, Henning; Drzezga, Alexander

    2016-05-01

    Positron Emission Tomography (PET) bears a unique potential for examining the effects of physical exercise (acute or chronic) within the central nervous system in vivo, including cerebral metabolism, neuroreceptor occupancy, and neurotransmission. However, application of Neuro-PET in human exercise science is as yet surprisingly sparse. To date the field has been dominated by non-invasive neuroelectrical techniques (EEG, MEG) and structural/functional magnetic resonance imaging (sMRI/fMRI). Despite PET having certain inherent disadvantages, in particular radiation exposure and high costs limiting applicability at large scale, certain research questions in human exercise science can exclusively be addressed with PET: The "metabolic trapping" properties of (18)F-FDG PET as the most commonly used PET-tracer allow examining the neuronal mechanisms underlying various forms of acute exercise in a rather unconstrained manner, i.e. under realistic training scenarios outside the scanner environment. Beyond acute effects, (18)F-FDG PET measurements under resting conditions have a strong prospective for unraveling the influence of regular physical activity on neuronal integrity and potentially neuroprotective mechanisms in vivo, which is of special interest for aging and dementia research. Quantification of cerebral glucose metabolism may allow determining the metabolic effects of exercise interventions in the entire human brain and relating the regional cerebral rate of glucose metabolism (rCMRglc) with behavioral, neuropsychological, and physiological measures. Apart from FDG-PET, particularly interesting applications comprise PET ligand studies that focus on dopaminergic and opioidergic neurotransmission, both key transmitter systems for exercise-related psychophysiological effects, including mood changes, reward processing, antinociception, and in its most extreme form 'exercise dependence'. PET ligand displacement approaches even allow quantifying specific endogenous

  8. Comparison of PET-CT and Conventional Imaging in Staging Pediatric Rhabdomyosarcoma

    PubMed Central

    Federico, Sara M.; Spunt, Sheri L.; Krasin, Matthew J.; Billups, Catherine A.; Wu, Jianrong; Shulkin, Barry; Mandell, Gerald; McCarville, M. Beth

    2014-01-01

    Purpose To compare PET-CT to conventional imaging (CI) in staging pediatric rhabdomyosarcoma (RMS). Subjects and Methods Thirty subjects with RMS, median age 7.3 years, underwent PET-CT before therapy. PET-CTs and CI were independently reviewed by two radiologists and two nuclear medicine physician to determine the presence of nodal, pulmonary, bone, bone marrow and other sites of metastasis. Accuracy, sensitivity and specificity of PET-CT for detecting metastases was compared to CI using biopsy and clinical follow-up as reference standards. Maximum standardized uptake values (SUVmax) of primary tumors, lymph nodes and pulmonary nodules were measured. Results Primary tumors had an average SUVmax of 7.2 (range, 2.5-19.2). Accuracy rates for 17 subjects with nodal disease were 95% for PET-CT and 49% for CI. PET-CT had 94% sensitivity and 100% specificity for nodal disease. Of 7 pulmonary nodules detected by CI, 3 were not identified by PET-CT, 2 were indeterminate by PET-CT, and 1 was malignant with a SUVmax (3.4) > twice that of benign nodules. Two subjects had bone disease; both were identified by PET-CT but only 1 by CI. Four subjects had bone marrow disease, 2 had positive PET-CTs but none had positive CI. Two subjects had soft tissue metastases detected by PET-CT but not CI. Conclusion PET-CT performed better than CI in identifying nodal, bone, bone marrow, and soft tissue disease in children with RMS. CI remains essential for detection of pulmonary nodules. We recommend PET-CT for routine staging of children with RMS. CI with Tc99m bone scan can be eliminated. PMID:23255260

  9. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR)

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10–40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.

  10. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).

    PubMed

    Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing

    2016-08-01

    In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378

  11. Characterization of a PET Camera Optimized for ProstateImaging

    SciTech Connect

    Huber, Jennifer S.; Choong, Woon-Seng; Moses, William W.; Qi,Jinyi; Hu, Jicun; Wang, G.C.; Wilson, David; Oh, Sang; Huesman, RonaldH.; Derenzo, Stephen E.

    2005-11-11

    We present the characterization of a positron emission tomograph for prostate imaging that centers a patient between a pair of external curved detector banks (ellipse: 45 cm minor, 70 cm major axis). The distance between detector banks adjusts to allow patient access and to position the detectors as closely as possible for maximum sensitivity with patients of various sizes. Each bank is composed of two axial rows of 20 HR+ block detectors for a total of 80 detectors in the camera. The individual detectors are angled in the transaxial plane to point towards the prostate to reduce resolution degradation in that region. The detectors are read out by modified HRRT data acquisition electronics. Compared to a standard whole-body PET camera, our dedicated-prostate camera has the same sensitivity and resolution, less background (less randoms and lower scatter fraction) and a lower cost. We have completed construction of the camera. Characterization data and reconstructed images of several phantoms are shown. Sensitivity of a point source in the center is 946 cps/mu Ci. Spatial resolution is 4 mm FWHM in the central region.

  12. Towards continualized task-based resolution modeling in PET imaging

    NASA Astrophysics Data System (ADS)

    Ashrafinia, Saeed; Karakatsanis, Nicolas; Mohy-ud-Din, Hassan; Rahmim, Arman

    2014-03-01

    We propose a generalized resolution modeling (RM) framework, including extensive task-based optimization, wherein we continualize the conventionally discrete framework of RM vs. no RM, to include varying degrees of RM. The proposed framework has the advantage of providing a trade-off between the enhanced contrast recovery by RM and the reduced inter-voxel correlations in the absence of RM, and to enable improved task performance. The investigated context was that of oncologic lung FDG PET imaging. Given a realistic blurring kernel of FWHM h (`true PSF'), we performed iterative EM including RM using a wide range of `modeled PSF' kernels with varying widths h. In our simulations, h = 6mm, while h varied from 0 (no RM) to 12mm, thus considering both underestimation and overestimation of the true PSF. Detection task performance was performed using prewhitened (PWMF) and nonprewhitened matched filter (NPWMF) observers. It was demonstrated that an underestimated resolution blur (h = 4mm) enhanced task performance, while slight over-estimation (h = 7mm) also achieved enhanced performance. The latter is ironically attributed to the presence of ringing artifacts. Nonetheless, in the case of the NPWMF, the increasing intervoxel correlations with increasing values of h degrade detection task performance, and underestimation of the true PSF provides the optimal task performance. The proposed framework also achieves significant improvement of reproducibility, which is critical in quantitative imaging tasks such as treatment response monitoring.

  13. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  14. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  15. Automatic arm removal in PET and CT images for deformable registration.

    PubMed

    Gong, Lixin; Pathak, Sayan; Alessio, Adam; Kinahan, Paul

    2006-12-01

    Positron emission tomography (PET) imaging is rapidly expanding its role in clinical practice for cancer management. The high sensitivity of PET for functional abnormalities associated with cancer can be confounded by the minimal anatomical information it provides for cancer localization. Computed tomography (CT) provides detailed anatomical information but is less sensitive to pathologies than PET. Thus, combining (i.e., registering) PET and CT images would enable both accurate and sensitive cancer localization with respect to detailed patient anatomy. An additional application area of registration is to align CT-CT scans from serial studies on a patient on a PET/CT scanner to facilitate accurate assessment of therapeutic response from the co-aligned PET images. To facilitate image fusion, we are developing a deformable registration software system using mutual information and a B-spline model of the deformation. When applying deformable registration to whole body images, one of the obstacles is that the arms are present in PET images but not in CT images or are in different positions in serial CT images. This feature mismatch requires a preprocessing step to remove the arms where present and thus adds a manual step in an otherwise automatic algorithm. In this paper, we present a simple yet effective method for automatic arm removal. We demonstrate the efficiency and robustness of this algorithm on both clinical PET and CT images. By streamlining the entire registration process, we expect that the fusion technology will soon find its way into clinics, greatly benefiting cancer diagnosis, staging, therapy planning and treatment monitoring. PMID:17084065

  16. A pretargeting system for tumor PET imaging and radioimmunotherapy.

    PubMed

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Frampas, Eric; Faivre-Chauvet, Alain; Rauscher, Aurore; Sharkey, Robert M; Goldenberg, David M; Chatal, Jean-François; Barbet, Jacques

    2015-01-01

    Labeled antibodies, as well as their fragments and antibody-derived recombinant constructs, have long been proposed as general vectors to target radionuclides to tumor lesions for imaging and therapy. They have indeed shown promise in both imaging and therapeutic applications, but they have not fulfilled the original expectations of achieving sufficient image contrast for tumor detection or sufficient radiation dose delivered to tumors for therapy. Pretargeting was originally developed for tumor immunoscintigraphy. It was assumed that directly-radiolabled antibodies could be replaced by an unlabeled immunoconjugate capable of binding both a tumor-specific antigen and a small molecular weight molecule. The small molecular weight molecule would carry the radioactive payload and would be injected after the bispecific immunoconjugate. It has been demonstrated that this approach does allow for both antibody-specific recognition and fast clearance of the radioactive molecule, thus resulting in improved tumor-to-normal tissue contrast ratios. It was subsequently shown that pretargeting also held promise for tumor therapy, translating improved tumor-to-normal tissue contrast ratios into more specific delivery of absorbed radiation doses. Many technical approaches have been proposed to implement pretargeting, and two have been extensively documented. One is based on the avidin-biotin system, and the other on bispecific antibodies binding a tumor-specific antigen and a hapten. Both have been studied in preclinical models, as well as in several clinical studies, and have shown improved targeting efficiency. This article reviews the historical and recent preclinical and clinical advances in the use of bispecific-antibody-based pretargeting for radioimmunodetection and radioimmunotherapy of cancer. The results of recent evaluation of pretargeting in PET imaging also are discussed. PMID:25873896

  17. A pretargeting system for tumor PET imaging and radioimmunotherapy

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Frampas, Eric; Faivre-Chauvet, Alain; Rauscher, Aurore; Sharkey, Robert M.; Goldenberg, David M.; Chatal, Jean-François; Barbet, Jacques

    2015-01-01

    Labeled antibodies, as well as their fragments and antibody-derived recombinant constructs, have long been proposed as general vectors to target radionuclides to tumor lesions for imaging and therapy. They have indeed shown promise in both imaging and therapeutic applications, but they have not fulfilled the original expectations of achieving sufficient image contrast for tumor detection or sufficient radiation dose delivered to tumors for therapy. Pretargeting was originally developed for tumor immunoscintigraphy. It was assumed that directly-radiolabled antibodies could be replaced by an unlabeled immunoconjugate capable of binding both a tumor-specific antigen and a small molecular weight molecule. The small molecular weight molecule would carry the radioactive payload and would be injected after the bispecific immunoconjugate. It has been demonstrated that this approach does allow for both antibody-specific recognition and fast clearance of the radioactive molecule, thus resulting in improved tumor-to-normal tissue contrast ratios. It was subsequently shown that pretargeting also held promise for tumor therapy, translating improved tumor-to-normal tissue contrast ratios into more specific delivery of absorbed radiation doses. Many technical approaches have been proposed to implement pretargeting, and two have been extensively documented. One is based on the avidin-biotin system, and the other on bispecific antibodies binding a tumor-specific antigen and a hapten. Both have been studied in preclinical models, as well as in several clinical studies, and have shown improved targeting efficiency. This article reviews the historical and recent preclinical and clinical advances in the use of bispecific-antibody-based pretargeting for radioimmunodetection and radioimmunotherapy of cancer. The results of recent evaluation of pretargeting in PET imaging also are discussed. PMID:25873896

  18. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging

    SciTech Connect

    Abdoli, Mehrsima; Dierckx, Rudi A. J. O.; Zaidi, Habib

    2012-06-15

    Metallic implants are known to generate bright and dark streaking artifacts in x-ray computed tomography (CT) images, which in turn propagate to corresponding functional positron emission tomography (PET) images during the CT-based attenuation correction procedure commonly used on hybrid clinical PET/CT scanners. Therefore, visual artifacts and overestimation and/or underestimation of the tracer uptake in regions adjacent to metallic implants are likely to occur and as such, inaccurate quantification of the tracer uptake and potential erroneous clinical interpretation of PET images is expected. Accurate quantification of PET data requires metal artifact reduction (MAR) of the CT images prior to the application of the CT-based attenuation correction procedure. In this review, the origins of metallic artifacts and their impact on clinical PET/CT imaging are discussed. Moreover, a brief overview of proposed MAR methods and their advantages and drawbacks is presented. Although most of the presented MAR methods are mainly developed for diagnostic CT imaging, their potential application in PET/CT imaging is highlighted. The challenges associated with comparative evaluation of these methods in a clinical environment in the absence of a gold standard are also discussed.

  19. Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET

    NASA Astrophysics Data System (ADS)

    Rezaei, Ahmadreza; Michel, Christian; Casey, Michael E.; Nuyts, Johan

    2016-02-01

    Previously, maximum-likelihood methods have been proposed to jointly estimate the activity image and the attenuation image or the attenuation sinogram from time-of-flight (TOF) positron emission tomography (PET) data. In this contribution, we propose a method that addresses the possible alignment problem of the TOF-PET emission data and the computed tomography (CT) attenuation data, by combining reconstruction and registration. The method, called MLRR, iteratively reconstructs the activity image while registering the available CT-based attenuation image, so that the pair of activity and attenuation images maximise the likelihood of the TOF emission sinogram. The algorithm is slow to converge, but some acceleration could be achieved by using Nesterov’s momentum method and by applying a multi-resolution scheme for the non-rigid displacement estimation. The latter also helps to avoid local optima, although convergence to the global optimum cannot be guaranteed. The results are evaluated on 2D and 3D simulations as well as a respiratory gated clinical scan. Our experiments indicate that the proposed method is able to correct for possible misalignment of the CT-based attenuation image, and is therefore a very promising approach to suppressing attenuation artefacts in clinical PET/CT. When applied to respiratory gated data of a patient scan, it produced deformations that are compatible with breathing motion and which reduced the well known attenuation artefact near the dome of the liver. Since the method makes use of the energy-converted CT attenuation image, the scale problem of joint reconstruction is automatically solved.

  20. Feasibility study of small animal imaging using clinical PET/CT scanner

    NASA Astrophysics Data System (ADS)

    Hsu, Wen-Lin; Chen, Chia-Lin; Wang, Ze-Jing; Wu, Tung-Hsin; Liu, Dai-Wei; Lee, Jason J. S.

    2007-02-01

    The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy- D-glucose (FDG) was evaluated. Two protocols in PET/CT system, single-mouse high-resolution mode (SHR) and multi-mouse high throughput mode (MHT) protocol were employed to investigate the ability of the scanner and also explored the performance differences between microPET and clinical PET/CT. In this study, we have found that even the clinical PET/CT scanner could not compete with the microPET scanner, especially in spatial resolution; the high-resolution CT image could advance the anatomical information to sub-millimeter level. Besides, CT-based attenuation correction can improve the image uniformity characteristics and quantification accuracy, and the large bore of a human whole-body scanner broadens the possibility of high throughput studies. Considering all the benefits, clinical PET/CT imaging might be a potential alternative for small animal study.

  1. MRI-guided brain PET image filtering and partial volume correction

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  2. Incidental Detection of Follicular Thyroid Carcinoma in 68Ga-PSMA PET/CT Imaging.

    PubMed

    Sager, Sait; Vatankulu, Betül; Uslu, Lebriz; Sönmezoglu, Kerim

    2016-09-01

    Prostate-specific membrane antigen (PSMA) is a type II transmembrane protein. It has been shown to be expressed in various solid malignant neoplasms. We report a case of a prostate cancer patient who underwent (68)Ga-PSMA PET/CT imaging. There is a large thyroid nodule in the right thyroid gland, which had intense PSMA accumulation. Follicular thyroid lesions can be seen on (68)Ga-PSMA PET/CT imaging. PMID:26966127

  3. MRI-guided brain PET image filtering and partial volume correction.

    PubMed

    Yan, Jianhua; Lim, Jason Chu-Shern; Townsend, David W

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and (18)F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data. PMID:25575248

  4. Fluorine-18 Radiolabeled PET Tracers for Imaging Monoamine Transporters: Dopamine, Serotonin, and Norepinephrine

    PubMed Central

    Stehouwer, Jeffrey S.; Goodman, Mark M.

    2009-01-01

    Synopsis This review focuses on the development of fluorine-18 radiolabeled PET tracers for imaging the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). All successful DAT PET tracers reported to date are members of the 3β-phenyl tropane class and are synthesized from cocaine. Currently available carbon-11 SERT PET tracers come from both the diphenylsulfide and 3β-phenyl nortropane class, but so far only the nortropanes have found success with fluorine-18 derivatives. NET imaging has so far employed carbon-11 and fluorine-18 derivatives of reboxetine but due to defluorination of the fluorine-18 derivatives further research is still necessary. PMID:20216936

  5. Design and construction of a quality control phantom for SPECT and PET imaging.

    PubMed

    Hunt, Dylan Christopher; Easton, Harry; Caldwell, Curtis B

    2009-12-01

    In this article, the authors present a method for quickly and easily constructing test phantoms for PET and SPECT quality assurance. As a demonstration, they constructed a complex prototype test phantom, showing the strengths of the construction method. Images taken using a PET/CT and a SPECT scanner are presented, along with a qualitative evaluation of PET/CT using the test phantom. The construction technique provides a quick, easy, and cost effective means of constructing a phantom for use in nuclear medicine imaging. PMID:20095252

  6. DigiPET: sub-millimeter spatial resolution small-animal PET imaging using thin monolithic scintillators.

    PubMed

    España, Samuel; Marcinkowski, Radoslaw; Keereman, Vincent; Vandenberghe, Stefaan; Van Holen, Roel

    2014-07-01

    A new preclinical PET system based on dSiPMs, called DigiPET, is presented. The system is based on thin monolithic scintillation crystals and exhibits superior spatial resolution at low-cost compared to systems based on pixelated crystals. Current dedicated small-rodent PET scanners have a spatial resolution in the order of 1 mm. Most of them have a large footprint, requiring considerable laboratory space. For rodent brain imaging, a PET scanner with sub-millimeter resolution is desired. To achieve this, crystals with a pixel pitch down to 0.5 mm have been used. However, fine pixels are difficult to produce and will render systems expensive. In this work, we present the first results with a high-resolution preclinical PET scanner based on thin monolithic scintillators and a large solid angle. The design is dedicated to rat-brain imaging and therefore has a very compact geometry. Four detectors were placed in a square arrangement with a distance of 34.5 mm between two opposing detector modules, defining a field of view (FOV) of 32 × 32 × 32 mm(3). Each detector consists of a thin monolithic LYSO crystal of 32 × 32 × 2 mm(3) optically coupled to a digital silicon photomultiplier (dSiPM). Event positioning within each detector was obtained using the maximum likelihood estimation (MLE) method. To evaluate the system performance, we measured the energy resolution, coincidence resolving time (CRT), sensitivity and spatial resolution. The image quality was evaluated by acquiring a hot-rod phantom filled with (18)F-FDG and a rat head one hour after an (18)F-FDG injection. The MLE yielded an average intrinsic spatial resolution on the detector of 0.54 mm FWHM. We obtained a CRT of 680 ps and an energy resolution of 18% FWHM at 511 keV. The sensitivity and spatial resolution obtained at the center of the FOV were 6.0 cps kBq(-1) and 0.7 mm, respectively. In the reconstructed images of the hot-rod phantom, hot rods down to 0.7 mm can be discriminated

  7. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT. PMID:27075745

  8. Algorithm for lung cancer detection based on PET/CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2009-02-01

    The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.

  9. Early experiences in establishing a regional quantitative imaging network for PET/CT clinical trials.

    PubMed

    Doot, Robert K; Thompson, Tove; Greer, Benjamin E; Allberg, Keith C; Linden, Hannah M; Mankoff, David A; Kinahan, Paul E

    2012-11-01

    The Seattle Cancer Care Alliance (SCCA) is a Pacific Northwest regional network that enables patients from community cancer centers to participate in multicenter oncology clinical trials where patients can receive some trial-related procedures at their local center. Results of positron emission tomography (PET) scans performed at community cancer centers are not currently used in SCCA Network trials since clinical trials customarily accept results from only trial-accredited PET imaging centers located at academic and large hospitals. Oncologists would prefer the option of using standard clinical PET scans from Network sites in multicenter clinical trials to increase accrual of patients for whom additional travel requirements for imaging are a barrier to recruitment. In an effort to increase accrual of rural and other underserved populations to Network trials, researchers and clinicians at the University of Washington, SCCA and its Network are assessing the feasibility of using PET scans from all Network sites in their oncology clinical trials. A feasibility study is required because the reproducibility of multicenter PET measurements ranges from approximately 3% to 40% at national academic centers. Early experiences from both national and local PET phantom imaging trials are discussed, and next steps are proposed for including patient PET scans from the emerging regional quantitative imaging network in clinical trials. There are feasible methods to determine and characterize PET quantitation errors and improve data quality by either prospective scanner calibration or retrospective post hoc corrections. These methods should be developed and implemented in multicenter clinical trials employing quantitative PET imaging of patients. PMID:22795929

  10. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  11. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinahan, Paul E.; Fessler, Jeffrey A.; Miyaoka, Robert S.; Janes, Marie; Lewellen, Tom K.

    2004-10-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated.

  12. Image Quality Performance Measurement of the microPET Focus 120

    NASA Astrophysics Data System (ADS)

    Ballado, Fernando Trejo; López, Nayelli Ortega; Flores, Rafael Ojeda; Ávila-Rodríguez, Miguel A.

    2010-12-01

    The aim of this work is to evaluate the characteristics involved in the image reconstruction of the microPET Focus 120. For this evaluation were used two different phantoms; a miniature hot-rod Derenzo phantom and a National Electrical Manufacturers Association (NEMA) NU4-2008 image quality (IQ) phantom. The best image quality was obtained when using OSEM3D as the reconstruction method reaching a spatial resolution of 1.5 mm with the Derenzo phantom filled with 18F. Image quality test results indicate a superior image quality for the Focus 120 when compared to previous microPET models.

  13. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    PubMed Central

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  14. Application of 18F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: comparison of functional imaging modalities

    PubMed Central

    Sachpekidis, Christos; Mosebach, Jennifer; Freitag, Martin T; Wilhelm, Thomas; Mai, Elias K; Goldschmidt, Hartmut; Haberkorn, Uwe; Schlemmer, Heinz-Peter; Delorme, Stefan; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    Aim of this prospective study was to assess the sensitivity of positron emission tomography (PET) and diffusion-weighted imaging (DWI) in detecting multiple myeloma (MM) lesions, using the well-established morphologic modalities magnetic resonance imaging (MRI) and computed tomography (CT) as the standard of reference (RS). The study included 24 MM patients (15 newly diagnosed, 9 pre-treated). All underwent 18F-FDG PET/CT and wholebody DWI. The findings in PET and DWI were compared to matching imaging findings in combined non-enhanced T1w, fat-saturated T2w (TIRM)- MRI, and low-dose CT. Patient-based analysis revealed that 15/24 patients (10 primary MM, 5 pre-treated) had myeloma lesions according to our RS. PET was positive in 13/24 patients (11 primary MM, 2 pre-treated) and DWI in 18/24 patients (12 primary MM, 6 pre-treated). Lesion-based analysis demonstrated 128 MM lesions, of which PET depicted 60/128 lesions (sensitivity 47%), while DWI depicted 99/128 lesions (sensitivity 77%). Further analysis including only the 15 untreated MM patients revealed a sensitivity of 90% for both PET and DWI and an overall concordance of PET and DWI of 72%. In conclusion, DWI was more sensitive than 18F-FDG PET in detecting myeloma lesions in a mixed population of primary and pre-treated MM patients. However, 18F-FDG PET and DWI demonstrated equivalent sensitivities in the sub-population of primary, untreated MM patients. This higher sensitivity of DWI in pre-treated patients may be due to the fact that 18F-FDG PET becomes negative earlier in the course of treatment in contrary to MRI, in which already treated lesions can remain visible. PMID:26550539

  15. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  16. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools. PMID:22647928

  17. Towards improved hardware component attenuation correction in PET/MR hybrid imaging

    NASA Astrophysics Data System (ADS)

    Paulus, D. H.; Tellmann, L.; Quick, H. H.

    2013-11-01

    In positron emission tomography/computed tomography (PET/CT) hybrid imaging attenuation correction (AC) of the patient tissue and patient table is performed by converting the CT-based Hounsfield units (HU) to linear attenuation coefficients (LAC) of PET. When applied to the new field of hardware component AC in PET/magnetic resonance (MR) hybrid imaging, this conversion method may result in local overcorrection of PET activity values. The aim of this study thus was to optimize the conversion parameters for CT-based AC of hardware components in PET/MR. Systematic evaluation and optimization of the HU to LAC conversion parameters has been performed for the hardware component attenuation map (µ-map) of a flexible radiofrequency (RF) coil used in PET/MR imaging. Furthermore, spatial misregistration of this RF coil to its µ-map was simulated by shifting the µ-map in different directions and the effect on PET quantification was evaluated. Measurements of a PET NEMA standard emission phantom were performed on an integrated hybrid PET/MR system. Various CT parameters were used to calculate different µ-maps for the flexible RF coil and to evaluate the impact on the PET activity concentration. A 511 keV transmission scan of the local RF coil was used as standard of reference to adapt the slope of the conversion from HUs to LACs at 511 keV. The average underestimation of the PET activity concentration due to the non-attenuation corrected RF coil in place was calculated to be 5.0% in the overall phantom. When considering attenuation only in the upper volume of the phantom, the average difference to the reference scan without RF coil is 11.0%. When the PET/CT conversion is applied, an average overestimation of 3.1% (without extended CT scale) and 4.2% (with extended CT scale) is observed in the top volume of the NEMA phantom. Using the adapted conversion resulting from this study, the deviation in the top volume of the phantom is reduced to -0.5% and shows the lowest

  18. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    PubMed

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons

  19. Phantom validation of coregistration of PET and CT for image-guided radiotherapy.

    PubMed

    Lavely, William C; Scarfone, Christopher; Cevikalp, Hakan; Li, Rui; Byrne, Daniel W; Cmelak, Anthony J; Dawant, Benoit; Price, Ronald R; Hallahan, Dennis E; Fitzpatrick, J Michael

    2004-05-01

    Radiotherapy treatment planning integrating positron emission tomography (PET) and computerized tomography (CT) is rapidly gaining acceptance in the clinical setting. Although hybrid systems are available, often the planning CT is acquired on a dedicated system separate from the PET scanner. A limiting factor to using PET data becomes the accuracy of the CT/PET registration. In this work, we use phantom and patient validation to demonstrate a general method for assessing the accuracy of CT/PET image registration and apply it to two multi-modality image registration programs. An IAEA (International Atomic Energy Association) brain phantom and an anthropomorphic head phantom were used. Internal volumes and externally mounted fiducial markers were filled with CT contrast and 18F-fluorodeoxyglucose (FDG). CT, PET emission, and PET transmission images were acquired and registered using two different image registration algorithms. CT/PET Fusion (GE Medical Systems, Milwaukee, WI) is commercially available and uses a semi-automated initial step followed by manual adjustment. Automatic Mutual Information-based Registration (AMIR), developed at our institution, is fully automated and exhibits no variation between repeated registrations. Registration was performed using distinct phantom structures; assessment of accuracy was determined from registration of the calculated centroids of a set of fiducial markers. By comparing structure-based registration with fiducial-based registration, target registration error (TRE) was computed at each point in a three-dimensional (3D) grid that spans the image volume. Identical methods were also applied to patient data to assess CT/PET registration accuracy. Accuracy was calculated as the mean with standard deviation of the TRE for every point in the 3D grid. Overall TRE values for the IAEA brain phantom are: CT/PET Fusion = 1.71 +/- 0.62 mm, AMIR = 1.13 +/- 0.53 mm; overall TRE values for the anthropomorphic head phantom are: CT/PET

  20. Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering.

    PubMed

    Lewittt, R M; Muehllehner, G; Karpt, J S

    1994-03-01

    A fast method is described for reconstructing volume images from three-dimensional (3D) coincidence data in positron emission tomography (PET). The reconstruction method makes use of all coincidence data acquired by high-sensitivity PET systems that do not have inter-slice absorbers (septa) to restrict the axial acceptance angle. The reconstruction method requires only a small amount of storage and computation, making it well suited for dynamic and whole-body studies. The method consists of three steps: (i) rebinning of coincidence data into a stack of 2D sinograms; (ii) slice-by-slice reconstruction of the sinogram associated with each slice to produce a preliminary 3D image having strong blurring in the axial (z) direction, but with different blurring at different z positions; and (iii) spatially variant filtering of the 3D image in the axial direction (i.e. 1D filtering in z for each x-y column) to produce the final image. The first step involves a new form of the rebinning operation in which multiple sinograms are incremented for each oblique coincidence line (multi-slice rebinning). The axial filtering step is formulated and implemented using the singular value decomposition (SVD). The method has been applied successfully to simulated data and to measured data for different kinds of phantom (multiple point sources, multiple discs, a cylinder with cold spheres, and a 3D brain phantom). PMID:15551583

  1. SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET

    SciTech Connect

    Cui, Y; Bowsher, J; Yan, S; Cai, J; Das, S; Yin, F

    2014-06-01

    Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medical Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.

