Science.gov

Sample records for 18s rdna gene

  1. Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes.

    PubMed

    Kazi, Mudassar Anisoddin; Reddy, C R K; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  2. Molecular Phylogeny and Barcoding of Caulerpa (Bryopsidales) Based on the tufA, rbcL, 18S rDNA and ITS rDNA Genes

    PubMed Central

    Kazi, Mudassar Anisoddin; Reddy, C. R. K.; Jha, Bhavanath

    2013-01-01

    The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters. PMID:24340028

  3. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella

    PubMed Central

    2010-01-01

    Comparison of 18S rDNA gene sequences is a very promising method for identification and classification of living organisms. Molecular identification and discrimination of different Dunaliella species were carried out based on the size of 18S rDNA gene and, number and position of introns in the gene. Three types of 18S rDNA structure have already been reported: the gene with a size of ~1770 bp lacking any intron, with a size of ~2170 bp consisting one intron near 5' terminus, and with a size of ~2570 bp harbouring two introns near 5' and 3' termini. Hereby, we report a new 18S rDNA gene arrangement in terms of intron localization and nucleotide sequence in a Dunaliella isolated from Iranian salt lakes (ABRIINW-M1/2). PCR amplification with genus-specific primers resulted in production of a ~2170 bp DNA band, which is similar to that of D. salina 18S rDNA gene containing only one intron near 5' terminus. Whilst, sequence composition of the gene revealed the lack of any intron near 5' terminus in our isolate. Furthermore, another alteration was observed due to the presence of a 440 bp DNA fragment near 3' terminus. Accordingly, 18S rDNA gene of the isolate is clearly different from those of D. salina and any other Dunaliella species reported so far. Moreover, analysis of ITS region sequence showed the diversity of this region compared to the previously reported species. 18S rDNA and ITS sequences of our isolate were submitted with accesion numbers of EU678868 and EU927373 in NCBI database, respectively. The optimum growth rate of this isolate occured at the salinity level of 1 M NaCl. The maximum carotenoid content under stress condition of intense light (400 μmol photon m-2 s-1), high salinity (4 M NaCl) and deficiency of nitrate and phosphate nutritions reached to 240 ng/cell after 15 days. PMID:20377865

  4. Physical mapping of 18S and 5S rDNA loci and histone H3 gene in grasshopper species of the subfamily Gomphocerinae (Acrididae).

    PubMed

    Silva-Neto, L C; Bernardino, A C S; Loreto, V; Moura, R C

    2015-01-01

    In this study, fluorescence in situ hybridization (FISH) analysis was used to determine and compare the numbers and chromosomal locations of two multigene families (rDNA and histone H3) in four Neotropical species of gomphocerine grasshoppers. FISH using the 18S rDNA probe identified a single site on the S9 chromosome of Amblytropidia sp and Cauratettix borelli, a single site on chromosome M6 of Compsacris pulcher, and two sites (chromosomes L1 and L2) in Orphulella punctata. By contrast, FISH with a 5S rDNA probe identified dispersion of this sequence in the genomes of the four species, with evidence of intraspecific variations. Amblytropidia sp had six to eight FISH signals on autosomal chromosomes, while C. pulcher exhibited a signal only on the M5 bivalent. The histone H3 gene was less variable and was restricted to a single pair in all species. The conservation of the numbers and locations of 18S rDNA and H3 genes in conjunction with data from the literature was useful for evaluating karyotype evolution in this subfamily. The variation in the number and sizes of 5S rDNA sites indicates a process of recent dispersion that might have been mediated by transposition. PMID:26634462

  5. The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K.

    PubMed

    Wei, Wang; Hong-Lan, Yang; HuiFang, Bao; Daoyuan, Zhang; Qi-mu-ge, Shan; Woof, Andrew J

    2010-07-01

    In order to test whether 18S rDNA can influence positively xylanase gene effective expression in the yeast of Candida utilis, a targeting vector pGLR9K-XA was constructed by adding an interested gene xynA from Streptomyces olivaceoviridis into the vector pGLR9K which is constructed by ourselves. pGLR9K contains the 18S rDNA, GAP promoter and CYH resistance gene sequence, all of which is from C. utilis. Then the vector pGLR9K-XA was transformed into C. utilis. To test the vector and transformed system, PCR, Southern blot and DNS methods were used. The results showed that xylanase gene can be detected in the chromosome DNA of recombinant C. utilis and the enzyme activity of xylanase is up to 60 IU ml(-1) in the study. It is suggested that this system can be used to express exogenous genes in C. utilis as a bioreactors. This is the first report that xylanase gene was expressed in C. utilis. PMID:19731075

  6. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential. PMID:18205784

  7. Retroposons do jump: a B2 element recently integrated in an 18S rDNA gene.

    PubMed Central

    Oberbäumer, I

    1992-01-01

    Several cDNA clones were isolated from cDNA libraries constructed with mRNA longer than 28S RNA from the murine cell line PYS-2/12. The plasmids have inserts containing 1-1.2 kb of the ribosomal 5' external transcribed spacer followed by nearly 700 nt of sequence for 18S rRNA and ending with a B2 element (retroposon). The cloned sequence differed in a few positions from published ribosomal sequences. The 3' adjacent genomic sequence was obtained by polymerase chain reaction (PCR) and showed that the B2 element has a poly(A) tail of about 50 nt and is surrounded by perfect direct repeats of 15 nt. Analysis of genomic DNA from several murine cell lines revealed that PYS cells contain at least one copy of 18S RNA with the B2 element which is not present in the genome of other murine cell lines derived from the same teratocarcinoma. Similarly, rRNA transcripts containing the B2 element were only detected in PYS cells. According to the publication dates of the different cell lines, the B2 element must have been integrated into an rRNA transcription unit during the years 1970 through 1974 thus proving that retroposons (SINEs) can still be inserted into the genome in our times. Images PMID:1311830

  8. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product. PMID:26789074

  9. Phylogeny of the Eustigmatophyceae Based upon 18S rDNA, with Emphasis on Nannochloropsis.

    PubMed

    Andersen, R A; Brett, R W; Potter, D; Sexton, J P

    1998-02-01

    Complete 18S rDNA sequences were determined for 25 strains representing five genera of the Eustigmatophyceae, including re-examination of three strains with previously published sequences. Parsimony analysis of these and 44 published sequences for other heterokont chromophytes (unalignable sites removed) revealed that the Eustigmatophyceae were a monophyletic group. Analysis of eustigmatophyte taxa only (complete gene analyzed) supported the current familial classification scheme. Twenty one strains of Nannochloropsis were also examined using light microscopy. Gross morphology of cells was variable and overlapped among the strains; cell size was consistent within strains but sometimes varied considerably among strains of a species. The 18S rDNA of N. gaditana, N. oculata and N. salina was re-sequenced for strains used in previous publications and one or more nucleotide differences were found. Nucleotide sequences for Nannochloropsis species varied by up to 32 nucleotides. Identical sequences were found for six strains of N. salina, five strains of N. gadifana, four strains of N. granulata, and two strains of N. oculata, respectively. Four strains could not be assigned to described species and may represent two new species. The unique 18S rDNA sequences for each sibling species of Nannochloropsis demonstrates the presence of considerable genetic diversity despite the extremely simple morphology in this genus. PMID:23196114

  10. Polymorphisms in the 18S rDNA gene of Cystoisospora belli and clinical features of cystoisosporosis in HIV-infected patients.

    PubMed

    Resende, Deisy V; Pedrosa, André L; Correia, Dalmo; Cabrine-Santos, Marlene; Lages-Silva, Eliane; Meira, Wendell S F; Oliveira-Silva, Márcia B

    2011-03-01

    Intraspecific variability among Cystoisospora belli isolates and its clinical implications in human cystoisosporosis have not been established. In this study, the restriction fragment length polymorphisms in a 1.8-kb amplicon of the small subunit ribosomal DNA (SSU rDNA) of the parasite was investigated in 20 C. belli-positive stool samples obtained from 15 HIV-infected patients. Diarrheic syndrome was observed in all patients with cystoisosporosis and the number of diarrheic episodes per patient during hospitalization ranged from 1 to 26 (mean of 9.64 ± 9.30), with a mean duration of 2 to 12 days (mean of 5.90 ± 3 days). Three restriction profiles (RF) were generated with MboII digestion, which were named RFI, RFII, and RFIII. Two isolates obtained from a patient with extraintestinal cystoisosporosis showed distinct restriction profiles with MboII. This study demonstrates that patients can be infected with different C. belli genotypes, and this information may be useful for identifying new C. belli genotypes infecting humans. PMID:20967461

  11. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters

    PubMed Central

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-01-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI’s SRA database (BioProject PRJNA294919). PMID:26904716

  12. 18S rDNA dataset profiling microeukaryotic populations within Chicago area nearshore waters.

    PubMed

    Searle, Daniel; Sible, Emily; Cooper, Alexandria; Putonti, Catherine

    2016-03-01

    Despite their critical role in the aquatic food web and nutrient cycling, microeukaryotes within freshwater environments are under-studied. Herein we present the first high-throughput molecular survey of microeukaryotes within Lake Michigan. Every two weeks from May 13 to August 5, 2014, we collected surface water samples from the nearshore waters of four Chicago area beaches: Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach. Four biological replicates were collected for each sampling date and location, resulting in 112 samples. Eighty-nine of these samples were surveyed through targeted sequencing of the V7 and V8 regions of the 18S rDNA gene. Both technical and biological replicates were sequenced and are included in this dataset. Raw sequence data is available via NCBI's SRA database (BioProject PRJNA294919). PMID:26904716

  13. Chromosomal location of 18S and 5S rDNA sites in Triportheus fish species (Characiformes, Characidae)

    PubMed Central

    2009-01-01

    The location of 18S and 5S rDNA sites was determined in eight species and populations of the fish genus Triportheus by using fluorescent in situ hybridization (FISH). The males and females of all species had 2n = 52 chromosomes and a ZZ/ZW sex chromosome system. A single 18S rDNA site that was roughly equivalent to an Ag-NOR was detected on the short arms of a submetacentric pair in nearly all species, and up to two additional sites were also observed in some species. In addition, another 18S rDNA cluster was identified in a distal region on the long arms of the W chromosome; this finding corroborated previous evidence that this cluster would be a shared feature amongst Triportheus species. In T. angulatus, a heterozygotic paracentric inversion involving the short arms of one homolog of a metacentric pair was associated with NORs. The 5S rDNA sites were located on the short arms of a single submetacentric chromosomal pair, close to the centromeres, except in T. auritus, which had up to ten 5S rDNA sites. The 18S and 5S rDNA sites were co-localized and adjacent on the short arms of a chromosomal pair in two populations of T. nematurus. Although all Triportheus species have a similar karyotypic macrostructure, the results of this work show that in some species ribosomal genes may serve as species-specific markers when used in conjunction with other putatively synapomorphic features. PMID:21637644

  14. Assessment of Helminth Biodiversity in Wild Rats Using 18S rDNA Based Metagenomics

    PubMed Central

    Tsai, Isheng J.; Palomares-Rius, Juan Emilio; Yoshida, Ayako; Ogura, Yoshitoshi; Hayashi, Tetsuya; Maruyama, Haruhiko; Kikuchi, Taisei

    2014-01-01

    Parasite diversity has important implications in several research fields including ecology, evolutionary biology and epidemiology. Wide-ranging analysis has been restricted because of the difficult, highly specialised and time-consuming processes involved in parasite identification. In this study, we assessed parasite diversity in wild rats using 18S rDNA-based metagenomics. 18S rDNA PCR products were sequenced using an Illumina MiSeq sequencer and the analysis of the sequences using the QIIME software successfully classified them into several parasite groups. The comparison of the results with those obtained using standard methods including microscopic observation of helminth parasites in the rat intestines and PCR amplification/sequencing of 18S rDNA from isolated single worms suggests that this new technique is reliable and useful to investigate parasite diversity. PMID:25340824

  15. Chromosome mapping of 18S rDNA and 5S rDNA by dual-color fluorescence in situ hybridization in the half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Jiang, L; Jiang, J; Liu, J; Yuan, J; Chen, Y; Zhang, Q; Wang, X

    2014-01-01

    Half-smooth tongue sole (Cynoglossus semilaevis) is an important aquaculture flatfish in China. Cytogenetic analysis has revealed that its sex determination system is female heterogametic (ZZ/ZW). The W chromosome is morphologically larger and has been considered evolutionarily younger than any other chromosome in the set. However, the genetic origin and evolution process of this neo-chromosome remains unclear. In this study, 2 tandem arrays of rRNA genes were chosen to address this question. Both the major rDNA (18S rDNA) and the minor rDNA (5S rDNA) were located on the C. semilaevis chromosomes by fluorescence in situ hybridization (FISH). Six 18S rDNA signals were observed on the centromeric regions of 3 pairs of autosomes in both males and females. In females, there was an additional 18S rDNA signal mapping to the telomeric region of the W chromosome long arm. With respect to the 5S rDNA, 12 signals were mapped to the centromeric regions of six pairs of autosomes. Two-color FISH further confirmed that the two pairs of the 5S rDNA signals were correspondingly located at the same positions of the same autosomes as those of the 18S rDNA signals. These results allowed us to speculate about the evolution process of the W chromosome. Chromosome fusions and repetitive sequence accumulations might have occurred in C. semilaevis. The synteny and non-synteny of C. semilaevis 18S rDNA and 5S rDNA might imply the original and evolutionary characteristics of this species. These findings will facilitate studies on karyotype evolution of the order Pleuronectiformes. PMID:25526196

  16. Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis.

    PubMed

    Rakotoarisoa, G; Hirai, Y; Go, Y; Kawamoto, Y; Shima, T; Koyama, N; Randrianjafy, A; Mora, R; Hirai, H

    2000-10-01

    Chromosomal localization of 18S rDNA and telomere sequence was attempted on the chromosomes of the aye-aye (2n = 30) using fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS), respectively. The rDNA was localized at the tip or whole of the short arm of acrocentric chromosomes 13 and 14 in all spreads observed. However, post-FISH silver-nitrate (Ag) staining showed that transcriptional activity of the rRNA genes was variable, particularly in chromosome 14, which was most frequently negative in one homologue carrying the smaller copy number of rDNA. This observation supports, at the molecular cytogenetic level, previous data concerning the relationship between the copy number of rDNA and its trancriptional activity. On the other hand, telomere sequence was localized only at the telomeric region of all chromosomes, the so-called telomere-only pattern, a characteristic similar to that of the greater bushbaby. These data may provide information on the chromosomal evolution of the lemur, because locations of rDNA and telomere sequences frequently offer important clues in reconstruction of karyotype differentiation. PMID:11245223

  17. Cytogenetic Analysis and Chromosomal Characteristics of the Polymorphic 18S rDNA of Haliotis discus hannai from Fujian, China

    PubMed Central

    Wang, Haishan; Luo, Xuan; You, Weiwei; Dong, Yunwei; Ke, Caihuan

    2015-01-01

    We report on novel chromosomal characteristics of Haliotis discus hannai from a breeding population at Fujian, China. The karyotypes of H. discus hannai we obtained from an abalone farm include a common type 2n = 36 = 10M + 8SM (82%) and two rare types 2n = 36 = 11M + 7SM (14%) and 2n = 36 = 10M + 7SM + 1ST (4%). The results of silver staining showed that the NORs of H. discus hannai were usually located terminally on the long arms of chromosome pairs 14 and 17, NORs were also sometimes located terminally on the short arms of other chromosomes, either metacentric or submetacentric pairs. The number of Ag-nucleoli ranged from 2 to 8, and the mean number was 3.61 ± 0.93. Among the scored interphase cells, 41% had 3 detectable nucleoli and 37% had 4 nucleoli. The 18S rDNA FISH result is the first report of the location of 18S rDNA genes in H. discus hannai. The 18S rDNA locations were highly polymorphic in this species. Copies of the gene were observed in the terminal of long or/and short arms of submetacentric or/and metacentric chromosomes. Using FISH with probe for vertebrate-like telomeric sequences (CCCTAA)3 displayed positive green FITC signals at telomere regions of all analyzed chromosome types. We found about 7% of chromosomes had breaks in prophase. A special form of nucleolus not previously described from H. discus hannai was observed in some interphase cells. It consists of many small silver-stained nucleoli gathered together to form a larger nucleolus and may correspond to prenucleolar bodies. PMID:25699679

  18. Phylogenetic relationships among higher Nemertean (Nemertea) Taxa inferred from 18S rDNA sequences.

    PubMed

    Sundberg, P; Turbeville, J M; Lindh, S

    2001-09-01

    We estimated the phylogenetic relationships of 15 nemertean (phylum Nemertea) species from the four subclasses Hoplo-, Hetero-, Palaeo-, and Bdellonemertea with 18S rDNA sequence data. Three outgroup taxa were used for rooting: Annelida, Platyhelminthes, and Mollusca. Parsimony and maximum-likelihood analyses supported the monophyletic status of the Heteronemertea and a taxon consisting of hoplonemerteans and Bdellonemertea, while indicating that Palaeonemertea is paraphyletic. The monophyletic status of the two nemertean classes Anopla and Enopla is not supported by the data. The unambiguous clades are well supported, as assessed by a randomization test (bootstrapping) and branch support values. PMID:11527461

  19. Identification of a potential fungal species by 18S rDNA for ligninases production.

    PubMed

    Ferhan, M; Santos, S N; Melo, I S; Yan, N; Sain, M

    2013-12-01

    Fungal species for ligninases production was investigated by 18S ribosomal DNA sequence analysis. Two primer sets were chosen to amplify a major part of the 18S rDNA, which resulted in intense PCR product of approximately 550-820 bp in size per sample. The results suggest that the 18S rDNA-based approach is a useful tool for identification of unknown potential fungal species for ligninases production. The isolated fungal species produces mainly manganese peroxidase (MnP). The enzyme oxidized a variety of the usual MnP substrates, including lignin related polyphenols. Time course studies showed that maximum production of ligninolytic enzymes MnP (64 IU L⁻¹), lignin peroxidase (26.35 IU L⁻¹), and laccase (5.44 IU L⁻¹), respectively, were achieved after 10 days of cultivation under optimum conditions. Furthermore, the biological decolorization of Remazol Brilliant Blue R dye following 10 days of cultivation was 94 %. NCBI BLAST was used to search for closest matched sequences in the GenBank database and based on sequence homology the first BLAST hit was Dothioraceae sp. LM572 with accession number EF060858.1. PMID:23744034

  20. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    PubMed

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected. PMID:26497420

  1. Initial results on the molecular phylogeny of the Nudibranchia (Gastropoda, Opisthobranchia) based on 18S rDNA data.

    PubMed

    Wollscheid, E; Wägele, H

    1999-11-01

    This study investigated nudibranch phylogeny on the basis of 18S rDNA sequence data. 18S rDNA sequence data of 19 taxa representing the major living orders and families of the Nudibranchia were analyzed. Representatives of the Cephalaspidea, Anaspidea, Gymnomorpha, Prosobranchia, and Pulmonata were also sequenced and used as outgroups. An additional 28 gastropod sequences taken from GenBank were also included in our analyses. Phylogenetic analyses of these more than 50 gastropod taxa provide strong evidence for support of the monophyly of the Nudibranchia. The monophyly of the Doridoidea, Cladobranchia, and Aeolidoidea within the Nudibranchia are also strongly supported. Phylogenetic utility and information content of the 18S rDNA sequences for Nudibranchia, and Opisthobranchia in general, are examined using the program SplitsTree as well as phylogenetic reconstructions using distance and parsimony approaches. 0Results based on these molecular data are compared with hypotheses about nudibranch phylogeny inferred from morphological data. PMID:10603252

  2. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary Tendencies in the Genus

    PubMed Central

    César Venere, Paulo; Thums Konerat, Jocicléia; Henrique Zawadzki, Cláudio; Ricardo Vicari, Marcelo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus. PMID:25405240

  3. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  4. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  5. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  6. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera.

    PubMed

    Gokhman, Vladimir E; Anokhin, Boris A; Kuznetsova, Valentina G

    2014-08-01

    Karyotypes of six species belonging to three main clades of parasitoid Hymenoptera, the superfamilies Ichneumonoidea (Ichneumonidae: Ichneumon amphibolus), Cynipoidea (Cynipidae: Diplolepis rosae) and Chalcidoidea (Eurytomidae: Eurytoma robusta, Eu. serratulae and Eu. compressa, and Torymidae: Torymus bedeguaris) were studied using FISH with 18S rDNA and telomeric (TTAGG)n probes. Haploid karyotypes of D. rosae, Eu. robusta and Eu. serratulae carried the only 18S rDNA hybridization signal, whereas those of I. amphibolus and Eu. compressa carried three and two rDNA clusters respectively. In addition, three rDNA sites were visualized in the aneuploid female of T. bedeguaris. The number of rDNA clusters in parasitoid Hymenoptera generally correlates to the chromosome number. Apart from the overwhelming majority of the studied species of aculeate Hymenoptera, no hybridization signals were obtained from FISH with the telomeric (TTAGG)n probe in the examined parasitoid species. These data suggest absence of the canonical (TTAGG)n insect telomeric motif in the Ichneumonoidea, Cynipoidea and Chalcidoidea, and perhaps in parasitoid Hymenoptera in general. PMID:24992984

  7. Morphology and 18S rDNA of Henneguya gurlei (Myxosporea) from Ameiurus nebulosus (Siluriformes) in North Carolina

    USGS Publications Warehouse

    Iwanowicz, L.R.; Iwanowicz, D.D.; Pote, L.M.; Blazer, V.S.; Schill, W.B.

    2008-01-01

    Henneguya gurlei was isolated from Ameiurus nebulosus captured in North Carolina and redescribed using critical morphological features and 18S small-subunit ribosomal RNA (SSU rDNA) gene sequence. Plasmodia are white, spherical, or subspherical, occur in clusters, measure up to 1.8 mm in length, and are located on the dorsal, pectoral, and anal fins. Histologically, plasmodia are located in the dermis and subdermally, and the larger cysts disrupt the melanocyte pigment layer. The spore body is lanceolate, 18.2 ?? 0.3 ??m (range 15.7-20.3) in length, and 5.4 ?? 0.1 ??m (range 3.8-6.1) in width in valvular view. The caudal appendages are 41.1 ?? 1.1 ??m (range 34.0-49.7) in length. Polar capsules are pyriform and of unequal size. The longer polar capsule measures 6.2 ?? 0.1 ??m (range 5.48-7.06), while the shorter is 5.7 ?? 0.1 ??m (range 4.8-6.4) in length. Polar capsule width is 1.2 ?? 0.03 ??m (range 1.0-1.54). The total length of the spore is 60.9 ?? 1.2 ??m (range 48.7-68.5). Morphologically, this species is similar to other species of Henneguya that are known to infect ictalurids. Based on SSU rDNA sequences, this species is most closely related to H. exilis and H. ictaluri, which infect Ictalurus punctatus. ?? American Society of Parasitologists 2008.

  8. Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations

    PubMed Central

    2010-01-01

    Background Recent surveys of eukaryote 18S rDNA diversity in marine habitats have uncovered worldwide distribution of the heterotrophic eukaryote phylum Telonemia. Here we investigate the diversity and geographic distribution of Telonemia sequences by in-depth sequencing of several new 18S rDNA clone libraries from both marine and freshwater sites by using a Telonemia-specific PCR strategy. Results In contrast to earlier studies that have employed eukaryote-wide PCR design, we identified a large and unknown diversity of phylotypes and the first rigorous evidence for several freshwater species, altogether comprising 91 unique sequences. Phylogenies of these and publicly available sequences showed 20 statistically supported sub-clades as well as several solitary phylotypes with no clear phylogenetic affiliation. Most of these sub-clades were composed of phylotypes from different geographic regions. Conclusions By using specific PCR primers we reveal a much larger diversity of Telonemia from environmental samples than previously uncovered by eukaryote-wide primers. The new data substantially diminish the geographic structuring of clades identified in earlier studies. Nevertheless, since these clades comprise several distinct phylotypes we cannot exclude endemicity at species level. We identified two freshwater clades and a few solitary phylotypes, implying that Telonemia have colonized freshwater habitats and adapted to the different environmental and ecological conditions at independent occasions. PMID:20534135

  9. Phylogeny of coral-inhabiting barnacles (Cirripedia; Thoracica; Pyrgomatidae) based on 12S, 16S and 18S rDNA analysis.

    PubMed

    Simon-Blecher, N; Huchon, D; Achituv, Y

    2007-09-01

    The traditional phylogeny of the coral-inhabiting barnacles, the Pyrgomatidae, is based on morphological characteristics, mainly of the hard parts. It has been difficult to establish the phylogenetic relationships among Pyrgomatidae because of the apparent convergence of morphological characteristics, and due to the use of non-cladistic systematics, which emphasize ancestor-descendant relationships rather than sister-clade relationships. We used partial sequences of two mithochondrial genes, 12S rDNA and 16S rDNA, and a nuclear gene, 18S rDNA, to infer the molecular phylogeny of the pyrgomatids. Our phylogenetic results allowed us to reject previous classifications of Pyrgomatidae based on morphological characteristics. Our results also suggested the possibility of paraphyly of the Pyrgomatidae. The hydrocoral barnacle Wanella is not found on the same clade as the other pyrgomatids, but rather, with the free-living balanids. The basal position of Megatrema and Ceratoconcha is supported. The archeaobalanid Armatobalanus is grouped with Cantellius at the base of the Indo-Pacific pyrgomatines. Fusion of the shell plate and modification of the opercular valves are homoplasious features that occurred more than three times on different clades. The monophyly of the "Savignium" group, comprising four nominal genera, is also not supported, and the different taxa are placed on different clades. PMID:17560131

  10. Phylogenetic position of the Phacotaceae within the Chlamydophyceaeas revealed by analysis of 18S rDNA and rbcL sequences.

    PubMed

    Hepperle, D; Nozaki, H; Hohenberger, S; Huss, V A; Morita, E; Krienitz, L

    1998-10-01

    Four genera of the Phacotaceae (Phacotus, Pteromonas, Wislouchiella, Dysmorphococcus), a family of loricated green algal flagellates within the Volvocales, were investigated by means of transmission electron microscopy and analysis of the nuclear encoded small-subunit ribosomal RNA (18S rRNA) genes and the plastid-encoded rbcL genes. Additionally, the 18S rDNA of Haematococcus pluvialis and the rbcL sequences of Chlorogonium elongatum, C. euchlorum, Dunaliella parva, Chloromonas serbinowii, Chlamydomonas radiata, and C. tetragama were determined. Analysis of ultrastructural data justified the separation of the Phacotaceae into two groups. Phacotus, Pteromonas, and Wislouchiella generally shared the following characters: egg-shaped protoplasts, a single pyrenoid with planar thylakoid double-lamellae, three-layered lorica, flagellar channels as part of the central lorica layer, mitochondria located in the central cytoplasm, lorica development that occurs in mucilaginous zoosporangia that are to be lysed, and no acid-resistant cell walls. Dysmorphococcus was clearly different in each of the characters mentioned. Direct comparison of sequences of Phacotus lenticularis, Pteromonas sp., Pteromonas protracta, and Wislouchiella planctonica revealed DNA sequence homologies of >/=98. 0% within the 18S gene and 93.9% within the rbcL gene. D. globosus was quite different from these species, with a maximum of 92.9% homology in the 18S rRNA and gene. It showed major similarities to the 18S rDNA of Dunaliella salina, with 95.3%, and to the rbcL sequence of Chlamydomonas tetragama, with 90.3% sequence homology. Additionally, the Phacotaceae sensu stricto exclusively shared 10 (rbcL: 4) characters which were present neither in other Chlamydomonadales nor in Dysmorphococcus globosus. Different phylogenetic analysis methods confirmed the hypothesis that the Phacotaceae are polyphyletic. The Phacotaceae sensu stricto form a stable cluster with affinities to the

  11. 18S rDNA polymerase chain reaction and sequencing in onychomycosis diagnostics.

    PubMed

    Walberg, Mette; Mørk, Cato; Sandven, Per; Jorde, Anne Tomine; Bjørås, Magnar; Gaustad, Peter

    2006-01-01

    Diagnostic approaches to onychomycosis have traditionally been based on a combination of culture and microscopy. In the present study clinical specimens from 346 patients with suspected onychomycosis were analysed by 18S polymerase chain reaction (detection) followed by sequencing and subsequent database search (identification) in parallel with routine culture on agar (detection and identification). In 49 samples Trichophyton rubrum was identified by culture and sequencing. In 67 additional culture negative samples, a positive dermatophyte sequence was obtained (T. rubrum in 54, T. mentagrophytes in 5, and T. species in 8 samples). Fifteen samples cultured positive while no sequence was obtained. Two hundred and seven samples were negative by culture as well as by sequencing. Nails from 10 healthy controls were negative by culture and sequencing. In conclusion, the number of specimens that were positive by polymerase chain reaction was more than double the number that were positive by culture alone. PMID:16710579

  12. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  13. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA.

    PubMed Central

    Wada, H; Satoh, N

    1994-01-01

    Almost the entire sequences of 18S rDNA were determined for two chaetognaths, five echinoderms, a hemichordate, and two urochordates (a larvacean and a salp). Phylogenetic comparisons of the sequences, together with those of other deuterostomes (an ascidian, a cephalochordate, and vertebrates) and protostomes (an arthropod and a mollusc), suggest the monophyly of the deuterostomes, with the exception of the chaetognaths. Chaetognaths may not be a group of deuterostomes. The deuterostome group closest to vertebrates was the group of cephalochordates. Ascidians, larvaceans, and salps seem to form a discrete group (urochordates), in which the early divergence of larvaceans is evident. These results support the hypothesis that chordates evolved from free-living ancestors. PMID:8127885

  14. Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan

    NASA Astrophysics Data System (ADS)

    Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka

    2004-08-01

    In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.

  15. Short communication: Genetic variants of Sarcocystis cruzi in infected Malaysian cattle based on 18S rDNA.

    PubMed

    Ng, Yit Han; Fong, Mun Yik; Subramaniam, Vellayan; Shahari, Shahhaziq; Lau, Yee Ling

    2015-12-01

    Sarcocystis species are pathogenic parasites that infect a wide range of animals, including cattle. A high prevalence of cattle sarcocystosis has been reported worldwide, but its status is unknown in Malaysia. This study focused on utilizing 18S rDNA to identify Sarcocystis species in Malaysian cattle and to determine their genetic variants. In this study, only Sarcocystis cruzi was detected in Malaysian cattle. The intra-species S. cruzi phylogenetic tree analysis and principal coordinate analysis (PCoA), respectively displayed two minor groups among the parasite isolates. This finding was supported by high Wright FST value (FST=0.647). The definitive hosts (dogs) may play a fundamental role in the development of S. cruzi genetic variants. Additionally, the existence of microheterogeneity within the S. cruzi merozoites and/or distinct genetic variants arisen from independent merozoites in mature sarcocysts, possibly contributed to the existence of intra-species variations within the population. PMID:26679818

  16. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  17. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  18. Eukaryotic diversity in premise drinking water using 18S rDNA sequencing: implications for health risks

    EPA Science Inventory

    The goal of this study was to characterize microbial eukaryotes over a 12 month period, so as to provide insight into the occurrence of potentially important predators and bacterial hosts in hot and cold premise plumbing. Nearly 6,300 partial (600 bp) 18S rRNA gene sequences from...

  19. Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis.

    PubMed

    Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2014-01-01

    The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5'-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5'-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5'-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼ 2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289

  20. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants.

    PubMed

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  1. Reconstructing the Phylogeny of Capsosiphon fulvescens (Ulotrichales, Chlorophyta) from Korea Based on rbcL and 18S rDNA Sequences

    PubMed Central

    Sun, Sang-Mi; Yang, Seung Hwan

    2016-01-01

    Capsosiphon fulvescens is a filamentous green algae in the class Ulvophyceae. It has been consumed as food with unique flavor and soft texture to treat stomach disorders and hangovers, and its economic value justifies studying its nutritional and potential therapeutic effects. In contrast to these applications, only a few taxonomic studies have been conducted on C. fulvescens. In particular, classification and phylogenetic relationships of the C. fulvescens below the order level are controversial. To determine its phylogenetic position in the class, we used rbcL and 18S rDNA sequences as molecular markers to construct phylogenetic trees. The amplified rbcL and 18S rDNA sequences from 4 C. fulvescens isolates (Jindo, Jangheung, Wando, and Koheung, Korea) were used for phylogenetic analysis by employing three different phylogenetic methods: neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML). The rbcL phylogenetic tree showed that all taxa in the order Ulvales were clustered as a monophyletic group and resolved the phylogenetic position of C. fulvescens in the order Ulotrichales. The significance of our study is that the 18S rDNA phylogenetic tree shows the detailed taxonomic position of C. fulvescens. In our result, C. fulvescens is inferred as a member of Ulotrichaceae, along with Urospora and Acrosiphonia. PMID:27190985

  2. 18S rDNA analysis of alkenone-producing haptophyte(s) preserved in surface sediments of Lake Toyoni, Japan

    NASA Astrophysics Data System (ADS)

    McColl, J. L.; Couto, J.; Bendle, J. A.; Henderson, A. C.; Seki, O.; Phoenix, V. R.; Toney, J. L.

    2013-12-01

    Alkenones (long chain ketones) are readily preserved in sedimentary archives and have the potential to provide quantitative reconstructions of past water temperature. Alkenones are produced by a limited number of haptophyte algae in the marine and also some lacustrine systems. However, lakes are heterogeneous: an individual lake will have a unique combination of ecological conditions, haptophyte species and seasonal alkenone production that contributes to the sedimentary record. Haptophyte algae species have different sensitivities to temperature; therefore identifying the alkenone producer(s) prior to down-core temperature reconstructions is critical before selecting the most appropriate temperature calibration. We present a study from Lake Toyoni, a freshwater lake in Hokkaido, Japan that has alkenones preserved in surface sediments. The aim of this study is to identify the alkenone producer(s) within the lake using 18S rDNA analyses. Preserved rDNA of planktonic phototrophic algae was extracted from surface sediments of Lake Toyoni and phylogenetic analyses of the rDNA sequences suggest alkenones are produced by a single haptophyte within the class Prymnesiophyceae (order Isochrysidales). The Lake Toyoni alkenone-producer shares a distinct phylotype with a haptophyte reported from water filter samples collected in Lake BrayaSø, Greenland (D'Andrea et al., 2006). Similarity between the 18S rDNA sequences from Lake Toyoni and Lake BrayaSø provides a basis for applying (and updating) the Greenland lake temperature calibration. Applying this temperature calibration (T°C = 40.8 [UK37] + 31.8, R2=0.96; n=34) to the surface sediment alkenone unsaturation index from Lake Toyoni gives an estimated lake surface temperature (LST) of 8°C. This is in line with observed LST at Lake Toyoni, which ranges between 7 - 22°C (Apr 2011 to Nov 2011). The occurrence and identification of a single alkenone producer in Lake Toyoni means problems posed by a mixture of haptophytes in

  3. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae sedis).

    PubMed

    Moriya, M; Nakayama, T; Inouye, I

    2000-05-01

    A new heterotrophic flagellate Wobblia lunata gen. et sp. nov. is described. This organism usually attaches to the substratum showing a wobbling motion, and sometimes glides on the substratum or swims freely in the medium. W. lunata has various features characteristic of the stramenopiles. These include a hairy flagellum with tripartite tubular hairs, a mitochondrion with tubular cristae, arrangement of flagellar apparatus components and a double helix in the flagellar transition zone. W. lunata shares a double helix with heterotrophic stramenopiles, including Developayella elegans, oomycetes, hyphochytrids, opalinids and proteromonads, and could be placed in the phylum Bigyra Cavalier-Smith. However, from 18S rDNA tree analysis, these organisms form two distantly-related clades in the stramenopiles, and Wobblia appears at the base of the stramenopiles. Evaluation of morphological features and comparison of 18S rDNA sequences indicate that W. lunata is a member of the stramenopiles, but it is distinct from any other stramenopiles so far described. Its phylogenetic position within the stramenopiles is uncertain and therefore W. lunata is described as a stramenopile incertae sedis. PMID:10896132

  4. Chromosome Mapping of 18S Ribosomal RNA Genes in Eleven Hypostomus Species (Siluriformes, Loricariidae): Diversity Analysis of the Sites.

    PubMed

    Rubert, Marceléia; da Rosa, Renata; Zawadzki, Claudio H; Mariotto, Sandra; Moreira-Filho, Orlando; Giuliano-Caetano, Lucia

    2016-08-01

    We investigated the chromosomal distribution of 18S ribosomal DNA (rDNA) in different populations of 11 species of Hypostomus collected in important Brazilian basins, namely South Atlantic, Upper Paraná, and Paraguay applying the fluorescence in situ hybridization (FISH). Hypostomus cochliodon, Hypostomus commersoni, Hypostomus hermanni, Hypostomus regani, Hypostomus albopunctatus, Hypostomus paulinus, Hypostomus aff. paulinus, Hypostomus iheringii, and Hypostomus mutucae presented multiple 18S rDNA sites while Hypostomus strigaticeps and Hypostomus nigromaculatus exhibited a single pair of chromosomes with 18S rDNA sites. The studied species presented variations in the number and position of these sites. The results accomplished were similar to those obtained by the analysis of AgNORs, revealing the same interspecific variability. Each species exhibited distinctive patterns of AgNOR and 18S rDNA distribution, which can be considered cytogenetic markers in each species of the genus and help improve the discussions on the phylogeny of the group. PMID:27192329

  5. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology.

    PubMed

    Giribet, G; Distel, D L; Polz, M; Sterrer, W; Wheeler, W C

    2000-09-01

    Triploblastic relationships were examined in the light of molecular and morphological evidence. Representatives for all triploblastic "phyla" (except Loricifera) were represented by both sources of phylogenetic data. The 18S ribosomal (rDNA) sequence data for 145 terminal taxa and 276 morphological characters coded for 36 supraspecific taxa were combined in a total evidence regime to determine the most consistent picture of triploblastic relationships for these data. Only triploblastic taxa are used to avoid rooting with distant outgroups, which seems to happen because of the extreme distance that separates diploblastic from triploblastic taxa according to the 18S rDNA data. Multiple phylogenetic analyses performed with variable analysis parameters yield largely inconsistent results for certain groups such as Chaetognatha, Acoela, and Nemertodermatida. A normalized incongruence length metric is used to assay the relative merit of the multiple analyses. The combined analysis having the least character incongruence yields the following scheme of relationships of four main clades: (1) Deuterostomia [((Echinodermata + Enteropneusta) (Cephalochordata (Urochordata + Vertebrata)))]; (2) Ecdysozoa [(((Priapulida + Kinorhyncha) (Nematoda + Nematomorpha)) ((Onychophora + Tardigrada) Arthropoda))]; (3) Trochozoa [((Phoronida + Brachiopoda) (Entoprocta (Nemertea (Sipuncula (Mollusca (Pogonophora (Echiura + Annelida)))))))]; and (4) Platyzoa [((Gnathostomulida (Cycliophora + Syndermata)) (Gastrotricha + Plathelminthes))]. Chaetognatha, Nemertodermatida, and Bryozoa cannot be assigned to any one of these four groups. For the first time, a data analysis recognizes a clade of acoelomates, the Platyzoa (sensu Cavalier-Smith, Biol. Rev. 73:203-266, 1998). Other relationships that corroborate some morphological analyses are the existence of a clade that groups Gnathostomulida + Syndermata (= Gnathifera), which is expanded to include the enigmatic phylum Cycliophora, as sister group

  6. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana.

    PubMed Central

    Lim, K Y; Skalicka, K; Koukalova, B; Volkov, R A; Matyasek, R; Hemleben, V; Leitch, A R; Kovarik, A

    2004-01-01

    An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions. PMID:15126410

  7. Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae)

    PubMed Central

    Kharrat-Souissi, Amina; Siljak-Yakovlev, Sonja; Pustahija, Fatima; Chaieb, Mohamed

    2012-01-01

    Abstract The Buffelgrass (Cenchrus ciliaris L., Poaceae) is one of the most important pasturage grasses due to its high productivity and good forage qualities. This species possess a high adaptability to bioclimatic constraints of arid zones and may be used for the restoration of degraded arid ecosystems. Tunisian populations present three ploidy levels (4x, 5x and 6x) with a basic chromosome number x=9. This study reported for the first time the distribution of the ribosomal genes (rRNA) for pentaploid and hexaploid cytotypes of Cenchrus ciliaris. Molecular cytogenetic study using double fluorescence in situ hybridization has shown that the two rDNA families, 5S and 18S-5.8S-26S (18S), displayed intraspecific variation in number of loci among different ploidy levels. Each ploidy level was characterized by specific number of both 5S and 18S rDNA loci (two loci in tetraploid, five in pentaploid and six in hexaploid level). For three studied cytotypes (4x, 5x and 6x) all 5S rDNA loci were localized on the subcentromeric region of chromosomes, while 18S loci were situated on the telomeric region of short chromosome arms. Data of the FISH experiments show proportional increase of ribosomal loci number during polyploidization processes. PMID:24260668

  8. Morphology and 18S rDNA phylogeny of Hemicycliostyla sphagni (Ciliophora, Hypotricha) from Brazil with redefinition of the genus Hemicycliostyla.

    PubMed

    Paiva, Thiago da Silva; Borges, Bárbara do Nascimento; da Silva-Neto, Inácio Domingos; Harada, Maria Lúcia

    2012-01-01

    Morphology of the urostylid ciliate Hemicycliostyla sphagni Stokes, 1886, the type of Hemicycliostyla Stokes, 1886, is investigated based on live and protargol-impregnated specimens from a Brazilian population. The absence of transverse cirri, which has been considered the main diagnostic feature of Hemicycliostyla, separating it from Pseudourostyla Borror, 1972, was found to vary within the studied population, with 50% of the specimens exhibiting inconspicuous and/or rudimentary transverse cirri. A redefinition of Hemicycliostyla was possible based on combined features of interphase and divisional morphogenesis: Retroextendia Berger, 2006, with bi- or multicoronal frontal cirral pattern; fronto-terminal cirri present; multiple left and right marginal cirral rows that replicate independently via within-row development, each parental row producing one primordium per divider; caudal cirri lacking; and presence/absence of transverse cirri may be intrapopulationally variable. Phylogenetic analyses of the 18S rDNA marker unambiguously placed H. sphagni as sister group of Pseudourostyla franzi Foissner, 1987, which is herein transferred to Hemicycliostyla as Hemicycliostyla franzi comb. nov. PMID:21357456

  9. 18S rRNA Gene Variation among Common Airborne Fungi, and Development of Specific Oligonucleotide Probes for the Detection of Fungal Isolates

    PubMed Central

    Wu, Zhihong; Tsumura, Yoshihiko; Blomquist, Göran; Wang, Xiao-Ru

    2003-01-01

    In this study, we sequenced 18S rRNA genes (rDNA) from 49 fungal strains representing 31 species from 15 genera. Most of these species are common airborne fungi and pathogens that may cause various public health concerns. Sequence analysis revealed distinct divergence between Zygomycota and Ascomycota. Within Ascomycota, several strongly supported clades were identified that facilitate the taxonomic placement of several little-studied fungi. Wallemia appeared as the group most diverged from all the other Ascomycota species. Based on the 18S rDNA sequence variation, 108 oligonucleotide probes were designed for each genus and species included in this study. After homology searches and DNA hybridization evaluations, 33 probes were verified as genus or species specific. The optimal hybridization temperatures to achieve the best specificity for these 33 probes were determined. These new probes can contribute to the molecular diagnostic research for environmental monitoring. PMID:12957927

  10. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    PubMed Central

    2010-01-01

    Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement. PMID:20051104

  11. Phylogenetic position of the genus Cyrtostrombidium, with a description of Cyrtostrombidium paralongisomum nov. spec. and a redescription of Cyrtostrombidium longisomum Lynn & Gilron, 1993 (Protozoa, Ciliophora) based on live observation, protargol impregnation, and 18S rDNA sequences.

    PubMed

    Tsai, Sheng-Fang; Chen, Wei-Ting; Chiang, Kuo-Ping

    2015-01-01

    We redescribe Cyrtostrombidium longisomum Lynn & Gilron, 1993, the type species of the genus Cyrtostrombidium, and describe the new species Cyrtostrombidium paralongisomum n. sp. using live observation, protargol staining and molecular data. The morphological characters of these two species are clearly distinct, i.e., dikinetid numbers in the girdle and ventral kineties; however, it is difficult to separate them by 18S rDNA sequences because they differ by only 8 bp, indicating that 18S rDNA sequences are insufficient for separating different species in the genus Cyrtostrombidium. We not only observed the position of the oral primordium in the genus Cyrtostrombidium but also observed a possibly homoplasious trait, a dorsal split in the girdle kinety, in (1) Apostrombidium, (2) Varistrombidium, and (3) Cyrtostrombidium/Williophrya. This partially supports the hypothesis of somatic ciliary pattern evolution recently put forth by Agatha and Strüder-Kypke. PMID:25227509

  12. Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda

    PubMed Central

    Wu, Shu; Xiong, Jie; Yu, Yuhe

    2015-01-01

    Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258

  13. New Hosts of Simplicimonas similis and Trichomitus batrachorum Identified by 18S Ribosomal RNA Gene Sequences

    PubMed Central

    Dimasuay, Kris Genelyn B.; Lavilla, Orlie John Y.; Rivera, Windell L.

    2013-01-01

    Trichomonads are obligate anaerobes generally found in the digestive and genitourinary tract of domestic animals. In this study, four trichomonad isolates were obtained from carabao, dog, and pig hosts using rectal swab. Genomic DNA was extracted using Chelex method and the 18S rRNA gene was successfully amplified through novel sets of primers and undergone DNA sequencing. Aligned isolate sequences together with retrieved 18S rRNA gene sequences of known trichomonads were utilized to generate phylogenetic trees using maximum likelihood and neighbor-joining analyses. Two isolates from carabao were identified as Simplicimonas similis while each isolate from dog and pig was identified as Pentatrichomonas hominis and Trichomitus batrachorum, respectively. This is the first report of S. similis in carabao and the identification of T. batrachorum in pig using 18S rRNA gene sequence analysis. The generated phylogenetic tree yielded three distinct groups mostly with relatively moderate to high bootstrap support and in agreement with the most recent classification. Pathogenic potential of the trichomonads in these hosts still needs further investigation. PMID:23936631

  14. Reassignment of the land tortoise haemogregarine Haemogregarina fitzsimonsi Dias 1953 (Adeleorina: Haemogregarinidae) to the genus Hepatozoon Miller 1908 (Adeleorina: Hepatozoidae) based on parasite morphology, life cycle and phylogenetic analysis of 18S rDNA sequence fragments.

    PubMed

    Cook, Courtney A; Lawton, Scott P; Davies, Angela J; Smit, Nico J

    2014-06-13

    SUMMARY Research was undertaken to clarify the true taxonomic position of the terrestrial tortoise apicomplexan, Haemogregarina fitzsimonsi (Dias, 1953). Thin blood films were screened from 275 wild and captive South African tortoises of 6 genera and 10 species between 2009-2011. Apicomplexan parasites within films were identified, with a focus on H. fitzsimonsi. Ticks from wild tortoises, especially Amblyomma sylvaticum and Amblyomma marmoreum were also screened, and sporogonic stages were identified on dissection of adult ticks of both species taken from H. fitzsimonsi infected and apparently non-infected tortoises. Parasite DNA was extracted from fixed, Giemsa-stained tortoise blood films and from both fresh and fixed ticks, and PCR was undertaken with two primer sets, HEMO1/HEMO2, and HepF300/HepR900, to amplify parasite 18S rDNA. Results indicated that apicomplexan DNA extracted from tortoise blood films and both species of tick had been amplified by one or both primer sets. Haemogregarina  fitzsimonsi 18S rDNA sequences from tortoise blood aligned with those of species of Hepatozoon, rather than those of species of Haemogregarina or Hemolivia. It is recommended therefore that this haemogregarine be re-assigned to the genus Hepatozoon, making Hepatozoon fitzsimonsi (Dias, 1953) the only Hepatozoon known currently from any terrestrial chelonian. Ticks are its likely vectors. PMID:24923767

  15. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA

    PubMed Central

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio Jr., Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Abstract Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  16. Cytogenetic comparison between two allopatric populations of Astyanax altiparanae Garutti et Britski, 2000 (Teleostei, Characidae), with emphasis on the localization of 18S and 5S rDNA.

    PubMed

    Pacheco, Rosiley Berton; da Rosa, Renata; Giuliano-Caetano, Lucia; Júlio, Horácio Ferreira; Dias, Ana Lúcia

    2011-01-01

    Two populations of Astyanax altiparanae (Garutti & Britski, 2000) of the Água dos Patos stream/SP and lake Igapó/PR were analyzed. All individuals showed 2n = 50, however, different karyotypic formulae were observed. The population of the Água dos Patos stream showed 8m +24sm+6st+12a (NF=88) and the population of lake Igapó, 8m+28sm+4st+10a (NF=90). Nucleolus organizing regions (AgNORs) were observed in the terminal position on the short and long arm of different chromosomes of both populations, showing a variation from 3 to 4 chromosomes. Fluorescent in situ hybridization (FISH) using 18S rDNA probes revealed only one pair of chromosomes with fluorescent signals in the terminal site on the short arm in the Igapó lake population, while the population of Água dos Patos stream showed 4 fluorescence terminal signals, characterizing a system of simple and multiple NORs, respectively. 5S rDNA fluorescent signals were detected in the interstitial position of a pair of chromosomes in the two studied populations. Some AgNOR sites revealed to be GC-rich when stained with Chromomycin A3 (CMA3), however, AT positive regions were not observed. The data obtained show that, despite the conservation of the diploid number and location of 5S DNAr, differences in both the distribution of 18S rDNA and karyotypic formula among the populations were found, thus corroborating the existing data on chromosome variability in Astyanax altiparanae that can be significant for cytotaxonomy in this group. PMID:24260632

  17. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  18. Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers

    PubMed Central

    Hadziavdic, Kenan; Lekang, Katrine; Lanzen, Anders; Jonassen, Inge; Thompson, Eric M.; Troedsson, Christofer

    2014-01-01

    High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies. PMID:24516555

  19. Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene.