  2. Performance simulation of a compact PET insert for simultaneous PET/MR breast imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2014-07-01

    We studied performance metrics of a small PET ring designed to be integrated with a breast MRI coil. Its performance was characterized using a Monte Carlo simulation of a system with the best possible design features we believe are technically available, with respect to system geometry, spatial resolution, shielding, and lesion detectability. The results indicate that the proposed system is able to achieve about 6.2% photon detection sensitivity at the center of field-of-view (FOV) (crystal design: 2.2×2.2×20 mm3, height: 3.4 cm). The peak noise equivalent count rate (NECR) is found to be 7886 cps with a time resolution of 250 ps (time window: 500 ps). With the presence of lead shielding, the NECR increases by a factor of 1.7 for high activity concentrations within the breast (>0.9 μCi/mL), while no noticeable benefit is observed in the range of activities currently being used in the clinical setting. In addition, the system is able to achieve spatial resolution of ~1.6 mm (2.2×2.2×20 mm3 crystal) and ~0.77 mm (1×1×20 mm3 crystal) at the center of FOV, respectively. The incorporation of 10 mm DOI resolution can help mitigate parallax error towards the edge of FOV. For both 2.2 mm and 1 mm crystal designs, the spatial resolution is around 3.2-3.5 mm at 5 cm away from the center. Finally, time-of-flight (TOF) helps in improving image quality, reduces the required number of iteration numbers and the scan time. The TOF effect was studied with 3 different time resolution settings (1 ns, 500 ps and 250 ps). With a TOF of 500 ps time resolution, we expect 3 mm diameter spheres where 5:1 activity concentration ratio will be detectable within 5 min achieving contrast to noise ratio (CNR) above 4.

  3. Assessment of MR Compatibility of a PET Insert Developed for Simultaneous Multi-parametric PET/MR Imaging on an Animal System Operating at 7 T

    PubMed Central

    Wehrl, Hans F.; Judenhofer, Martin S.; Thielscher, Axel; Martirosian, Petros; Schick, Fritz; Pichler, Bernd J.

    2010-01-01

    The combination of PET and MR in one system is currently emerging and opens up new domains in the functional examinations of living systems. This paper reports on relevant influences of a PET insert on MR imaging. The basic conditions of main magnetic field and RF field homogeneity were measured as well as image quality and signal-to-noise ratio when applying the usual MR sequence types including echo-planar techniques. Moreover, the influence of the PET insert on the RF noise level and on RF interferences was measured by comparing results achieved with and without the PET insert. The temporal stability of EPI imaging with and without the PET insert was assessed. Small but significant decreases in the signal-to-noise ratio were revealed when the PET insert was present, whereas B0 and B1 homogeneity as well as RF noise level were not adversely affected. A higher signal intensity drift was found for EPI imaging studies; however, this can be compensated by post processing. In summary, this study shows that PET inserts can be designed for and used within an MR system practically, without substantially affecting the MR image quality. PMID:20806353

  4. PET-Based Molecular Imaging in Designing Personalized Management Strategy in Gastroenteropancreatic Neuroendocrine Tumors.

    PubMed

    Basu, Sandip; Ranade, Rohit; Ostwal, Vikas; Shrikhande, Shailesh V

    2016-07-01

    In recent years, PET-based molecular functional imaging has been increasingly used in neuroendocrine tumors for tailoring of treatment strategies to the individual characteristics of each patient. For each particular patient, the relative tracer uptake by the dual-tracer PET imaging approach (with 68Ga-DOTANOC/TATE and 18F-FDG) frequently plays an important role along with the histopathologic tumor grades for selecting the optimal treatment approach for advanced/metastatic cases. Various tumor-specific parameters have resulted in development of such precision-medicine type model in this biologically heterogeneous group of tumors. The traditional advantages of PET/computed tomography in terms of disease staging are also applicable for personalization of management. From the medical oncologist's standpoint, multitracer PET-based information and staging is of significant importance (in addition to the histologic grades) in selecting the appropriate chemotherapy regimen and monitoring response on an individual basis in the course of treatment. PMID:27321028

  5. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106

  6. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  7. Pulmonary nodule detection in PET/CT images: improved approach using combined nodule detection and hybrid FP reduction

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Fujita, Hiroshi; Tomita, Yoya; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo

    2012-03-01

    In this study, an automated scheme for detecting pulmonary nodules in PET/CT images has been proposed using combined detection and hybrid false-positive (FP) reduction techniques. The initial nodule candidates were detected separately from CT and PET images. FPs were then eliminated in the initial candidates by using support vector machine with characteristic values obtained from CT and PET images. In the experiment, we evaluated proposed method using 105 cases of PET/CT images that were obtained in the cancer-screening program. We evaluated true positive fraction (TPF) and FP / case. As a result, TPFs of CT and PET detections were 0.76 and 0.44, respectively. However, by integrating the both results, TPF was reached to 0.82 with 5.14 FPs/case. These results indicate that our method may be of practical use for the detection of pulmonary nodules using PET/CT images.

  8. MRI and FDG-PET/CT imaging in gynecological malignancies: the radiation oncology perspective.

    PubMed

    Fennell, Jamina; Scholber, Jutta; Grosu, Anca L; Volegova-Neher, Natalja; Henne, Karl; Langer, Mathias; Meyer, Philipp T; Gitsch, Gerald; Bartl, Nico

    2016-06-01

    MRI and FDG-PET imaging plays an important role in diagnosis, monitoring and follow-up of gynecological cancer. The goal of this paper was to summarize data of the literature about sensitivity and specificity of MRI and FDG-PET/CT for detection of primary tumor, lymph nodes invasion and metastases in cervix and endometrial cancer and to discuss their implication for radiation treatment planning and monitoring. PMID:26957003

  9. Netupitant PET imaging and ADME studies in humans

    PubMed Central

    Spinelli, Tulla; Calcagnile, Selma; Giuliano, Claudio; Rossi, Giorgia; Lanzarotti, Corinna; Mair, Stuart; Stevens, Lloyd; Nisbet, Ian

    2014-01-01

    Netupitant is a new, selective NK1 receptor antagonist under development for the prevention of chemotherapy-induced nausea and vomiting. Two studies were conducted to evaluate the brain receptor occupancy (RO) and disposition (ADME) of netupitant in humans. Positron emission tomography (PET) imaging with the NK1 receptor-binding–selective tracer [11C]-GR205171 was used to evaluate the brain penetration of different doses of netupitant (100, 300, and 450 mg) and to determine the NK1-RO duration. A NK1-RO of 90% or higher was achieved with all doses in the majority of the tested brain regions at Cmax, with a long duration of RO. The netupitant minimal plasma concentration predicted to achieve a NK1-RO of 90%, C90%, in the striatum was 225 ng/mL; after administration of netupitant 300 mg, concentrations exceeded the C90%. In the ADME study, a single nominal dose of [14C]-netupitant 300 mg was used to assess its disposition. Absorption was rapid and netupitant was extensively metabolized via Phase I and II hepatic metabolism. Elimination of >90% was predicted at day 29 and was principally via hepatic/biliary route (>85%) with a minor contribution of the renal route (<5%). In conclusion, these studies demonstrate that netupitant is a potent agent targeting NK1 receptors with long lasting RO. In addition, netupitant is extensively metabolized and is mainly eliminated through the hepatic/biliary route and to a lesser extent via the kidneys. PMID:24122871

  10. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    SciTech Connect

    Boellaard, Ronald; Rausch, Ivo; Beyer, Thomas; Delso, Gaspar; Yaqub, Maqsood; Quick, Harald H.; Sattler, Bernhard

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5 min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for

  11. Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer

    PubMed Central

    Oliver, Jasmine A.; Budzevich, Mikalai; Zhang, Geoffrey G.; Dilling, Thomas J.; Latifi, Kujtim; Moros, Eduardo G.

    2015-01-01

    Radiomics is being explored for potential applications in radiation therapy. How various imaging protocols affect quantitative image features is currently a highly active area of research. To assess the variability of image features derived from conventional [three-dimensional (3D)] and respiratory-gated (RG) positron emission tomography (PET)/computed tomography (CT) images of lung cancer patients, image features were computed from 23 lung cancer patients. Both protocols for each patient were acquired during the same imaging session. PET tumor volumes were segmented using an adaptive technique which accounted for background. CT tumor volumes were delineated with a commercial segmentation tool. Using RG PET images, the tumor center of mass motion, length, and rotation were calculated. Fifty-six image features were extracted from all images consisting of shape descriptors, first-order features, and second-order texture features. Overall, 26.6% and 26.2% of total features demonstrated less than 5% difference between 3D and RG protocols for CT and PET, respectively. Between 10 RG phases in PET, 53.4% of features demonstrated percent differences less than 5%. The features with least variability for PET were sphericity, spherical disproportion, entropy (first and second order), sum entropy, information measure of correlation 2, Short Run Emphasis (SRE), Long Run Emphasis (LRE), and Run Percentage (RPC); and those for CT were minimum intensity, mean intensity, Root Mean Square (RMS), Short Run Emphasis (SRE), and RPC. Quantitative analysis using a 3D acquisition versus RG acquisition (to reduce the effects of motion) provided notably different image feature values. This study suggests that the variability between 3D and RG features is mainly due to the impact of respiratory motion. PMID:26692535

  12. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  13. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging.

    PubMed

    Zhang, Xiaomeng; Chen, Yen-Lin E; Lim, Ruth; Huang, Chuan; Chebib, Ivan A; El Fakhri, Georges

    2016-04-01

    The primary objective of this study was to develop and validate simultaneous PET/MRI-MRS as a novel biological image-guided approach to neoadjuvant radiotherapy (RT) and/or chemoradiation (chemoRT) in soft tissue sarcomas (STS). A patient with sarcoma of the right thigh underwent PET/MRI scan before and after neoadjuvant (preoperative) radiotherapy. The magnetic resonance imaging (MRI) and 2-deoxy-2-[fluorine-18]-fluoro-D-glucose-Positron Emission Tomography ((18)F-FDG-PET) scans were performed simultaneously. In the post-radiation scan, magnetic resonance spectroscopy (MRS) was subsequently acquired with volume of interest positioned in a residual hyper-metabolic region detected by PET. Post-radiation PET/MRI showed a residual T2-hyperintense mass with significantly reduced (18)F-FDG-uptake, compatible with near complete response to radiotherapy. However, a small region of residual high (18)F-FDG uptake was detected at the tumor margin. MRS of this region had similar metabolite profile as normal tissue, and was thus considered false positive on PET scan. Pathology results were obtained after surgery for confirmation of imaging findings. PMID:26523656

  14. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    SciTech Connect

    Petibon, Yoann; Syrkina, Aleksandra; Huang, Chuan; Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges; Reese, Timothy G.; Chen, Yen-Lin

    2014-04-15

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and{sup 18}F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion

  15. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    PubMed Central

    Petibon, Yoann; Huang, Chuan; Ouyang, Jinsong; Reese, Timothy G.; Li, Quanzheng; Syrkina, Aleksandra; Chen, Yen-Lin; El Fakhri, Georges

    2014-01-01

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and 18F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion at

  16. 18F-NaF PET/CT Imaging of Brain Metastases.

    PubMed

    Salgarello, Matteo; Lunardi, Gianluigi; Inno, Alessandro; Pasetto, Stefano; Severi, Fabrizia; Gorgoni, Giancarlo; Gori, Stefania

    2016-07-01

    F-NaF is a radiopharmaceutical widely used in PET imaging to detect bone metastases. Several cases of F-NaF uptake from brain metastases have been described, but a specific protocol for the evaluation of brain metastases with F-NaF has not been developed yet. Here we report images of F-NaF PET/CT, standard CT, and MRI of a brain metastasis in a patient with non-small lung cancer. Through a dynamic acquisition procedure, we have identified the first minutes after injection as the preferable time point of imaging acquisition for the study of brain metastases with F-NaF. PMID:27163462

  17. [German Society of Nuclear Medicine procedure guideline on beta-amyloid brain PET imaging].

    PubMed

    Barthel, Henryk; Meyer, Philipp T; Drzezga, Alexander; Bartenstein, Peter; Boecker, Henning; Brust, Peter; Buchert, Ralph; Coenen, Heinz H; la Fougère, Christian; Gründer, Gerhard; Grünwald, Frank; Krause, Bernd J; Kuwert, Torsten; Schreckenberger, Matthias; Tatsch, Klaus; Langen, Karl-Josef; Sabri, Osama

    2016-08-01

    Recently, a number of positron emission tomography (PET) radiotracers have been approved for clinical use. These tracers target cerebral beta-amyloid (Aβ) plaques, a hallmark of Alzheimer's disease. Increasing use of this method implies the need for respective standards. This German Society of Nuclear Medicine guideline describes adequate procedures for Aβ plaque PET imaging. It not only discusses the tracers used for that purpose, but also lists measures for correct patient preparation, image data generation, processing, analysis and interpretation. With that, this "S1" category (according to the German Association of the Scientific Medical Societies standard) guideline aims at contributing to quality assurance of nuclear imaging in Germany. PMID:27080914

  18. FDG-PET imaging in mild traumatic brain injury: a critical review

    PubMed Central

    Byrnes, Kimberly R.; Wilson, Colin M.; Brabazon, Fiona; von Leden, Ramona; Jurgens, Jennifer S.; Oakes, Terrence R.; Selwyn, Reed G.

    2013-01-01

    Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice. PMID:24409143

  19. FDG-PET imaging in mild traumatic brain injury: a critical review.

    PubMed

    Byrnes, Kimberly R; Wilson, Colin M; Brabazon, Fiona; von Leden, Ramona; Jurgens, Jennifer S; Oakes, Terrence R; Selwyn, Reed G

    2014-01-01

    Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [(18)F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice. PMID:24409143

  20. State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings.

    PubMed

    Mesguich, Charles; Fardanesh, Reza; Tanenbaum, Lawrence; Chari, Ajai; Jagannath, Sundar; Kostakoglu, Lale

    2014-12-01

    18-Flurodeoxyglucose Positron Emission Tomography with computed tomography (FDG PET/CT) and Magnetic Resonance Imaging (MRI) have higher sensitivity and specificity than whole-body X-ray (WBXR) survey in evaluating disease extent in patients with multiple myeloma (MM). Both modalities are now recommended by the Durie-Salmon Plus classification although the emphasis is more on MRI than PET/CT. The presence of extra-medullary disease (EMD) as evaluated by PET/CT imaging, initial SUVmax and number of focal lesions (FL) are deemed to be strong prognostic parameters at staging. MRI remains the most sensitive technique for the detection of diffuse bone marrow involvement in both the pre and post-therapy setting. Compression fractures are best characterized with MRI signal changes, for determining vertebroplasty candidates. While PET/CT allows for earlier and more specific evaluation of therapeutic efficacy compared to MRI, when signal abnormalities persist years after treatment. PET/CT interpretation, however, can be challenging in the vertebral column and pelvis as well as in cases with post-therapy changes. Hence, a reading approach combining the high sensitivity of MRI and superior specificity of FDG PET/CT would be preferred to increase the diagnostic accuracy. In summary, the established management methods in MM, mainly relying on biological tumor parameters should be complemented with functional imaging data, both at staging and restaging for optimal management of MM. PMID:25308249

  1. Diagnostic imaging in dermatology: utility of PET-CT in cutaneous melanoma.

    PubMed

    Sánchez-Sánchez, R; Serrano-Falcón, C; Rebollo Aguirre, A C

    2015-01-01

    Malignant melanoma accounts for 5% of all malignant skin tumors and its incidence is increasing. In the natural course of melanoma, tumors grow locally and can spread via the lymph system or the blood. Because survival is directly related to the stage of the disease at diagnosis, early detection (secondary prevention) has an impact on prognosis. Positron emission tomography (PET) is a nuclear medicine technique that generates images using molecules labeled with positron-emitting isotopes. The most widely used molecule is fluorodeoxyglucose (FDG). Because of the elevated glycolytic rate in tumor cells, which results in increased FDG uptake, greater quantities of FDG become trapped in tumor cells, enabling external detection. Today, most PET scanners are multimodal PET-computed tomography (CT) scanners, which provide more detailed information by combining morphological information with functional PET findings. The possible utility of PET-CT in patients with malignant melanoma is a subject of debate. Various questions have been raised: when the scan should be performed, whether PET-CT has advantages over conventional diagnostic methods, and whether PET-CT provides a real benefit to patients. In this review of the literature, we will analyze each of these questions. PMID:24661948

  2. Method for transforming CT images for attenuation correction in PET/CT imaging

    SciTech Connect

    Carney, Jonathan P.J.; Townsend, David W.; Rappoport, Vitaliy; Bendriem, Bernard

    2006-04-15

    A tube-voltage-dependent scheme is presented for transforming Hounsfield units (HU) measured by different computed tomography (CT) scanners at different x-ray tube voltages (kVp) to 511 keV linear attenuation values for attenuation correction in positron emission tomography (PET) data reconstruction. A Gammex 467 electron density CT phantom was imaged using a Siemens Sensation 16-slice CT, a Siemens Emotion 6-slice CT, a GE Lightspeed 16-slice CT, a Hitachi CXR 4-slice CT, and a Toshiba Aquilion 16-slice CT at kVp ranging from 80 to 140 kVp. All of these CT scanners are also available in combination with a PET scanner as a PET/CT tomograph. HU obtained for various reference tissue substitutes in the phantom were compared with the known linear attenuation values at 511 keV. The transformation, appropriate for lung, soft tissue, and bone, yields the function 9.6x10{sup -5}{center_dot}(HU+1000) below a threshold of {approx}50 HU and a{center_dot}(HU+1000)+b above the threshold, where a and b are fixed parameters that depend on the kVp setting. The use of the kVp-dependent scaling procedure leads to a significant improvement in reconstructed PET activity levels in phantom measurements, resolving errors of almost 40% otherwise seen for the case of dense bone phantoms at 80 kVp. Results are also presented for patient studies involving multiple CT scans at different kVp settings, which should all lead to the same 511 keV linear attenuation values. A linear fit to values obtained from 140 kVp CT images using the kVp-dependent scaling plotted as a function of the corresponding values obtained from 80 kVp CT images yielded y=1.003x-0.001 with an R{sup 2} value of 0.999, indicating that the same values are obtained to a high degree of accuracy.

  3. PET Imaging of Tau Deposition in the Aging Human Brain.

    PubMed

    Schöll, Michael; Lockhart, Samuel N; Schonhaut, Daniel R; O'Neil, James P; Janabi, Mustafa; Ossenkoppele, Rik; Baker, Suzanne L; Vogel, Jacob W; Faria, Jamie; Schwimmer, Henry D; Rabinovici, Gil D; Jagust, William J

    2016-03-01

    Tau pathology is a hallmark of Alzheimer's disease (AD) but also occurs in normal cognitive aging. Using the tau PET agent (18)F-AV-1451, we examined retention patterns in cognitively normal older people in relation to young controls and AD patients. Age and β-amyloid (measured using PiB PET) were differentially associated with tau tracer retention in healthy aging. Older age was related to increased tracer retention in regions of the medial temporal lobe, which predicted worse episodic memory performance. PET detection of tau in other isocortical regions required the presence of cortical β-amyloid and was associated with decline in global cognition. Furthermore, patterns of tracer retention corresponded well with Braak staging of neurofibrillary tau pathology. The present study defined patterns of tau tracer retention in normal aging in relation to age, cognition, and β-amyloid deposition. PMID:26938442

  4. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    SciTech Connect

    Yip, Stephen Chen, Aileen B.; Berbeco, Ross; Aerts, Hugo J. W. L.

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  5. FDG PET/CT Imaging of Prostate Carcinosarcoma.

    PubMed

    Oldan, Jorge Daniel; Chin, Bennett B

    2016-08-01

    We present a case of carcinosarcoma of the prostate. Workup of urinary retention after a previously treated squamous cell carcinoma of the prostate led to a transurethral prostate resection revealing carcinosarcoma of the prostate, which on F-FDG PET/CT demonstrated moderate to high avidity of this atypical prostate cancer, with partial obstruction of the urinary system and lung metastases. While FDG PET is not avid for typical prostatic adenocarcinomas, it should be considered for evaluation of atypical prostate cancers. PMID:27187727

  6. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  7. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (˜15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  8. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  9. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. PMID:25591118

  10. PET Imaging of Stroke-Induced Neuroinflammation in Mice Using [18F]PBR06

    PubMed Central

    Lartey, Frederick M.; Ahn, G-One; Shen, Bin; Cord, Keith-Travis; Smith, Tenille; Chua, Joshua Y.; Rosenblum, Sahar; Liu, Hongguang; James, Michelle L.; Chernikova, Sophia; Lee, Star W.; Pisani, Laura J.; Tirouvanziam, Rabindra; Chen, John W.; Palmer, Theo D.; Chin, Frederick T.; Guzman, Raphael; Graves, Edward E.; Loo, Billy W.

    2014-01-01

    Purpose The purpose of this study is to evaluate the 18 kDa translocator protein (TSPO) radioligand [18F]N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([18F]PBR06) as a positron emission tomography (PET) imaging biomarker of stroke-induced neuroinflammation in a rodent model. Procedures Stroke was induced by transient middle cerebral artery occlusion in Balb/c mice. Dynamic PET/CT imaging with displacement and preblocking using PK111195 was performed 3 days later. PET data were correlated with immunohistochemistry (IHC) for the activated microglial markers TSPO and CD68 and with autoradiography. Results [18F]PBR06 accumulation peaked within the first 5 min postinjection, then decreased gradually, remaining significantly higher in infarct compared to noninfarct regions. Displacement or preblocking with PK11195 eliminated the difference in [18F]PBR06 uptake between infarct and noninfarct regions. Autoradiography and IHC correlated well spatially with uptake on PET. Conclusions [18F]PBR06 PET specifically images TSPO in microglial neuroinflammation in a mouse model of stroke and shows promise for imaging and monitoring microglial activation/neuroinflammation in other disease models. PMID:23836504

  11. Design of the PET-MR system for head imaging of the DREAM Project

    NASA Astrophysics Data System (ADS)

    González, A. J.; Conde, P.; Hernández, L.; Herrero, V.; Moliner, L.; Monzó, J. M.; Orero, A.; Peiró, A.; Rodríguez-Álvarez, M. J.; Ros, A.; Sánchez, F.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2013-02-01

    In this paper we describe the overall design of a PET-MR system for head imaging within the framework of the DREAM Project as well as the first detector module tests. The PET system design consists of 4 rings of 16 detector modules each and it is expected to be integrated in a head dedicated radio frequency coil of an MR scanner. The PET modules are based on monolithic LYSO crystals coupled by means of optical devices to an array of 256 Silicon Photomultipliers. These types of crystals allow to preserve the scintillation light distribution and, thus, to recover the exact photon impact position with the proper characterization of such a distribution. Every module contains 4 Application Specific Integrated Circuits (ASICs) which return detailed information of several light statistical momenta. The preliminary tests carried out on this design and controlled by means of ASICs have shown promising results towards the suitability of hybrid PET-MR systems.

  12. First-in-human uPAR PET: Imaging of Cancer Aggressiveness.

    PubMed

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene; Christensen, Camilla; Madsen, Jacob; Nielsen, Carsten H; Thurison, Tine; Klausen, Thomas Levin; Holm, Søren; Loft, Annika; Berthelsen, Anne Kiil; Ploug, Michael; Pappot, Helle; Brasso, Klaus; Kroman, Niels; Højgaard, Liselotte; Kjaer, Andreas

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with (64)Cu for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of (64)Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment with laboratory blood screening tests was performed before and after PET ligand injection. In a subgroup of the patients, the in vivo stability of our targeted PET ligand was determined in collected blood and urine. No adverse or clinically detectable side effects in any of the 10 patients were found. The ligand exhibited good in vivo stability and fast clearance from plasma and tissue compartments by renal excretion. In addition, high uptake in both primary tumor lesions and lymph node metastases was seen and paralleled high uPAR expression in excised tumor tissue. Overall, this first-in-human study therefore provides promising evidence for safe use of (64)Cu-DOTA-AE105 for uPAR PET imaging in cancer patients. PMID:26516369

  13. First-in-human uPAR PET: Imaging of Cancer Aggressiveness

    PubMed Central

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene; Christensen, Camilla; Madsen, Jacob; Nielsen, Carsten H.; Thurison, Tine; Klausen, Thomas Levin; Holm, Søren; Loft, Annika; Berthelsen, Anne Kiil; Ploug, Michael; Pappot, Helle; Brasso, Klaus; Kroman, Niels; Højgaard, Liselotte; Kjaer, Andreas

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with 64Cu for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of 64Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment with laboratory blood screening tests was performed before and after PET ligand injection. In a subgroup of the patients, the in vivo stability of our targeted PET ligand was determined in collected blood and urine. No adverse or clinically detectable side effects in any of the 10 patients were found. The ligand exhibited good in vivo stability and fast clearance from plasma and tissue compartments by renal excretion. In addition, high uptake in both primary tumor lesions and lymph node metastases was seen and paralleled high uPAR expression in excised tumor tissue. Overall, this first-in-human study therefore provides promising evidence for safe use of 64Cu-DOTA-AE105 for uPAR PET imaging in cancer patients. PMID:26516369

  14. Novel PET/SPECT Probes for Imaging of Tau in Alzheimer's Disease

    PubMed Central

    Ono, Masahiro

    2015-01-01

    As the world's population ages, the number of patients with Alzheimer's disease (AD) is predicted to increase rapidly. The presence of neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau protein, is one of the neuropathological hallmarks of AD brain. Since the presence of NFTs is well correlated with neurodegeneration and cognitive decline in AD, imaging of tau using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) is useful for presymptomatic diagnosis and monitoring of the progression of AD. Therefore, novel PET/SPECT probes for the imaging of tau have been developed. More recently, several probes were tested clinically and evaluated for their utility. This paper reviews the current state of research on the development and evaluation of PET/SPECT probes for the imaging of tau in AD brain. PMID:25879047

  15. Multi-technique imaging of bone metastases: spotlight on PET-CT.

    PubMed

    Azad, Gurdip K; Cook, Gary J

    2016-07-01

    There is growing evidence that molecular imaging of bone metastases with positron-emission tomography (PET) can improve diagnosis and treatment response assessment over current conventional standard imaging methods, although cost-effectiveness has not been assessed. In most cancer types, 2-[(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG)-PET is an accurate method for detecting bone metastases. For example, in breast cancer, combined (18)F-FDG-PET and computed tomography (CT) is more sensitive at detecting bone metastases than (99m)technetium (Tc)-labelled diphosphonate planar bone scintigraphy (BS) and there is increasing evidence to support the use of serial (18)F-FDG-PET for the assessment of osseous response to treatment. Preliminary data suggest improved diagnostic accuracy of (18)F-FDG-PET-CT in a number of other malignancies including lung, thyroid, head and neck, gastro-oesophageal cancers, and osteosarcoma. As a bone-specific tracer, there is accumulating evidence to support the use of sodium (18)F-fluoride ((18)F-NaF) PET-CT in the diagnosis of skeletal metastases in breast and prostate cancer, although relatively little data are available to support its use for assessment of treatment response. In prostate cancer, (11)C-choline and (18)F-choline PET-CT have better specificities than (18)F-NaF-PET-CT, but equivalent sensitivities in the detection of bone metastases. We review the current literature for staging and response assessment of bone metastases in different cancers. PMID:26997430

  16. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    NASA Astrophysics Data System (ADS)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  17. An internet-based "kinetic imaging system" (KIS) for MicroPET.

    PubMed

    Huang, Sung-Cheng; Truong, David; Wu, Hsiao-Ming; Chatziioannou, Arion F; Shao, Weber; Wu, Anna M; Phelps, Michael E

    2005-01-01

    Many considerations, involving understanding and selection of multiple experimental parameters, are required to perform MicroPET studies properly. The large number of these parameters/variables and their complicated interdependence make their optimal choice nontrivial. We have a developed kinetic imaging system (KIS), an integrated software system, to assist the planning, design, and data analysis of MicroPET studies. The system serves multiple functions-education, virtual experimentation, experimental design, and image analysis of simulated/experimental data-and consists of four main functional modules--"Dictionary," "Virtual Experimentation," "Image Analysis," and "Model Fitting." The "Dictionary" module provides didactic information on tracer kinetics, pharmacokinetic, MicroPET imaging, and relevant biological/pharmacological information. The "Virtual Experimentation" module allows users to examine via computer simulations the effect of biochemical/pharmacokinetic parameters on tissue tracer kinetics. It generates dynamic MicroPET images based on the user's assignment of kinetics or kinetic parameters to different tissue organs in a 3-D digital mouse phantom. Experimental parameters can be adjusted to investigate the design options of a MicroPET experiment. The "Image Analysis" module is a full-fledged image display/manipulation program. The "Model Fitting" module provides model-fitting capability for measured/simulated tissue kinetics. The system can be run either through the Web or as a stand-alone process. With KIS, radiotracer characteristics, administration method, dose level, imaging sequence, and image resolution-to-noise tradeoff can be evaluated using virtual experimentation. KIS is designed for biology/pharmaceutical scientists to make learning and applying tracer kinetics fun and easy. PMID:16132473

  18. Optimization of Multimodal Imaging of Mesenchymal Stem Cells Using the Human Sodium Iodide Symporter for PET and Cerenkov Luminescence Imaging

    PubMed Central

    Wolfs, Esther; Holvoet, Bryan; Gijsbers, Rik; Casteels, Cindy; Roberts, Scott J.; Struys, Tom; Maris, Michael; Ibrahimi, Abdelilah; Debyser, Zeger; Van Laere, Koen; Verfaillie, Catherine M.; Deroose, Christophe M.

    2014-01-01

    Purpose The use of stably integrated reporter gene imaging provides a manner to monitor the in vivo fate of engrafted cells over time in a non-invasive manner. Here, we optimized multimodal imaging (small-animal PET, Cerenkov luminescence imaging (CLI) and bioluminescence imaging (BLI)) of mesenchymal stem cells (MSCs), by means of the human sodium iodide symporter (hNIS) and firefly luciferase (Fluc) as reporters. Methods First, two multicistronic lentiviral vectors (LV) were generated for multimodal imaging: BLI, 124I PET/SPECT and CLI. Expression of the imaging reporter genes was validated in vitro using 99mTcO4− radioligand uptake experiments and BLI. Uptake kinetics, specificity and tracer elution were determined as well as the effect of the transduction process on the cell's differentiation capacity. MSCs expressing the LV were injected intravenously or subcutaneously and imaged using small-animal PET, CLI and BLI. Results The expression of both imaging reporter genes was functional and specific. An elution of 99mTcO4− from the cells was observed, with 31% retention after 3 h. After labeling cells with 124I in vitro, a significantly higher CLI signal was noted in hNIS expressing murine MSCs. Furthermore, it was possible to visualize cells injected intravenously using BLI or subcutaneously in mice, using 124I small-animal PET, CLI and BLI. Conclusions This study identifies hNIS as a suitable reporter gene for molecular imaging with PET and CLI, as confirmed with BLI through the expression of Fluc. It supports the potential for a wider application of hNIS reporter gene imaging and future clinical applications. PMID:24747914

  19. Technical Considerations in Brain Amyloid PET Imaging with 18F-Florbetapir.

    PubMed

    Trembath, LisaAnn; Newell, Maureen; Devous, Michael D

    2015-09-01

    Technical factors play a critical role in the production of best-quality amyloid PET images for interpretation. This article provides specific instructions and general technical information about PET brain scanning of β-amyloid neuritic plaques. The focus of tracer-specific information will be on (18)F-florbetapir (indications, contraindications, dosing, administration, uptake time, scanning time, acquisition, processing, biodistribution, radiation dose, adverse events, and display). General scanning information relevant to all amyloid-imaging agents will be also be presented (e.g., mechanism of uptake, safe handling, positioning, prevention of patient motion, processing, and artifacts). PMID:26271806

  20. F-18-fluoro-2-deoxyglucose positron emission tomography (PET) and PET/computed tomography imaging in primary staging of patients with malignant melanoma: a systematic review

    PubMed Central

    2012-01-01

    Purpose The aim of this systematic review was to systematically assess the potential patient-relevant benefit (primary aim) and diagnostic and prognostic accuracy (secondary aim) of positron emission tomography (PET) and PET/computed tomography (CT) in primary staging of malignant melanoma. This systematic review updates the previous evidence for PET(/CT) in malignant melanoma. Materials and methods For the first aim, randomized controlled trials (RCTs) investigating patient-relevant outcomes and comparing PET and PET(/CT) with each other or with conventional imaging were considered. For the secondary aim, a review of reviews was conducted, which was amended by an update search for primary studies. MEDLINE, EMBASE and four databases of the Cochrane Library were searched. The risk of bias was assessed using a modified QUADAS tool. Results No RCTs investigating the patient-relevant benefit of PET(/CT) and no prognostic accuracy studies were found. Seventeen diagnostic accuracy studies of varying quality were identified. For patients with American Joint Committee on Cancer (AJCC) stages I and II, sensitivity mostly ranged from 0 to 67%. Specificity ranged from 77 to 100%. For AJCC stages III and IV, sensitivity ranged from 68 to 87% and specificity from 92 to 98%. Conclusion There is currently no evidence of a patient-relevant benefit of PET(/CT) in the primary staging of malignant melanoma. RCTs investigating patient-relevant outcomes are therefore required. The diagnostic accuracy of PET(/CT) appears to increase with higher AJCC stages. PMID:23237499

  1. (18)F-FLT PET imaging of cellular proliferation in pancreatic cancer.

    PubMed

    Lamarca, Angela; Asselin, Marie-Claude; Manoharan, Prakash; McNamara, Mairéad G; Trigonis, Ioannis; Hubner, Richard; Saleem, Azeem; Valle, Juan W

    2016-03-01

    Pancreatic ductal adenocarcinoma is known for its poor prognosis. Since the development of computerized tomography, magnetic resonance and endoscopic ultrasound, novel imaging techniques have struggled to get established in the management of patients diagnosed with pancreatic adenocarcinoma for several reasons. Thus, imaging assessment of pancreatic cancer remains a field with scope for further improvement. In contrast to cross-sectional anatomical imaging methods, molecular imaging modalities such as positron emission tomography (PET) can provide information on tumour function. Particularly, tumour proliferation may be assessed by measurement of intracellular thymidine kinase 1 (TK1) activity level using thymidine analogues radiolabelled with a positron emitter for use with PET. This approach, has been widely explored with [(18)F]-fluoro-3'-deoxy-3'-l-fluorothymidine ((18)F-FLT) PET. This manuscript reviews the rationale and physiology behind (18)F-FLT PET imaging, with special focus on pancreatic cancer and other gastrointestinal malignancies. Potential benefit and challenges of this imaging technique for diagnosis, staging and assessment of treatment response in abdominal malignancies are discussed. PMID:26778585

  2. Dual-Modality Optical/PET Imaging of PARP1 in Glioblastoma

    PubMed Central

    Carlucci, Giuseppe; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Irwin, Christopher P.; Carlin, Sean D.; Keliher, Edmund J.; Weber, Wolfgang; Reiner, Thomas

    2015-01-01

    Purpose The current study presents [18F]PARPi-FL as a bimodal fluorescent/positron emission tomography (PET) agent for PARP1 imaging. Procedures [18F]PARPi-FL was obtained by 19F/18F isotopic exchange and PET experiments, biodistribution studies, surface fluorescence imaging, and autoradiography carried out in a U87 MG glioblastoma mouse model. Results [18F]PARPi-FL showed high tumor uptake in vivo and ex vivo in small xenografts (<2 mm) with both PET and optical imaging technologies. Uptake of [18F]PARPi-FL in blocked U87 MG tumors was reduced by 84 % (0.12±0.02 %injected dose/gram (%ID/g)), showing high specificity of the binding. PET imaging showed accumulation in the tumor (1 h p.i.), which was confirmed by ex vivo phosphor autoradiography. Conclusions The fluorescent component of [18F]PARPi-FL enables cellular resolution optical imaging, while the radiolabeled component of [18F]PARPi-FL allows whole-body deep-tissue imaging of malignant growth. PMID:25895168

  3. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study1

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141

  4. (68)Ga PET Ventilation and Perfusion Lung Imaging-Current Status and Future Challenges.

    PubMed

    Bailey, Dale L; Eslick, Enid M; Schembri, Geoffrey P; Roach, Paul J

    2016-09-01

    Gallium-68 ((68)Ga) is a positron-emitting radionuclide suitable for positron emission tomography (PET) imaging that has a number of convenient features-it has a physical half life of 68 minutes, it is generator produced at the PET facility and needs no local cyclotron, and being a radiometal is able to be chelated to a number of useful molecules for diagnostic imaging with PET. (68)Ga has recently been investigated as a radiotracer for ventilation and perfusion (V/Q) lung imaging. It is relatively easy to produce both V/Q radiopharmaceuticals labeled with (68)Ga for PET studies, it offers higher spatial resolution than equivalent SPECT studies, the short half life allows for multiple (repeated) scans on the same day, and low amounts of radiotracer can be used thus limiting the radiation dose to the subject. In the usual clinical setting requiring a V/Q scan, that of suspected pulmonary embolism, the role of (68)Ga V/Q PET may be limited from a logistical perspective, however, in nonacute applications such as lung function evaluation, radiotherapy treatment planning, and respiratory physiology investigations it would appear to be an ideal modality to employ. PMID:27553468

  5. PET imaging of osteosarcoma in dogs using a fluorine-18-labeled monoclonal antibody fab fragment

    SciTech Connect

    Page, R.L.; Garg, P.K.; Gard, S. ||

    1994-09-01

    Four dogs with histologically confirmed osteogenic sarcoma were studied with PET following intravenous injection of the {sup 18}F-labeled Fab fragment of TP-3, a monoclonal antibody specific for human and canine osteosarcomas. The antibody fragment was labeled using the N-succinimidyl (8-(4{prime}-({sup 18}F)fluorobenzyl)amino)suberate acylation agent. Blood clearance of activity was biphasic in all dogs but half-times were variable (T{sub 1/2{beta}} = 2-13 hr). Catabolism of labeled Fab was reflected by the decrease in protein-associated activity in serum from more than 90% at 1 min to 60%-80% at 4 hr. PET images demonstrated increased accumulation of {sup 18}F at the primary tumor site relative to normal contralateral bone in one dog as early as 15 min after injection. Biopsies obtained after euthanasia indicated higher uptake at the edges of the tumor as observed on the PET scans. Tumor uptake was 1-3 x 10{sup -3}% injected dose/g, a level similar to that reported for other Fab fragments in human tumors. In the three dogs with metastatic disease, early PET images reflected activity in the blood pool but later uptake was observed in suspected metastatic sites. These results, although preliminary, suggest that PET imaging of {sup 18}F-labeled antibody fragments is feasible and that dogs with spontaneous tumors could be a valuable model for preclinical research with radioimmunoconjugates. 34 refs., 6 figs., 2 tabs.

  6. Development of a simultaneous optical/PET imaging system for awake mice

    NASA Astrophysics Data System (ADS)

    Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga

    2016-09-01

    Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.

  7. Development of a simultaneous optical/PET imaging system for awake mice.

    PubMed

    Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga

    2016-09-01

    Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [(11)C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [(11)C]raclopride radioactivity concentration simultaneously. Accumulation of [(11)C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models. PMID:27514436

  8. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    SciTech Connect

    Liao, Y; Turian, J; Templeton, A; Kiel, K; Chu, J; Kadir, T

    2014-06-01

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires further

  9. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study.

    PubMed

    Petibon, Y; El Fakhri, G; Nezafat, R; Johnson, N; Brady, T; Ouyang, J

    2014-03-01

    Coronary atherosclerotic plaque rupture is the main cause of myocardial infarction and the leading killer in the US. Inflammation is a known bio-marker of plaque vulnerability and can be assessed non-invasively using fluorodeoxyglucose-positron emission tomography imaging (FDG-PET). However, cardiac and respiratory motion of the heart makes PET detection of coronary plaque very challenging. Fat surrounding coronary arteries allows the use of MRI to track plaque motion during simultaneous PET-MR examination. In this study, we proposed and assessed the performance of a fat-MR based coronary motion correction technique for improved FDG-PET coronary plaque imaging in simultaneous PET-MR. The proposed methods were evaluated in a realistic four-dimensional PET-MR simulation study obtained by combining patient water-fat separated MRI and XCAT anthropomorphic phantom. Five small lesions were digitally inserted inside the patients coronary vessels to mimic coronary atherosclerotic plaques. The heart of the XCAT phantom was digitally replaced with the patient's heart. Motion-dependent activity distributions, attenuation maps, and fat-MR volumes of the heart, were generated using the XCAT cardiac and respiratory motion fields. A full Monte Carlo simulation using Siemens mMR's geometry was performed for each motion phase. Cardiac/respiratory motion fields were estimated using non-rigid registration of the transformed fat-MR volumes and incorporated directly into the system matrix of PET reconstruction along with motion-dependent attenuation maps. The proposed motion correction method was compared to conventional PET reconstruction techniques such as no motion correction, cardiac gating, and dual cardiac-respiratory gating. Compared to uncorrected reconstructions, fat-MR based motion compensation yielded an average improvement of plaque-to-background contrast of 29.6%, 43.7%, 57.2%, and 70.6% for true plaque-to-blood ratios of 10, 15, 20 and 25:1, respectively. Channelized

  10. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study

    NASA Astrophysics Data System (ADS)

    Petibon, Y.; El Fakhri, G.; Nezafat, R.; Johnson, N.; Brady, T.; Ouyang, J.

    2014-03-01

    Coronary atherosclerotic plaque rupture is the main cause of myocardial infarction and the leading killer in the US. Inflammation is a known bio-marker of plaque vulnerability and can be assessed non-invasively using fluorodeoxyglucose-positron emission tomography imaging (FDG-PET). However, cardiac and respiratory motion of the heart makes PET detection of coronary plaque very challenging. Fat surrounding coronary arteries allows the use of MRI to track plaque motion during simultaneous PET-MR examination. In this study, we proposed and assessed the performance of a fat-MR based coronary motion correction technique for improved FDG-PET coronary plaque imaging in simultaneous PET-MR. The proposed methods were evaluated in a realistic four-dimensional PET-MR simulation study obtained by combining patient water-fat separated MRI and XCAT anthropomorphic phantom. Five small lesions were digitally inserted inside the patients coronary vessels to mimic coronary atherosclerotic plaques. The heart of the XCAT phantom was digitally replaced with the patient's heart. Motion-dependent activity distributions, attenuation maps, and fat-MR volumes of the heart, were generated using the XCAT cardiac and respiratory motion fields. A full Monte Carlo simulation using Siemens mMR's geometry was performed for each motion phase. Cardiac/respiratory motion fields were estimated using non-rigid registration of the transformed fat-MR volumes and incorporated directly into the system matrix of PET reconstruction along with motion-dependent attenuation maps. The proposed motion correction method was compared to conventional PET reconstruction techniques such as no motion correction, cardiac gating, and dual cardiac-respiratory gating. Compared to uncorrected reconstructions, fat-MR based motion compensation yielded an average improvement of plaque-to-background contrast of 29.6%, 43.7%, 57.2%, and 70.6% for true plaque-to-blood ratios of 10, 15, 20 and 25:1, respectively. Channelized

  11. Towards coronary plaque imaging using simultaneous PET-MR: a simulation study

    PubMed Central

    Petibon, Y; El Fakhri, G; Nezafat, R; Johnson, N; Brady, T; Ouyang, J

    2014-01-01

    Coronary atherosclerotic plaque rupture is the main cause of myocardial infarction and the leading killer in the US. Inflammation is a known bio-marker of plaque vulnerability and can be assessed non-invasively using FDG-PET imaging. However, cardiac and respiratory motion of the heart makes PET detection of coronary plaque very challenging. Fat surrounding coronary arteries allow the use of MRI to track plaque motion during simultaneous PET-MR examination. In this study, we proposed and assessed the performance of a fat-MR based coronary motion correction technique for improved FDG-PET coronary plaque imaging in simultaneous PET-MR. The proposed methods were evaluated in a realistic four-dimensional PET-MR simulation study obtained by combining patient water-fat separated MRI and XCAT anthropomorphic phantom. Five small lesions were digitally inserted inside the patient coronary vessels to mimic coronary atherosclerotic plaques. The heart of the XCAT phantom was digitally replaced with the patient’s heart. Motion-dependent activity distributions, attenuation maps, and fat MR volumes of the heart, were generated using the XCAT cardiac and respiratory motion fields. A full Monte Carlo simulation using Siemens mMR’s geometry was performed for each motion phase. Cardiac/respiratory motion fields were estimated using non-rigid registration of the transformed fat MR volumes and incorporated directly into the system matrix of PET reconstruction along with motion-dependent attenuation maps. The proposed motion correction method was compared to conventional PET reconstruction techniques such as no motion correction, cardiac gating, and dual cardiac-respiratory gating. Compared to uncorrected reconstructions, fat-MR based motion compensation yielded an average improvement of plaque-to-background contrast (PBC) of 29.6%, 43.7%, 57.2%, and 70.6% for true plaque-to-blood ratios of 10, 15, 20 and 25:1, respectively. Channelized Hotelling Observer (CHO) Signal to Noise Ratio

  12. FDG PET with contrast-enhanced CT: a critical imaging tool for laryngeal carcinoma.

    PubMed

    Chu, Mae Mae A Y; Kositwattanarerk, Arpakorn; Lee, David J; Makkar, Jasnit S; Genden, Eric M; Kao, Johnny; Packer, Stuart H; Som, Peter M; Kostakoglu, Lale

    2010-09-01

    Fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) has evolved to be an essential imaging modality in the evaluation of laryngeal carcinoma. Although the modality has limited utility in assessing the extent of the primary tumor, FDG PET has proved to be superior to anatomic modalities in the detection of lymph node and distant metastases. The role of FDG PET in the evaluation of patients with laryngeal tumors that are clinically classified as N0 has not shown consistent usefulness because of the innate resolution limitations of the camera. In the posttherapy setting, however, FDG PET has consistently demonstrated a high negative predictive value in the identification of recurrent disease, both during the course of therapy and during long-term follow-up. In addition, contrast material-enhanced computed tomography (CT) in conjunction with FDG PET has demonstrated a complementary role by allowing for superior anatomic coregistration and therefore more definitive diagnosis. There is sufficient evidence that with further advances in PET technology, this modality will likely become more useful in the detection of small lesions and occult nodal disease, as well as in guiding the management of laryngeal carcinoma. PMID:20833855

  13. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    SciTech Connect

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.

  14. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGESBeta

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; et al

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  15. MRI data driven partial volume effects correction in PET imaging using 3D local multi-resolution analysis

    NASA Astrophysics Data System (ADS)

    Le Pogam, Adrien; Lamare, Frederic; Hatt, Mathieu; Fernandez, Philippe; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2013-02-01

    PET partial volume effects (PVE) resulting from the limited resolution of PET scanners is still a quantitative issue that PET/MRI scanners do not solve by themselves. A recently proposed voxel-based locally adaptive 3D multi-resolution PVE correction based on the mutual analysis of wavelet decompositions was applied on 12 clinical 18F-FLT PET/T1 MRI images of glial tumors, and compared to a PET only voxel-wise iterative deconvolution approach. Quantitative and qualitative results demonstrated the interest of exploiting PET/MRI information with higher uptake increases (19±8% vs. 11±7%, p=0.02), as well as more convincing visual restoration of details within tumors with respect to deconvolution of the PET uptake only. Further studies are now required to demonstrate the accuracy of this restoration with histopathological validation of the uptake in tumors.

  16. 18F-FDG PET/CT Imaging of Primary Hepatic Neuroendocrine Tumor

    PubMed Central

    Mitamura, Katsuya; Yamamoto, Yuka; Tanaka, Kenichi; Sanomura, Takayuki; Murota, Makiko; Nishiyama, Yoshihiro

    2015-01-01

    Primary hepatic neuroendocrine tumors (PHNETs) are extremely rare neoplasms. Herein, we report a case of a 70- year-old man with a hepatic mass. The non-contrast computed tomography (CT) image showed a low-density mass, and dynamic CT images indicated the enhancement of the mass in the arterial phase and early washout in the late phase. F-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and fused PET/CT images showed increased uptake in the hepatic mass. Whole-body 18F-FDG PET images showed no abnormal activity except for the liver lesion. Presence of an extrahepatic tumor was also ruled out by performing upper gastrointestinal endoscopy, total colonoscopy, and chest and abdominal CT. A posterior segmentectomy was performed, and histologic examination confirmed a neuroendocrine tumor (grade 1). The patient was followed up for about 2 years after the resection, and no extrahepatic lesions were radiologically found. Therefore, the patient was diagnosed with PHNET. To the best of our knowledge, no previous case of PHNET have been detected by 18F-FDG PET imaging.

  17. Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Seidel, Jurgen; Thomasson, David; Solomon, Jeff; Mollura, Daniel J

    2014-01-01

    Delineation and noise removal play a significant role in clinical quantification of PET images. Conventionally, these two tasks are considered independent, however, denoising can improve the performance of boundary delineation by enhancing SNR while preserving the structural continuity of local regions. On the other hand, we postulate that segmentation can help denoising process by constraining the smoothing criteria locally. Herein, we present a novel iterative approach for simultaneous PET image denoising and segmentation. The proposed algorithm uses generalized Anscombe transformation priori to non-local means based noise removal scheme and affinity propagation based delineation. For nonlocal means denoising, we propose a new regional means approach where we automatically and efficiently extract the appropriate subset of the image voxels by incorporating the class information from affinity propagation based segmentation. PET images after denoising are further utilized for refinement of the segmentation in an iterative manner. Qualitative and quantitative results demonstrate that the proposed framework successfully removes the noise from PET images while preserving the structures, and improves the segmentation accuracy. PMID:25333180

  18. (18)F-FDG PET/CT Imaging of Primary Hepatic Neuroendocrine Tumor.

    PubMed

    Mitamura, Katsuya; Yamamoto, Yuka; Tanaka, Kenichi; Sanomura, Takayuki; Murota, Makiko; Nishiyama, Yoshihiro

    2015-01-01

    Primary hepatic neuroendocrine tumors (PHNETs) are extremely rare neoplasms. Herein, we report a case of a 70- year-old man with a hepatic mass. The non-contrast computed tomography (CT) image showed a low-density mass, and dynamic CT images indicated the enhancement of the mass in the arterial phase and early washout in the late phase. F-18 fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and fused PET/CT images showed increased uptake in the hepatic mass. Whole-body (18)F-FDG PET images showed no abnormal activity except for the liver lesion. Presence of an extrahepatic tumor was also ruled out by performing upper gastrointestinal endoscopy, total colonoscopy, and chest and abdominal CT. A posterior segmentectomy was performed, and histologic examination confirmed a neuroendocrine tumor (grade 1). The patient was followed up for about 2 years after the resection, and no extrahepatic lesions were radiologically found. Therefore, the patient was diagnosed with PHNET. To the best of our knowledge, no previous case of PHNET have been detected by (18)F-FDG PET imaging. PMID:27408882

  19. A Factor-Image Framework to Quantification of Brain Receptor Dynamic PET Studies

    PubMed Central

    Wang, Z. Jane; Szabo, Zsolt; Lei, Peng; Varga, József; Liu, K. J. Ray

    2007-01-01

    The positron emission tomography (PET) imaging technique enables the measurement of receptor distribution or neurotransmitter release in the living brain and the changes of the distribution with time and thus allows quantification of binding sites as well as the affinity of a radioligand. However, quantification of receptor binding studies obtained with PET is complicated by tissue heterogeneity in the sampling image elements (i.e., voxels, pixels). This effect is caused by a limited spatial resolution of the PET scanner. Spatial heterogeneity is often essential in understanding the underlying receptor binding process. Tracer kinetic modeling also often requires an intrusive collection of arterial blood samples. In this paper, we propose a likelihood-based framework in the voxel domain for quantitative imaging with or without the blood sampling of the input function. Radioligand kinetic parameters are estimated together with the input function. The parameters are initialized by a subspace-based algorithm and further refined by an iterative likelihood-based estimation procedure. The performance of the proposed scheme is examined by simulations. The results show that the proposed scheme provides reliable estimation of factor time-activity curves (TACs) and the underlying parametric images. A good match is noted between the result of the proposed approach and that of the Logan plot. Real brain PET data are also examined, and good performance is observed in determining the TACs and the underlying factor images. PMID:18769527

  20. Clinical PET/MR Imaging in Dementia and Neuro-Oncology.

    PubMed

    Henriksen, Otto M; Marner, Lisbeth; Law, Ian

    2016-10-01

    The introduction of hybrid PET/MRI systems allows simultaneous multimodality image acquisition of high technical quality. This technique is well suited for the brain, and particularly in dementia and neuro-oncology. In routine use combinations of well-established MRI sequences and PET tracers provide the most optimal and clinically valuable protocols. For dementia the [18F]-fluorodeoxyglucose (FDG) has merit with a simultaneous four sequence MRI protocol of 20 min supported by supplementary statistical reading tools and quantitative measurements of the hippocampal volume. Clinical PET/MRI using [18F]-fluoro-ethyl-tyrosine (FET) also abide to the expectations of the adaptive and versatile diagnostic tool necessary in neuro-oncology covering both simple 20 min protocols for routine treatment surveillance and complicated 90 min brain and spinal cord protocols in pediatric neuro-oncology under general anesthesia. The clinical value of adding advanced MRI sequences in multiparametric imaging setting, however, is still undocumented. PMID:27593248

  1. Monte Carlo Modeling of Cascade Gamma Rays in 86Y PET imaging: Preliminary results

    PubMed Central

    Zhu, Xuping; El Fakhri, Georges

    2011-01-01

    86Y is a PET agent that could be used as an ideal surrogate to allow personalized dosimetry in 90Y radionuclide therapy. However, 86Y also emits cascade gamma rays. We have developed a Monte Carlo program based on SimSET to model cascade gamma rays in PET imaging. The new simulation was validated with the GATE simulation package. Agreements within 15% were found in spatial resolution, apparent scatter fraction (ratio of coincidences outside peak regions in line source sinograms), singles and coincidences statistics and detected photons energy distribution within the PET energy window. A 20% discrepancy was observed in the absolute scatter fraction, likely caused by differences in the tracking of higher-energy cascade gamma photons. On average the new simulation is 6 times faster than GATE, and the computing time can be further improved by using variance reduction techniques currently available in SimSET. Comparison with phantom acquisitions showed agreements in spatial resolutions and the general shape of projection profiles; however, the standard scatter correction method on the scanner is not directly applicable for 86Y PET as it leads to incorrect scatter fractions. The new simulation was used to characterize 86Y PET. Compared with conventional 18F PET, in which major contamination at low count rates comes from scattered events, cascade gamma-involved events are more important in 86Y PET. The two types of contaminations have completely different distribution patterns, which should be considered for the corrections of their effects. Our approach will be further improved in the future in the modeling of random coincidences and tracking of high energy photons, and simulation results will be used for the development of correction methods in 86Y PET. PMID:19521011

  2. Monte Carlo modeling of cascade gamma rays in 86Y PET imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Zhu, Xuping; El Fakhri, Georges

    2009-07-01

    86Y is a PET agent that could be used as an ideal surrogate to allow personalized dosimetry in 90Y radionuclide therapy. However, 86Y also emits cascade gamma rays. We have developed a Monte Carlo program based on SimSET (Simulation System for Emission Tomography) to model cascade gamma rays in PET imaging. The new simulation was validated with the GATE simulation package. Agreements within 15% were found in spatial resolution, apparent scatter fraction (ratio of coincidences outside peak regions in line source sinograms), single and coincidence statistics and detected photons energy distribution within the PET energy window. A discrepancy of 20% was observed in the absolute scatter fraction, likely caused by differences in the tracking of higher energy cascade gamma photons. On average, the new simulation is 6 times faster than GATE, and the computing time can be further improved by using variance reduction techniques currently available in SimSET. Comparison with phantom acquisitions showed agreements in spatial resolutions and the general shape of projection profiles; however, the standard scatter correction method on the scanner is not directly applicable to 86Y PET as it leads to incorrect scatter fractions. The new simulation was used to characterize 86Y PET. Compared with conventional 18F PET, in which major contamination at low count rates comes from scattered events, cascade gamma-involved events are more important in 86Y PET. The two types of contaminations have completely different distribution patterns, which should be considered for the corrections of their effects. Our approach will be further improved in the future in the modeling of random coincidences and tracking of high-energy photons, and simulation results will be used for the development of correction methods in 86Y PET.

  3. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks

    PubMed Central

    Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni

    2015-01-01

    Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient’s response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a “radiomics” approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298

  4. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. PMID:26897070

  5. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks.

    PubMed

    Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni

    2015-01-01

    Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient's response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a "radiomics" approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298

  6. The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.

    PubMed

    Yang, Xin; Peng, Hao

    2015-03-01

    PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. PMID:25622772

  7. Transmission-less attenuation estimation from time-of-flight PET histo-images using consistency equations

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Defrise, Michel; Metzler, Scott D.; Matej, Samuel

    2015-08-01

    In positron emission tomography (PET) imaging, attenuation correction with accurate attenuation estimation is crucial for quantitative patient studies. Recent research showed that the attenuation sinogram can be determined up to a scaling constant utilizing the time-of-flight information. The TOF-PET data can be naturally and efficiently stored in a histo-image without information loss, and the radioactive tracer distribution can be efficiently reconstructed using the DIRECT approaches. In this paper, we explore transmission-less attenuation estimation from TOF-PET histo-images. We first present the TOF-PET histo-image formation and the consistency equations in the histo-image parameterization, then we derive a least-squares solution for estimating the directional derivatives of the attenuation factors from the measured emission histo-images. Finally, we present a fast solver to estimate the attenuation factors from their directional derivatives using the discrete sine transform and fast Fourier transform while considering the boundary conditions. We find that the attenuation histo-images can be uniquely determined from the TOF-PET histo-images by considering boundary conditions. Since the estimate of the attenuation directional derivatives can be inaccurate for LORs tangent to the patient boundary, external sources, e.g. a ring or annulus source, might be needed to give an accurate estimate of the attenuation gradient for such LORs. The attenuation estimation from TOF-PET emission histo-images is demonstrated using simulated 2D TOF-PET data.