    PubMed

    Honda, D; Yokochi, T; Nakahara, T; Raghukumar, S; Nakagiri, A; Schaumann, K; Higashihara, T

    1999-01-01

    Labyrinthulids and thraustochytrids are unicellular heterotrophs, formerly considered as fungi, but presently are recognized as members in the stramenopiles of the kingdom Protista sensu lato. We determined the 18S ribosomal RNA gene sequences of 14 strains from different species of the six genera and analyzed the molecular phylogenetic relationships. The results conflict with the current classification based on morphology, at the genus and species levels. These organisms are separated, based on signature sequences and unique inserted sequences, into two major groups, which were named the labyrinthulid phylogenetic group and the thraustochytrid phylogenetic group. Although these groupings are in disagreement with many conventional taxonomic characters, they correlated better with the sugar composition of the cell wall. Thus, the currently used taxonomic criteria need serious reconsideration. PMID:10568038

  20. A variant of Plasmodium ovale; analysis of its 18S ribosomal RNA gene sequence.

    PubMed

    Miyake, H; Suwa, S; Kimura, M; Wataya, Y

    1997-01-01

    We report here a new variant of human malaria parasite found by comparison of diagnostic results obtained from a new DNA diagnostic method named microtiter plate-hybridization (MPH) and traditional microscopic method. Total five cases of malaria were diagnosed as microscopy-positive but MPH-negative; one case was found in epidemiological research in Vietnam and four cases were obtained from imported malaria in Japan. Although they were quite similar to typical P. ovale morphologically in microscopy, sequence analysis of PCR-amplified DNA fragment revealed that their 18S ribosomal RNA gene sequence was different from published sequence of P. ovale. Combination of MPH and microscopic examination provides us a new method for detection of a new type of malaria parasite which is difficult to distinguish morphologically. PMID:9586115

  1. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin

    PubMed Central

    2011-01-01

    Background Scarabaeinae beetles show a high level of macro-chromosomal variability, although the karyotypic organization of heterochromatin and multigene families (rDNAs and histone genes) is poorly understood in this group. To better understand the chromosomal organization and evolution in this group, we analyzed the karyotypes, heterochromatin distribution and chromosomal locations of the rRNAs and histone H3 genes in beetles belonging to eight tribes from the Scarabaeinae subfamily (Coleoptera, Scarabaeidae). Results The number of 18S rRNA gene (a member of the 45S rDNA unit) sites varied from one to 16 and were located on the autosomes, sex chromosomes or both, although two clusters were most common. Comparison of the 45S rDNA cluster number and the diploid numbers revealed a low correlation value. However, a comparison between the number of 45S rDNA sites per genome and the quantity of heterochromatin revealed (i) species presenting heterochromatin restricted to the centromeric/pericentromeric region that contained few rDNA sites and (ii) species with a high quantity of heterochromatin and a higher number of rDNA sites. In contrast to the high variability for heterochromatin and 45S rDNA cluster, the presence of two clusters (one bivalent cluster) co-located on autosomal chromosomes with the 5S rRNA and histone H3 genes was highly conserved. Conclusions Our results indicate that the variability of the 45S rDNA chromosomal clusters is not associated with macro-chromosomal rearrangements but are instead related to the spread of heterochromatin. The data obtained also indicate that both heterochromatin and the 45S rDNA loci could be constrained by similar evolutionary forces regulating spreading in the distinct Scarabaeinae subfamily lineages. For the 5S rRNA and the histone H3 genes, a similar chromosomal organization could be attributed to their association/co-localization in the Scarabaeinae karyotypes. These data provide evidence that different evolutionary

  2. Sequencing and characterization of full-length sequence of 18S rRNA gene from the reniform nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 18S rRNA gene is fundamental to cellular and organismal protein synthesis and because of its stable persistence through generations it is also used in phylogenetic analysis among taxa. Variation within this gene is rare but it has been observed in few metazoan species. For the first time, we h...

  3. Cytogenetic Diversity and the Evolutionary Dynamics of rDNA Genes and Telomeric Sequences in the Ancistrus Genus (Loricariidae: Ancistrini).

    PubMed

    Favarato, Ramon Marin; Silva, Maelin da; Oliveira, Renildo Ribeiro de; Artoni, Roberto Ferreira; Feldberg, Eliana; Matoso, Daniele Aparecida

    2016-04-01

    The Ancistrus genus differs from other Ancistrini due to its wide karyotypic diversity, varied diploid numbers, differences in sex chromosomes, and large number of species, as well as its tendency to form small populations with low vagility. This study investigated the role of 5S and 18S rDNA and telomeric repetitive sequences in the evolution of the karyotypic macrostructure of seven species of the genus Ancistrus from the Central Amazon. The results indicate a strong correlation between the location of ribosomal sites and fragile sites in the genome, particularly of 5S rDNA sequences, which are associated, in some species, with telomeric sequences at the sites of chromosomal healing. Moreover, the occurrence of two lineages was observed with regard to the synteny of ribosomal genes. The species of the genus Ancistrus showed high chromosomal lability associated with breakpoints, which was characterized by the presence of repetitive DNA sequences and this process is suggested to be an evolutionary model for the rapid fixation of structural rearrangements. PMID:26829587

  4. Molecular dissection of the rDNA array and of the 5S rDNA gene in Meloidogyne artiellia: phylogenetic and diagnostic implications.

    PubMed

    Veronico, Pasqua; De Luca, Francesca; De Giorgi, Carla

    2004-06-01

    The sequence of a 13.423 nucleotide genomic fragment has been determined for the plant parasitic nematode Meloidogyne artiellia. It contains an entire rDNA cluster, the bordering intergenic regions and portions of the flanking coding regions. The sequence analysis of the rDNA repeats suggests homogeneity in M. artiellia, thus providing a further indication of the usefulness of these genes for the diagnostic identification of this species. The comparison of the secondary structures of the internal transcribed spacer 2 region in several Meloidogyne species indicates that RNA folding predictions can be used as a tool of potential diagnostic relevance. The other ribosomal gene, 5S rDNA, has been demonstrated to be functional and located near the trans-spliced leader sequences, in the same arrangement found in the distantly related nematode Caenorhabditis elegans but never in other Meloidogyne thus providing species-specific markers for the identification of several Thylenchida parasitic nematodes. PMID:15135452

  5. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene.

    PubMed

    Urata, Makoto

    2015-06-01

    Seven nuclear and mitochondrial DNA markers were examined in 12 specimens of Ptychodera flava, a model acorn worm used in molecular biology, collected in Japan from three local populations with different modes of living. A comparison of intraspecific results did not show genetically isolated populations despite the species' enclave habitats and asexual reproduction. Moreover, both the nuclear 18S ribosomal RNA gene and mitochondrial 16S ribosomal RNA gene sequences were identical to those from Moorea in French Polynesia, nearly 10,000 kilometers away from Japan. I also provide the first definitive information regarding polymorphisms in 18S ribosomal RNA gene, the external transcribed spacer (ETS), internal transcribed spacers (ITS), and mitochondrial cytochrome c oxidase subunit 1 (mtCO1) sequence in hemichordates using newly designed primer sets, and I show both high larval vagility and certain criteria for the molecular identification of this species. PMID:26003987

  6. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons.

    PubMed

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  7. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons

    PubMed Central

    Qi, Xiemin; Liu, Biao; Song, Qinxin; Zou, Bingjie; Bu, Ying; Wu, Haiping; Ding, Li; Zhou, Guohua

    2016-01-01

    Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line. PMID:27462344

  8. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae).

    PubMed

    Schmitt, Susanne; Hentschel, Ute; Zea, Sven; Dandekar, Thomas; Wolf, Matthias

    2005-03-01

    18S ribosomal DNA and internal transcribed spacer 2 (ITS-2) full-length sequences, each of which was sequenced three times, were used to construct phylogenetic trees with alignments based on secondary structures, in order to elucidate genealogical relationships within the Aplysinidae (Verongida). The first poriferan ITS-2 secondary structures are reported. Altogether 11 Aplysina sponges and 3 additional sponges (Verongula gigantea, Aiolochroia crassa, Smenospongia aurea) from tropical and subtropical oceans were analyzed. Based on these molecular studies, S. aurea, which is currently affiliated with the Dictyoceratida, should be reclassified to the Verongida. Aplysina appears as monophyletic. A soft form of Aplysina lacunosa was separated from other Aplysina and stands at a basal position in both 18S and ITS-2 trees. Based on ITS-2 sequence information, the Aplysina sponges could be distinguished into a single Caribbean-Eastern Pacific cluster and a Mediterranean cluster. The species concept for Aplysina sponges as well as a phylogenetic history with a possibly Tethyan origin is discussed. PMID:15871043

  9. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    PubMed

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-04-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS. PMID:26488198

  10. Physical mapping of 18S and 5S genes in pelagic species of the genera Caranx and Carangoides (Carangidae).

    PubMed

    Jacobina, U P; Bertollo, L A C; Bello Cioffi, M; Molina, W F

    2014-01-01

    In Carangidae, Caranx is taxonomically controversial because of slight morphological differences among species, as well as because of its relationship with the genus Carangoides. Cytogenetic data has contributed to taxonomic and phylogenetic classification for some groups of fish. In this study, we examined the chromosomes of Caranx latus, Caranx lugubris, and Carangoides bartholomaei using classical methods, including conventional staining, C-banding, silver staining for nuclear organizer regions, base-specific fluorochrome, and 18S and 5S ribosomal sequence mapping using in situ hybridization. These 3 species showed chromosome numbers of 2n = 48, simple nuclear organizer regions (pair 1), and mainly centromeric heterochomatin. However, C. latus (NF = 50) and C. bartholomaei (NF = 50) showed a structurally conserved karyotype compared with C. lugubris (NF = 54), with a larger number of 2-armed chromosomes. The richness of GC-positive heterochromatic segments and sites in 5S rDNA in specific locations compared to the other 2 species reinforce the higher evolutionary dynamism in C. lugubris. Cytogenetic aspects shared between C. latus and C. bartholomaei confirm the remarkable phylogenetic proximity between these genera. PMID:25501173

  11. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    PubMed Central

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  12. Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation

    PubMed Central

    Garcia, S; Kovařík, A

    2013-01-01

    In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008

  13. Novelty in phylogeny of gastrotricha: evidence from 18S rRNA gene.

    PubMed

    Wirz, A; Pucciarelli, S; Miceli, C; Tongiorgi, P; Balsamo, M

    1999-11-01

    Gastrotricha form a phylum which is crucial for defining the origin of pseudocoelomates, in that they share a number of characters with Rotifera and Nematoda but also with acoelomates, and even the evolutionary relationships within the phylum are anything but defined. For this reason the first extensive molecular data on Gastrotricha from the 18S rRNA sequences of both orders have been obtained and analyzed. Sequence analyses show that the phylum Gastrotricha is strictly monophyletic along an evolutionary line quite distinct from that of both Rotifera and Nematoda. A new view of the evolutionary history of the phylum Gastrotricha is put forward, in which Chaetonotida, and not Macrodasyida, are the most primitive forms of the group, contrary to the commonly held view. A polyphyletic origin of aschelminthes is supported, and the misleading term pseudocoelomates should be discarded. PMID:10603259

  14. Gene cloning of the 18S rRNA of an ancient viable moss from the permafrost of northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Marsic, Damien; Hoover, Richard B.; Gilichinsky, David A.; Ng, Joseph D.

    1999-12-01

    A moss plant dating as much as 40,000 years old was collected from the permafrost of the Kolyma Lowlands of Northeastern Siberia. The plant tissue was revived and cultured for the extraction of its genomic DNA. Using the polymerase chain reaction technique, the 18S ribosomal RNA gene was cloned and its sequence studied. Comparative sequence analysis of the cloned ribosomal DNA to other known 18S RNA showed very high sequence identity and was revealed to be closest to the moss specie, Aulacomnium turgidum. The results of this study also show the ability of biological organisms to rest dormant in deep frozen environments where they can be revived and cultured under favorable conditions. This is significant in the notion that celestial icy bodies can be media to preserve biological function and genetic material during long term storage or transport.

  15. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.

    PubMed

    Rooney, Alejandro P

    2004-09-01

    In many species of the protist phylum Apicomplexa, ribosomal RNA (rRNA) gene copies are structurally and functionally heterogeneous, owing to distinct requirements for rRNA-expression patterns at different developmental stages. The genomic mechanisms underlying the maintenance of this system over long-term evolutionary history are unclear. Therefore, the aim of this study was to investigate what processes underlie the long-term evolution of apicomplexan 18S genes in representative species. The results show that these genes evolve according to a birth-and-death model under strong purifying selection, thereby explaining how divergent 18S genes are generated over time while continuing to maintain their ability to produce fully functional rRNAs. In addition, it was found that Cryptosporidium parvum undergoes a rapid form of birth-and-death evolution that may facilitate host-specific adaptation, including that of type I and II strains found in humans. This represents the first case in which an rRNA gene family has been found to evolve under the birth-and-death model. PMID:15175411

  16. Technical considerations in the use of 18s rRNA in gene expression studies

    EPA Science Inventory

    Gene expression analysis is now commonly used in ecotoxicological studies to indicate exposure of an organism to xenobiotics. For example, the vitellogenin gene is used to diagnose exposure of fish to environmental estrogens. Reverse transcription polymerase chain reaction (RT-PC...

  17. Effect of condensed tannins on bovine rumen protist diversity based on 18S rRNA gene sequences.

    PubMed

    Tan, Hui Yin; Sieo, Chin Chin; Abdullah, Norhani; Liang, Juan Boo; Huang, Xiao Dan; Ho, Yin Wan

    2013-01-01

    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff. PMID:23205499

  18. Sequence heterogeneity in the 18S rRNA gene in Theileria equi from horses presented in Switzerland.

    PubMed

    Liu, Qin; Meli, Marina L; Zhang, Yi; Meili, Theres; Stirn, Martina; Riond, Barbara; Weibel, Beatrice; Hofmann-Lehmann, Regina

    2016-05-15

    A reverse line blot (RLB) hybridization assay was adapted and applied for equine blood samples collected at the animal hospital of the University of Zurich to determine the presence of piroplasms in horses in Switzerland. A total of 100 equine blood samples were included in the study. The V4 hypervariable region of the 18S rRNA gene was amplified by polymerase chain reaction and analyzed using the RLB assay. Samples from seven horses hybridized to a Theileria/Babesia genus-specific and a Theileria genus-specific probe. Of these, two hybridized also to the Theileria equi-specific probe. The other five positive samples did not hybridize to any of the species-specific probes, suggesting the presence of unrecognized Theileria variants or genotypes. The 18S rRNA gene of the latter five samples were sequenced and found to be closely related to T. equi isolated from horses in Spain (AY534822) and China (KF559357) (≥98.4% identity). Four of the seven horses that tested positive had a documented travel history (France, Italy, and Spain) or lived abroad (Hungary). The present study adds new insight into the presence and sequence heterogeneity of T. equi in Switzerland. The results prompt that species-specific probes must be designed in regions of the gene unique to T. equi. Of note, none of the seven positive horses were suspected of having Theileria infection at the time of presentation to the clinic. Clinicians should be aware of the possibility of equine piroplasma infections outside of endemic areas and in horses without signs of piroplasmosis. PMID:27084467

  19. Phylogeny of chloromonas (chlorophyceae): A study of 18S ribosomal RNA gene sequences

    SciTech Connect

    Buchheim, M.A.; Buchheim, J.A.; Chapman, R.L.

    1997-04-01

    The unicellular, biflagellate genus Chloromonas differs from its ally, Chlamydomonas, primarily by the absence of pyrenoids in the vegetative stage of the former. As with most green flagellate genera, little is known about phylogenetic affinities within and among Chloromonas species. Phylogenetic analyses of nuclear-encoded small-subunit ribosomal RNA gene sequences demonstrate that a sampling of five Chloromonas taxa, obtained from major culture collections, do not form a monophyletic group. However, only three of these isolates, Chloromonas clathrata, Chloromonas serbinowi, and Chloromonas rosae, are diagnosable morphologically as Chloromonas species by the absence of a pyrenoid in the vegetative stage. The three diagnosable Chloromonas taxa form an alliance with two pyrenoid-bearing chlamydomonads, Chlamydomonas augustae and Chlamydomonas macrostellata. With the exception of Chloromonas serbinowi, which represents the basal lineage within the clade, each of the diagnosable Chloromonas taxa and their pyrenoid-bearing Chlamydomonas allies were isolated originally from mountain soils, snow, or cold peat. These observations suggest that hibitat, independent of pyrenoid status, may be most closely linked to the natural history of this clade of chlamydomonad flagellates. 51 refs., 3 figs., 3 tabs.

  20. PCR amplification of a multi-copy mitochondrial gene (cox3) improves detection of Cytauxzoon felis infection as compared to a ribosomal gene (18S).

    PubMed

    Schreeg, Megan E; Marr, Henry S; Griffith, Emily H; Tarigo, Jaime L; Bird, David M; Reichard, Mason V; Cohn, Leah A; Levy, Michael G; Birkenheuer, Adam J

    2016-07-30

    Cytauxzoon felis is a tick-transmitted protozoan parasite that infects felids. Clinical disease caused by acute C. felis infection rapidly progresses in domestic cats, leading to high morbidity and mortality. Accurately diagnosing cytauxzoonosis as soon as possible during acute infection would allow for earlier initiation of antiprotozoal therapy which could lead to higher survival rates. Molecular detection of parasite rRNA genes (18S) by PCR has previously been shown to be a sensitive method of diagnosing C. felis infections. Based on evidence from related apicomplexan species, we hypothesized that C. felis mitochondrial genes would exist at higher copy numbers than 18S and would be a more sensitive diagnostic target. In this study we have designed a PCR assay targeting the C. felis mitochondrial gene cytochrome c oxidase subunit III (cox3). Herein we demonstrate that (1) the cox3 PCR can detect as low as 1 copy of DNA target and can detect C. felis in samples with known mitochondrial sequence heterogeneity, (2) cox3 copy number is increased relative to 18S in blood and tissue samples from acutely infected cats, and (3) the cox3 PCR is more sensitive than 18S PCR for detection of C. felis during early infections. PMID:27369587

  1. Analysis of 18S rRNA gene sequences suggests significant molecular differences between Macrodasyida and Chaetonotida (Gastrotricha).

    PubMed

    Manylov, Oleg G; Vladychenskaya, Natalia S; Milyutina, Irina A; Kedrova, Olga S; Korokhov, Nikolai P; Dvoryanchikov, Gennady A; Aleshin, Vladimir V; Petrov, Nikolai B

    2004-03-01

    Partial 18S rRNA gene sequences of four macrodasyid and one chaetonotid gastrotrichs were obtained and compared with the available sequences of other gastrotrich species and representatives of various metazoan phyla. Contrary to the earlier molecular data, the gastrotrich sequences did not comprise a monophyletic group but formed two distinct clades, corresponding to the Macrodasyida and Chaetonotida, with the basal position occupied by the sequences of Tetranchyroderma sp. and Xenotrichula sp., respectively. Depending on the taxon sampling and methods of analysis, the two clades were separated by various combinations of clades Rotifera, Gnathostomulida, and Platyhelminthes, and never formed a clade with Nematoda. Thus, monophyly of the Gastrotricha is not confirmed by analysis of the presently available molecular data. PMID:15012964

  2. Molecular Diversity of Eukaryotes in Municipal Wastewater Treatment Processes as Revealed by 18S rRNA Gene Analysis

    PubMed Central

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4–8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  3. Molecular diversity of eukaryotes in municipal wastewater treatment processes as revealed by 18S rRNA gene analysis.

    PubMed

    Matsunaga, Kengo; Kubota, Kengo; Harada, Hideki

    2014-01-01

    Eukaryotic communities involved in sewage treatment processes have been investigated by morphological identification, but have not yet been well-characterized using molecular approaches. In the present study, eukaryotic communities were characterized by constructing 18S rRNA gene clone libraries. The phylogenetic affiliations of a total of 843 clones were Alveolata, Fungi, Rhizaria, Euglenozoa, Stramenopiles, Amoebozoa, and Viridiplantae as protozoans and Rotifera, Gastrotricha, and Nematoda as metazoans. Sixty percent of the clones had <97% sequence identity to described eukaryotes, indicating the greater diversity of eukaryotes than previously recognized. A core OTU closely related to Epistylis chrysemydis was identified, and several OTUs were shared by 4-8 libraries. Members of the uncultured lineage LKM11 in Cryptomycota were predominant fungi in sewage treatment processes. This comparative study represents an initial step in furthering understanding of the diversity and role of eukaryotes in sewage treatment processes. PMID:25491751

  4. Phylogeny of Intestinal Ciliates, Including Charonina ventriculi, and Comparison of Microscopy and 18S rRNA Gene Pyrosequencing for Rumen Ciliate Community Structure Analysis

    PubMed Central

    Devente, Savannah R.; Kirk, Michelle R.; Seedorf, Henning; Dehority, Burk A.

    2015-01-01

    The development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates, Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescence in situ hybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence, Charonina ventriculi was positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups. PMID:25616800

  5. More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance.

    PubMed

    Saka, Kimiko; Takahashi, Akihiro; Sasaki, Mariko; Kobayashi, Takehiko

    2016-05-19

    Genome instability triggers cellular senescence and is a common cause of cancer. The ribosomal RNA genes (rDNA), due to their repetitive structure, form a fragile site with frequent rearrangements. To identify eukaryotic factors that connect reduced genome stability to senescence we screened 4,876 strains of a Saccharomyces cerevisiae deletion library for aberrant rDNA and found 708 genes that contribute to its upkeep. 28 mutants caused abnormalities in non-rDNA chromosomes and among them 12 mutants have abnormalities both in rDNA and in non-rDNA chromosomes. Many mutated genes have not previously been implicated with genome maintenance nor their homologues with tumorigenesis in mammals. The link between rDNA state and senescence was broken after deletion of factors related with DNA polymerase ϵ. These mutations also suppressed the short lifespan phenotype of a sir2 mutant, suggesting a model in which molecular events at the heart of the replication fork induce abnormal rDNA recombination and are responsible for the emergence of an aging signal. PMID:26912831

  6. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids

    PubMed Central

    2012-01-01

    Background Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. Methods We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. Results and Conclusions In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations. PMID:23259460

  7. [Molecular phylogeny of gastrotricha based on 18S rRNA genes comparison: rejection of hypothesis of relatedness with nematodes].

    PubMed

    Petrov, N B; Pegova, A N; Manylov, O G; Vladychenskaia, N S; Miuge, N S; Aleshin, V V

    2007-01-01

    Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses. PMID:17685227

  8. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    PubMed Central

    Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R

    2006-01-01

    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome

  9. Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene.

    PubMed

    Nishiyama, T; Kato, M

    1999-08-01

    The basal relationship of bryophytes and tracheophytes is problematic in land plant phylogeny. In addition to cladistic analyses of morphological data, molecular phylogenetic analyses of the nuclear small-subunit ribosomal RNA gene and the plastic gene rbcL have been performed, but no confident conclusions have been reached. Using the maximum-likelihood (ML) method, we analyzed 4,563 bp of aligned sequences from plastid protein-coding genes and 1,680 bp from the nuclear 18S rRNA gene. In the ML tree of deduced amino acid sequences of the plastid genes, hornworts were basal among the land plants, while mosses and liverworts each formed a clade and were sister to each other. Total-evidence evaluation of rRNA data and plastid protein-coding genes by TOTALML had an almost identical result. PMID:10474899

  10. Genetic variation and identification of cultivated Fallopia multiflora and its wild relatives by using chloroplast matK and 18S rRNA gene sequences.

    PubMed

    Yan, Ping; Pang, Qi-Hua; Jiao, Xu-Wen; Zhao, Xuan; Shen, Yan-Jing; Zhao, Shu-Jin

    2008-10-01

    FALLOPIA MULTIFLORA (Thunb.) Harald . has been widely and discriminatingly used in China for the study and treatment of anemia, swirl, deobstruent, pyrosis, insomnia, amnesia, atheroma and also for regulating immune functions. However, there is still confusion about the herbal drug's botanical origins and the phylogenetic relationship between the cultivars and the wild relatives. In order to develop an efficient method for identification, a molecular analysis was performed based on 18 S rRNA gene and partial MATK gene sequences. The 18 S rRNA gene sequences of F. MULTIFLORA were 1809 bp in length and were highly conserved, indicating that the cultivars and the wild F. MULTIFLORA have the same botanical origin. Based on our 18 S rRNA gene sequences analysis, F. MULTIFLORA could be easily distinguished at the DNA level from adulterants and some herbs with similar components. The MATK gene partial sequences were found to span 1271 bp. The phylogenetic relation of F. MULTIFLORA based on the MATK gene showed that all samples in this paper were divided into four clades. The sequences of the partial MATK gene had many permutations, which were related to the geographical distributions of the samples. MATK gene sequences provided valuable information for the identification of F. MULTIFLORA. New taxonomic information could be obtained to authenticate the botanical origin of the F. MULTIFLORA, the species and the medicines made of it. PMID:18759218

  11. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    PubMed

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage. PMID:26319789

  12. Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes.

    PubMed

    Huang, Jianzhong; Aki, Tsunehiro; Yokochi, Toshihiro; Nakahara, Toro; Honda, Daiske; Kawamoto, Seiji; Shigeta, Seiko; Ono, Kazuhisa; Suzuki, Osamu

    2003-01-01

    Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids. PMID:14730428

  13. Molecular analysis of 18S rRNA gene of Cryptosporidium parasites from patients living in Iran, Malawi, Nigeria and Vietnam.

    PubMed

    Ghaffari, Salman; Kalantari, Narges

    2012-01-01

    Cryptosporidium species are one of the most common causes of gastrointestinal infection in humans around the world. This study has aimed to investigate the hyper variable region of the 18S rRNA gene in Cryptosporidium for exact parasite identification. DNA was extracted from 26 fecal samples from which initially Cryptosporidium oocysts were identified by Ziehl-Neelsen acid-fast , Auramine phenol and ELISA techniques. Nested PCR, targeting the most polymorphic region of the 18S rRNA gene and genotyping was performed by restriction endonuclease digestion of the PCR product followed by nucleotide sequencing and phylogenic analysis. Among 26 isolates analyzed, three species of Cryptosporidium were identified; 38.5% of the isolates were C. hominis while 53.8% of the isolates were C. parvum and 7.7% of the isolates were C. meleagridis, which the last two species have the potentially zoonotic transmission. The only 11T subtype of C. hominis was demonstrated. These strains clustered distinctly into either human or animal origin regardless of the geographical origin, age, or immunity status of the patients. In summary, this work is the first report of C. meleagridis infecting human in Iran. Moreover, it suggested that multi-locus study of Cryptosporidium species in developing countries would be necessary to determine the extent of transmission of cryptosporidiosis in the populations. PMID:24551771

  14. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia.

    PubMed

    Cooper, Madalyn K; Phalen, David N; Donahoe, Shannon L; Rose, Karrie; Šlapeta, Jan

    2016-01-30

    Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations. PMID:26801593

  15. Avian malaria in captive psittacine birds: detection by microscopy and 18S rRNA gene amplification.

    PubMed

    Belo, N O; Passos, L F; Júnior, L M C; Goulart, C E; Sherlock, T M; Braga, E M

    2009-03-01

    A cross-sectional survey was conducted to estimate the occurrence of malaria infection among captive psittacine birds (n=127) from three zoological gardens in Brazil. Malaria infection was evaluated by the association of direct examination of blood smears with amplification of the 18SSU rRNA gene of the Plasmodium genus, demonstrating an overall occurrence of 36%. Most infected bird species were Amazona aestiva (28/73), Ara ararauna (6/10), and Amazona amazonica (3/10). The low parasitemias observed among the infected birds suggest a chronic infection. The sequence analyses of 10 isolates indicate a potential occurrence of four distinct Plasmodium lineages. These findings provide new data on malarial infection in captive psittacine birds, and emphasize the need for better control of importation and exportation of these birds. PMID:18937986

  16. Protist 18S rRNA gene Sequence Analysis Reveals Multiple Sources of Organic Matter Contributing to Turbidity Maxima of the Columbia River Estuary

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; McCue, Lee Ann; Zuber, Peter A.

    2011-10-05

    The Columbia River estuary is traditionally considered a detritus-based ecosystem fueled in summer by organic matter (OM) from expired freshwater diatoms. Since Estuarine Turbidity Maxima (ETM) are sites of accumulation and transformation of this phytoplankton-derived OM, to further characterize the ETM protist assemblage, we collected in August 2007 bottom waters throughout an ETM event, as well as surface water during the peak of bottom turbidity, and performed biogeochemical, microscopic and molecular (18S rRNA gene clone libraries) analyses. These data confirmed that the majority of the particulate OM in ETMs is derived from chlorophyll a-poor particulate organic carbon tagged by DNA too damaged to be detected by molecular analysis.

  17. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  18. A duplicated NUCLEOLIN gene with antagonistic activity is required for chromatin organization of silent 45S rDNA in Arabidopsis.

    PubMed

    Durut, Nathalie; Abou-Ellail, Mohamed; Pontvianne, Frédéric; Das, Sadhan; Kojima, Hisae; Ukai, Seiko; de Bures, Anne; Comella, Pascale; Nidelet, Sabine; Rialle, Stéphanie; Merret, Remy; Echeverria, Manuel; Bouvet, Philippe; Nakamura, Kenzo; Sáez-Vásquez, Julio

    2014-03-01

    In plants as well as in animals, hundreds to thousands of 45S rRNA gene copies localize in Nucleolus Organizer Regions (NORs), and the activation or repression of specific sets of rDNA depends on epigenetic mechanisms. Previously, we reported that the Arabidopsis thaliana nucleolin protein NUC1, an abundant and evolutionarily conserved nucleolar protein in eukaryotic organisms, is required for maintaining DNA methylation levels and for controlling the expression of specific rDNA variants in Arabidopsis. Interestingly, in contrast with animal or yeast cells, plants contain a second nucleolin gene. Here, we report that Arabidopsis NUC1 and NUC2 nucleolin genes are both required for plant growth and survival and that NUC2 disruption represses flowering. However, these genes seem to be functionally antagonistic. In contrast with NUC1, disruption of NUC2 induces CG hypermethylation of rDNA and NOR association with the nucleolus. Moreover, NUC2 loss of function triggers major changes in rDNA spatial organization, expression, and transgenerational stability. Our analyses indicate that silencing of specific rRNA genes is mostly determined by the active or repressed state of the NORs and that nucleolin proteins play a key role in the developmental control of this process. PMID:24668745

  19. Comparison of potential diatom 'barcode' genes (the 18S rRNA gene and ITS, COI, rbcL) and their effectiveness in discriminating and determining species taxonomy in the Bacillariophyta.

    PubMed

    Guo, Liliang; Sui, Zhenghong; Zhang, Shu; Ren, Yuanyuan; Liu, Yuan

    2015-04-01

    Diatoms form an enormous group of photoautotrophic micro-eukaryotes and play a crucial role in marine ecology. In this study, we evaluated typical genes to determine whether they were effective at different levels of diatom clustering analysis to assess the potential of these regions for barcoding taxa. Our test genes included nuclear rRNA genes (the nuclear small-subunit rRNA gene and the 5.8S rRNA gene+ITS-2), a mitochondrial gene (cytochrome c-oxidase subunit 1, COI), a chloroplast gene [ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (rbcL)] and the universal plastid amplicon (UPA). Calculated genetic divergence was highest for the internal transcribed spacer (ITS; 5.8S+ITS-2) (p-distance of 1.569, 85.84% parsimony-informative sites) and COI (6.084, 82.14%), followed by the 18S rRNA gene (0.139, 57.69%), rbcL (0.120, 42.01%) and UPA (0.050, 14.97%), which indicated that ITS and COI were highly divergent compared with the other tested genes, and that their nucleotide compositions were variable within the whole group of diatoms. Bayesian inference (BI) analysis showed that the phylogenetic trees generated from each gene clustered diatoms at different phylogenetic levels. The 18S rRNA gene was better than the other genes in clustering higher diatom taxa, and both the 18S rRNA gene and rbcL performed well in clustering some lower taxa. The COI region was able to barcode species of some genera within the Bacillariophyceae. ITS was a potential marker for DNA based-taxonomy and DNA barcoding of Thalassiosirales, while species of Cyclotella, Skeletonema and Stephanodiscus gathered in separate clades, and were paraphyletic with those of Thalassiosira. Finally, UPA was too conserved to serve as a diatom barcode. PMID:25604341

  20. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    PubMed Central

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  1. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  2. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA.

    PubMed

    Marcili, A; Lima, L; Cavazzana, M; Junqueira, A C V; Veludo, H H; Maia Da Silva, F; Campaner, M; Paiva, F; Nunes, V L B; Teixeira, M M G

    2009-05-01

    We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TCbat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded low parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype was found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans. PMID:19368741

  3. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.

    PubMed

    Mallatt, Jon; Giribet, Gonzalo

    2006-09-01

    This work expands on a study from 2004 by Mallatt, Garey, and Shultz [Mallatt, J.M., Garey, J.R., Shultz, J.W., 2004. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178-191] that evaluated the phylogenetic relationships in Ecdysozoa (molting animals), especially arthropods. Here, the number of rRNA gene-sequences was effectively doubled for each major group of arthropods, and sequences from the phylum Kinorhyncha (mud dragons) were also included, bringing the number of ecdysozoan taxa to over 80. The methods emphasized maximum likelihood, Bayesian inference and statistical testing with parametric bootstrapping, but also included parsimony and minimum evolution. Prominent findings from our combined analysis of both genes are as follows. The fundamental subdivisions of Hexapoda (insects and relatives) are Insecta and Entognatha, with the latter consisting of collembolans (springtails) and a clade of proturans plus diplurans. Our rRNA-gene data provide the strongest evidence to date that the sister group of Hexapoda is Branchiopoda (fairy shrimps, tadpole shrimps, etc.), not Malacostraca. The large, Pancrustacea clade (hexapods within a paraphyletic Crustacea) divided into a few basic subclades: hexapods plus branchiopods; cirripedes (barnacles) plus malacostracans (lobsters, crabs, true shrimps, isopods, etc.); and the basally located clades of (a) ostracods (seed shrimps) and (b) branchiurans (fish lice) plus the bizarre pentastomids (tongue worms). These findings about Pancrustacea agree with a recent study by Regier, Shultz, and Kambic that used entirely different genes [Regier, J.C., Shultz, J.W., Kambic, R.E., 2005a. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395-401]. In Malacostraca, the stomatopod (mantis shrimp) was not at the base of the eumalacostracans

  4. High protists diversity in the plankton of sulfurous lakes and lagoons examined by 18s rRNA gene sequence analyses.

    PubMed

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2015-12-01

    Diversity of small protists was studied in sulfidic and anoxic (euxinic) stratified karstic lakes and coastal lagoons by 18S rRNA gene analyses. We hypothesized a major sulfide effect, reducing protist diversity and richness with only a few specialized populations adapted to deal with low-redox conditions and high-sulfide concentrations. However, genetic fingerprinting suggested similar ecological diversity in anoxic and sulfurous than in upper oxygen rich water compartments with specific populations inhabiting euxinic waters. Many of them agreed with genera previously identified by microscopic observations, but also new and unexpected groups were detected. Most of the sequences matched a rich assemblage of Ciliophora (i.e., Coleps, Prorodon, Plagiopyla, Strombidium, Metopus, Vorticella and Caenomorpha, among others) and algae (mainly Cryptomonadales). Unidentified Cercozoa, Fungi, Stramenopiles and Discoba were recurrently found. The lack of GenBank counterparts was higher in deep hypolimnetic waters and appeared differentially allocated in the different taxa, being higher within Discoba and lower in Cryptophyceae. A larger number of populations than expected were specifically detected in the deep sulfurous waters, with unknown ecological interactions and metabolic capabilities. PMID:26224512

  5. Design and Validation of Four New Primers for Next-Generation Sequencing To Target the 18S rRNA Genes of Gastrointestinal Ciliate Protozoa

    PubMed Central

    Wright, André-Denis G.

    2014-01-01

    Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen. PMID:24973070

  6. Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene.

    PubMed

    Vd'ačný, Peter; Bourland, William A; Orsi, William; Epstein, Slava S; Foissner, Wilhelm

    2011-05-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of species ranging from aerobic, free-living predators to anaerobic endocommensals. This is traditionally reflected by classifying the Litostomatea into the subclasses Haptoria and Trichostomatia. The morphological classifications of the Haptoria conflict with the molecular phylogenies, which indicate polyphyly and numerous homoplasies. Thus, we analyzed the genealogy of 53 in-group species with morphological and molecular methods, including 12 new sequences from free-living taxa. The phylogenetic analyses and some strong morphological traits show: (i) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea and (ii) three distinct lineages (subclasses): the Rhynchostomatia comprising Tracheliida and Dileptida; the Haptoria comprising Lacrymariida, Haptorida, Didiniida, Pleurostomatida and Spathidiida; and the Trichostomatia. The curious Homalozoon cannot be assigned to any of the haptorian orders, but is basal to a clade containing the Didiniida and Pleurostomatida. The internal relationships of the Spathidiida remain obscure because many of them and some "traditional" haptorids form separate branches within the basal polytomy of the order, indicating one or several radiations and convergent evolution. Due to the high divergence in the 18S rRNA gene, the chaeneids and cyclotrichiids are classified incertae sedis. PMID:21333743

  7. Phylogenetic relationships of Brazilian isolates of Pythium insidiosum based on ITS rDNA and cytochrome oxidase II gene sequences.

    PubMed

    Azevedo, M I; Botton, S A; Pereira, D I B; Robe, L J; Jesus, F P K; Mahl, C D; Costa, M M; Alves, S H; Santurio, J M

    2012-09-14

    Pythium insidiosum is an aquatic oomycete that is the causative agent of pythiosis. Advances in molecular methods have enabled increased accuracy in the diagnosis of pythiosis, and in studies of the phylogenetic relationships of this oomycete. To evaluate the phylogenetic relationships among isolates of P. insidiosum from different regions of Brazil, and also regarding to other American and Thai isolates, in this study a total of thirty isolates of P. insidiosum from different regions of Brazil was used and had their ITS1, 5.8S rRNA and ITS2 rDNA (ITS) region and the partial sequence of cytochrome oxidase II (COX II) gene sequenced and analyzed. The outgroup consisted of six isolates of other Pythium species and one of Lagenidium giganteum. Phylogenetic analyses of ITS and COX II genes were conducted, both individually and in combination, using four different methods: Maximum parsimony (MP); Neighbor-joining (NJ); Maximum likelihood (ML); and Bayesian analysis (BA). Our data supported P. insidiosum as monophyletic in relation to the other Pythium species, and COX II showed that P. insidiosum appears to be subdivided into three major polytomous groups, whose arrangement provides the Thai isolates as paraphyletic in relation to the Brazilian ones. The molecular analyses performed in this study suggest an evolutionary proximity among all American isolates, including the Brazilian and the Central and North America isolates, which were grouped together in a single entirely polytomous clade. The COX II network results presented signals of a recent expansion for the American isolates, probably originated from an Asian invasion source. Here, COX II showed higher levels bias, although it was the source of higher levels of phylogenetic information when compared to ITS. Nevertheless, the two markers chosen for this study proved to be entirely congruent, at least with respect to phylogenetic relationships between different isolates of P. insidiosum. PMID:22483240

  8. Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes.

    PubMed

    Lie, Alle A Y; Liu, Zhenfeng; Hu, Sarah K; Jones, Adriane C; Kim, Diane Y; Countway, Peter D; Amaral-Zettler, Linda A; Cary, S Craig; Sherr, Evelyn B; Sherr, Barry F; Gast, Rebecca J; Caron, David A

    2014-07-01

    Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages. PMID:24814788

  9. Free-Living Protozoa in Two Unchlorinated Drinking Water Supplies, Identified by Phylogenic Analysis of 18S rRNA Gene Sequences▿ †

    PubMed Central

    Valster, Rinske M.; Wullings, Bart A.; Bakker, Geo; Smidt, Hauke; van der Kooij, Dick

    2009-01-01

    Free-living protozoan communities in water supplies may include hosts for Legionella pneumophila and other undesired bacteria, as well as pathogens. This study aimed at identifying free-living protozoa in two unchlorinated groundwater supplies, using cultivation-independent molecular approaches. For this purpose, samples (<20°C) of treated water, distributed water, and distribution system biofilms were collected from supply A, with a low concentration of natural organic matter (NOM) (<0.5 ppm of C), and from supply B, with a high NOM concentration (7.9 ppm of C). Eukaryotic communities were studied using terminal restriction fragment length polymorphism and clone library analyses of partial 18S rRNA gene fragments and a Hartmannella vermiformis-specific quantitative PCR (qPCR). In both supplies, highly diverse eukaryotic communities were observed, including free-living protozoa, fungi, and metazoa. Sequences of protozoa clustered with Amoebozoa (10 operational taxonomic units [OTUs]), Cercozoa (39 OTUs), Choanozoa (26 OTUs), Ciliophora (29 OTUs), Euglenozoa (13 OTUs), Myzozoa (5 OTUs), and Stramenopiles (5 OTUs). A large variety of protozoa were present in both supplies, but the estimated values for protozoan richness did not differ significantly. H. vermiformis was observed in both supplies but was not a predominant protozoan. One OTU with the highest similarity to Acanthamoeba polyphaga, an opportunistic human pathogen and a host for undesired bacteria, was observed in supply A. The high level of NOM in supply B corresponded with an elevated level of active biomass and with elevated concentrations of H. vermiformis in distributed water. Hence, the application of qPCR may be promising in elucidating the relationship between drinking water quality and the presence of specific protozoa. PMID:19465529

  10. Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.

    PubMed

    Hedin, Marshal; Bond, Jason E

    2006-11-01

    Mygalomorph spiders, which include the tarantulas, trapdoor spiders, and their kin, represent one of three main spider lineages. Mygalomorphs are currently classified into 15 families, comprising roughly 2500 species and 300 genera. The few published phylogenies of mygalomorph relationships are based exclusively on morphological data and reveal areas of both conflict and congruence, suggesting the need for additional phylogenetic research utilizing new character systems. As part of a larger combined evidence study of global mygalomorph relationships, we have gathered approximately 3.7 kb of rRNA data (18S and 28S) for a sample of 80 genera, representing all 15 mygalomorph families. Taxon sampling was particularly intensive across families that are questionable in composition-Cyrtaucheniidae and Nemesiidae. The following primary results are supported by both Bayesian and parsimony analyses of combined matrices representing multiple 28S alignments: (1) the Atypoidea, a clade that includes the families Atypidae, Antrodiaetidae, and Mecicobothriidae, is recovered as a basal lineage sister to all other mygalomorphs, (2) diplurids and hexathelids form a paraphyletic grade at the base of the non-atypoid clade, but neither family is monophyletic in any of our analyses, (3) a clade consisting of all sampled nemesiids, Microstigmata and the cyrtaucheniid genera Kiama, Acontius, and Fufius is consistently recovered, (4) other sampled cyrtaucheniids are fragmented across three separate clades, including a monophyletic North American Euctenizinae and a South African clade, (5) of the Domiothelina, only idiopids are consistently recovered as monophyletic; ctenizids are polyphyletic and migids are only weakly supported. The Domiothelina is not monophyletic. The molecular results we present are consistent with more recent hypotheses of mygalomorph relationship; however, additional work remains before mygalomorph classification can be formally reassessed with confidence

  11. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    PubMed

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis. PMID:26254786

  12. Expression of 5 S rRNA genes linked to 35 S rDNA in plants, their epigenetic modification and regulatory element divergence

    PubMed Central

    2012-01-01

    Background In plants, the 5 S rRNA genes usually occur as separate tandems (S-type arrangement) or, less commonly, linked to 35 S rDNA units (L-type). The activity of linked genes remains unknown so far. We studied the homogeneity and expression of 5 S genes in several species from family Asteraceae known to contain linked 35 S-5 S units. Additionally, their methylation status was determined using bisulfite sequencing. Fluorescence in situ hybridization was applied to reveal the sub-nuclear positions of rDNA arrays. Results We found that homogenization of L-type units went to completion in most (4/6) but not all species. Two species contained major L-type and minor S-type units (termed Ls-type). The linked genes dominate 5 S rDNA expression while the separate tandems do not seem to be expressed. Members of tribe Anthemideae evolved functional variants of the polymerase III promoter in which a residing C-box element differs from the canonical angiosperm motif by as much as 30%. On this basis, a more relaxed consensus sequence of a plant C-box: (5’-RGSWTGGGTG-3’) is proposed. The 5 S paralogs display heavy DNA methylation similarly as to their unlinked counterparts. FISH revealed the close association of 35 S-5 S arrays with nucleolar periphery indicating that transcription of 5 S genes may occur in this territory. Conclusions We show that the unusual linked arrangement of 5 S genes, occurring in several plant species, is fully compatible with their expression and functionality. This extraordinary 5 S gene dynamics is manifested at different levels, such as variation in intrachromosomal positions, unit structure, epigenetic modification and considerable divergence of regulatory motifs. PMID:22716941

  13. Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Rank, D N; Kothari, R K; Joshi, C G

    2011-09-01

    The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid. PMID:21744288

  14. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  15. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans.

    PubMed

    Lee, C-C; Tsai, Y-T; Kao, C-W; Lee, L-W; Lai, H-J; Ma, T-H; Chang, Y-S; Yeh, N-H; Lo, S J

    2014-01-01

    Human diseases of impaired ribosome biogenesis resulting from disruption of rRNA biosynthesis or loss of ribosomal components are collectively described as 'ribosomopathies'. Treacher Collins syndrome (TCS), a representative human ribosomopathy with craniofacial abnormalities, is attributed to mutations in the tcof1 gene that has a homologous gene called nopp140. Previous studies demonstrated that the dao-5 (dauer and aged animal overexpression gene 5) of Caenorhabditis elegans is a member of nopp140 gene family and plays a role in nucleogenesis in the early embryo. Here, we established a C. elegans model for studying Nopp140-associated ribosomopathy. A null dao-5 mutant ok542 with a semi-infertile phenotype showed a delay in gonadogenesis, as well as a higher incidence of germline apoptosis. These phenotypes in dao-5(ok542) are likely resulted from inefficient rDNA transcription that was observed by run-on analyses and chromatin immunoprecipitation (ChIP) assays measuring the RNA Pol I occupancy on the rDNA promoter. ChIP assays further showed that the modifications of acetylated histone 4 (H4Ac) and dimethylation at the lysine 9 of histone 3 (H3K9me2) around the rDNA promoter were altered in dao-5 mutants compared with the N2 wild type. In addition, activated CEP-1 (a C. elegans p53 homolog) activity was also linked to the loss of DAO-5 in terms of the transcriptional upregulation of two CEP-1 downstream effectors, EGL-1 and CED-13. We propose that the dao-5 mutant of C. elegans can be a valuable model for studying human Nopp140-associated ribosomopathy at the cellular and molecular levels. PMID:24722283

  16. TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification.

    PubMed

    Pinto, C Miguel; Kalko, Elisabeth K V; Cottontail, Iain; Wellinghausen, Nele; Cottontail, Veronika M

    2012-08-01

    We report TcBat, a recently described genetic lineage of Trypanosoma cruzi, in fruit-eating bats Artibeus from Panama. Infections were common (11.6% prevalence), but no other T. cruzi cruzi genotypes were detected. Phylogenetic analyses show an unambiguous association with Brazilian TcBat, but raise questions about the phylogenetic placement of this genotype using the 18S rRNA gene alone. However, analyses with three concatenated genes (18S rRNA, cytb, and H2B) moderately support TcBat as sister to the discrete typing unit (DTU) TcI. We demonstrate that short fragments (>500 bp) of the 18S rRNA gene are useful for identification of DTUs of T. cruzi, and provide reliable phylogenetic signal as long as they are analyzed within a matrix with reference taxa containing additional informative genes. TcBat forms a very distinctive monophyletic group that may be recognized as an additional DTU within T. cruzi cruzi. PMID:22543008

  17. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  18. [Communities of Actynomicetes fungy in three vegetation types of the Colombian Amazon: abundance, morphotypes and the 16s rDNA gene].

    PubMed

    Cardona, Gladys Inés; Peña-Venegas, Clara Patricia; Ruiz-García, Manuel

    2009-12-01

    Among soil microorganisms, Actinomycetes play an important role in the sustainability of natural and agricultural systems: decomposition of organic matter; degradation of recalcitrant compounds like lignin; nitrogen fixation; degradation of agricultural chemicals and biological control in plants and animals. We evaluated their diversity in soils under three different vegetation covers (pasture, tropical primary forest and stubble) at two depths in the Southern Colombian Amazon border. We collected five replicates per vegetation type (in each, three samples at 0-20cm and three at 20-30cm; for a total of 30 samples). Abundance and phenotypic diversity were determined by plate counting. Genomic DNA was extracted from the isolates: the 16s rDNA gene was amplified with specific primers, and its genetic diversity was estimated by means of an amplified restriction analysis (ARDRA). Actynomicetes abundance varied with vegetation and depth, possibly reflecting presence of earthworms, macro-fauna and physico-chemical characteristics associated to fertility, as well as organic matter, total bases, and optimal capacity to cationic interchange. Primary forests had the highest diversity. Sixteen morpho-types (six genera) were identified; Streptomyces was the most abundant everywhere. The heterogeneity ofARDRA patterns prevented species identification because of the intra-species variability in sequences of 16s rDNA operons. This community is a biological indicator of landscape alteration and could include new bio-active compounds of pharmaceutical interest. PMID:20073339

  19. Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data.

    PubMed

    Siragusa, Alex J; Swenson, Janice E; Casamatta, Dale A

    2007-08-01

    The culturable microbial community within the pitcher fluid of 93 Sarracenia minor carnivorous plants was examined over a 2-year study. Many aspects of the plant/bacterial/insect interaction within the pitcher fluid are minimally understood because the bacterial taxa present in these pitchers have not been identified. Thirteen isolates were characterized by 16S rDNA sequencing and subsequent phylogenetic analysis. The Proteobacteria were the most abundant taxa and included representatives from Serratia, Achromobacter, and Pantoea. The Actinobacteria Micrococcus was also abundant while Bacillus, Lactococcus, Chryseobacterium, and Rhodococcus were infrequently encountered. Several isolates conformed to species identifiers (>98% rDNA gene sequence similarity) including Serratia marcescens (isolates found in 27.5% of pitchers), Achromobacter xylosoxidans (37.6%), Micrococcus luteus (40.9%), Bacillus cereus (isolates found in 10.2%), Bacillus thuringiensis (5.4%), Lactococcus lactis (17.2%), and Rhodococcus equi (2.2%). Species-area curves suggest that sampling efforts were sufficient to recover a representative culturable bacterial community. The bacteria present represent a diverse community probably as a result of introduction by insect vectors, but the ecological significance remains under explored. PMID:17380356

  20. Haplotype Detection from Next-Generation Sequencing in High-Ploidy-Level Species: 45S rDNA Gene Copies in the Hexaploid Spartina maritima

    PubMed Central

    Boutte, Julien; Aliaga, Benoît; Lima, Oscar; Ferreira de Carvalho, Julie; Ainouche, Abdelkader; Macas, Jiri; Rousseau-Gueutin, Mathieu; Coriton, Olivier; Ainouche, Malika; Salmon, Armel

    2015-01-01

    Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies. PMID:26530424

  1. Population genetic structure of the parasitic nematode Camallanus cotti inferred from DNA sequences of ITS1 rDNA and the mitochondrial COI gene.

    PubMed

    Wu, Shan G; Wang, Gui T; Xi, Bing W; Xiong, Fan; Liu, Tao; Nie, Pin

    2009-10-14

    The population genetic structure of fish parasitic nematode, Camallanus cotti, collected from the Yangtze River, Pearl River and Minjiang River in China was investigated. From these parasites, the approximately 730 bp of the first internal transcribed spacer of ribosomal DNA (ITS1 rDNA) and the 428bp of mitochondrial cytochrome c oxidase subunit I (COI) gene were sequenced. For the ITS1 rDNA data set, highly significant Fst values and low rates of migration were detected between the Pearl River group and both the Yangtze River (Fst=0.70, P<0.00001; Nm=0.21) and Minjiang River (Fst=0.73, P<0.00001; Nm=0.18) groups, while low Fst value (Fst=0.018, P>0.05) and high rate of migration (Nm=28.42) were found between the Minjiang and the Yangtze rivers. When different host/locality populations (subpopulations) within each river were considered, subpopulations between the Yangtze River and Minjiang River had low Fst values (3.72), while Pearl River subpopulations were significantly different from the Yangtze River and Minjiang River subpopulations (Fst>or=0.59; Nm<1). The COI gene data set revealed a similar genetic structure. Both phylogenetic analyses and a statistical parsimony network grouped the Pearl River haplotypes into one phylogroup, while the Yangtze River and Minjiang River haplotypes formed a second group. These results suggested that the Yangtze River and Minjiang River subpopulations constituted a single reproductive pool that was distinct from the Pearl River subpopulations. In addition, the present study did not find host-related genetic differentiation occurring in the same drainage. PMID:19632785

  2. Homology of the 3' terminal sequences of the 18S rRNA of Bombyx mori and the 16S rRNA of Escherchia coli.

    PubMed Central

    Samols, D R; Hagenbuchle, O; Gage, L P

    1979-01-01

    The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA. Images PMID:390496

  3. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    EPA Science Inventory

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  4. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase.

    PubMed Central

    Tokuhisa, J G; Vijayan, P; Feldmann, K A; Browse, J A

    1998-01-01

    Poikilothermic organisms require mechanisms that allow survival at chilling temperatures (2 to 15 degreesC). We have isolated chilling-sensitive mutants of Arabidopsis, a plant that is very chilling resistant, and are characterizing them to understand the genes involved in chilling resistance. The T-DNA-tagged mutant paleface1 (pfc1) grows normally at 22 degrees C but at 5 degrees C exhibits a pattern of chilling-induced chlorosis consistent with a disruption of chloroplast development. Genomic DNA flanking the T-DNA was cloned and used to isolate wild-type genomic and cDNA clones. The PFC1 transcript is present at a low level in wild-type plants and was not detected in pfc1 plants. Wild-type Arabidopsis expressing antisense constructs of PFC1 grew normally at 22 degrees C but showed chilling-induced chlorosis, confirming that the gene is essential for low-temperature development of chloroplasts. The deduced amino acid sequence of PFC1 has identity with rRNA methylases found in bacteria and yeast that modify specific adenosines of pre-rRNA transcripts. The pfc1 mutant does not have these modifications in the small subunit rRNA of the plastid. PMID:9596631

  5. 18S rRNA gene sequencing identifies a novel species of Henneguya parasitizing the gills of the channel catfish (Ictaluridae).

    PubMed

    Rosser, Thomas G; Griffin, Matt J; Quiniou, Sylvie M A; Khoo, Lester H; Pote, Linda M

    2014-12-01

    In the southeastern USA, the channel catfish Ictalurus punctatus is a host to at least eight different species of myxozoan parasites belonging to the genus Henneguya, four of which have been characterized molecularly using sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. However, only two of these have confirmed life cycles that involve the oligochaete Dero digitata as the definitive host. During a health screening of farm-raised channel catfish, several fish presented with deformed primary lamellae. Lamellae harbored large, nodular, white pseudocysts 1.25 mm in diameter, and upon rupturing, these pseudocysts released Henneguya myxospores, with a typical lanceolate-shaped spore body, measuring 17.1 ± 1.0 μm (mean ± SD; range = 15.0-19.3 μm) in length and 4.8 ± 0.4 μm (3.7-5.6 μm) in width. Pyriform-shaped polar capsules were 5.8 ± 0.3 μm in length (5.1-6.4 μm) and 1.7 ± 0.1 μm (1.4-1.9 μm) in width. The two caudal processes were 40.0 ± 5.1 μm in length (29.5-50.0 μm) with a spore length of 57.2 ± 4.7 (46.8-66.8 μm). The contiguous SSU rRNA gene sequence obtained from myxospores of five excised cysts did not match any Henneguya sp. in GenBank. The greatest sequence homology (91% over 1,900 bp) was with Henneguya pellis, associated with blister-like lesions on the skin of blue catfish Ictalurus furcatus. Based on the unique combination of pseudocyst and myxospore morphology, tissue location, host, and SSU rRNA gene sequence data, we report this isolate to be a previously unreported species, Henneguya bulbosus sp. nov. PMID:25270236

  6. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  7. The evolutionary history of the genus Timarcha (Coleoptera, Chrysomelidae) inferred from mitochondrial COII gene and partial 16S rDNA sequences.

    PubMed

    Gómez-Zurita, J; Juan, C; Petitpierre, E

    2000-02-01

    The apterous genus Timarcha consists of three subgenera and more than 100 species in its Palearctic distribution, with specialized feeding on few plant families. Fifty-four sequences sampled from 31 taxa of the genus plus three outgroup leaf beetles were studied for their complete cytochrome oxidase II (COII) and a fragment of 16S rDNA mitochondrial genes, representing a total of about 1200 bp. Phylogenetic analyses using maximum-parsimony and distance methods for each gene separately and for the combined data set gave compatible topologies. The subgenus Metallotimarcha consistently appears in a basal position and is well differentiated from the remaining Timarcha, but no clear monophyletic grouping of Timarchostoma and Timarcha s. str. subgenera can be deduced from our analysis. Calibration of the molecular clock has been done using the opening of the Gibraltar Strait after the Messinian salinity crisis (about 5.5 MYA) as the biogeographic event causing disjunction of two particular taxa. Accordingly, the COII evolutionary rate has been estimated to be of 0.76 x 10(-8) substitution/site/year in Timarcha. Relation between phylogeny and host-plant use indicates widening of trophic regime as a derived character in Timarcha. PMID:10679162

  8. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. claytoni and Bitylenchus dubius were characterized with segments of small subunit 18S and large subunit 28S rDNA sequences and placed in molecular phylogenetic context with other taxa of Telotylechidae in GenBank. In 18S trees, the sp...

  9. Testing the use of ITS rDNA and protein-coding genes in the generic and species delimitation of the lichen genus Usnea (Parmeliaceae, Ascomycota).

    PubMed

    Truong, Camille; Divakar, Pradeep K; Yahr, Rebecca; Crespo, Ana; Clerc, Philippe

    2013-08-01

    In lichen-forming fungi, traditional taxonomical concepts are frequently in conflict with molecular data, and identifying appropriate taxonomic characters to describe phylogenetic clades remains challenging in many groups. The selection of suitable markers for the reconstruction of solid phylogenetic hypotheses is therefore fundamental. The lichen genus Usnea is highly diverse, with more than 350 estimated species, distributed in polar, temperate and tropical regions. The phylogeny and classification of Usnea have been a matter of debate, given the lack of phenotypic characters to describe phylogenetic clades and the low degree of resolution of phylogenetic trees. In this study, we investigated the phylogenetic relationships of 52 Usnea species from across the genus, based on ITS rDNA, nuLSU, and two protein-coding genes RPB1 and MCM7. ITS comprised several highly variable regions, containing substantial genetic signal, but also susceptible to causing bias in the generation of the alignment. We compared several methods of alignment of ITS and found that a simultaneous optimization of alignment and phylogeny (using BAli-phy) improved significantly both the topology and the resolution of the phylogenetic tree. However the resolution was even better when using protein-coding genes, especially RPB1 although it is less variable. The phylogeny based on the concatenated dataset revealed that the genus Usnea is subdivided into four highly-supported clades, corresponding to the traditionally circumscribed subgenera Eumitria, Dolichousnea, Neuropogon and Usnea. However, characters that have been used to describe these clades are often homoplasious within the phylogeny and their parallel evolution is suggested. On the other hand, most of the species were reconstructed as monophyletic, indicating that combinations of phenotypic characters are suitable discriminators for delimitating species, but are inadequate to describe generic subdivisions. PMID:23603312

  10. Genetic variability and mycohost association of Ampelomyces quisqualis isolates inferred from phylogenetic analyses of ITS rDNA and actin gene sequences.

    PubMed

    Park, Mi-Jeong; Choi, Young-Joon; Hong, Seung-Beom; Shin, Hyeon-Dong

    2010-01-01

    Ampelomyces quisqualis complex is well known as the most common and widespread hyperparasite of the family Erysiphaceae, the cause of powdery mildew diseases. As commercial biopesticide products it is widely used to control the disease in field and plastic houses. Although genetic diversity within Ampelomyces isolates has been previously recognized, a single name A. quisqualis is still applied to all pycnidial intracellular hyperparasites of powdery mildew fungi. In this study, the phylogenetic relationships among Ampelomyces isolates originating from various powdery mildew fungi in Korea were inferred from Bayesian and maximum parsimony analyses of the sequences of ITS rDNA region and actin gene. In the phylogenetic trees, the Ampelomyces isolates could be divided into four distinct groups with high sequence divergences in both regions. The largest group, Clade 1, mostly accommodated Ampelomyces isolates originating from the mycohost Podosphaera spp. (sect. Sphaerotheca). Clade 2 comprised isolates from several genera of powdery mildews, Golovinomyces, Erysiphe (sect. Erysiphe), Arthrocladiella, and Phyllactinia, and was further divided into two subclades. An isolate obtained from Podosphaera (sect. Sphaerotheca) pannosa was clustered into Clade 3, with those from powdery mildews infecting rosaceous hosts. The mycohosts of Ampelomyces isolates in Clade 4 mostly consisted of species of Erysiphe (sect. Erysiphe, sect. Microsphaera, and sect. Uncinula). The present phylogenetic study demonstrates that Ampelomyces hyperparasite is indeed an assemblage of several distinct lineages rather than a sole species. Although the correlation between Ampelomyces isolates and their mycohosts is not obviously clear, the isolates show not only some degree of host specialization but also adaptation to their mycohosts during the evolution of the hyperparasite. PMID:20943134

  11. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA.

    PubMed

    Bråte, Jon; Logares, Ramiro; Berney, Cédric; Ree, Dan Kristofer; Klaveness, Dag; Jakobsen, Kjetill S; Shalchian-Tabrizi, Kamran

    2010-09-01

    Protist parasites are ecologically important, as they can have great impact on host population dynamics and functioning of entire ecosystems. Nevertheless, little is known about their prevalence in aquatic habitats. Here, we investigate the diversity and distributional patterns of the protist parasites Perkinsus and Parvilucifera (Perkinsea). Our approach included 454 pyrosequencing of the 18S rDNA gene obtained from a high-altitude lake (Lake Finsevatn, Norway) and phylogenetic analyses of all publicly available sequences related to Perkinsea. The applied PCR primers target a 450 bp region that encompass the variable V4 region of the 18S rDNA gene and have been optimized for the Titanium upgrade of the 454 technology. Nearly 5000 sequences longer than 150 bp were recovered from nearly all eukaryotic supergroups, and of those, 13 unique sequences were affiliated to Perkinsea. Thus, our new strategy for 454 amplicon sequencing was able to recover a large diversity of distantly related eukaryotes and previously unknown species of Perkinsea. In addition, we identified 40 Perkinsea sequences in GenBank generated by other recent diversity surveys. Importantly, phylogenetic analyses of these sequences identified 17 habitat-specific marine and freshwater clades (PERK 1-17). Hence, only a few successful transitions between these habitats have taken place over the entire history of Perkinsea, suggesting that the boundary between marine and fresh waters may constitute a barrier to cross-colonizations for intracellular parasites. PMID:20393574

  12. Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi-gene and multi-genome approach.

    PubMed

    Ogedengbe, Joseph D; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2015-11-01

    Coccidia possess three distinct genomes: nuclear, mitochondrial, and plastid. Sequences from five genes located on these three genomes were used to reconstruct the phylogenetic relationships of members of the phylum Apicomplexa: 18S rDNA sequences from the nuclear (nu) genome, partial cytochrome c oxidase subunit I sequences from the mitochondrial (mt) genome, and partial 16S and 23S rDNA sequences and RNA polymerase B sequences from plastid (pl) genomes. Maximum parsimony, maximum likelihood, and Bayesian inference were used in conjunction with nuclear substitution models generated from data subsets in the analyses. Major groups within the Apicomplexa were well supported with the mitochondrial, nuclear, and a combination of mitochondrial, nuclear and concatenated plastid gene sequences. However, the genus Eimeria was paraphyletic in phylogenetic trees based on the nuclear gene. Analyses using the individual genes (18S rDNA and cytochrome c oxidase subunit I) resolved the various apicomplexan groups with high Bayesian posterior probabilities. The multi-gene, multi-genome analyses based on concatenated nu 18S rDNA, pl 16S, pl 23S, pl rPoB, pl rPoB1, and mt COI sequences appeared useful in resolving phylogenetic relationships within the phylum Apicomplexa. Genus-level relationships, or higher, appear best supported by 18S rDNA analyses, and species-level analyses are best investigated using mt COI sequences; for parasites for which both loci are available, nuclear 18S rDNA sequences combined with mitochondrial COI sequences provide a compact and informative molecular dataset for inferring the evolutionary relationships taxa in the Apicomplexa. PMID:26319519

  13. Male meiosis, heterochromatin characterization and chromosomal location of rDNA in Microtomus lunifer (Berg, 1900) (Hemiptera: Reduviidae: Hammacerinae)

    PubMed Central

    Poggio, María Georgina; Bressa, María José; Papeschi, Alba Graciela

    2011-01-01

    Abstract In the present work, we analysed the male meiosis, the content and distribution of heterochromatin and the number and location of nucleolus organizing regions in Microtomus lunifer (Berg, 1900) by means of standard technique, C- and fluorescent bandings, and fluorescent in situ hybridization with an 18S rDNA probe. This species is the second one cytogenetically analysed within the Hammacerinae. Its male diploid chromosome number is 31 (2n=28+X1X2Y), including a minute pair of m-chromosomes. The diploid autosomal number and the presence of m-chromosomes are similar to those reported in Microtomus conspicillaris (Drury, 1782) (2n=28+XY). However, Microtomus lunifer has a multiple sex chromosome system X1X2Y (male) that could have originated by fragmentation of the ancestral X chromosome. Taking into account that Microtomus conspicillaris and Microtomus lunifer are the only two species within Reduviidae that possess m-chromosomes, the presence of this pair could be a synapomorphy for the species of this genus. C- and fluorescent bandings showed that the amount of heterochromatin in Microtomus lunifer was small, and only a small CMA3 bright band was observed in the largest autosomal pair at one terminal region. FISH with the 18S rDNA probe demonstrated that ribosomal genes were terminally placed on the largest autosomal pair. Our present results led us to propose that the location of rDNA genes could be associated with variants of the sex chromosome systems in relation with a kind of the sex chromosome systems within this family. Furthermore, the terminal location of NOR in the largest autosomal pair allowed us to use it as a chromosome marker and, thus, to infer that the kinetic activity of both ends is not a random process, and there is an inversion of this activity. PMID:24260616

  14. Plant rDNA database: update and new features

    PubMed Central

    Garcia, Sònia; Gálvez, Francisco; Gras, Airy; Kovařík, Aleš; Garnatje, Teresa

    2014-01-01

    The Plant rDNA database (www.plantrdnadatabase.com) is an open access online resource providing detailed information on numbers, structures and positions of 5S and 18S-5.8S-26S (35S) ribosomal DNA loci. The data have been obtained from >600 publications on plant molecular cytogenetics, mostly based on fluorescent in situ hybridization (FISH). This edition of the database contains information on 1609 species derived from 2839 records, which means an expansion of 55.76 and 94.45%, respectively. It holds the data for angiosperms, gymnosperms, bryophytes and pteridophytes available as of June 2013. Information from publications reporting data for a single rDNA (either 5S or 35S alone) and annotation regarding transcriptional activity of 35S loci now appears in the database. Preliminary analyses suggest greater variability in the number of rDNA loci in gymnosperms than in angiosperms. New applications provide ideograms of the species showing the positions of rDNA loci as well as a visual representation of their genome sizes. We have also introduced other features to boost the usability of the Web interface, such as an application for convenient data export and a new section with rDNA–FISH-related information (mostly detailing protocols and reagents). In addition, we upgraded and/or proofread tabs and links and modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments. Database URL: http://www.plantrdnadatabase.com PMID:24980131

  15. Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA Primers and Their Application in a Study of Symbiosis

    PubMed Central

    Wang, Yong; Tian, Ren Mao; Gao, Zhao Ming; Bougouffa, Salim; Qian, Pei-Yuan

    2014-01-01

    Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities. PMID:24594623

  16. Variation in rDNA locus number and position among legume species and detection of 2 linked rDNA loci in the model Medicago truncatula by FISH.

    PubMed

    Abirached-Darmency, Mona; Prado-Vivant, Emilce; Chelysheva, Liudmila; Pouthier, Thomas

    2005-06-01

    Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed. PMID:16121252

  17. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    PubMed Central

    Kwan, Elizabeth X.; Wang, Xiaobin S.; Amemiya, Haley M.; Brewer, Bonita J.; Raghuraman, M. K.

    2016-01-01

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. PMID:27449518

  18. Karyotyping and in situ chromosomal localization of rDNA sites in black cumin Bunium persicum (Boiss) B. Fedtsch,1915 (Apiaceae)

    PubMed Central

    Chahota, R. K.; Mukai, Y.; Chaudhary, H.K.; Kishore, Naval; Sharma, T.R.

    2011-01-01

    Abstract The fluorescent in situ hybridization (FISH) technique has been applied to somatic chromosomes in the medicinally important species, Bunium persicum, to elucidate its karyotypes. The bicolour FISH technique involving 18S-5.8S-26S and 5S ribosomal RNA genes as probes was used to assign physical localization and measurement of rDNA sites on homologous pairs of chromosomes. The two 18S-5.8S-26S rRNA gene sites were at the terminal regions of the short arms of the chromosomes 1 and 2 involving NOR region of chromosome 1. The 5S rDNA sites were found on subtelomeric region of the long arm of the chromosome number 5 and at interstitial regions of the short arm of chromosome 7. Based on direct visual analysis of chromosome length, morphology and position of FISH signals, a pioneer attempt has been made to construct metaphase karyotype in Bunium persicum, an endangered medicinal plant of North Western Himalayas. PMID:24260640

  19. Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

    PubMed Central

    Chelomina, Galina N.; Rozhkovan, Konstantin V.; Voronova, Anastasia N.; Burundukova, Olga L.; Muzarok, Tamara I.; Zhuravlev, Yuri N.

    2015-01-01

    Background Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440–640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine. PMID:27158239

  20. Identification of airborne bacterial and fungal species in the clinical microbiology laboratory of a university teaching hospital employing ribosomal DNA (rDNA) PCR and gene sequencing techniques.

    PubMed

    Nagano, Yuriko; Walker, Jim; Loughrey, Anne; Millar, Cherie; Goldsmith, Colin; Rooney, Paul; Elborn, Stuart; Moore, John

    2009-06-01

    Universal or "broad-range" PCR-based ribosomal DNA (rDNA) was performed on a collection of 58 isolates (n = 30 bacteria + 28 fungi), originating from environmental air from several locations within a busy clinical microbiology laboratory, supporting a university teaching hospital. A total of 10 bacterial genera were identified including both Gram-positive and Gram-negative genera. Gram-positive organisms accounted for 27/30 (90%) of total bacterial species, consisting of seven genera and included (in descending order of frequency) Staphylococcus, Micrococcus, Corynebacterium, Paenibacillus, Arthrobacter, Janibacter and Rothia. Gram-negative organisms were less frequently isolated 3/30 (10%) and comprised three genera, including Moraxella, Psychrobacter and Haloanella. Eight fungal genera were identified among the 28 fungal organisms isolated, including (in descending order of frequency) Cladosporium, Penicillium, Aspergillus, Thanatephorus, Absidia, Eurotium, Paraphaeosphaeria and Tritirachium, with Cladosporium accounting for 10/28 (35.7%) of the total fungal isolates. In conclusion, this study identified the presence of 10 bacterial and eight fungal genera in the air within the laboratory sampled. Although this reflected diversity of the microorganisms present, none of these organisms have been described previously as having an inhalational route of laboratory-acquired infection. Therefore, we believe that the species of organisms identified and the concentration levels of these airborne contaminants determined, do not pose a significant health and safety threat for immunocompotent laboratory personnel and visitors. PMID:20183192

  1. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae)

    PubMed Central

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Abstract Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 ‘Azul’, Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  2. Relationship between organization and function of ribosomal genes in Drosophila melanogaster

    SciTech Connect

    Karpen, G.H.

    1987-01-01

    In most eukaryotic organisms, the genes that encode the 18S and 28S ribosomal RNAs (rDNA genes) are tandemly repeated, and are located in constitutive heterochromatin and/or centromeric or telomeric regions. P-element mediated transformation was used to investigate the relationship between rDNA organization and function in Drosophila melanogaster. Tritiated-uridine incorporation under heat shock conditions and in situ hybridization to rRNA were used to demonstrate that a single rDNA gene inserted into euchromatin can be transcribed at a high rate, in polytene nuclei. P-element-mediated transformation of a single Drosophila rDNA gene was also utilized to investigate the ability of ribosomal DNA to organize a nucleolus. Cytological approaches demonstrated that structures resembling the endogenous nucleoli were preferentially associated with four different sites of rDNA insertion, in polytene nuclei. These mini-nucleoli also contained components specific to the nucleolus, as shown by in situ hybridization to rRNA and indirect immunofluorescence with an antibody that binds to Drosophila nucleoli. The transformed genes were able to partially rescue mutant phenotypes due to a deficiency of rDNA, indicating that the mini-nucleoli were functional.

  3. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences.

    PubMed

    Rivadavia, Fernando; Kondo, Katsuhiko; Kato, Masahiro; Hasebe, Mitsuyasu

    2003-01-01

    The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages. PMID:21659087

  4. Karyotype divergence and spreading of 5S rDNA sequences between genomes of two species: darter and emerald gobies ( Ctenogobius , Gobiidae).

    PubMed

    Lima-Filho, P A; Bertollo, L A C; Cioffi, M B; Costa, G W W F; Molina, W F

    2014-01-01

    Karyotype analyses of the cryptobenthic marine species Ctenogobius boleosoma and C. smaragdus were performed by means of classical and molecular cytogenetics, including physical mapping of the multigene 18S and 5S rDNA families. C. boleosoma has 2n = 44 chromosomes (2 submetacentrics + 42 acrocentrics; FN = 46) with a single chromosome pair each carrying 18S and 5S ribosomal sites; whereas C. smaragdus has 2n = 48 chromosomes (2 submetacentrics + 46 acrocentrics; FN = 50), also with a single pair bearing 18S rDNA, but an extensive increase in the number of GC-rich 5S rDNA sites in 21 chromosome pairs. The highly divergent karyotypes among Ctenogobius species contrast with observations in several other marine fish groups, demonstrating an accelerated rate of chromosomal evolution mediated by both chromosomal rearrangements and the extensive dispersion of 5S rDNA sequences in the genome. PMID:24643007

  5. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.

    PubMed

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H

    2014-05-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384

  6. Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia.

    PubMed

    Shalchian-Tabrizi, Kamran; Kauserud, Håvard; Massana, Ramon; Klaveness, Dag; Jakobsen, Kjetill S

    2007-04-01

    Telonemia has recently been described as a new eukaryotic phylum with uncertain evolutionary origin. So far, only two Telonemia species, Telonema subtilis and Telonema antarcticum, have been described, but there are substantial variations in size and morphology among Telonema isolates and field observations, indicating a hidden diversity of Telonemia-like species and populations. In this study, we investigated the diversity and the global distribution of this group by analyzing 18S rDNA sequences from marine environmental clone libraries published in GenBank as well as several unpublished sequences from the Indian Ocean. Phylogenetic analyses of the identified sequences suggest that the Telonemia phylum includes several undescribed 18S rDNA phylotypes, probably corresponding to a number of different species and/or populations. The Telonemia phylotypes form two main groups, here referred to as Telonemia Groups 1 and 2. Some of the closely related sequences originate from separate oceans, indicating worldwide distributions of various Telonemia phylotypes, while other phylotypes seem to have limited geographical distribution. Further investigations of the evolutionary relationships within Telonemia should be conducted on isolated cultures of Telonema-like strains using multi-locus sequencing and morphological data. PMID:17196879

  7. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  8. Genetic polymorphisms of loci D18S53, D18S59, and D18S488 in fetuses from a Chinese Tianjin Han population.

    PubMed

    Li, X Z; Liu, J; Shi, Y F; Ju, D; Zhang, Y; Yue, T F

    2016-01-01

    We investigated the genetic polymorphisms of three short tandem repeat (STR) loci, D18S53, D18S59, and D18S488, on chromosome 18 in fetuses from a Chinese Tianjin Han population. Sixty-four villus samples and 374 amniotic fluid samples were collected from fetuses. Quantitative fluorescence polymerase chain reaction was performed to amplify the STR loci, followed by scanned electrophoresis and quantitative analysis of the fluorescence signals. Hardy-Weinberg equilibrium (HWE) analysis was performed based on the genotype distributions of the STR loci to obtain the following population genetic data: genotype frequency, heterozygosity of observation (HO), polymorphism information content (PIC), probability of discrimination power (PD), and probability of exclusion (PE). We detected 15, 13, and 15 alleles of D18S53, D18S59, and D18S488, respectively. The genotype frequencies were found to be in line with HWE. The HO values of the three loci, D18S53, D18S59, and D18S488, were 0.797, 0.847, and 0.792; the PIC values were 0.81, 0.75, and 0.73; the PD values were 0.944, 0.901, and 0.881; and the PE values were 0.593, 0.689, and 0.585, respectively. D18S53, D18S59, and D18S488 loci are good genetic markers of chromosome 18, and show potential for use in the prenatal genetic diagnosis of Edwards' syndrome. PMID:27323182

  9. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA.

    PubMed

    Silva, Duilio M Z A; Utsunomia, Ricardo; Pansonato-Alves, José C; Oliveira, Cláudio; Foresti, Fausto

    2015-01-01

    Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group. PMID:26329975

  10. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Klabunde, J; Diesel, A; Waschk, D; Gellissen, G; Hollenberg, C P; Suckow, M

    2002-05-01

    We have investigated the methylotrophic yeast Hansenula polymorpha as a host for the co-integration and expression of multiple heterologous genes using an rDNA integration approach. The ribosomal DNA (rDNA) of H. polymorpha was found to consist of a single rDNA cluster of about 50-60 repeats of an 8-kb unit located on chromosome II. A 2.4-kb segment of H. polymorpha rDNA encompassing parts of the 25S, the complete 5S and the non-transcribed spacer region between 25S and 18S rDNA was isolated and inserted into conventional integrative H. polymorpha plasmids harboring the Saccharomyces- cerevisiae-derived URA3 gene for selection. These rDNA plasmids integrated homologously into the rDNA repeats of a H. polymorpha (odc1) host as several independent clusters. Anticipating that this mode of multiple-cluster integration could be used for the simultaneous integration of several distinct rDNA plasmids, the host strain was co-transformed with a mixture of up to three different plasmids, all bearing the same URA3 selection marker. Transformations indeed resulted in mitotically stable strains harboring one, two, or all three plasmids integrated into the rDNA. The overall copy number of the plasmids integrated did not exceed the number of rDNA repeats present in the untransformed host strain, irrespective of the number of different plasmids involved. Strains harboring different plasmids co-expressed the introduced genes, resulting in functional proteins. Thus, this approach provides a new and attractive tool for the rapid generation of recombinant strains that simultaneously co-produce several proteins in desired stoichiometric ratios. PMID:12021801

  11. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes.

    PubMed

    Tiquia, S M; Ichida, J M; Keener, H M; Elwell, D L; Burtt, E H; Michel, F C

    2005-05-01

    Composting is one of the more economical and environmentally safe methods of recycling feather waste generated by the poultry industry, since 90% of the feather weight consists of crude keratin protein, and feathers contain 15% N. However, the keratin in waste feathers is resistant to biodegradation and may require the addition of bacterial inocula to enhance the degradation process during composting. Two keratin-degrading bacteria isolated from plumage of wild songbirds and identified as Bacillus licheneformis (OWU 1411T) and Streptomyces sp. (OWU 1441) were inoculated into poultry feather composts (1.13 x 10(8) cfu g(-1) feathers) and co-composted with poultry litter and straw in 200-l compost vessels. Composting temperatures, as well as CO(2) and NH(3) evolution, were measured in these vessels to determine the effects of inoculation on the rate and extent of poultry feather decomposition during composting. Terminal restriction fragment length polymorphisms of 16S rRNA genes were used to follow changes in microbial community structure during composting. The results indicated that extensive carbon conversion occurred in both treatments (55.5 and 56.1%). The addition of the bacterial inocula did not enhance the rate of waste feather composting. The microbial community structure over time was very similar in inoculated and uninoculated waste feather composts. PMID:15614566

  12. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis.

    PubMed

    Hanelt, B; Van Schyndel, D; Adema, C M; Lewis, L A; Loker, E S

    1996-11-01

    The Orthonectida is a small, poorly known phylum of parasites of marine invertebrates. Their phylogenetic placement is obscure; they have been considered to be multicellular protozoans, primitive animals at a "mesozoan" grade of organization, or secondarily simplified flatworm-like organisms. The best known species in the phylum, Rhopalura ophiocomae, was collected on San Juan Island, Wash. and a complete 18S rDNA sequence was obtained. Using the models of minimum evolution and parsimony, phylogenetic analyses were undertaken and the results lend support to the following hypotheses about orthonectids: (1) orthonectids are more closely aligned with triploblastic metazoan taxa than with the protist or diploblastic metazoan taxa considered in this analysis; (2) orthonectids are not derived members of the phylum Platyhelminthes; and (3) orthonectids and rhombozoans are not each other's closest relatives, thus casting further doubt on the validity of the phylum Mesozoa previously used to encompass both groups. PMID:8896370

  13. Novel genetic diversity within Anopheles punctimacula s.l.: phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2).

    PubMed

    Loaiza, Jose R; Scott, Marilyn E; Bermingham, Eldredge; Sanjur, Oris I; Rovira, Jose R; Dutari, Larissa C; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E

    2013-10-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3' COI), the Barcode region in the five prime end of the COI (5' COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3' COI depicted six highly supported molecular lineages (A-F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5' COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3' COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  14. A Real-Time PCR Assay Based on 5.8S rRNA Gene (5.8S rDNA) for Rapid Detection of Candida from Whole Blood Samples.

    PubMed

    Guo, Yi; Yang, Jing-Xian; Liang, Guo-Wei

    2016-06-01

    The prevalence of Candida in bloodstream infections (BSIs) has increased. To date, the identification of Candida in BSIs still mainly relies on blood culture and serological tests, but they have various limitations. Therefore, a real-time PCR assay for the detection of Candida from whole blood is presented. The unique primers/probe system was designed on 5.8S rRNA gene (5.8S rDNA) of Candida genus. The analytical sensitivity was determined by numbers of positive PCRs in 12 repetitions. At the concentration of 10(1) CFU/ml blood, positive PCR rates of 100 % were obtained for C. albicans, C. parapsilosis, C. tropicalis, and C. krusei. The detection rate for C. glabrata was 75 % at 10(1) CFU/ml blood. The reaction specificity was 100 % when evaluating the assay using DNA samples from clinical isolates and human blood. The maximum CVs of intra-assay and inter-assay for the detection limit were 1.22 and 2.22 %, respectively. To assess the clinical applicability, 328 blood samples from 82 patients were prospectively tested and real-time PCR results were compared with results from blood culture. Diagnostic sensitivity of the PCR was 100 % using as gold standard blood culture, and specificity was 98.4 %. Our data suggest that the developed assay can be used in clinical laboratories as an accurate and rapid screening test for the Candida from whole blood. Although further evaluation is warranted, our assay holds promise for earlier diagnosis of candidemia. PMID:26687075

  15. Novel genetic diversity within Anopheles punctimacula s.l.: Phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2)

    PubMed Central

    Loaiza, Jose R.; Scott, Marilyn E.; Bermingham, Eldredge; Sanjur, Oris I.; Rovira, Jose R.; Dutari, Larissa C.; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E.

    2013-01-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3´ COI), the Barcode region in the five prime end of the COI (5´ COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3´ COI depicted six highly supported molecular lineages (A–F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5´ COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3´ COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  16. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex.

    PubMed

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5' end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  17. rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes.

    PubMed Central

    Degnan, B M; Yan, J; Hawkins, C J; Lavin, M F

    1990-01-01

    Ascidians, primitive chordates that have retained features of the likely progenitors to all vertebrates, are a useful model to study the evolutionary relationship of chordates to other animals. We have selected the well characterized ribosomal RNA (rRNA) genes to investigate this relationship, and we describe here the cloning and characterization of an entire ribosomal DNA (rDNA) tandem repeat unit from a lower chordate, the ascidian Herdmania momus. rDNA copy number and considerable sequence differences were observed between two H. momus populations. Comparison of rDNA primary sequence and rRNA secondary structures from H. momus with those from other well characterized organisms, demonstrated that the ascidians are more closely related to other chordates than invertebrates. The rDNA tandem repeat makes up a larger percentage (7%) of the genome of this animal than in other higher eukaryotes. The total length of the spacer and transcribed region in H. momus rDNA is small compared to most higher eukaryotes, being less than 8 kb, and the intergenic spacer region consists of smaller internal repeats. Comparative analysis of rDNA sequences has allowed the construction of secondary structures for the 18S, 5.8S and 26S rRNAs. Images PMID:2263465

  18. Identification of new 18S rRNA strains of Babesia canis isolated from dogs with subclinical babesiosis.

    PubMed

    Łyp, P; Adaszek, Ł; Furmaga, B; Winiarczyk, S

    2015-01-01

    In this study, we used PCR to detect and characterize B. canis from naturally infected dogs in Poland with subclinical babesiosis by amplifying and sequencing a portion of the 18S ribosomal RNA (rRNA) gene. Venous blood samples were collected from ten dogs with subclinical babesiosis. A 559-bp fragment of the B. canis 18S rRNA gene was amplified by PCR. Sequencing of the PCR products led to the identification of a new variant of Babesia canis, differing from the previously detected protozoa genotypes (18S rRNA-A and 18S rRNA-B) with nucleotide substitutions in positions 150 and 151 of the tested gene fragment. The results indicate the emergence within the Polish territory of a new, previously unencountered Babesia canis genotype responsible for the development of subclinical babesiosis. PMID:26618590

  19. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    PubMed

    Long, Hong; Chen, Chunli; Wang, Bing; Feng, Yanni

    2015-01-01

    The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins. PMID:25723542

  20. Chromosome mapping of ribosomal genes and histone H4 in the genus Radacridium (Romaleidae)

    PubMed Central

    Anjos, Allison; Loreto, Vilma; de Souza, Maria José

    2013-01-01

    In this study, two species of Romaleidae grasshoppers, Radacridium mariajoseae and R.nordestinum, were analyzed after CMA3/DA/DAPI sequential staining and fluorescence in situ hybridization (FISH) to determine the location of the 18S and 5S rDNA and histone H4 genes. Both species presented karyotypes composed of 2n = 23, X0 with exclusively acrocentric chromosomes. CMA3+ blocks were detected after CMA3/DA/DAPI staining in only one medium size autosome bivalent and in the X chromosome in R. mariajoseae. On the other hand, all chromosomes, except the L1 bivalent, of R. nordestinum presented CMA3+ blocks. FISH analysis showed that the 18S genes are restricted to the X chromosome in R. mariajoseae, whereas these genes were located in the L2, S9 and S10 autosomes in R. nordestinum. In R. mariajoseae, the 5S rDNA sites were localized in the in L1 and L2 bivalents and in the X chromosome. In R. nordestinum, the 5S genes were located in the L2, L3, M4 and M5 pairs. In both species the histone H4 genes were present in a medium size bivalent. Together, these data evidence a great variability of chromosome markers and show that the 18S and 5S ribosomal genes are dispersed in the Radacridium genome without a significant correlation. PMID:24130439

  1. Ribosomal genes of Histoplasma capsulatum var. duboisii and var. farciminosum.

    PubMed

    Okeke, C N; Kappe, R; Zakikhani, S; Nolte, O; Sonntag, H G

    1998-11-01

    A total of 1704 basepairs of the 18S rDNA of Histoplasma capsulatum var. duboisii (HCD, strain CBS175.57) and H. capsulatum var. farciminosum (HCF, strain CBS478.64) were sequenced (EMBL accession no. Z75306 and no. Z75307). The 18S rDNA of HCD was 100% identical to a published sequence of H. capsulatum var. capsulatum (HCC). The 18S rDNA of HCF showed one transversional point mutation at the nucleotide position 114 (ref. Saccharomyces cerevisiae). Hybridization confirmed that, in the 18S rDNA of two out of five strains of HCF, guanine was substituted for cytosine at the nucleotide position 114. Furthermore, identical group 1C1 introns (403 bp) were found to be inserted after position 1165 in four out of five strains of HCF, including the two strains with point mutations in the 18S rDNA, and a slightly different group 1C1 intron (408 bp) was detected in one strain of HCC without this point mutation. Intraspecific sequence variability in the highly conserved 18S rDNA because of occurrence of introns and mutations as a possible source of error in molecular diagnostics is discussed. In addition, internal transcribed spacer regions between the 18S rDNA and the 5.8S rDNA (ITS1) of three strains of HCF, and one strain each of HCC and HCD showed significant sequence variability between varieties and strains of H. capsulatum. PMID:9916456

  2. macroH2A1 histone variant represses rDNA transcription.

    PubMed

    Cong, Rong; Das, Sadhan; Douet, Julien; Wong, Jiemin; Buschbeck, Marcus; Mongelard, Fabien; Bouvet, Philippe

    2014-01-01

    The regulation of ribosomal DNA transcription is an important step for the control of cell growth. Epigenetic marks such as DNA methylation and posttranslational modifications of canonical histones have been involved in this regulation, but much less is known about the role of histone variants. In this work, we show that the histone variant macroH2A1 is present on the promoter of methylated rDNA genes. The inhibition of the expression of macroH2A1 in human HeLa and HepG2 cells and in a mouse ES cell line resulted in an up to 5-fold increase of pre-rRNA levels. This increased accumulation of pre-rRNA is accompanied by an increase of the loading of RNA polymerase I and UBF on the rDNA without any changes in the number of active rDNA genes. The inhibition of RNA polymerase I transcription by actinomycin D or by knocking down nucleolin, induces the recruitment of macroH2A1 on the rDNA and the relocalization of macroH2A1 in the nucleolus. Interestingly, the inhibition of rDNA transcription induced by nucleolin depletion is alleviated by the inactivation of macroH2A1. These results demonstrate that macroH2A1 is a new factor involved in the regulation of rDNA transcription. PMID:24071584

  3. Differentiation of anaerobic polycentric fungi by rDNA PCR-RFLP.

    PubMed

    Fliegerová, K; Mrázek, J; Voigt, K

    2006-01-01

    The suitability of restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA cluster for discriminating two genera of anaerobic polycentric fungi, Orpinomyces and Anaeromyces, was determined. Three PCR-amplified DNA fragments--nuclear small subunit (SSU; 18S rDNA), the nuclear large subunit (LSU; 28S rDNA) and internal transcribed spacer (ITS)--were restricted with endonucleases AluI, DraI, HinfI and MboI. Although the SSU DNA fragment could be restricted successfully by all four enzymes, no differences were observed between restriction patterns of Orpinomyces and Anaeromyces. The most polymorphic restriction pattern between Orpinomyces and Anaeromyces resulted from cleavage of LSU rDNA fragments cut by AluI and HinfI and ITS fragment cut by DraI and HinfI. Genus-specific RFLP patterns were determined for Orpinomyces and Anaeromyces genera; the results showed that the PCR-RFLP analysis of rDNA offers an easy and rapid tool for differentiation of two polycentric genera of anaerobic fungi, which could be hardly separated on the basis of morphology. PMID:17007423

  4. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences.

    PubMed

    Duff, R J; Nickrent, D L

    1999-03-01

    Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes. PMID:10077500

  5. RNA Polymerase I and Fob1 contributions to transcriptional silencing at the yeast rDNA locus.

    PubMed

    Buck, Stephen W; Maqani, Nazif; Matecic, Mirela; Hontz, Robert D; Fine, Ryan D; Li, Mingguang; Smith, Jeffrey S

    2016-07-27

    RNA polymerase II (Pol II)-transcribed genes embedded within the yeast rDNA locus are repressed through a Sir2-dependent process called 'rDNA silencing'. Sir2 is recruited to the rDNA promoter through interactions with RNA polymerase I (Pol I), and to a pair of DNA replication fork block sites (Ter1 and Ter2) through interaction with Fob1. We utilized a reporter gene (mURA3) integrated adjacent to the leftmost rDNA gene to investigate localized Pol I and Fob1 functions in silencing. Silencing was attenuated by loss of Pol I subunits or insertion of an ectopic Pol I terminator within the adjacent rDNA gene. Silencing left of the rDNA array is naturally attenuated by the presence of only one intact Fob1 binding site (Ter2). Repair of the 2nd Fob1 binding site (Ter1) dramatically strengthens silencing such that it is no longer impacted by local Pol I transcription defects. Global loss of Pol I activity, however, negatively affects Fob1 association with the rDNA. Loss of Ter2 almost completely eliminates localized silencing, but is restored by artificially targeting Fob1 or Sir2 as Gal4 DNA binding domain fusions. We conclude that Fob1 and Pol I make independent contributions to establishment of silencing, though Pol I also reinforces Fob1-dependent silencing. PMID:27060141

  6. Copy Number of the Transposon, Pokey, in rDNA Is Positively Correlated with rDNA Copy Number in Daphnia obtusa

    PubMed Central

    LeRiche, Kaitlynn; Eagle, Shannon H. C.; Crease, Teresa J.

    2014-01-01

    Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species. PMID:25490398

  7. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected].

    PubMed

    LeRiche, Kaitlynn; Eagle, Shannon H C; Crease, Teresa J

    2014-01-01

    Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA) genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR) to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL) initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼ 87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species. PMID:25490398

  8. Protein kinase NII and the regulation of rDNA transcription in mammalian cells.

    PubMed Central

    Belenguer, P; Baldin, V; Mathieu, C; Prats, H; Bensaid, M; Bouche, G; Amalric, F

    1989-01-01

    Transcription of ribosomal RNA genes is generally accepted to correlate with cell growth. Using primary cultures of adult bovine aortic endothelial (ABAE) cells, we have shown that transcription of rDNA in confluent cells falls to 5% of the transcription level in growing cells. Protein kinase NII appears to be a limiting factor to promote rDNA transcription in isolated nuclei of confluent cells. Protein kinase NII was detected by immunocytochemistry in the cytoplasm, nuclei and nucleoli of growing cells while it was no longer present in nucleoli of confluent cells. The kinase activity, in isolated nuclei, was estimated by endogenous phosphorylation of a specific substrate, nucleolin. A 10% residual activity was present in confluent cell nuclei compared to growing cell nuclei. Concomitantly, the transcription 'in vitro' of rDNA in the corresponding nuclei was also highly reduced (by 85%). Addition of exogenous protein kinase NII to confluent cell nuclei induced a strong increase in the phosphorylation of specific proteins including nucleolin. In parallel, the transcription of rDNA was increased by a factor of 5, to nearly the level observed in nuclei prepared from growing cells. These data suggest that, in confluent cells, factors necessary for rDNA transcription machinery are present but inactive in the nucleolus and that the phosphorylation of one or several of these factors (nucleolin, topoisomerase I,...) by protein kinase NII is a key event in the regulation of rDNA transcription. Images PMID:2780290

  9. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit. PMID:27106499

  10. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  11. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  12. BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase

    PubMed Central

    Khan, Abid; Giri, Sumanprava; Wang, Yating; Chakraborty, Arindam; Ghosh, Archit K.; Anantharaman, Aparna; Aggarwal, Vasudha; Sathyan, Kizhakke M.; Ha, Taekjip; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2015-01-01

    Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1–interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing. PMID:26100909

  13. BEND3 represses rDNA transcription by stabilizing a NoRC component via USP21 deubiquitinase.

    PubMed

    Khan, Abid; Giri, Sumanprava; Wang, Yating; Chakraborty, Arindam; Ghosh, Archit K; Anantharaman, Aparna; Aggarwal, Vasudha; Sathyan, Kizhakke M; Ha, Taekjip; Prasanth, Kannanganattu V; Prasanth, Supriya G

    2015-07-01

    Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1-interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing. PMID:26100909

  14. Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini

    PubMed Central

    Carta, L. K.; Skantar, A. M.; Handoo, Z. A.

    2010-01-01

    Three stunt nematode species, Tylenchorhynchus leviterminalis, T. dubius and T. claytoni were characterized with segments of small subunit 18S and large subunit 28S rDNA sequence and placed in molecular phylogenetic context with other polyphyletic taxa of Telotylenchidae. Based upon comparably sized phylogenetic breadth of outgroups and ingroups, the 28S rDNA contained three times the number of phylogenetically informative alignment characters relative to the alignment total compared to the larger 18S dataset even though there were fewer than half the number of taxa represented. Tail shapes and hyaline termini were characterized for taxa within these subfamily trees, and variability discussed for some related species. In 18S trees, similar terminal tail thickness was found in a well-supported clade of three Tylenchorhynchus: broad-tailed T. leviterminalis branched outside relatively narrow-tailed T. claytoni and T. nudus. Terminal tail thickness within Merliniinae, Telotylenchinae and related taxa showed a mosaic distribution. Thick-tailed Trophurus, Macrotrophurus and putative Paratrophurus did not group together in the 18S tree. Extremely thickened tail termini arose at least once in Amplimerlinius and Pratylenchoides among ten species of Merliniinae plus three Pratylenchoides, and three times within twelve taxa of Telotylenchinae and Trophurinae. Conflicting generic and family nomenclature based on characters such as pharyngeal overlap are discussed in light of current molecular phylogeny. Contrary to some expectations from current taxonomy, Telotylenchus and Tylenchorhynchus cf. robustus did not cluster with three Tylenchorhynchus spp. Two putative species of Neodolichorhynchus failed to group together, and two populations of Scutylenchus quadrifer demonstrated as much or greater genetic distance between them than among three related species of Merlinius. PMID:22736870

  15. Unusual dispersion of histone repeats on the whole chromosomal complement and their colocalization with ribosomal genes in Rachycentron canadum (Rachycentridae, Perciformes).

    PubMed

    Costa, Gideão W W F; Cioffi, Marcelo B; Bertollo, Luiz A C; Molina, Wagner F

    2014-01-01

    Rachycentron canadum, the only representative of the family Rachycentridae, has been the focus of biotechnological interest due to its significant potential in marine fish farming. The chromosome set of this species has been widely investigated with respect to the location of genes and multigene families. A FISH analysis was performed using 4 multigene families as probes, represented by 5S and 18S ribosomal genes and histones H2B-H2A and H3. Earlier data suggested that differential replication of heterochromatin could be partially associated with functional genes. Indeed, our results showed that the DNA contained in heterochromatic regions of R. canadum contains 5S and 18S ribosomal genes as well as the gene sequences of histones H2B-H2A and H3, which were colocalized. The distribution of H3 sequences in all heterochromatic regions, except in 13q, could indicate an important evolutionary role for this class of repetitive sequences. Besides, the presence of chromosome regions bearing multifunctional repetitive sequences formed by H2B-H2A/H3/18S rDNA and H2B-H2A/H3/5S rDNA clusters was demonstrated for the first time in fishes. The implications of differential histone gene extension and its functionality in the karyotype of R. canadum remain unknown. PMID:25341625

  16. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  17. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses. PMID:18430591

  18. Nucleolin: dual roles in rDNA chromatin transcription.

    PubMed

    Durut, Nathalie; Sáez-Vásquez, Julio

    2015-02-01

    Nucleolin is a major nucleolar protein conserved in all eukaryotic organisms. It is a multifunctional protein involved in different cellular aspects like chromatin organization and stability, DNA and RNA metabolism, assembly of ribonucleoprotein complexes, cytokinesis, cell proliferation and stress response. The multifunctionality of nucleolin is linked to its tripartite structure, post-translational modifications and its ability of shuttling from and to the nucleolus/nucleoplasm and cytoplasm. Nucleolin has been now studied for many years and its activities and properties have been described in a number of excellent reviews. Here, we overview the role of nucleolin in RNA polymerase I (RNAPI) transcription and describe recent results concerning its functional interaction with rDNA chromatin organization. For a long time, nucleolin has been associated with rRNA gene expression and pre-rRNA processing. However, the functional connection between nucleolin and active versus inactive rRNA genes is still not fully understood. Novel evidence indicates that the nucleolin protein might be required for controlling the transcriptional ON/OFF states of rDNA chromatin in both mammals and plants. PMID:25225127

  19. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p.

    PubMed Central

    Smith, J S; Brachmann, C B; Pillus, L; Boeke, J D

    1998-01-01

    Transcriptional silencing in Saccharomyces cerevisiae occurs at the silent mating-type loci HML and HMR, at telomeres, and at the ribosomal DNA (rDNA) locus RDN1. Silencing in the rDNA occurs by a novel mechanism that depends on a single Silent Information Regulator (SIR) gene, SIR2. SIR4, essential for other silenced loci, paradoxically inhibits rDNA silencing. In this study, we elucidate a regulatory mechanism for rDNA silencing based on the finding that rDNA silencing strength directly correlates with cellular Sir2 protein levels. The endogenous level of Sir2p was shown to be limiting for rDNA silencing. Furthermore, small changes in Sir2p levels altered rDNA silencing strength. In rDNA silencing phenotypes, sir2 mutations were shown to be epistatic to sir4 mutations, indicating that SIR4 inhibition of rDNA silencing is mediated through SIR2. Furthermore, rDNA silencing is insensitive to SIR3 overexpression, but is severely reduced by overexpression of full-length Sir4p or a fragment of Sir4p that interacts with Sir2p. This negative effect of SIR4 overexpression was overridden by co-overexpression of SIR2, suggesting that SIR4 directly inhibits the rDNA silencing function of SIR2. Finally, genetic manipulations of SIR4 previously shown to promote extended life span also resulted in enhanced rDNA silencing. We propose a simple model in which telomeres act as regulators of rDNA silencing by competing for limiting amounts of Sir2 protein. PMID:9649515

  20. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.

    PubMed

    Whiting, M F; Carpenter, J C; Wheeler, Q D; Wheeler, W C

    1997-03-01

    Phylogenetic relationships among the holometabolous insect orders were inferred from cladistic analysis of nucleotide sequences of 18S ribosomal DNA (rDNA) (85 exemplars) and 28S rDNA (52 exemplars) and morphological characters. Exemplar outgroup taxa were Collembola (1 sequence), Archaeognatha (1), Ephemerida (1), Odonata (2), Plecoptera (2), Blattodea (1), Mantodea (1), Dermaptera (1), Orthoptera (1), Phasmatodea (1), Embioptera (1), Psocoptera (1), Phthiraptera (1), Hemiptera (4), and Thysanoptera (1). Exemplar ingroup taxa were Coleoptera: Archostemata (1), Adephaga (2), and Polyphaga (7); Megaloptera (1); Raphidioptera (1); Neuroptera (sensu stricto = Planipennia): Mantispoidea (2), Hemerobioidea (2), and Myrmeleontoidea (2); Hymenoptera: Symphyta (4) and Apocrita (19); Trichoptera: Hydropsychoidea (1) and Limnephiloidea (2); Lepidoptera: Ditrysia (3); Siphonaptera: Pulicoidea (1) and Ceratophylloidea (2); Mecoptera: Meropeidae (1), Boreidae (1), Panorpidae (1), and Bittacidae (2); Diptera: Nematocera (1), Brachycera (2), and Cyclorrhapha (1); and Strepsiptera: Corioxenidae (1), Myrmecolacidae (1), Elenchidae (1), and Stylopidae (3). We analyzed approximately 1 kilobase of 18S rDNA, starting 398 nucleotides downstream of the 5' end, and approximately 400 bp of 28S rDNA in expansion segment D3. Multiple alignment of the 18S and 28S sequences resulted in 1,116 nucleotide positions with 24 insert regions and 398 positions with 14 insert regions, respectively. All Strepsiptera and Neuroptera have large insert regions in 18S and 28S. The secondary structure of 18S insert 23 is composed of long stems that are GC rich in the basal Strepsiptera and AT rich in the more derived Strepsiptera. A matrix of 176 morphological characters was analyzed for holometabolous orders. Incongruence length difference tests indicate that the 28S + morphological data sets are incongruent but that 28S + 18S, 18S + morphology, and 28S + 18S + morphology fail to reject the hypothesis of

  1. Contrasting Patterns of rDNA Homogenization within the Zygosaccharomyces rouxii Species Complex

    PubMed Central

    Chand Dakal, Tikam; Giudici, Paolo; Solieri, Lisa

    2016-01-01

    Arrays of repetitive ribosomal DNA (rDNA) sequences are generally expected to evolve as a coherent family, where repeats within such a family are more similar to each other than to orthologs in related species. The continuous homogenization of repeats within individual genomes is a recombination process termed concerted evolution. Here, we investigated the extent and the direction of concerted evolution in 43 yeast strains of the Zygosaccharomyces rouxii species complex (Z. rouxii, Z. sapae, Z. mellis), by analyzing two portions of the 35S rDNA cistron, namely the D1/D2 domains at the 5’ end of the 26S rRNA gene and the segment including the internal transcribed spacers (ITS) 1 and 2 (ITS regions). We demonstrate that intra-genomic rDNA sequence variation is unusually frequent in this clade and that rDNA arrays in single genomes consist of an intermixing of Z. rouxii, Z. sapae and Z. mellis-like sequences, putatively evolved by reticulate evolutionary events that involved repeated hybridization between lineages. The levels and distribution of sequence polymorphisms vary across rDNA repeats in different individuals, reflecting four patterns of rDNA evolution: I) rDNA repeats that are homogeneous within a genome but are chimeras derived from two parental lineages via recombination: Z. rouxii in the ITS region and Z. sapae in the D1/D2 region; II) intra-genomic rDNA repeats that retain polymorphisms only in ITS regions; III) rDNA repeats that vary only in their D1/D2 domains; IV) heterogeneous rDNA arrays that have both polymorphic ITS and D1/D2 regions. We argue that an ongoing process of homogenization following allodiplodization or incomplete lineage sorting gave rise to divergent evolutionary trajectories in different strains, depending upon temporal, structural and functional constraints. We discuss the consequences of these findings for Zygosaccharomyces species delineation and, more in general, for yeast barcoding. PMID:27501051

  2. Sequence variation within the rRNA gene loci of 12 Drosophila species

    PubMed Central

    Stage, Deborah E.; Eickbush, Thomas H.