  8. Nuclear Medicine Imaging of Infection in Cancer Patients (With Emphasis on FDG-PET)

    PubMed Central

    Vos, Fidel J.; van der Graaf, Winette T.A.; Oyen, Wim J.G.

    2011-01-01

    Infections are a common cause of death and an even more common cause of morbidity in cancer patients. Timely and adequate diagnosis of infection is very important. This article provides clinicians as well as nuclear medicine specialists with a concise summary of the most important and widely available nuclear medicine imaging techniques for infectious and inflammatory diseases in cancer patients with an emphasis on fluorodeoxyglucose positron emission tomography (FDG-PET). 67Ga-citrate has many unfavorable characteristics, and the development of newer radiopharmaceuticals has resulted in the replacement of 67Ga-citrate scintigraphy by scintigraphy with labeled leukocytes or FDG-PET for the majority of conditions. The sensitivity of labeled leukocyte scintigraphy in non-neutropenic cancer patients is comparable with that in patients without malignancy. The specificity, however, is lower because of the uptake of labeled leukocytes in many primary tumors and metastases, most probably as a result of their inflammatory component. In addition, labeled leukocyte scintigraphy cannot be used for febrile neutropenia because of the inability to harvest sufficient peripheral leukocytes for in vitro labeling. FDG-PET has several advantages over these conventional scintigraphic techniques. FDG-PET has shown its usefulness in diagnosing septic thrombophlebitis in cancer patients. It has also been shown that imaging of infectious processes using FDG-PET is possible in patients with severe neutropenia. Although larger prospective studies examining the value of FDG-PET in cancer patients suspected of infection, especially in those with febrile neutropenia, are needed, FDG-PET appears to be the most promising scintigraphic technique for the diagnosis of infection in this patient group. PMID:21680576

  9. Bimodal imaging probes for combined PET and OI: recent developments and future directions for hybrid agent development.

    PubMed

    Seibold, Uwe; Wängler, Björn; Schirrmacher, Ralf; Wängler, Carmen

    2014-01-01

    Molecular imaging--and especially positron emission tomography (PET)--has gained increasing importance for diagnosis of various diseases and thus experiences an increasing dissemination. Therefore, there is also a growing demand for highly affine PET tracers specifically accumulating and visualizing target structures in the human body. Beyond the development of agents suitable for PET alone, recent tendencies aim at the synthesis of bimodal imaging probes applicable in PET as well as optical imaging (OI), as this combination of modalities can provide clinical advantages. PET, due to the high tissue penetration of the γ-radiation emitted by PET nuclides, allows a quantitative imaging able to identify and visualize tumors and metastases in the whole body. OI on the contrary visualizes photons exhibiting only a limited tissue penetration but enables the identification of tumor margins and infected lymph nodes during surgery without bearing a radiation burden for the surgeon. Thus, there is an emerging interest in bimodal agents for PET and OI in order to exploit the potential of both imaging techniques for the imaging and treatment of tumor diseases. This short review summarizes the available hybrid probes developed for dual PET and OI and discusses future directions for hybrid agent development. PMID:24822177

  10. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    PubMed

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies. PMID:26736741

  11. TOF capability evaluation on a panel PET for human body imaging

    NASA Astrophysics Data System (ADS)

    Xiao, P.; Cao, X.; Wan, L.; Li, Y.; Xie, Q.

    2013-04-01

    Due to its unique structure, parallel panel configuration may lead to novel applications for positron emission tomography (PET). The major challenge of panel PET imaging is the limited angle problem, to which the time-of-flight (TOF) information seems to be a promising solution. This work investigated the required TOF capability of a panel PET design, which has a feasible size of field of view (FOV) for human torso. Such a system's corresponding angular coverage can vary from 70 to 102 degrees. The recovery ability of small lesions was assessed, and the contrast recovery coefficient (CRC) and signal-to-noise ratio (SNR) were analyzed, with a full ring PET as the benchmark system. We also varied the timing resolution and the distance between panels, to evaluate their impacts on image quality. Encouraging results were obtained in simulation study. Distortions and artifacts caused by the limited angular coverage were greatly reduced with timing resolutions better than 300 ps. The recovery ability of small lesions in most part of FOV was desirable. Meanwhile, varying panel distance in the range of 25 to 45 cm seemed to have trivial influence, when timing resolution was fixed at 300 ps. That means that such changes of panel distance might not affect the requirement on TOF capability, allowing more flexibility in panel PET's design and applications.

  12. Combining variational and model-based techniques to register PET and MR images in hand osteoarthritis

    NASA Astrophysics Data System (ADS)

    Magee, Derek; Tanner, Steven F.; Waller, Michael; Tan, Ai Lyn; McGonagle, Dennis; Jeavons, Alan P.

    2010-08-01

    Co-registration of clinical images acquired using different imaging modalities and equipment is finding increasing use in patient studies. Here we present a method for registering high-resolution positron emission tomography (PET) data of the hand acquired using high-density avalanche chambers with magnetic resonance (MR) images of the finger obtained using a 'microscopy coil'. This allows the identification of the anatomical location of the PET radiotracer and thereby locates areas of active bone metabolism/'turnover'. Image fusion involving data acquired from the hand is demanding because rigid-body transformations cannot be employed to accurately register the images. The non-rigid registration technique that has been implemented in this study uses a variational approach to maximize the mutual information between images acquired using these different imaging modalities. A piecewise model of the fingers is employed to ensure that the methodology is robust and that it generates an accurate registration. Evaluation of the accuracy of the technique is tested using both synthetic data and PET and MR images acquired from patients with osteoarthritis. The method outperforms some established non-rigid registration techniques and results in a mean registration error that is less than approximately 1.5 mm in the vicinity of the finger joints.

  13. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    SciTech Connect

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  14. Automated detection of lung tumors in PET/CT images using active contour filter

    NASA Astrophysics Data System (ADS)

    Teramoto, Atsushi; Adachi, Hayato; Tsujimoto, Masakazu; Fujita, Hiroshi; Takahashi, Katsuaki; Yamamuro, Osamu; Tamaki, Tsuneo; Nishio, Masami; Kobayashi, Toshiki

    2015-03-01

    In a previous study, we developed a hybrid tumor detection method that used both computed tomography (CT) and positron emission tomography (PET) images. However, similar to existing computer-aided detection (CAD) schemes, it was difficult to detect low-contrast lesions that touch to the normal organs such as the chest wall or blood vessels in the lung. In the current study, we proposed a novel lung tumor detection method that uses active contour filters to detect the nodules deemed "difficult" in previous CAD schemes. The proposed scheme detects lung tumors using both CT and PET images. As for the detection in CT images, the massive region was first enhanced using an active contour filter (ACF), which is a type of contrast enhancement filter that has a deformable kernel shape. The kernel shape involves closed curves that are connected by several nodes that move iteratively in order to enclose the massive region. The final output of ACF is the difference between the maximum pixel value on the deformable kernel, and pixel value on the center of the filter kernel. Subsequently, the PET images were binarized to detect the regions of increased uptake. The results were integrated, followed by the false positive reduction using 21 characteristic features and three support vector machines. In the experiment, we evaluated the proposed method using 100 PET/CT images. More than half of nodules missed using previous methods were accurately detected. The results indicate that our method may be useful for the detection of lung tumors using PET/CT images.

  15. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts.

    PubMed

    Xie, Huan; Wang, Zheng Jim; Bao, Ande; Goins, Beth; Phillips, William T

    2010-08-16

    Here we report the radiolabeling of gold nanoshells (NSs) for PET imaging in rat tumor model. A conjugation method was developed to attach NSs with the radionuclide, (64)Cu. The resulting conjugates showed good labeling efficiency and stability in PBS and serum. The pharmacokinetics of (64)Cu-NS and the controls ((64)Cu-DOTA and (64)Cu-DOTA-PEG2K) were determined in nude rats with a head and neck squamous cell carcinoma xenograft by radioactive counting. Using PET/CT imaging, we monitored the in vivo distribution of (64)Cu-NS and the controls in the tumor-bearing rats at various time points after their intravenous injection. PET images of the rats showed accumulation of (64)Cu-NSs in the tumors and other organs with significant difference from the controls. The organ biodistribution of rats at 46h post-injection was analyzed by radioactive counting and compared between the (64)Cu-NS and the controls. Different clearance kinetics was indicated. Neutron activation analysis (NAA) of gold concentration was performed to quantify the amount of NSs in major tissues of the dosed rats and the results showed similar distribution. Overall, PET images with (64)Cu had good resolution and therefore can be further applied to guide photothermal treatment of cancer. PMID:20540999

  16. Full 3-D cluster-based iterative image reconstruction tool for a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Imrek, J.; Molnár, J.; Novák, D.; Balkay, L.; Emri, M.; Trón, L.; Bükki, T.; Kerek, A.

    2007-02-01

    Iterative reconstruction methods are commonly used to obtain images with high resolution and good signal-to-noise ratio in nuclear imaging. The aim of this work was to develop a scalable, fast, cluster based, fully 3-D iterative image reconstruction package for our small animal PET camera, the miniPET. The reconstruction package is developed to determine the 3-D radioactivity distribution from list mode type of data sets and it can also simulate noise-free projections of digital phantoms. We separated the system matrix generation and the fully 3-D iterative reconstruction process. As the detector geometry is fixed for a given camera, the system matrix describing this geometry is calculated only once and used for every image reconstruction, making the process much faster. The Poisson and the random noise sensitivity of the ML-EM iterative algorithm were studied for our small animal PET system with the help of the simulation and reconstruction tool. The reconstruction tool has also been tested with data collected by the miniPET from a line and a cylinder shaped phantom and also a rat.

  17. Graph cut based co-segmentation of lung tumor in PET-CT images

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Xiang, Dehui; Zhang, Bin; Chen, Xinjian

    2015-03-01

    Accurate segmentation of pulmonary tumor is important for clinicians to make appropriate diagnosis and treatment. Positron Emission Tomography (PET) and Computed Tomography (CT) are two commonly used imaging technologies for image-guided radiation therapy. In this study, we present a graph-based method to integrate the two modalities to segment the tumor simultaneously on PET and CT images. The co-segmentation problem is formulated as an energy minimization problem. Two weighted sub-graphs are constructed for PET and CT. The characteristic information of the two modalities is encoded on the edges of the graph. A context cost is enforced by adding context arcs to achieve consistent results between the two modalities. An optimal solution can be achieved by solving a maximum flow problem. The proposed segmentation method was validated on 18 sets of PET-CT images from different patients with non-small cell lung cancer (NSCLC). The quantitative results show significant improvement of our method with a mean DSC value 0.82.

  18. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-11-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery.

  19. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    NASA Astrophysics Data System (ADS)

    David, S.; Visvikis, D.; Roux, C.; Hatt, M.

    2011-09-01

    In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.

  20. Regional, kinetic [18F]FDG PET imaging of a unilateral Parkinsonian animal model

    PubMed Central

    Silva, Matthew D; Glaus, Charles; Hesterman, Jacob Y; Hoppin, Jack; Puppa, Geraldine Hill della; Kazules, Timothy; Orcutt, Kelly M; Germino, Mary; Immke, David; Miller, Silke

    2013-01-01

    Positron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose ([18F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [18F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Following a bolus injection of 18.5 ± 1 MBq [18F]FDG and a 60-minute PET scan, image-derived input functions from the vena cava and left ventricle were used with three models, including Patlak graphical analysis, to estimate the influx constant and the metabolic rate in ten brain regions. We observed statistically significant changes in [18F]FDG uptake ipsilateral to the 6-OHDA injection in the basal ganglia, olfactory bulb, and amygdala regions; and these changes are of biological relevance to the disease. These experiments provide further validation for the use of [18F]FDG PET imaging in this model for drug discovery and development. PMID:23526185

  1. Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging

    PubMed Central

    Shi, Sixiang; Fliss, Brianne C.; Gu, Zi; Zhu, Yian; Hong, Hao; Valdovinos, Hector F.; Hernandez, Reinier; Goel, Shreya; Luo, Haiming; Chen, Feng; Barnhart, Todd E.; Nickles, Robert J.; Xu, Zhi Ping; Cai, Weibo

    2015-01-01

    Layered double hydroxide (LDH) nanomaterial has emerged as a novel delivery agent for biomedical applications due to its unique structure and properties. However, in vivo positron emission tomography (PET) imaging with LDH nanoparticles has not been achieved. The aim of this study is to explore chelator-free labeling of LDH nanoparticles with radioisotopes for in vivo PET imaging. Bivalent cation 64Cu2+ and trivalent cation 44Sc3+ were found to readily label LDH nanoparticles with excellent labeling efficiency and stability, whereas tetravalent cation 89Zr4+ could not label LDH since it does not fit into the LDH crystal structure. PET imaging shows that prominent tumor uptake was achieved in 4T1 breast cancer with 64Cu-LDH-BSA via passive targeting alone (7.7 ± 0.1%ID/g at 16 h post-injection; n = 3). These results support that LDH is a versatile platform that can be labeled with various bivalent and trivalent radiometals without comprising the native properties, highly desirable for PET image-guided drug delivery. PMID:26585551

  2. Towards improved hardware component attenuation correction in PET/MR hybrid imaging.

    PubMed

    Paulus, D H; Tellmann, L; Quick, H H

    2013-11-21

    In positron emission tomography/computed tomography (PET/CT) hybrid imaging attenuation correction (AC) of the patient tissue and patient table is performed by converting the CT-based Hounsfield units (HU) to linear attenuation coefficients (LAC) of PET. When applied to the new field of hardware component AC in PET/magnetic resonance (MR) hybrid imaging, this conversion method may result in local overcorrection of PET activity values. The aim of this study thus was to optimize the conversion parameters for CT-based AC of hardware components in PET/MR. Systematic evaluation and optimization of the HU to LAC conversion parameters has been performed for the hardware component attenuation map (µ-map) of a flexible radiofrequency (RF) coil used in PET/MR imaging. Furthermore, spatial misregistration of this RF coil to its µ-map was simulated by shifting the µ-map in different directions and the effect on PET quantification was evaluated. Measurements of a PET NEMA standard emission phantom were performed on an integrated hybrid PET/MR system. Various CT parameters were used to calculate different µ-maps for the flexible RF coil and to evaluate the impact on the PET activity concentration. A 511 keV transmission scan of the local RF coil was used as standard of reference to adapt the slope of the conversion from HUs to LACs at 511 keV. The average underestimation of the PET activity concentration due to the non-attenuation corrected RF coil in place was calculated to be 5.0% in the overall phantom. When considering attenuation only in the upper volume of the phantom, the average difference to the reference scan without RF coil is 11.0%. When the PET/CT conversion is applied, an average overestimation of 3.1% (without extended CT scale) and 4.2% (with extended CT scale) is observed in the top volume of the NEMA phantom. Using the adapted conversion resulting from this study, the deviation in the top volume of the phantom is reduced to -0.5% and shows the lowest

  3. Deblurring of breathing motion artifacts in thoracic PET images by deconvolution methods

    SciTech Connect

    Naqa, Issam El; Low, Daniel A.; Bradley, Jeffrey D.; Vicic, Milos; Deasy, Joseph O.

    2006-10-15

    In FDG-PET imaging of thoracic tumors, blurring due to breathing motion often significantly degrades the quality of the observed image, which then obscures the tumor boundary. We demonstrate a deblurring technique that combines patient-specific motion estimates of tissue trajectories with image deconvolution techniques, thereby partially eliminating breathing-motion induced artifacts. Two data sets were used to evaluate the methodology including mobile phantoms and clinical images. The clinical images consist of PET/CT co-registered images of patients diagnosed with lung cancer. A breathing motion model was used to locally estimate the location-dependent tissue location probability function (TLP) due to breathing. The deconvolution process is carried by an expectation-maximization (EM) iterative algorithm using the motion-based TLP. Several methods were used to improve the robustness of the deblurring process by mitigating noise amplification and compensating for motion estimate uncertainties. The mobile phantom study with controlled settings demonstrated significant reduction in underestimation error of concentration in high activity case without significant superiority between the different applied methods. In case of medium activity concentration (moderate noise levels), less improvement was reported (10%-15% reduction in underestimation error relative to 15%-20% reduction in high concentration). Residual denoising using wavelets offered the best performance for this case. In the clinical data case, the image spatial resolution was significantly improved, especially in the direction of greatest motion (cranio-caudal). The EM algorithm converged within 15 and 5 iterations in the large and small tumor cases, respectively. A compromise between a figure-of-merit and entropy minimization was suggested as a stopping criterion. Regularization techniques such as wavelets and Bayesian methods provided further refinement by suppressing noise amplification. Our initial

  4. Improved correction for the tissue fraction effect in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  5. Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development

    PubMed Central

    Seibold, Uwe; Wängler, Björn; Schirrmacher, Ralf; Wängler, Carmen

    2014-01-01

    Molecular imaging—and especially positron emission tomography (PET)—has gained increasing importance for diagnosis of various diseases and thus experiences an increasing dissemination. Therefore, there is also a growing demand for highly affine PET tracers specifically accumulating and visualizing target structures in the human body. Beyond the development of agents suitable for PET alone, recent tendencies aim at the synthesis of bimodal imaging probes applicable in PET as well as optical imaging (OI), as this combination of modalities can provide clinical advantages. PET, due to the high tissue penetration of the γ-radiation emitted by PET nuclides, allows a quantitative imaging able to identify and visualize tumors and metastases in the whole body. OI on the contrary visualizes photons exhibiting only a limited tissue penetration but enables the identification of tumor margins and infected lymph nodes during surgery without bearing a radiation burden for the surgeon. Thus, there is an emerging interest in bimodal agents for PET and OI in order to exploit the potential of both imaging techniques for the imaging and treatment of tumor diseases. This short review summarizes the available hybrid probes developed for dual PET and OI and discusses future directions for hybrid agent development. PMID:24822177

  6. ¹⁸F-DOPA PET/computed tomography imaging.

    PubMed

    Chondrogiannis, Sotirios; Marzola, Maria Cristina; Rubello, Domenico

    2014-07-01

    18F-DOPA is a radiopharmaceutical with interesting clinical applications and promising performances in the evaluation of the integrity of dopaminergic pathways, brain tumors, NETs (especially MTCs, paragangliomas, and pheochromocytomas), and congenital hyperinsulinism. 18F-DOPA traces a very specific metabolic pathway and has a very precise biodistribution pattern. As for any radiopharmaceutical, the knowledge of the normal distribution of 18F-DOPA, its physiologic variants, and its possible pitfalls is essential for the correct interpretation of PET scans. Moreover, it is important to be aware of the potential false-positive and false-negative episodes that can occur in the various clinical settings. PMID:25030394

  7. Short-lived positron emitters in beam-on PET imaging during proton therapy

    NASA Astrophysics Data System (ADS)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  8. Present and future roles of FDG-PET/CT imaging in the management of lung cancer.

    PubMed

    Kitajima, Kazuhiro; Doi, Hiroshi; Kanda, Tomonori; Yamane, Tomohiko; Tsujikawa, Tetsuya; Kaida, Hayato; Tamaki, Yukihisa; Kuribayashi, Kozo

    2016-06-01

    Integrated positron emission tomography/computed tomography (PET/CT) using 2-[(18)F]fluoro-2-deoxy-D-glucose ((18)F-FDG) has emerged as a powerful tool for combined metabolic and anatomic evaluation in clinical oncologic imaging. This review discusses the utility of (18)F-FDG PET/CT as a tool for managing patients with lung cancer. We discuss different patient management stages, including diagnosis, initial staging, therapy planning, early treatment response assessment, re-staging, and prognosis. PMID:27121156

  9. Extraosseous Osteosarcoma of the Liver Demonstrated on 18F-FDG PET/CT Imaging.

    PubMed

    Jiang, Lei; Luan, Lijuan; Yun, Hong; Hou, Yingyong; Shi, Hongcheng

    2016-08-01

    A 66-year-old woman presented with abdominal pain for 1 month. Ultrasonography displayed multiple hepatic masses that were thought as metastases. FDG PET/CT was performed to assess the nature of these masses and to search primary malignancy. The images showed elevated FDG activity in the partially calcified hypodense lesions in the liver without abnormality elsewhere. The lesions were subsequently confirmed as primary extraosseous osteosarcoma in the liver. The patient received liver transplantation. Six months later, her CA-125 was significantly increased. The follow-up PET/CT scan demonstrated the widespread metastases. PMID:27055145

  10. Primary Pulmonary Artery Sarcoma on Dual-Time Point FDG PET/CT Imaging.

    PubMed

    Li, Juan; Zhao, Qian; He, Lirong; Zhuang, Xiaoqing; Li, Fang

    2016-08-01

    A 59-year-old man presented cough, chest pain, and shortness of breath for 2 weeks and fever for 4 days. A contrast chest CT revealed a large right pulmonary artery filling defect, suggestive of pulmonary embolism that failed to respond to anticoagulation therapy. FDG PET/CT was performed to evaluate possible malignancy, which revealed intense activity in the right main pulmonary artery without any extrathoracic abnormality. The ratio of the SUVmax of this lesion to the liver was significantly increased in the delayed PET images. The pathological examination demonstrated primary pulmonary artery sarcoma. PMID:27163460

  11. Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase.

    PubMed

    Liu, Ping; Hamill, Terence G; Chioda, Marc; Chobanian, Harry; Fung, Selena; Guo, Yan; Chang, Linda; Bakshi, Raman; Hong, Qingmei; Dellureficio, James; Lin, Linus S; Abbadie, Catherine; Alexander, Jessica; Jin, Hong; Mandala, Suzanne; Shiao, Lin-Lin; Li, Wenping; Sanabria, Sandra; Williams, David; Zeng, Zhizhen; Hajdu, Richard; Jochnowitz, Nina; Rosenbach, Mark; Karanam, Bindhu; Madeira, Maria; Salituro, Gino; Powell, Joyce; Xu, Ling; Terebetski, Jenna L; Leone, Joseph F; Miller, Patricia; Cook, Jacquelynn; Holahan, Marie; Joshi, Aniket; O'Malley, Stacey; Purcell, Mona; Posavec, Diane; Chen, Tsing-Bau; Riffel, Kerry; Williams, Mangay; Hargreaves, Richard; Sullivan, Kathleen A; Nargund, Ravi P; DeVita, Robert J

    2013-06-13

    We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain. PMID:24900701

  12. MRI and FDG PET/CT imaging manifestations of cardiac sarcoidosis.

    PubMed

    Lu, Yang; Sweiss, Nadera J

    2015-12-01

    A 52-year-old man had biopsy-proven sarcoidosis of mediastinal lymph nodes. Cardiac sarcoidosis was confirmed on cardiac MRI with typical imaging features as delayed gadolinium enhancement. Follow-up FDG PET/CT with a 3-day pretest diet modification showed suppression of overall myocardial uptake of FDG but with multifocal abnormal FDG uptake in the myocardium regions corresponding to the previous MRI findings. Additional noncardiac active sarcoidosis involving multiple organ and lymph nodes were also visualized on FDG PET/CT. PMID:26544904

  13. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  14. PET imaging of MRP1 function in the living brain: method development and future perspectives.

    PubMed

    Okamura, T; Kikuchi, T; Irie, T

    2010-01-01

    Multidrug resistance-associated protein 1 (MRP1) functions as a primary active transporter utilizing energy from ATP hydrolysis. In the central nervous system (CNS), MRP1 plays an important role in limiting the permeation of xenobiotic and endogenous substrates across the blood-brain and blood-cerebrospinal fluid barriers, and across brain parenchymal cells. While MRP1 contributes to minimizing the neurotoxic effects of drugs, it may also restrict the distribution of drugs for the treatment of CNS diseases. Moreover, neurodegenerative disease may be associated with abnormal expression of efflux transporters in the brain. Noninvasive measurement of MRP1 function will therefore be useful for directly evaluating the effect of modulators on enhancing the penetration of drugs into the brain and for examining the pathophysiological role of MRP1 in the brain. Positron emission tomography (PET) is a powerful molecular imaging technique. While several PET probes have been proposed for imaging function of the efflux transporter P-glycoprotein, few reports discuss the probes for imaging MRP1 function in the brain. Ideally, brain radioactivity should consist of a single radioactive compound that is selectively transported by the efflux transporter of interest, without other efflux routes. However, most PET probes for MRP1 or P-glycoprotein are eliminated by both a transporter and simple diffusion, resulting in inaccurate measurement of pump function. This review addresses a new strategy to avoid this problem, and suggests the design of a PET probe based on this strategy, particularly for MRP1 imaging. Several published reports on imaging MRP1 function with PET are also discussed. PMID:20645911

  15. Novel Strategy for Preparing Dual-Modality Optical/PET Imaging Probes via Photo-Click Chemistry.

    PubMed

    Sun, Lingyi; Ding, Jiule; Xing, Wei; Gai, Yongkang; Sheng, Jing; Zeng, Dexing

    2016-05-18

    Preparation of small molecule based dual-modality probes remains a challenging task due to the complicated synthetic procedure. In this study, a novel concise and generic strategy for preparing dual-modality optical/PET imaging probes via photo-click chemistry was developed, in which the diazole photo-click linker functioned not only as a bridge between the targeting-ligand and the PET imaging moiety, but also as the fluorophore for optical imaging. A dual-modality AE105 peptidic probe was successfully generated via this strategy and subsequently applied in the fluorescent staining of U87MG cells and the (68)Ga based PET imaging of mice bearing U87MG xenograft. In addition, dual-modality monoclonal antibody cetuximab has also been generated via this strategy and labeled with (64)Cu for PET imaging studies, broadening the application of this strategy to include the preparation of macromolecule based imaging probes. PMID:27098544

  16. Respiratory motion blur identification and reduction in ungated thoracic PET imaging.

    PubMed

    Xu, Quansheng; Yuan, Kehong; Ye, Datian

    2011-07-21

    Respiratory motion results in significant motion blur in thoracic positron emission tomography (PET) imaging. Existing approaches to correct the blurring artifact involve acquiring the images in gated mode and using complicated reconstruction algorithms. In this paper, we propose a post-reconstruction framework to estimate respiratory motion and reduce the motion blur of PET images acquired in ungated mode. Our method includes two steps: one is to use minmax directional derivative analysis and local auto-correlation analysis to identify the two parameters blur direction and blur extent, respectively, and another is to employ WRL, à trous wavelet-denoising modified Richardson-Lucy (RL) deconvolution, to reduce the motion blur based on identified parameters. The mobile phantom data were first used to test the method before it was applied to 32 cases of clinical lung tumor PET data. Results showed that the blur extent of phantom images in different directions was accurately identified, and WRL can remove the majority of motion blur within ten iterations. The blur extent of clinical images was estimated to be 12.1 ± 3.7 mm in the direction of 74 ± 3° relative to the image horizontal axis. The quality of clinical images was significantly improved, both from visual inspection and quantitative evaluation after deconvolution. It was demonstrated that WRL outperforms RL and a Wiener filter in reducing the motion blur with one to two more iterations. The proposed method is easy to implement and thus could be a useful tool to reduce the effect of respiration in ungated thoracic PET imaging. PMID:21719945

  17. Respiratory motion blur identification and reduction in ungated thoracic PET imaging

    NASA Astrophysics Data System (ADS)

    Xu, Quansheng; Yuan, Kehong; Ye, Datian

    2011-07-01

    Respiratory motion results in significant motion blur in thoracic positron emission tomography (PET) imaging. Existing approaches to correct the blurring artifact involve acquiring the images in gated mode and using complicated reconstruction algorithms. In this paper, we propose a post-reconstruction framework to estimate respiratory motion and reduce the motion blur of PET images acquired in ungated mode. Our method includes two steps: one is to use minmax directional derivative analysis and local auto-correlation analysis to identify the two parameters blur direction and blur extent, respectively, and another is to employ WRL, à trous wavelet-denoising modified Richardson-Lucy (RL) deconvolution, to reduce the motion blur based on identified parameters. The mobile phantom data were first used to test the method before it was applied to 32 cases of clinical lung tumor PET data. Results showed that the blur extent of phantom images in different directions was accurately identified, and WRL can remove the majority of motion blur within ten iterations. The blur extent of clinical images was estimated to be 12.1 ± 3.7 mm in the direction of 74 ± 3° relative to the image horizontal axis. The quality of clinical images was significantly improved, both from visual inspection and quantitative evaluation after deconvolution. It was demonstrated that WRL outperforms RL and a Wiener filter in reducing the motion blur with one to two more iterations. The proposed method is easy to implement and thus could be a useful tool to reduce the effect of respiration in ungated thoracic PET imaging.