    2007-01-01

    Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8–8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10–20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species. PMID:17989256

  3. Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag.

    PubMed

    Nichuguti, Narisu; Hayase, Mayumi; Fujiwara, Haruhiko

    2016-05-15

    Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner. PMID:26976636

  4. Mixed heterolobosean and novel gregarine lineage genes from culture ATCC 50646: Long-branch artefacts, not lateral gene transfer, distort α-tubulin phylogeny.

    PubMed

    Cavalier-Smith, Thomas

    2015-04-01

    Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees. PMID:25769111

  5. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia)

    PubMed Central

    Pérez-García, Concepción; Hurtado, Ninoska S.; Morán, Paloma; Pasantes, Juan J.

    2014-01-01

    The chromosomal changes accompanying bivalve evolution are an area about which few reports have been published. To improve our understanding on chromosome evolution in Veneridae, ribosomal RNA gene clusters were mapped by fluorescent in situ hybridization (FISH) to chromosomes of five species of venerid clams (Venerupis corrugata, Ruditapes philippinarum, Ruditapes decussatus, Dosinia exoleta, and Venus verrucosa). The results were anchored to the most comprehensive molecular phylogenetic tree currently available for Veneridae. While a single major rDNA cluster was found in each of the five species, the number of 5S rDNA clusters showed high interspecies variation. Major rDNA was either subterminal to the short arms or intercalary to the long arms of metacentric or submetacentric chromosomes, whereas minor rDNA signals showed higher variability. Major and minor rDNAs map to different chromosome pairs in all species, but in R. decussatus one of the minor rDNA gene clusters and the major rDNA cluster were located in the same position on a single chromosome pair. This interspersion of both sequences was confirmed by fiber FISH. Telomeric signals appeared at both ends of every chromosome in all species. FISH mapping data are discussed in relation to the molecular phylogenetic trees currently available for Veneridae. PMID:24967400

  6. Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes

    PubMed Central

    Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  7. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes.

    PubMed

    Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  8. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder.

    PubMed

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5'-external transcribed spacer/5'ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5'ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5'ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  9. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  10. Variability of 18rDNA loci in four lace bug species (Hemiptera, Tingidae) with the same chromosome number

    PubMed Central

    Golub, Natalia V.; Golub, Viktor B.; Kuznetsova, Valentina G.

    2015-01-01

    Abstract Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), Tingis crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomorpha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and (TTAGG)n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG)n probe produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular composition. Tingidae share absence of the (TTAGG)n telomeric sequence with all so far studied taxa of the advanced true bug infraorders Cimicomorpha and Pentatomomorpha. PMID:26753071

  11. Typification of virulent and low virulence Babesia bigemina clones by 18S rRNA and rap-1c.

    PubMed

    Thompson, C; Baravalle, M E; Valentini, B; Mangold, A; Torioni de Echaide, S; Ruybal, P; Farber, M; Echaide, I

    2014-06-01

    The population structure of original Babesia bigemina isolates and reference strains with a defined phenotypic profile was assessed using 18S rRNA and rap-1c genes. Two reference strains, BbiS2P-c (virulent) and BbiS1A-c (low virulence), were biologically cloned in vitro. The virulence profile of the strains and clones was assessed in vivo. One fully virulent and one low-virulence clone were mixed in identical proportions to evaluate their growth efficiency in vitro. Each clone was differentiated by two microsatellites and the gene gp45. The 18S rRNA and rap-1c genes sequences from B. bigemina biological clones and their parental strains, multiplied exclusively in vivo or in vitro, were compared with strain JG-29. The virulence of clones derived from the BbiS2P-c strain was variable. Virulent clone Bbi9P1 grew more efficiently in vitro than did the low-virulence clone Bbi2A1. The haplotypes generated by the nucleotide polymorphism, localized in the V4 region of the 18S rRNA, allowed the identification of three genotypes. The rap-1c haplotypes allowed defining four genotypes. Parental and original strains were defined by multiple haplotypes identified in both genes. The rap-1c gene, analyzed by high-resolution melting (HRM), allowed discrimination between two genotypes according to their phenotype, and both were different from JG-29. B. bigemina biological clones made it possible to define the population structure of isolates and strains. The polymorphic regions of the 18S rRNA and rap-1c genes allowed the identification of different subpopulations within original B. bigemina isolates by the definition of several haplotypes and the differentiation of fully virulent from low virulence clones. PMID:24681200

  12. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans.

    PubMed Central

    Pérez-González, C E; Eickbush, T H

    2001-01-01

    The mobile elements R1 and R2 insert specifically into the rRNA gene locus (rDNA locus) of arthropods, a locus known to undergo concerted evolution, the recombinational processes that preserve the sequence homogeneity of all repeats. To monitor how rapidly individual R1 and R2 insertions are turned over in the rDNA locus by these processes, we have taken advantage of the many 5' truncation variants that are generated during the target-primed reverse transcription mechanism used by these non-LTR retrotransposons for their integration. A simple PCR assay was designed to reveal the pattern of the 5' variants present in the rDNA loci of individual X chromosomes in a population of Drosophila simulans. Each rDNA locus in this population was found to have a large, unique collection of 5' variants. Each variant was present at low copy number, usually one copy per chromosome, and was seldom distributed to other chromosomes in the population. The failure of these variants to spread to other units in the same rDNA locus suggests a strong recombinational bias against R1 and R2 that results in the individual copies of these elements being rapidly lost from the rDNA locus. This bias suggests a significantly higher frequency of R1 and R2 retrotransposition than we have previously suggested. PMID:11514447

  13. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae).

    PubMed

    Fan, Xing; Liu, Jing; Sha, Li-Na; Sun, Gen-Lou; Hu, Zhi-Qin; Zeng, Jian; Kang, Hou-Yang; Zhang, Hai-Qin; Wang, Yi; Wang, Xiao-Li; Zhang, Li; Ding, Chun-Bang; Yang, Rui-Wu; Zheng, You-Liang; Zhou, Yong-Hong

    2014-08-01

    Ribosomal ITS polymorphism and its ancestral genome origin of polyploid Leymus were examined to infer the evolutionary outcome of rDNA gene following allopolyploid speciation and to elucidate the geographic pattern of ITS variation. The results demonstrated that different polyploids have experienced varying fates, including maintenance or homogenization of divergent arrays, occurrence of chimeric repeats and potential pseudogenes. Our data suggested that (1) the Ns, P/F, and St genomic types in Leymus were originated from Psathyrostachys, Agropyron/Eremopyrum, and Pseudoroegneria, respectively; (2) the occurrence of a higher proportion of Leymus species with predominant uniparental rDNA type might associate with the segmental allopolyploid origin, nucleolar dominance of alloploids, and rapid radiation of Leymus; (3) maintenance of multiple parental ITS types in allopolyploid might result from long generation times associated to vegetative multiplication, number and chromosomal location of ribosomal loci and/or recurrent hybridization; (4) the rDNA genealogical structure of Leymus species might associate with the geographic origins; and (5) ITS sequence clade shared by Leymus species from Central Asia, North America, and Nordic might be an outcome of ancestral ITS homogenization. Our results shed new light on understanding evolutionary outcomes of rDNA following allopolyploid speciation and geographic isolation. PMID:24780748

  14. Clinorotation influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; González-Camacho, F.; Rodríguez-Vilariño, V.; Kordyum, E. L.; Medina, F. J.

    The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts. The plant nucleolin homologue NopA100 is involved in the regulation of r-chromatin condensation/expansion and rDNA transcription as well as in rRNA processing. We have investigated with immunogold electron microscopy the location of nucleolar DNA and NopA100 in cress root meristematic cells grown under slow horizontal clinorotation, reproducing an important feature of microgravity, namely the absence of an orienting action of a gravity vector, compared to control conditions. We demonstrate redistribution of both rDNA and NopA100 in nucleolar subcomponents induced by clinorotation. Ribosomal DNA concentrated predominantly in fibrillar centers in the form of condensed r-chromatin inclusions and internal non condensed fibrils, redistributing from the dense fibrillar component and the transition zone between fibrillar centers and the dense fibrillar component, recognized as the loci of rDNA transcription. The content of NopA100 was much higher in the inner space of fibrillar centers and reduced in the dense fibrillar component as compared to the control. Based on these data, an effect of slow horizontal clinorotation in lowering the level of rDNA transcription as well as rRNA processing is suggested.

  15. Intraspecific polymorphism of rDNA among five Nosema bombycis isolates from different geographic regions in China.

    PubMed

    Liu, Handeng; Pan, Guoqing; Luo, Bo; Li, Tian; Yang, Qiong; Vossbrinck, Charles R; Debrunner-Vossbrinck, Bettina A; Zhou, Zeyang

    2013-05-01

    The microsporidian Nosema bombycis is the causative agent of pébrine, a highly infectious disease of the silkworm Bombyx mori. Three regions of the multicopy rDNA gene were examined in order to investigate the relationships among five Nosema isolates from various regions of China. Ribosomal DNA alleles are present on each of the 18 chromosomes of N. bombycis and show a high degree of variation. In this study the small subunit (SSU) rDNA, internal transcribed spacer (ITS) and intergenic spacer (IGS) regions for up to 10 different rDNA copies from each N. bombycis isolate were cloned and sequenced. As expected we see greater polymorphism in the ITS region (88 variable sites in 179 nucleotides) and IGS (200 variable sites in 279 nucleotides) than in the SSU rDNA (24 variable sites in 1232 nucleotides). Phylogenetic analysis shows greater differences between alleles within an isolate than between the same alleles from different isolates. The data reveal two very different groups, one from the Sichuan province and the other with a broad distribution including four provinces in southeast China and Japan. The Sichuan isolate does not have any rDNA alleles with sequences identical to those in the other isolates, implying that it is a separate, non-intermixing, population or perhaps a separate species from the other isolates. In light of the polymorphic nature of the rDNA alleles in N. bombycis and their presence on every chromosome, the rDNA gene may be useful for understanding the movement and ultimately the source of pébrine infections. PMID:23399511

  16. Multiple rDNA units distributed on all chromosomes of Nosema bombycis.

    PubMed

    Liu, Handeng; Pan, Guoqing; Song, Shihong; Xu, Jinshan; Li, Tian; Deng, Yanbo; Zhou, Zeyang

    2008-10-01

    Among Microsporidia, Nosema bombycis has a novel arrangement of LSUrRNA, SSUrRNA, ITS, IGS and 5SrRNA. To determine the distribution of rDNA among the chromosomes, we performed genome-wide screening and Southern blotting with three probes (SSU, ITS and IGS). Southern blotting revealed that ribosomal RNA genes are distributed on all chromosomes of N. bombycis, which is contrary to the previous result, which concluded that the N. bombycis rRNA genes were limited to a single chromosome. This wide distribution is similar to that of the rDNA unit of Encephalitozoon cuniculi. Screening of the N. bombycis genome detected 53 LSUrRNA elements, 43 SSUrRNA elements and 36 5SrRNA elements. However, it is still difficult to determine their loci on the chromosomes as the genomic map is unfinished. PMID:18640121

  17. Utility of internally transcribed spacer region of rDNA (ITS) and β-tubulin gene sequences to infer genetic diversity and migration patterns of Colletotrichum truncatum infecting Capsicum spp.

    PubMed

    Rampersad, Kandyce; Ramdial, Hema; Rampersad, Sephra N

    2016-01-01

    Anthracnose is among the most economically important diseases affecting pepper (Capsicum spp.) production in the tropics and subtropics. Of the three species of Colletotrichum implicated as causal agents of pepper anthracnose, C. truncatum is considered to be the most destructive in agro-ecosystems worldwide. However, the genetic variation and the migration potential of C. truncatum infecting pepper are not known. Five populations were selected for study and a two-locus (internally transcribed spacer region, ITS1-5.8S-ITS2, and β-tubulin, β-TUB) sequence data set was generated and used in the analyses. Sequences of the ITS region were less informative than β -tubulin gene sequences based on comparisons of DNA polymorphism indices. Trinidad had the highest genetic diversity and also had the largest effective population size in pairwise comparisons with the other populations. The Trinidad population also demonstrated significant genetic differentiation from the other populations. AMOVA and STRUCTURE analyses both suggested significant genetic variation within populations more so than among populations. A consensus Maximum Likelihood tree based on β-TUB gene sequences revealed very little intraspecific diversity for all isolates except for Trinidad. Two clades consisting solely of Trinidad isolates may have diverged earlier than the other isolates. There was also evidence of directional migration among the five populations. These findings may have a direct impact on the development of integrated disease management strategies to control C. truncatum infection in pepper. PMID:26843942

  18. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences.

    PubMed

    Papillon, Daniel; Perez, Yvan; Caubit, Xavier; Le Parco, Yannick

    2006-03-01

    While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy. PMID:16434216

  19. When fathers are instant losers: homogenization of rDNA loci in recently formed Cardamine × schulzii trigenomic allopolyploid.

    PubMed

    Zozomová-Lihová, Judita; Mandáková, Terezie; Kovaříková, Alena; Mühlhausen, Andreas; Mummenhoff, Klaus; Lysak, Martin A; Kovařík, Aleš

    2014-09-01

    Recently formed allopolyploids represent an excellent system to study the impacts of hybridization and genomic duplication on genome structure and evolution. Here we explored the 35SrRNA genes (rDNA) in the Cardamine × schulzii allohexaploid that was formed by two subsequent hybridization events within the past c. 150 yr. The rDNA loci were analyzed by cloning, next generation sequencing (NGS), RT-PCR and FISH methods. The primary C. × insueta triploid hybrid derived from C. rivularis (♀) and C. amara (♂) had gene ratios highly skewed towards maternal sequences. Similarly, C. × schulzii, originating from the secondary hybridization event involving C. × insueta (♀) and C. pratensis (♂), showed a reduction in paternal rDNA homeologs despite an excess of chromosomes inherited from C. pratensis. We also identified novel rDNA loci in C. × schulzii, suggesting that lost loci might be slowly reinstalled by translocation (but not recombination) of genes from partner genomes. Prevalent clonal propagation of allopolyploids, C. × insueta and C. × schulzii, indicates that concerted evolution of rDNA may occur in the absence of extensive meiotic cycles. Adoption of NGS in rDNA variant analysis is highly informative for deciphering the evolutionary histories of allopolyploid species with ongoing homogenization processes. PMID:24916080

  20. Fragile Sites of 'Valencia' Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA.

    PubMed

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in 'Valencia' C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of 'Valencia' C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid 'Valencia' C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in 'Valencia' sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in 'Valencia' sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  1. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo.

    PubMed

    Tchurikov, Nickolai A; Yudkin, Dmitry V; Gorbacheva, Maria A; Kulemzina, Anastasia I; Grischenko, Irina V; Fedoseeva, Daria M; Sosin, Dmitri V; Kravatsky, Yuri V; Kretova, Olga V

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics(1,2). There are nine hot spots of DSBs located in human rDNA units(3-6). Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  2. Retrotransposable elements R1 and R2 in the rDNA units of Drosophila mercatorum: abnormal abdomen revisited.

    PubMed Central

    Malik, H S; Eickbush, T H

    1999-01-01

    R1 and R2 retrotransposable elements are stable components of the 28S rRNA genes of arthropods. While each retrotransposition event leads to incremental losses of rDNA unit expression, little is known about the selective consequences of these elements on the host genome. Previous reports suggested that in the abnormal abdomen (aa) phenotype of Drosophila mercatorum, high levels of rDNA insertions (R1) in conjunction with the under-replication locus (ur), enable the utilization of different ecological conditions via a population level shift to younger age. We have sequenced the R1 and R2 elements of D. mercatorum and show that the levels of R1- and R2-inserted rDNA units were inaccurately scored in the original studies of aa, leading to several misinterpretations. In particular, contrary to earlier reports, aa flies differentially underreplicate R1- and R2-inserted rDNA units, like other species of Drosophila. However, aa flies do not undergo the lower level of underreplication of their functional rDNA units (general underreplication) that is seen in wild-type strains. The lack of general underreplication is expected to confer a selective advantage and, thus, can be interpreted as an adaptation to overcome high levels of R1 and R2 insertions. These results allow us to reconcile some of the apparently contradictory effects of aa and the bobbed phenotype found in other species of Drosophila. PMID:9927458

  3. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo

    PubMed Central

    Tchurikov, Nickolai A.; Yudkin, Dmitry V.; Gorbacheva, Maria A.; Kulemzina, Anastasia I.; Grischenko, Irina V.; Fedoseeva, Daria M.; Sosin, Dmitri V.; Kravatsky, Yuri V.; Kretova, Olga V.

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics1,2. There are nine hot spots of DSBs located in human rDNA units3–6. Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  4. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus.

    PubMed

    Matyášek, Roman; Dobešová, Eva; Húska, Dalibor; Ježková, Ivana; Soltis, Pamela S; Soltis, Douglas E; Kovařík, Aleš

    2016-02-01

    Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids. PMID:26711705

  5. Evaluating multiple alternative hypotheses for the origin of Bilateria: An analysis of 18S rRNA molecular evidence

    PubMed Central

    Collins, Allen G.

    1998-01-01

    Six alternative hypotheses for the phylogenetic origin of Bilateria are evaluated by using complete 18S rRNA gene sequences for 52 taxa. These data suggest that there is little support for three of these hypotheses. Bilateria is not likely to be the sister group of Radiata or Ctenophora, nor is it likely that Bilateria gave rise to Cnidaria or Ctenophora. Instead, these data reveal a close relationship between bilaterians, placozoans, and cnidarians. From this, several inferences can be drawn. Morphological features that previously have been identified as synapomorphies of Bilateria and Ctenophora, e.g., mesoderm, more likely evolved independently in each clade. The endomesodermal muscles of bilaterians may be homologous to the endodermal muscles of cnidarians, implying that the original bilaterian mesodermal muscles were myoepithelial. Placozoans should have a gastrulation stage during development. Of the three hypotheses that cannot be falsified with the 18S rRNA data, one is most strongly supported. This hypothesis states that Bilateria and Placozoa share a more recent common ancestor than either does to Cnidaria. If true, the simplicity of placozoan body architecture is secondarily derived from a more complex ancestor. This simplification may have occurred in association with a planula-type larva becoming reproductive before metamorphosis. If this simplification took place during the common history that placozoans share with bilaterians, then placozoan genes that contain a homeobox, such as Trox2, should be explored, for they may include the gene or genes most closely related to Hox genes of bilaterians. PMID:9860990

  6. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    PubMed

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent. PMID:25828689

  7. The Pattern of R2 Retrotransposon Activity in Natural Populations of Drosophila simulans Reflects the Dynamic Nature of the rDNA Locus

    PubMed Central

    Zhou, Jun; Eickbush, Thomas H.

    2009-01-01

    The pattern and frequency of insertions that enable transposable elements to remain active in a population are poorly understood. The retrotransposable element R2 exclusively inserts into the 28S rRNA genes where it establishes long-term, stable relationships with its animal hosts. Previous studies with laboratory stocks of Drosophila simulans have suggested that control over R2 retrotransposition resides within the rDNA loci. In this report, we sampled 180 rDNA loci of animals collected from two natural populations of D. simulans. The two populations were found to have similar patterns of R2 activity. About half of the rDNA loci supported no or very low levels of R2 transcripts with no evidence of R2 retrotransposition. The remaining half of the rDNA loci had levels of R2 transcripts that varied in a continuous manner over almost a 100-fold range and did support new retrotransposition events. Structural analysis of the rDNA loci in 18 lines that spanned the range of R2 transcript levels in these populations revealed that R2 number and rDNA locus size varied 2-fold; however, R2 activity was not readily correlated with either of these parameters. Instead R2 activity was best correlated with the distribution of elements within the rDNA locus. Loci with no activity had larger contiguous blocks of rDNA units free of R2-insertions. These data suggest a model in which frequent recombination within the rDNA locus continually redistributes R2-inserted units resulting in changing levels of R2 activity within individual loci and persistent R2 activity within the population. PMID:19229317

  8. The African buffalo parasite Theileria. sp. (buffalo) can infect and immortalize cattle leukocytes and encodes divergent orthologues of Theileria parva antigen genes.

    PubMed

    Bishop, R P; Hemmink, J D; Morrison, W I; Weir, W; Toye, P G; Sitt, T; Spooner, P R; Musoke, A J; Skilton, R A; Odongo, D O

    2015-12-01

    African Cape buffalo (Syncerus caffer) is the wildlife reservoir of multiple species within the apicomplexan protozoan genus Theileria, including Theileria parva which causes East coast fever in cattle. A parasite, which has not yet been formally named, known as Theileria sp. (buffalo) has been recognized as a potentially distinct species based on rDNA sequence, since 1993. We demonstrate using reverse line blot (RLB) and sequencing of 18S rDNA genes, that in an area where buffalo and cattle co-graze and there is a heavy tick challenge, T. sp. (buffalo) can frequently be isolated in culture from cattle leukocytes. We also show that T. sp. (buffalo), which is genetically very closely related to T. parva, according to 18s rDNA sequence, has a conserved orthologue of the polymorphic immunodominant molecule (PIM) that forms the basis of the diagnostic ELISA used for T. parva serological detection. Closely related orthologues of several CD8 T cell target antigen genes are also shared with T. parva. By contrast, orthologues of the T. parva p104 and the p67 sporozoite surface antigens could not be amplified by PCR from T. sp. (buffalo), using conserved primers designed from the corresponding T. parva sequences. Collectively the data re-emphasise doubts regarding the value of rDNA sequence data alone for defining apicomplexan species in the absence of additional data. 'Deep 454 pyrosequencing' of DNA from two Theileria sporozoite stabilates prepared from Rhipicephalus appendiculatus ticks fed on buffalo failed to detect T. sp. (buffalo). This strongly suggests that R. appendiculatus may not be a vector for T. sp. (buffalo). Collectively, the data provides further evidence that T. sp. (buffalo). is a distinct species from T. parva. PMID:26543804

  9. The African buffalo parasite Theileria. sp. (buffalo) can infect and immortalize cattle leukocytes and encodes divergent orthologues of Theileria parva antigen genes

    PubMed Central

    Bishop, R.P.; Hemmink, J.D.; Morrison, W.I.; Weir, W.; Toye, P.G.; Sitt, T.; Spooner, P.R.; Musoke, A.J.; Skilton, R.A.; Odongo, D.O.

    2015-01-01

    African Cape buffalo (Syncerus caffer) is the wildlife reservoir of multiple species within the apicomplexan protozoan genus Theileria, including Theileria parva which causes East coast fever in cattle. A parasite, which has not yet been formally named, known as Theileria sp. (buffalo) has been recognized as a potentially distinct species based on rDNA sequence, since 1993. We demonstrate using reverse line blot (RLB) and sequencing of 18S rDNA genes, that in an area where buffalo and cattle co-graze and there is a heavy tick challenge, T. sp. (buffalo) can frequently be isolated in culture from cattle leukocytes. We also show that T. sp. (buffalo), which is genetically very closely related to T. parva, according to 18s rDNA sequence, has a conserved orthologue of the polymorphic immunodominant molecule (PIM) that forms the basis of the diagnostic ELISA used for T. parva serological detection. Closely related orthologues of several CD8 T cell target antigen genes are also shared with T. parva. By contrast, orthologues of the T. parva p104 and the p67 sporozoite surface antigens could not be amplified by PCR from T. sp. (buffalo), using conserved primers designed from the corresponding T. parva sequences. Collectively the data re-emphasise doubts regarding the value of rDNA sequence data alone for defining apicomplexan species in the absence of additional data. ‘Deep 454 pyrosequencing’ of DNA from two Theileria sporozoite stabilates prepared from Rhipicephalus appendiculatus ticks fed on buffalo failed to detect T. sp. (buffalo). This strongly suggests that R. appendiculatus may not be a vector for T. sp. (buffalo). Collectively, the data provides further evidence that T. sp. (buffalo). is a distinct species from T. parva. PMID:26543804

  10. An 18S ribosomal DNA barcode for the study of Isomermis lairdi, a parasite of the blackfly Simulium damnosum s.l.

    PubMed

    Crainey, J L; Wilson, M D; Post, R J

    2009-09-01

    The mermithid parasite, Isomermis lairdi Mondet, Poinar & Bernadou (Nematoda: Mermithidae), is known to have a major impact on populations of Simulium damnosum s.l. Theobald (Diptera: Simuliidae) and on their efficiency as vectors of Onchocerca volvulus (Leuckart) (Nematoda: Filarioidea). However, the value of I. lairdi and other mermithid parasites as potential means of integrated vector control has not been fully realized. This is partly because traditional taxonomic approaches have been insufficient for describing and analysing important aspects of their biology and host range. In total, rDNA barcode sequences have been obtained from over 70 I. lairdi mermithids found parasitizing S. damnosum s.l. larvae in three different rivers. No two sequences were found to vary by more than 0.5%, and cytospecies identification of mermithid hosts revealed that I. lairdi with identical rDNA barcodes can parasitize multiple cytoforms of the S. damnosum complex, including S. squamosum (Enderlein). Phylogenetic analysis using a partial sequence from the 18S ribosomal DNA barcode, grouped I. lairdi in a monophyletic group with Gastromermis viridis Welch (Nematoda: Mermithidae) and Isomermis wisconsinensis Welch (Nematoda: Mermithidae). PMID:19712154

  11. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    PubMed Central

    Tsagkogeorga, Georgia; Turon, Xavier; Hopcroft, Russell R; Tilak, Marie-Ka; Feldstein, Tamar; Shenkar, Noa; Loya, Yossi; Huchon, Dorothée; Douzery, Emmanuel JP; Delsuc, Frédéric

    2009-01-01

    -group relationship between Salpida and Pyrosomatida within Thaliacea. Conclusion An updated phylogenetic framework for tunicates is provided based on phylogenetic analyses using the most realistic evolutionary models currently available for ribosomal molecules and an unprecedented taxonomic sampling. Detailed analyses of the 18S rRNA gene allowed a clear definition of the major tunicate groups and revealed contrasting evolutionary dynamics among major lineages. The resolving power of this gene nevertheless appears limited within the clades composed of Phlebobranchia + Thaliacea + Aplousobranchia and Pyuridae + Styelidae, which were delineated as spots of low resolution. These limitations underline the need to develop new nuclear markers in order to further resolve the phylogeny of this keystone group in chordate evolution. PMID:19656395

  12. Rate heterogeneity in six protein-coding genes from the holoparasite Balanophora (Balanophoraceae) and other taxa of Santalales

    PubMed Central

    Su, Huei-Jiun; Hu, Jer-Ming

    2012-01-01

    Background and Aims The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined. Methods Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR. Key Results Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences. Conclusions Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well

  13. Comparative cytogenomics of poultry: mapping of single gene and repeat loci in the Japanese quail (Coturnix japonica).

    PubMed

    McPherson, Marla C; Robinson, Charmaine M; Gehlen, Lida P; Delany, Mary E

    2014-04-01

    Well-characterized molecular and cytogenetic maps are yet to be established in Japanese quail (Coturnix japonica). The aim of the current study was to cytogenetically map and determine linkage of specific genes and gene complexes in Japanese quail through the use of chicken (Gallus gallus) and turkey (Meleagris gallopavo) genomic DNA probes and conduct a comparative study among the three genomes. Chicken and turkey clones were used as probes on mitotic metaphase and meiotic pachytene stage chromosomes of the three species for the purpose of high-resolution fluorescence in situ hybridization (FISH). The genes and complexes studied included telomerase RNA (TR), telomerase reverse transcriptase (TERT), 5S rDNA, 18S-5.8S-28S rDNA (i.e., nucleolus organizer region (NOR)), and the major histocompatibility complex (MHC). The telomeric profile of Japanese quail was investigated through the use of FISH with a TTAGGG-PNA probe. A range of telomeric array sizes were confirmed as found for the other poultry species. Three NOR loci were identified in Japanese quail, and single loci each for TR, TERT, 5S rDNA and the MHC-B. The MHC-B and one NOR locus were linked on a microchromosome in Japanese quail. We confirmed physical linkage of 5S rDNA and the TR gene on an intermediate-sized chromosome in quail, similar to both chicken and turkey. TERT localized to CJA 2 in quail and the orthologous chromosome region in chicken (GGA 2) and in turkey (MGA 3). The cytogenetic profile of Japanese quail was further developed by this study and synteny was identified among the three poultry species. PMID:24604153

  14. Complete structure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of the large subunit rDNA.

    PubMed

    Niwa, Rieko; Kawahara, Ai; Murakami, Hiroharu; Tanaka, Shuhei; Ezawa, Tatsuhiro

    2011-07-01

    Plasmodiophora brassicae is a soil-borne obligate intracellular parasite in the phylum Cercozoa of the Rhizaria that causes clubroot disease of crucifer crops. To control the disease, understanding the distribution and infection routes of the pathogen is essential, and thus development of reliable molecular markers to discriminate geographic populations is required. In this study, the nuclear ribosomal RNA gene (rDNA) repeat unit of P. brassicae was determined, with particular emphasis on the structure of large subunit (LSU) rDNA, in which polymorphic regions were expected to be present. The complete rDNA complex was 9513bp long, which included the small subunit, 5.8S and LSU rDNAs as well as the internal transcribed spacer and intergenic spacer regions. Among eight field populations collected from throughout Honshu Island, Japan, a 1.1 kbp region of the LSU rDNA, including the divergent 8 domain, exhibited intraspecific polymorphisms that reflected geographic isolation of the populations. Two new group I introns were found in this region in six out of the eight populations, and the sequences also reflected their geographic isolation. The polymorphic region found in this study may have potential for the development of molecular markers for discrimination of field populations/isolates of this organism. PMID:21497131

  15. On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae)

    PubMed Central

    Cameron, Kenneth M.

    2009-01-01

    Background and Aims Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences. Methods Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron. Key Results These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support. Conclusions Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available. PMID:19251715

  16. Molecular analysis of a NOR site polymorphism in brown trout (Salmo trutta): organization of rDNA intergenic spacers.

    PubMed

    Castro, J; Sánchez, L; Martínez, P; Lucchini, S D; Nardi, I

    1997-12-01

    Using restriction endonuclease mapping, we have analyzed the organization of rDNA (DNA coding for ribosomal RNA (rRNA)) units in the salmonid fish Salmo trutta, as an initial step toward understand the molecular basis of a nucleolar organizer region (NOR) site polymorphism detected in this species. The size of the rDNA units ranged between 15 and 23 kb, with remarkable variation both within individuals and between populations. Three regions of internal tandem repetitiveness responsible for this length polymorphism were located to the intergenic spacers. NOR site polymorphic individuals showed a higher number of length classes, in some cases forming a complete 1 kb fragment ladder. The amount of rRNA genes was as much as 8-fold higher in polymorphic individuals compared with standard individuals. All individuals from the most polymorphic population showed a 14-kb insertion of unknown nature in a small proportion (below 25%) of the 28S rRNA genes. PMID:18464877

  17. Structural alterations of the ribosomal RNA genes in leukemic cells.

    PubMed

    Smirnova, I A

    1992-01-01

    Cloned 6.7 kb EcoR1 fragment of mice rDNA was used as a hybridization probe for rDNA structure analysis in mice, rat and calf haemopoietic tumor and normal cells. EcoR1, BglII and Pst1 restriction fragment length polymorphism (RFLP) was found in neoplastic rDNA and was not revealed in normal ones. The rRNA gene rearrangements were observed not only in spacer region but in coding sequences of the genes. Leukemic cells reveal also rDNA amplification. A role of genetic rearrangements of rDNA for mechanisms of carcinogenesis is suggested. PMID:1342066

  18. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi.

    PubMed

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA. PMID:25865623

  19. Genetic characterization and phylogenetic relationships based on 18S rRNA and ITS1 region of small form of canine Babesia spp. from India.

    PubMed

    Mandal, M; Banerjee, P S; Garg, Rajat; Ram, Hira; Kundu, K; Kumar, Saroj; Kumar, G V P P S Ravi

    2014-10-01

    Canine babesiosis is a vector borne disease caused by intra-erythrocytic apicomplexan parasites Babesia canis (large form) and Babesia gibsoni (small form), throughout the globe. Apart from few sporadic reports on the occurrence of B. gibsoni infection in dogs, no attempt has been made to characterize Babesia spp. of dogs in India. Fifteen canine blood samples, positive for small form of Babesia, collected from northern to eastern parts of India, were used for amplification of 18S rRNA gene (∼1665bp) of Babesia sp. and partial ITS1 region (∼254bp) of B. gibsoni Asian genotype. Cloning and sequencing of the amplified products of each sample was performed separately. Based on sequences and phylogenetic analysis of 18S rRNA and ITS1 sequences, 13 were considered to be B. gibsoni. These thirteen isolates shared high sequence identity with each other and with B. gibsoni Asian genotype. The other two isolates could not be assigned to any particular species because of the difference(s) in 18S rRNA sequence with B. gibsoni and closer identity with Babesiaoccultans and Babesiaorientalis. In the phylogenetic tree, all the isolates of B. gibsoni Asian genotype formed a separate major clade named as Babesia spp. sensu stricto clade with high bootstrap support. The two unnamed Babesia sp. (Malbazar and Ludhiana isolates) clustered close together with B. orientalis, Babesia sp. (Kashi 1 isolate) and B. occultans of bovines. It can be inferred from this study that 18S rRNA gene and ITS1 region are highly conserved among 13 B. gibsoni isolates from India. It is the maiden attempt of genetic characterization by sequencing of 18S rRNA gene and ITS1 region of B. gibsoni from India and is also the first record on the occurrence of an unknown Babesia sp. of dogs from south and south-east Asia. PMID:25120099

  20. Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes.

    PubMed

    Peterson, Kevin J

    2004-06-01

    Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria. PMID:15120410

  1. A Pol V–Mediated Silencing, Independent of RNA–Directed DNA Methylation, Applies to 5S rDNA

    PubMed Central

    Douet, Julien; Tutois, Sylvie; Tourmente, Sylvette

    2009-01-01

    The plant-specific RNA polymerases Pol IV and Pol V are essential to RNA–directed DNA methylation (RdDM), which also requires activities from RDR2 (RNA–Dependent RNA Polymerase 2), DCL3 (Dicer-Like 3), AGO4 (Argonaute), and DRM2 (Domains Rearranged Methyltransferase 2). RdDM is dedicated to the methylation of target sequences which include transposable elements, regulatory regions of several protein-coding genes, and 5S rRNA–encoding DNA (rDNA) arrays. In this paper, we have studied the expression of the 5S-210 transcript, a marker of silencing release at 5S RNA genes, to show a differential impact of RNA polymerases IV and V on 5S rDNA arrays during early development of the plant. Using a combination of molecular and cytological assays, we show that Pol IV, RDR2, DRM2, and Pol V, actors of the RdDM, are required to maintain a transcriptional silencing of 5S RNA genes at chromosomes 4 and 5. Moreover, we have shown a derepression associated to chromatin decondensation specific to the 5S array from chromosome 4 and restricted to the Pol V–loss of function. In conclusion, our results highlight a new role for Pol V on 5S rDNA, which is RdDM–independent and comes specifically at chromosome 4, in addition to the RdDM pathway. PMID:19834541

  2. [Rapid detection of Pseudomonas aeruginosa by the fluorescence quantitative PCR assay targeting 16S rDNA].

    PubMed

    Xue, Li-Jun; Wang, Yong-Zhi; Ren, Hao; Tong, Yi-Min; Zhao, Ping; Zhu, Shi-Ying; Qi, Zhong-Tian

    2006-09-01

    The 16S rDNA specific primers were designed for rapid detection of Pseudomonas aeruginosa (PA) by the fluorescence quantitative PCR (FQ-PCR) assay, based upon multiple sequence alignment and phylogenetic tree analysis of the 16S rDNAs of over 20 bacteria. After extraction of PA genomic DNA, the target 16S rDNA fragment was amplified by PCR with specific primers, and used to construct recombinant pMDT-Pfr plasmid, the dilution gradients of which were subjected to the standard quantitation curve in FQ-PCR assay. Different concentrations of PA genomic DNA were detected by FQ-PCR in a 20microL of reaction system with SYBR Green I. At the same time, various genomic DNAs of Staphylococcus aureus, Salmonella typhi, Shigella flexneri, Proteus vulgaris, Staphylococcus epidermidis, Escherichia coli, and Mycobacterium tuberculosis were used as negative controls to confirm specificity of the FQ-PCR detection assay. Results demonstrated that the predicted amplified product of designed primers was of high homology only with PA 16S rDNA, and that sensitivity of the FQ-PCR assay was of 3.6pg/microL of bacterial DNA or (2.1 x 10(3) +/- 3.1 x 10(2)) copies/microL of 16S rDNA, accompanied with high specificity, and that the whole detection process including DNA extraction could be completed in about two hours. In contrast to traditional culture method, the FQ-PCR assay targeting 16S rDNA gene can be used to detect PA rapidly, which exhibits perfect application prospect in future. PMID:17037203

  3. Fragile Sites of ‘Valencia’ Sweet Orange (Citrus sinensis) Chromosomes Are Related with Active 45s rDNA

    PubMed Central

    Lan, Hong; Chen, Chun-Li; Miao, Yin; Yu, Chang-Xiu; Guo, Wen-Wu; Xu, Qiang; Deng, Xiu-Xin

    2016-01-01

    Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in ‘Valencia’ C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of ‘Valencia’ C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid ‘Valencia’ C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in ‘Valencia’ sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in ‘Valencia’ sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites. PMID:26977938

  4. Magic wavelengths for the 5 s - 18 s transition in rubidium

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Elizabeth; Norris, David; Koller, Silvio; Wyllie, Robert; Brown, Roger; Porto, Trey; Safronova, Ulyana; Safronova, Marianna

    2015-05-01

    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5 s - 18 s transition of rubidium near the 18 s - 6 p resonances. We compare the calculation to experiment by measuring the light shift for atoms held in a crossed optical dipole trap with wavelength tuned around the 18 s - 6p3 / 2 resonance at the experimentally convenient wavelength of 1064 nm.

  5. Phylogeny of protostome worms derived from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Backeljau, T; De Wachter, R

    1995-07-01

    The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade. PMID:7659019

  6. R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster.

    PubMed Central

    Pérez-González, César E; Burke, William D; Eickbush, Thomas H

    2003-01-01

    The non-LTR retrotransposons R1 and R2 insert into the 28S rRNA genes of arthropods. Comparisons among Drosophila lineages have shown that these elements are vertically inherited, while studies within species have indicated a rapid turnover of individual copies (elimination of old copies and the insertion of new copies). To better understand the turnover of R1 and R2, 200 retrotranspositions and nearly 100 eliminations have been scored in the Harwich mutation-accumulation lines of Drosophila melanogaster. Because the rDNA arrays in D. melanogaster are present on the X and Y chromosomes and no exchanges were detected in these lines, it was possible to show that R1 retrotranspositions occur predominantly in the male germ line, while R2 retrotranspositions were more evenly divided between the germ lines of both sexes. The rate of elimination of elements from the Y rDNA array was twice that of the X rDNA array with both chromosomal loci containing regions where the rate of elimination was on average eight times higher. Most R1 and R2 eliminations appear to occur by large intrachromosomal events (i.e., loop-out events) that involve multiple rDNA units. These findings are interpreted in light of the known abundance of R1 and R2 elements in the X and Y rDNA loci of D. melanogaster. PMID:14573479

  7. High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes.

    PubMed

    Shishova, Kseniya V; Khodarovich, Yuriy M; Lavrentyeva, Elena A; Zatsepina, Olga V

    2015-10-01

    Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA. We further showed that in the NLB mass of NSN-oocytes, distribution of active rDNA, RNA polymerase I (UBF) and rRNA processing (fibrillarin) protein factors, U3 snoRNA, pre-rRNAs and 18S/28S rRNAs is remarkably similar to that in somatic nucleoli capable to make pre-ribosomes. Overall, these observations support the occurrence of rDNA transcription, rRNA processing and pre-ribosome assembly in the NSN-type NLBs and so that their functional similarity to normal nucleoli. Unlike the NSN-type NLBs, the NLBs of more mature SN-oocytes do not contain transcribed rRNA genes, U3 snoRNA, pre-rRNAs, 18S and 28S rRNAs. These results favor the idea that in a process of transformation of NSN-oocytes to SN-oocytes, NLBs cease to produce pre-ribosomes and, moreover, lose their rRNAs. We also concluded that a denaturing fixative 70% ethanol used in the study to fix oocytes could be more appropriate for light microscopy analysis of nucleolar RNAs and proteins in mammalian fully-grown oocytes than a commonly used cross-linking aldehyde fixative, formalin. PMID:26226217

  8. Asymmetric Epigenetic Modification and Elimination of rDNA Sequences by Polyploidization in Wheat[W

    PubMed Central

    Guo, Xiang

    2014-01-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. PMID:25415973

  9. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.

    PubMed

    Guo, Xiang; Han, Fangpu

    2014-11-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. PMID:25415973

  10. Modified nucleotides in T1 RNase oligonucleotides of 18S ribosomal RNA of the Novikoff hepatoma.

    PubMed

    Choi, Y C; Busch, H

    1978-06-27

    The primary structure of 18S rRNA of the Novikoff hepatoma cells was investigated. Regardless of whether the primary sequence of 18S rRNA is finally determined by RNA sequencing methods or DNA sequencing methods, it is important to identify numbers and types of the modified nucleotides and accordingly the present study was designed to localize the modified regions in T1 RNase derived oligonucleotide. Modified nucleotides found in 66 different oligonucleotide sequences included 2 m62A, 1 m6A, 1 m7G, 1m1cap3psi, 7 Cm, 13 Am, 9 Gm, 11 Um, and 38 psi residues. A number of these modified nucleotides are now placed in defined sequences of T1 RNase oligonucleotides which are now being searched for in larger fragments derived from partial T1 RNase digests of 18S rRNA. Improved homochromatography fingerprinting (Choi et al. (1976) Cancer Res. 36, 4301) of T1 RNase derived oligonucleotides provided a distinctive pattern for 18S rRNA of Novikoff hepatoma ascites cells. The 116 spots obtained by homochromatography contain 176 oligonucleotide sequences. PMID:209819

  11. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    PubMed Central

    2008-01-01

    Background The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU r

  12. Phylogenetic position of the yeast-like symbiotes of Tagosodes orizicolus (Homoptera: Delphacidae) based on 18S ribosomal DNA partial sequences.

    PubMed

    Xet-Mull, Ana M; Quesada, Tania; Espinoza, Ana M

    2004-09-01

    Tagosodes orizicolus Muir (Homoptera: Delphacidae), the endemic delphacid species of tropical America carries yeast-like symbiotes (YLS) in the abdominal fat bodies and the ovarial tissues, like other rice planthoppers of Asia. These YLS are obligate symbiotes, which are transmitted transovarially, and maintain a mutualistic relationship with the insect host. This characteristic has made in vitro culture and classification of YLS rather difficult using conventional methods. Nevertheless, microorganisms of similar characteristics have been successfully classified by using molecular taxonomy. In the present work, the YLS of Tagosodes orizicolus (YLSTo) were purified on Percoll gradients, and specific segments of 18S rDNA were amplified by PCR, cloned and sequenced. Sequences were aligned by means of the CLUSTAL V (DNASTAR) program; phylogenetic trees were constructed with the Phylogeny Inference Package (PHYLIP), showing that YLSTo belong to the fungi class Pyrenomycetes, phylum Ascomycota. Similarities between 98% and 100% were observed among YLS of the rice delphacids Tagosodes orizicolus, Nilaparvata lugens, Laodelphax striatellus and Sogatella fur cifera, and between 89.8% and 90.8% when comparing the above to YLS of the aphid Hamiltonaphis styraci. These comparisons revealed that delphacid YLS are a highly conserved monophyletic group within the Pyrenomycetes and are closely related to Hypomyces chrysospermus. PMID:17361570

  13. The Evolutionary Dynamics of Ribosomal Genes, Histone H3, and Transposable Rex Elements in the Genome of Atlantic Snappers.

    PubMed

    Costa, Gideão Wagner Werneck Félix da; Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2016-03-01

    Lutjanidae is a family of primarily marine and carnivorous fishes distributed in the Atlantic, Indian, and Pacific oceans, with enormous economic and ecological importance. In order to better clarify the conservative chromosomal evolution of Lutjanidae, we analyzed the evolutionary dynamics of 5 repetitive DNA classes in 5 Lutjanus and in 1 Ocyurus species from the Western Atlantic. The ribosomal 18S sites were generally located in a single chromosome pair, except for L. jocu and L. alexandrei where they are found in 2 pairs. In turn, the 5S rDNA sites are unique, terminal and nonsyntenic with the 18S rDNA sites. In 3 species analyzed, H3 hisDNA genes were found in 1 chromosomal pair. However, while L. jocu presented 2 H3 sites, O. chrysurus showed a noteworthy dispersion of this gene in almost all chromosomes of the karyotype. Retrotransposons Rex1 and Rex3 do not exhibit any association with the explosive distribution of H3 sequences in O. chrysurus. The low compartmentalization of Rex elements, in addition to the general nondynamic distribution of ribosomal and H3 genes, corroborate the karyotype conservatism in Lutjanidae species, also at the microstructural level. However, some "disturbing evolutionary waves" can break down this conservative scenario, as evidenced by the massive random dispersion of H3 hisDNA in the genome of O. chrysurus. The implication of the genomic expansion of H3 histone genes and their functionality remain unknown, although suggesting that they have higher evolutionary dynamics than previously thought. PMID:26792596

  14. Secondray structure and sequence of ITS2-rDNA of the Egyptian malaria vector Anopheles pharoensis (Theobald).

    PubMed

    Wassim, Nahla M

    2014-04-01

    Out of the twelve Anophelines present in Egypt, only five species known to be malaria vectors. Anopheles (An.) pharoensis proved to be the important vector all over Egypt, especially in the Delta. Anopheles sergenti proved to be the primary vector in the Oases of the Western Desert, An. multicolor in Faiyoum, An. stephensi in the Red Sea Coast, and An. superpictus in Sinai. Genomic DNA was isolated from single adult mosquito of An. pharoensis (Sahel Sudanese form), PCR was performed to amplify ITS2 region of rDNA using specific primers for 5.8S and 28S rDNA genes. The amplicons were purified, directly sequenced and aligned to the sequence of the same region of An. gambiae, using clustalw2. The length of ITS2-rDNA of An. pharoensis was 411bp. The GC content of the ITS2 reported 53% is consistent with spacer base composition in Anopheles species. The similarity between the two species was 52% and genetic distance was 0.46.Variable simple sequence repeats (SSRs) are found at low frequency. The secondary structure of rDNA-ITS2was predicted by MFOLD and was -192; 60 to-195.32 kilocalories/mole. PMID:24961025

  15. Comparison of rDNA sequences from colchicine treated and untreated sporocysts of Phyllodistomum folium and Bucephalus polymorphus (Digenea).

    PubMed

    Stunzenas, Virmantas; Cryan, Jason R; Molloy, Daniel P

    2004-09-01

    The most frequently used antimitotic agent in cytogenetic studies is colchicine. We investigated whether the initial treatment of trematodes for karyological analysis with colchicine would have mutagenic or degradational effect on rDNA sequences. Dreissena polymorpha is the intermediate host of Phyllodistomum folium and Bucephalus polymorphus, and the sporocyst stage of these trematode species develop, respectively, in the gills and gonads of this mussel. Sporocysts of P. folium and B. polymorphus were obtained from D. polymorpha collected from waterbodies in Belarus and in Lithuania. 5.8S and 28S rDNA genes, ITS1 and ITS2 of P folium and B. polymorphus were sequenced and compared, and no nucleotide sequence differences between colchicine treated and untreated trematodes were found. Based on these results, we conclude that colchicine treatment for 3-5 h has no mutagenic or degradational effect on rDNA sequences. During the course of this investigation, two genetically different P. folium samples were noted in Belarus. PMID:15468529

  16. Molecular phylogenetics of cixiid planthoppers (Hemiptera: Fulgoromorpha): new insights from combined analyses of mitochondrial and nuclear genes.

    PubMed

    Ceotto, Paula; Kergoat, Gaël J; Rasplus, Jean-Yves; Bourgoin, Thierry

    2008-08-01

    The planthopper family Cixiidae (Hemiptera: Fulgoromorpha) comprises approximately 160 genera and 2000 species divided in three subfamilies: Borystheninae, Bothriocerinae and Cixiinae, the later with 16 tribes. The current paper represents the first attempt to estimate phylogenetic relationships within Cixiidae based on molecular data. We use a total of 3652bp sequence alignment of four genes: the mitochondrial coding genes Cytochrome c Oxidase subunit 1 (Cox1) and Cytochrome b (Cytb), a portion of the nuclear 18S rDNA and two non-contiguous portions of the nuclear 28S rDNA. The phylogenetic relationships of 72 terminal specimens were reconstructed using both maximum parsimony and Bayesian inference methods. Through the analysis of this empirical dataset, we also provide comparisons among different a priori partitioning strategies and the use of mixture models in a Bayesian framework. Our comparisons suggest that mixture models overcome the benefits obtained by partitioning the data according to codon position and gene identity, as they provide better accuracy in phylogenetic reconstructions. The recovered maximum parsimony and Bayesian inference phylogenies suggest that the family Cixiidae is paraphyletic in respect with Delphacidae. The paraphyly of the subfamily Cixiinae is also recovered by both approaches. In contrast to a morphological phylogeny recently proposed for cixiids, subfamilies Borystheninae and Bothriocerinae form a monophyletic group. PMID:18539050

  17. Altered gravity influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  18. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae

    PubMed Central

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-01-01

    Methylation of ribose sugars at the 2′-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2′-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5′ central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D′ box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  19. Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae.

    PubMed

    Yang, Jun; Sharma, Sunny; Kötter, Peter; Entian, Karl-Dieter

    2015-02-27

    Methylation of ribose sugars at the 2'-OH group is one of the major chemical modifications in rRNA, and is catalyzed by snoRNA directed C/D box snoRNPs. Previous biochemical and computational analyses of the C/D box snoRNAs have identified and mapped a large number of 2'-OH ribose methylations in rRNAs. In the present study, we systematically analyzed ribose methylations of 18S rRNA in Saccharomyces cerevisiae, using mung bean nuclease protection assay and RP-HPLC. Unexpectedly, we identified a hitherto unknown ribose methylation at position G562 in the helix 18 of 5' central domain of yeast 18S rRNA. Furthermore, we identified snR40 as being responsible to guide snoRNP complex to catalyze G562 ribose methylation, which makes it only second snoRNA known so far to target three ribose methylation sites: Gm562, Gm1271 in 18S rRNA, and Um898 in 25S rRNA. Our sequence and mutational analysis of snR40 revealed that snR40 uses the same D' box and methylation guide sequence for both Gm562 and Gm1271 methylation. With the identification of Gm562 and its corresponding snoRNA, complete set of ribose methylations of 18S rRNA and their corresponding snoRNAs have finally been established opening great prospects to understand the physiological function of these modifications. PMID:25653162

  20. Details of gastropod phylogeny inferred from 18S rRNA sequences.

    PubMed

    Winnepenninckx, B; Steiner, G; Backeljau, T; De Wachter, R

    1998-02-01

    Some generally accepted viewpoints on the phylogenetic relationships within the molluscan class Gastropoda are reassessed by comparing complete 18S rRNA sequences. Phylogenetic analyses were performed using the neighbor-joining and maximum parsimony methods. The previously suggested basal position of Archaeogastropoda, including Neritimorpha and Vetigastropoda, in the gastropod clade is confirmed. The present study also provides new molecular evidence for the monophyly of both Caenogastropoda and Euthyneura (Pulmonata and Opisthobranchia), making Prosobranchia paraphyletic. The relationships within Caenogastropoda and Euthyneura data turn out to be very unstable on the basis of the present 18S rRNA sequences. The present 18S rRNA data question, but are insufficient to decide on, muricacean (Neogastropoda), neotaenioglossan, pulmonate, or stylommatophoran monophyly. The analyses also focus on two systellommatophoran families, namely, Veronicellidae and Onchidiidae. It is suggested that Systellommatophora are not a monophyletic unit but, due to the lack of stability in the euthyneuran clade, their affinity to either Opisthobranchia or Pulmonata could not be determined. PMID:9479694

  1. Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera).

    PubMed

    Gillespie, J J; McKenna, C H; Yoder, M J; Gutell, R R; Johnston, J S; Kathirithamby, J; Cognato, A I

    2005-12-01

    We report the entire sequence (2864 nts) and secondary structure of the nuclear small subunit ribosomal RNA (SSU rRNA) gene (18S) from the twisted-wing parasite Caenocholax fenyesi texensis Kathirithamby & Johnston (Strepsiptera: Myrmecolacidae). The majority of the base pairings in this structural model map on to the SSU rRNA secondary and tertiary helices that were previously predicted with comparative analysis. These regions of the core rRNA were unambiguously aligned across all Arthropoda. In contrast, many of the variable regions, as previously characterized in other insect taxa, had very large insertions in C. f. texensis. The helical base pairs in these regions were predicted with a comparative analysis of a multiple sequence alignment (that contains C. f. texensis and 174 published arthropod 18S rRNA sequences, including eleven strepsipterans) and thermodynamic-based algorithms. Analysis of our structural alignment revealed four unusual insertions in the core rRNA structure that are unique to animal 18S rRNA and in general agreement with previously proposed insertion sites for strepsipterans. One curious result is the presence of a large insertion within a hairpin loop of a highly conserved pseudoknot helix in variable region 4. Despite the extraordinary variability in sequence length and composition, this insertion contains the conserved sequences 5'-AUUGGCUUAAA-3' and 5'-GAC-3' that immediately flank a putative helix at the 5'- and 3'-ends, respectively. The longer sequence has the potential to form a nine base pair helix with a sequence in the variable region 2, consistent with a recent study proposing this tertiary interaction. Our analysis of a larger set of arthropod 18S rRNA sequences has revealed possible errors in some of the previously published strepsipteran 18S rRNA sequences. Thus we find no support for the previously recovered heterogeneity in the 18S molecules of strepsipterans. Our findings lend insight to the evolution of RNA structure and

  2. Molecular systematics of the genus Troglophilus (Rhaphidophoridae, Orthoptera) in Turkey: mitochondrial 16S rDNA evidences

    PubMed Central

    Taylan, Mehmet Sait; Russo, Claudio Di; Rampini, Mauro; Ketmaier, Valerio

    2013-01-01

    Abstract This study focuses on the evolutionary relationships among Turkish species of the cave cricket genus Troglophilus.Fifteen populations were studied for sequence variation in a fragment (543 base pairs) of the mitochondrial DNA (mtDNA) 16S rDNA gene (16S) to reconstruct their phylogenetic relationships and biogeographic history. Genetic data retrieved three main clades and at least three divergent lineages that could not be attributed to any of the taxa known for the area. Molecular time estimates suggest that the diversification of the group took place between the Messinian and the Plio-Pleistocene. PMID:23653493

  3. PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1990-01-01

    The sequence of the major portion of a Bacillus cycloheptanicus strain SCH(T) 16S rRNA gene is reported. This sequence suggests that B. cycloheptanicus is genetically quite distinct from traditional Bacillus strains (e.g., B. subtilis) and may be properly regarded as belonging to a different genus. The sequence was determined from DNA that was produced by direct amplification of ribosomal DNA from a lyophilized cell pellet with straightforward polymerase chain reaction (PCR) procedures. By obviating the need to revive cell cultures from the lyophile pellet, this approach facilitates rapid 16S rDNA sequencing and thereby advances studies in molecular systematics.

  4. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae).

    PubMed

    Vierna, J; Jensen, K T; Martínez-Lage, A; González-Tizón, A M

    2011-08-01

    The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant. PMID:21364693

  5. Comparative Studies of 5S rDNA Profiles and Cyt b Sequences in two Onychostoma Species (Cyprinidae)

    PubMed Central

    Han, Chiao-Chuan; Yen, Tsair-Bor; Chen, Nian-Cih; Tseng, Mei-Chen

    2015-01-01

    Onychostoma barbatulum and O. alticorpus, two primarily freshwater cyprinid fish, have similar morphological characters and partially overlapping ecological habitats. In order to explore the genetic differences between these two species, chromosomal characteristics and genetic variations were examined by fluorescence in situ hybridization (FISH) of 5S rDNA and cytochrome (Cyt) b gene analysis. Ten specimens of O. barbatulum and O. alticorpus were collected from the Nanzihsian Stream in southern Taiwan. FISH revealed that the 5S rDNA loci of O. barbatulum and O. alticorpus were found at a pericentromeric and subtelomeric position, respectively, in a pair of submetacentric chromosomes. Cyt b genes were amplified and sequenced from five individuals of each species. Intraspecific genetic distances ranged from 0.001–0.004 in O. barbatulum and from 0.001–0.006 in O. alticorpus. Genetic distances between these two species ranged from 0.132–0.142. The phylogenetic tree showed these two species are not sister species. In conclusion, FISH cytogenetic information and Cyt b gene analyses indicated that these two species have significantly different genetic characteristics; nevertheless, their morphological similarities may be due to environmental adaptation. PMID:26690426

  6. Species markers for equine strongyles detected in intergenic rDNA by PCR-RFLP.

    PubMed

    Gasser, R B; Stevenson, L A; Chilton, N B; Nansen, P; Bucknell, D G; Beveridge, I

    1996-10-01

    Five species of equine strongyle belonging to the subfamily Strongylinae (Strongylus edentatus, S. equinus, S. vulgaris, Oesophagodontus robustus and Triodontophorus serratus) and 11 species belonging to the subfamily Cyathostominae (Poteriostomum imparidentatum, P. ratzii, Cylicocyclus insignis, Cc. leptostomus, Cc. nassatus, Cylicostephanus calicatus, Cs. longibursatus, Cs. goldi, Cyathostomum catinatum, Cy. labiatum and Cy. pateratum) were characterized using a polymerase chain reaction-linked restriction fragment length polymorphism technique (PCR-RFLP). Internal transcribed spacer ribosomal DNA was amplified from genomic DNA by polymerase chain reaction (PCR) using conserved primers, digested separately with six restriction endonucleases (AluI, BfaI, CfoI, Hae III, VSpI and XbaI) and the fragments separated by agarose gel electrophoresis. The PCR products of the three Strongylus species were approx. 90-100 bp smaller in size compared with those of the other 13 species. The PCR-RFLP analysis of the rDNA region spanning the first and second internal transcribed spacers plus the 5.85 rDNA gene (ITS+) produced characteristic patterns for each of the 16 species examined, and no variation in RFLP patterns was detected within the species Cy. catinatum, where multiple isolates were analysed. The study demonstrates that the internal transcribed spacer sequences provide genetic markers for the species identification of a range of equine strongyles. These markers will be of use for the identification of egg and larval stages, where morphological characters alone are unreliable. The results also indicate that the spacer sequences will be of use to study the systematics of equine strongyles. PMID:8910892

  7. A Single Acetylation of 18 S rRNA Is Essential for Biogenesis of the Small Ribosomal Subunit in Saccharomyces cerevisiae*

    PubMed Central

    Ito, Satoshi; Akamatsu, Yu; Noma, Akiko; Kimura, Satoshi; Miyauchi, Kenjyo; Ikeuchi, Yoshiho; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Biogenesis of eukaryotic ribosome is a complex event involving a number of non-ribosomal factors. During assembly of the ribosome, rRNAs are post-transcriptionally modified by 2′-O-methylation, pseudouridylation, and several base-specific modifications, which are collectively involved in fine-tuning translational fidelity and/or modulating ribosome assembly. By mass-spectrometric analysis, we demonstrated that N4-acetylcytidine (ac4C) is present at position 1773 in the 18 S rRNA of Saccharomyces cerevisiae. In addition, we found an essential gene, KRE33 (human homolog, NAT10), that we renamed RRA1 (ribosomal RNA cytidine acetyltransferase 1) encoding an RNA acetyltransferase responsible for ac4C1773 formation. Using recombinant Rra1p, we could successfully reconstitute ac4C1773 in a model rRNA fragment in the presence of both acetyl-CoA and ATP as substrates. Upon depletion of Rra1p, the 23 S precursor of 18 S rRNA was accumulated significantly, which resulted in complete loss of 18 S rRNA and small ribosomal subunit (40 S), suggesting that ac4C1773 formation catalyzed by Rra1p plays a critical role in processing of the 23 S precursor to yield 18 S rRNA. When nuclear acetyl-CoA was depleted by inactivation of acetyl-CoA synthetase 2 (ACS2), we observed temporal accumulation of the 23 S precursor, indicating that Rra1p modulates biogenesis of 40 S subunit by sensing nuclear acetyl-CoA concentration. PMID:25086048

  8. Magic wavelengths for the 5 s -18 s transition in rubidium

    NASA Astrophysics Data System (ADS)

    Goldschmidt, E. A.; Norris, D. G.; Koller, S. B.; Wyllie, R.; Brown, R. C.; Porto, J. V.; Safronova, U. I.; Safronova, M. S.

    2015-03-01

    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the 5 s -18 s transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value.

  9. Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach.

    PubMed

    Mans, Ben J; Pienaar, Ronel; Ratabane, John; Pule, Boitumelo; Latif, Abdalla A

    2016-07-01

    Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene. PMID:27084674

  10. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families

    PubMed Central

    2012-01-01

    Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes

  11. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  12. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  13. Optimization of PCR—RFLP Directly from the Skin and Nails in Cases of Dermatophytosis, Targeting the ITS and the 18S Ribosomal DNA Regions

    PubMed Central

    Elavarashi, Elangovan; Kindo, Anupma Jyoti; Kalyani, Jagannathan

    2013-01-01

    Purpose: A pan fungal primer targeting the Internal Transcribed Spacer (ITS) region and optimization of PCR-RFLP using a dermatophyte specific primer targeted the 18S ribosomal DNA (rDNA) region were performed for the identification of dermatophyte species and strains directly from clinical specimens. Materials and Methods: One hundred and thirty eight specimens (129 skin scrapings and 9 nail clippings) from clinically suspected cases of dermatophytosis were collected and subjected to direct microscopy and culture. Among them, 66 skin scrapings and 3 nail clippings were processed for genotyping by PCR-RFLP analysis using the Mva I, Hae III and the Dde I restriction enzymes. Results: Of the 138 specimens, 81 specimens were positive for dermatophytosis, the most common one being Trichophyton rubrum (47), followed by Trichophyton mentagrophytes (25) and Epidermophyton floccosum (9). Of the 47 T. rubrum isolates, 10 were T. rubrum var. raubitschekii which were identified phenotypically as urease positive and by DNA sequencing. Since they exhibited minor morphological and physiological features, they have currently been synonymized with T. rubrum. Of the 25 T. mentagrophytes isolates, three were Trichophyton interdigitale, which were identified by DNA sequencing. Among the 66 skin specimens smear, culture and PCR showed the presence of dermatophytes in 36 (54.54%), 42 (63.63%) and 47 (71.21%) cases respectively. Among the three nail specimens, only one was found to be positive for dermatophytosis by smear, culture and PCR. Conclusion: Amplification of the dermatophyte specific primer is appropriate in the identification of dermatophytes directly from the clinical material. PCR targeting the ITS region by using the Mva I and the Dde I enzymes was equally good for the RFLP analysis. However, by using the above three restriction enzymes, no strain variations were detected among the T. rubrum and the T. mentagrophytes strains. PMID:23730638

  14. The phylogenetic position of the Loimoidae Price, 1936 (Monogenoidea: Monocotylidea) based on analyses of partial rDNA sequences and morphological data.

    PubMed

    Boeger, W A; Kritsky, D C; Domingues, M V; Bueno-Silva, M

    2014-06-01

    Phylogenetic analyses of partial sequences of 18S and 28S rDNA of some monogenoids, including monocotylids and a specimen of Loimosina sp. collected from a hammerhead shark off Brazil, indicated that the Loimoidae (as represented by the specimen of Loimosina sp.) represents an in-group taxon of the Monocotylidae. In all analyses, the Loimoidae fell within a major monocotylid clade including species of the Heterocotylinae, Decacotylinae, and Monocotylinae. The Loimoidae formed a terminal clade with two heterocotyline species, Troglocephalus rhinobatidis and Neoheterocotyle rhinobatis, for which it represented the sister taxon. The following morphological characters supported the clade comprising the Loimoidae, Heterocotylinae, Decacotylinae and Monocotylinae: single vagina present, presence of a narrow deep anchor root, and presence of a marginal haptoral membrane. The presence of cephalic pits was identified as a putative synapomorphy for the clade (Loimoidae (T. rhinobatidis, N. rhinobatis)). Although rDNA sequence data support the rejection of the Loimoidae and incorporating its species into the Monocotylidae, this action was not recommended pending a full phylogenetic analysis of morphological data. PMID:24491371

  15. Molecular characterisation of three regions of the nuclear ribosomal DNA unit and the mitochondrial cox1 gene of Sarcocystis fusiformis from water buffaloes (Bubalus bubalis) in Egypt.

    PubMed

    Gjerde, Bjørn; Hilali, Mosaad; Mawgood, Sahar Abdel

    2015-09-01

    A total of 33 macroscopically visible (3-11 × 1-5 mm) sarcocysts of Sarcocystis fusiformis were excised from the oesophagus of 12 freshly slaughtered water buffalos in Giza, Egypt. Genomic DNA was extracted from the sarcocysts, and all isolates were characterised at the mitochondrial cytochrome c oxidase subunit I (cox1) gene through PCR amplification and direct sequencing, whereas a few selected isolates were characterised at the 18S and 28S ribosomal (r) RNA genes and the internal transcribed spacer 1 (ITS1) region of the nuclear rDNA unit following cloning. Among the 33 cox1 sequences (1,038-bp long), there was a total of 13 haplotypes, differing from each other by one to seven substitutions and sharing an identity of 99.3-99.9 %. In comparison, the sequence identity was 98.8-99.0 % among eight complete 18S rRNA gene sequences (1,873-1,879-bp long), 98.1-100 % among 28 complete ITS1 sequences (853-864-bp long) and 97.4-99.6 % among five partial 28S rRNA gene sequences (1,607-1,622 bp). At the three nuclear loci, the intraspecific (and intra-isolate) sequence variation was due to both substitutions and indels, which necessitated cloning of the PCR products before sequencing. Some additional clones of the 18S and 28S rRNA genes were highly divergent from the more typical clones, but the true nature of these aberrant clones could not be determined. Sequence comparisons and phylogenetic analyses based on either 18S rRNA gene or cox1 nucleotide sequences, placed S. fusiformis closest to Sarcocystis cafferi from the African buffalo, but only the analyses based on cox1 data separated the two taxa clearly from each other and showed that they were separate species (monophyletic clusters and 93 % sequence identity at cox1 versus interleaved sequences and 98.7-99.1 % sequence identity at the 18S rRNA gene). Two cats experimentally infected with sarcocysts of S. fusiformis started shedding small numbers of sporocysts 8-10 days post-infection (dpi) and were euthanized 15

  16. Evolution of the MIDTAL microarray: the adaption and testing of oligonucleotide 18S and 28S rDNA probes and evaluation of subsequent microarray generations with Prymnesium spp. cultures and field samples.

    PubMed

    McCoy, Gary R; Touzet, Nicolas; Fleming, Gerard T A; Raine, Robin

    2015-07-01

    The toxic microalgal species Prymnesium parvum and Prymnesium polylepis are responsible for numerous fish kills causing economic stress on the aquaculture industry and, through the consumption of contaminated shellfish, can potentially impact on human health. Monitoring of toxic phytoplankton is traditionally carried out by light microscopy. However, molecular methods of identification and quantification are becoming more common place. This study documents the optimisation of the novel Microarrays for the Detection of Toxic Algae (MIDTAL) microarray from its initial stages to the final commercial version now available from Microbia Environnement (France). Existing oligonucleotide probes used in whole-cell fluorescent in situ hybridisation (FISH) for Prymnesium species from higher group probes to species-level probes were adapted and tested on the first-generation microarray. The combination and interaction of numerous other probes specific for a whole range of phytoplankton taxa also spotted on the chip surface caused high cross reactivity, resulting in false-positive results on the microarray. The probe sequences were extended for the subsequent second-generation microarray, and further adaptations of the hybridisation protocol and incubation temperatures significantly reduced false-positive readings from the first to the second-generation chip, thereby increasing the specificity of the MIDTAL microarray. Additional refinement of the subsequent third-generation microarray protocols with the addition of a poly-T amino linker to the 5' end of each probe further enhanced the microarray performance but also highlighted the importance of optimising RNA labelling efficiency when testing with natural seawater samples from Killary Harbour, Ireland. PMID:25631743

  17. Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae.

    PubMed Central

    Cockell, M M; Perrod, S; Gasser, S M

    2000-01-01

    Silent information regulator (Sir) 2 is a limiting component of the Sir2/3/4 complex, which represses transcription at subtelomeric and HM loci. Sir2p also acts independently of Sir3p and Sir4p to influence chromatin organization in the rDNA locus. Deleted and mutated forms of Sir2p have been tested for their ability to complement and/or to disrupt silencing. The highly conserved C-terminal domain of Sir2p (aa 199-562) is insufficient to restore repression at either telomeric or rDNA reporters in a sir2Delta background and fails to nucleate silencing when targeted to an appropriate reporter gene. However, its expression in an otherwise wild-type strain disrupts telomeric repression. Similarly, a point mutation (P394L) within this conserved core inactivates the full-length protein but renders it dominant negative for all types of silencing. Deletion of aa 1-198 from Sir2(394L) eliminates its dominant negative effect. Thus we define two distinct functional domains in Sir2p, both essential for telomeric and rDNA repression: the conserved core domain found within aa 199-562 and a second domain that encompasses aa 94-198. Immunolocalization and two-hybrid studies show that aa 94-198 are required for the binding of Sir2p to Sir4p and for the targeting of Sir2p to the nucleolus through another ligand. The globular core domain provides an essential silencing function distinct from that of targeting or Sir complex formation that may reflect its reported mono-ADP-ribosyl transferase activity. PMID:10757754

  18. Loop-mediated isothermal amplification assay for detection of Histomonas meleagridis infection in chickens targeting the 18S rRNA sequences.

    PubMed

    Xu, Jinjun; Qu, Chanbao; Tao, Jianping

    2014-01-01

    Histomonas meleagridis is the causative agent of histomonosis, a disease of gallinaceous fowl characterized by necrotic typhlitis, hepatitis, and high mortality. To develop a rapid and sensitive method for specific detection of H. meleagridis, an assay based on loop-mediated isothermal amplification (LAMP) targeting the 18S rRNA gene was established. The detection limit of the LAMP assay was 10 copies for standard plasmids containing an 18S rRNA gene fragment, which was superior to that of a classical PCR method. Specificity tests revealed that there was no cross-reaction with other protozoa such as Trichomonas gallinae, Blastocytis sp, Tetratrichomonas gallinarum, Plasmodium gallinaceum, Toxoplasma gondii, Eimeria tenella, Leucocytozoon caulleryi and Leucocytozoon sabrazesi. The assay was evaluated for its diagnostic utility using liver and caeca samples collected from suspected field cases, the detection rate was 100 and 97.92%, respectively. These results indicate that the LAMP assay may be a useful tool for rapid detection and identification of H. meleagridis in poultry. PMID:24320623

  19. gar2 is a nucleolar protein from Schizosaccharomyces pombe required for 18S rRNA and 40S ribosomal subunit accumulation.

    PubMed Central

    Gulli, M P; Girard, J P; Zabetakis, D; Lapeyre, B; Melese, T; Caizergues-Ferrer, M

    1995-01-01

    Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA. Images PMID:7596817

  20. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation

    PubMed Central

    Oh, Sungwhan F.; Pillai, Padmini S.; Recchiuti, Antonio; Yang, Rong; Serhan, Charles N.

    2011-01-01

    E-series resolvins are antiinflammatory and pro-resolving lipid mediators derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) that actively clear inflammation to promote tissue homeostasis. Aspirin, in addition to exerting antithrombotic actions, also triggers the biosynthesis of these specialized pro-resolving mediators. Here, we used metabolomic profiling to investigate the biosynthesis of E-series resolvins with specific chiral chemistry in serum from human subjects and present evidence for new 18S series resolvins. Aspirin increased endogenous formation of 18S-hydroxyeicosapentaenoate (18S-HEPE) compared with 18R-HEPE, a known resolvin precursor. Human recombinant 5-lipoxygenase used both enantiomers as substrates, and recombinant LTA4 hydrolase (LTA4H) converted chiral 5S(6)-epoxide–containing intermediates to resolvin E1 and 18S-resolvin E1 (RvE1 and 18S-RvE1, respectively). 18S-RvE1 bound to the leukocyte GPCRs ChemR23 and BLT1 with increased affinity and potency compared with the R-epimer, but was more rapidly inactivated than RvE1 by dehydrogenase. Like RvE1, 18S-RvE1 enhanced macrophage phagocytosis of zymosan, E. coli, and apoptotic neutrophils and reduced both neutrophil infiltration and proinflammatory cytokines in murine peritonitis. These results demonstrate two parallel stereospecific pathways in the biosynthesis of E-series resolvins, 18R- and 18S-, which are antiinflammatory, pro-resolving, and non-phlogistic and may contribute to the beneficial actions of aspirin and ω-3 polyunsaturated fatty acids. PMID:21206090

  1. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae).

    PubMed

    Scaldaferro, Marisel A; da Cruz, M Victoria Romero; Cecchini, Nicolás M; Moscone, Eduardo A

    2016-02-01

    Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA. PMID:26853884

  2. Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin

    PubMed Central

    Mlinarec, J.; Šatović, Z.; Malenica, N.; Ivančić-Baće, I.; Besendorfer, V.

    2012-01-01

    Background and Aims In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed. Methods Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization. Key Results This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome). Conclusions It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution. PMID

  3. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA.

    PubMed

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-01-01

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA. PMID:26880378

  4. The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA

    PubMed Central

    Zhao, Zi-Hua; Cui, Bing-Yi; Li, Zhi-Hong; Jiang, Fan; Yang, Qian-Qian; Kučerová, Zuzana; Stejskal, Václav; Opit, George; Cao, Yang; Li, Fu-Jun

    2016-01-01

    Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA. PMID:26880378

  5. Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases.

    PubMed

    Pang, Jialun; Wu, Yong; Li, Zhuo; Hu, Zhiqing; Wang, Xiaolin; Hu, Xuyun; Wang, Xiaoyan; Liu, Xionghao; Zhou, Miaojin; Liu, Bo; Wang, Yanchi; Feng, Mai; Liang, Desheng

    2016-03-25

    Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases. PMID:26921444

  6. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains. PMID:23668153

  7. Encephalitozoon cuniculi (Microspora) genome: physical map and evidence for telomere-associated rDNA units on all chromosomes

    PubMed Central

    Brugère, Jean-François; Cornillot, Emmanuel; Méténier, Guy; Bensimon, Aaron; Vivarès, Christian P.

    2000-01-01

    A restriction map of the 2.8-Mb genome of the unicellular eukaryote Encephalitozoon cuniculi (phylum Microspora), a mammal-infecting intracellular parasite, has been constructed using two restriction enzymes with 6 bp recognition sites (BssHII and MluI). The fragments resulting from either single digestions of the whole molecular karyotype or double digestions of 11 individual chromosomes have been separated by two-dimensional pulsed field gel electrophoresis (2D-PFGE) procedures. The average distance between successive restriction sites is ~19 kb. The terminal regions of the chromosomes show a common pattern covering ~15 kb and including one 16S–23S rDNA unit. Results of hybridisation and molecular combing experiments indicate a palindromic-like orientation of the two subtelomeric rDNA copies on each chromosome. We have also located 67 DNA markers (clones from a partial E.cuniculi genomic library) by hybridisation to restriction fragments. Partial or complete sequencing has revealed homologies with known protein-coding genes for 32 of these clones. Evidence for two homologous chromosomes III, with a size difference (3 kb) related to a subtelomeric deletion/insertion event, argues for diploidy of E.cuniculi. The physical map should be useful for both the whole genome sequencing project and studies on genome plasticity of this widespread parasite. PMID:10773069

  8. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons

    PubMed Central

    2011-01-01

    Background Urine within the urinary tract is commonly regarded as "sterile" in cultivation terms. Here, we present a comprehensive in-depth study of bacterial 16S rDNA sequences associated with urine from healthy females by means of culture-independent high-throughput sequencing techniques. Results Sequencing of the V1V2 and V6 regions of the 16S ribosomal RNA gene using the 454 GS FLX system was performed to characterize the possible bacterial composition in 8 culture-negative (<100,000 CFU/ml) healthy female urine specimens. Sequences were compared to 16S rRNA databases and showed significant diversity, with the predominant genera detected being Lactobacillus, Prevotella and Gardnerella. The bacterial profiles in the female urine samples studied were complex; considerable variation between individuals was observed and a common microbial signature was not evident. Notably, a significant amount of sequences belonging to bacteria with a known pathogenic potential was observed. The number of operational taxonomic units (OTUs) for individual samples varied substantially and was in the range of 20 - 500. Conclusions Normal female urine displays a noticeable and variable bacterial 16S rDNA sequence richness, which includes fastidious and anaerobic bacteria previously shown to be associated with female urogenital pathology. PMID:22047020

  9. Molecular phylogeny of endophytic isolates of Ampelomyces from Iran based on rDNA ITS sequences.

    PubMed

    Jamali, Samad

    2015-01-01

    During 2012, five isolates of pycnidial fungi were recovered from roots of tomato (Solanum lycopersicum) plants in Iran. Based on morphological characteristics the presence of Ampelomyces was documented. To confirm morphological identification and clarify the placement of endophytic isolates of Ampelomyces, DNA was extracted from isolates using a genomic DNA purification Kit. Region of internal transcribed spacers 1, 2 and 5.8S genes of rDNA were amplified using ITS4 and ITS1 universal primer set. Amplicons were purified, sequenced and submitted to the GenBank. The resulting sequence (600 bp) was submitted to a BLAST search to find most similar sequences in GenBank. The ITS sequences of isolates obtained in Iran were compared to those of other related authentic sequences obtained from GenBank. Iranian endophytic isolates had 100 % similarity of among themselves, while all isolates of Ampelomyces sequences analyzed had an average of 95.2 % (range 87-100 %) similarity. When Ampelomyces ITS sequences were analyzed by both distance-based and maximum parsimony methods, the Ampelomyces isolates were segregate into 11 distinct clades. The ITS sequences of endophytic isolates obtained in Iran were identical with endophytic isolates from other country including USA, Australia, Hungary and Spain. Our analyses of phylogenetic data showed that endophytic isolates from Iran and other countries are distinct group. The high ITS sequence-divergence values and the phylogenetic analysis suggested the isolates of Ampelomyces in the clades are not closely related and indeed a problematic species complex. PMID:25245955

  10. Development of a Broad-Range 23S rDNA Real-Time PCR Assay for the Detection and Quantification of Pathogenic Bacteria in Human Whole Blood and Plasma Specimens

    PubMed Central

    Gaibani, Paolo; Mariconti, Mara; Bua, Gloria; Bonora, Sonia; Sassera, Davide; Landini, Maria Paola; Mulatto, Patrizia; Novati, Stefano; Bandi, Claudio; Sambri, Vittorio

    2013-01-01

    Molecular methods are important tools in the diagnosis of bloodstream bacterial infections, in particular in patients treated with antimicrobial therapy, due to their quick turn-around time. Here we describe a new broad-range real-time PCR targeting the 23S rDNA gene and capable to detect as low as 10 plasmid copies per reaction of targeted bacterial 23S rDNA gene. Two commercially available DNA extraction kits were evaluated to assess their efficiency for the extraction of plasma and whole blood samples spiked with different amount of either Staphylococcus aureus or Escherichia coli, in order to find the optimal extraction method to be used. Manual QIAmp extraction method with enzyme pre-treatment resulted the most sensitive for detection of bacterial load. Sensitivity of this novel assay ranged between 10 and 103 CFU per PCR reaction for E. coli and S. aureus in human whole blood samples depending on the extraction methods used. Analysis of plasma samples showed a 10- to 100-fold reduction of bacterial 23S rDNA in comparison to the corresponding whole blood specimens, thus indicating that whole blood is the preferential sample type to be used in this real-time PCR protocol. Our results thus show that the 23S rDNA gene represents an optimal target for bacteria quantification in human whole blood. PMID:23586027

  11. Sequence requirements for maturation of the 5' terminus of human 18 S rRNA in vitro.

    PubMed

    Yu, Y T; Nilsen, T W

    1992-05-01

    Creation of the mature 5' terminus of human 18 S rRNA in vitro occurs via a two-step processing reaction. In the first step, an endonucleolytic activity found in HeLa cell nucleolar extract cleaves an rRNA precursor spanning the external transcribed spacer-18 S boundary at a position 3 bases upstream from the mature 18 S terminus leaving 2',3'-cyclic phosphate, 5' hydroxyl termini. In the second step, a nucleolytic activity(s) found in HeLa cell cytoplasmic extract removes the 3 extra bases and creates the authentic 5'-phosphorylated terminus of 18 S rRNA. Here we have examined the sequence requirements for the trimming reaction. The trimming activity(s), in addition to requiring a 5' hydroxyl terminus, prefers the naturally occurring adenosine as the 5'-terminal base. By a combination of deletion, site-directed mutagenesis, and chemical modification interference approaches we have also identified a region of 18 S rRNA spanning bases +6 to +25 (with respect to the mature 5' end) which comprises a critical recognition sequence for the trimming activity(s). PMID:1577760

  12. Molecular phylogenetic analysis of the coccidian cephalopod parasites Aggregata octopiana and Aggregata eberthi (Apicomplexa: Aggregatidae) from the NE Atlantic coast using 18S rRNA sequences.

    PubMed

    Castellanos-Martínez, Sheila; Pérez-Losada, Marcos; Gestal, Camino

    2013-08-01

    The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are identified in European waters. Extensive investigation of their morphology resulted in a redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus clarifying confusing descriptions recorded in the past. The present study sequenced the 18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo (NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed between A. octopiana samples from the same two areas, which suggest the existence of two species. Based on previous morphological evidence, host specificity data, and new molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the valid type species. PMID:23498588

  13. Phylogenetic Analyses of Three Genes of Pedinomonas noctilucae, the Green Endosymbiont of the Marine Dinoflagellate Noctiluca scintillans, Reveal its Affiliation to the Order Marsupiomonadales (Chlorophyta, Pedinophyceae) under the Reinstated Name Protoeuglena noctilucae.

    PubMed

    Wang, Lu; Lin, Xin; Goes, Joaquim I; Lin, Senjie

    2016-04-01

    In the last decade, field studies in the northern Arabian Sea showed a drastic shift from diatom-dominated phytoplankton blooms to thick and widespread blooms of the green dinoflagellate, Noctiluca scintillans. Unlike the exclusively heterotrophic red form, which occurs widely in tropical to temperate coastal waters, the green Noctiluca contains a large number of endosymbiotic algal cells that can perform photosynthesis. These symbiotic microalgae were first described under the genus Protoeuglena Subrahmanyan and further transferred to Pedinomonas as P. noctilucae Sweeney. In this study, we used the 18S rDNA, rbcL and chloroplast 16S rDNA as gene markers, in combination with the previously reported morphological features, to re-examine the phylogenetic position of this endosymbiotic algal species. Phylogenetic trees inferred from these genes consistently indicated that P. noctilucae is distantly related to the type species of Pedinomonas. The sequences formed a monophyletic clade sister to the clade of Marsupiomonas necessitating the placement of the algal symbionts as an independent genus within the family Marsupiomonadaceae. Based on the phylogenetic affiliation and ecological characteristics of this alga as well as the priority rule of nomenclature, we reinstate the genus Protoeuglena and reclassify the endosymbiont as Protoeuglena noctilucae. PMID:27033730

  14. [Analysis of DNA homology and 16S rDNA sequence of rhizobia, a new phenotypic subgroup, isolated from Xizang Autonomous Region of China].

    PubMed

    Wang, Su-ying; Yang, Xiao-li; Li, Hai-feng; Liu, Jie

    2006-02-01

    Based on the studies of numerical taxonomy, the seven rhizobial strains isolated from the root nodules of leguminous plants Trigonella spp. and Astragalus spp. growing in the Xizang Autonomous Region of China constituted a new phenotypic subgroup, where wide phenotypic and genotypic diversity among legume crops had been reported due to complex terrain and various climate. The new phenotypic subgroup were further identified to clarify its taxonomic position by DNA homology analysis and 16S rDNA gene sequencing. The mol% G + C ratio of the DNA among members of the new subgroup ranged from 59.5 to 63.3 mol% as determined by T (m) assay. The levels of DNA relatedness, determined by using the DNA liquid hybridization method, among the members of the new subgroup were between 74.3% and 92.3%, while level of DNA relatedness between the central strains XZ2-3 of the new subgroup and the type strains of known species of Rhizobium was less than 47.4%. These results indicated that the new phenotypic subgroup is a DNA homological group different from described species of Rhizobium. Therefore, this new phenotypic subgroup was supposed to be a new species in the genus of Rhizobium since the strains in the same species generally exhibit levels of DNA homology ranging from 70 to 100%. A systematic identification method-16S rDNA gene sequence comparison was carried out to determine the phylogenetic relationships of the new subgroup with the described species of Rhizobium. The GenBank accession number for the 16S rDNA sequence of the central strain XZ2-3 of the new subgroup is DQ099745. The full-length 16S rDNA gene sequence were sequenced by chain terminator techniques and analyzed with PHYLIP. The phylogenetic trees were constructed by using the programs DRAWTREE. The phylogenetic analysis indicated that new subgroup occupy a independent sub-branch in phylogenetic tree. The sequence similarities between the center strain XZ2-3 and the closest relatives, strain R. leguminosarum USDA

  15. A phylogenetic study on galactose-containing Candida species based on 18S ribosomal DNA sequences.

    PubMed

    Suzuki, Motofumi; Suh, Sung-Oui; Sugita, Takashi; Nakase, Takashi

    1999-10-01

    Phylogenetic relationships of 33 Candida species containing galactose in the cells were investigated by using 18S ribosomal DNA sequence analysis. Galactose-containing Candida species and galactose-containing species from nine ascomycetous genera were a heterogeneous assemblage. They were divided into three clusters (II, III, and IV) which were phylogenetically distant from cluster I, comprising 9 galactose-lacking Candida species, C. glabrata, C. holmii, C. krusei, C. tropicalis (the type species of Candida), C. albicans, C. viswanathii, C. maltosa, C. parapsilosis, C. guilliermondii, and C. lusitaniae, and 17 related ascomycetous yeasts. These three clusters were also phylogenetically distant from Schizosaccharomyces pombe, which contains galactomannan in its cell wall. Cluster II comprised C. magnoliae, C. vaccinii, C. apis, C. gropengiesseri, C. etchellsii, C. floricola, C. lactiscondensi, Wickerhamiella domercqiae, C. versatilis, C. azyma, C. vanderwaltii, C. pararugosa, C. sorbophila, C. spandovensis, C. galacta, C. ingens, C. incommunis, Yarrowia lipolytica, Galactomyces geotrichum, and Dipodascus albidus. Cluster III comprised C. tepae, C. antillancae and its synonym C. bondarzewiae, C. ancudensis, C. petrohuensis, C. santjacobensis, C. ciferrii (anamorph of Stephanoascus ciferrii), Arxula terrestris, C. castrensis, C. valdiviana, C. paludigena, C. blankii, C. salmanticensis, C. auringiensis, C. bertae, and its synonym C. bertae var. chiloensis, C. edax (anamorph of Stephanoascus smithiae), Arxula adeninivorans, and C. steatolytica (synonym of Zygoascus hellenicus). Cluster IV comprised C. cantarellii, C. vinaria, Dipodascopsis uninucleata, and Lipomyces lipofer. Two galactose-lacking and Q-8-forming species, C. stellata and Pichia pastoris, and 5 galactose-lacking and Q-9-forming species, C. apicola, C. bombi, C. bombicola, C. geochares, and C. insectalens, were included in Cluster II. Two galactose-lacking and Q-9-forming species, C. drimydis and C

  16. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis.

    PubMed

    Michael, E S; Kuliopulos, A; Covic, L; Steer, M L; Perides, G

    2013-03-01

    Pancreatic acinar cells express proteinase-activated receptor-2 (PAR2) that is activated by trypsin-like serine proteases and has been shown to exert model-specific effects on the severity of experimental pancreatitis, i.e., PAR2(-/-) mice are protected from experimental acute biliary pancreatitis but develop more severe secretagogue-induced pancreatitis. P2pal-18S is a novel pepducin lipopeptide that targets and inhibits PAR2. In studies monitoring PAR2-stimulated intracellular Ca(2+) concentration changes, we show that P2pal-18S is a full PAR2 inhibitor in acinar cells. Our in vivo studies show that P2pal-18S significantly reduces the severity of experimental biliary pancreatitis induced by retrograde intraductal bile acid infusion, which mimics injury induced by endoscopic retrograde cholangiopancreatography (ERCP). This reduction in pancreatitis severity is observed when the pepducin is given before or 2 h after bile acid infusion but not when it is given 5 h after bile acid infusion. Conversely, P2pal-18S increases the severity of secretagogue-induced pancreatitis. In vitro studies indicate that P2pal-18S protects acinar cells against bile acid-induced injury/death, but it does not alter bile acid-induced intracellular zymogen activation. These studies are the first to report the effects of an effective PAR2 pharmacological inhibitor on pancreatic acinar cells and on the severity of experimental pancreatitis. They raise the possibility that a pepducin such as P2pal-18S might prove useful in the clinical management of patients at risk for developing severe biliary pancreatitis such as occurs following ERCP. PMID:23275617

  17. Metabolism of 18S rRNA in rat liver cells in different functional states of protein-synthesizing apparatus

    SciTech Connect

    Chirkov, G.P.; Druzhinina, M.K.; Todorov, I.N.

    1986-04-10

    The ratio of the absolute radioactivities of 28S and 18S RNAs in the fractions of membrane-bound and free polysomes and the fraction of free rat liver ribosomes was studied under conditions of inhibition of translation by cycloheximide, insulin, and cAMP. It was found that insulin and cAMP, in contrast to cycloheximide, do not induce selective degradation of 18S rRNA. The results are discussed from the standpoint of the possible role of the phosphorylation of protein S6 in the degradation of the 40S ribosomal subunit.

  18. Using the Multiple Analysis Approach to Reconstruct Phylogenetic Relationships among Planktonic Foraminifera from Highly Divergent and Length-polymorphic SSU rDNA Sequences

    PubMed Central

    Aurahs, Ralf; Göker, Markus; Grimm, Guido W.; Hemleben, Vera; Hemleben, Christoph; Schiebel, Ralf; Kučera, Michal

    2009-01-01

    The high sequence divergence within the small subunit ribosomal RNA gene (SSU rDNA) of foraminifera makes it difficult to establish the homology of individual nucleotides across taxa. Alignment-based approaches so far relied on time-consuming manual alignments and discarded up to 50% of the sequenced nucleotides prior to phylogenetic inference. Here, we investigate the potential of the multiple analysis approach to infer a molecular phylogeny of all modern planktonic foraminiferal taxa by using a matrix of 146 new and 153 previously published SSU rDNA sequences. Our multiple analysis approach is based on eleven different automated alignments, analysed separately under the maximum likelihood criterion. The high degree of congruence between the phylogenies derived from our novel approach, traditional manually homologized culled alignments and the fossil record indicates that poorly resolved nucleotide homology does not represent the most significant obstacle when exploring the phylogenetic structure of the SSU rDNA in planktonic foraminifera. We show that approaches designed to extract phylogenetically valuable signals from complete sequences show more promise to resolve the backbone of the planktonic foraminifer tree than attempts to establish strictly homologous base calls in a manual alignment. PMID:20140067

  19. Chromosomal localization of 5S rDNA in Chinese shrimp ( Fenneropenaeus chinensis): a chromosome-specific marker for chromosome identification

    NASA Astrophysics Data System (ADS)

    Huan, Pin; Zhang, Xiaojun; Li, Fuhua; Zhao, Cui; Zhang, Chengsong; Xiang, Jianhai

    2010-03-01

    Chinese shrimp ( Fenneropenaeus chinensis) is an economically important aquaculture species in China. However, cytogenetic and genomic data is limited in the organism partly because the chromosomes are difficult to isolate and analyze. In this study, fluorescence in-situ hybridization (FISH) was used to identify the chromosomes of F. chinensis. The 5S ribosomal RNA gene (rDNA) of F. chinensis was isolated, cloned and then used as a hybridization probe. The results show that the 5S rDNA was located on one pair of homologous chromosomes in F. chinensis. In addition, triploid shrimp were used to evaluate the feasibility of chromosome identification using FISH and to validate the method. It was confirmed that 5S rDNA can be used as a chromosome-specific probe for chromosome identification in F. chinensis. The successful application of FISH in F. chinensis shows that chromosome-specific probes can be developed and this finding will facilitate further research on the chromosomes of penaeid shrimps.

  20. Inhibition of DNA Methylation Alters Chromatin Organization, Nuclear Positioning and Activity of 45S rDNA Loci in Cycling Cells of Q. robur

    PubMed Central

    Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2′-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  1. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    PubMed

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  2. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects.

    PubMed

    Almuzzaini, Bader; Sarshad, Aishe A; Rahmanto, Aldwin S; Hansson, Magnus L; Von Euler, Anne; Sangfelt, Olle; Visa, Neus; Farrants, Ann-Kristin Östlund; Percipalle, Piergiorgio

    2016-08-01

    Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that β-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of β-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In β-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type β-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of β-actin in Pol I transcription. The rRNA synthesis defects in the β-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (monomethylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated β-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.-Almuzzaini, B., Sarshad, A. A. , Rahmanto, A. S., Hansson, M. L., Von Euler, A., Sangfelt, O., Visa, N., Farrants, A.-K. Ö., Percipalle, P. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. PMID:27127100

  3. “Invisible” silver and gold in supergene digenite (Cu1.8S)

    NASA Astrophysics Data System (ADS)

    Reich, Martin; Chryssoulis, Stephen L.; Deditius, Artur; Palacios, Carlos; Zúñiga, Alejandro; Weldt, Magdalena; Alvear, Macarena

    2010-11-01

    Despite its potential economic and environmental importance, the study of trace metals in supergene (secondary) Cu-sulfides has been seriously overlooked in the past decades. In this study, the concentration and mineralogical form of "invisible" precious metals (Ag, Au) and metalloids (As, Sb, Se, Te) in supergene digenite (Cu 1.8S) from various Cu deposits in the Atacama Desert of northern Chile, the world's premier Cu province, were determined in detail using a combination of microanalytical techniques. Secondary ion mass spectrometry (SIMS) and electron microprobe analyzer (EMPA) measurements reveal that, apart from hosting up to ˜11,000 ppm Ag, supergene digenite can incorporate up to part-per-million contents of Au (˜6 ppm) and associated metalloids such as As (˜300 ppm), Sb (˜60 ppm), Se (˜96 ppm) and Te (˜18 ppm). SIMS analyses of trace metals show that Ag and Au concentrations strongly correlate with As in supergene digenite, defining wedge-shaped zones in Ag-As and Au-As log-log spaces. SIMS depth profiling and high-resolution transmission electron microscopy (HRTEM) observations reveal that samples with anomalously high Ag/As (>˜30) and Au/As (>˜0.03) ratios plot above the wedge zones and contain nanoparticles of metallic Ag and Au, while samples with lower ratios contain Ag and Au that is structurally bound to the Cu-sulfide matrix. The Ag-Au-As relations reported in this study strongly suggest that the incorporation of precious metals in Cu-sulfides formed under supergene, low-temperature conditions respond to the incorporation of a minor component, in this case As. Therefore, As might play a significant role by increasing the solubility of Ag and Au in supergene digenite and controlling the formation and occurrence of Ag and Au nanoparticles. Considering the fact that processes of supergene enrichment in Cu deposits can be active from tens of millions of years (e.g. Atacama Desert), we conclude that supergene digenite may play a previously unforeseen role in scavenging precious metals from undersaturated (or locally slightly supersaturated) solutions in near-surface environments.

  4. Prevalent Ciliate Symbiosis on Copepods: High Genetic Diversity and Wide Distribution Detected Using Small Subunit Ribosomal RNA Gene

    PubMed Central

    Guo, Zhiling; Liu, Sheng; Hu, Simin; Li, Tao; Huang, Yousong; Liu, Guangxing; Zhang, Huan; Lin, Senjie

    2012-01-01

    Toward understanding the genetic diversity and distribution of copepod-associated symbiotic ciliates and the evolutionary relationships with their hosts in the marine environment, we developed a small subunit ribosomal RNA gene (18S rDNA)-based molecular method and investigated the genetic diversity and genotype distribution of the symbiotic ciliates on copepods. Of the 10 copepod species representing six families collected from six locations of Pacific and Atlantic Oceans, 9 were found to harbor ciliate symbionts. Phylogenetic analysis of the 391 ciliate 18S rDNA sequences obtained revealed seven groups (ribogroups), six (containing 99% of all the sequences) belonging to subclass Apostomatida, the other clustered with peritrich ciliate Vorticella gracilis. Among the Apostomatida groups, Group III were essentially identical to Vampyrophrya pelagica, and the other five groups represented the undocumented ciliates that were close to Vampyrophrya/Gymnodinioides/Hyalophysa. Group VI ciliates were found in all copepod species but one (Calanus sinicus), and were most abundant among all ciliate sequences obtained, indicating that they are the dominant symbiotic ciliates universally associated with copepods. In contrast, some ciliate sequences were found only in some of the copepods examined, suggesting the host selectivity and geographic differentiation of ciliates, which requires further verification by more extensive sampling. Our results reveal the wide occurrence and high genetic diversity of symbiotic ciliates on marine copepods and highlight the need to systematically investigate the host- and geography-based genetic differentiation and ecological roles of these ciliates globally. PMID:23024768

  5. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene.

    PubMed

    Vďačný, Peter

    2015-08-01

    The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes. PMID:26204556

  6. 18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species.

    PubMed

    Albaina, Aitor; Aguirre, Mikel; Abad, David; Santos, María; Estonba, Andone

    2016-03-01

    The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired-end (PE; 2 × 150 bp) technology. To critically evaluate the method's performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual-based diet analysis methods. The high sensitivity and semi-quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR-based results. This molecular approach provides an alternative cost and time effective tool for food-web analysis. PMID:27087935

  7. Interplay of RNA Pol IV and ROS1 during post-embryonic 5S rDNA chromatin remodeling.

    PubMed

    Douet, Julien; Blanchard, Bertrand; Cuvillier, Claudine; Tourmente, Sylvette

    2008-12-01

    We have investigated the chromatin structure of 5S rDNA, a heterochromatic pericentromeric tandemly repeated family, at 2, 3, 4 and 5 days post-germination. Our results revealed a large-scale reorganization of 5S rDNA chromatin that occurs during the first days of development. Unexpectedly, there is a decondensation followed by a 're'condensation of 5S rDNA chromatin, to obtain almost mature nuclei 5 d post-germination. The reorganization of 5S rDNA chromatin is accompanied by a rapid and active demethylation of 5S rDNA mediated by the ROS1 (repressor of silencing 1) demethylase, whereas the plant-specific RNA polymerase IV (Pol IV) is essential to the 5S chromatin 're'condensation. In conclusion, Pol IV and ROS1 collaborate to unlock the 5S rDNA chromatin inherited from the seed, and establish adult features. PMID:18845569

  8. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida)

    PubMed Central

    2014-01-01

    Background The 5’ region of cytochrome oxidase I (COI) is the standard marker for DNA barcoding. However, COI has proved to be of limited use in identifying some species, and for some taxa, the coding sequence is not efficiently amplified by PCR. These deficiencies lead to uncertainty as to whether COI is the most suitable barcoding fragment for species identification of ticks. Methods In this study, we directly compared the relative effectiveness of COI, 16S ribosomal DNA (rDNA), nuclear ribosomal internal transcribed spacer 2 (ITS2) and 12S rDNA for tick species identification. A total of 307 sequences from 84 specimens representing eight tick species were acquired by PCR. Besides the 1,834 published sequences of 189 tick species from GenBank and the Barcode of Life Database, 430 unpublished sequences representing 59 tick species were also successfully screened by Bayesian analyses. Thereafter, the performance of the four DNA markers to identify tick species was evaluated by identification success rates given by these markers using nearest neighbour (NN), BLASTn, liberal tree-based or liberal tree-based (+threshold) methods. Results Genetic divergence analyses showed that the intra-specific divergence of each marker was much lower than the inter-specific divergence. Our results indicated that the rates of correct sequence identification for all four markers (COI, 16S rDNA, ITS2, 12S rDNA) were very high (> 96%) when using the NN methodology. We also found that COI was not significantly better than the other markers in terms of its rate of correct sequence identification. Overall, BLASTn and NN methods produced higher rates of correct species identification than that produced by the liberal tree-based methods (+threshold or otherwise). Conclusions As the standard DNA barcode, COI should be the first choice for tick species identification, while 16S rDNA, ITS2, and 12S rDNA could be used when COI does not produce reliable results. Besides, NN and BLASTn are

  9. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  10. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. PMID:22510214

  11. Characterization of the ribosomal RNA gene of Kudoa neothunni (Myxosporea: Multivalvulida) in tunas (Thunnus spp.) and Kudoa scomberi n. sp. in a chub mackerel (Scomber japonicus).