  18. Whole-body FDG-PET imaging for staging of Hodgkin`s disease and lymphoma

    SciTech Connect

    Hoh, C.K.; Glaspy, J.; Rosen, P.

    1997-03-01

    Accurate staging of Hodgkin`s disease (HD) and non-Hodgkin`s lymphoma (NHL) is important for treatment management. In this study, the utility of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) wholebody PET was evaluated as an imaging modality for initial staging or restaging of 7 HD and 11 NHL patients. Whole-body PET-based staging results were compared to the patient`s clinical stage based on conventional staging studies, which included combinations of CT of the chest, abdomen and pelvis, MRI scans, gallium scans, lymphangiograms, staging laparatomies and bone scans. Accurate staging was performed in 17 of 18 patients using a whole-body PET-based staging algorithm compared to the conventional staging algorithm in 15 of 18 patients. In 5 of 18 patients, whole-body PET-based staging showed additional lesions not detected by conventional staging modalities, whereas conventional staging demonstrated additional lesions in 4 of 18 patients not detected by whole-body PET. The total cost of conventional staging was $66,292 for 16 CT chest scans, 16 CT abdominal/pelvis scans, three limited MRI scans, four bone scans, give gallium scans, two laparotomies and one lymphangiogram. In contrast, scans cost $36,250 for 18 whole-body PET studies and additional selected correlative studies: one plain film radiograph, one limited CT, one bone marrow san, one upper GI and one endoscopy. A whole-body FDG-PET-based staging algorithm may be an accurate and cost-effective method for staging or restaging HD and NHL. 10 refs., 7 figs., 2 tabs.

  19. ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo.

    PubMed

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R; Solouk-Saran, Djamschid; Männ, Linda; Weski, Juliane; Maurer, Andreas; Fischer, Eliane; Spycher, Philipp R; Schibli, Roger; Boschetti, Frederic; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Severin, Gregory W; Autenrieth, Stella E; Krappmann, Sven; Davies, Genna; Pichler, Bernd J; Gunzer, Matthias; Wiehr, Stefan

    2016-02-23

    Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [(64)Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [(64)Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [(18)F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation. PMID:26787852

  20. ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo

    PubMed Central

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.; Solouk-Saran, Djamschid; Männ, Linda; Weski, Juliane; Maurer, Andreas; Fischer, Eliane; Spycher, Philipp R.; Schibli, Roger; Boschetti, Frederic; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Severin, Gregory W.; Autenrieth, Stella E.; Krappmann, Sven; Davies, Genna; Pichler, Bernd J.; Gunzer, Matthias; Wiehr, Stefan

    2016-01-01

    Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [64Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [64Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [18F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation. PMID:26787852

  1. (18)F- and (68)Ga-Labeled Neurotensin Peptides for PET Imaging of Neurotensin Receptor 1.

    PubMed

    Maschauer, Simone; Einsiedel, Jürgen; Hübner, Harald; Gmeiner, Peter; Prante, Olaf

    2016-07-14

    The neurotensin (NT) receptor-1 (NTS1) is overexpressed in a variety of carcinomas and is therefore an interesting target for imaging with positron emission tomography (PET). The aim of this study was the development of new NT derivatives based on the metabolically stable peptide sequence NLys-Lys-Pro-Tyr-Tle-Leu suitable for PET imaging. The NT peptides were synthesized by solid-phase supported peptide synthesis and elongated with respective chelators (NODA-GA, DOTA) for (68)Ga-labeling or propargylglycine for (18)F-labeling via copper-catalyzed azide-alkyne cycloaddition. Receptor affinities of the peptides for NTS1 were in the range of 19-110 nM. Biodistribution studies using HT29 tumor-bearing mice showed highest tumor uptake for [(68)Ga]6 and [(68)Ga]8 and specific binding in small-animal PET studies. The tumor uptake of (68)Ga-labeled peptides in vivo significantly correlated with the in vitro Ki values for NTS1. [(68)Ga]8 displayed an excellent tumor-to-background ratio and could therefore be considered as an appropriate molecular probe for NTS1 imaging by PET. PMID:27336295

  2. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence

    PubMed Central

    Lopci, Egesta; Grassi, Ilaria; Chiti, Arturo; Nanni, Cristina; Cicoria, Gianfranco; Toschi, Luca; Fonti, Cristina; Lodi, Filippo; Mattioli, Sandro; Fanti, Stefano

    2014-01-01

    Hypoxia is a pathological condition arising in living tissues when oxygen supply does not adequately cover the cellular metabolic demand. Detection of this phenomenon in tumors is of the utmost clinical relevance because tumor aggressiveness, metastatic spread, failure to achieve tumor control, increased rate of recurrence, and ultimate poor outcome are all associated with hypoxia. Consequently, in recent decades there has been increasing interest in developing methods for measurement of oxygen levels in tumors. Among the image-based modalities for hypoxia assessment, positron emission tomography (PET) is one of the most extensively investigated based on the various advantages it offers, i.e., broad range of radiopharmaceuticals, good intrinsic resolution, three-dimensional tumor representation, possibility of semiquantification/quantification of the amount of hypoxic tumor burden, overall patient friendliness, and ease of repetition. Compared with the other non-invasive techniques, the biggest advantage of PET imaging is that it offers the highest specificity for detection of hypoxic tissue. Starting with the 2-nitroimidazole family of compounds in the early 1980s, a great number of PET tracers have been developed for the identification of hypoxia in living tissue and solid tumors. This paper provides an overview of the principal PET tracers applied in cancer imaging of hypoxia and discusses in detail their advantages and pitfalls. PMID:24982822

  3. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Normandin, Marc D.; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey’s head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. PMID:24418501

  4. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.

    PubMed

    Huang, Chuan; Ackerman, Jerome L; Petibon, Yoann; Normandin, Marc D; Brady, Thomas J; El Fakhri, Georges; Ouyang, Jinsong

    2014-05-01

    Brain PET scanning plays an important role in the diagnosis, prognostication and monitoring of many brain diseases. Motion artifacts from head motion are one of the major hurdles in brain PET. In this work, we propose to use wireless MR active markers to track head motion in real time during a simultaneous PET-MR brain scan and incorporate the motion measured by the markers in the listmode PET reconstruction. Several wireless MR active markers and a dedicated fast MR tracking pulse sequence module were built. Data were acquired on an ACR Flangeless PET phantom with multiple spheres and a non-human primate with and without motion. Motions of the phantom and monkey's head were measured with the wireless markers using a dedicated MR tracking sequence module. The motion PET data were reconstructed using list-mode reconstruction with and without motion correction. Static reference was used as gold standard for quantitative analysis. The motion artifacts, which were prominent on the images without motion correction, were eliminated by the wireless marker based motion correction in both the phantom and monkey experiments. Quantitative analysis was performed on the phantom motion data from 24 independent noise realizations. The reduction of bias of sphere-to-background PET contrast by active marker based motion correction ranges from 26% to 64% and 17% to 25% for hot (i.e., radioactive) and cold (i.e., non-radioactive) spheres, respectively. The motion correction improved the channelized Hotelling observer signal-to-noise ratio of the spheres by 1.2 to 6.9 depending on their locations and sizes. The proposed wireless MR active marker based motion correction technique removes the motion artifacts in the reconstructed PET images and yields accurate quantitative values. PMID:24418501

  5. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    PubMed Central

    Lu, Feng-Mei

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in neuroscience has provided tremendous insights into disturbed human brain function. Among all of the molecular imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have occupied a particular position that visualize and measure the physiological processes using high-affinity and high-specificity molecular radioactive tracers as imaging probes in intact living brain. In this review, we will put emphasis on the PET/SPECT applications in Alzheimer’s disease (AD) and Parkinson’s disease (PD) as major CNS disorders. We will first give an overview of the main classical molecular neuroimaging modalities. Then, the major clinical applications of PET and SPECT along with molecular probes in the fields of psychiatry and neurology will be discussed. PMID:26029646

  6. Pitfalls in [18F]FDG PET imaging in gynecological malignancies.

    PubMed

    Hernandez Pampaloni, Miguel; Facchetti, Luca; Nardo, Lorenzo

    2016-06-01

    Gynecologic malignancies are the leading causes of cancer in women and they represent about 10 to 20% of all solid tumors. During the past few decades, technological advancements in the detection and staging have gained a pivotal role in all oncological processes, including the gynecological ones. Beyond ultrasound, computed tomography (CT) and magnetic resonance (MR) imaging that are conventionally used for anatomical imaging, [18F]FDG imaging and its hybrid further development as PET/CT has become a crucial tool due of its ability to combine functional metabolic and anatomic information, and the ability to image the entire whole body in a single examination. Since the introduction of integrated hybrid PET/CT systems into clinical practice the accurate analysis of the images has detected a number of limitations and pitfalls. The purpose of this review was to describe in detail the different pitfalls related to the use of [18F]FDG PET/CT in the gynecological malignancies, providing imaging examples and discussing possible ways to avoid misinterpretations. PMID:26937887

  7. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer

    PubMed Central

    Houghton, Jacob L.; Zeglis, Brian M.; Abdel-Atti, Dalya; Aggeler, Robert; Sawada, Ritsuko; Agnew, Brian J.; Scholz, Wolfgang W.; Lewis, Jason S.

    2015-01-01

    Molecular imaging agents for preoperative positron emission tomography (PET) and near-infrared fluorescent (NIRF)-guided delineation of surgical margins could greatly enhance the diagnosis, staging, and resection of pancreatic cancer. PET and NIRF optical imaging offer complementary clinical applications, enabling the noninvasive whole-body imaging to localize disease and identification of tumor margins during surgery, respectively. We report the development of PET, NIRF, and dual-modal (PET/NIRF) imaging agents, using 5B1, a fully human monoclonal antibody that targets CA19.9, a well-established pancreatic cancer biomarker. Desferrioxamine (DFO) and/or a NIRF dye (FL) were conjugated to the heavy-chain glycans of 5B1, using a robust and reproducible site-specific (ss) labeling methodology to generate three constructs (ssDFO-5B1, ssFL-5B1, and ssdual-5B1) in which the immunoreactivity was not affected by the conjugation of either label. Each construct was evaluated in a s.c. xenograft model, using CA19.9-positive (BxPC3) and -negative (MIAPaCa-2) human pancreatic cancer cell lines. Each construct showed exceptional uptake and contrast in antigen-positive tumors with negligible nonspecific uptake in antigen-negative tumors. Additionally, the dual-modal construct was evaluated in an orthotopic murine pancreatic cancer model, using the human pancreatic cancer cell line, Suit-2. The ssdual-5B1 demonstrated a remarkable capacity to delineate metastases and to map the sentinel lymph nodes via tandem PET-computed tomography (PET/CT) and NIRF imaging. Fluorescence microscopy, histopathology, and autoradiography were performed on representative sections of excised tumors to visualize the distribution of the constructs within the tumors. These imaging tools have tremendous potential for further preclinical research and for clinical translation. PMID:26668398

  8. Amino Acid PET – An Imaging Option to Identify Treatment Response, Posttherapeutic Effects, and Tumor Recurrence?

    PubMed Central

    Galldiks, Norbert; Langen, Karl-Josef

    2016-01-01

    Routine diagnostics and treatment monitoring in patients with primary and secondary brain tumors is usually based on contrast-enhanced standard MRI. However, the capacity of standard MRI to differentiate neoplastic tissue from non-specific posttreatment effects may be limited particularly after therapeutic interventions such as radio- and/or chemotherapy or newer treatment options, e.g., immune therapy. Metabolic imaging using PET may provide relevant additional information on tumor metabolism, which allows a more accurate diagnosis especially in clinically equivocal situations, particularly when radiolabeled amino acids are used. Amino acid PET allows a sensitive monitoring of a response to various treatment options, the early detection of tumor recurrence, and an improved differentiation of tumor recurrence from posttherapeutic effects. In the past, this method had only limited availability due to the use of PET tracers with a short half-life, e.g., C-11. In recent years, however, novel amino acid PET tracers labeled with positron emitters with a longer half-life (F-18) have been developed and clinically validated, which allow a more efficient and cost-effective application. These developments and the well-documented diagnostic performance of PET using radiolabeled amino acids suggest that its application continues to spread and that this technique may be available as a routine diagnostic tool for several indications in the field of neuro-oncology. PMID:27516754

  9. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine

    PubMed Central

    Vali, Reza; Loidl, Wolfgang; Pirich, Christian; Langesteger, Werner; Beheshti, Mohsen

    2015-01-01

    While 18F-Fluorodeoxyglucose (18F-FDG) Positron-Emission Tomography (PET) has limited value in prostate cancer (PCa), it may be useful for specific subgroups of PCa patients with hormone-resistant poorly differentiated cell types. 18F-Fluorocholine (18F-FCH) PET/CT has been increasingly used in primary and recurrent PCa and has been shown to add valuable information. Although there is a correlation between the foci of activity and the areas of malignancy in the prostate gland, the clinical value of 18F-FCH is still controversial for detection of the malignant focus in the prostate. For the T-staging of PCa at diagnosis the value of 18F-FCH is limited. This is probably due to limited resolution of PET system and positive findings in benign prostate diseases. Conversely, 18F-FCH PET/CT is a promising imaging modality for the delineation of local and distant nodal recurrence and bone metastases and is poised to have an impact on therapy management. In this review, recent studies of 18F-FCH PET/CT in PCa are summarized. PMID:25973332

  10. Evaluation of FLT-PET-CT as an imaging biomarker of proliferation in primary breast cancer

    PubMed Central

    Woolf, D K; Beresford, M; Li, S P; Dowsett, M; Sanghera, B; Wong, W L; Sonoda, L; Detre, S; Amin, V; Ah-See, M-L; Miles, D; Makris, A

    2014-01-01

    Background: [18F]fluorothymidine (FLT) has been proposed as a positron emission tomography (PET)-imaging biomarker of proliferation for breast cancer. The aim of this prospective study was to assess the feasibility of FLT-PET-CT as a technique for predicting the response to neoadjuvant chemotherapy (NAC) in primary breast cancer and to compare baseline FLT with Ki-67. Methods: Twenty women with primary breast cancer had a baseline FLT-PET-CT scan that was repeated before the second cycle of chemotherapy. Expression of Ki-67 in the diagnostic biopsy was quantified. From the FLT-PET-CT scans lesion maximum and mean standardised uptake values (SUVmax, SUVmean) were calculated. Results: Mean baseline SUVmax was 7.3, and 4.62 post one cycle of NAC, representing a drop of 2.68 (36.3%). There was no significant association between baseline, post chemotherapy, or change in SUVmax and pathological response to NAC. There was a significant correlation between pre-chemotherapy Ki-67 and SUVmax of 0.604 (P=0.006). Conclusions: Baseline SUVmax measurements of FLT-PET-CT were significantly related to Ki-67 suggesting that it is a proliferation biomarker. However, in this series neither the baseline value nor the change in SUVmax after one cycle of NAC were able to predict response as most patients had a sizeable SUVmax reduction. PMID:24832174

  11. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer.

    PubMed

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe; Sun, Ziyan; Loft, Mathias; Ding, Bingbing; Liu, Changhao; Xu, Liying; Yang, Meng; Jiang, Yuxin; Liu, Jianfeng; Xiao, Yuling; Cheng, Zhen; Hong, Xuechuan

    2016-08-17

    Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high contrast, and optimal pharmacokinetics is still very challenging. Herein, a novel bombesin (BBN) analogue (named SCH1) based on JMV594 peptide modified with an 8-amino octanoic acid spacer (AOC) was thus designed and conjugated with the metal chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA). The resulting NODAGA-SCH1 was then radiolabeled with (68)Ga and evaluated for PET imaging of PCa. Compared with (68)Ga-NODAGA-JMV594 probe, (68)Ga-NODAGA-SCH1 exhibited excellent PET/CT imaging properties on PC-3 tumor-bearing nude mice, such as high tumor uptake (5.80 ± 0.42 vs 3.78 ± 0.28%ID/g, 2 h) and high tumor/muscle contrast (16.6 ± 1.50 vs 8.42 ± 0.61%ID/g, 2 h). Importantly, biodistribution data indicated a relatively similar accumulation of (68)Ga-NODAGA-SCH1 was observed in the liver (4.21 ± 0.42%ID/g) and kidney (3.41 ± 0.46%ID/g) suggesting that the clearance is through both the kidney and the liver. Overall, (68)Ga-NODAGA-SCH1 showed promising in vivo properties and is a promising candidate for translation into clinical PET-imaging of PCa patients. PMID:27399868

  12. CT-guided automated detection of lung tumors on PET images

    NASA Astrophysics Data System (ADS)

    Cui, Yunfeng; Zhao, Binsheng; Akhurst, Timothy J.; Yan, Jiayong; Schwartz, Lawrence H.

    2008-03-01

    The calculation of standardized uptake values (SUVs) in tumors on serial [ 18F]2-fluoro-2-deoxy-D-glucose ( 18F-FDG) positron emission tomography (PET) images is often used for the assessment of therapy response. We present a computerized method that automatically detects lung tumors on 18F-FDG PET/Computed Tomography (CT) images using both anatomic and metabolic information. First, on CT images, relevant organs, including lung, bone, liver and spleen, are automatically identified and segmented based on their locations and intensity distributions. Hot spots (SUV >= 1.5) on 18F-FDG PET images are then labeled using the connected component analysis. The resultant "hot objects" (geometrically connected hot spots in three dimensions) that fall into, reside at the edges or are in the vicinity of the lungs are considered as tumor candidates. To determine true lesions, further analyses are conducted, including reduction of tumor candidates by the masking out of hot objects within CT-determined normal organs, and analysis of candidate tumors' locations, intensity distributions and shapes on both CT and PET. The method was applied to 18F-FDG-PET/CT scans from 9 patients, on which 31 target lesions had been identified by a nuclear medicine radiologist during a Phase II lung cancer clinical trial. Out of 31 target lesions, 30 (97%) were detected by the computer method. However, sensitivity and specificity were not estimated because not all lesions had been marked up in the clinical trial. The method effectively excluded the hot spots caused by mediastinum, liver, spleen, skeletal muscle and bone metastasis.

  13. Using compressive sensing to recover images from PET scanners with partial detector rings

    SciTech Connect

    Valiollahzadeh, SeyyedMajid; Clark, John W.; Mawlawi, Osama

    2015-01-15

    Purpose: Most positron emission tomography/computed tomography (PET/CT) scanners consist of tightly packed discrete detector rings to improve scanner efficiency. The authors’ aim was to use compressive sensing (CS) techniques in PET imaging to investigate the possibility of decreasing the number of detector elements per ring (introducing gaps) while maintaining image quality. Methods: A CS model based on a combination of gradient magnitude and wavelet domains (wavelet-TV) was developed to recover missing observations in PET data acquisition. The model was designed to minimize the total variation (TV) and L1-norm of wavelet coefficients while constrained by the partially observed data. The CS model also incorporated a Poisson noise term that modeled the observed noise while suppressing its contribution by penalizing the Poisson log likelihood function. Three experiments were performed to evaluate the proposed CS recovery algorithm: a simulation study, a phantom study, and six patient studies. The simulation dataset comprised six disks of various sizes in a uniform background with an activity concentration of 5:1. The simulated image was multiplied by the system matrix to obtain the corresponding sinogram and then Poisson noise was added. The resultant sinogram was masked to create the effect of partial detector removal and then the proposed CS algorithm was applied to recover the missing PET data. In addition, different levels of noise were simulated to assess the performance of the proposed algorithm. For the phantom study, an IEC phantom with six internal spheres each filled with F-18 at an activity-to-background ratio of 10:1 was used. The phantom was imaged twice on a RX PET/CT scanner: once with all detectors operational (baseline) and once with four detector blocks (11%) turned off at each of 0 °, 90 °, 180 °, and 270° (partially sampled). The partially acquired sinograms were then recovered using the proposed algorithm. For the third test, PET images

  14. Registration of micro-PET and high-resolution MR images of mice for monitoring photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fei, Baowei; Muzic, Raymond F.; Lee, Zhenghong; Flask, Chris A.; Morris, Rachel L.; Duerk, Jeffery L.; Oleinick, Nancy; Wilson, David L.

    2004-04-01

    We are investigating imaging techniques to study the rapid biochemical and physiological response of tumors to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional images of cancers. While MRI can provide high resolution anatomical images and generate serial, noninvasive, in vivo observations of morphological changes. In this study, we investigate image registration methods to combine MRI and micro-PETPET) images for improved tumor monitoring. We acquired high resolution MR and PET 18F-fluorodeoxyglucose (FDG) images from mice with RIF-1 tumors. We used rigid body registration with three translations and three angular variables. We used normalized mutual information as the similarity measure. To assess the quality of registration, we performed slice by slice review of both image volumes, manually segmented feature organs such as the left and right kidneys and the bladder in each slice, and computed the distance between corresponding centroids of the organs. We also used visual inspection techniques such as color overlay displays. Over 40 volume registration experiments were performed with MR and μPET images acquired from three C3H mice. The color overlays showed that the MR images and the PET images matched well. The distance between corresponding centroids of organs was 1.5 +/- 0.4 mm which is about 2 pixels of μPET. In conclusion, registration of high resolution MR and μPET images of mice may be useful to combine anatomical and functional information that could be used for the potential application in photodynamic therapy.

  15. Hybrid PET/MR imaging in two sarcoma patients – clinical benefits and implications for future trials

    PubMed Central

    Partovi, Sasan; Kohan, Andres A; Zipp, Lisa; Faulhaber, Peter; Kosmas, Christos; Ros, Pablo R; Robbin, Mark R

    2014-01-01

    PET/MRI is an evolving hybrid imaging modality which combines the inherent strengths of MRIs soft-tissue and contrast resolution and PETs functional metabolic capabilities. Bone and soft-tissue sarcoma are a relatively rare tumor entity, relying on MRI for local staging and often on PET/CT for lymph node involvement and metastatic spread evaluation. The purpose of this article is to demonstrate the successful use of PET/MRI in two sarcoma patients. We also use these patients as a starting point to discuss how PET/MRI might be of value in sarcoma. Among its potential benefits are: superior TNM staging than either modality alone, decreased radiation dose, more sensitive and specific follow-up and better assessment of treatment response. These potentials need to be investigated in future PET/MRI soft-tissue sarcoma trials. PMID:24753758

  16. Quantitative imaging of protein targets in the human brain with PET

    NASA Astrophysics Data System (ADS)

    Gunn, Roger N.; Slifstein, Mark; Searle, Graham E.; Price, Julie C.

    2015-11-01

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  17. Quantitative imaging of protein targets in the human brain with PET.

    PubMed

    Gunn, Roger N; Slifstein, Mark; Searle, Graham E; Price, Julie C

    2015-11-21

    PET imaging of proteins in the human brain with high affinity radiolabelled molecules has a history stretching back over 30 years. During this period the portfolio of protein targets that can be imaged has increased significantly through successes in radioligand discovery and development. This portfolio now spans six major categories of proteins; G-protein coupled receptors, membrane transporters, ligand gated ion channels, enzymes, misfolded proteins and tryptophan-rich sensory proteins. In parallel to these achievements in radiochemical sciences there have also been significant advances in the quantitative analysis and interpretation of the imaging data including the development of methods for image registration, image segmentation, tracer compartmental modeling, reference tissue kinetic analysis and partial volume correction. In this review, we analyze the activity of the field around each of the protein targets in order to give a perspective on the historical focus and the possible future trajectory of the field. The important neurobiology and pharmacology is introduced for each of the six protein classes and we present established radioligands for each that have successfully transitioned to quantitative imaging in humans. We present a standard quantitative analysis workflow for these radioligands which takes the dynamic PET data, associated blood and anatomical MRI data as the inputs to a series of image processing and bio-mathematical modeling steps before outputting the outcome measure of interest on either a regional or parametric image basis. The quantitative outcome measures are then used in a range of different imaging studies including tracer discovery and development studies, cross sectional studies, classification studies, intervention studies and longitudinal studies. Finally we consider some of the confounds, challenges and subtleties that arise in practice when trying to quantify and interpret PET neuroimaging data including motion artifacts

  18. A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images

    PubMed Central

    Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming

    2016-01-01

    It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after

  19. 3-D phantom to simulate cerebral blood flow and metabolic images for PET

    SciTech Connect

    Hoffman, E.J.; Cutler, P.D.; Digby, W.M.; Mazziotta, J.C. . Nuclear Medicine Lab.)

    1990-04-01

    A 3-dimensional brain phantom has been developed to simulate the activity distributions found in the human brain in the cerebral blood flow and metabolism studies currently employed in PET. The phantom has a single contiguous chamber and utilizes thin layers of lucite to provide apparent relative concentrations of 5, 1 and 0 for gray matter, white matter and ventricles, respectively, in the brain. The phantom and an ideal image set were created from the same set of data. Thus, the user has a basis for comparing measured images with an ideal image set which enables the user to make quantitative evaluation of the errors in PET studies with a data set similar to that obtained in patient studies.

  20. Statistical image reconstruction methods for simultaneous emission/transmission PET scans

    SciTech Connect

    Erdogan, H.; Fessler, J.A.

    1996-12-31

    Transmission scans are necessary for estimating the attenuation correction factors (ACFs) to yield quantitatively accurate PET emission images. To reduce the total scan time, post-injection transmission scans have been proposed in which one can simultaneously acquire emission and transmission data using rod sources and sinogram windowing. However, since the post-injection transmission scans are corrupted by emission coincidences, accurate correction for attenuation becomes more challenging. Conventional methods (emission subtraction) for ACF computation from post-injection scans are suboptimal and require relatively long scan times. We introduce statistical methods based on penalized-likelihood objectives to compute ACFs and then use them to reconstruct lower noise PET emission images from simultaneous transmission/emission scans. Simulations show the efficacy of the proposed methods. These methods improve image quality and SNR of the estimates as compared to conventional methods.

  1. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging.

    PubMed

    Parashurama, Natesh; Ahn, Byeong-Cheol; Ziv, Keren; Ito, Ken; Paulmurugan, Ramasamy; Willmann, Jürgen K; Chung, Jaehoon; Ikeno, Fumiaki; Swanson, Julia C; Merk, Denis R; Lyons, Jennifer K; Yerushalmi, David; Teramoto, Tomohiko; Kosuge, Hisanori; Dao, Catherine N; Ray, Pritha; Patel, Manishkumar; Chang, Ya-Fang; Mahmoudi, Morteza; Cohen, Jeff Eric; Goldstone, Andrew Brooks; Habte, Frezghi; Bhaumik, Srabani; Yaghoubi, Shahriar; Robbins, Robert C; Dash, Rajesh; Yang, Phillip C; Brinton, Todd J; Yock, Paul G; McConnell, Michael V; Gambhir, Sanjiv S

    2016-09-01

    Purpose To quantitatively determine the limit of detection of marrow stromal cells (MSC) after cardiac cell therapy (CCT) in swine by using clinical positron emission tomography (PET) reporter gene imaging and magnetic resonance (MR) imaging with cell prelabeling. Materials and Methods Animal studies were approved by the institutional administrative panel on laboratory animal care. Seven swine received 23 intracardiac cell injections that contained control MSC and cell mixtures of MSC expressing a multimodality triple fusion (TF) reporter gene (MSC-TF) and bearing superparamagnetic iron oxide nanoparticles (NP) (MSC-TF-NP) or NP alone. Clinical MR imaging and PET reporter gene molecular imaging were performed after intravenous injection of the radiotracer fluorine 18-radiolabeled 9-[4-fluoro-3-(hydroxyl methyl) butyl] guanine ((18)F-FHBG). Linear regression analysis of both MR imaging and PET data and nonlinear regression analysis of PET data were performed, accounting for multiple injections per animal. Results MR imaging showed a positive correlation between MSC-TF-NP cell number and dephasing (dark) signal (R(2) = 0.72, P = .0001) and a lower detection limit of at least approximately 1.5 × 10(7) cells. PET reporter gene imaging demonstrated a significant positive correlation between MSC-TF and target-to-background ratio with the linear model (R(2) = 0.88, P = .0001, root mean square error = 0.523) and the nonlinear model (R(2) = 0.99, P = .0001, root mean square error = 0.273) and a lower detection limit of 2.5 × 10(8) cells. Conclusion The authors quantitatively determined the limit of detection of MSC after CCT in swine by using clinical PET reporter gene imaging and clinical MR imaging with cell prelabeling. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:27332865

  2. Radiochemistry, PET Imaging, and the Internet of Chemical Things

    PubMed Central

    2016-01-01

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. How does the IoCT impact our lives today, and what does it hold for the smart (radio)chemical laboratories of the future? PMID:27610410

  3. Radiochemistry, PET Imaging, and the Internet of Chemical Things.

    PubMed

    Thompson, Stephen; Kilbourn, Michael R; Scott, Peter J H

    2016-08-24

    The Internet of Chemical Things (IoCT), a growing network of computers, mobile devices, online resources, software suites, laboratory equipment, synthesis apparatus, analytical devices, and a host of other machines, all interconnected to users, manufacturers, and others through the infrastructure of the Internet, is changing how we do chemistry. While in its infancy across many chemistry laboratories and departments, it became apparent when considering our own work synthesizing radiopharmaceuticals for positron emission tomography (PET) that a more mature incarnation of the IoCT already exists. How does the IoCT impact our lives today, and what does it hold for the smart (radio)chemical laboratories of the future? PMID:27610410

  4. Fisher Information-Based Evaluation of Image Quality for Time-of-Flight PET

    PubMed Central

    Vunckx, Kathleen; Zhou, Lin; Matej, Samuel; Defrise, Michel; Nuyts, Johan

    2010-01-01

    The use of time-of-flight (TOF) information during positron emission tomography (PET) reconstruction has been found to improve the image quality. In this work we quantified this improvement using two existing methods: (1) a very simple analytical expression only valid for a central point in a large uniform disk source, and (2) efficient analytical approximations for post-filtered maximum likelihood expectation maximization (MLEM) reconstruction with a fixed target resolution, predicting the image quality in a pixel or in a small region of interest based on the Fisher information matrix. Using this latter method the weighting function for filtered backprojection reconstruction of TOF PET data proposed by C. Watson can be derived. The image quality was investigated at different locations in various software phantoms. Simplified as well as realistic phantoms, measured both with TOF PET systems and with a conventional PET system, were simulated. Since the time resolution of the system is not always accurately known, the effect on the image quality of using an inaccurate kernel during reconstruction was also examined with the Fisher information-based method. First, we confirmed with this method that the variance improvement in the center of a large uniform disk source is proportional to the disk diameter and inversely proportional to the time resolution. Next, image quality improvement was observed in all pixels, but in eccentric and high-count regions the contrast-to-noise ratio (CNR) increased less than in central and low- or medium-count regions. Finally, the CNR was seen to decrease when the time resolution was inaccurately modeled (too narrow or too wide) during reconstruction. Although the maximum CNR is not very sensitive to the time resolution error, using an inaccurate TOF kernel tends to introduce artifacts in the reconstructed image. PMID:19709969

  5. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor.