    PubMed

    Li, Ying-Chun; Sato, Hiroshi; Tanaka, Shuhei; Ohnishi, Takahiro; Kamata, Yoichi; Sugita-Konishi, Yoshiko

    2013-05-01

    Kudoa neothunni is the first described Kudoa species having six shell valves and polar capsules, previously assigned to the genus Hexacapsula Arai and Matsumoto, 1953. Since its genetic analyses remain to be conducted, the present study characterizes the ribosomal RNA gene (rDNA) using two isolates from a yellowfin tuna (Thunnus albacares) with post-harvest myoliquefaction and a northern bluefin tuna (Thunnus thynnus) without tissue degradation. Spores of the two isolates localized in the myofiber of trunk muscles, forming pseudocysts, and showed typical morphology of K. neothunni with six equal-sized shell valves radially arranged in apical view: spores (n = 15) measuring 9.5-11.4 μm in width, 7.3-8.6 μm in suture width, 8.9-10.9 μm in thickness, and 7.3-7.7 μm in length; and polar capsules measuring 3.6-4.1 μm by 1.8-2.3 μm. In lateral view, the spores were pyramidal in shape without apical protrusions. Their 18S and 5.8S rDNA sequences were essentially identical, but variations in the ITS1 (62.4 % similarity across 757-bp length), ITS2 (66.9 % similarity across 599-bp length), and 28S (99.0 % similarity across 2,245-bp length) rDNA regions existed between the two isolates. On phylogenetic trees based on the 18S or 28S rDNA sequence, K. neothunni formed a clade with Kudoa spp. with more than four shell valves and polar capsules, particularly K. grammatorcyni and K. scomberomori. Semiquadrate spores of a kudoid species with four shell valves and polar capsules were detected from minute cysts (0.30-0.75 mm by 0.20-0.40 mm) embedded in the trunk muscle of a chub mackerel (Scomber japonicus) fished in the Sea of Japan. Morphologically, it resembled K. caudata described from a chub mackerel fished in the southeastern Pacific Ocean off Peru; however, it lacked filamentous projections on the shell valves of spores. Additionally, it morphologically resembled K. thunni described from a yellowfin tuna also fished in the Pacific Ocean; spores (n

  12. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F., Jr.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  13. Differential Expression of Ribosomal Genes in Brain and Blood of Alzheimer's Disease Patients.

    PubMed

    Rasmussen, Lucas; de Labio, Roger W; Viani, Gustavo A; Chen, Elizabeth; Villares, Joao; Bertolucci, Paulo-Henrique; Minett, Thais S; Turecki, Gustavo; Cecyre, Danielle; Drigo, Sandra A; Smith, Marilia C; Payao, Spencer L M

    2015-01-01

    Changes in rRNA and rDNA expression have been associated with cellular and organism aging and have been linked to Alzheimer's disease (AD) pathogenesis. In this study, we investigated the mRNA expression of ribosomal genes (28S/18S) and β-amyloid precursor protein (APP) in different post mortem brain tissue regions (the entorhinal and auditory cortices and the hippocampus) of AD patients and elderly control subjects and also evaluated the extent of expression in peripheral blood from young, healthy, elderly, and Alzheimer's disease patients in order to investigate whether these individuals experienced the effects of aging. The comparative threshold cycle (CT) method via Real Time Polymerase Chain Reaction and the Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) were used to analyze gene expression and the Apolipoprotein E (APOE) genotype, respectively. When the brain areas were analyzed collectively, we observed a significant decrease in APP expression and a significant increase in levels of mRNA of 18S and 28S in Alzheimer's disease patients compared to healthy elderly individuals. Furthermore, there was a significant upregulation of 28SrRNA in the entorhinal cortex and hippocampus, but not in the auditory cortex of patients with AD. On the other hand, tests of blood samples verified a decreased expression of 28S rRNA in patients with AD. These results support the hypothesis that changes in rRNA are present in AD patients, are tissue-specific, and seem to occur independently and differently in each tissue. However, the next challenge is to discover the mechanisms responsible for the differences in expression observed in the blood and the brain in both healthy elderly individuals and Alzheimer's disease patients, as well as the impact of these genes on AD pathogenesis. PMID:26502820

  14. Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene?

    PubMed

    Garcia-Mazcorro, Jose F; Barcenas-Walls, Jose R

    2016-08-01

    The 16S rRNA gene (16S rDNA) codes for RNA that plays a fundamental role during translation in the ribosome and is used extensively as a marker gene to establish relationships among bacteria. However, the complementary non-coding 16S rDNA (nc16S rDNA) has been ignored. An idea emerged in the course of analyzing bacterial 16S rDNA sequences in search for nucleotide composition and substitution patterns: Does the nc16S rDNA code? If so, what does it code for? More importantly: Does 16S rDNA evolution reflect its own evolution or the evolution of its counterpart nc16S rDNA? The objective of this minireview is to discuss these thoughts. nc strands often encode small RNAs (sRNAs), ancient components of gene regulation. nc16S rDNA sequences from different bacterial groups were used to search for possible matches in the Bacterial Small Regulatory RNA Database. Intriguingly, the sequence of one published sRNA obtained from Legionella pneumophila (GenBank: AE0173541) showed high non-random similarity with nc16S rDNA corresponding in part to the V5 region especially from Legionella and relatives. While the target(s) of this sRNA is unclear at the moment, its mere existence might open up a new chapter in the use of the 16S rDNA to study relationships among bacteria. PMID:27412167

  15. Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes

    PubMed Central

    Paps, Jordi; Baguñà, Jaume; Riutort, Marta

    2009-01-01

    Resolving the relationships among animal phyla is a key biological problem that remains to be solved. Morphology is unable to determine the relationships among most phyla and although molecular data have unveiled a new evolutionary scenario, they have their own limitations. Nuclear ribosomal genes (18S and 28S rDNA) have been used effectively for many years. However, they are considered of limited use for resolving deep divergences such as the origin of the bilaterians, due to certain drawbacks such as the long-branch attraction (LBA) problem. Here, we attempt to overcome these pitfalls by combining several methods suggested in previous studies and routinely used in contemporary standard phylogenetic analyses but that have not yet been applied to any bilaterian phylogeny based on these genes. The methods used include maximum likelihood and Bayesian inference, the application of models with rate heterogeneity across sites, wide taxon sampling and compartmentalized analyses for each problematic clade. The results obtained show that the combination of the above-mentioned methodologies minimizes the LBA effect, and a new Lophotrochozoa phylogeny emerges. Also, the Acoela and Nemertodermatida are confirmed with maximum support as the first branching bilaterians. Ribosomal RNA genes are thus a reliable source for the study of deep divergences in the metazoan tree, provided that the data are treated carefully. PMID:19129141

  16. Identification of signature and primers specific to genus Pseudomonas using mismatched patterns of 16S rDNA sequences

    PubMed Central

    Purohit, HJ; Raje, DV; Kapley, A

    2003-01-01

    Background Pseudomonas, a soil bacterium, has been observed as a dominant genus that survives in different habitats with wide hostile conditions. We had a basic assumption that the species level variation in 16S rDNA sequences of a bacterial genus is mainly due to substitutions rather than insertion or deletion of bases. Keeping this in view, the aim was to identify a region of 16S rDNA sequence and within that focus on substitution prone stretches indicating species level variation and to derive patterns from these stretches that are specific to the genus. Results Repeating elements that are highly conserved across different species of Pseudomonas were considered as guiding markers to locate a region within the 16S gene. Four repeating patterns showing more than 80% consistency across fifty different species of Pseudomonas were identified. The sub-sequences between the repeating patterns yielded a continuous region of 495 bases. The sub-sequences after alignment and using Shanon's entropy measure yielded a consensus pattern. A stretch of 24 base positions in this region, showing maximum variations across the sampled sequences was focused for possible genus specific patterns. Nine patterns in this stretch showed nearly 70% specificity to the target genus. These patterns were further used to obtain a signature that is highly specific to Pseudomonas. The signature region was used to design PCR primers, which yielded a PCR product of 150 bp whose specificity was validated through a sample experiment. Conclusions The developed approach was successfully applied to genus Pseudomonas. It could be tried in other bacterial genera to obtain respective signature patterns and thereby PCR primers, for their rapid tracking in the environmental samples. PMID:12769821

  17. Intraspecific diversity within Diaporthe helianthi: evidence from rDNA intergenic spacer (IGS) sequence analysis.

    PubMed

    Pecchia, Susanna; Mercatelli, Elisabetta; Vannacci, Giovanni

    2004-04-01

    Diaporthe helianthi is the causal agent of sunflower stem canker, a serious pathogen of sunflower in Europe but recorded sporadically in Italy. The genetic diversity of D. helianthi isolates from different geographic origins (Argentina, France, Italy, Yugoslavia, Romania) was investigated using IGS sequences. A 400 bp fragment of the portion of the IGS region flanking the 5' end of the 18S gene was amplified from each isolate. The aligned nucleotide sequences showed intraspecific sequence homology from 99-100% among French/Yugoslavian isolates to 95-100% among Italian isolates. French/Yugoslavian isolates shared 90-92% sequence homology with Italian isolates. The phylogenetic tree obtained from the aligned data revealed three separate groups. Group 1 included all isolates from France and former Yugoslavia and one isolate from Argentina; Group 2 included all Italian isolates and one isolate from Argentina. The most distantly related isolate was that from Romania (Group 3). The average genetic distances among isolates within Group 1 and within Group 2 were 0.22 and 3.29 respectively. The analysis showed that all isolates originating from countries where severe outbreaks of the disease are reported annually (France and former Yugoslavia) form a well defined taxon characterized by relatively low variability. This group is distinct from the group formed by isolates originating from Italy, whose variability is relatively much higher. Results obtained revealed a marked differentiation among pathogen isolates, and members of Group 1 seem not yet to have spread into Italian sunflower-growing areas. PMID:15180160

  18. Intracellular Diversity of the V4 and V9 Regions of the 18S rRNA in Marine Protists (Radiolarians) Assessed by High-Throughput Sequencing

    PubMed Central

    Decelle, Johan; Romac, Sarah; Sasaki, Eriko; Not, Fabrice; Mahé, Frédéric

    2014-01-01

    Metabarcoding is a powerful tool for exploring microbial diversity in the environment, but its accurate interpretation is impeded by diverse technical (e.g. PCR and sequencing errors) and biological biases (e.g. intra-individual polymorphism) that remain poorly understood. To help interpret environmental metabarcoding datasets, we investigated the intracellular diversity of the V4 and V9 regions of the 18S rRNA gene from Acantharia and Nassellaria (radiolarians) using 454 pyrosequencing. Individual cells of radiolarians were isolated, and PCRs were performed with generalist primers to amplify the V4 and V9 regions. Different denoising procedures were employed to filter the pyrosequenced raw amplicons (Acacia, AmpliconNoise, Linkage method). For each of the six isolated cells, an average of 541 V4 and 562 V9 amplicons assigned to radiolarians were obtained, from which one numerically dominant sequence and several minor variants were found. At the 97% identity, a diversity metrics commonly used in environmental surveys, up to 5 distinct OTUs were detected in a single cell. However, most amplicons grouped within a single OTU whereas other OTUs contained very few amplicons. Different analytical methods provided evidence that most minor variants forming different OTUs correspond to PCR and sequencing artifacts. Duplicate PCR and sequencing from the same DNA extract of a single cell had only 9 to 16% of unique amplicons in common, and alignment visualization of V4 and V9 amplicons showed that most minor variants contained substitutions in highly-conserved regions. We conclude that intracellular variability of the 18S rRNA in radiolarians is very limited despite its multi-copy nature and the existence of multiple nuclei in these protists. Our study recommends some technical guidelines to conservatively discard artificial amplicons from metabarcoding datasets, and thus properly assess the diversity and richness of protists in the environment. PMID:25090095

  19. Complete Sequence Construction of the Highly Repetitive Ribosomal RNA Gene Repeats in Eukaryotes Using Whole Genome Sequence Data.

    PubMed

    Agrawal, Saumya; Ganley, Austen R D

    2016-01-01

    The ribosomal RNA genes (rDNA) encode the major rRNA species of the ribosome, and thus are essential across life. These genes are highly repetitive in most eukaryotes, forming blocks of tandem repeats that form the core of nucleoli. The primary role of the rDNA in encoding rRNA has been long understood, but more recently the rDNA has been implicated in a number of other important biological phenomena, including genome stability, cell cycle, and epigenetic silencing. Noncoding elements, primarily located in the intergenic spacer region, appear to mediate many of these phenomena. Although sequence information is available for the genomes of many organisms, in almost all cases rDNA repeat sequences are lacking, primarily due to problems in assembling these intriguing regions during whole genome assemblies. Here, we present a method to obtain complete rDNA repeat unit sequences from whole genome assemblies. Limitations of next generation sequencing (NGS) data make them unsuitable for assembling complete rDNA unit sequences; therefore, the method we present relies on the use of Sanger whole genome sequence data. Our method makes use of the Arachne assembler, which can assemble highly repetitive regions such as the rDNA in a memory-efficient way. We provide a detailed step-by-step protocol for generating rDNA sequences from whole genome Sanger sequence data using Arachne, for refining complete rDNA unit sequences, and for validating the sequences obtained. In principle, our method will work for any species where the rDNA is organized into tandem repeats. This will help researchers working on species without a complete rDNA sequence, those working on evolutionary aspects of the rDNA, and those interested in conducting phylogenetic footprinting studies with the rDNA. PMID:27576718

  20. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    PubMed

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment. PMID:22556029

  1. A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan

    PubMed Central

    Kwan, Elizabeth X.; Foss, Eric J.; Tsuchiyama, Scott; Alvino, Gina M.; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M. K.; Brewer, Bonita J.; Kennedy, Brian K.; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. PMID:23505383

  2. [Analysis of 5S rDNA changes in synthetic allopolyploids Triticum x Aegilops].

    PubMed

    Shcherban', A B; Sergeeva, E M; Badaeva, E D; Salina, E A

    2008-01-01

    By the example of three synthetic allopolyploids: Aegilops sharonensis x Ae. umbellulata (2n =28), Triticum urartu x Ae. tauschii (2n =28), T. dicoccoides x Ae. tauschii (2n =42) the 5S rDNA changes at the early stage of allopolyploidization were investigated. Using fluorescent in situ hybridization (FISH), the quantitative changes affecting the separate loci of one of the parental genomes were revealed in plants of S3 generation of each hybrid combination. Souther hybridization with genomic DNA of allopolyploid T. urartu x Ae. tauschii (TMU38 x TQ27) revealed lower intensity of the fragments from Ae. tauschii compared with the T. urartu fragments. It may be confirmation of the reduction of signal on 1D chromosome that was revealed in this hybrid using FISH. Both appearance of a new 5S rDNA fragments and full disappearance of fragments from parental species were not showed by Southern hybridization, as well as PCR-analysis of 5-15 plants of S2-S3 generations. The changes were not found under comparison of primary structure of nine 5S rDNA sequences of allopolyploid TMU38 x TQ27 with analogous sequences from parental species genomes. The observable similarity by FISH results of one of the studied synthetic allopolyploids with natural allopolyploid of similar genome composition indicates the early formation of unique for each allopolyploid 5S rDNA organization. PMID:18856060

  3. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination

    PubMed Central

    Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H

    2015-01-01

    Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413

  4. Relationships between rDNA, Nop1 and Sir complex in biotechnologically relevant distillery yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Potocki, Leszek; Kuna, Ewelina; Kaplan, Jakub; Pabian, Sylwia; Kwiatkowska, Aleksandra; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    Distillery yeasts are poorly characterized physiological group among the Saccharomyces sensu stricto complex. As industrial yeasts are under constant environmental stress during fermentation processes and the nucleolus is a stress sensor, in the present study, nucleolus-related parameters were evaluated in 22 commercially available distillery yeast strains. Distillery yeasts were found to be a heterogeneous group with a variable content and length of rDNA and degree of nucleolus fragmentation. The levels of rDNA were negatively correlated with Nop1 (r = -0.59, p = 0.0038). Moreover, the protein levels of Sir transcriptional silencing complex and longevity regulators, namely Sir1, Sir2, Sir3 and Fob1, were studied and negative correlations between Sir2 and Nop1 (r = -0.45, p = 0.0332), and between Sir2 and Fob1 (r = -0.49, p = 0.0211) were revealed. In general, S. paradoxus group of distillery yeasts with higher rDNA pools and Sir2 level than S. bayanus group was found to be more tolerant to fermentation-associated stress stimuli, namely mild cold/heat stresses and KCl treatment. We postulate that rDNA state may be considered as a novel factor that may modulate a biotechnological process. PMID:27329282

  5. Discriminatory profile of rDNA sites and trend for acrocentric chromosome formation in the genus Trachinotus Lacépède, 1801 (Perciformes, Carangidae).

    PubMed

    Jacobina, Uedson Pereira; Vicari, Marcelo Ricardo; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2012-01-01

    Chromosomal traits have provided valuable information for phylogeny and taxonomy of several fish groups. Three Atlantic Carangidae species of the genus Trachinotus Lacépède, 1801 (Trachinotus goodei Jordan et Evermann, 1896, Trachinotus carolinus (Linnaeus, 1766)and Trachinotus falcatus (Linnaeus, 1758)) were investigated, having 2n=48 chromosomes but different chromosomal arms (FN number), i.e., 52, 56 and 58, respectively, in view of the different number of two-armed chromosomes found in their karyotypes. Thus, Trachinotus goodei, Trachinotus carolinus and Trachinotus falcatus present a progressive distancefrom the probable basal karyotype proposed for Perciformes (2n=48 acrocentrics, FN=48). At first sight, these findings do not agree with the phylogenetic hypothesis based on mitochondrial sequences, where Trachinotus goodei appear as the most derived species, followed by Trachinotus falcatus and Trachinotus carolinus, respectively. However, the chromosomal mapping of ribosomal DNAs was informative for clarifying this apparent conflict. Indeed, the multiple 5S and 18S rDNA sites found in Trachinotus goodei corroborate the most derived condition for this species. In this sense, the occurrence of the unexpected number of two-armed chromosomes and FN value for this species, as well as for Trachinotus carolinus, must be due to additional rounds of acrocentric formation in these species, modifying the macrostructure of their karyotypes. PMID:24260676

  6. Molecular Identification and Differentiation of Fasciola Isolates Using PCR- RFLP Method Based on Internal Transcribed Spacer (ITS1, 5.8S rDNA, ITS2)

    PubMed Central

    Mahami-Oskouei, M; Dalimi, A; Forouzandeh-Moghadam, M; Rokni, MB

    2011-01-01

    Background In this study, we used both ITS1 and ITS2 for molecular identification of Fasciola species. Methods The region between 18S and 28S of ribosomal DNA was used in PCR-RFLP method for molecular identification of Fasciola species. Ninety trematodes of Fasciola were collected during abattoir inspection from livers of naturally infected sheep and cattle from Khorasan, East Azerbaijan, and Fars provinces in Iran. After DNA extraction, PCR was performed to amplify region ITS1, 5.8S rDNA, ITS2. To select a suitable restriction enzyme, we sequenced and analyzed the PCR products of F. hepatica and F. gigantica samples from sheep and cattle. Tsp509I fast digest restriction enzyme was selected for RFLP method that caused the separation specifically of Fasciola species. Results The fragment approximately 1000bp in all of the Fasciola samples was amplified and then digested with the Tsp509I restriction endonuclease. Seventy F. hepatica and 20 F. gigantica were identified of total 90 Fasciola isolates. Conclusion The new PCR-RFLP assay using Tsp509I restriction enzyme provides a simple, practical, fast, low cost, and reliable method for identification and differentiation of Fasciola isolates. PMID:22347295

  7. Discriminatory profile of rDNA sites and trend for acrocentric chromosome formation in the genus Trachinotus Lacépède, 1801 (Perciformes, Carangidae)

    PubMed Central

    Jacobina, Uedson Pereira; Vicari, Marcelo Ricardo; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2012-01-01

    Abstract Chromosomal traits have provided valuable information for phylogeny and taxonomy of several fish groups. Three Atlantic Carangidae species of the genus Trachinotus Lacépède, 1801 (Trachinotus goodei Jordan et Evermann, 1896, Trachinotus carolinus (Linnaeus, 1766)and Trachinotus falcatus (Linnaeus, 1758)) were investigated, having 2n=48 chromosomes but different chromosomal arms (FN number), i.e., 52, 56 and 58, respectively, in view of the different number of two-armed chromosomes found in their karyotypes. Thus, Trachinotus goodei, Trachinotus carolinus and Trachinotus falcatus present a progressive distancefrom the probable basal karyotype proposed for Perciformes (2n=48 acrocentrics, FN=48). At first sight, these findings do not agree with the phylogenetic hypothesis based on mitochondrial sequences, where Trachinotus goodei appear as the most derived species, followed by Trachinotus falcatus and Trachinotus carolinus, respectively. However, the chromosomal mapping of ribosomal DNAs was informative for clarifying this apparent conflict. Indeed, the multiple 5S and 18S rDNA sites found in Trachinotus goodei corroborate the most derived condition for this species. In this sense, the occurrence of the unexpected number of two-armed chromosomes and FN value for this species, as well as for Trachinotus carolinus, must be due to additional rounds of acrocentric formation in these species, modifying the macrostructure of their karyotypes. PMID:24260676

  8. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers.

    PubMed

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China. PMID:26388034

  9. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers

    PubMed Central

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H.; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China. PMID:26388034

  10. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications

    PubMed Central

    2012-01-01

    Background 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of the distribution of these sites along the chromosome in several genera has suggested some bias in their distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of some chromosomal and karyotypic features on the distribution of these sites, a database was built with the position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant species. Results In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted. The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm. The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families. Conclusions The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but some hypotheses are considered and the observed trends are discussed. PMID:23181612

  11. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  12. Ethanol production from inulin and unsterilized meal of Jerusalem artichoke tubers by Saccharomyces sp. W0 expressing the endo-inulinase gene from Arthrobacter sp.

    PubMed

    Li, Yang; Liu, Guang-Lei; Chi, Zhen-Ming

    2013-11-01

    After the endo-inulinase gene from Arthrobacter sp. was ligated the expression vectors pMIDSC31 and pMIRSC31, the endo-inulinase gene was inserted into the chromosomal DNA of Saccharomyces sp. W0. It was found that the inulinase activity of the recombinant yeast D5 in which the endo-inulinase gene was inserted into the delta sequence was higher than that of the recombinant yeast R1 in which the endo-inulinase gene was inserted into 18S rDNA sequence. More ethanol from inulin was produced by the recombinant yeast D5 than by the recombinant yeast R1. But Saccharomyces sp. W0 produced the lowest inulinase activity and concentration of ethanol. During the 3-l fermentation, the recombinant yeast D5 could produce 13.6 ml of ethanol per 100ml of the fermented medium from 30% inulin. The recombinant yeast D5 could actively convert the unsterilized meal of Jerusalem artichoke tubers, yielding 10.1 ml of ethanol per 100ml of the fermented medium. PMID:23999259

  13. Genomic architecture and inheritance of human ribosomal RNA gene clusters

    PubMed Central

    Stults, Dawn M.; Killen, Michael W.; Pierce, Heather H.; Pierce, Andrew J.

    2008-01-01

    The finishing of the Human Genome Project largely completed the detailing of human euchromatic sequences; however, the most highly repetitive regions of the genome still could not be assembled. The 12 gene clusters producing the structural RNA components of the ribosome are critically important for cellular viability, yet fall into this unassembled region of the Human Genome Project. To determine the extent of human variation in ribosomal RNA gene content (rDNA) and patterns of rDNA cluster inheritance, we have determined the physical lengths of the rDNA clusters in peripheral blood white cells of healthy human volunteers. The cluster lengths exhibit striking variability between and within human individuals, ranging from 50 kb to >6 Mb, manifest essentially complete heterozygosity, and provide each person with their own unique rDNA electrophoretic karyotype. Analysis of these rDNA fingerprints in multigenerational human families demonstrates that the rDNA clusters are subject to meiotic rearrangement at a frequency >10% per cluster, per meiosis. With this high intrinsic recombinational instability, the rDNA clusters may serve as a unique paradigm of potential human genomic plasticity. PMID:18025267

  14. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth

    PubMed Central

    Bai, Dongmei; Zhang, Jinfang; Li, Tingting; Hang, Runlai; Liu, Yong; Tian, Yonglu; Huang, Dadu; Qu, Linglong; Cao, Xiaofeng; Ji, Jiafu; Zheng, Xiaofeng

    2016-01-01

    Dysfunctions in ribosome biogenesis cause developmental defects and increased cancer susceptibility; however, the connection between ribosome assembly and tumorigenesis remains unestablished. Here we show that hCINAP (also named AK6) is required for human 18S rRNA processing and 40S subunit assembly. Homozygous CINAP−/− mice show embryonic lethality. The heterozygotes are viable and show defects in 18S rRNA processing, whereas no delayed cell growth is observed. However, during rapid growth, CINAP haploinsufficiency impairs protein synthesis. Consistently, hCINAP depletion in fast-growing cancer cells inhibits ribosome assembly and abolishes tumorigenesis. These data demonstrate that hCINAP reduction is a specific rate-limiting controller during rapid growth. Notably, hCINAP is highly expressed in cancers and correlated with a worse prognosis. Genome-wide polysome profiling shows that hCINAP selectively modulates cancer-associated translatome to promote malignancy. Our results connect the role of hCINAP in ribosome assembly with tumorigenesis. Modulation of hCINAP expression may be a promising target for cancer therapy. PMID:27477389

  15. Optical and electrical stability of viral-templated copper sulfide (Cu{sub 1.8}S) films

    SciTech Connect

    Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D.

    2014-04-14

    The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu{sub 1.8}S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu{sub 1.8}S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditions experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.

  16. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections.

    PubMed

    Yang, Rongchang; Palermo, Cindy; Chen, Linda; Edwards, Amanda; Paparini, Andrea; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una

    2015-12-15

    Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected. PMID:26527238

  17. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants

    PubMed Central

    Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří

    2015-01-01

    Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579

  18. The world in a river? A preliminary analysis of the 16S rDNA variability of Tubifex species (Clitellata: Tubificidae) from the Lambro River.

    PubMed

    Crottini, Angelica; Marotta, Roberto; Barbuto, Michela; Casiraghi, Maurizio; Ferraguti, Marco

    2008-09-01

    Tubifex tubifex Müller, 1774 is a cosmopolitan freshwater tubificid widely used as a model in ecotoxicology, population dynamics and developmental biology. It is traditionally recognized as a polytypic species and in Lambro River (Milano, Northern Italy) it occurs in two of the three recognized forms, named "tubifex" and "blanchardi", alternatively considered as ecological forms or distinct species. To investigate the genetic differentiation of the populations occurring in the Lambro River we sequenced a fragment of the 16S rDNA mitochondrial gene. T. blanchardi, characterized by a low genetic diversity, was genetically segregated from the other sympatric T. tubifex. The ancestral state reconstruction was used to define the morphological traits that support its distinctness. On the contrary, the other T. tubifex from the Lambro community, although morphologically indistinguishable, revealed an astonishing degree of genetic variability, both between and within the three identified clades that proved to be genetically isolated. Using samples from the mixed Lambro River community and from other countries around the world we present an overview of the species complex' 16S rDNA variability. Our results show that the genetic variability did not sensibly increase widening the data set, suggesting that the Lambro River populations meet the species' worldwide genetic variability. PMID:18625325

  19. Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA) Classification

    PubMed Central

    John, Uwe; Litaker, R. Wayne; Montresor, Marina; Murray, Shauna; Brosnahan, Michael L.; Anderson, Donald M.

    2015-01-01

    The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners – potent neurotoxins that cause paralytic shellfish poisoning. Isolates from this complex are assigned to A. tamarense, A. fundyense, or A. catenella based on two main morphological characters: the ability to form chains and the presence/absence of a ventral pore between Plates 1′ and 4′. However, studies have shown that these characters are not consistent and/or distinctive. Further, phylogenies based on multiple regions in the rDNA operon indicate that the sequences from morphologically indistinguishable isolates partition into five clades. These clades were initially named based on their presumed geographic distribution, but recently were renamed as Groups I–V following the discovery of sympatry among some groups. In this study we present data on morphology, ITS/5.8S genetic distances, ITS2 compensatory base changes, mating incompatibilities, toxicity, the sxtA toxin synthesis gene, and rDNA phylogenies. All results were consistent with each group representing a distinct cryptic species. Accordingly, the groups were assigned species names as follows: Group I, A. fundyense; Group II, A. mediterraneum; Group III, A. tamarense; Group IV, A. pacificum; Group V, A. australiense. PMID:25460230

  20. Secondary structure of expansion segment D1 in LSU rDNA from Arachnida and its phylogenetic application in Eriophyoid mites and in Acari.

    PubMed

    Wang, Zheng-Hang; Zhao, Ya-E; Xu, Yang; Hu, Li; Chen, Yi-Meng

    2015-12-01

    An increasing number of researchers have applied secondary-structure based multiple alignments of rDNA genes in phylogeny. These studies mostly depended on a few valuable divergent domains in LSU and SSU rDNA. Yet other divergent domains, e.g. D1, were poorly investigated and rarely used. However, these domains might contain additional evolutionary data and play a vital role in DNA-based phylogenetic study. Here, we investigated all available D1 sequences of Arachnida taxa and predicted corresponding secondary structures to help identify homologous positions in the D1 region. Long insertions were found exclusive to Eriophyoidea and folded into three newly proposed helices. Non-Acari taxa were all GC rich. In Acari, most Trombidiformes and all Mesostigmata (Parasitiformes) taxa were AT rich and Ixodida (Parasitiformes) GC rich; however there was no consistent base bias in Sarcoptiformes sequences. For Eriophyoid mites, genera Cecidophyopsis and Aceria were both well supported in MP, NJ, ME and ML tress based on D1 sequences, and clusters of Cecidophyopsis species were identical with former study. This demonstrated that the D1 region could act as a valuable molecular marker in phylogenetic reconstruction of Eriophyoidea. Additionally, D1 has been proven suitable in phylogenetic analysis at the family and genus level in Acari, but not in Opiliones. PMID:26420464

  1. Quantum speciation in Aegilops: Molecular cytogenetic evidence from rDNA cluster variability in natural populations

    PubMed Central

    Raskina, Olga; Belyayev, Alexander; Nevo, Eviatar

    2004-01-01

    Data are presented on quantum speciation in the Sitopsis section of the genus Aegilops (Poaceae, Monocotyledones). Two small, peripheral, isolated, wild populations of annual cross-pollinated Ae. speltoides and annual self-pollinated Ae. sharonensis are located 30 m apart on different soil types. Despite the close proximity of the two species and their close relatedness, no mixed groups are known. Comparative molecular cytogenetic analysis based on the intrapopulation variability of rRNA-encoding DNA (rDNA) chromosomal patterns of individual Ae. speltoides geno-types revealed an ongoing dynamic process of permanent chromosomal rearrangements. Chromosomal mutations can arise de novo and can be eliminated. Analysis of the progeny of the investigated genotypes testifies that inheritance of de novo rDNA sites happens frequently. Heterologous recombination and/or transposable elements-mediated rDNA transfer seem to be the mechanisms for observed chromosomal repatterning. Consequently, several modified genomic forms, intermediate between Ae. speltoides and Ae. sharonensis, permanently arise in the studied wild population of Ae. speltoides, which make it possible to recognize Ae. sharonensis as a derivative species of Ae. speltoides, as well as to propose rapidness and canalization of quantum speciation in Sitopsis species. PMID:15466712

  2. Taiwanese Trichogramma of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection

    PubMed Central

    Wu, Li-Hsin; Hoffmann, Ary A.; Thomson, Linda J.

    2016-01-01

    Egg parasitoids of the genus Trichogramma are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic Trichogramma for pest control in particular crops. In this study, Trichogramma wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three Trichogramma species, Trichogramma ostriniae Pang and Chen, Trichogramma chilonis Ishii, and T. sp. y, were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although T. ostriniae and T. sp. y appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released Trichogramma colony thought to be T. chilonis possessed 99% identity (ITS-2) with the field T. sp. y individuals. This suggests past contamination leading to subsitution of the laboratory-reared T. chilonis colony by T. sp. y. Natural populations of all three Trichogramma species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence. PMID:26896674

  3. Taiwanese Trichogramma of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection.

    PubMed

    Wu, Li-Hsin; Hoffmann, Ary A; Thomson, Linda J

    2016-01-01

    Egg parasitoids of the genus Trichogramma are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic Trichogramma for pest control in particular crops. In this study, Trichogramma wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three Trichogramma species, Trichogramma ostriniae Pang and Chen, Trichogramma chilonis Ishii, and T. sp. y, were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although T. ostriniae and T. sp. y appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released Trichogramma colony thought to be T. chilonis possessed 99% identity (ITS-2) with the field T. sp. y individuals. This suggests past contamination leading to subsitution of the laboratory-reared T. chilonis colony by T. sp. y. Natural populations of all three Trichogramma species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence. PMID:26896674

  4. The phylogeny of native and exotic scallops cultured in China based on 16S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Baozhong; Dong, Bo; Xiang, Jianhai; Wang, Zaizhao

    2007-01-01

    Scallops of the Family Pectinidae are a valuable resource in marine industry of the world. Understanding the phylogeny of the family is important for the development of the industry. In this study, partial 16S mitochondrial rDNA genes were obtained from 8 scallop species that are commonly cultured indigenous and transplanted species in China. Phylogenetic relationships of Pectinidae were analyzed based on the 8 sequences and other 5 published ones in GenBank, representing 9 genera of the family. The molecular phylogeny trees were constructed using 3 methods with software PHYLIP. The results showe that total 13 species of scallops clustered in 4 clades. Pecten maximus joins P. jacobaeus then Amusium pleuronectes in cluster, indicating close relationship of genus Amusium with Pecten in evolution. P. yessoensis is close to Chlamys farreri and C. islandica. No enough material was available to single out genus Patinopecten as an independent monophyletic subfamily. The position of Adamussium colbecki indicates that it is far from genus Pecten but near to genus Chlamys in evolution.

  5. Wide genetic variations at 18S ribosomal RNA locus of Cyclospora cayetanensis isolated from Egyptian patients using high resolution melting curve.

    PubMed

    Hussein, Eman M; El-Moamly, Amal A; Mahmoud, Moushira A; Ateek, Nayera S

    2016-07-01

    A variable clinical picture of cyclosporiasis including gastrointestinal tract (GIT) symptomatic or asymptomatic beside extraintestinal consequences suggests a possibility of heterogenicity of Cyclospora cayetanensis. The present work aimed to explore the possibility of genetic variation of C. cayetanensis using high-resolution melting (HRM) curve of polymerase chain reaction (PCR) amplified 18S rRNA genes. DNAs extracted from the stool samples of 70 cyclosporiasis patients were amplified and scanned by PCR/HRM curve. The results showed that there are four different genotypic profiles of C. cayetanensis with presence of mixed ones. Although Tm of all profiles was within the same range, they were discerned by plotting of the temperature-shifted florescence difference between normalized melting curves (dF/dT). Genotypic profile I was found alone in 40 % of patients and mixed with genotypic profile II and/or III in 25.7 % of patients, followed by genotypic profile II in 14.3 % then genotypic profile III and IV (10 % each). A significant relation was found between genotypic profiles and GIT symptomatic status as profile I and profile II were mostly detected in patients with acute GIT symptoms without or with chronic illness, respectively, while profile IV cases only were GIT asymptomatic. Statistical significance relations between genotypic profiles and age, gender, residence and oocyst shape index were determined. In conclusion, PCR/HRM proved a wide variation on C. cayetanensis genes that could be reflected on its pathogenic effects and explaining the variability of the clinical manifestations presented by cyclosporiasis patients. PMID:27041342

  6. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury

    PubMed Central

    2012-01-01

    Background Clinical dogma is that healthy urine is sterile and the presence of bacteria with an inflammatory response is indicative of urinary tract infection (UTI). Asymptomatic bacteriuria (ABU) represents the state in which bacteria are present but the inflammatory response is negligible. Differentiating ABU from UTI is diagnostically challenging, but critical because overtreatment of ABU can perpetuate antimicrobial resistance while undertreatment of UTI can result in increased morbidity and mortality. In this study, we describe key characteristics of the healthy and ABU urine microbiomes utilizing 16S rRNA gene (16S rDNA) sequencing and metaproteomics, with the future goal of utilizing this information to personalize the treatment of UTI based on key individual characteristics. Methods A cross-sectional study of 26 healthy controls and 27 healthy subjects at risk for ABU due to spinal cord injury-related neuropathic bladder (NB) was conducted. Of the 27 subjects with NB, 8 voided normally, 8 utilized intermittent catheterization, and 11 utilized indwelling Foley urethral catheterization for bladder drainage. Urine was obtained by clean catch in voiders, or directly from the catheter in subjects utilizing catheters. Urinalysis, urine culture and 16S rDNA sequencing were performed on all samples, with metaproteomic analysis performed on a subsample. Results A total of 589454 quality-filtered 16S rDNA sequence reads were processed through a NextGen 16S rDNA analysis pipeline. Urine microbiomes differ by normal bladder function vs. NB, gender, type of bladder catheter utilized, and duration of NB. The top ten bacterial taxa showing the most relative abundance and change among samples were Lactobacillales, Enterobacteriales, Actinomycetales, Bacillales, Clostridiales, Bacteroidales, Burkholderiales, Pseudomonadales, Bifidobacteriales and Coriobacteriales. Metaproteomics confirmed the 16S rDNA results, and functional human protein-pathogen interactions were noted in

  7. Molecular analysis of complete ssu to lsu rdna sequence in the harmful dinoflagellate alexandrium tamarense (korean isolate, HY970328M)

    NASA Astrophysics Data System (ADS)

    Ki, Jang-Seu; Han, Myung-Soo

    2005-09-01

    New PCR primers (N=18) were designed for the isolation of complete SSU to LSU rDNA sequences from the dinoflagellate Alexandrium tamarense. Standard PCR, employing each primer set selected for amplifications of less than 1.5 kb, successfully amplified the expected rDNA regions of A. tamarense (Korean isolate, HY970328M). Complete SSU, LSU rDNAs and ITS sequences, including 5.8S rDNA, were recorded at 1,800 bp, 520 bp and 3,393 bp, respectively. The LSU rDNA sequence was the first report in Alexandrium genus. No intron was found in the LSU rRNA coding region. Twelve D-domains within the LSU rDNA were put together into 1,879 bp (44.4% G+C), and cores into 1514 bp (42.8% G+C). The core sequence was significantly different (0.0867 of genetic distance, 91% sequence similarity) in comparison with Prorocentrum micans (GenBank access. no. X16108). The D2 region was the longest in length (300 bp) and highly variable among the 12 D-domains. In a phylogenetic analysis using complete LSU rDNA sequences of a variety of phytoplankton, A tamarense was clearly separated with high resolution against other species. The result suggests that the sequence may resolve the taxonomic ambiguities of Alexandrium genus, particularly of the tamarensis complex.

  8. Epigeneitc silencing of ribosomal RNA genes by Mybbp1a

    PubMed Central

    2012-01-01

    Background Transcription of the ribosomal RNA gene repeats by Pol I occurs in the nucleolus and is a fundamental step in ribosome biogenesis and protein translation. Due to tight coordination between ribosome biogenesis and cell proliferation, transcription of rRNA and stable maintenance of rDNA clusters are thought to be under intricate control by intercalated mechanisms, particularly at the epigenetic level. Methods and Results Here we identify the nucleolar protein Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of rRNA expression. Suppression of rDNA transcription by Mybbp1a was linked to promoter regulation as illustrated by its binding to the chromatin around the hypermethylated, inactive rDNA gene promoters. Our data further showed that downregulation of Mybbp1a abrogated the local DNA methylation levels and histone marks associated with gene silencing, and altered the promoter occupancy of various factors such UBF and HDACs, consequently leading to elevated rRNA expression. Mechanistically, we propose that Mybbp1a maintains rDNA repeats in a silenced state while in association with the negative epigenetic modifiers HDAC1/2. Conclusions Results from our present work reveal a previously unrecognized co-repressor role of Mybbp1a in rRNA expression. They are further consistent with the scenario that Mybbp1a is an integral constituent of the rDNA epigenetic regulation that underlies the balanced state of rDNA clusters. PMID:22686419

  9. Phylogeny of the eelpout genus Lycodes (Pisces, Zoarcidae) as inferred from mitochondrial cytochrome b and 12S rDNA.

    PubMed

    Møller, Peter R; Gravlund, Peter

    2003-03-01

    The bottom-dwelling and species-rich eelpout genus Lycodes Reinhardt has a great potential for the study of Arctic marine speciation. Subdivision of the genus has been based on single or few morphological characters (e.g., lateral line configuration) with contradicting results and phylogenetic approaches have not been attended. Here we present the first phylogenetic analysis of the genus employing DNA sequences of the mitochondrial genes cytochrome b and 12S rDNA (714 bp). The analysis with the two genes combined resulted in two equally parsimonious trees. In both cladograms most of the previously suggested subgroups are para- or polyphyletic, except for the so-called short-tailed Lycodes spp., with a short tail, a single mediolateral lateral line configuration and a shallow or filled otolith sulcus. The group of long-tailed Lycodes spp., with ventral or ventro-medio-lateral types of lateral line configuration and a deep otolith sulcus, appears to be paraphyletic, since Pacific and Atlantic species in this group are not each other's closest relatives. Thus, the short-tailed species are placed in a derived clade, indicating a secondary shortening of the tail, and a "slope to shore" type of evolution. This is not in accordance with earlier assumptions of the more elongate, deeper living species being the more derived. The basal position of long-tailed Pacific species supports earlier theories of Pacific origin of the genus/family. Small genetic differences between Arctic/Atlantic species indicate a rather recent radiation in these areas after the opening of the Bering Strait 3.0-3.5 million years ago. PMID:12644398

  10. Morphology and gene analysis of hybrids between two congeneric sea stars with different modes of development.

    PubMed

    Wakabayashi, Kaori; Komatsu, Miéko; Murakami, Manabu; Hori, Isao; Takegami, Tsutomu

    2008-08-01

    The sea star Astropecten scoparius has feeding bipinnarian larvae, whereas its congener Astropecten latespinosus has nonfeeding barrel-shaped larvae. To investigate evolutionary changes in the development of asteroids, we performed reciprocal crosses between these two species with different larval forms. In the cross between A. scoparius eggs and A. latespinosus sperm, embryos developed into bipinnaria-like larvae. The larvae exhibited either a functional digestive system (a maternal feature) or a nonfunctional digestive system with the tip of the archenteron not connected to the stomodeum (a paternal characteristic). However, in the reciprocal cross between A. latespinosus eggs and A. scoparius sperm, barrel-shaped larvae resembling those of A. latespinosus were produced, in addition to bipinnaria-like larvae, some with functional digestive systems and some with nonfunctional ones. Juveniles were produced from all types of crosses. 18S rDNA was used as a gene marker in cycle sequencing analysis to investigate the genetic features of these juveniles. The sequences of juveniles from bipinnaria-like larvae showed double-peak nucleotide signals, indicating a biparental genome. On the other hand, juveniles from barrel-shaped larvae from A. latespinosus eggs and A. scoparius sperm showed the same sequence as A. latespinosus juveniles. This suggests that bipinnaria-like larvae of both crosses are always hybrids, whereas barrel-shaped larvae develop parthenogenetically. PMID:18723640

  11. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data.

    PubMed

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  12. Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data

    PubMed Central

    Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis

    2015-01-01

    Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of

  13. [Gene cloning, expression and characterization of two cold-adapted lipases from Penicillium sp. XMZ-9].

    PubMed

    Zheng, Xiaomei; Wu, Ningfeng; Fan, Yunliu

    2012-04-01

    Cold-adapted lipases are attractive biocatalysts that can be used at low temperatures as additives in food products, laundry detergents, and the organic synthesis of chiral intermediates. Cold-adapted lipases are normally found in microorganisms that survive at low temperatures. A fungi strain XMZ-9 exhibiting lipolytic activity was isolated from the soil of glaciers in Xinjiang by the screening plates using 1% tributyrin as the substrate and Victoria blue as an indicator. Based on morphological characteristics and phylogenetic comparisons of its 18S rDNA, the strain was identified as Penicillium sp. The partial nucleotide sequences of these two lipase related genes, LipA and LipB, were obtained by touchdown PCR using the degenerate primers designed according to the conservative domains of lipase. The full-length sequences of two genes were obtained by genome walking. The gene lipA contained 1 014 nucleotides, without any intron, comprising one open reading frame encoding a polypeptide of 337 amino acids. The gene lipB comprised two introns (61 bp and 49 bp) and a coding region sequence of 1 122 bp encoding a polypeptide of 373 amino acids, cDNA sequences of both lipA and lipB were cloned and expressed in Escherichia coli BL21 (DE3). The recombinant LipA was mostly expressed as inclusion bodies, and recovered lipase activity at low temperature after in vitro refolded by dilution. Differently, the recombinant LipB was expressed in the soluble form and then purified by Ni-NTA affinity chromatography Column. It showed high lipase activity at low temperature. These results indicated that they were cold-adapted enzymes. This study paves the way for the further research of these cold-adapted lipases for application in the industry. PMID:22803398

  14. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper.

    PubMed

    Kwon, Jin-Kyung; Kim, Byung-Dong

    2009-02-28

    The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, annuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that 'CM334' of annuum had three loci and 'tabasco' of frutescens had one locus. 'CM334'-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from 'CM334' plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili. PMID:19277503

  15. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice.

    PubMed

    Allen, Julie M; Burleigh, J Gordon; Light, Jessica E; Reed, David L

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  16. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  17. Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples

    PubMed Central

    2015-01-01

    Background Next-generation sequencing (NGS) technology has transformed metagenomics because the high-throughput data allow an in-depth exploration of a complex microbial community. However, accurate species identification with NGS data is challenging because NGS sequences are relatively short. Assembling 16S rDNA segments into longer sequences has been proposed for improving species identification. Current approaches, however, either suffer from amplification bias due to one single primer or insufficient 16S rDNA reads in whole genome sequencing data. Results Multiple primers were used to amplify different 16S rDNA segments for 454 sequencing, followed by 454 read classification and assembly. This permitted targeted sequencing while reducing primer bias. For test samples containing four known bacteria, accurate and near full-length 16S rDNAs of three known bacteria were obtained. For real soil and sediment samples containing dioxins in various concentrations, 16S rDNA sequences were lengthened by 50% for about half of the non-rare microbes, and 16S rDNAs of several microbes reached more than 1000 bp. In addition, reduced primer bias using multiple primers was illustrated. Conclusions A new experimental and computational pipeline for obtaining long 16S rDNA sequences was proposed. The capability of the pipeline was validated on test samples and illustrated on real samples. For dioxin-containing samples, the pipeline revealed several microbes suitable for future studies of dioxin chemistry. PMID:26681335

  18. Using an intervening sequence of Faecalibacterium 16S rDNA to identify poultry feces.

    PubMed

    Shen, Zhenyu; Duan, Chuanren; Zhang, Chao; Carson, Andrew; Xu, Dong; Zheng, Guolu

    2013-10-15

    This study was designed to identify poultry feces-specific marker(s) within sequences of Faecalibacterium 16S rDNA for detecting poultry fecal pollution in water. Bioinformatics tools were used in the comparative analysis of 7,458 sequences of Faecalibacterium 16S rDNA, reportedly associated with various poultry (chicken and turkey) and animal species. One intervening sequence (IVS) within between the hypervariable region 1 and the conserved region 2, designated as IVS-p, was found to be unique to poultry feces. Based on this sequence, a PCR assay (PCR-p) was developed. The PCR-p produced an amplicon of 132 bp only in the test when fecal or wastewater samples from poultry were used, but not when using fecal or wastewater samples from other sources. The non-poultry sources included feces of beef or dairy cattle, dog, horse, human, domestic or wild geese, seagull, sheep, swine, and wild turkey. These data indicate that IVS-p may prove to be a useful genetic marker for the specific identification of poultry fecal pollution in environmental waterways. Furthermore, results of data mining and PCR assay indicate that the IVS-p may have a broad geographic distribution. This report represents initial evidence of the potential utility of ribosomal intervening sequences as genetic markers for tracking host sources of fecal pollution in waterways. PMID:24011842

  19. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA.

    PubMed Central

    Wesson, D M; McLain, D K; Oliver, J H; Piesman, J; Collins, F H

    1993-01-01

    The two internal transcribed spacers (ITS1 and ITS2) of rDNA of three members of the Ixodes ricinus "complex" (Acari: Ixodidae) were sequenced. Sequence variation was assessed for the North American species I. scapularis, I. dammini, and I. pacificus at three levels: within individual/population, between individuals of different geographic origin within a species, and between species. Both spacers are highly variable, particularly with regard to small deletions and additions which may arise via replication slippage. Homogenization of rDNA multigene arrays for particular sequence variants appears to occur at a relatively rapid rate, since I. pacificus sequences differ from the others at numerous invariant sites, facilitating the use of these sequences to assess sibling species relationships. Based on maximum parsimony and two distance methods (unweighted pair-group with arithmetic means and neighbor-joining), sequence variation in ITS1 and ITS2 suggests that I. scapularis and I. dammini are not distinct species and that even individuals from geographically isolated locations are very similar. Individuals from geographically separated populations of I. pacificus appear to be relatively less closely related to each other but distinct from those of I. scapularis/dammini. In I. scapularis/dammini, diversity within and between individuals from geographic populations contributed equally to total sequence diversity. PMID:8234280

  20. Protein purification in multicompartment electrolyzers for crystal growth of r-DNA products in microgravity

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Giorgio; Casale, Elena; Carter, Daniel; Snyder, Robert S.; Wenisch, Elisabeth; Faupel, Michel

    1990-01-01

    Recombinant-DNA (deoxyribonucleic acid) (r-DNA) proteins, produced in large quantities for human consumption, are now available in sufficient amounts for crystal growth. Crystallographic analysis is the only method now available for defining the atomic arrangements within complex biological molecules and decoding, e.g., the structure of the active site. Growing protein crystals in microgravity has become an important aspect of biology in space, since crystals that are large enough and of sufficient quality to permit complete structure determinations are usually obtained. However even small amounts of impurities in a protein preparation are anathema for the growth of a regular crystal lattice. A multicompartment electrolyzer with isoelectric, immobiline membranes, able to purify large quantities of r-DNA proteins is described. The electrolyzer consists of a stack of flow cells, delimited by membranes of very precise isoelectric point (pI, consisting of polyacrylamide supported by glass fiber filters containing Immobiline buffers and titrants to uniquely define a pI value) and very high buffering power, able to titrate all proteins tangent or crossing such membranes. By properly selecting the pI values of two membranes delimiting a flow chamber, a single protein can be kept isoelectric in a single flow chamber and thus, be purified to homogeneity (by the most stringent criterion, charge homogeneity).

  1. Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences

    PubMed Central

    Wei Wang, Mi Sun

    2009-01-01

    Neighbor-joining, maximum-parsimony, minimum-evolution, maximum-likelihood and Bayesian trees constructed based on 16S rDNA sequences of 181 type strains of Bacillus species and related taxa manifested nine phylogenetic groups. The phylogenetic analysis showed that Bacillus was not a monophyletic group. B. subtilis was in Group 1. Group 4, 6 and 8 respectively consisted of thermophiles, halophilic or halotolerant bacilli and alkaliphilic bacilli. Group 2, 4 and 8 consisting of Bacillus species and related genera demonstrated that the current taxonomic system did not agree well with the 16S rDNA evolutionary trees. The position of Caryophanaceae and Planococcaceae in Group 2 suggested that they might be transferred into Bacillaceae, and the heterogeneity of Group 2 implied that some Bacillus species in it might belong to several new genera. Group 9 was mainly comprised of the genera (excluding Bacillus) of Bacillaceae, so some Bacillus species in Group 9: B. salarius, B. qingdaonensis and B. thermcloacae might not belong to Bacillus. Four Bacillus species, B. schlegelii, B. tusciae, B. edaphicus and B. mucilaginosus were clearly placed outside the nine groups. PMID:24031394

  2. Genetic and cytogenetic analyses of the A genome of Triticum monococcum. VIII. Localization of rDNAs and characterization of 5S rRNA genes.