    PubMed

    Wu, Chunying; Tang, Zhe; Fan, Weiwen; Zhu, Wenxia; Wang, Changning; Somoza, Edurado; Owino, Norbert; Li, Ruoshi; Ma, Patrick C; Wang, Yanming

    2010-01-14

    We report the radiosynthesis and evaluation of 3-[3,5-dimethyl-4-(4-[11C]methylpiperazinecarbonyl)-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-5-sulfonic acid (3-chlorophenyl)methylamide, termed [11C]SU11274 ([11C]14) for in vivo imaging of mesenchymal-epithelial transition (MET) receptor by positron emission tomography (PET). Following the synthesis of the precursor (13) that was achieved in 10 steps with a total yield of 9.7%, [11C]14 was obtained through radiomethylation in a range of 5-10% radiochemical yield and over 95% radiochemical purity. For in vivo PET studies, two human lung cancer xenograft models were established using MET-positive NCI-H1975 and MET-negative NCI-H520 cell lines. Quantitative [11C]14-PET studies showed that the tumor uptake of [11C]14 in the NCI-H1975 xenografts was significantly higher than that in the NCI-H520 xenografts, which is consistent with their corresponding immunohistochemical tissue staining patterns of MET receptors from the same animals. These studies demonstrated that [11C]14-PET is an appropriate imaging marker for quantification of MET receptor in vivo, which can facilitate efficacy evaluation in the clinical development of MET-targeted cancer therapeutics. PMID:19968287

  6. High-resolution image reconstruction for PET using estimated detector response functions

    NASA Astrophysics Data System (ADS)

    Tohme, Michel S.; Qi, Jinyi

    2007-02-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed PET images. For efficient computation in reconstruction, the system model in PET can be factored into a product of geometric projection matrix and detector blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. In this work, we propose a method to estimate the 2D detector blurring matrix from experimental measurements. Point source data were acquired with high-count statistics in the microPET II scanner using a computer-controlled 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner with the modeling of the detector block structure. Since the resulting blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo simulation. Reconstructed images of a line source phantom show improved resolution with the new detector blurring matrix compared to the original one from the Monte Carlo simulation. This method can be applied to other small-animal and clinical scanners.

  7. Gallium-68 PET: A Powerful Generator-based Alternative to Infection and Inflammation Imaging.

    PubMed

    Vorster, Mariza; Maes, Alex; Wiele, Christophe van de; Sathekge, Mike

    2016-09-01

    The process of inflammation (with or without infection) forms part of essentially every major debilitating disease. Early detection and accurate distinction of inflammation from infection are important to optimize and individualize therapy. Nuclear medicine is ideally suited for the detection of pathologic changes early on and is able to target a magnitude of role players involved in the aforementioned processes. Hybrid modalities such as PET/CT and PET/MRI offer high spatial resolution that combines morphologic and pathophysiological changes and add various quantification possibilities that are preferable in these settings. It follows then that the development of PET radiopharmaceuticals is imperative to make use of these latest advances. Gallium-68 (Ga-68)-based tracers are exceptionally well suited to these indications, considering the year-round availability from a single generator, the relative cost-effectiveness, and relative ease of labeling. Over the past few years, the development of Ga-68-based tracers has understandably exploded with a recent growing interest in infection and inflammation imaging. This review aims to highlight some of the most important and interesting advances made with Ga-68-based PET/CT in the field of infection and inflammation imaging. PMID:27553469

  8. Crossed Cerebellar Diaschisis: Three Case Reports Imaging Using a Tri-Modality PET/CT-MR System.

    PubMed

    Han, Shuguang; Wang, Xiaopeng; Xu, Kai; Hu, Chunfeng

    2016-01-01

    Crossed cerebellar diaschisis (CCD) describes a depression of oxidative metabolism glucose and blood flow in the cerebellum secondary to a supratentorial lesion in the contralateral cerebral hemisphere. PET/MR has the potential to become a powerful tool for demonstrating and imaging intracranial lesions .We herein report 3 cases of CCD imaging using a tri-modality PET/CT-MR set-up for investigating the value of adding MRI rather than CT to PET in clinical routine.We describe 3 patients with CCD and neurological symptoms in conjunction with abnormal cerebral fluorodeoxyglucose (FDG) positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MR) manifestations including arterial spin-labeling (ASL) and T2-weighted images. In all, 18FDG-PET/CT detected positive FDG uptake in supratentorial lesions, and hypometabolism with atrophy in the contralateral cerebellum. More than that, hybrid PET/MRI provided a more accurate anatomic localization and ASL indicated disruption of the cortico-ponto-cerebellar pathway.Using pathology or long-term clinical follow-up to confirm the PET and ASL findings, the supratentorial lesions of the 3 patients were respectively diagnosed with cerebral infarction, recurrent glioma, and metastasis.The reports emphasize the significance of multimodality radiological examinations. Multimodality imaging contributes to proper diagnosis, management, and follow-up of supratentorial lesions with CCD. PMID:26765477

  9. Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging.

    PubMed

    Chatziioannou, A; Tai, Y C; Doshi, N; Cherry, S R

    2001-11-01

    We are currently developing a small animal positron emission tomography (PET) scanner with a design goal of 1 microlitre (1 mm3) image resolution. The detectors consist of a 12 x 12 array of 1 x 1 x 10 mm lutetium oxyorthosilicate (LSO) scintillator crystals coupled to a 64-channel photomultiplier tube (PMT) via 5 cm long optical fibre bundles. The optical fibre connection allows a high detector packing fraction despite the dead space surrounding the active region of the PMT. Optical fibre bundles made from different types of glass were tested for light transmission, and also their effects on crystal identification and energy resolution, and compared to direct coupling of the LSO arrays to the PMTs. We also investigated the effects of extramural absorber (EMA) in the fibre bundles. Based on these results, fibre bundles manufactured from F2 glass were selected. We built three pairs of prototype detectors (directly coupled LSO array, fibre bundle without EMA and fibre bundle with EMA) and measured flood histograms, energy resolution, intrinsic spatial resolution and timing resolution. The results demonstrated an intrinsic spatial resolution (FWHM) of 1.12 mm (directly coupled), 1.23 mm (fibre bundle without EMA coupling) and 1.27 mm (fibre bundle with EMA coupling) using an approximately 500 microm diameter Na-22 point source. Using a 330 microm outer diameter steel needle line source filled with F-18, spatial resolution for the detector with the EMA optical fibre bundle improved to 1.05 mm. The respective timing and energy FWHM values were 1.96 ns, 21% (directly coupled), 2.20 ns, 23% (fibre bundle without EMA) and 2.99 ns, 30% (fibre bundle with EMA). The peak-to-valley ratio in the flood histograms was better with EMA (5:1) compared to the optical fibre bundle without EMA (2.5:1), due to the decreased optical cross-talk. In comparison to the detectors used in our current generation microPET scanner, these detectors substantially improve on the spatial resolution

  10. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically

  11. Transconvolution and the virtual positron emission tomograph-A new method for cross calibration in quantitative PET/CT imaging

    SciTech Connect

    Prenosil, George A.; Weitzel, Thilo; Hentschel, Michael; Klaeser, Bernd; Krause, Thomas

    2013-06-15

    Purpose: Positron emission tomography (PET)/computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET/CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET/CT in the context of multicenter trials. Methods: To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET/CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET/CT systems, a dedicated solid-state phantom incorporating {sup 68}Ge/{sup 68}Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination

  12. 11C-Choline and FDG PET/CT Imaging of Primary Cholangiocarcinoma: A Comparative Analysis

    PubMed Central

    Chotipanich, Chanisa; Promteangtrong, Chetsadaporn; Kunawudhi, Anchisa; Chanwat, Rawisak; Sricharunrat, Thaniya; Suratako, Savitree; Wongsa, Paramest

    2015-01-01

    Objective(s): This study aimed to compare the diagnostic values of 11C-choline and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in patients with cholangiocarcinoma (CCA). Methods: This prospective study was conducted on 10 patients (6 males and 4 females), aged 42-69 years, suspected of having CCA based on CT or magnetic resonance imaging (MRI) results. 11C-choline and 18F-FDG PET/CT studies were performed in all patients over 1 week. PET/CT results were visually analyzed by 2 independent nuclear medicine physicians and quantitatively by calculating the tumor-to-background ratio (T/B). Results: No 11C-choline PET/CT uptake was observed in primary extrahepatic or intrahepatic CCA cases. Intense 18F-FDG avidity was detected in the tumors of 8 patients (%80). Two patients, who were 18F-FDG negative, had primary extrahepatic CCA. Ki-67 measurements were positive in all patients (range; 14.2%-39.9%). The average T/B values of 11C-choline and 18F-FDG were 0.4±0.2 and 2.0±1.0 in all cases of primary CCA, respectively; these values were significantly lower for 11C-choline (P<0.005). Both FDG and 11C-choline PET/CT detected metastatic CCA foci in all 8 patients (two patients had no metastases). Conclusion: As the results suggested, primary CCA lesions showed a poor avidity for 11C-choline, whereas 18F-FDG PET/CT was of value for the detection of most primary CCA cases. In contrast to primary lesions, metastatic CCA lesions showed 11C-choline avidity.

  13. The evolving role of response-adapted PET imaging in Hodgkin lymphoma

    PubMed Central

    Coyle, Michael; Kostakoglu, Lale; Evens, Andrew M.

    2016-01-01

    18F-fluorodeoxyglucose positron emission tomography with (FDG-PET) has a well-established role in the pre- and post-treatment staging of Hodgkin lymphoma (HL), however its use as a predictive therapeutic tool via responded-adapted therapy continues to evolve. There have been a multitude of retrospective and noncontrolled clinical studies showing that early (or interim) FDG-PET is highly prognostic in HL, particularly in the advanced-stage setting. Response-adapted treatment approaches in HL are attempting to diminish toxicity for low-risk patients by minimizing therapy, and conversely, intensify treatment for high-risk patients. Results from phase III noninferiority studies in early-stage HL with negative interim FDG-PET that randomized patients to chemotherapy alone versus combined modality therapy showed a continued small improvement in progression-free survival for patients who did not receive radiation. Preliminary reports of data escalating therapy for positive interim FDG-PET in early-stage HL and for de-escalation of therapy [i.e. bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone (BEACOPP)] for negative interim FDG-PET in advanced stage HL (i.e. deletion of bleomycin) have demonstrated improved outcomes. Maturation of these studies and continued follow up of all response-adapted studies are needed. Altogether, the treatment of HL remains an individualized clinical management choice for physicians and patients. Continued refinement and optimization of FDG-PET is needed, including within the context of targeted therapeutic agents. In addition, a number of new and novel techniques of functional imaging, including metabolic tumor volume and tumor proliferation, are being explored in order to enhance staging, characterization, prognostication and ultimately patient outcome. PMID:27054026

  14. The evolving role of response-adapted PET imaging in Hodgkin lymphoma.

    PubMed

    Coyle, Michael; Kostakoglu, Lale; Evens, Andrew M

    2016-04-01

    (18)F-fluorodeoxyglucose positron emission tomography with (FDG-PET) has a well-established role in the pre- and post-treatment staging of Hodgkin lymphoma (HL), however its use as a predictive therapeutic tool via responded-adapted therapy continues to evolve. There have been a multitude of retrospective and noncontrolled clinical studies showing that early (or interim) FDG-PET is highly prognostic in HL, particularly in the advanced-stage setting. Response-adapted treatment approaches in HL are attempting to diminish toxicity for low-risk patients by minimizing therapy, and conversely, intensify treatment for high-risk patients. Results from phase III noninferiority studies in early-stage HL with negative interim FDG-PET that randomized patients to chemotherapy alone versus combined modality therapy showed a continued small improvement in progression-free survival for patients who did not receive radiation. Preliminary reports of data escalating therapy for positive interim FDG-PET in early-stage HL and for de-escalation of therapy [i.e. bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine and prednisone (BEACOPP)] for negative interim FDG-PET in advanced stage HL (i.e. deletion of bleomycin) have demonstrated improved outcomes. Maturation of these studies and continued follow up of all response-adapted studies are needed. Altogether, the treatment of HL remains an individualized clinical management choice for physicians and patients. Continued refinement and optimization of FDG-PET is needed, including within the context of targeted therapeutic agents. In addition, a number of new and novel techniques of functional imaging, including metabolic tumor volume and tumor proliferation, are being explored in order to enhance staging, characterization, prognostication and ultimately patient outcome. PMID:27054026

  15. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging.

    PubMed

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with (99m)Tc-SPECT, (82)Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m(2) (85 versus 67% with SPECT) and in women with large breasts. A great advantage of (82)Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of (82)Rb PET with regard to (99m)Tc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of (82)Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure. PMID:26442267

  16. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging

    PubMed Central

    Chatal, Jean-François; Rouzet, François; Haddad, Ferid; Bourdeau, Cécile; Mathieu, Cédric; Le Guludec, Dominique

    2015-01-01

    Rubidium-82 has a long story, starting in 1954. After preclinical studies in dogs showing that myocardial uptake of this radionuclide was directly proportional to myocardial blood flow (MBF), clinical studies were performed in the 80s leading to an approval in the USA in 1989. From that time, thousands of patients have been tested and their results have been reported in three meta-analyses. Pooled patient-based sensitivity and specificity were, respectively, 0.91 and 0.90. By comparison with 99mTc-SPECT, 82Rb PET had a much better diagnostic accuracy, especially in obese patients with body mass index ≥30 kg/m2 (85 versus 67% with SPECT) and in women with large breasts. A great advantage of 82Rb PET is its capacity to accurately quantify MBF. Quite importantly, it has been recently shown that coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity. Moreover, coronary flow reserve is a functional parameter particularly useful in the estimate of microvascular dysfunction, such as in diabetes mellitus. Due to the very short half-life of rubidium-82, the effective dose calculated for a rest/stress test is roughly equivalent to the annual natural exposure and even less when stress-only is performed with a low activity compatible with a good image quality with the last generation 3D PET scanners. There is still some debate on the relative advantages of 82Rb PET with regard to 99mTc-SPECT. For the last 10 years, great technological advances substantially improved performances of SPECT with its accuracy getting closer to this of 82Rb/PET. Currently, the main advantages of PET are its capacity to accurately quantify MBF and to deliver a low radiation exposure. PMID:26442267

  17. Affibody-mediated PET imaging of HER3 expression in malignant tumours

    PubMed Central

    Rosestedt, Maria; Andersson, Ken G.; Mitran, Bogdan; Tolmachev, Vladimir; Löfblom, John; Orlova, Anna; Ståhl, Stefan

    2015-01-01

    Human epidermal growth factor receptor 3 (HER3) is involved in the progression of various cancers and in resistance to therapies targeting the HER family. In vivo imaging of HER3 expression would enable patient stratification for anti-HER3 immunotherapy. Key challenges with HER3-targeting are the relatively low expression in HER3-positive tumours and HER3 expression in normal tissues. The use of positron-emission tomography (PET) provides advantages of high resolution, sensitivity and quantification accuracy compared to SPECT. Affibody molecules, imaging probes based on a non-immunoglobulin scaffold, provide high imaging contrast shortly after injection. The aim of this study was to evaluate feasibility of PET imaging of HER3 expression using 68Ga-labeled affibody molecules. The anti-HER3 affibody molecule HEHEHE-Z08698-NOTA was successfully labelled with 68Ga with high yield, purity and stability. The agent bound specifically to HER3-expressing cancer cells in vitro and in vivo. At 3 h pi, uptake of 68Ga-HEHEHE-Z08698-NOTA was significantly higher in xenografts with high HER3 expression (BT474, BxPC-3) than in xenografts with low HER3 expression (A431). In xenografts with high expression, tumour-to-blood ratios were >20, tumour-to-muscle >15, and tumour-to-bone >7. HER3-positive xenografts were visualised using microPET 3 h pi. In conclusion, PET imaging of HER3 expression is feasible using 68Ga-HEHEHE-Z08698-NOTA shortly after administration. PMID:26477646

  18. Synthesis of Fluorine-18 Radio-labeled Serum Albumins for PET Blood Pool Imaging

    PubMed Central

    Basuli, Falguni; Li, Changhui; Xu, Biying; Williams, Mark; Wong, Karen; Coble, Vincent L; Vasalatiy, Olga; Seidel, Jurgen; Green, Michael V.; Griffiths, Gary L.; Choyke, Peter L.; Jagoda, Elaine M.

    2015-01-01

    We sought to develop a practical, reproducible and clinically translatable method of radiolabeling serum albumins with fluorine-18 for use as a PET blood pool imaging agent in animals and man. Fluorine-18 radiolabeled fluoronicotinic acid-2,3,5,6-tetrafluorophenyl ester, [18F]F-Py-TFP was prepared first by the reaction of its quaternary ammonium triflate precursor with [18F]tetrabutylammonium fluoride ([18F]TBAF) according to a previously published method for peptides, with minor modifications. The incubation of [18F]F-Py-TFP with rat serum albumin (RSA) in phosphate buffer (pH 9) for 15 min at 37–40 °C produced fluorine-18-radiolabeled RSA and the product was purified using a mini-PD MiniTrap G-25 column. The overall radiochemical yield of the reaction was 18–35% (n = 30, uncorrected) in a 90-min synthesis. This procedure, repeated with human serum albumin (HSA), yielded similar results. Fluorine-18-radiolabeled RSA demonstrated prolonged blood retention (biological half-life of 4.8 hours) in healthy awake rats. The distribution of major organ radioactivity remained relatively unchanged during the 4 hour observation periods either by direct tissue counting or by dynamic PET whole-body imaging except for a gradual accumulation of labeled metabolic products in the bladder. This manual method for synthesizing radiolabeled serum albumins uses fluorine-18, a widely available PET radionuclide, and natural protein available in both pure and recombinant forms which could be scaled up for widespread clinical applications. These preclinical biodistribution and PET imaging results indicate that [18F]RSA is an effective blood pool imaging agent in rats and might, as [18F]HSA, prove similarly useful as a clinical imaging agent. PMID:25533724

  19. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma.

    PubMed

    Guastella, Anthony R; Michelhaugh, Sharon K; Klinger, Neil V; Kupsky, William J; Polin, Lisa A; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway's (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[(11)C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  20. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe

    PubMed Central

    Phillips, Evan; Penate-Medina, Oula; Zanzonico, Pat B.; Carvajal, Richard D.; Mohan, Pauliah; Ye, Yunpeng; Humm, John; Gönen, Mithat; Kalaigian, Hovanes; Schöder, Heiko; Strauss, H. William; Larson, Steven M.; Wiesner, Ulrich; Bradbury, Michelle S.

    2015-01-01

    A first-in-human clinical trial of ultrasmall inorganic hybrid nanoparticles, “C dots” (Cornell dots), in patients with metastatic melanoma is described for the imaging of cancer. These renally excreted silica particles were labeled with 124I for positron emission tomography (PET) imaging and modified with cRGDY peptides for molecular targeting. 124I-cRGDY–PEG–C dot particles are inherently fluorescent, containing the dye, Cy5, so they may be used as hybrid PET-optical imaging agents for lesion detection, cancer staging, and treatment management in humans. However, the clinical translation of nanoparticle probes, including quantum dots, has not kept pace with the accelerated growth in minimally invasive surgical tools that rely on optical imaging agents. The safety, pharmacokinetics, clearance properties, and radiation dosimetry of 124I-cRGDY–PEG–C dots were assessed by serial PET and computerized tomography after intravenous administration in patients. Metabolic profiles and laboratory tests of blood and urine specimens, obtained before and after particle injection, were monitored over a 2-week interval. Findings are consistent with a well-tolerated inorganic particle tracer exhibiting in vivo stability and distinct, reproducible pharmacokinetic signatures defined by renal excretion. No toxic or adverse events attributable to the particles were observed. Coupled with preferential uptake and localization of the probe at sites of disease, these first-in-human results suggest safe use of these particles in human cancer diagnostics. PMID:25355699

  1. Whole-body dynamic imaging with continuous bed motion PET/CT.

    PubMed

    Osborne, Dustin R; Acuff, Shelley

    2016-04-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  2. MR imaging and PET/CT in diagnosis and management of multiple myeloma.

    PubMed

    Ferraro, Regan; Agarwal, Ankit; Martin-Macintosh, Erica L; Peller, Patrick J; Subramaniam, Rathan M

    2015-01-01

    Multiple myeloma is a common hematologic malignancy among the elderly population. Although there have been many advances in treatment over the past few decades, the overall prognosis for the disease remains poor. Conventional radiography has long been the standard of reference for the imaging of multiple myeloma. However, 10%-20% of patients with multiple myeloma do not have evidence of disease at conventional radiography. There is a growing body of evidence supporting use of magnetic resonance (MR) imaging and 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) in diagnosis and management of multiple myeloma. MR imaging is useful in detection of bone marrow infiltration, a finding often missed at conventional radiography. FDG PET/CT is especially sensitive for the detection of extramedullary disease and can help detect the metabolically active lesions that often precede evidence of osseous destruction at conventional radiography. MR imaging and FDG PET/CT are useful tools that can provide essential information for diagnosis and management of patients with multiple myeloma. Both modalities allow accurate localization of disease after chemotherapy or autologous stem cell transplantation and can provide important prognostic information that can influence further clinical decision making regarding therapy, particularly when tumor serum markers may be a less reliable indicator of disease burden after repeated treatments. PMID:25763728

  3. FDG-PET Quantification of Lung Inflammation with Image-Derived Blood Input Function in Mice

    PubMed Central

    Locke, Landon W.; Williams, Mark B.; Fairchild, Karen D.; Zhong, Min; Kundu, Bijoy K.; Berr, Stuart S.

    2011-01-01

    Dynamic FDG-PET imaging was used to study inflammation in lungs of mice following administration of a virulent strain of Klebsiella (K.) pneumoniae. Net whole-lung FDG influx constant (Ki) was determined in a compartment model using an image-derived blood input function. Methods. K. pneumoniae (~3 x 105 CFU) was intratracheally administered to six mice with 6 other mice serving as controls. Dynamic FDG-PET and X-Ray CT scans were acquired 24 hr after K. pneumoniae administration. The experimental lung time activity curves were fitted to a 3-compartment FDG model to obtain Ki. Following imaging, lungs were excised and immunohistochemistry analysis was done to assess the relative presence of neutrophils and macrophages. Results. Mean Ki for control and K. pneumoniae infected mice were (5.1 ± 1.2) ×10−3 versus (11.4 ± 2.0) ×10−3 min−1, respectively, revealing a 2.24 fold significant increase (P = 0.0003) in the rate of FDG uptake in the infected lung. Immunohistochemistry revealed that cellular lung infiltrate was almost exclusively neutrophils. Parametric Ki maps by Patlak analysis revealed heterogeneous inflammatory foci within infected lungs. Conclusion. The kinetics of FDG uptake in the lungs of mice can be noninvasively quantified by PET with a 3-compartment model approach based on an image-derived input function. PMID:22187641

  4. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe.

    PubMed

    Phillips, Evan; Penate-Medina, Oula; Zanzonico, Pat B; Carvajal, Richard D; Mohan, Pauliah; Ye, Yunpeng; Humm, John; Gönen, Mithat; Kalaigian, Hovanes; Schöder, Heiko; Strauss, H William; Larson, Steven M; Wiesner, Ulrich; Bradbury, Michelle S

    2014-10-29

    A first-in-human clinical trial of ultrasmall inorganic hybrid nanoparticles, "C dots" (Cornell dots), in patients with metastatic melanoma is described for the imaging of cancer. These renally excreted silica particles were labeled with (124)I for positron emission tomography (PET) imaging and modified with cRGDY peptides for molecular targeting. (124)I-cRGDY-PEG-C dot particles are inherently fluorescent, containing the dye, Cy5, so they may be used as hybrid PET-optical imaging agents for lesion detection, cancer staging, and treatment management in humans. However, the clinical translation of nanoparticle probes, including quantum dots, has not kept pace with the accelerated growth in minimally invasive surgical tools that rely on optical imaging agents. The safety, pharmacokinetics, clearance properties, and radiation dosimetry of (124)I-cRGDY-PEG-C dots were assessed by serial PET and computerized tomography after intravenous administration in patients. Metabolic profiles and laboratory tests of blood and urine specimens, obtained before and after particle injection, were monitored over a 2-week interval. Findings are consistent with a well-tolerated inorganic particle tracer exhibiting in vivo stability and distinct, reproducible pharmacokinetic signatures defined by renal excretion. No toxic or adverse events attributable to the particles were observed. Coupled with preferential uptake and localization of the probe at sites of disease, these first-in-human results suggest safe use of these particles in human cancer diagnostics. PMID:25355699

  5. A Robust State-Space Kinetics-Guided Framework for Dynamic PET Image Reconstruction

    PubMed Central

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data is expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H∞ filtering is adopted for robust estimation. H∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches. PMID:21441650

  6. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma

    PubMed Central

    Guastella, Anthony R.; Michelhaugh, Sharon K.; Klinger, Neil V.; Kupsky, William J.; Polin, Lisa A.; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway’s (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[11C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  7. Whole-body dynamic imaging with continuous bed motion PET/CT

    PubMed Central

    Acuff, Shelley

    2016-01-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  8. FDG-PET Parametric Imaging by Total Variation Minimization

    PubMed Central

    Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M

    2010-01-01

    Parametric imaging of the cerebral metabolic rate for glucose (CMRGlc) using [18F]-fluorodeoxyglucose positron emission tomography is considered. Traditional imaging is hindered due to low signal to noise ratios at individual voxels. We propose to minimize the total variation of the tracer uptake rates while requiring good fit of traditional Patlak equations. This minimization guarantees spatial homogeneity within brain regions and good distinction between brain regions. Brain phantom simulations demonstrate significant improvement in quality of images by the proposed method as compared to Patlak images with post-filtering using Gaussian or median filters. PMID:19261438

  9. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    PubMed Central

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  10. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  11. MO-G-17A-05: PET Image Deblurring Using Adaptive Dictionary Learning

    SciTech Connect

    Valiollahzadeh, S; Clark, J; Mawlawi, O

    2014-06-15

    Purpose: The aim of this work is to deblur PET images while suppressing Poisson noise effects using adaptive dictionary learning (DL) techniques. Methods: The model that relates a blurred and noisy PET image to the desired image is described as a linear transform y=Hm+n where m is the desired image, H is a blur kernel, n is Poisson noise and y is the blurred image. The approach we follow to recover m involves the sparse representation of y over a learned dictionary, since the image has lots of repeated patterns, edges, textures and smooth regions. The recovery is based on an optimization of a cost function having four major terms: adaptive dictionary learning term, sparsity term, regularization term, and MLEM Poisson noise estimation term. The optimization is solved by a variable splitting method that introduces additional variables. We simulated a 128×128 Hoffman brain PET image (baseline) with varying kernel types and sizes (Gaussian 9×9, σ=5.4mm; Uniform 5×5, σ=2.9mm) with additive Poisson noise (Blurred). Image recovery was performed once when the kernel type was included in the model optimization and once with the model blinded to kernel type. The recovered image was compared to the baseline as well as another recovery algorithm PIDSPLIT+ (Setzer et. al.) by calculating PSNR (Peak SNR) and normalized average differences in pixel intensities (NADPI) of line profiles across the images. Results: For known kernel types, the PSNR of the Gaussian (Uniform) was 28.73 (25.1) and 25.18 (23.4) for DL and PIDSPLIT+ respectively. For blinded deblurring the PSNRs were 25.32 and 22.86 for DL and PIDSPLIT+ respectively. NADPI between baseline and DL, and baseline and blurred for the Gaussian kernel was 2.5 and 10.8 respectively. Conclusion: PET image deblurring using dictionary learning seems to be a good approach to restore image resolution in presence of Poisson noise. GE Health Care.

  12. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  13. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET.

    PubMed

    Ahn, Sangtae; Ross, Steven G; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D; Manjeshwar, Ravindra M

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs. PMID:26158503

  14. PET-imaging of brain plasticity after cochlear implantation.

    PubMed

    Strelnikov, K; Marx, M; Lagleyre, S; Fraysse, B; Deguine, O; Barone, P

    2015-04-01

    In this article, we review the PET neuroimaging literature, which indicates peculiarities of brain networks involved in speech restoration after cochlear implantation. We consider data on implanted patients during stimulation as well as during resting state, which indicates basic long-term reorganisation of brain functional architecture. On the basis of our analysis of neuroimaging literature and considering our own studies, we indicate that auditory recovery in deaf patients after cochlear implantation partly relies on visual cues. The brain develops mechanisms of audio-visual integration as a strategy to achieve high levels of speech recognition. It turns out that this neuroimaging evidence is in line with behavioural findings of better audiovisual integration in these patients. Thus, strong visually and audio-visually based rehabilitation during the first months after cochlear implantation would significantly improve and fasten the functional recovery of speech intelligibility and other auditory functions in these patients. We provide perspectives for further neuroimaging studies in cochlear implanted patients, which would help understand brain organisation to restore auditory cognitive processing in the implanted patients and would potentially suggest novel approaches for their rehabilitation. This article is part of a Special Issue entitled . PMID:25448166

  15. Efficient sinogram smoothing for dynamic neuroreceptor PET imaging

    NASA Astrophysics Data System (ADS)

    Pan, Xiaochuan; La Riviere, Patrick J.; Ye, James; Mukherjee, J.; Chen, Chin-Tu

    1997-05-01

    We have developed image-restoration techniques applicable to dynamic positron emission tomography that improve the visual quality and quantitative accuracy of neuroreceptor images. Starting wit data from a study of dopamine D-2 receptors in rhesus monkey striata using selective radioligands such as fallypride, we performed a novel effective 3D smoothing of the dynamic sinogram at a much lower computational cost than a truly 3D, adaptive smoothing. The processed sinogram was then input to a standard filtered back-projection algorithm and the resulting images were sharper and less noisy than images reconstructed from the unprocessed sinogram. Simulations were performed and the radioligand binding curves extracted from the restored images were found to be smoother and more accurate than those extracted form the unprocessed reconstructions. Comparison was also made to reconstructions from sinograms processed by the principal component analysis/projection onto convex sets algorithm.

  16. Adrenal tuberculosis masquerading as disseminated malignancy: A pitfall of (18)F-FDG PET/CT Imaging.

    PubMed

    Gorla, A K R; Gupta, K; Sood, A; Biswal, C K; Bhansali, A; Mittal, B R

    2016-01-01

    Non-invasive characterization of adrenal lesions is a commonly encountered diagnostic challenge. Characteristic clinical and correlative imaging findings may assist in only arriving at a probable diagnosis. Currently, (18)F-FDG PET/CT is considered to provide the most comprehensive imaging information. We here present a case of bilateral adrenal tuberculosis that highlights the need for caution during the interpretation of (18)F-FDG PET/CT and also the need to suggest histopathological correlation. PMID:26853485

  17. Differentiation of cardiac thrombus from cardiac tumor combining cardiac MRI and 18F-FDG-PET/CT Imaging.

    PubMed

    Rinuncini, Massimo; Zuin, Marco; Scaranello, Fiorenzo; Fejzo, Majlinda; Rampin, Lucia; Rubello, Domenico; Faggian, Giuseppe; Roncon, Loris

    2016-06-01

    Radiological differentiation of an unknown cardiac masse is often a challenging issue. 18F-FDG-PET/CT imaging was performed to evaluate a left ventricle mass visualized on transthoracic echocardiogram (TTE) and cardiac magnetic resonance (CMR) in a patient with an history of ischemic heart disease. The metabolically inert area on the PET/CT, corresponding to the relatively homogenous hypodensity in the LV, was thought to represent an old organized LV thrombus. Histopathological examination confirmed the imaging diagnosis. PMID:27038712

  18. Impact of total activity variation in 18F-FDG injected with the overall PET image quality in oncology patients

    NASA Astrophysics Data System (ADS)

    Hishar, H.; Fathinul Fikri, A. S.; Salasiah, M.; Noramaliza, M. N.; Abdul Jalil, N.

    2013-05-01

    The preliminary study aims to investigate whether variation on dose activity 18F-FDG will influence the overall PET image quality in oncology patients. This is a retrospective analysis of 10 oncology patients who were injected with an average of 337.40 ± 38.43 MBq of 18F-FDG for PET/CT whole body examination. Patients were divided into 2 groups based on total activity of 18F-FDG injected: less than 333 MBq (302.96±12.65 MBq) (group 1) and more than 333 MBq (371.85±14.00 MBq) (group 2). Multiple Image Projection (MIP) PET images were scored visually by two qualified nuclear radiologists using a two-point scoring scale (poor and excellent). The agreement between radiologists was analysed using kappa measure of agreement (K). The prediction on poor-to-excellent PET image by the total activity of 18F-FDG injected was analysed using a Chi-squared test (x2). A p value of < 0.05 was considered significant. Agreement on PET image scoring was substantial, with a kappa value of 0.737. However, the prediction of the PET image quality by the total activity injected has been found to be insignificant (p > 0.05). Therefore, there is no strong evidence suggest that the dose injected will influence the PET image quality. Hence, it is recommended to use low-dosed of 18F-FDG technique as it also potentially yields a comparable PET image and reduces radiation burden to the patients.

  19. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas.

    PubMed

    Albert, Nathalie L; Weller, Michael; Suchorska, Bogdana; Galldiks, Norbert; Soffietti, Riccardo; Kim, Michelle M; la Fougère, Christian; Pope, Whitney; Law, Ian; Arbizu, Javier; Chamberlain, Marc C; Vogelbaum, Michael; Ellingson, Ben M; Tonn, Joerg C

    2016-09-01

    This guideline provides recommendations for the use of PET imaging in gliomas. The review examines established clinical benefit in glioma patients of PET using glucose ((18)F-FDG) and amino acid tracers ((11)C-MET, (18)F-FET, and (18)F-FDOPA). An increasing number of studies have been published on PET imaging in the setting of diagnosis, biopsy, and resection as well radiotherapy planning, treatment monitoring, and response assessment. Recommendations are based on evidence generated from studies which validated PET findings by histology or clinical course. This guideline emphasizes the clinical value of PET imaging with superiority of amino acid PET over glucose PET and provides a framework for the use of PET to assist in the management of patients with gliomas. PMID:27106405

  20. Nonhuman Primate Models of Addiction and PET Imaging: Dopamine System Dysregulation

    PubMed Central

    Gould, Robert W.; Porrino, Linda J.; Nader, Michael A.

    2013-01-01

    This chapter highlights the use of nonhuman primate models of cocaine addiction and the use of positron emission tomography (PET) imaging to study the role of individual differences in vulnerability and how environmental and pharmacological variables can impact cocaine abuse. The chapter will describe studies related to the dopamine (DA) neurotransmitter system, and focus primarily on the D2-like DA receptor, the DA transporter and the use of fluorodeoxyglucose to better understand the neuropharmacology of cocaine abuse. The use of nonhuman primates allows for within-subject, longitudinal studies that have provided insight into the human condition and serve as an ideal model of translational research. The combination of nonhuman primate behavior, pharmacology and state-of-the-art brain imaging using PET will provide the foundation for future studies aimed at developing behavioral and pharmacological treatments for drug addiction in humans. PMID:22020537

  1. PET and SPECT Imaging of Tumor Biology: New Approaches towards Oncology Drug Discovery and Development

    PubMed Central

    Van Dort, Marcian E.; Rehemtulla, Alnawaz; Ross, Brian D.

    2009-01-01

    Spiraling drug developmental costs and lengthy time-to-market introduction are two critical challenges facing the pharmaceutical industry. The clinical trials success rate for oncology drugs is reported to be 5% as compared to other therapeutic categories (11%) with most failures often encountered late in the clinical development process. PET and SPECT nuclear imaging technologies could play an important role in facilitating the drug development process improving the speed, efficiency and cost of drug development. This review will focus on recent studies of PET and SPECT radioligands in oncology and their application in the investigation of tumor biology. The use of clinically-validated radioligands as imaging-based biomarkers in oncology could significantly impact new cancer therapeutic development. PMID:19809593

  2. Low energy cyclotron production of multivalent transition metals for PET imaging and therapy

    NASA Astrophysics Data System (ADS)

    Avila-Rodriguez, Miguel Angel

    Recent advances in high-resolution tomographs for small animals require the production of nonconventional long-lived positron emitters to label novel radiopharmaceuticals for PET-based molecular imaging. Radioisotopes with an appropriate half life to match the kinetics of slow biological processes will allow to researchers to study the phamacokinetics of PET ligands over several hours, or even days, on the same animal, with the injection of a single dose. In addition, radionuclides with a suitable half life can potentially be distributed from a central production site making them available in PET facilities that lack an in-house cyclotron. In the last few years there has been a growing interest in the use of PET ligands labeled with radiometals, particularly isotopes of copper, yttrium and zirconium. Future clinical applications of these tracers will require them to be produced reliably and efficiently. This thesis work deals with implementing and optimizing the production of the multivalent transition metals 61,64Cu, 86Y and 89Zr for molecular PET imaging and therapy. Our findings in the production of these radionuclides at high specific activity on an 11 MeV proton-only cyclotron are presented. Local applications of these tracers, including Cu-ATSM for in vivo quantification of hypoxia, synthesis of targeted radiopharmaceuticals using activated esters of DOTA, and a novel development of positron emitting resin microspheres, are also be discussed. As a result of this thesis work, metallic radionuclides are now efficiently produced on a weekly basis in sufficient quality and quantity for collaborating scientists at UW-Madison and external users in other Universities across the country.

  3. High resolution image reconstruction method for a double-plane PET system with changeable spacing

    NASA Astrophysics Data System (ADS)

    Gu, Xiao-Yue; Zhou, Wei; Li, Lin; Wei, Long; Yin, Peng-Fei; Shang, Lei-Min; Yun, Ming-Kai; Lu, Zhen-Rui; Huang, Xian-Chao

    2016-05-01

    Breast-dedicated positron emission tomography (PET) imaging techniques have been developed in recent years. Their capacities to detect millimeter-sized breast tumors have been the subject of many studies. Some of them have been confirmed with good results in clinical applications. With regard to biopsy application, a double-plane detector arrangement is practicable, as it offers the convenience of breast immobilization. However, the serious blurring effect of the double-plane PET, with changeable spacing for different breast sizes, should be studied. We investigated a high resolution reconstruction method applicable for a double-plane PET. The distance between the detector planes is changeable. Geometric and blurring components were calculated in real-time for different detector distances, and accurate geometric sensitivity was obtained with a new tube area model. Resolution recovery was achieved by estimating blurring effects derived from simulated single gamma response information. The results showed that the new geometric modeling gave a more finite and smooth sensitivity weight in the double-plane PET. The blurring component yielded contrast recovery levels that could not be reached without blurring modeling, and improved visual recovery of the smallest spheres and better delineation of the structures in the reconstructed images were achieved with the blurring component. Statistical noise had lower variance at the voxel level with blurring modeling at matched resolution, compared to without blurring modeling. In distance-changeable double-plane PET, finite resolution modeling during reconstruction achieved resolution recovery, without noise amplification. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-EW-N06)

  4. Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging.

    PubMed

    Vunckx, Kathleen; Atre, Ameya; Baete, Kristof; Reilhac, Anthonin; Deroose, Christophe M; Van Laere, Koen; Nuyts, Johan

    2012-03-01

    In emission tomography, image reconstruction and therefore also tracer development and diagnosis may benefit from the use of anatomical side information obtained with other imaging modalities in the same subject, as it helps to correct for the partial volume effect. One way to implement this, is to use the anatomical image for defining the a priori distribution in a maximum-a-posteriori (MAP) reconstruction algorithm. In this contribution, we use the PET-SORTEO Monte Carlo simulator to evaluate the quantitative accuracy reached by three different anatomical priors when reconstructing positron emission tomography (PET) brain images, using volumetric magnetic resonance imaging (MRI) to provide the anatomical information. The priors are: 1) a prior especially developed for FDG PET brain imaging, which relies on a segmentation of the MR-image (Baete , 2004); 2) the joint entropy-prior (Nuyts, 2007); 3) a prior that encourages smoothness within a position dependent neighborhood, computed from the MR-image. The latter prior was recently proposed by our group in (Vunckx and Nuyts, 2010), and was based on the prior presented by Bowsher (2004). The two latter priors do not rely on an explicit segmentation, which makes them more generally applicable than a segmentation-based prior. All three priors produced a compromise between noise and bias that was clearly better than that obtained with postsmoothed maximum likelihood expectation maximization (MLEM) or MAP with a relative difference prior. The performance of the joint entropy prior was slightly worse than that of the other two priors. The performance of the segmentation-based prior is quite sensitive to the accuracy of the segmentation. In contrast to the joint entropy-prior, the Bowsher-prior is easily tuned and does not suffer from convergence problems. PMID:22049363

  5. Assessment of three techniques for delivering stem cells to the heart using PET and MR imaging

    PubMed Central

    2013-01-01

    Background Stem cell therapy has a promising potential for the curing of various degenerative diseases, including congestive heart failure (CHF). In this study, we determined the efficacy of different delivery methods for stem cell administration to the heart for the treatment of CHF. Both positron emission tomography (PET) and magnetic resonance imaging (MRI) were utilized to assess the distribution of delivered stem cells. Methods Adipose-derived stem cells of male rats were labeled with super-paramagnetic iron oxide (SPIO) and 18 F-fluorodeoxyglucose (FDG). The left anterior descending coronary artery (LAD) of the female rats was occluded to induce acute ischemic myocardial injury. Immediately after the LAD occlusion, the double-labeled stem cells were injected into the ischemic myocardium (n = 5), left ventricle (n = 5), or tail vein (n = 4). In another group of animals (n = 3), the stem cells were injected directly into the infarct rim 1 week after the LAD occlusion. Whole-body PET images and MR images were acquired to determine biodistribution of the stem cells. After the imaging, the animals were euthanized and retention of the stem cells in the vital organs was determined by measuring the cDNA specific to the Y chromosome. Results PET images showed that retention of the stem cells in the ischemic myocardium was dependent on the cell delivery method. The tail vein injection resulted in the least cell retention in the heart (1.2% ± 0.6% of total injected cells). Left ventricle injection led to 3.5% ± 0.9% cell retention and direct myocardial injection resulted in the highest rate of cell retention (14% ± 4%) in the heart. In the animals treated 1 week after the LAD occlusion, rate of cell retention in the heart was only 4.5% ±1.1%, suggesting that tissue injury has a negative impact on cell homing. In addition, there was a good agreement between the results obtained through PET-MR imaging and histochemical measurements. Conclusion PET

  6. Accuracy of CT-based attenuation correction in PET/CT bone imaging

    NASA Astrophysics Data System (ADS)

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  7. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience

    PubMed Central

    Rudelius, Martina; Schmid, Jan-Stefan; Schoene, Alexander; Schirbel, Andreas; Samnick, Samuel; Pelzer, Theo; Buck, Andreas K.; Kropf, Saskia; Wester, Hans-Jürgen; Herrmann, Ken

    2016-01-01

    Chemokine receptor CXCR4 is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging of small cell lung cancer (SCLC) with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine ligand [68Ga]Pentixafor. 10 patients with primarily diagnosed (n=3) or pre-treated (n=7) SCLC (n=9) or large cell neuroendocrine carcinoma of the lung (LCNEC, n=1) underwent [68Ga]Pentixafor-PET/CT. 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG, n=6) and/or somatostatin receptor (SSTR)-directed PET/CT with [68Ga]DOTATOC (n=5) and immunohistochemistry (n=10) served as standards of reference. CXCR4-PET was positive in 8/10 patients and revealed more lesions with significantly higher tumor-to-background ratios than SSTR-PET. Two patients who were positive on [18F]FDG-PET were missed by CXCR4-PET, in the remainder [68Ga]Pentixafor detected an equal (n=2) or higher (n=2) number of lesions. CXCR4 expression of tumor lesions could be confirmed by immunohistochemistry. Non-invasive imaging of CXCR4 expression in SCLC is feasible. [68Ga]Pentixafor as a novel PET tracer might serve as readout for confirmation of CXCR4 expression as prerequisite for potential CXCR4-directed treatment including receptor-radio(drug)peptide therapy. PMID:26843617

  8. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning.

    PubMed

    Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H

    2016-05-01

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  -11.8% in the top part of the phantom was observable, which was reduced to  -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  -10.0% and  -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning. PMID

  9. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Paulus, Daniel H.; Oehmigen, Mark; Grueneisen, Johannes; Umutlu, Lale; Quick, Harald H.

    2016-05-01

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  ‑11.8% in the top part of the phantom was observable, which was reduced to  ‑1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  ‑10.0% and  ‑2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.

  10. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves.

    PubMed

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with [Formula: see text] (15)O or C(15)O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic [Formula: see text] (15)O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through [Formula: see text] (15)O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies. PMID:27401833

  11. Reduction method for intrinsic random coincidence events from (176)Lu in low activity PET imaging.

    PubMed

    Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2014-07-01

    For clinical studies, the effects of the intrinsic radioactivity of lutetium-based scintillators such as LSO used in PET imaging can be ignored within a narrow energy window. However, the intrinsic radioactivity becomes problematic when used in low-count-rate situations such as gene expression imaging or in-beam PET imaging. Time-of-flight (TOF) measurement capability promises not only to improve PET image quality, but also to reduce intrinsic random coincidences. On the other hand, we have developed a new reduction method for intrinsic random coincidence events based on multiple-coincidence information. Without the energy window, an intrinsic random coincidence is detected simultaneously with an intrinsic true coincidence as a multiple coincidence. The multiple-coincidence events can serve as a guide to identification of the intrinsic coincidences. After rejection of multiple-coincidence events detected with a wide energy window, data obtained included a few intrinsic random and many intrinsic true coincidence events. We analyzed the effect of intrinsic radioactivity and used Monte Carlo simulation to test both the TOF-based method and the developed multiple-coincidence-based (MC-based) method for a whole-body LSO-PET scanner. Using the TOF- and MC-based reduction methods separately, we could reduce the intrinsic random coincidence rates by 77 and 30 %, respectively. Also, the intrinsic random coincidence rate could be reduced by 84 % when the TOF+MC reduction methods were applied. The developed MC-based method showed reduced number of the intrinsic random coincidence events, but the reduction performance was limited compared to that of the TOF-based reduction method. PMID:24496884

  12. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves

    NASA Astrophysics Data System (ADS)

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.

  13. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    NASA Astrophysics Data System (ADS)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal

  14. Comparison of meta-analyses among elastosonography (ES) and positron emission tomography/computed tomography (PET/CT) imaging techniques in the application of prostate cancer diagnosis.

    PubMed

    Ouyang, Qiaohong; Duan, Zhongxiang; Lei, Jixiao; Jiao, Guangli

    2016-03-01

    The early diagnosis of prostate cancer (PCa) appears to be of vital significance for the provision of appropriate treatment programs. Even though several sophisticated imaging techniques such as positron emission tomography/computed tomography (PET/CT) and elastosonography (ES) have already been developed for PCa diagnosis, the diagnostic accuracy of these imaging techniques is still controversial to some extent. Therefore, a comprehensive meta-analysis in this study was performed to compare the accuracy of various diagnostic imaging methods for PCa, including 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine PET/CT, 18F-fluoroglucose PET/CT, transrectal real-time elastosonography (TRTE), and shear-wave elastosonography (SWE). The eligible studies were identified through systematical searching for the literature in electronic databases including PubMed, Cochrane, and Web of Science. On the basis of the fixed-effects model, the pooled sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristics curve (AUC) were calculated to estimate the diagnostic accuracy of 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine (FCH) PET/CT, 18F-fluoroglucose (FDG) PET/CT, TRTE, and SWE. All the statistical analyses were conducted with R language Software. The present meta-analysis incorporating a total of 82 studies demonstrated that the pooled sensitivity of the six imaging techniques were sorted as follows: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT; the pooled specificity were also compared: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 18F-FDG PET/CT > 11C-acetate PET/CT; finally, the pooled diagnostic accuracy of the six imaging techniques based on AUC were ranked as below: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT. SWE and 18F-FCH PET/CT imaging could offer more assistance in the

  15. (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma.

    PubMed

    Lapa, Constantin; Lückerath, Katharina; Kleinlein, Irene; Monoranu, Camelia Maria; Linsenmann, Thomas; Kessler, Almuth F; Rudelius, Martina; Kropf, Saskia; Buck, Andreas K; Ernestus, Ralf-Ingo; Wester, Hans-Jürgen; Löhr, Mario; Herrmann, Ken

    2016-01-01

    Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand (68)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent (68)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. (68)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. (68)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for (18)F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for (68)Ga-Pentixafor than for (18)F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high (68)Ga-Pentixafor uptake; regions of the same tumor without apparent (68)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, (68)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, (68)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy. PMID:26909116

  16. 68Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma

    PubMed Central

    Lapa, Constantin; Lückerath, Katharina; Kleinlein, Irene; Monoranu, Camelia Maria; Linsenmann, Thomas; Kessler, Almuth F.; Rudelius, Martina; Kropf, Saskia; Buck, Andreas K.; Ernestus, Ralf-Ingo; Wester, Hans-Jürgen; Löhr, Mario; Herrmann, Ken

    2016-01-01

    Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand 68Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent 68Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. 68Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. 68Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for 18F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for 68Ga-Pentixafor than for 18F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high 68Ga-Pentixafor uptake; regions of the same tumor without apparent 68Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, 68Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, 68Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy. PMID:26909116

  17. Improving lesion detectability in PET imaging with a penalized likelihood reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Wangerin, Kristen A.; Ahn, Sangtae; Ross, Steven G.; Kinahan, Paul E.; Manjeshwar, Ravindra M.

    2015-03-01

    Ordered Subset Expectation Maximization (OSEM) is currently the most widely used image reconstruction algorithm for clinical PET. However, OSEM does not necessarily provide optimal image quality, and a number of alternative algorithms have been explored. We have recently shown that a penalized likelihood image reconstruction algorithm using the relative difference penalty, block sequential regularized expectation maximization (BSREM), achieves more accurate lesion quantitation than OSEM, and importantly, maintains acceptable visual image quality in clinical wholebody PET. The goal of this work was to evaluate lesion detectability with BSREM versus OSEM. We performed a twoalternative forced choice study using 81 patient datasets with lesions of varying contrast inserted into the liver and lung. At matched imaging noise, BSREM and OSEM showed equivalent detectability in the lungs, and BSREM outperformed OSEM in the liver. These results suggest that BSREM provides not only improved quantitation and clinically acceptable visual image quality as previously shown but also improved lesion detectability compared to OSEM. We then modeled this detectability study, applying both nonprewhitening (NPW) and channelized Hotelling (CHO) model observers to the reconstructed images. The CHO model observer showed good agreement with the human observers, suggesting that we can apply this model to future studies with varying simulation and reconstruction parameters.

  18. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer

    PubMed Central

    Huisman, Marc C.; Vugts, Danielle J.; Roth, Chantal; Luik, Anne Marije; Mulder, Emma R.; Schuit, Robert C.; Boellaard, Ronald; Hoekstra, Otto S.; van Dongen, Guus AMS; Verheul, Henk M.W.

    2015-01-01

    Monoclonal antibodies (mAbs) against the epidermal growth factor receptor (EGFR) are used in the treatment of advanced colorectal cancer (mCRC). Approximately 50% of patients benefit despite patient selection for RAS wild type (wt) tumors. Based on the hypothesis that tumor targeting is required for clinical benefit of anti-EGFR treatment, biodistribution and tumor uptake of 89Zr-cetuximab by Positron Emission Tomography (PET), combining the sensitivity of PET with the specificity of cetuximab for EGFR was evaluated. Ten patients with wt K-RAS mCRC received 37 ± 1 MBq 89Zr-cetuximab directly (<2 h) after the first therapeutic dose of cetuximab. PET-scans were performed from 1 hour to 10 days post injection (p.i.). Biodistribution was determined for blood and organs. Uptake in tumor lesions was quantified by Standardized Uptake Value (SUV) and related to response. In 6 of 10 patients 89Zr-cetuximab uptake in tumor lesions was detected. Four of 6 patients with 89Zr-cetuximab uptake had clinical benefit, while progressive disease was observed in 3 of 4 patients without 89Zr-cetuximab uptake. Taken together, tumor uptake of 89Zr-cetuximab can be visualized by PET imaging. The strong relation between uptake and response warrants further clinical validation as an innovative selection method for cetuximab treatment in patients with wt RAS mCRC. PMID:26309164

  19. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    NASA Astrophysics Data System (ADS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  20. 89Zr-Labeled Paramagnetic Octreotide-Liposomes for PET-MR Imaging of Cancer

    PubMed Central

    Abou, Diane S.; Thorek, Daniel L. J.; Ramos, Nicholas N.; Pinkse, Martijn W. H.; Wolterbeek, Hubert T.; Carlin, Sean D.; Beattie, Bradley J.

    2013-01-01

    Purpose Dual-modality PET/MR platforms add a new dimension to patient diagnosis with high resolution, functional, and anatomical imaging. The full potential of this emerging hybrid modality could be realized by using a corresponding dual-modality probe. Here, we report pegylated liposome (LP) formulations, housing a MR T1 contrast agent (Gd) and the positron-emitting 89Zr (half-life: 3.27 days), for simultaneous PET and MR tumor imaging capabilities. Methods 89Zr oxophilicity was unexpectedly found advantageous for direct radiolabeling of preformed paramagnetic LPs. LPs were conjugated with octreotide to selectively target neuroendocrine tumors via human somatostatin receptor subtype 2 (SSTr2). 89Zr-Gd-LPs and octreotide-conjugated homolog were physically, chemically and biologically characterized. Results 89Zr-LPs showed reasonable stability over serum proteins and chelator challenges for proof-of-concept in vitro and in vivo investigations. Nuclear and paramagnetic tracking quantified superior SSTr2-recognition of octreotide-LP compared to controls. Conclusions This study demonstrated SSTr2-targeting specificity along with direct chelator-free 89Zr-labeling of LPs and dual PET/MR imaging properties. PMID:23224977

  1. Fat-constrained 18F-FDG PET reconstruction using Dixon MR imaging and the origin ensemble algorithm

    NASA Astrophysics Data System (ADS)

    Wülker, Christian; Heinzer, Susanne; Börnert, Peter; Renisch, Steffen; Prevrhal, Sven

    2015-03-01

    Combined PET/MR imaging allows to incorporate the high-resolution anatomical information delivered by MRI into the PET reconstruction algorithm for improvement of PET accuracy beyond standard corrections. We used the working hypothesis that glucose uptake in adipose tissue is low. Thus, our aim was to shift 18F-FDG PET signal into image regions with a low fat content. Dixon MR imaging can be used to generate fat-only images via the water/fat chemical shift difference. On the other hand, the Origin Ensemble (OE) algorithm, a novel Markov chain Monte Carlo method, allows to reconstruct PET data without the use of forward- and back projection operations. By adequate modifications to the Markov chain transition kernel, it is possible to include anatomical a priori knowledge into the OE algorithm. In this work, we used the OE algorithm to reconstruct PET data of a modified IEC/NEMA Body Phantom simulating body water/fat composition. Reconstruction was performed 1) natively, 2) informed with the Dixon MR fat image to down-weight 18F-FDG signal in fatty tissue compartments in favor of adjacent regions, and 3) informed with the fat image to up-weight 18F-FDG signal in fatty tissue compartments, for control purposes. Image intensity profiles confirmed the visibly improved contrast and reduced partial volume effect at water/fat interfaces. We observed a 17+/-2% increased SNR of hot lesions surrounded by fat, while image quality was almost completely retained in fat-free image regions. An additional in vivo experiment proved the applicability of the presented technique in practice, and again verified the beneficial impact of fat-constrained OE reconstruction on PET image quality.

  2. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas

    PubMed Central

    Oteo, M.; Romero, E.; Cámara, J. A.; de Martino, A.; Arroyo, A. G.; Morcillo, M. Á.; Squatrito, M.; Martinez-Torrecuadrada, J. L.; Mulero, F.

    2016-01-01

    Background A critical challenge in the management of Glioblastoma Multiforme (GBM) tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP) as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models. Methods An anti-human MT1-MMP monoclonal antibody (mAb), LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS) for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251) expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7) as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543) and U251 cells, with different degrees of blood-brain barrier (BBB) disruption were also used for PET imaging experiments. Results 89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90%) and specific activity (78.5 MBq/mg). Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models. Conclusion A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In

  3. PET/CT image registration: Preliminary tests for its application to clinical dosimetry in radiotherapy

    SciTech Connect

    Banos-Capilla, M. C.; Garcia, M. A.; Bea, J.; Pla, C.; Larrea, L.; Lopez, E.

    2007-06-15

    The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: vertical bar {delta}x vertical bar {+-}{sigma}=3.3 mm{+-}1.0 mm and vertical bar {delta}y vertical bar {+-}{sigma}=3.6 mm{+-}1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: vertical bar {delta}x vertical bar {+-}{sigma}=0.7 mm{+-}0.8 mm and vertical bar {delta}y vertical bar {+-}{sigma}=0.3 mm{+-}1.7 mm. We also noted that differences

  4. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    PubMed

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  5. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.

    PubMed

    Kim, Woosuk; Le, Thuc M; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T; Abt, Evan R; Capri, Joseph R; Austin, Wayne R; Van Valkenburgh, Juno S; Steele, Dalton; Gipson, Raymond M; Slavik, Roger; Cabebe, Anthony E; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S; Lee, Jason T; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F; Witte, Owen N; Donahue, Timothy R; Phelps, Michael E; Herschman, Harvey R; Herrmann, Ken; Czernin, Johannes; Radu, Caius G

    2016-04-12

    Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring. PMID:27035974

  6. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    SciTech Connect

    Eslick, E; Kipritidis, J; Keall, P; Bailey, D; Bailey, E

    2014-06-01

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images using deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.

  7. In vivo verification of proton beam path by using post-treatment PET/CT imaging

    SciTech Connect

    Hsi, Wen C.; Indelicato, Daniel J.; Vargas, Carlos; Duvvuri, Srividya; Li Zuofeng; Palta, Jatinder

    2009-09-15

    Purpose: The purpose of this study is to establish the in vivo verification of proton beam path by using proton-activated positron emission distributions. Methods: A total of 50 PET/CT imaging studies were performed on ten prostate cancer patients immediately after daily proton therapy treatment through a single lateral portal. The PET/CT and planning CT were registered by matching the pelvic bones, and the beam path of delivered protons was defined in vivo by the positron emission distribution seen only within the pelvic bones, referred to as the PET-defined beam path. Because of the patient position correction at each fraction, the marker-defined beam path, determined by the centroid of implanted markers seen in the post-treatment (post-Tx) CT, is used for the planned beam path. The angular variation and discordance between the PET- and marker-defined paths were derived to investigate the intrafraction prostate motion. For studies with large discordance, the relative location between the centroid and pelvic bones seen in the post-Tx CT was examined. The PET/CT studies are categorized for distinguishing the prostate motion that occurred before or after beam delivery. The post-PET CT was acquired after PET imaging to investigate prostate motion due to physiological changes during the extended PET acquisition. Results: The less than 2 deg. of angular variation indicates that the patient roll was minimal within the immobilization device. Thirty of the 50 studies with small discordance, referred as good cases, show a consistent alignment between the field edges and the positron emission distributions from the entrance to the distal edge. For those good cases, average displacements are 0.6 and 1.3 mm along the anterior-posterior (D{sub AP}) and superior-inferior (D{sub SI}) directions, respectively, with 1.6 mm standard deviations in both directions. For the remaining 20 studies demonstrating a large discordance (more than 6 mm in either D{sub AP} or D{sub SI}), 13

  8. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging.

    PubMed

    Eldib, Mootaz; Bini, Jason; Robson, Philip M; Calcagno, Claudia; Faul, David D; Tsoumpas, Charalampos; Fayad, Zahi A

    2015-06-21

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use. PMID:26020273

  9. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-06-01

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.

  10. Cerenkov Radiation Energy Transfer (CRET) Imaging: A Novel Method for Optical Imaging of PET Isotopes in Biological Systems

    PubMed Central

    Dothager, Robin S.; Goiffon, Reece J.; Jackson, Erin; Harpstrite, Scott; Piwnica-Worms, David

    2010-01-01

    Background Positron emission tomography (PET) allows sensitive, non-invasive analysis of the distribution of radiopharmaceutical tracers labeled with positron (β+)-emitting radionuclides in small animals and humans. Upon β+ decay, the initial velocity of high-energy β+ particles can momentarily exceed the speed of light in tissue, producing Cerenkov radiation that is detectable by optical imaging, but is highly absorbed in living organisms. Principal Findings To improve optical imaging of Cerenkov radiation in biological systems, we demonstrate that Cerenkov radiation from decay of the PET isotopes 64Cu and 18F can be spectrally coupled by energy transfer to high Stokes-shift quantum nanoparticles (Qtracker705) to produce highly red-shifted photonic emissions. Efficient energy transfer was not detected with 99mTc, a predominantly γ-emitting isotope. Similar to bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET), herein we define the Cerenkov radiation energy transfer (CRET) ratio as the normalized quotient of light detected within a spectral window centered on the fluorophore emission divided by light detected within a spectral window of the Cerenkov radiation emission to quantify imaging signals. Optical images of solutions containing Qtracker705 nanoparticles and [18F]FDG showed CRET ratios in vitro as high as 8.8±1.1, while images of mice with subcutaneous pseudotumors impregnated with Qtracker705 following intravenous injection of [18F]FDG showed CRET ratios in vivo as high as 3.5±0.3. Conclusions Quantitative CRET imaging may afford a variety of novel optical imaging applications and activation strategies for PET radiopharmaceuticals and other isotopes in biomaterials, tissues and live animals. PMID:20949021

  11. Analytic system matrix resolution modeling in PET: an application to Rb-82 cardiac imaging

    PubMed Central

    Rahmim, A; Tang, J; Lodge, M A; Lashkari, S; Ay, M R; Lautamäki, R; Tsui, B M W; Bengel, F M

    2011-01-01

    This work explores application of a novel resolution modeling technique based on analytic physical models which individually models the various resolution degrading effects in PET (positron range, photon non-collinearity, inter-crystal scattering and inter-crystal penetration) followed by their combination and incorporation within the image reconstruction task. In addition to phantom studies, the proposed technique was particularly applied to and studied in the task of clinical Rb-82 myocardial perfusion imaging, which presently suffers from poor statistics and resolution properties in the reconstructed images. Overall, the approach is able to produce considerable enhancements in image quality. The reconstructed FWHM for a Discovery RX PET/CT scanner was seen to improve from 5.1 mm to 7.7 mm across the field-of-view (FoV) to ~3.5 mm nearly uniformly across the FoV. Furthermore, extended-source phantom studies indicated clearly improved images in terms of contrast versus noise performance. Using Monte Carlo simulations of clinical Rb-82 imaging, the resolution modeling technique was seen to significantly outperform standard reconstructions qualitatively, and also quantitatively in terms of contrast versus noise (contrast between the myocardium and other organs, as well as between myocardial defects and the left ventricle). PMID:18836219

  12. Diagnostic Imaging of Dental Disease in Pet Rabbits and Rodents.

    PubMed

    Capello, Vittorio

    2016-09-01

    Diagnostic imaging techniques are of paramount importance for dentistry and oral disorders of rabbits, rodents, and other exotic companion mammals. Aside from standard radiography, stomatoscopy is a complementary tool allowing a thorough and detailed inspection of the oral cavity. Computed tomography (CT) generates multiple 2-dimensional views and 3-dimensional reconstructions providing superior diagnostic accuracy also useful for prognosis and treatment of advanced dental disease and its related complications. MRI is a diagnostic imaging technique additional to CT used primarily to enhance soft tissues, including complex odontogenic abscesses. PMID:27497205

  13. Amyloid imaging with PET in early Alzheimer disease diagnosis.

    PubMed

    Rowe, Christopher C; Villemagne, Victor L

    2013-05-01

    In vivo imaging of amyloid-β (Aβ) with positron emission tomography has moved from the research arena into clinical practice. Clinicians working with cognitive decline and dementia must become familiar with its benefits and limitations. Amyloid imaging allows earlier diagnosis of Alzheimer disease and better differential diagnosis of dementia and provides prognostic information for mild cognitive impairment. It also has an increasingly important role in therapeutic trial recruitment and for evaluation of anti-Aβ treatments. Longitudinal observations are required to elucidate the role of Aβ deposition in the course of Alzheimer disease and provide information needed to fully use the prognostic power of this investigation. PMID:23642577

  14. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  15. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability.

    PubMed

    Schaefferkoetter, Joshua D; Yan, Jianhua; Townsend, David W; Conti, Maurizio

    2015-07-21

    In the context of investigating the potential of low-dose PET imaging for screening applications, we developed methods to assess small lesion detectability as a function of the number of counts in the scan. We present here our methods and preliminary validation using tuberculosis cases. FDG-PET data from seventeen patients presenting diffuse hyper-metabolic lung lesions were selected for the study, to include a wide range of lesion sizes and contrasts. Reduced doses were simulated by randomly discarding events in the PET list mode, and ten realizations at each simulated dose were generated and reconstructed. The data were grouped into 9 categories determined by the number of included true events, from  >40 M to  <250 k counts. The images reconstructed from the original full statistical set were used to identify lung lesions, and each was, at every simulated dose, quantified by 6 parameters: lesion metabolic volume, lesion-to-background contrast, mean lesion tracer uptake, standard deviation of activity measurements (across realizations), lesion signal-to-noise ratio (SNR), and Hotelling observer SNR. Additionally, a lesion-detection task including 550 images was presented to several experienced image readers for qualitative assessment. Human observer performances were ranked using receiver operating characteristic analysis. The observer results were correlated with the lesion image measurements and used to train mathematical observer models. Absolute sensitivities and specificities of the human observers, as well as the area under the ROC curve, showed clustering and performance similarities among images produced from 5 million or greater counts. The results presented here are from a clinically realistic but highly constrained experiment, and more work is needed to validate these findings with a larger patient population. PMID:26134119

  16. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability

    NASA Astrophysics Data System (ADS)

    Schaefferkoetter, Joshua D.; Yan, Jianhua; Townsend, David W.; Conti, Maurizio

    2015-07-01

    In the context of investigating the potential of low-dose PET imaging for screening applications, we developed methods to assess small lesion detectability as a function of the number of counts in the scan. We present here our methods and preliminary validation using tuberculosis cases. FDG-PET data from seventeen patients presenting diffuse hyper-metabolic lung lesions were selected for the study, to include a wide range of lesion sizes and contrasts. Reduced doses were simulated by randomly discarding events in the PET list mode, and ten realizations at each simulated dose were generated and reconstructed. The data were grouped into 9 categories determined by the number of included true events, from  >40 M to  <250 k counts. The images reconstructed from the original full statistical set were used to identify lung lesions, and each was, at every simulated dose, quantified by 6 parameters: lesion metabolic volume, lesion-to-background contrast, mean lesion tracer uptake, standard deviation of activity measurements (across realizations), lesion signal-to-noise ratio (SNR), and Hotelling observer SNR. Additionally, a lesion-detection task including 550 images was presented to several experienced image readers for qualitative assessment. Human observer performances were ranked using receiver operating characteristic analysis. The observer results were correlated with the lesion image measurements and used to train mathematical observer models. Absolute sensitivities and specificities of the human observers, as well as the area under the ROC curve, showed clustering and performance similarities among images produced from 5 million or greater counts. The results presented here are from a clinically realistic but highly constrained experiment, and more work is needed to validate these findings with a larger patient population.

  17. Quantitative myocardial perfusion PET parametric imaging at the voxel-level.

    PubMed

    Mohy-Ud-Din, Hassan; Lodge, Martin A; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the (82)Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. PMID:26216052

  18. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Lodge, Martin A.; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves.

  19. The SRT reconstruction algorithm for semiquantification in PET imaging

    SciTech Connect

    Kastis, George A.; Gaitanis, Anastasios; Samartzis, Alexandros P.; Fokas, Athanasios S.

    2015-10-15

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of {sup 18}F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  20. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Zhou, Yun; Lodge, Martin A.; Casey, Michael E.; Wahl, Richard L.; Zaidi, Habib; Rahmim, Arman

    2015-11-01

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV

  1. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET.

    PubMed

    Karakatsanis, Nicolas A; Zhou, Yun; Lodge, Martin A; Casey, Michael E; Wahl, Richard L; Zaidi, Habib; Rahmim, Arman

    2015-11-21

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV

  2. Molecular imaging of gene expression and protein function in vivo with PET and SPECT.

    PubMed

    Sharma, Vijay; Luker, Gary D; Piwnica-Worms, David

    2002-10-01

    Molecular imaging is broadly defined as the characterization and measurement of biological processes in living animals, model systems, and humans at the cellular and molecular level using remote imaging detectors. One underlying premise of molecular imaging is that this emerging field is not defined by the imaging technologies that underpin acquisition of the final image per se, but rather is driven by the underlying biological questions. In practice, the choice of imaging modality and probe is usually reduced to choosing between high spatial resolution and high sensitivity to address a given biological system. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) inherently use image-enhancing agents (radiopharmaceuticals) that are synthesized at sufficiently high specific activity to enable use of tracer concentrations of the compound (picomolar to nanomolar) for detecting molecular signals while providing the desired levels of image contrast. The tracer technologies strategically provide high sensitivity for imaging small-capacity molecular systems in vivo (receptors, enzymes, transporters) at a cost of lower spatial resolution than other technologies. We review several significant PET and SPECT advances in imaging receptors (somatostatin receptor subtypes, neurotensin receptor subtypes, alpha(v)beta(3) integrin), enzymes (hexokinase, thymidine kinase), transporters (MDR1 P-glycoprotein, sodium-iodide symporter), and permeation peptides (human immunodeficiency virus type 1 (HIV-1) Tat conjugates), as well as innovative reporter gene constructs (herpes simplex virus 1 thymidine kinase, somatostatin receptor subtype 2, cytosine deaminase) for imaging gene promoter activation and repression, signal transduction pathways, and protein-protein interactions in vivo. PMID:12353250

  3. Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care

    PubMed Central

    Dhingra, Vandana K; Mahajan, Abhishek; Basu, Sandip

    2015-01-01

    This review focuses on the potential of advanced applications of functional molecular imaging in assessing tumor biology and cellular characteristics with emphasis on positron emission tomography (PET) applications with both 18-fluorodeoxyglucose (FDG) and non-FDG tracers. The inherent heterogeneity of cancer cells with their varied cellular biology and metabolic and receptor phenotypic expression in each individual patient and also intra-and inter-lesionally in the same individual mandates for transitioning from a generalized “same-size-fits-all” approach to personalized medicine in oncology. The past two decades have witnessed improvement of oncological imaging through CT, MR imaging, PET, subsequent movement through hybrid or fusion imaging with PET/CT and single-photon emission computerized tomography (SPECT-CT), and now toward the evolving PET/MR imaging. These recent developments have proven invaluable in enhancing oncology care and have the potential to help image the tumor biology at the cellular level, followed by providing a tailored treatment. Molecular imaging, integrated diagnostics or Radiomics, biology-driven interventional radiology and theranostics, all hold immense potential to serve as a guide to give “start and stop” treatment for a patient on an individual basis. This will likely have substantial impact on both treatment costs and outcomes. In this review, we bring forth the current trends in molecular imaging with established techniques (PET/CT), with particular emphasis on newer molecules (such as amino acid metabolism and hypoxia imaging, somatostatin receptor based imaging, and hormone receptor imaging) and further potential for FDG. An introductory discussion on the novel hybrid imaging techniques such as PET/MR is also made to understand the futuristic trends. PMID:26752813

  4. Use of PET Imaging to Evaluate Transporter-Mediated Drug-Drug Interactions.

    PubMed

    Langer, Oliver

    2016-07-01

    Several membrane transporters belonging to the adenosine triphosphate-binding cassette (ABC) and solute carrier (SLC) families can transport drugs and drug metabolites and thereby exert an effect on drug absorption, distribution, and excretion, which may potentially lead to transporter-mediated drug-drug interactions (DDIs). Some transporter-mediated DDIs may lead to changes in organ distribution of drugs (eg, brain, liver, kidneys) without affecting plasma concentrations. Positron emission tomography (PET) is a noninvasive imaging method that allows studying of the distribution of radiolabeled drugs to different organs and tissues and is therefore the method of choice to quantitatively assess transporter-mediated DDIs on a tissue level. There are 2 approaches to how PET can be used in transporter-mediated DDI studies. When the drug of interest is a potential perpetrator of DDIs, it may be administered in unlabeled form to assess its influence on tissue distribution of a generic transporter-specific PET tracer (probe substrate). When the drug of interest is a potential victim of DDIs, it may be radiolabeled with carbon-11 or fluorine-18 and used in combination with a prototypical transporter inhibitor (eg, rifampicin). PET has already been used both in preclinical species and in humans to assess the effects of transporter-mediated DDIs on drug disposition in different organ systems, such as brain, liver, and kidneys, for which examples are given in the present review article. Given the growing importance of membrane transporters with respect to drug safety and efficacy, PET is expected to play an increasingly important role in future drug development. PMID:27385172

  5. A Comparison of Techniques for 90Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres

    PubMed Central

    Pasciak, Alexander S.; Bourgeois, Austin C.; Bradley, Yong C.

    2014-01-01

    90Y PET/CT following radioembolization has recently been established as a viable diagnostic tool, capable of producing images that are both quantitative and have superior image quality than alternative 90Y imaging modalities. Because radioembolization is assumed to be a permanent implant, it is possible to convert quantitative 90Y PET image sets into data representative of spatial committed absorbed-dose. Multiple authors have performed this transformation using dose-point kernel (DPK) convolution to account for the transport of the high-energy 90Y β-particles. This article explores a technique called the Local Deposition Method (LDM), an alternative to DPK convolution for 90Y image-based dosimetry. The LDM assumes that the kinetic energy from each 90Y β-particle is deposited locally, within the voxel where the decay occurred. Using the combined analysis of phantoms scanned using 90Y PET/CT and ideal mathematical phantoms, an accuracy comparison of DPK convolution and the LDM has been performed. Based on the presented analysis, DPK convolution provides no detectible accuracy benefit over the LDM for 90Y PET-based dosimetry. For PET systems with 90Y resolution poorer than 3.25 mm at full-width and half-max using a small voxel size, the LDM may produce a dosimetric solution that is more accurate than DPK convolution under ideal conditions; however, image noise can obscure some of the perceived benefit. As voxel size increases and resolution decreases, differences between the LDM and DPK convolution are reduced. The LDM method of post-radioembolization dosimetry has the advantage of not requiring additional post-processing. The provided conversion factors can be used to determine committed absorbed-dose using conventional PET image analysis tools. The LDM is a recommended option for routine post-radioembolization 90Y dosimetry based on PET/CT imaging. PMID:24904832

  6. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging.

    PubMed

    Dooraghi, Alex A; Keng, Pei Y; Chen, Supin; Javed, Muhammad R; Kim, Chang-Jin C J; Chatziioannou, Arion F; van Dam, R Michael

    2013-10-01

    Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [(18)F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from (18)F beta particles traversing materials of interest during [(18)F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the (18)F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [(18)O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to

  7. (18)F-FLT PET/CT imaging in a Wister rabbit inflammation model.

    PubMed

    Tan, Yeying; Liang, Jun; Liu, Defeng; Zhu, Feng; Wang, Guanmin; Ding, Xuemei; Han, Conghui

    2014-07-01

    The aim of the present study was to determine the tumour specificity of the newly developed nucleoside metabolic positron emission tomography (PET) tracer, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT). Using (18)F-FLT PET imaging, DNA synthesis and cell proliferation were detected in Staphylococcus aureus (S. aureus) abscess and calcium sulphate models in Wister rabbits. A total of eight rabbits were implanted with S. aureus in the left tibia to induce an inflammatory process. Calcium sulphate + gentamicin was implanted in the right tibia to induce a physical stimulus without bacterial multiplication. After four weeks, the animals underwent (18)F-FLT PET imaging, bacterial culturing and tissue pathology. The uptake of (18)F-FLT was significantly higher in the abscess site compared with that in the granuloma, with maximum standardised uptake values of 5.76±0.25 and 1.15±0.32, respectively (P<0.01). This indicates that (18)F-FLT is not a specific tumour tracer since active inflammation also results in the uptake of this compound. However, the tumour specificity of this tracer is higher compared with that of (18)F-fluorodeoxyglucose. Therefore, (18)F-FLT may be useful in the differential diagnosis of benign and malignant tumours. PMID:24944599

  8. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging

    PubMed Central

    Barrio, Jorge R.; Small, Gary W.; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A.; Giza, Christopher C.; Fitzsimmons, Robert P.; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-01-01

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer’s dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE. PMID:25848027

  9. SU-D-201-05: Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization

    SciTech Connect

    Maughan, N; Conti, M; Parikh, P; Faul, D; Laforest, R

    2015-06-15

    Purpose: Imaging Y-90 microspheres with PET/MRI following hepatic radioembolization has the potential for predicting treatment outcome and, in turn, improving patient care. The positron decay branching ratio, however, is very small (32 ppm), yielding images with poor statistics even when therapy doses are used. Our purpose is to find PET reconstruction parameters that maximize the PET recovery coefficients and minimize noise. Methods: An initial 7.5 GBq of Y-90 chloride solution was used to fill an ACR phantom for measurements with a PET/MRI scanner (Siemens Biograph mMR). Four hot cylinders and a warm background activity volume of the phantom were filled with a 10:1 ratio. Phantom attenuation maps were derived from scaled CT images of the phantom and included the MR phased array coil. The phantom was imaged at six time points between 7.5–1.0 GBq total activity over a period of eight days. PET images were reconstructed via OP-OSEM with 21 subsets and varying iteration number (1–5), post-reconstruction filter size (5–10 mm), and either absolute or relative scatter correction. Recovery coefficients, SNR, and noise were measured as well as total activity in the phantom. Results: For the 120 different reconstructions, recovery coefficients ranged from 0.1–0.6 and improved with increasing iteration number and reduced post-reconstruction filter size. SNR, however, improved substantially with lower iteration numbers and larger post-reconstruction filters. From the phantom data, we found that performing 2 iterations, 21 subsets, and applying a 5 mm Gaussian post-reconstruction filter provided optimal recovery coefficients at a moderate noise level for a wide range of activity levels. Conclusion: The choice of reconstruction parameters for Y-90 PET images greatly influences both the accuracy of measurements and image quality. We have found reconstruction parameters that provide optimal recovery coefficients with minimized noise. Future work will include the effects

  10. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?

    PubMed Central

    Mayerhoefer, Marius E.; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J.; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-01-01

    Purpose To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed–time-point 2-18F-fluoro-2-deoxy-d-glucose-positron emission tomography (18F-FDG-PET) performs better than standard–time-point 18F-FDG-PET. Materials and Methods Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic 18F-FDG-PET/computed tomography (CT) and consecutive 18F-FDG-PET/magnetic resonance imaging (MRI), using a single 18F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective 18F-FDG-PET scans at time points 1 (45–60 minutes after tracer injection, TP1) and 2 (100–150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. Results 18F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and 18F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%–84.67%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP1; and 87.0% (CI, 73.26%–100%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and 18F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%–80.9%) for 18F-FDG-PET at TP1, and 76.9% (CI, 54.0%–99.8%) for 18F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Conclusions Delayed–time-point imaging

  11. Characteristics of Tau and Its Ligands in PET Imaging

    PubMed Central

    Harada, Ryuichi; Okamura, Nobuyuki; Furumoto, Shozo; Tago, Tetsuro; Yanai, Kazuhiko; Arai, Hiroyuki; Kudo, Yukitsuka

    2016-01-01

    Tau deposition is one of the neuropathological hallmarks in Alzheimer’s disease as well as in other neurodegenerative disorders called tauopathies. Recent efforts to develop selective tau radiopharmaceuticals have allowed the visualization of tau deposits in vivo. In vivo tau imaging allows the assessment of the regional distribution of tau deposits in a single human subject over time for determining the pathophysiology of tau accumulation in aging and neurodegenerative conditions as well as for application in drug discovery of anti-dementia drugs as surrogate markers. However, tau deposits show complicated characteristics because of different isoform composition, histopathology, and ultrastructure in various neurodegenerative conditions. In addition, since tau radiopharmaceuticals possess different chemotype classes, they may show different binding characteristics with heterogeneous tau deposits. In this review, we describe the characteristics of tau deposits and their ligands that have β-sheet binding properties, and the status of tau imaging in clinical studies. PMID:26751494

  12. Susac syndrome: a case report and PET imaging findings.

    PubMed

    Dielman, Charlotte; Laureys, Guy; Meurs, Alfred; Bissay, Veronique; Ebinger, Guy

    2009-09-01

    We describe the case of a twenty-year-old woman with subacute encephalopathy, who subsequently developed hearing loss and ophtalmopathy. The clinical triad and typical findings on magnetic resonance imaging and cerebrospinal fluid analysis led to the diagnosis of Susac syndrome. Brain positron emission tomography showed abnormalities which are comparable with other types of central nervous system vasculitis, and distinct from those found in multiple sclerosis. PMID:19902818

  13. FDG-anorectic parathyroid carcinoma with FDG-avid bone metastasis on PET/CT images.

    PubMed

    Li, Mei; Lu, Hankui; Gao, Yunchao

    2013-11-01

    A 53-year-old man complained of aggravated left hip pain of more than 2 months. Whole-body (18)F-FDG PET/CT revealed only 1 hypermetabolic lesion in the left ilium. Histopathologic examination of the lesion suggested metastatic disease. Blood tests documented mildly elevated blood calcium and parathyroid hormone. Subsequent neck ultrasonography, contrast-enhanced CT, and dual-phase scintigraphy with (99m)Tc-MIBI showed a right parathyroid tumor, which was confirmed to be a parathyroid carcinoma postoperatively. We report a case of parathyroid carcinoma rarely encountered with a FDG-negative primary but a FDG-positive metastasis on PET/CT images. PMID:24089062

  14. Attenuation correction for the large non-human primate brain imaging using microPET

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2010-04-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  15. Effect of Radionuclide Activity Concentration on PET-CT Image Uniformity

    PubMed Central

    Hasford, Francis; Wyk, Bronwin Van; Mabhengu, Thulani; Vangu, Mboyo Di Tamba; Kyere, Augustine Kwame; Amuasi, John Humphrey

    2016-01-01

    Assessment of radionuclide activity concentration on positron emission tomography-computedr tomography (PET-CT) image uniformity has been carried out quantitatively. Tomographic PET-CT images of cylindrical phantom containing F-18 fluorodeoxyglucose (FDG) activity concentration was acquired and used for the assessment. Activity concentrations were varied and PET-CT images were acquired at the constant acquisition parameters of time, matrix size, and reconstruction algorithm, respectively. Using midtransaxial image slices, quantitative index of nonuniformity (NU), and coefficient of uniformity variation were estimated for the different activity concentrations. Maximum NUs of 17.6%, 26.3%, 32.7%, 36.2%, and 38.5% were estimated for activity concentrations of 16.87 kBq/mL, 14.06 kBq/mL, 11.25 kBq/mL, 8.43 kBq/mL, and 5.62 kBq/mL, respectively. The coefficient of uniformity variation established an inverse quadratic relationship with activity concentration. Activity concentrations of 16.87 kBq/mL, 14.06 kBq/mL, 11.25 kBq/mL, 8.43 kBq/mL, and 5.62 kBq/mL produced uniformity variations of 1.47%, 2.52%, 4.23%, 5.12%, and 4.98%, respectively. Increasing activity concentration resulted in decreasing coefficient of uniformity and hence, an increase in image uniformity. The uniformity estimates compared well with the standards set internationally. PMID:27134558

  16. PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders.

    PubMed

    Doorduin, Janine; de Vries, Erik F J; Dierckx, Rudi A; Klein, Hans C

    2008-01-01

    It is important to gain more insight into neurodegenerative diseases, because these debilitating diseases can not be cured. A common characteristic of many neurological diseases is neuroinflammation, which is accompanied by the presence of activated microglia cells. In activated microglia cells, an increase in the expression of peripheral benzodiazepine receptors (PBR) can be found. The PBR was suggested as a target for monitoring disease progression and therapy efficacy with positron emission tomograpy (PET). The PET tracer [(11)C]PK11195 has been widely used for PBR imaging, but the tracer has a high lipophilicity and high non-specific binding which makes it difficult to quantify uptake. Therefore, efforts are being made to develop more sensitive radioligands for the PBR.