    PubMed

    Kim, N S; Kuspira, J; Armstrong, K; Bhambhani, R

    1993-02-01

    In situ hybridization with [3H]dCTP labelled pScT7 (5S rDNA) and pTa80 (18S + 26S rDNA) indicated that both hybridized to the terminal regions of two pairs of chromosomes in Triticum monococcum. When the hybridization was performed with a mixture of both probes, only two pairs of chromosome arms were labelled, which suggested that the loci of both genes were located in juxtaposition to one another. Both probes labelled one pair of sites more heavily than the other. Southern analysis of 5S with BamHI-digested DNA from 12 accessions of T. monococcum (including T. urartu) produced two superimposed ladders of approximate sizes of 500 and 330 bp, which differ from T. aestivum in which 500- and 420-bp ladders were found. The 500-bp ladder is derived from chromosome 5A (5SDna-A2) and the 330-bp ladder from chromosome 1A (5SDna-A1). The recognition site for SstI was present in the long spacer region but absent in the short spacer as in T. aestivum; however, unlike T. aestivum, there were HaeIII (GGCC) and HindIII (AAGCTT) recognition sites in the short spacer region. The TaqI recognition sites (TCGA) in the long and short spacer regions are probably more highly methylated in T. monococcum than in T. aestivum. The results have implications regarding the evolutionary changes that occurred in the A genome of the hexaploid compared with the diploid. PMID:18469972

  3. The first multi-gene phylogeny of the Macrostomorpha sheds light on the evolution of sexual and asexual reproduction in basal Platyhelminthes.

    PubMed

    Janssen, Toon; Vizoso, Dita B; Schulte, Gregor; Littlewood, D Timothy J; Waeschenbach, Andrea; Schärer, Lukas

    2015-11-01

    The Macrostomorpha-an early branching and species-rich clade of free-living flatworms-is attracting interest because it contains Macrostomum lignano, a versatile model organism increasingly used in evolutionary, developmental, and molecular biology. We elucidate the macrostomorphan molecular phylogeny inferred from both nuclear (18S and 28S rDNA) and mitochondrial (16S rDNA and COI) marker genes from 40 representatives. Although our phylogeny does not recover the Macrostomorpha as a statistically supported monophyletic grouping, it (i) confirms many taxa previously proposed based on morphological evidence, (ii) permits the first placement of many families and genera, and (iii) reveals a number of unexpected placements. Specifically, Myozona and Bradynectes are outside the three classic families (Macrostomidae, Microstomidae and Dolichomacrostomidae) and the asexually fissioning Myomacrostomum belongs to a new subfamily, the Myozonariinae nov. subfam. (Dolichomacrostomidae), rather than diverging early. While this represents the first evidence for asexuality among the Dolichomacrostomidae, we show that fissioning also occurs in another Myozonariinae, Myozonaria fissipara nov. sp. Together with the placement of the (also fissioning) Microstomidae, namely as the sister taxon of Dolichomacrostomidae, this suggests that fissioning is not basal within the Macrostomorpha, but rather restricted to the new taxon Dolichomicrostomida (Dolichomacrostomidae+Microstomidae). Furthermore, our phylogeny allows new insights into the evolution of the reproductive system, as ancestral state reconstructions reveal convergent evolution of gonads, and male and female genitalia. Finally, the convergent evolution of sperm storage organs in the female genitalia appears to be linked to the widespread occurrence of hypodermic insemination among the Macrostomorpha. PMID:26093054

  4. Outside-in recrystallization of ZnS-Cu1.8 S hollow spheres with interdispersed lattices for enhanced visible light solar hydrogen generation.

    PubMed

    Zhu, Ting; Nuo Peh, Connor Kang; Hong, Minghui; Ho, Ghim Wei

    2014-09-01

    For the first time an earth-abundant and nontoxic ZnS-Cu(1.8) S hybrid photocatalyst has been engineered with well-defined nanosheet hollow structures by a template-engaged method. In contrast to conventional surface coupling and loading, the unique outside-in recrystallization promotes co-precipitation of ZnS and Cu(1.8) S into homogeneous interdispersed lattices, hence forming a hybrid semiconductor with visible responsive photocatalytic activity. The as-derived ZnS-Cu(1.8) S semiconductor alloy is tailored into a hierarchical hollow structure to provide readily accessible porous shells and interior spaces for effective ion transfer/exchange. Notably, this synergistic morphology, interface and crystal lattice engineering, aim towards the design of novel nanocatalysts for various sustainable environmental and energy applications. PMID:25043270

  5. Evaluation of four commonly used normalizer genes for the study of decidual gene expression.

    PubMed

    Sousa, Ana Rita Sequeira de; Staff, Anne Cathrine; Johnsen, Guro Mørk; Weedon-Fekjær, Mina Susanne; Størvold, Gro Leite

    2016-07-01

    Reverse transcription quantitative PCR (RT-qPCR) gene expression results must be normalized using stably expressed genes to correct for technical variation. We evaluated the expression of four widely used normalizers (RNA18S, GAPDH, TBP, and YWHAZ) across 59 decidual tissue samples collected by vacuum suction from preeclamptic and normotensive pregnancies. RNA18S and GAPDH were not suitable as normalizers, while YWHAZ and TBP were stably expressed across the study groups. PMID:27324093

  6. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    PubMed

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. PMID:27386920

  7. 16S rDNA analysis of archaea indicates dominance of Methanobacterium and high abundance of Methanomassiliicoccaceae in rumen of Nili-Ravi buffalo.

    PubMed

    Paul, S S; Deb, S M; Dey, A; Somvanshi, S P S; Singh, D; Rathore, R; Stiverson, J

    2015-10-01

    The molecular diversity of rumen methanogens was investigated using 16S rDNA gene library prepared from the rumen contents of Nili-Ravi buffaloes. Microbial genomic DNA was isolated from four adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the inserts of positive clones were sequenced. A total of 142 clones were examined, and the analysis revealed 46 species level (0.01 distance) operational taxonomic units (OTUs). Twenty six OTUs comprising 89 clones (63% of the total clones) were taxonomically assigned to Methanobacterium genus and the majority of them had highest percent identity with Methanobacterium flexile among cultured methanogens. Five OTUs comprising 27 clones (19% of total clones) were taxonomically assigned to Methanomicrobium genus and these clones showed highest sequence identity with Methanomicrobium mobile. Only two OTUs comprising 6 clones (4% of total clones) were assigned to Methanobrevibacter genus. A total of 17 clones belonging to 10 species level OTUs showed highest percent identity (ranging from 85 to 95%) with Methanomassilicoccus luminyensis and were taxonomically classified as Methanomassiliicocaceae. Out of the 142 rDNA clones, 112 clones, which constitute 79% of the total clones representing 42 OTUs, had less than 98.5% sequence identity with any of the cultured strains of methanogens and represent novel species of methanogens. This study has revealed the largest assortment of hydrogenotrophic methanogen phylotypes ever identified from the rumen of Nili-Ravi buffaloes. The study indicates that Methanobacterium is the most dominant methanogen in the rumen of Nili-Ravi buffalo. This is also the first report on the presence of methanogens phylogenetically close to M. luminyensis, an H2 dependent methylotrophic methanogen, in the rumen of buffaloes at such a high level of abundance. PMID:26103451

  8. Electron microscopic in situ hybridization and autoradiography: Localization and transcription of rDNA in human lymphocyte nucleoli

    SciTech Connect

    Wachtler, F.; Mosgoeller, W.S.; Schwarzacher, H.G. )

    1990-04-01

    The distribution of ribosomal DNA (rDNA) in the nucleoli of human lymphocytes was revealed by in situ hybridization with a nonautoradiographic procedure at the electron microscopic level. rDNA is located in the dense fibrillar component of the nucleolus but not in the fibrillar centers. In the same cells the incorporation of tritiated uridine takes place in the dense fibrillar component of the nucleolus as seen by autoradiography followed by gold latensification. From these findings it can be concluded that the transcription of ribosomal DNA takes place in the dense fibrillar component of the nucleolus.

  9. Adaptation of a membrane bioreactor to 1,2-dichloroethane revealed by 16S rDNA pyrosequencing and dhlA qPCR.

    PubMed

    Munro, Jacob E; Liew, Elissa F; Coleman, Nicholas V

    2013-01-01

    A pilot-scale membrane bioreactor (MBR) was tested for bioremediation of 1,2-dichloroethane (DCA) in groundwater. Pyrosequencing of 16S rDNA was used to study changes in the microbiology of the MBR over 137 days, including a 67 day initial adaptation phase of increasing DCA concentration. The bacterial community in the MBR was distinct from those in soil and groundwater at the same site, and was dominated by alpha- and beta- proteobacteria, including Rhodobacter, Methylibium, Rhodopseudomonas, Methyloversatilis, Caldilinea, Thiobacillus, Azoarcus, Hyphomicrobium, and Leptothrix. Biodegradation of DCA in the MBR began after 26 days, and was sustained for the remainder of the experiment. A quantitative PCR (qPCR) assay for the dehalogenase gene dhlA was developed to monitor DCA-degrading bacteria in the MBR, and a positive correlation was seen between dhlA gene abundance and the cumulative amount of DCA that had entered the MBR. Genera previously associated with aerobic DCA biodegradation (Xanthobacter, Ancylobacter, Azoarcus) were present in the MBR, and the abundance of Azoarcus correlated well with dhlA gene abundance. This study shows that MBRs can be an effective method for removal of DCA from groundwater, and that the dhlA qPCR is a rapid and sensitive method for detection of DCA-degrading bacteria. PMID:24175727

  10. Organization of rRNA structural genes in the archaebacterium Thermoplasma acidophilum.

    PubMed Central

    Tu, J; Zillig, W

    1982-01-01

    In the archaebacterium Thermoplasma acidophilum, each of the structural genes for 5S, 16S and 23S rRNA occur once per genome. In contrast to those of eubacteria and eukaryotes, they appear unlinked. The distance between the 16S and the 23S rDNA is at least 7.5 Kb, that between 23S and 5S rDNA at least 6 Kb and that between 16S and 5S rDNA at least 1.5 Kb. No linkage between those genes has been found by the analysis of recombinant plasmids carrying Bam HI and Hind III rDNA fragments as by hybridizing those plasmids to fragments of Thermoplasma DNA generated by 6 individual restriction endonucleases, recognizing hexanucleotide sequences. Images PMID:7155894

  11. Phylogeny and systematics of demospongiae in light of new small-subunit ribosomal DNA (18S) sequences.

    PubMed

    Redmond, N E; Morrow, C C; Thacker, R W; Diaz, M C; Boury-Esnault, N; Cárdenas, P; Hajdu, E; Lôbo-Hajdu, G; Picton, B E; Pomponi, S A; Kayal, E; Collins, A G

    2013-09-01

    The most diverse and species-rich class of the phylum Porifera is Demospongiae. In recent years, the systematics of this clade, which contains more than 7000 species, has developed rapidly in light of new studies combining molecular and morphological observations. We add more than 500 new, nearly complete 18S sequences (an increase of more than 200%) in an attempt to further enhance understanding of the phylogeny of Demospongiae. Our study specifically targets representation of type species and genera that have never been sampled for any molecular data in an effort to accelerate progress in classifying this diverse lineage. Our analyses recover four highly supported subclasses of Demospongiae: Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha. Within Keratosa, neither Dendroceratida, nor its two families, Darwinellidae and Dictyodendrillidae, are monophyletic and Dictyoceratida is divided into two lineages, one predominantly composed of Dysideidae and the second containing the remaining families (Irciniidae, Spongiidae, Thorectidae, and Verticillitidae). Within Myxospongiae, we find Chondrosida to be paraphyletic with respect to the Verongida. We amend the latter to include species of the genus Chondrosia and erect a new order Chondrillida to contain remaining taxa from Chondrosida, which we now discard. Even with increased taxon sampling of Haploscleromorpha, our analyses are consistent with previous studies; however, Haliclona species are interspersed in even more clades. Haploscleromorpha contains five highly supported clades, each more diverse than previously recognized, and current families are mostly polyphyletic. In addition, we reassign Janulum spinispiculum to Haploscleromorpha and resurrect Reniera filholi as Janulum filholi comb. nov. Within the large clade Heteroscleromorpha, we confirmed 12 recently identified clades based on alternative data, as well as a sister-group relationship between the freshwater Spongillida and the family

  12. Comparative evaluation of the nested ITS PCR against the 18S PCR-RFLP in a survey of bovine trypanosomiasis in Kwale County, Kenya.

    PubMed

    Odongo, Steven; Delespaux, Vincent; Ngotho, Maina; Bekkele, Serkalem Mindaye; Magez, Stefan

    2016-09-01

    We compared the nested internal transcribed spacer (ITS) PCR and the 18S PCR-RFLP (restriction-fragment length polymorphism) pan-trypanosome assays in a cross-sectional survey of bovine trypanosomiasis in 358 cattle in Kwale County, Kenya. The prevalence of trypanosomiasis as determined by the nested ITS PCR was 19.6% (70/358) and by 18S PCR-RFLP was 16.8% (60/358). Of the pathogenic trypanosomes detected, the prevalence of Trypanosoma congolense and Trypanosoma vivax was greater than that of Trypanosoma simiae The nested ITS PCR detected 83 parasite events, whereas the 18S PCR-RFLP detected 64; however, overall frequencies of infections and the parasite events detected did not differ between the assays (χ(2) = 0.8, df = 1, p > 0.05 and χ(2) = 2.5, df = 1, p > 0.05, respectively). The kappa statistic (0.8) showed good agreement between the tests. The nested ITS PCR and the 18S PCR-RFLP had comparable sensitivity, although the nested ITS PCR was better at detecting mixed infections (χ(2) = 5.4, df = 1, p < 0.05). PMID:27423733

  13. Molecular characterization of Gastrodiscoides hominis (Platyhelminthes: Trematoda: Digenea) inferred from ITS rDNA sequence analysis.

    PubMed

    Goswami, L M; Prasad, P K; Tandon, V; Chatterjee, A

    2009-06-01

    Gastrodiscoides hominis (Digenea: Paramphistomata: Gastrodiscidae) is an amphistomid intestinal fluke of pigs causing gastrodiscoidiosis. With the use of molecular tools assisting the conventional diagnostic procedures, we aimed at finding out molecular characterization of G. hominis using PCR amplifications of rDNA ITS (1, 2) sequences. The sequences obtained (GenBank accession numbers EF027096, EF027097, EF027098, EU887294, and EU887295) were compared with available sequences of other digenean parasites, particularly those having a zoonotic potential in the northeastern region of India. The BLAST search revealed a close similarity with members of the family Paramphistomidae, showing maximum similarity with the amphistome, Homalogaster paloniae (subfamily Paramphistominae). Based on various tree construction methods, phylogeny of G. hominis is discussed. PMID:19198879

  14. Molecular Taxonomy of Ganoderma cupreum from Southern India Inferred from ITS rDNA Sequences Analysis

    PubMed Central

    2013-01-01

    Ganoderma is a cosmopolitan wood-rot basidiomycete that has been extensively studied for its pathogencity and medicinal properties. Identification of Ganoderma based on macro-microscopic features led to large number of synonyms which resulted in 250 taxonomic names. A Ganoderma species collected from Courtallam, Tamil Nadu was identified as G. cupreum. Phylogenetic analysis inferred from internal transcribed spacer rDNA region resolved the Indian isolate MYC1 as Ganoderma cupreum which clustered with Australian and Asian "cupreum" clade with 85% bootstrap support BS and shared 99% and 98% nucleotide similarity with Malaysian and Australian 'cupreum' respectively. This study represents the first molecular evidence of G. cupreum from Asian origin. PMID:24493948

  15. Combining denaturing gradient gel electrophoresis of 16S rDNA V3 region and 16S-23S rDNA spacer region polymorphism analyses for the identification of staphylococci from Italian fermented sausages.

    PubMed

    Blaiotta, Giuseppe; Pennacchia, Carmelina; Ercolini, Danilo; Moschetti, Giancarlo; Villani, Francesco

    2003-09-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (PCR-DGGE) and 16S-23S rDNA intergenic spacer region polymorphism (ISR-PCR) analyses were tested as tool for differentiation of staphylococcal strains commonly isolated from fermented sausages. Variable V3 regions of 25 staphylococcal reference strains and 96 wild strains of species belonging to the genera Staphylococcus, Micrococcus and Kocuria were analyzed. PCR-DGGE profiles obtained were species-specific for S. sciuri, S. haemolyticus, S. hominis, S. auricularis, S. condimenti, S. kloosi, S. vitulus, S. succinus, S. pasteuri, S. capitis and S. (Macrococcus) caseolyticus. Moreover, 7 groups could be distinguished gathering the remaining species as result of the separation of the V3 rDNA amplicons in DGGE. Furthermore, the combination of the results obtained by PCR-DGGE and ISR-PCR analyses allowed a clear differentiation of all the staphylococcal species analysed, with exception of the pairs S. equorum-S. cohnii and S. carnosus-S. schleiferi. The suitability of both molecular techniques and of the combination their results for the identification of staphylococci was validated analysing partial nucleotide sequence of the 16S rDNA of a representative number of wild strains. PMID:14529185

  16. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai. PMID:23996126

  17. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms.

    PubMed

    Cloix, C; Tutois, S; Mathieu, O; Cuvillier, C; Espagnol, M C; Picard, G; Tourmente, S

    2000-05-01

    A physical map of a pericentromeric region of chromosome 5 containing a 5S rDNA locus and spanning approximately 1000 kb was established using the CIC YAC clones. Three 5S rDNA arrays were resolved in this YAC contig by PFGE analysis and we have mapped different types of sequences between these three blocks. 5S rDNA units from each of these three arrays of chromosome 5, and from chromosomes 3 and 4, were isolated by PCR. A total of 38 new DNA sequences were obtained. Two types of 5S rDNA repeated units exist: the major variant with 0.5-kb repeats and one with short repeats (251 bp) only detected on YAC 11A3 from chromosome 3. Although the 38 sequences displayed noticeable heterogeneity, we were able to group them according to their 5S array origin. The presence of 5S array-specific variants was confirmed with the restriction polymorphism study of all the YACs carrying 5S units. PMID:10810091

  18. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  19. Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Pandya, P R; Singh, K M; Parnerkar, S; Tripathi, A K; Mehta, H H; Rank, D N; Kothari, R K; Joshi, C G

    2010-01-01

    Bacterial communities in buffalo rumen were characterized using a culture-independent approach for a pooled sample of rumen fluid from 3 adult Surti buffaloes. Buffalo rumen is likely to include species of various bacterial phyla, so 16S rDNA sequences were amplified and cloned from the sample. A total of 191 clones were sequenced and similarities to known 16S rDNA sequences were examined. About 62.82% sequences (120 clones) had >90% similarity to the 16S rDNA database sequences. Furthermore, about 34.03% of the sequences (65 clones) were 85-89% similar to 16S rDNA database sequences. For the remaining 3.14%; the similarity was lower than 85% Phylogenetic analyses were also used to infer the makeup of bacterial communities in the rumen of Surti buffalo. As a result, we distinguished 42 operational taxonomic units (OTUs) based on unique 16S r DNA sequences: 19 OTUs affiliated to an unidentified group (45.23% of total OTUs), 11 OTUs of the phylum Firmicutes, also known as the low G+C group (26.19%), 7 OTUs of the Cytophaga-Flexibacter-Bacteroides phylum (16.66%), 4 OTUs of Spirochaetes (9.52%), and 1 OTU of Actinobacteria (2.38%). These include 10 single-clone OTUs, so Good's coverage (94.76%) of 16S rRNA libraries indicated that sequences identified in the libraries represent the majority of bacterial diversity present in rumen. PMID:20720314

  20. Methanogen diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Parnerkar, S; Rank, D N; Kothari, R K; Joshi, C G

    2012-06-01

    The methanogenic communities in buffalo rumen were characterized using a culture-independent approach of a pooled sample of rumen fluid from three adult Surti buffaloes. Buffalo rumen is likely to include species of various methanogens, so 16S rDNA sequences were amplified and cloned from the sample. A total of 171 clones were sequenced to examine 16S rDNA sequence similarity. About 52.63% sequences (90 clones) had ≥ 90% similarity, whereas, 46.78% of the sequences (81 clones) were 75-89% similar to 16S rDNA database sequences, respectively. Phylogenetic analyses were also used to infer the makeup of methanogenic communities in the rumen of Surti buffalo. As a result, we distinguished 23 operational taxonomic units (OTUs) based on unique 16S rDNA sequences: 12 OTUs (52.17%) affiliated to Methanomicrobiales order, 10 OTUs (43.47%) of the order Methanobacteriales and one OTU (4.34%) of Methanosarcina barkeri like clone, respectively. In addition, the population of Methanomicrobiales and Methabacteriales orders were also observed, accounting 4% and 2.17% of total archea. This study has revealed the largest assortment of hydrogenotrophic methanogens phylotypes ever identified from rumen of Surti buffaloes. PMID:21507441

  1. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  2. Nuclear rDNA and chloroplast rbcL, rbcS and IGS sequence data, and their implications from the Japanese, Korean, and North American harmful algae, Heterosigma akashiwo (Raphidophyceae)

    SciTech Connect

    Ki, Jang-Seu . E-mail: kijs@hanyang.ac.kr; Han, Myung-Soo

    2007-03-15

    The toxic Heterosigma akashiwo has been found in coastal environments and its algal blooms have been associated with mass mortality in marine organisms and farmed fish. Over the last two decades, H. akashiwo has expanded its geographical range on a worldwide scale, though all populations are suspected to be a single species. To find strong molecular evidence, supporting this hypothesis we determined nuclear 18S , ITS and LSU rDNA, and chloroplast rbcL, rbcS and flanking IGS sequences from six isolates located in North America, Japan and Korea. We compared individual loci from molecular regions (e.g., 26.7 kbp of DNA sequence) and found all the isolates to have an identical genotype. Further, the long sequences allow us to compare all the partial sequences that have been reported from samples obtained in ten countries. All these sequence are nearly identical. This suggests that they have dispersed recently from one location. The sequences revealed here can be used as an additional option for making molecular comparisons of sequences from the same isolate.

  3. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno.

    PubMed

    Ravasi, D F; Peduzzi, S; Guidi, V; Peduzzi, R; Wirth, S B; Gilli, A; Tonolla, M

    2012-05-01

    Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past. PMID:22433067

  4. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum.

    PubMed

    Rekawiecki, Robert; Rutkowska, Joanna; Kotwica, Jan

    2012-12-01

    The selection of proper housekeeping genes for studies requiring genes expression normalization is an important step in the appropriate interpretation of results. The expression of housekeeping genes is regulated by many factors including age, gender, type of tissue or disease. The aim of the study was to identify optimal housekeeping genes in the corpus luteum obtained from cyclic or pregnant cows. The mRNA expression of thirteen housekeeping genes: C2orf29, SUZ12, TBP, TUBB2B, ZNF131, HPRT1, 18s RNA, GAPDH, SF3A1, SDHA, MRPL12, B2M and ACTB was measured by Real-time PCR. Range of cycle threshold (C(t)) values of the tested genes varied between 12 and 30 cycles, and 18s RNA had the highest coefficient of variation, whereas C2orf29 had the smallest coefficient. GeNorm software demonstrated C2orf29 and TBP as the most stable and 18s RNA and B2M as the most unstable housekeeping genes. Using the proposed cut-off value (0.15), no more than two of the best GeNorm housekeeping genes are proposed to be used in studies requiring gene expression normalization. NormFinder software demonstrated C2orf29 and SUZ12 as the best and 18s RNA and B2M as the worst housekeeping genes. The study indicates that selection of housekeeping genes may essentially affect the quality of the gene expression results. PMID:23229008

  5. Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains

    PubMed Central

    Molini, Barbara J.; Tantalo, Lauren C.; Sahi, Sharon K.; Rodriguez, Veronica I.; Brandt, Stephanie L.; Fernandez, Mark C.; Godornes, Charmie B.; Marra, Christina M.; Lukehart, Sheila A.

    2016-01-01

    Background High rates of 23S rDNA mutations implicated in macrolide resistance have been identified in Treponema pallidum samples from syphilis patients in many countries. Nonetheless, some clinicians have been reluctant to abandon azithromycin as a treatment for syphilis, citing the lack of a causal association between these mutations and clinical evidence of drug resistance. Although azithromycin resistance has been demonstrated in vivo for the historical Street 14 strain, no recent T. pallidum isolates have been tested. We used the well-established rabbit model of syphilis to determine the in vivo efficacy of azithromycin against 23S rDNA mutant strains collected in 2004 to 2005 from patients with syphilis in Seattle, Wash. Methods Groups of 9 rabbits were each infected with a strain containing 23S rDNA mutation A2058G (strains UW074B, UW189B, UW391B) or A2059G (strains UW228B, UW254B, and UW330B), or with 1 wild type strain (Chicago, Bal 3, and Mexico A). After documentation of infection, 3 animals per strain were treated with azithromycin, 3 were treated with benzathine penicillin G, and 3 served as untreated control groups. Treatment efficacy was documented by darkfield microscopic evidence of T. pallidum, serological response, and rabbit infectivity test. Results Azithromycin uniformly failed to cure rabbits infected with strains harboring either 23S rDNA mutation, although benzathine penicillin G was effective. Infections caused by wild type strains were successfully treated by either azithromycin or benzathine penicillin G. Conclusions A macrolide resistant phenotype was demonstrated for all strains harboring a 23S rDNA mutation, demonstrating that either A2058G or A2059G mutation confers in vivo drug resistance. PMID:27513385

  6. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes. PMID:11166101

  7. First description of the karyotype and localization of major and minor ribosomal genes in Rhoadsiaaltipinna Fowler, 1911 (Characiformes, Characidae) from Ecuador.

    PubMed

    Sánchez-Romero, Omar; Abad, César Quezada; Cordero, Patricio Quizhpe; de Sene, Viviani França; Nirchio, Mauro; Oliveira, Claudio

    2015-01-01

    Karyotypic features of Rhoadsiaaltipinna Fowler, 1911 from Ecuador were investigated by examining metaphase chromosomes through Giemsa staining, C-banding, Ag-NOR, and two-color-fluorescence in situ hybridization (FISH) for mapping of 18S and 5S ribosomal genes. The species exhibit a karyotype with 2n = 50, composed of 10 metacentric, 26 submetacentric and 14 subtelocentric elements, with a fundamental number FN=86 and is characterized by the presence of a larger metacentric pair (number 1), which is about 2/3 longer than the average length of the rest of the metacentric series. Sex chromosomes were not observed. Heterochromatin is identifiable on 44 chromosomes, distributed in paracentromeric position near the centromere. The first metacentric pair presents two well-defined heterochromatic blocks in paracentromeric position, near the centromere. Impregnation with silver nitrate showed a single pair of Ag-positive NORs localized at terminal regions of the short arms of the subtelocentric chromosome pair number 12. FISH assay confirmed these localization of NORs and revealed that minor rDNA clusters occur interstitially on the larger metacentric pair number 1. Comparison of results here reported with those available on other Characidae permit to hypothesize that the presence of a very large metacentric pair might represent a unique and derived condition that characterize one of four major lineages molecularly identified in this family. PMID:26140168

  8. First description of the karyotype and localization of major and minor ribosomal genes in Rhoadsia altipinna Fowler, 1911 (Characiformes, Characidae) from Ecuador

    PubMed Central

    Sánchez-Romero, Omar; Abad, César Quezada; Cordero, Patricio Quizhpe; de Sene, Viviani França; Nirchio, Mauro; Oliveira, Claudio

    2015-01-01

    Abstract Karyotypic features of Rhoadsia altipinna Fowler, 1911 from Ecuador were investigated by examining metaphase chromosomes through Giemsa staining, C-banding, Ag-NOR, and two-color-fluorescence in situ hybridization (FISH) for mapping of 18S and 5S ribosomal genes. The species exhibit a karyotype with 2n = 50, composed of 10 metacentric, 26 submetacentric and 14 subtelocentric elements, with a fundamental number FN=86 and is characterized by the presence of a larger metacentric pair (number 1), which is about 2/3 longer than the average length of the rest of the metacentric series. Sex chromosomes were not observed. Heterochromatin is identifiable on 44 chromosomes, distributed in paracentromeric position near the centromere. The first metacentric pair presents two well-defined heterochromatic blocks in paracentromeric position, near the centromere. Impregnation with silver nitrate showed a single pair of Ag-positive NORs localized at terminal regions of the short arms of the subtelocentric chromosome pair number 12. FISH assay confirmed these localization of NORs and revealed that minor rDNA clusters occur interstitially on the larger metacentric pair number 1. Comparison of results here reported with those available on other Characidae permit to hypothesize that the presence of a very large metacentric pair might represent a unique and derived condition that characterize one of four major lineages molecularly identified in this family. PMID:26140168

  9. Human NAT10 Is an ATP-dependent RNA Acetyltransferase Responsible for N4-Acetylcytidine Formation in 18 S Ribosomal RNA (rRNA)*

    PubMed Central

    Ito, Satoshi; Horikawa, Sayuri; Suzuki, Tateki; Kawauchi, Hiroki; Tanaka, Yoshikazu; Suzuki, Takeo; Suzuki, Tsutomu

    2014-01-01

    Human N-acetyltransferase 10 (NAT10) is known to be a lysine acetyltransferase that targets microtubules and histones and plays an important role in cell division. NAT10 is highly expressed in malignant tumors, and is also a promising target for therapies against laminopathies and premature aging. Here we report that NAT10 is an ATP-dependent RNA acetyltransferase responsible for formation of N4-acetylcytidine (ac4C) at position 1842 in the terminal helix of mammalian 18 S rRNA. RNAi-mediated knockdown of NAT10 resulted in growth retardation of human cells, and this was accompanied by high-level accumulation of the 30 S precursor of 18 S rRNA, suggesting that ac4C1842 formation catalyzed by NAT10 is involved in rRNA processing and ribosome biogenesis. PMID:25411247

  10. Spectral sensitivity of p-Cu{sub 1.8}S/n{sup -}-ZnS/n-(II-VI) heterostructures

    SciTech Connect

    Komaschenko, V. N. Kolezhuk, K. V.; Yaroshenko, N. V.; Sheremetova, G. I.; Bobrenko, Yu. N.

    2006-03-15

    Photosensitivity of multilayered p-Cu{sub 1.8}S/n{sup -}-(II-VI)/n-(II-VI) heterostructures beyond the fundamental-absorption edge of the wide-gap component is studied experimentally, and a simple model is suggested as an explanation of this photosensitivity. It is established that an effective method for reducing the photosensitivity of the structures beyond the ultraviolet spectral region consists in decreasing the probability of dominant tunneling processes, by increasing the thickness of the wide-gap layer, giving rise to a blocking barrier for photogenerated minority charge carriers. It is shown that the p-Cu{sub 1.8}S/n{sup -}-ZnS/n-CdSe heterostructures are promising for the development of efficient 'solar-blind' detectors of ultraviolet radiation.

  11. Distinct 18S rRNA precursors are targets of the exosome complex, the exoribonuclease RRP6L2 and the terminal nucleotidyltransferase TRL in Arabidopsis thaliana.

    PubMed

    Sikorski, Pawel J; Zuber, Hélène; Philippe, Lucas; Sement, François M; Canaday, Jean; Kufel, Joanna; Gagliardi, Dominique; Lange, Heike

    2015-09-01

    The biosynthesis of ribosomal RNA and its incorporation into functional ribosomes is an essential and intricate process that includes production of mature ribosomal RNA from large precursors. Here, we analyse the contribution of the plant exosome and its co-factors to processing and degradation of 18S pre-RNAs in Arabidopsis thaliana. Our data show that, unlike in yeast and humans, an RRP6 homologue, the nucleolar exoribonuclease RRP6L2, and the exosome complex, together with RRP44, function in two distinct steps of pre-18S rRNA processing or degradation in Arabidopsis. In addition, we identify TRL (TRF4/5-like) as the terminal nucleotidyltransferase that is mainly responsible for oligoadenylation of rRNA precursors in Arabidopsis. We show that TRL is required for efficient elimination of the excised 5' external transcribed spacer and of 18S maturation intermediates that escaped 5' processing. Our data also suggest involvement of additional nucleotidyltransferases, including terminal uridylyltransferase(s), in modifying rRNA processing intermediates in plants. PMID:26216451

  12. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis

    PubMed Central

    Zorbas, Christiane; Nicolas, Emilien; Wacheul, Ludivine; Huvelle, Emmeline; Heurgué-Hamard, Valérie; Lafontaine, Denis L. J.

    2015-01-01

    At the heart of the ribosome lie rRNAs, whose catalytic function in translation is subtly modulated by posttranscriptional modifications. In the small ribosomal subunit of budding yeast, on the 18S rRNA, two adjacent adenosines (A1781/A1782) are N6-dimethylated by Dim1 near the decoding site, and one guanosine (G1575) is N7-methylated by Bud23-Trm112 at a ridge between the P- and E-site tRNAs. Here we establish human DIMT1L and WBSCR22-TRMT112 as the functional homologues of yeast Dim1 and Bud23-Trm112. We report that these enzymes are required for distinct pre-rRNA processing reactions leading to synthesis of 18S rRNA, and we demonstrate that in human cells, as in budding yeast, ribosome biogenesis requires the presence of the modification enzyme rather than its RNA-modifying catalytic activity. We conclude that a quality control mechanism has been conserved from yeast to human by which binding of a methyltransferase to nascent pre-rRNAs is a prerequisite to processing, so that all cleaved RNAs are committed to faithful modification. We further report that 18S rRNA dimethylation is nuclear in human cells, in contrast to yeast, where it is cytoplasmic. Yeast and human ribosome biogenesis thus have both conserved and distinctive features. PMID:25851604

  13. Molecular characterization of Stenocarpella maydis based on nuclear ribosomal Internal Transcribed Spacer regions between the 18S and 28S nuclear rRNA gene sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diplodia ear rot of maize is caused by the fungus Stenocarpella maydis (syn. Diplodia maydis). Although considered a minor pathogen in the later 1900's, with the increased emphasis on conservation tillage, S. maydis has reestablished itself as an important ear and stalk rot pathogen. While S. maydis...

  14. Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana.

    PubMed

    Campell, B R; Song, Y; Posch, T E; Cullis, C A; Town, C D

    1992-03-15

    We have isolated a genomic clone containing Arabidopsis thaliana 5S ribosomal RNA (rRNA)-encoding genes (rDNA) by screening an A. thaliana library with a 5S rDNA probe from flax. The clone isolated contains seven repeat units of 497 bp, plus 11 kb of flanking genomic sequence at one border. Sequencing of individual subcloned repeat units shows that the sequence of the 5S rRNA coding region is very similar to that reported for other flowering plants. Four A. thaliana ecotypes were found to contain approx. 1000 copies of 5S rDNA per haploid genome. Southern-blot analysis of genomic DNA indicates that 5S rDNA occurs in long tandem arrays, and shows the presence of numerous restriction-site polymorphisms among the six ecotypes studied. PMID:1348233

  15. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  16. Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic tendencies of fetid Russula.

    PubMed

    Avis, Peter G

    2012-01-01

    Fetid Russula are frequently dominant ectomycorrhizal fungi, and some appear to be especially nitrophilic. However, little is known about their phylogenetic relationships or how common nitrophilic traits are in this group. This study addresses this gap and presents a phylogenetic analysis of ITS rDNA sequences and a meta-analysis of studies that examine ectomycorrhizal fungi response to nitrogen increase. The phylogenetic analysis indicates that (i) this lineage contains numerous unidentified taxa; (ii) the taxa have distinct geographic distributions; and (iii) the misuse of names such as R amoenolens, R. foetens or R. pectinatoides is common. Twenty-three well supported phylotypes were identified and include clades specific to western North America, eastern North America, Europe and Asia, while morphologically similar collections from tropical-equatorial regions are distinct. The metaanalysis shows that nitrophilic tendencies appear throughout fetid Russulas suggesting that this character is not an isolated trait within this subgenus but instead is a more general feature of the group overall. Mapping these tendencies across a broader portion of the Russulaceae shows that this trait is more regularly found in the basal Russula lineages and Lactarius spp., suggesting that this ability evolved early in these fungi. PMID:22495448

  17. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  18. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters.

    PubMed

    Xu, Yinfeng; Wan, Wei; Shou, Xin; Huang, Rui; You, Zhiyuan; Shou, Yanhong; Wang, Lingling; Zhou, Tianhua; Liu, Wei

    2016-07-01

    Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus. PMID:27172002

  19. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model

    PubMed Central

    Pereira-Fantini, Prue M.; Rajapaksa, Anushi E.; Oakley, Regina; Tingay, David G.

    2016-01-01

    Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate. PMID:27210246

  20. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots

    PubMed Central

    Daval, Stéphanie; Lebreton, Lionel; Gazengel, Kévin; Boutin, Morgane; Guillerm-Erckelboudt, Anne-Yvonne; Sarniguet, Alain

    2011-01-01

    The main effects of antagonistic rhizobacteria on plant pathogenic fungi are antibiosis, fungistasis or an indirect constraint through the induction of a plant defence response. To explore different biocontrol mechanisms, an in vitro confrontation assay was conducted with the rhizobacterium Pseudomonas fluorescens Pf29Arp as a biocontrol agent of the fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In parallel with the assessment of disease extension, together with the bacterial and fungal root colonization rates, the transcript levels of candidate fungal pathogenicity and plant-induced genes were monitored during the 10-day infection process. The bacterial inoculation of wheat roots with the Pf29Arp strain reduced the development of Ggt-induced disease expressed as attack frequency and necrosis length. The growth rates of Ggt and Pf29Arp, monitored through quantitative polymerase chain reaction of DNA amounts with a part of the Ggt 18S rDNA gene and a specific Pf29Arp strain detection probe, respectively, increased throughout the interactions. Bacterial antagonism and colonization had no significant effect on root colonization by Ggt. The expression of fungal and plant genes was quantified in planta by quantitative reverse transcription-polymerase chain reaction during the interactions thanks to the design of specific primers and an innovative universal reference system. During the early stages of the tripartite interaction, several of the fungal genes assayed were down-regulated by Pf29Arp, including two laccases, a β-1,3-exoglucanase and a mitogen-activated protein kinase. The plant host glutathione-S-transferase gene was induced by Ggt alone and up-regulated by Pf29Arp bacteria in interaction with the pathogen. We conclude that Pf29Arp antagonism acts through the alteration of fungal pathogenesis and probably through the activation of host defences. PMID:21726382

  1. Molecular characterization of Stictodora tridactyla (Trematoda: Heterophyidae) from Kuwait Bay using rDNA ITS and mtCO1.

    PubMed

    Al-Kandari, Wafa Y; Alnaqeeb, Majed A; Isaac, Asha M; Al-Bustan, Suzanne A

    2015-11-01

    Stictodora tridactyla is an intestinal fluke in the family Heterophyidae that parasitizes shorebirds and mammals, including humans. Its metacercarial cyst stage was reported in the Arabian killifish, Aphanius dispar, at Kuwait Bay. In the present study, Cerithidea cingulata was found to serve as the first intermediate host of S. tridactyla. In order to establish the snail-fish link in the life cycle of S. tridactyla, complete sequences of ribosomal DNA internal transcribed spacer region 1 and 2 (rDNA ITS1 and ITS2) and partial sequence of cytochrome oxidase subunit 1 were obtained for metacercarial cysts isolated from the fish A. dispar and rediae isolated from the snail C. cingulata. Sequence alignment demonstrated that these larval stages belong to the same heterophyid species, S. tridactyla. Phylogenetic analysis based on rDNA ITS1, ITS2, and mtCO1 confirmed the position of S. tridactyla within the Heterophyidae and found it to cluster with Haplorchis spp. The present study represents the first molecular study correlating the larval stages of S. tridactyla using rDNA ITS1, ITS2, and mtCO1 and examining the phylogenetic relationships of S. tridactyla with different heterophyid species. PMID:26268569

  2. Wild Termitomyces Species Collected from Ondo and Ekiti States Are More Related to African Species as Revealed by ITS Region of rDNA

    PubMed Central

    Oyetayo, Victor Olusegun

    2012-01-01

    Molecular identification of eighteen Termitomyces species collected from two states, Ondo and Ekiti in Nigeria was carried out using the internal transcribed spacer (ITS) region. The amplicons obtained from rDNA of Termitomyces species were compared with existing sequences in the NCBI GenBank. The results of the ITS sequence analysis discriminated between all the Termitomyces species (obtained from Ondo and Ekiti States) and Termitomyces sp. sequences obtained from NCBI GenBank. The degree of similarity of T1 to T18 to gene of Termitomyces sp. obtained from NCBI ranges between 82 and 99 percent. Termitomyces species from Garbon with ascension number AF321374 was the closest relative of T1 to T18 except T12 that has T. eurhizus and T. striatus as the closet relative. Phylogenetic tree generated with ITS sequences obtained from NCBI GenBank data revealed that T1 to T18 are more related to Termitomyces species indigenous to African countries such as Senegal, Congo, and Gabon. PMID:22649309

  3. Morphology and SSU rDNA sequence analysis of two hypotrichous ciliates (Protozoa, Ciliophora, Hypotrichia) including the new species Metaurostylopsis parastruederkypkeae n. sp.

    NASA Astrophysics Data System (ADS)

    Lu, Borong; Wang, Chundi; Huang, Jie; Shi, Yuhong; Chen, Xiangrui

    2016-05-01

    The morphology and phylogeny of two hypotrichous ciliates, Metaurostylopsis parastruederkypkeae n. sp. and Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013 were investigated based on morphology, infraciliature and the small subunit (SSU) ribosomal RNA gene (rRNA) sequence. The new species, M. parastruederkypkeae n. sp. was identified according to its characteristics: body shape ellipsoidal, size about (165-200) × (45-60) μm in vivo, cell color reddish; two types of cortical granules including wheat grain-like and yellow-greenish larger ones along the marginal cirri rows and dorsal kineties and dot-like and reddish smaller ones, grouped around marginal cirri on ventral side and arranged in short lines on dorsal side; 26-41 adoral membranelles; three frontal and one parabuccal, five to seven frontoterminal, one buccal, and three to six transverse cirri; seven to thirteen midventral pairs; five to nine unpaired ventral cirri, five to seven left and three to five right marginal rows; and three complete dorsal kineties. Phylogenetic analysis based on SSU rDNA sequences showed that both Metaurostylopsis and Neourostylopsis are monophyletic. As the internal relationship between and within both genera are not clear, further studies on the species in these two genera are necessary. The key characteristics of all known twelve Metaurostylopsis-Apourostylopsis-Neourostylopsis species complex were updated.

  4. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water.

    PubMed

    Hansen, Trine; Skånseng, Beate; Hoorfar, Jeffrey; Löfström, Charlotta

    2013-09-01

    Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations. PMID:23971801

  5. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    PubMed

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods. PMID:24950754

  6. Comparison of Sanger and next generation sequencing performance for genotyping Cryptosporidium isolates at the 18S rRNA and actin loci.

    PubMed

    Paparini, Andrea; Gofton, Alexander; Yang, Rongchang; White, Nicole; Bunce, Michael; Ryan, Una M

    2015-01-01

    Cryptosporidium is an important enteric pathogen that infects a wide range of humans and animals. Rapid and reliable detection and characterisation methods are essential for understanding the transmission dynamics of the parasite. Sanger sequencing, and high-throughput sequencing (HTS) on an Ion Torrent platform, were compared with each other for their sensitivity and accuracy in detecting and characterising 25 Cryptosporidium-positive human and animal faecal samples. Ion Torrent reads (n = 123,857) were obtained at both 18S rRNA and actin loci for 21 of the 25 samples. Of these, one isolate at the actin locus (Cattle 05) and three at the 18S rRNA locus (HTS 10, HTS 11 and HTS 12), suffered PCR drop-out (i.e. PCR failures) when using fusion-tagged PCR. Sanger sequences were obtained for both loci for 23 of the 25 samples and showed good agreement with Ion Torrent-based genotyping. Two samples both from pythons (SK 02 and SK 05) produced mixed 18S and actin chromatograms by Sanger sequencing but were clearly identified by Ion Torrent sequencing as C. muris. One isolate (SK 03) was typed as C. muris by Sanger sequencing but was identified as a mixed C. muris and C. tyzzeri infection by HTS. 18S rRNA Type B sequences were identified in 4/6 C. parvum isolates when deep sequenced but were undetected in Sanger sequencing. Sanger was cheaper than Ion Torrent when sequencing a small numbers of samples, but when larger numbers of samples are considered (n = 60), the costs were comparative. Fusion-tagged amplicon based approaches are a powerful way of approaching mixtures, the only draw-back being the loss of PCR efficiency on low-template samples when using primers coupled to MID tags and adaptors. Taken together these data show that HTS has excellent potential for revealing the "true" composition of species/types in a Cryptosporidium infection, but that HTS workflows need to be carefully developed to ensure sensitivity, accuracy and contamination are

  7. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes.

    PubMed

    Rossi, Anna Rita; Milana, Valentina; Hett, Anne Kathrin; Tancioni, Lorenzo

    2012-12-01

    Karyotype and other chromosomal characteristics of the Appenine endemic cyprinid fish, Toscana stream chub Squalius lucumonis, were analysed using conventional banding and FISH with 45S and 5S rDNA probes. The diploid chromosome number (2n = 50) and karyotype characteristics including pericentromeric heterochromatic blocks and GC-rich CMA(3)-positive sites corresponding to both positive Ag-NORs and 45S rDNA loci on the short arms of a single medium-sized submetacentric chromosome pair were consistent with those found in most European leuciscine cyprinids. On other hand, 5S rDNA FISH in the Toscana stream chub and three other Italian leuciscines, S. squalus, Rutilus rubilio and Telestes muticellus, revealed a species-specific hybridization pattern, i.e. signals on four (S. lucumonis), three (S. squalus and R. rubilio) and two (T. muticellus) chromosome pairs. Whereas all the species shared the 5S rDNA loci on the largest subtelocentric chromosome pair, a "leuciscine" cytotaxonomic marker, S. lucumonis showed both classes of rDNA loci tandem aligned on the short arms of chromosome pair No. 12. The present findings suggest that the observed high variability of 5S rDNA loci provides a powerful tool for investigation of karyotype differentiation in karyologically conservative leuciscine fishes. PMID:23238894

  8. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection.

    PubMed

    Robledo, G; Lavia, G I; Seijo, G

    2009-05-01

    Section Arachis of the homonymous genus includes 29 wild diploid species and two allotetraploids (A. monticola and the domesticated peanut, A. hypogaea L.). Although, three different genomes (A, B and D) have been proposed for diploid species with x = 10, they are still not well characterized. Moreover, neither the relationships among species within each genome group nor between diploids and tetraploids (AABB) are completely resolved. To tackle these issues, particularly within the A genome, in this study the rRNA genes (5S and 18S-26S) and heterochromatic bands were physically mapped using fluorescent in situ hybridization (FISH) in 13 species of Arachis. These molecular cytogenetic landmarks have allowed individual identification of a set of chromosomes and were used to construct detailed FISH-based karyotypes for each species. The bulk of the chromosome markers mapped revealed that, although the A genome species have a common karyotype structure, the species can be arranged in three groups (La Plata River Basin, Chiquitano, and Pantanal) on the basis of the variability observed in the heterochromatin and 18S-26S rRNA loci. Notably, these groups are consistent with the geographical co-distribution of the species. This coincidence is discussed on the basis of the particular reproductive traits of the species such as autogamy and geocarpy. Combined with geographic distribution of the taxa, the cytogenetic data provide evidence that A. duranensis is the most probable A genome ancestor of tetraploid species. It is expected that the groups of diploid species established, and their relation with the cultigen, may aid to rationally select wild species with agronomic traits desirable for peanut breeding programs. PMID:19234686

  9. HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation

    PubMed Central

    Malygin, Alexey A.; Kossinova, Olga A.; Shatsky, Ivan N.; Karpova, Galina G.

    2013-01-01

    Previous analyses of complexes of 40S ribosomal subunits with the hepatitis C virus (HCV) internal ribosome entry site (IRES) have revealed contacts made by the IRES with ribosomal proteins. Here, using chemical probing, we show that the HCV IRES also contacts the backbone and bases of the CCC triplet in the 18S ribosomal RNA (rRNA) expansion segment 7. These contacts presumably provide interplay between IRES domain II and the AUG codon close to ribosomal protein S5, which causes a rearrangement of 18S rRNA structure in the vicinity of the universally conserved nucleotide G1639. As a result, G1639 becomes exposed and the corresponding site of the 40S subunit implicated in transfer RNA discrimination can select . These data are the first demonstration at nucleotide resolution of direct IRES–rRNA interactions and how they induce conformational transition in the 40S subunit allowing the HCV IRES to function without AUG recognition initiation factors. PMID:23873958

  10. Development of 18S rRNA-targeted oligonucleotide probes for specific detection of Hartmannella and Naegleria in Legionella-positive environmental samples.

    PubMed

    Grimm, D; Ludwig, W F; Brandt, B C; Michel, R; Schleifer, K H; Hacker, J; Steinert, M

    2001-04-01

    Aquatic protozoa are natural hosts of the human pathogen Legionella pneumophila. The fluorescence labeled 16S rRNA-targeted oligonucleotide probe LEGPNE1 has recently been shown to specifically detect extracellular legionellae as well as intracellular legionellae parasitizing protozoa. In this study we designed oligonucleotide probes which are complementary to distinct regions of the 18S rRNA of the Legionella host organisms of the genera Hartmannella and Naegleria. The specificity of the probes, HART498 and NAEG1088, was tested by in situ hybridization of various laboratory reference strains. In order to evaluate the fluorescent probes for environmental studies three selected Legionella-positive cold water habitats were examined for the presence of these protozoa. Traditional culture methods followed by morphological identification revealed an almost consistent presence of Naegleria spp. in cold water habitats. Other protozoa species including Acanthamoeba spp., Echinamoeba spp., Hartmannella spp., Platyamoeba placida, Saccamoeba spp., Thecamoeba quadrilineata, and Vexillifera spp. were found sporadically. Concomitant analysis of the pH, conductivity and temperature of the water samples revealed no preference of Legionella or the respective protozoa for certain environmental conditions. The specificity of the newly designed 18S rRNA probes demonstrates that they are valuable and rapid tools for the identification of culturable environmental protozoa. PMID:11403402

  11. Diversity and Recombination of Dispersed Ribosomal DNA and Protein Coding Genes in Microsporidia

    PubMed Central

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a

  12. Characterization of Fecal Microbiota from a Salmonella Endemic Cattle Herd as Determined by Oligonucleotide Fingerprinting of RDNA Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal (GI) tract microbiota is composed of complex communities. For all species examined thus far, culture and molecular analyses show that these communities are highly diverse and individuals harbor unique consortia. These microorganisms are influenced by the diet, host, and environm...

  13. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene.

    PubMed Central

    Kurtzman, C P; Robnett, C J

    1997-01-01

    Clinically important species of Candida and related organisms were compared for extent of nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region is sufficiently variable to allow reliable separation of all known clinically significant yeast species. Of the 204 described species examined, 21 appeared to be synonyms of previously described organisms. Phylogenetic relationships among the species are presented. PMID:9114410

  14. Phylogenetic analysis of 18S rRNA and the mitochondrial genomes of the wombat, Vombatus ursinus, and the spiny anteater, Tachyglossus aculeatus: increased support for the Marsupionta hypothesis.

    PubMed

    Janke, Axel; Magnell, Ola; Wieczorek, Georg; Westerman, Michael; Arnason, Ulfur

    2002-01-01

    The monotremes, the duck-billed platypus and the echidnas, are characterized by a number of unique morphological characteristics, which have led to the common belief that they represent the living survivors of an ancestral stock of mammals. Analysis of new data from the complete mitochondrial (mt) genomes of a second monotreme, the spiny anteater, and another marsupial, the wombat, yielded clear support for the Marsupionta hypothesis. According to this hypothesis marsupials are more closely related to monotremes than to eutherians, consistent with a basal split between eutherians and marsupials/monotremes among extant mammals. This finding was also supported by analysis of new sequences from a nuclear gene--18S rRNA. The mt genome of the wombat shares some unique features with previously described marsupial mtDNAs (tRNA rearrangement, a missing tRNA(Lys), and evidence for RNA editing of the tRNA(Asp)). Molecular estimates of genetic divergence suggest that the divergence between the platypus and the spiny anteater took place approximately 34 million years before present (MYBP), and that between South American and Australian marsupials approximately 72 MYBP. PMID:11734900

  15. Regulation of Arabidopsis thaliana 5S rRNA Genes.

    PubMed

    Vaillant, Isabelle; Tutois, Sylvie; Cuvillier, Claudine; Schubert, Ingo; Tourmente, Sylvette

    2007-05-01

    The Arabidopsis thaliana genome comprises around 1,000 copies of 5S rRNA genes encoding both major and minor 5S rRNAs. In mature wild-type leaves, the minor 5S rRNA genes are silent. Using different mutants of DNA methyltransferases (met1, cmt3 and met1 cmt3), components of the RNAi pathway (ago4) or post-translational histone modifier (hda6/sil1), we show that the corresponding proteins are needed to maintain proper methylation patterns at heterochromatic 5S rDNA repeats. Using reverse transcription-PCR and cytological analyses, we report that a decrease of 5S rDNA methylation at CG or CNG sites in these mutants leads to the release of 5S rRNA gene silencing which occurred without detectable changes of the 5S rDNA chromatin structure. In spite of severely reduced DNA methylation, the met1 cmt3 double mutant revealed no increase in minor 5S rRNA transcripts. Furthermore, the release of silencing of minor 5S rDNAs can be achieved without increased formation of euchromatic loops by 5S rDNA, and is independent from the global heterochromatin content. Additionally, fluorescence in situ hybridization with centromeric 180 bp repeats confirmed that these highly repetitive sequences, in spite of their elevated transcriptional activity in the DNA methyltransferase mutants (met1, cmt3 and met1 cmt3), remain within chromocenters of the mutant nuclei. PMID:17412735

  16. Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast.

    PubMed Central

    Gangloff, S; Zou, H; Rothstein, R

    1996-01-01

    The genomic stability of the rDNA tandem array in yeast is tightly controlled to allow sequence homogenization and at the same time prevent deleterious rearrangements. In our study, we show that gene conversion, and not unequal sister chromatid exchange, is the predominant recombination mechanism regulating the expansion and contraction of the rDNA array. Furthermore, we found that RAD52, which is essential for gene conversion, is required for marker duplication stimulated in the absence of the two yeast type I topoisomerases. Our results have implications for the mechanisms regulating genomic stability of repetitive sequence families found in all eukaryotes. Images PMID:8612596

  17. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    PubMed

    Eastman, Alexander W; Yuan, Ze-Chun

    2014-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  18. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis.

    PubMed Central

    Godon, J J; Zumstein, E; Dabert, P; Habouzit, F; Moletta, R

    1997-01-01

    The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis. PMID:9212428

  19. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID

  20. Identification of a 5S rDNA spacer type specific Triticum urartu and wheats containing the T. urartu genome.

    PubMed

    Allaby, R G; Brown, T A

    2000-04-01

    A PCR system was designed to amplify 5S spacer rDNA specifically from homeologous chromosome 1 in a variety of species representative of the Aegilops and Triticum genera. Two polymerase chain reaction (PCR) primer combinations were used, one of which appears to be apomorphic in nature and specific to chromosome 1A in Triticum urartu and tetraploid and hexaploid wheats containing the AA genome donated by T. urartu. The value of studying single repeat types to investigate the molecular evolution of 5S-rDNA arrays is considered. PMID:10791812

  1. 16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes1

    PubMed Central

    Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott

    2014-01-01

    Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships. PMID:25937672

  2. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea)--a natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences.

    PubMed

    Strand, Malin; Sundberg, Per

    2005-10-01

    We investigated the monophyletic status of the hoplonemertean taxon Tetrastemma by reconstructing the phylogeny for 22 specimens assigned to this genus, together with another 25 specimens from closely related hoplonemertean genera. The phylogeny was based on partial 18S rRNA sequences using Bayesian and maximum likelihood analyses. The included Tetrastemma-species formed a well-supported clade, although the within-taxon relationships were unsettled. We conclude that the name Tetrastemma refers to a monophyletic taxon, but that it cannot be defined by morphological synapomorphies, and our results do not imply that all the over 100 species assigned to this genus belong to it. The results furthermore indicate that the genera Amphiporus and Emplectonema are non-monophyletic. PMID:16182152

  3. Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis

    SciTech Connect

    T Tanaka; P Smith; S Shuman

    2011-12-31

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  4. Identification of the Bacterial Community of Maple Sap by Using Amplified Ribosomal DNA (rDNA) Restriction Analysis and rDNA Sequencing

    PubMed Central

    Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D.

    2004-01-01

    The bacterial community of maple sap was characterized by analysis of samples obtained at the taphole of maple trees for the 2001 and 2002 seasons. Among the 190 bacterial isolates, 32 groups were formed according to the similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA). A subset of representative isolates for each ARDRA group was identified by 16S rRNA gene fragment sequencing. Results showed a wide variety of organisms, with 22 different genera encountered. Pseudomonas and Ralstonia, of the γ- and β-Proteobacteria, respectively, were the most frequently encountered genera. Gram-positive bacteria were also observed, and Staphylococcus, Plantibacter, and Bacillus were the most highly represented genera. The sampling period corresponding to 50% of the cumulative sap flow percentage presented the greatest bacterial diversity according to its Shannon diversity index value (1.1). γ-Proteobacteria were found to be dominant almost from the beginning of the season to the end. These results are providing interesting insights on maple sap microflora that will be useful for further investigation related to microbial contamination and quality of maple products and also for guiding new strategies on taphole contamination control. PMID:15066796

  5. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH

    PubMed Central

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution. PMID:23826377

  6. Molecular phylogenetics at the Felsenstein zone: approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences.

    PubMed

    Hwang, U W; Kim, W; Tautz, D; Friedrich, M

    1998-06-01

    Recent efforts to reconstruct the phylogenetic position of the insect order Strepsiptera have elicited a major controversy in molecular phylogenetics. We sequenced the 5.8S rDNA and major parts of the 28S rDNA 5' region of the strepsipteran species Stylops melittae. Their evolutionary dynamics were analyzed together with previously published insect rDNA sequences to identify tree estimation bias risks and to explore additional sources of phylogenetic information. Several major secondary structure changes were found as being autapomorphic for the Diptera, the Strepsiptera, or the Archaeognatha. Besides elevated substitution rates a significant AT bias was present in dipteran and strepsipteran 28S rDNA which, however, was restricted to stem sites in the Diptera while also affecting single-stranded sites in the Strepsiptera. When dipteran taxa were excluded from tree estimation all methods consistently supported the placement of Strepsiptera to within the Holometabola. When dipteran taxa were included maximum likelihood continued to favor a sister-group relationship of Strepsiptera with Mecoptera while remaining methods strongly supported a sister-group relationship with Diptera. Parametric bootstrap analysis revealed maximum likelihood as a consistent estimator if rate heterogeneity across sites was taken into account. Though the position of Strepsiptera within Holometabola remains elusive, we conclude that the evolution of dipteran and strepsipteran rDNA involved similar yet independent changes of substitution parameters. PMID:9667995

  7. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.

    PubMed

    Lee, Jiyoung; Phung, Nguyet Thu; Chang, In Seop; Kim, Byung Hong; Sung, Ha Chin

    2003-06-27

    A fuel cell-type electrochemical device has been used to enrich microbes oxidizing acetate with concomitant electricity generation without using an electron mediator from activated sludge. The device generated a stable current of around 5 mA with complete oxidation of 5 mM acetate at the hydraulic retention time of 2.5 h after 4 weeks of enrichment. Over 70% of electrons available from acetate oxidation was recovered as current. Carbon monoxide or hydrogen did not influence acetate oxidation or current generation from the microbial fuel cell (MFC). Denaturing gradient gel electrophoresis showed that DNA extracted from the acetate-enriched MFC had different 16S rDNA patterns from those of sludge or glucose+glutamate-enriched MFCs. Nearly complete 16S rDNA sequence analyses showed that diverse bacteria were enriched in the MFC fed with acetate. Electron microscopic observations showed biofilm developed on the electrode, but not microbial clumps observed in MFCs fed with complex fuel such as glucose and wastewater from a corn-processing factory. PMID:12829284

  8. Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA.

    PubMed

    Kamimura, K; Wakai, S; Sugio, T

    2001-01-01

    The 16S rDNA sequences from ten strains of Thiobacillus ferrooxidans were amplified by PCR. The products were compared by performing restriction fragment length polymorphism (RFLP) analysis with restriction endonucleases Alu I, Hap II, Hha I, and Hae III. The RFLP patterns revealed that T. ferrooxidans could be distinguished from other iron- or sulphur-oxidizing bacteria such as T. thiooxidans NB1-3, T. caldus GO-1, Leptospirillum ferrooxidans and the marine iron-oxidizing bacterium strain KU2-11. The RFLP patterns obtained with Alu I, Hap II, and Hae III were the same for nine strains of T. ferrooxidans except for strain ATCC 13661. The RFLP patterns for strains NASF-1 and ATCC 13661 with Hha I were distinct from those for other T. ferrooxidans strains. The 16S rDNA sequence of T. ferrooxidans NASF-1 possessed an additional restriction site for Hha I. These results show that iron-oxidizing bacteria isolated from natural environments were rapidly identified as T. ferrooxidans by the method combining RFLP analysis with physiological analysis. PMID:11414499

  9. Studying long 16S rDNA sequences with ultrafast-metagenomic sequence classification using exact alignments (Kraken).

    PubMed

    Valenzuela-González, Fabiola; Martínez-Porchas, Marcel; Villalpando-Canchola, Enrique; Vargas-Albores, Francisco

    2016-03-01

    Ultrafast-metagenomic sequence classification using exact alignments (Kraken) is a novel approach to classify 16S rDNA sequences. The classifier is based on mapping short sequences to the lowest ancestor and performing alignments to form subtrees with specific weights in each taxon node. This study aimed to evaluate the classification performance of Kraken with long 16S rDNA random environmental sequences produced by cloning and then Sanger sequenced. A total of 480 clones were isolated and expanded, and 264 of these clones formed contigs (1352 ± 153 bp). The same sequences were analyzed using the Ribosomal Database Project (RDP) classifier. Deeper classification performance was achieved by Kraken than by the RDP: 73% of the contigs were classified up to the species or variety levels, whereas 67% of these contigs were classified no further than the genus level by the RDP. The results also demonstrated that unassembled sequences analyzed by Kraken provide similar or inclusively deeper information. Moreover, sequences that did not form contigs, which are usually discarded by other programs, provided meaningful information when analyzed by Kraken. Finally, it appears that the assembly step for Sanger sequences can be eliminated when using Kraken. Kraken cumulates the information of both sequence senses, providing additional elements for the classification. In conclusion, the results demonstrate that Kraken is an excellent choice for use in the taxonomic assignment of sequences obtained by Sanger sequencing or based on third generation sequencing, of which the main goal is to generate larger sequences. PMID:26812576

  10. Genus-specific profile of acetic acid bacteria by 16S rDNA PCR-DGGE.

    PubMed

    De Vero, Luciana; Giudici, Paolo

    2008-06-30

    An effective method for grouping acetic acid bacteria (AAB) genera was defined and evaluated as a tool for preliminary screening of the major AAB species involved in vinegar production. Acetobacter, Gluconobacter, Gluconacetobacter, Asaia, Neoasaia, Saccharibacter, Frateuria and Kozakia AAB strains were screened on the basis of the 16S rDNA sequences using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. The DGGE profile of all the strains tested, consisted of one single band of approximately 330 bp for each strain and allowed their clustering. The results obtained clearly reflected in silico phylogenetic analysis of the AAB species used in this study, in fact, the species with a higher 16S rDNA sequence homology showed a similar electrophoretic profile. In particular almost all the species belonging to the genus Gluconacetobacter showed a DGGE pattern nearly identical and well distinct from all the other AAB genera. Furthermore by PCR-DGGE it was possible to clearly group the species more frequently recovered from vinegar fermentation which are mainly distributed in the genera Acetobacter, Gluconobacter and Gluconacetobacter. PMID:17919758

  11. TURKEY FECAL MICROBIAL COMMUNITY STRUCTURE AND ECOLOGICAL FUNCTIONS REVEALED BY 16S RDNA AND METAGENOME SEQUENCES

    EPA Science Inventory

    Turkey feces are an important source of fecal waste in the United States. With the exception of isolated studies on bacterial pathogens, little is known about the type of bacteria inhabiting the turkey gut. In order to understand the microbial diversity and functional genes assoc...

  12. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes

    PubMed Central

    Spoz, Aneta; Boron, Alicja; Porycka, Katarzyna; Karolewska, Monika; Ito, Daisuke; Abe, Syuiti; Kirtiklis, Lech; Juchno, Dorota

    2014-01-01

    Abstract The crucian carp Carassius carassius (Linnaeus, 1758) is a species with restricted and decreasing distribution in Europe. Six males and six females of the species from the Baltic Sea basin in Poland were examined to show sequentially CMA3/AgNO3 staining pattern, DAPI staining, and, for the first time in literature, molecular cytogenetic analysis using double-colour fluorescence in situ hybridisation (FISH) with 28S and 5S rDNA probes. The karyotype consisted of 20 m, 36 sm and 44 sta chromosomes, NF=156. The AgNO3 stained NORs were most frequently located terminally in the short arms of two sm and two sta elements, and CMA3-positive sites were also observed suggesting abundant GC-rich repetitive DNA in the regions. Other CMA3-positive sites in the short arms of six to ten sm and sta chromosomes were detected. The results based on 28S rDNA FISH confirmed the location of rDNA sites. DAPI-negative staining of NORs suggested the scarcity of AT-rich DNA in the regions. FISH with 5S rDNA probe revealed 8–14 loci (ten and 12 in respectively 49 and 29% of metaphases). They were located in two sm and eight to ten sta chromosomes and six of them were larger than others. Simultaneously, mapping of the two rDNA families on the chromosomes of C. carassius revealed that both 28S and 5S rDNA probes were located in different chromosomes. Molecular cytogenetic data of C. carassius presented here for the first time give an important insight into the structure of chromosomes of this polyploid and declining species and may be useful in its systematics. PMID:25349674

  13. Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation

    PubMed Central

    Ellis, Collin L.; Ma, Zhong-Min; Mann, Surinder K.; Li, Chin-Shang; Wu, Jian; Knight, Thomas H.; Yotter, Tammy; Hayes, Timothy L.; Maniar, Archana H.; Troia-Cancio, Paolo V.; Overman, Heather A; Torok, Natalie J.; Albanese, Anthony; Rutledge, John C.; Miller, Christopher J.; Pollard, Richard B.; Asmuth, David M.

    2011-01-01

    Background The relationship between gut microbial community composition at the higher-taxonomic order-level and local and systemic immunologic abnormalities in HIV disease may provide insight into how bacterial translocation impacts HIV disease. Methods Antiretroviral (ART)-naive HIV patients underwent upper endoscopy before and nine months after starting ART. Duodenal tissue was paraffin-embedded for immunohistochemical analysis (IHC) and digested for FACS for T-cell subsets and immune activation (CD38+/HLA-DR+) enumeration. Stool samples were provided from patients and controls for comparison. Metagenomic microbial DNA was extracted from feces for optimized 16S ribosomal RNA gene (rDNA) real-time qPCR assays designed to quantify panbacterial loads and the relative abundances of proinflammatory Enterobacteriales order, and the dominant Bacteroidales and Clostridiales orders. Results Samples from 10 HIV-subjects prior to initiating, and from 6 subjects receiving, ART were available for analysis. There was a trend for a greater proportion of Enterobacteriales in HIV-positive subjects compared to controls (p=0.099). There were significant negative correlations between total bacterial load and duodenal CD4+ and CD8+ T-cell activation levels (r= −0.74, p= 0.004 and r= −0.67, p=0.013, respectively). The proportions of Enterobacteriales and Bacteroidales were significantly correlated with duodenal CD4+ T-cell depletion and peripheral CD8+ T-cell activation, respectively. Conclusions These data represent the first report of quantitative molecular and cellular correlations between total/universal and order-level gut bacterial populations and GALT levels of immune activation in HIV-infected subjects. The correlations between lower overall 16S rDNA levels and tissue immune activation suggest that the gut microbiome may contribute to immune activation and influence HIV progression. PMID:21436711

  14. Karyotype conservation in 2 populations of the parthenogenetic scorpion Tityus serrulatus (Buthidae): rDNA and its associated heterochromatin are concentrated on only one chromosome.

    PubMed

    Schneider, Marielle C; Cella, Doralice M

    2010-01-01

    Within the order Scorpiones, the parthenogenetic mode of reproduction has been described for 11 species, 6 of which belong to the genus Tityus. In this work, an investigation of the chromosome characteristics of 2 populations of Tityus serrulatus, the first scorpion species known to be thelytokously parthenogenetic, is described. An analysis of 40 individuals revealed holocentric chromosomes of large, medium, and small sizes and an invariable diploid number of 2n = 12. In addition to the conserved macrokaryotype structure, specific chromosome regions also appeared unchanged within and between the samples studied; that is, each sample displayed only one chromosome carrier of the active nucleolar organizer region containing ribosomal genes (5.8S, 18S, and 28S) and AT-rich heterochromatin associated with the ribosomal DNA. The high conservation of the chromosomal features observed in T. serrulatus differed from that verified in certain species of other groups of animals that possess both holocentric chromosomes and parthenogenetic reproduction. Moreover, the cytogenetic results obtained herein permit us to suggest how the eggs of T. serrulatus develop, whether by apomixis or automixis. PMID:20231264

  15. Distribution and 16S rDNA sequences of Argas monachus (Acari: Argasidae), a soft tick parasite of Myiopsitta monachus (Aves: Psittacidae).

    PubMed

    Mastropaolo, Mariano; Turienzo, Paola; Di Iorio, Osvaldo; Nava, Santiago; Venzal, José M; Guglielmone, Alberto A; Mangold, Atilio J

    2011-11-01

    Specimens of Argas monachus Keirans et al. were collected from Myiopsitta monachus nests in 42 localities in Argentina and Paraguay from 2006 to 2010. A list of localities where this tick has been found is presented. 16S rDNA sequences of specimens of A. monachus from different localities were compared to confirm whether they belong to the same specific taxon. Argas monachus is present in the phytogeographic provinces of Chaco, Espinal, and Monte, but not in the Pampa (all from de Chaco Domain) where the host is well distributed. No differences were found among 16S rDNA sequences of geographically distant specimens. PMID:21739257

  16. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans

    PubMed Central

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L. J.; Wöhnert, Jens; Entian, Karl-Dieter

    2016-01-01

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m1acp3Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  17. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L J; Wöhnert, Jens; Entian, Karl-Dieter

    2016-05-19

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  18. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis

    PubMed Central

    Tyx, Robert E.; Stanfill, Stephen B.; Keong, Lisa M.; Rivera, Angel J.; Satten, Glen A.; Watson, Clifford H.

    2016-01-01

    The bacterial communities present in smokeless tobacco (ST) products have not previously reported. In this study, we used Next Generation Sequencing to study the bacteria present in U.S.-made dry snuff, moist snuff and Sudanese toombak. Sample diversity and taxonomic abundances were investigated in these products. A total of 33 bacterial families from four phyla, Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, were identified. U.S.-produced dry snuff products contained a diverse distribution of all four phyla. Moist snuff products were dominated by Firmicutes. Toombak samples contained mainly Actinobacteria and Firmicutes (Aerococcaceae, Enterococcaceae, and Staphylococcaceae). The program PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to impute the prevalence of genes encoding selected bacterial toxins, antibiotic resistance genes and other pro-inflammatory molecules. PICRUSt also predicted the presence of specific nitrate reductase genes, whose products can contribute to the formation of carcinogenic nitrosamines. Characterization of microbial community abundances and their associated genomes gives us an indication of the presence or absence of pathways of interest and can be used as a foundation for further investigation into the unique microbiological and chemical environments of smokeless tobacco products. PMID:26784944

  19. 28s rDNA group-I introns: a powerful tool for identifying strains of Beauveria brongniartii.

    PubMed

    Neuvéglise, C; Brygoo, Y; Riba, G

    1997-04-01

    The nuclear ribosomal DNA of the entomopathogenic fungus Beauveria brongniartii is polymorphic in terms of both restriction site and length. Insertions of 350-450 bp long, identified as group-I introns, were detected in the 28s rDNA. A panel of 47 strains of B. brongniartii, two B. bassiana and one Metarhizium anisopliae of various geographical and biological origins were found to contain 14 variant forms of intron differing in size and restriction pattern, at four different positions. Twelve types of ribosomal large subunit were defined on the basis of variant distribution and compared with strain clustering based on internal transcribed spacers analysis. There was a correlation between the characteristic introns and isolates collected from the sugar cane pest Hoplochelus marginalis. Primers for polymerase chain reaction amplification were chosen from these variants, and used to develop a specific method for detecting strains pathogenic towards Hoplochelus. PMID:9131812

  20. Description of the male, redescription of the female and 16S rDNA sequence of Ixodes aulacodi (Ixodidae).

    PubMed

    Chiţimia-Dobler, Lidia; D'Amico, Gianluca; Yao, Patrick Kouassi; Kalmár, Zsuzsa; Gherman, Călin Mircea; Mihalca, Andrei Daniel; Estrada-Peña, Agustin

    2016-04-01

    Ixodes (Afrixodes) aulacodiArthur, 1956 is a poorly known species that has been recorded predominantly in the wet countries of western and central Africa, mainly associated to the greater cane rat Thryonomys swinderianus (Temmink). We herein redescribe the female, describe the male (ascribed to the species from specimens found in copula) and provide the 16S rDNA sequence. We also provide complete illustrations of the adults based on specimens found on greater cane rats in Ivory Coast. Ixodes aulacodi is included in the group of species of the subgenus Afrixodes that have horseshoe shaped anal groove, and which lack auriculae and cornua. The female is easily separated when compared with other species because of a unique combination of characters: All the coxae have internal spurs, coxa II has two external spurs, syncoxae are absent, and trochanters I-III have one spur each. The male has a notched hypostome and lacks syncoxae, auriculae and cornua. PMID:26803353

  1. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).

    PubMed

    Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro

    2016-03-01

    We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus. PMID:26959315

  2. Loop mediated isothermal amplification of 5.8S rDNA for specific detection of Tritrichomonas foetus.

    PubMed

    Oyhenart, Jorge; Martínez, Florencia; Ramírez, Rosana; Fort, Marcelo; Breccia, Javier D

    2013-03-31

    Tritrichomonas foetus is the causative agent of bovine trichomonosis, a sexually transmitted disease leading to infertility and abortion. A test based on loop mediated isothermal amplification (LAMP) targeting the 5.8S rDNA subunit was designed for the specific identification of T. foetus. The LAMP assay was validated using 28 T. foetus and 35 non-T. foetus trichomonads strains. It did not exhibit cross-reaction with closely related parasites commonly found in smegma cultures like Tetratrichomonas spp. and Pentatrichomonas hominis. Bovine smegma did not show interferences for the detection of the parasite and, the sensitivity of the method (4×10(3) CFU/mL, approximately 10 cells/reaction) was slightly higher than that found for PCR amplification with TFR3 and TFR4 primers. The LAMP approach has potential applications for diagnosis and control of T. foetus and, practical use for low skill operators in rural areas. PMID:23265811

  3. Sequence analysis of the rDNA internal transcribed spacer 2 of five species of South American human malaria mosquitoes.

    PubMed

    Fritz, G N

    1998-03-01

    The rDNA internal transcribed spacer 2 (ITS2) was sequenced for 5 species of mosquitoes that may be important vectors of human malaria in certain regions of South America and are difficult to distinguish by morphology: Anopheles evansae, An. nuneztovari, An. rangeli, An. strodei and An. trinkae. ITS2 sequences from samples collected in Ecuador, Bolivia, Venezuela and Brazil were aligned and compared in order to determine the usefulness of this spacer for the elaboration of species specific primers and DNA probes. The ITS2 was found to be different in size (ranging from 333 to 397 bp) and sequence between all pairs of species. Highly variable regions were found primarily at the 3' end of the spacer and were interspersed with relatively conserved sites. Instraspecific sequence variation was limited to a single transversion between specimens of An. rangeli from distant geographic locations suggesting concerted evolution and homogenization of the ITS2. PMID:10520449

  4. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data.

    PubMed

    Jumpponen, Ari

    2007-02-01

    Soil fungal communities underneath willow canopies that had established on the forefront of a receding glacier were analyzed by cloning the polymerase chain reaction (PCR)-amplified partial small subunit (18S) of the ribosomal (rRNA) genes. Congruence between two sets of fungus-specific primers targeting the same gene region was analyzed by comparisons of inferred neighbor-joining topologies. The importance of chimeric sequences was evaluated by Chimera Check (Ribosomal Database Project) and by data reanalyses after omission of potentially chimeric regions at the 5'- and 3'-ends of the cloned amplicons. Diverse communities of fungi representing Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota were detected. Ectomycorrhizal fungi comprised a major component in the early plant communities in primary successional ecosystems, as both primer sets frequently detected basidiomycetes (Russulaceae and Thelephoraceae) forming mycorrhizal symbioses. Various ascomycetes (Ophiostomatales, Pezizales, and Sordariales) of uncertain function dominated the clone libraries amplified from the willow canopy soil with one set of primers, whereas the clone libraries of the amplicons generated with the second primer set were dominated by basidiomycetes. Accordingly, primer bias is an important factor in fungal community analyses using DNA extracted from environmental samples. A large proportion (>30%) of the cloned sequences were concluded to be chimeric based on their changing positions in inferred phylogenies after omission of possibly chimeric data. Many chimeric sequences were positioned basal to existing classes of fungi, suggesting that PCR artifacts may cause frequent discovery of new, higher level taxa (order, class) in direct PCR analyses. Longer extension times during the PCR amplification and a smaller number of PCR cycles are necessary precautions to allow collection of reliable environmental sequence data. PMID:17106807

  5. RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins.

    PubMed

    Mayan, Maria D

    2013-01-01

    The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication. PMID:23308214

  6. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

    PubMed Central

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L.J.

    2015-01-01

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson–Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  7. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1.

    PubMed

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L J

    2015-02-27

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  8. Search for Basonuclin Target Genes

    PubMed Central

    Wang, Junwen; Zhang, Shengliang; Schultz, Richard M.; Tseng, Hung

    2006-01-01

    Basonuclin (Bnc 1) is a transcription factor that has an unusual ability to interact with promoters of both RNA polymerases I and II. The action of basonuclin is mediated through three pairs of evolutionarily conserved zinc fingers, which produce three DNase I footprints on the promoters of rDNA and the basonuclin gene. Using these DNase footprints, we built a computational model for the basonuclin DNA-binding module, which was used to identify in silico potential RNA polymerase II target genes in the human and mouse promoter databases. The target genes of basonuclin show that it regulates the expression of proteins involved in chromatin structure, transcription/DNA-binding, ion-channels, adhesion/cell-cell junction, signal transduction and intracellular transport. Our results suggest that basonuclin, like MYC, may coordinate transcriptional activities among the three RNA polymerases. But basonuclin regulates a distinctive set of pathways, which differ from that regulated by MYC. PMID:16919236

  9. Randomly Detected Genetically Modified (GM) Maize (Zea mays L.) near a Transport Route Revealed a Fragile 45S rDNA Phenotype

    PubMed Central

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165

  10. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis. PMID:27316653

  11. Phylogenetic analysis of encapsulated and non-encapsulated Trichinella species by studying the 5S rDNA tandemly repeated intergenic region.

    PubMed

    van der Giessen, J W B; Fonville, M; Briels, I; Pozio, E

    2005-09-01

    The identification of sequence regions in the genomes of pathogens which can be useful to distinguish among species and genotypes, is of great importance for epidemiological, molecular, and phylogenetic studies. The 5S ribosomal DNA intergenic spacer region has been identified as a good target to distinguish among eight Trichinella species and genotypes. The recent discovery of two non-encapsulated species in this genus, Trichinella papuae and Trichinella zimbabwensis, which can infect both mammals and reptiles, has suggested analyzing their 5S rDNA. Amplification of the tandem repeats of the 5S rDNA intergenic region of encapsulated species of Trichinella shows a 751bp fragment, whereas the three non-encapsulated species show a fragment of 800bp with T. pseudospiralis showing an additional fragment of 522bp. Although the size of the 800bp PCR fragments of T. papuae and T. zimbabwensis are similar to that of T. pseudospiralis, there are differences in the 5S rDNA intergenic regions among the three non-encapsulated species. Phylogenetic analysis of the 5S rDNA intergenic regions shows a clustering together of the three non-encapsulated Trichinella species that is well separated from the encapsulated ones. In addition, a single PCR-based method allows distinguishing non-encapsulated and encapsulated species. PMID:16076532

  12. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt.

    PubMed

    Bhowmick, Biplab Kumar; Yamamoto, Masashi; Jha, Sumita

    2016-01-01

    Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)(+ve) signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis. PMID:25795278

  13. Dysfunction of Chromatin Assembly Factor 1 Induces Shortening of Telomeres and Loss of 45S rDNA in Arabidopsis thaliana[W][OA

    PubMed Central

    Mozgová, Iva; Mokroš, Petr; Fajkus, Jiří

    2010-01-01

    Chromatin Assembly Factor 1 (CAF1) is a three-subunit H3/H4 histone chaperone responsible for replication-dependent nucleosome assembly. It is composed of CAC 1-3 in yeast; p155, p60, and p48 in humans; and FASCIATA1 (FAS1), FAS2, and MULTICOPY SUPPRESSOR OF IRA1 in Arabidopsis thaliana. We report that disruption of CAF1 function by fas mutations in Arabidopsis results in telomere shortening and loss of 45S rDNA, while other repetitive sequences (5S rDNA, centromeric 180-bp repeat, CACTA, and Athila) are unaffected. Substantial telomere shortening occurs immediately after the loss of functional CAF1 and slows down at telomeres shortened to median lengths around 1 to 1.5 kb. The 45S rDNA loss is progressive, leaving 10 to 15% of the original number of repeats in the 5th generation of mutants affecting CAF1, but the level of the 45S rRNA transcripts is not altered in these mutants. Increasing severity of the fas phenotype is accompanied by accumulation of anaphase bridges, reduced viability, and plant sterility. Our results show that appropriate replication-dependent chromatin assembly is specifically required for stable maintenance of telomeres and 45S rDNA. PMID:20699390

  14. Time-series of water column alkenones and 18S rRNA confirm that Uk'37 is a viable SST proxy in Narragansett Bay, RI

    NASA Astrophysics Data System (ADS)

    Salacup, J.; Theroux, S.; Herbert, T.; Prell, W. L.

    2011-12-01

    Alkenones, produced in the sunlit mixed layer by specific Haptophyte algae, are a well-established and widely-applied proxy for sea surface temperature (SST) in the world's open-oceans. However, the proxy's utility in estuarine environments remains largely untested. A reliable SST proxy is needed to identify the estuary's sensitivity and response to past and present global change because SST can exert strong control on stratification and circulation patterns, and thus oxygenation and ecosystem health, in these shallow basins. Knowing the estuaries response should help local managers and policy-makers plan mitigation and adaptation strategies. Additionally, the rapid deposition of both marine and terrestrial organic and inorganic material in estuarine systems makes them potential archives of high-resolution paleo-environmental information. A previous investigation of estuarine alkenones suggested that the Uk'37 proxy may be sensitive to the composition of the alkenone-producing Haptophyte population, which may be affected by local nutrient and fresh water fluxes. In particular, low-salinity coastal Haptophytes such as Isochrysis galbana may have a different relationship to SST than higher-salinity open-ocean Haptophytes and their presence may complicate interpretations of the Uk'37 proxy in estuaries. To better understand how the alkenone-based Uk'37 SST proxy is produced in estuarine systems, we present a two-year time-series (monthly-to-thrice-weekly resolution) of alkenone concentrations in particulate organic matter from Narragansett Bay. Alkenone concentrations are coupled with 18S ribosomal RNA (rRNA) measurements to identify the alkenone-producing population. Highest concentrations of alkenones are detected at different times in the upper and lower Bay such that the highest alkenone concentrations occur in the winter-spring (upper Bay) and summer/fall (lower Bay). This result is consistent with the established seasonal blooms and seasonal changes in nutrient

  15. Ribosomal Protein S14 of Saccharomyces cerevisiae Regulates Its Expression by Binding to RPS14B Pre-mRNA and to 18S rRNA

    PubMed Central

    Fewell, Sheara W.; Woolford, John L.

    1999-01-01

    Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure. PMID:9858605

  16. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription

    PubMed Central

    Tsai, Yi-Tzang; Lin, Chen-I; Chen, Hung-Kai; Lee, Kuo-Ming; Hsu, Chia-Yi; Yang, Shun-Jen

    2008-01-01

    The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to α-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric α-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric α-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance. PMID:18253863

  17. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces.

    PubMed

    Sun, Da; Duan, Chuanren; Shang, Yaning; Ma, Yunxia; Tan, Lili; Zhai, Jun; Gao, Xu; Guo, Jingsong; Wang, Guixue

    2016-04-01

    The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST). PMID:26743644

  18. Two group I ribozymes with different functions in a nuclear rDNA intron.

    PubMed Central

    Decatur, W A; Einvik, C; Johansen, S; Vogt, V M

    1995-01-01

    DiSSU1, a mobile intron in the nuclear rRNA gene of Didymium iridis, was previously reported to contain two independent catalytic RNA elements. We have found that both catalytic elements, renamed GIR1 and GIR2, are group I ribozymes, but with differing functionality. GIR2 carries out the several reactions associated with self-splicing. GIR1 carries out a hydrolysis reaction at an internal processing site (IPS-1). These conclusions are based on the catalytic properties of RNAs transcribed in vitro. Mutation of the P7 pairing segment of GIR2 abrogated self-splicing, while mutation of P7 in GIR1 abrogated hydrolysis at the IPS-1. Much of the P2 stem and all of the associated loop could be deleted without effect on self-splicing. These results are accounted for by a secondary structure model, in which a long P2 pairing segment brings the 5' splice site to the GIR2 catalytic core. GIR1 is the smallest natural group I ribozyme yet reported and is the first example of a group I ribozyme whose presumptive biological function is hydrolysis. We hypothesize that GIR1-mediated cleavage of the excised intron RNA functions in the generation and expression of the mRNA for the intron-encoded endonuclease I-DirI. Images PMID:7556099

  19. Epidemiologic Study of Malassezia Yeasts in Patients with Malassezia Folliculitis by 26S rDNA PCR-RFLP Analysis

    PubMed Central

    Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background So far, studies on the inter-relationship between Malassezia and Malassezia folliculitis have been rather scarce. Objective We sought to analyze the differences in body sites, gender and age groups, and to determine whether there is a relationship between certain types of Malassezia species and Malassezia folliculitis. Methods Specimens were taken from the forehead, cheek and chest of 60 patients with Malassezia folliculitis and from the normal skin of 60 age- and gender-matched healthy controls by 26S rDNA PCR-RFLP. Results M. restricta was dominant in the patients with Malassezia folliculitis (20.6%), while M. globosa was the most common species (26.7%) in the controls. The rate of identification was the highest in the teens for the patient group, whereas it was the highest in the thirties for the control group. M. globosa was the most predominant species on the chest with 13 cases (21.7%), and M. restricta was the most commonly identified species, with 17 (28.3%) and 12 (20%) cases on the forehead and cheek, respectively, for the patient group. Conclusion Statistically significant differences were observed between the patient and control groups for the people in their teens and twenties, and in terms of the body site, on the forehead only. PMID:21747616

  20. Epidemiologic Study of Malassezia Yeasts in Acne Patients by Analysis of 26S rDNA PCR-RFLP

    PubMed Central

    Song, Young Chan; Hahn, Hyung Jin; Kim, Ji Young; Ko, Jong Hyun; Choe, Yong Beom; Ahn, Kyu Joong

    2011-01-01

    Background Although acne is a common follicular inflammatory dermatosis, studies of the relationship between Malassezia yeasts and acne have rarely been conducted. Objective We sought to identify Malassezia yeasts from acne patients and establish a relationship between specific types of species of Malassezia and acne. Methods Sixty acne patients were enrolled. Each strain obtained was identified as one of eleven species by 26S rDNA PCR-RFLP. We then compared these data with those of age- and sex-matched healthy subjects. Results Growth of Malassezia was evident in fewer patients with acne (50%) in comparison to controls (70.6%). M. restricta was dominant in patients with acne (23.9%), whereas M. globosa was most common (26.7%) in healthy controls. In the patients group, the rate was the highest (71.7%) in the twenties and, in terms of body site, the rate was the highest (60%) in the chest. In the control group, the rate was the highest (75.0%) in the thirties and in the forehead (85.0%). Conclusion The detection rate of Malassezia yeasts was conspicuously low in the acne patients group. Statistically significant differences were observed between the patient and the control groups in the twenties and thirties, and in terms of body site, in the forehead and chest. PMID:21909202

  1. Development of a novel rDNA based plasmid for enhanced cell surface display on Yarrowia lipolytica

    PubMed Central

    2012-01-01

    In this study, a novel rDNA based plasmid was developed for display of heterologous proteins on the cell surface of Yarrowia lipolytica using the C-terminal end of the glycosylphosphatidylinositol (GPI) anchored Y. lipolytica cell wall protein 1 (YlCWP1). mCherry was used as a model protein to assess the efficiency of the constructed plasmid. Y. lipolytica transformants harbouring the expression cassettes showed a purple colour phenotype on selective YNB-casamino plates as compared to control cells indicating that mCherry was displayed on the cells. Expression of mCherry on cells of Y. lipolytica was confirmed by both fluorescent microscopy and flow cytometry. Furthermore, SDS-PAGE analysis and matrix-assisted laser desorption/ionization (MALDI)-time-of (TOF)-mass spectrometry (MS) peptide mass fingerprinting (PMF) confirmed that the protein cleaved from the yeast cells using enterokinase was mCherry. Efficient cleavage of mCherry reported in this work offers an alternative purification method for displayed heterologous proteins on Y. lipolytica cells using the plasmid constructed in this study. The developed displaying system offers great potential for industrial production and purification of heterologous proteins at low cost. PMID:22608131

  2. Detection of novel organisms associated with salpingitis, by use of 16S rDNA polymerase chain reaction.

    PubMed

    Hebb, Jennifer K; Cohen, Craig R; Astete, Sabina G; Bukusi, Elizabeth A; Totten, Patricia A

    2004-12-15

    Although Chlamydia trachomatis and Neisseria gonorrhoeae are established causes of salpingitis, the majority of cases have no known etiology. We used broad-range 16S rDNA polymerase chain reaction to identify novel, possibly uncultivable, bacteria associated with salpingitis and identified bacterial 16S sequences in Fallopian-tube specimens from 11 (24%) of 45 consecutive women with laparoscopically confirmed acute salpingitis (the case patients) and from 0 of 44 women seeking tubal ligations (the control subjects) at Kenyatta National Hospital, Nairobi, Kenya. Bacterial phylotypes most closely related to Leptotrichia spp. were detected as the sole phylotypes in 1, and mixed with other bacterial phylotypes in 2, specimens. Novel bacterial phylotypes and those associated with bacterial vaginosis, including Atopobium vaginae, were identified in 3 specimens. N. gonorrhoeae and Streptococcus pyogenes were identified in 2 and 1 specimens, respectively. The finding of novel phylotypes associated with salpingitis has important implications for the etiology, pathogenesis, and treatment of this important reproductive-tract disease syndrome. PMID:15551209

  3. Characterization of Lactobacillus from Algerian Goat'S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties.

    PubMed

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez-Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat's milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  4. Robertsonian polymorphism in the marine gastropod, Nucella lapillus: advances in karyology using rDNA loci and NORs.

    PubMed

    Pascoe, P L; Patton, S J; Critcher, R; Dixon, D R

    1996-03-01

    Previous studies of the Robertsonian polymorphism in the Atlantic dog-whelk, Nucella lapillus (2n = 26-36), have been limited by the inability to identify unequivocally individual chromosomes in the karyotype. This species, as with many other marine invertebrates, has proven largely refractory to the standard (mammalian) chromosome-banding techniques. In this study, fluorescence in situ hybridization (FISH) using a rDNA probe was applied to the metaphase chromosomes of the 2n = 26 and 2n = 36 forms of N. lapillus. The results were compared with silver-staining of the nucleolar organizer regions (NORs). The FISH technique was shown to be more sensitive and less intrinsically prone to variation than the silver-staining method. An additional NOR/rDNA locus was observed in the 2n = 36 form which, to date, has not been seen in any 2n = 26 population. The 2n = 36 karyotype is described for a south-west UK population that differs from that reported previously in the literature. After fission, Robertsonian metacentrics are shown to correspond to at least one subtelocentric product. PMID:8601340

  5. 16S rDNA sequence analysis of bacterial isolates from biodeteriorated mural paintings in the Servilia tomb (Necropolis of carmona, Seville, Spain).

    PubMed

    Heyrman, J; Swings, J

    2001-11-01

    Bacteria were isolated from damaged mural paintings of the Servilia tomb (necropolis of Carmona, Seville, Spain). Selected strains, representative for different clusters of isolates with similar fatty acid profiles, were analysed by 16S rDNA sequence analysis. Bacillus is the dominant genus among the isolates: members of the rRNA species complexes of B. megaterium, B. pumilus and B. firmus were found as well as several other Bacillus species. One group of halotolerant isolates falls in the Bacillus sensu lato group, with closest relatedness to the genera Salibacillus and Virgibacillus. Other genera found are Artbrobacter, Micrococcus, Streptomyces, Sphingomonas, Paenibacillus, and a genus closely related to Paracraurococcus. Many isolates showed low 16S rDNA sequence similarities with the closest related database entries, a strong indication for the presence of several new species among the isolates. PMID:11822679

  6. Molecular confirmation of the genomic constitution of Douglasdeweya (Triticeae: Poaceae): demonstration of the utility of the 5S rDNA sequence as a tool for haplome identification.

    PubMed

    Baum, Bernard R; Johnson, Douglas A

    2008-06-01

    A new genus Douglasdeweya containing the two species, Douglasdeweya deweyi and D. wangii was published in 2005 by Yen et al. based upon the results of cytogenetical and morphological findings. The genome constitution of Douglasdeweya-PPStSt-allowed its segregation from the genus Pseudoroegneria which contains the StSt or StStStSt genomes. Our previous work had demonstrated the utility of using 5S rDNA units, especially the non-transcribed spacer sequence variation, for the resolution of genomes (haplomes) previously established by cytology. Here, we show that sequence analysis of the 5S DNA units from these species strongly supports the proposed species relationships of Yen et al. (Can J Bot 83:413-419, 2005), i.e., the PP genome from Agropyron and the StSt genome from Pseudoroegneria. Analysis of the 5S rDNA units constitutes a powerful tool for genomic research especially in the Triticeae. PMID:18421479

  7. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples. PMID:15183874

  8. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis.

    PubMed

    Chen, Chun; Xie, Tingna; Ye, Sudan; Jensen, Annette Bruun; Eilenberg, Jørgen

    2016-01-01

    The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis. PMID:26887253

  9. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis

    PubMed Central

    Chen, Chun; Xie, Tingna; Ye, Sudan; Jensen, Annette Bruun; Eilenberg, Jørgen

    2016-01-01

    The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host–pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis. PMID:26887253

  10. Development of a mitochondrial 12S rDNA analysis for distinguishing Sciuridae species with potential to transmit Ehrlichia and Borrelia species to feeding Amblyomma americanum (Acari: Ixodidae).

    PubMed

    Goessling, Lisa S; Allan, Brian F; Mandelbaum, Rachel S; Thach, Robert E

    2012-05-01

    Unique oligonucleotide probes were synthesized to distinguish among closely related vertebrate mitochondrial rDNA sequences present in residual bloodmeals in emergent Amblyomma americanum (L.) (Acari: Ixodidae) nymph life-stage ticks. Use of these probes enabled the identification of the Eastern gray squirrel as an important bloodmeal source in nymphs harboring Ehrlichia and Borrelia species. These results were confirmed by identifying these same bacterial genera in Eastern gray squirrel tissues. PMID:22679888

  11. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  12. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Thijs, Sofie; Truyens, Sascha; Weyens, Nele; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Next-generation sequencing technologies have revolutionized the methods for studying microbial ecology by enabling high-resolution community profiling. However, the use of these technologies in unraveling the plant microbiome remains challenging. Many bacterial 16S rDNA primer pairs also exhibit high affinity for non-target DNA such as plastid (mostly chloroplast) DNA and mitochondrial DNA. Therefore, we experimentally tested a series of commonly used primers for the analysis of plant-associated bacterial communities using 454 pyrosequencing. We evaluated the performance of all selected primer pairs in the study of the bacterial microbiomes present in the rhizosphere soil, root, stem and leaf endosphere of field-grown poplar trees (Populus tremula × Populus alba) based on (a) co-amplification of non-target DNA, (b) low amplification efficiency for pure chloroplast DNA (real-time PCR), (c) high retrieval of bacterial 16S rDNA, (d) high operational taxonomic unit (OTU) richness and Inverse Simpson diversity and (e) taxonomic assignment of reads. Results indicate that experimental evaluation of primers provide valuable information that could contribute in the selection of suitable primer pairs for 16S rDNA metabarcoding studies in plant-microbiota research. Furthermore, we show that primer pair 799F-1391R outperforms all other primer pairs in our study in the elimination of non-target DNA and retrieval of bacterial OTUs. PMID:27242686

  13. A comparative cytogenetic study of Drosophila parasitoids (Hymenoptera, Figitidae) using DNA-binding fluorochromes and FISH with 45S rDNA probe.

    PubMed

    Gokhman, Vladimir E; Bolsheva, Nadezhda L; Govind, Shubha; Muravenko, Olga V

    2016-06-01

    Karyotypes of Leptopilina boulardi (Barbotin, Carton et Keiner-Pillault, 1979) (n = 9), L. heterotoma (Thomson, 1862) (n = 10), L. victoriae Nordlander, 1980 (n = 10) and Ganaspis xanthopoda (Ashmead, 1896) (n = 9) (Hymenoptera, Figitidae) were studied using DNA-binding ligands with different base specificity [propidium iodide (PI), chromomycin A3 (CMA3) and 4',6-diamidino-2-phenylindole (DAPI)], and fluorescence in situ hybridization (FISH) with a 45S rDNA probe. Fluorochrome staining was similar between the different fluorochromes, except for a single CMA3- and PI-positive and DAPI-negative band per haploid karyotype of each species. FISH with 45S rDNA probe detected a single rDNA site in place of the bright CMA3-positive band, thus identifying the nucleolus organizing region (NOR). Chromosomal locations of NORs were similar for both L. heterotoma and L. victoriae, but strongly differed in L. boulardi as well as in G. xanthopoda. Phylogenetic aspects of NOR localization in all studied species are briefly discussed. PMID:27150102

  14. Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA.

    PubMed

    Cepeda, Georgina D; Blanco-Bercial, Leocadio; Bucklin, Ann; Berón, Corina M; Viñas, María D

    2012-01-01

    Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them. PMID:22558245

  15. Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription.

    PubMed

    Deng, Wensheng; Lopez-Camacho, Cesar; Tang, Jen-Yang; Mendoza-Villanueva, Daniel; Maya-Mendoza, Apolinar; Jackson, Dean A; Shore, Paul

    2012-01-31

    Filamin A (FLNA) is an actin-binding protein with a well-established role in the cytoskeleton, where it determines cell shape and locomotion by cross-linking actin filaments. Mutations in FLNA are associated with a wide range of genetic disorders. Here we demonstrate a unique role for FLNA as a nucleolar protein that associates with the RNA polymerase I (Pol I) transcription machinery to suppress rRNA gene transcription. We show that depletion of FLNA by siRNAs increased rRNA expression, rDNA promoter activity and cell proliferation. Immunodepletion of FLNA from nuclear extracts resulted in a decrease in rDNA promoter-driven transcription in vitro. FLNA coimmunoprecipitated with the Pol I components actin, TIF-IA, and RPA40, and their occupancy of the rDNA promoter was increased in the absence of FLNA in vivo. The FLNA actin-binding domain is essential for the suppression of rRNA expression and for inhibiting recruitment of the Pol I machinery to the rDNA promoter. These findings reveal an additional role for FLNA as a regulator of rRNA gene expression and have important implications for our understanding of the role of FLNA in human disease. PMID:22307607

  16. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells.

    PubMed

    Sarshad, Aishe A; Corcoran, Martin; Al-Muzzaini, Bader; Borgonovo-Brandter, Laura; Von Euler, Anne; Lamont, Douglas; Visa, Neus; Percipalle, Piergiorgio

    2014-06-01

    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation. PMID:24901984

  17. Who are the active players of the Iberian Margin deep biosphere? Microbial diversity of borehole U1385 through analysis of 16S rDNA and rRNA

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Orsi, W.; Edgcomb, V. P.; Biddle, J.

    2013-12-01

    Microbial community structure and activity in marine deep subsurface environments across the globe have been assayed using various molecular biology tools including 16S rDNA sequencing, microarrays, FISH/CARD-FISH, and metagenomics. Many studies involving these techniques are DNA-based. This limits study of microbial function in these environments as DNA does not degrade as quickly as RNA and may lead to misinterpreting relic microbial genes as important for present-day activity. In this study, the diversity of bacteria and archaea from sediments of the Iberian Margin IODP borehole U1385 was analyzed from bulk extracted DNA and RNA at seven different depths ranging from 10 to 123 meters below seafloor (mbsf). Presented data suggests that the picture of microbial diversity obtained from DNA is markedly different from that seen through analysis of RNA. IODP borehole U1385 offers a great comparison to ODP Site 1229, a well characterized borehole on the Peru Margin. Similar sediment depositional history and geochemistry will allow exploration of what represents a 'typical' continental margin sediment microbial community or if microbial endemism is established despite similar conditions. This study represents the first molecular exploration of sediment microbial communities from the Iberian Margin IODP Site U1385.

  18. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses

    PubMed Central

    Liu, X.-Z.; Wang, Q.-M.; Theelen, B.; Groenewald, M.; Bai, F.-Y.; Boekhout, T.

    2015-01-01

    The Tremellomycetes (Basidiomycota) contains a large number of unicellular and dimorphic fungi with stable free-living unicellular states in their life cycles. These fungi have been conventionally classified as basidiomycetous yeasts based on physiological and biochemical characteristics. Many currently recognised genera of these yeasts are mainly defined based on phenotypical characters and are highly polyphyletic. Here we reconstructed the phylogeny of the majority of described anamorphic and teleomorphic tremellomycetous yeasts using Bayesian inference, maximum likelihood, and neighbour-joining analyses based on the sequences of seven genes, including three rRNA genes, namely the small subunit of the ribosomal DNA (rDNA), D1/D2 domains of the large subunit rDNA, and the internal transcribed spacer regions (ITS 1 and 2) of rDNA including 5.8S rDNA; and four protein-coding genes, namely the two subunits of the RNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB). With the consideration of morphological, physiological and chemotaxonomic characters and the congruence of phylogenies inferred from analyses using different algorithms based on different data sets consisting of the combined seven genes, the three rRNA genes, and the individual protein-coding genes, five major lineages corresponding to the orders Cystofilobasidiales, Filobasidiales, Holtermanniales, Tremellales, and Trichosporonales were resolved. A total of 45 strongly supported monophyletic clades with multiple species and 23 single species clades were recognised. This phylogenetic framework will be the basis for the proposal of an updated taxonomic system of tremellomycetous yeasts that will be compatible with the current taxonomic system of filamentous basidiomycetes accommodating the ‘one fungus, one name’ principle. PMID:26955196

  19. Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii

    PubMed Central

    Yin, Bei; Valinsky, Lea; Gao, Xuebiao; Becker, J. Ole; Borneman, James

    2003-01-01

    The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated w