Science.gov

Sample records for 192mw wind farm

  1. Wind farm electrical system

    DOEpatents

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  2. Wind Farm Recommendation Report

    SciTech Connect

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and

  3. Wind Farm Feasibility Study

    SciTech Connect

    Richard Curry; Erik Foley; DOE Project Officer - Keith Bennett

    2007-07-11

    Saint Francis University has assessed the Swallow Farm property located in Shade Township, Somerset County, Pennsylvania as a potential wind power development site. Saint Francis worked with McLean Energy Partners to have a 50-meter meteorological tower installed on the property in April 2004 and continues to conduct a meteorological assessment of the site. Results suggest a mean average wind speed at 80 meters of 17 mph with a net capacity factor of 31 - 33%. Approximate electricity generation capacity of the project is 10 megawatts. Also, the University used matching funds provided by the federal government to contract with ABR, Inc. to conduct radar studies of nocturnal migration of birds and bats during the migrations seasons in the Spring and Fall of 2005 with a mean nocturnal flight altitude of 402 meters with less than 5% of targets at altitudes of less than 125 meters. The mean nocturnal passage rate was 166 targets/km/h in the fall and 145 targets/km/h in the spring. Lastly, University faculty and students conducted a nesting bird study May - July 2006. Seventy-three (73) species of birds were observed with 65 determined to be breeding or potentially breeding species; this figure represents approximately 30% of the 214 breeding bird species in Pennsylvania. No officially protected avian species were determined to be nesting at Swallow Farm.

  4. Wind tunnel investigation on wind turbine wakes and wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the

  5. INL Wind Farm Project Description Document

    SciTech Connect

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  6. Wind farms production: Control and prediction

    NASA Astrophysics Data System (ADS)

    El-Fouly, Tarek Hussein Mostafa

    Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect

  7. Potential market of wind farm in China

    SciTech Connect

    Pengfei Shi

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  8. Wind energy in China: Getting more from wind farms

    NASA Astrophysics Data System (ADS)

    Lewis, Joanna I.

    2016-06-01

    China has the largest installed capacity of wind farms, yet its wind energy electricity output is lower than that of other countries. A new analysis of the relative contributions of the factors influencing China's wind sector could help policy makers prioritize solutions.

  9. Wake Measurements in ECN's Scaled Wind Farm

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. W.; Schepers, J. G.

    2014-12-01

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the relative wind speed, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  10. Wind farm optimization using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Ituarte-Villarreal, Carlos M.

    In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a

  11. Wind farm array wake losses

    SciTech Connect

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  12. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  13. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    Renewable energy has been playing an important role to meet power demand and 'Green Energy' market is getting bigger platform all over the world in the last few years. Due to massive increase in the prices of fossil fuels along with global warming issues, energy harvesting from renewable energy sources has received considerable interest, nowadays, where extensive researches are going on to ensure optimum use of renewable sources. In order to meet the increasing demand of electricity and power, integration of renewable energy is getting highest priorities around the world. Wind is one of the most top growing renewable energy resources and wind power market penetration is expected to reach 3.35 percent by 2013 from its present market of about 240 GW. A wind energy system is the most environmental friendly, cost effective and safe among all renewable energy resources available. Another promising form of renewable energy is ocean energy which covers 70 % of the earth. Ocean energy can be tapped from waves, tides and thermal elements. Offshore Wind farm (OWF) has already become very popular for large scale wind power integration with the onshore grid. Recently, marine current farm (MCF) is also showing good potential to become mainstream energy sources and already successfully commissioned in United Kingdom. However, squirrel cage induction generator (SCIG) has the stability problem similar to synchronous generator especially during fault location to restore the electromagnetic torque. Series dynamic braking resistor (SDBR) has been known as a useful mean to stabilize fixed speed wind generator system. On the other hand, doubly fed induction generator (DFIG) has the capability of coupling the control of active and reactive power and to provide necessary reactive power demand during grid fault conditions. Series dynamic braking resistor (SDBR) can also be employed with DFIG to limit the rotor over current. An integration of wind and tidal energy represents a new

  14. Wind height distribution influence on offshore wind farm feasibility study

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  15. Economics of wind-farm power generation in India

    SciTech Connect

    Sinha, C.S.; Kandpal, T.C. . Centre of Energy Studies)

    1990-01-01

    The financial aspects of wind power generation in India are examined. The cost estimate scaling function for horizontal axis wind turbines (HAWT) is empirically obtained. Other cost components have also been examined and effort is made to generate a cost function for wind farms with grid connected HAWT wind energy conversion systems. The cost function is then used to compute the cost of wind generated electricity from the wind farms in India and the results are compared with the reported cost of generation from the wind farms. The potential of wind-farm power generation is discussed in the light of the cost of power generation by selected conventional technologies in India.

  16. Characterisation of wind farm infrasound and low-frequency noise

    NASA Astrophysics Data System (ADS)

    Zajamšek, Branko; Hansen, Kristy L.; Doolan, Con J.; Hansen, Colin H.

    2016-05-01

    This paper seeks to characterise infrasound and low-frequency noise (ILFN) from a wind farm, which contains distinct tonal components with distinguishable blade-pass frequency and higher harmonics. Acoustic measurements were conducted at dwellings in the vicinity of the wind farm and meteorological measurements were taken at the wind farm location and dwellings. Wind farm ILFN was measured frequently under stable and very stable atmospheric conditions and was also found to be dependent on the time of year. For noise character assessment, wind farm ILFN was compared with several hearing thresholds and also with the spectra obtained when the wind farm was not operating. Wind farm ILFN was found to exceed the audibility threshold at distances up to 4 km from the wind farm and to undergo large variations in magnitude with time.

  17. Development of a Scaled Smart Wind Farm

    NASA Astrophysics Data System (ADS)

    Pol, Suhas; Taylor, Amelia; McKeon, Dalton; Castillo, Luciano; Perez, Isaias; Beibei, Ren; Sheng, Jian; Westergaard, Carsten; Burak, Aksak; Araya, Guillermo; Hussain, Fazle

    2013-11-01

    A model wind farm consisting of 3X5 horizontal axis turbines with a rotor diameter of 4 m (to be expanded to 5X20 turbines of 2 m diameter) is being developed on TTU campus. Real field turbine wake evolution and interactions will be studied by employing particle image velocimetry. A 10 m tower upstream of the wind farm as well as a 200 m tower located 500 m from the site will be used to characterize the atmospheric condition and its influence on the wake evolution. Of particular interest is the role of coherent structures in the atmosphere and the wake on the downward transport of overhead momentum--hence the effectiveness of the wind farm. From the recorded data episodes of stable, unstable and neutral atmosphere will be conditionally sampled to understand the effect of atmospheric stability on wind farm dynamics. The effect of various turbine-turbine separation and orientation on the downward momentum transport will be studied - quite feasible since the turbine models are portable. In addition to aerodynamic studies the facility we will also test control algorithms.

  18. Economics of wind farm layout

    SciTech Connect

    Germain, A.C.; Bain, D.A.

    1997-12-31

    The life cycle cost of energy (COE) is the primary determinant of the economic viability of a wind energy generation facility. The cost of wind turbines and associated hardware is counterbalanced by the energy which can be generated. This paper focuses on the turbine layout design process, considering the cost and energy capture implications of potential spacing options from the viewpoint of a practicing project designer. It is argued that lateral spacings in the range of 1.5 to 5 diameters are all potentially optimal, but only when matched to wind resource characteristics and machine design limits. The effect of wakes on energy capture is quantified while the effect on turbine life and maintenance cost is discussed qualitatively. Careful optimization can lower COE and project designers are encouraged to integrate the concepts in project designs.

  19. Lightning hazard reduction at wind farms

    SciTech Connect

    Kithil, R.

    1997-12-31

    The USA wind farm industry (WFI) largely is centered in low-lightning areas of the State of California. While some evidence of lightning incidents is reported here, the problem is not regarded as serious by most participants. The USA WFI now is moving eastward, into higher areas of lightning activity. The European WFI has had many years experience with lightning problems. One 1995 German study estimated that 80% of wind turbine insurance claims paid for damage compensation were caused by lightning strikes. The European and USA WFI have not adopted site criteria, design fundamentals, or certification techniques aimed at lightning safety. Sufficient evidence about lightning at wind farms is available to confirm that serious potential problems exist.

  20. Parameterization of wind farms in COSMO-LM

    NASA Astrophysics Data System (ADS)

    Stuetz, E.; Steinfeld, G.; Heinemann, D.; Peinke, J.

    2012-04-01

    In order to examine the impact of wind farms in the meso scale using numerical simulations parameterizations of wind farms were implemented in a mesoscale model. In 2008/2009 the first wind farm in the german exclusive economic zone - Alpha Ventus - was built. Since then more wind farms are erected in the german exclusive economic zone. Wind farms with up to 80 wind turbines and on an area up to 66 square kilometers are planned - partly only few kilometers apart from one another. Such large wind farms influence the properties of the atmospheric boundary layer at the meso scale by a reduction of the wind speed, a enhancement of the turbulent kinetic energy, but also an alternation of the wind direction. Results of models for the calculation of wakes (wake models), idealistic mesoscale studies as well as observations show, that wind farms of this size produce wakes, which can expand up to a few 10 kilometers downstream. Mesoscale models provide the possibility to investigate the impact of such large wind farms on the atmospheric flow in a larger area and also to examine the effect of wind farms under different weather conditions. For the numerical simulation the mesoscale model COSMO-LM is used. Because the wind turbines of the wind farm cannot be displayed individually due to the large mesh-grid size, the effects of the wind turbine in a numerical model have to be described with the help of a parameterization. Different parameterizations, including the interpretation of a wind farm as enhanced surface roughness or as an impuls deficit and turbulence source, respectively, are implemented into COSMO. The impact of the different wind farm parameterizations on the simulation of the atmospheric boundary layer are presented. as well as first tests of idealistic simulations of wind farms are presented. For this purpose idealistic runs as well as a case study were performed.

  1. 76 FR 35882 - Paulding Wind Farm II, LLC, et al.;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Energy Regulatory Commission Paulding Wind Farm II, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status Docket Nos. Paulding Wind Farm II LLC EG11-61-000 Macho Springs Power I, LLC EG11-63-000 Alta Wind III Owner Lessor A EG11-64-000 Alta Wind III Owner Lessor B EG11-65-000 Alta...

  2. International wind farm markets: An overview

    SciTech Connect

    Rackstraw, K.

    1996-12-31

    More wind energy capacity was installed in 1995 than in any previous year. Two markets, Germany and India, accounted for nearly two-thirds of those installations, while the largest single market in the world historically, the US, ground nearly to a halt. Market supports in Germany and India, however, are vulnerable to political forces largely beyond the control of the wind industry. This paper examines the growth of international wind farm markets worldwide and notes that future markets will be more broadly based, leaving the industry less vulnerable to political changes. The paper also concludes that an additional 18,500 MW could be installed by the year 2005 even without assuming a dire ecological scenario that would create environmental drivers to accelerate wind market growth. 4 figs.

  3. Maiden Wind Farm Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2002-03-29

    In February 2001, Washington Winds Inc. (the project developer) submitted a proposal to Bonneville Power Administration (BPA) for a site north of the cities of Sunnyside and Prosser in Washington where wind power facilities could be developed. After considering preliminary information, BPA decided to examine the proposed project and consider purchasing and transmitting power from the project. The project developer also submitted Conditional use Permit (CUP) applications to Benton and Yakima Counties. Benton County, serving as the lead agency for the State Environmental Policy Act (SEPA), issued a Determination of Significance on June 11, 2001. The action proposed by BPA is to: (1) execute a 20-year power purchase agreement with the project developer for up to 50 average megawatts (aMW) (up to about 200 megawatts [MW]) of electrical energy from the proposed Maiden Wind Farm; and (2) execute construction and generation interconnection agreements with the project developer to integrate the power generated by the proposed Maiden Wind Farm into BPA's transmission system. The need for the proposed action arises primarily from BPA's statutory obligations and planning directives. BPA will consider the information in this Environmental Impact Statement (EIS), public comments, and other factors when deciding whether to purchase power from the proposed wind project and transmit it over BPA transmission lines. Benton and Yakima County Planning Departments will consider information in this EIS when deciding whether to grant a CUP and allow the proposed project to be developed.

  4. Offshore wind farm electrical cable layout optimization

    NASA Astrophysics Data System (ADS)

    Pillai, A. C.; Chick, J.; Johanning, L.; Khorasanchi, M.; de Laleu, V.

    2015-12-01

    This article explores an automated approach for the efficient placement of substations and the design of an inter-array electrical collection network for an offshore wind farm through the minimization of the cost. To accomplish this, the problem is represented as a number of sub-problems that are solved in series using a combination of heuristic algorithms. The overall problem is first solved by clustering the turbines to generate valid substation positions. From this, a navigational mesh pathfinding algorithm based on Delaunay triangulation is applied to identify valid cable paths, which are then used in a mixed-integer linear programming problem to solve for a constrained capacitated minimum spanning tree considering all realistic constraints. The final tree that is produced represents the solution to the inter-array cable problem. This method is applied to a planned wind farm to illustrate the suitability of the approach and the resulting layout that is generated.

  5. A model to predict the power output from wind farms

    SciTech Connect

    Landberg, L.

    1997-12-31

    This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.

  6. Real time wind farm emulation using SimWindFarm toolbox

    NASA Astrophysics Data System (ADS)

    Topor, Marcel

    2016-06-01

    This paper presents a wind farm emulation solution using an open source Matlab/Simulink toolbox and the National Instruments cRIO platform. This work is based on the Aeolus SimWindFarm (SWF) toolbox models developed at Aalborg university, Denmark. Using the Matlab Simulink models developed in SWF, the modeling code can be exported to a real time model using the NI Veristand model framework and the resulting code is integrated as a hardware in the loop control on the NI 9068 platform.

  7. A new analytical model for wind farm power prediction

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Porte-Agel, Fernando

    2015-04-01

    In this study, a new analytical approach is presented and validated to predict wind farm power production. The new model assumes a Gaussian distribution for the velocity deficit in the wake which has been recently proposed by Bastankhah and Porté-Agel (2014). To estimate the velocity deficit in the wake, this model needs the local wake growth rate parameter which is calculated based on the local turbulence intensity in the wind farm. The interaction of the wakes is modeled by use of the velocity deficit superposition principle. Finally, the power curve is used to estimate the power production from the wind turbines. The wind farm model is compared to large-eddy simulation (LES) data of Horns Rev wind farm for a wide range of wind directions. Reasonable agreement between the proposed analytical model and LES data is obtained. This prediction is substantially better than the one obtained with common wind farm softwares such as WAsP.

  8. Impacts of wind farms on surface air temperatures

    PubMed Central

    Baidya Roy, Somnath; Traiteur, Justin J.

    2010-01-01

    Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371

  9. A canopy-type similarity model for wind farm optimization

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2013-04-01

    The atmospheric boundary layer (ABL) flow through and over wind farms has been found to be similar to canopy-type flows, with characteristic flow development and shear penetration length scales (Markfort et al., 2012). Wind farms capture momentum from the ABL both at the leading edge and from above. We examine this further with an analytical canopy-type model. Within the flow development region, momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This spatial heterogeneity of momentum within the wind farm is characterized by large dispersive momentum fluxes. Once the flow within the farm is developed, the area-averaged velocity profile exhibits a characteristic inflection point near the top of the wind farm, similar to that of canopy-type flows. The inflected velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The new model is tested with results from wind tunnel experiments, which were conducted to characterize the turbulent flow in and above model wind farms in aligned and staggered configurations. The model is useful for representing wind farms in regional scale models, for the optimization of wind farms considering wind turbine spacing and layout configuration, and for assessing the impacts of upwind wind farms on nearby wind resources. Markfort CD, W Zhang and F Porté-Agel. 2012. Turbulent flow and scalar transport through and over aligned and staggered wind farms. Journal of Turbulence. 13(1) N33: 1-36. doi:10.1080/14685248.2012.709635.

  10. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  11. Mapping Seabird Sensitivity to Offshore Wind Farms

    PubMed Central

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N.; Caldow, Richard W. G.; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739

  12. Mapping seabird sensitivity to offshore wind farms.

    PubMed

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739

  13. The Problems with "Noise Numbers" for Wind Farm Noise Assessment

    ERIC Educational Resources Information Center

    Thorne, Bob

    2011-01-01

    Human perception responds primarily to sound character rather than sound level. Wind farms are unique sound sources and exhibit special audible and inaudible characteristics that can be described as modulating sound or as a tonal complex. Wind farm compliance measures based on a specified noise number alone will fail to address problems with noise…

  14. Analysis of wind farm energy produced in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The electricity generated by wind farms in almost every state in the United States with over 10 MW of wind turbine capacity was analyzed over a five-year period (2002 to 2006). The total amount of wind generated electricity in the United States for 2006 was estimated at 26.3 terawatt-hours which wa...

  15. Sea surface wind measurement over offshore wind farm using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Lehner, Susanne; Brusch, Stephan; Ren, Yong-Zheng

    2011-11-01

    A TerraSAR-X Stripmap image over the North Sea shows significant spatial variations of sea surface wind field over the offshore wind farm Alpha Ventus. In the present study, we demonstrate the tempting potential of using high resolution SAR to investigate spatial variations of sea surface wind field over the offshore wind farms. A newly developed X-band Geophysical Model Function (GMF) XMOD2 is applied on the TS-X data to retrieve sea surface wind speed. By comparing the TS-X retrieved sea surface wind field to results of the DWD wind field, in situ observations on the FiNO platform, as well as the satellite measurement derived from the polarimetric microwave radiometer WindSat, it is found that the SAR estimated wind field not only agrees well with other measurements, but also presents the fine-scale features of sea surface wind field over the offshore wind farm.

  16. Effects of Turbine Spacing in Very Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2015-11-01

    The Dynamic Wake Meandering model(DWM) by Larsen et al. (2007) is considered state of the art for modelling the wake behind a wind turbine. DWM assumes a quasi-steady wake deficit transported as a passive tracer by large atmospheric scales. The approach is also applied to wake interaction within wind farms, although certain aspects of the complex wake interaction are not captured, see Churchfield et al. (2014). Recent studies have shown how turbines introduce low frequencies in the wake, which could describe some of the shortcomings. Chamorro et al. (2015) identified three regions of different lengths scales. Iungo et al. (2013) related low frequencies to the hub vortex instability. Okulov et al. (2014) found Strouhal numbers in the far wake stemming from the rotating helical vortex core. Simulations by Andersen et al. (2013) found low frequencies to be inherent in the flow inside an infinite wind farm. LES simulations of large wind farms are performed with full aero-elastic Actuator Lines. The simulations investigate the inherent dynamics inside wind farms in the absence of atmospheric turbulence compared to cases with atmospheric turbulence. Resulting low frequency structures are inherent in wind farms for certain turbine spacings and affect both power production and loads. Funded by Danish Council for Strategic Research (grant 2104-09-067216/DSF), the Nordic Consortium on Optimization and Control of Wind Farms, and EuroTech wind project. The proprietary data for Vestas' NM80 turbine has been used.

  17. Using Wind Tunnels to Predict Bird Mortality in Wind Farms: The Case of Griffon Vultures

    PubMed Central

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F. E.

    2012-01-01

    Background Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. Methodology/Principal Findings As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Conclusions Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality. PMID:23152764

  18. Mesoscale Influences of Wind Farms Throughout a Diurnal Cycle

    NASA Astrophysics Data System (ADS)

    Fitch, A. C.; Lundquist, J. K.; Olson, J. B.

    2012-12-01

    Few observations are available to give insight into the interaction between large wind farms and the boundary layer. As wind farm deployment increases, questions are arising on the potential impact on meteorology within and downwind of large wind farms. While large-eddy simulation can provide insight into the detailed interaction between individual turbines and the boundary layer, to date it has been too computationally expensive to simulate wind farms with large numbers of turbines and the resulting wake far downstream. Mesoscale numerical weather prediction models provide the opportunity to investigate the flow in and around large wind farms as a whole, and the resulting impact on meteorology. To this end, we have implemented a wind farm parameterization in the Weather Research and Forecasting (WRF) model, which represents wind turbines by imposing a momentum sink on the mean flow; converting kinetic energy into electricity and turbulent kinetic energy (TKE). The parameterization improves upon previous models, basing the atmospheric drag of turbines on the thrust coefficient of a modern commercial turbine. In addition, the source of TKE varies with wind speed, reflecting the amount of energy extracted from the atmosphere by the turbines that does not produce electrical energy. We simulate a wind farm covering 10x10 km over land, consisting of 100 turbines each of nominal power output of 5 MW. Results will be presented showing how the wake structure varies dramatically over a diurnal cycle characteristic of a region in the Great Plains of the US, where wind farm deployment is planned. At night, a low-level jet forms within the rotor area, which is completely eliminated by energy extraction within the wind farm. The deep stable layer and lack of higher momentum air aloft at this time maximises the wind deficit and the length of the wake. The presentation will discuss the maximum reduction of wind speed within and downwind from the farm, and the wake e

  19. Onshore Wind Farms: Value Creation for Stakeholders in Lithuania

    NASA Astrophysics Data System (ADS)

    Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas

    With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.

  20. Application of SMES in wind farm to improve voltage stability

    NASA Astrophysics Data System (ADS)

    Shi, J.; Tang, Y. J.; Ren, L.; Li, J. D.; Chen, S. J.

    2008-09-01

    For the wind farms introducing doubly fed induction generators (DFIGs), voltage stability is an essential issue which influences their widely integration into the power grid. This paper proposes the application of superconducting magnetic energy storage (SMES) in the power system integrated with wind farms. SMES can control the active and reactive power flow, realizing the operation in four quadrants independently. The introducing of SMES can smooth the output power flow of the wind farms, and supply dynamic voltage support. Using MATLAB/SIMULINK, the models of the DFIG, the power grid connected and the SMES are created. Simulation results show that the voltage stability of the power system integrated with wind farms can be improved considerably.

  1. 79. COVERED CONDUIT ACROSS ANTELOPE VALLEY WITH WIND FARM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. COVERED CONDUIT ACROSS ANTELOPE VALLEY WITH WIND FARM IN DISTANCE - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  2. Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms

    NASA Astrophysics Data System (ADS)

    Emre Yilmaz, Ali; Meyers, Johan

    2014-06-01

    In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.

  3. Wind farm induced changes in wind speed and surface fluxes over the North Sea

    NASA Astrophysics Data System (ADS)

    Chatterjee, Fabien; van Lipzig, Nicole; Meyers, Johan

    2016-04-01

    Offshore wind farm deployment in the North Sea is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology on the North Sea. We assess this impact by conducting a regional climate model simulation over future wind farms built near the German coast. In order to achieve this, the wind farm parameterisation of Fitch et al. 2012, where wind farms are parameterised as elevated sources of turbulent kinetic energy and sinks of momentum ( Blahak et al 2010 and Fitch et al 2012) is implemented in COSMO-CLM at a 1.5 km resolution. As a first step, COSMO-CLM's ability to reproduce wind profiles over the North Sea is evaluated using wind speed data from the FINO1 meteorological mast, toghether with QuikScat scatterometer data, for a time period of 2000-2008. Subsequently, the impact of windfarms on the regional climate over a period of ten years (1999-2008) is assessed. A large scale wind farm can create wakes which depending on the wind direction could affect the power production of a neighbouring farm. Furthermore, wind farms decelerate the flow and create a vertical circulation in the inflow region. As a result, changes in vertical fluxes of moisture are observed. This leads to enhanced low level cloud cover which may trigger changes in precipitation.

  4. Heat and Flux Configurations on Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Kucuksahin, D.; Bot, E. T. G.

    2014-12-01

    This study aims to determine the best configurations of the Heat and Flux concept for more profitable and utilizable settings in a wind farm in terms of increase in the energy yield and reduction in loadings. The computations are performed with alteration of a single parameter at a time. The reference farm for this study is EWTW, the ECN test farm in Wieringermeer, as this farm was also the reference for the validation of both the Heat and Flux concept and the software tool FarmFlow. All the studies are performed with FarmFlow developed by ECN, which computes wake deficits and turbulence intensities, resulting in the energy yield of all turbines in the farm.

  5. A new analytical model for wind farm power prediction

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Porté-Agel, Fernando

    2015-06-01

    In this study, a new analytical approach is presented and validated to predict wind farm power production. The new model is an extension of the recently proposed by Bastankhah and Porté-Agel for a single wake. It assumes a self-similar Gaussian shape of the velocity deficit and satisfies conservation of mass and momentum. To estimate the velocity deficit in the wake, this model needs the local wake growth rate parameter which is calculated based on the local turbulence intensity in the wind farm. The interaction of the wakes is modeled by use of the velocity deficit superposition principle. Finally, the power curve is used to estimate the power production from the wind turbines. The wind farm model is compared to large-eddy simulation (LES) data and measurments of Horns Rev wind farm for a wide range of wind directions. Reasonable agreement between the proposed analytical model, LES data and measurments is obtained. This prediction is also found to be substantially better than the one obtained with a commonly used wind farm wake model.

  6. Environmental aspects of the Netherlands wind farm project

    NASA Astrophysics Data System (ADS)

    Kuipers, J. A.

    1984-11-01

    Safety factors, noise pollution, television interference, visual impact, and impact on farming of wind farms are discussed. Failsafe design, strict quality assurance, and rigorous monitoring during operation are advocated. Noise emission of small wind turbines is acceptable, but must be reduced for medium and megawatt units. It is possible to site the turbines so that they do not interfere with television reception. Visual impact is judged from artists impressions and photomontages, but no results on the acceptability of many small units versus a few large units are available. Impact on farming varies considerably between sites.

  7. Modelling of Safety Distance Between Ships' Route and Wind Farm

    NASA Astrophysics Data System (ADS)

    Wawruch, Ryszard; Stupak, Tadeusz

    2011-09-01

    Building of the wind farms in the coastal area of the Polish maritime waters is planned in the near future. Their construction and exploitation will create new threat for safety of vessels operating in their vicinity. Paper presents different estimation methods of the risk of collision between wind turbine and sailing and drifting ships adopted in other countries and their utility assessment for estimation of threats created for safety of navigation and environment by wind farms planned for establishing in the Polish maritime areas.

  8. Wake Mitigation Strategies for Optimizing Wind Farm Power Production

    NASA Astrophysics Data System (ADS)

    Dilip, Deepu; Porté-Agel, Fernando

    2016-04-01

    Although wind turbines are designed individually for optimum power production, they are often arranged into groups of closely spaced turbines in a wind farm rather than in isolation. Consequently, most turbines in a wind farm do not operate in unobstructed wind flows, but are affected by the wakes of turbines in front of them. Such wake interference significantly reduces the overall power generation from wind farms and hence, development of effective wake mitigation strategies is critical for improving wind farm efficiency. One approach towards this end is based on the notion that the operation of each turbine in a wind farm at its optimum efficiency might not lead to optimum power generation from the wind farm as a whole. This entails a down regulation of individual turbines from its optimum operating point, which can be achieved through different methods such as pitching the turbine blades, changing the turbine tip speed ratio or yawing of the turbine, to name a few. In this study, large-eddy simulations of a two-turbine arrangement with the second turbine fully in the wake of the first are performed. Different wake mitigation techniques are applied to the upstream turbine, and the effects of these on its wake characteristics are investigated. Results for the combined power from the two turbines for each of these methods are compared to a baseline scenario where no wake mitigation strategies are employed. Analysis of the results shows the potential for improved power production from such wake control methods. It should be noted, however, that the magnitude of the improvement is strongly affected by the level of turbulence in the incoming atmospheric flow.

  9. Assessing Wind Farm Reliability Using Weather Dependent Failure Rates

    NASA Astrophysics Data System (ADS)

    Wilson, G.; McMillan, D.

    2014-06-01

    Using reliability data comprising of two modern, large scale wind farm sites and wind data from two onsite met masts, a model is developed which calculates wind speed dependant failure rates which are used to populate a Markov Chain. Monte Carlo simulation is then exercised to simulate three wind farms which are subjected to controlled wind speed conditions from three separate potential UK sites. The model then calculates and compares wind farm reliability due to corrective maintenance and component failure rates influenced by the wind speed of each of the sites. Results show that the components affected most by changes in average daily wind speed are the control system and the yaw system. A comparison between this model and a more simple estimation of site yield is undertaken. The model takes into account the effects of the wind speed on the cost of operation and maintenance and also includes the impact of longer periods of downtime in the winter months and shorter periods in the summer. By taking these factors into account a more detailed site assessment can be undertaken. There is significant value to this model for operators and manufacturers.

  10. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    NASA Astrophysics Data System (ADS)

    Moriarty, Patrick; Sanz Rodrigo, Javier; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-06-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.

  11. Wind farm development: An analysis of factors influencing residents' perceptions of wind turbines

    NASA Astrophysics Data System (ADS)

    Groth, Theresa M.

    Assisting communities adjust to change is crucial in ensuring that successful, vibrant communities continue to flourish. Recent studies have suggested that a lack of community involvement in planning stages, uncertainty regarding proposals, place attachment and NIMBY (Not-In-My-Backyard) are some factors used to explain resistance to wind development (Jones & Eiser, 2009; 2010; Swofford & Slattery, 2010). This research studies perceptions and support levels held by residents in four townships of Huron County, MI of wind farm development. The aim of this study was to determine whether proximity to a wind turbine, ownership of land, and knowledge of wind energy influenced perceptions of and support of wind farm development. Social exchange theory aided in the interpretation of the research results. Social, economic and environmental belief factors were tested to evaluate their role in shaping perceptions and support. Data were collected using the mixed methods of interviews of stakeholders and mail surveys to landowners (n=497 respondents, 50% response rate). The results suggested proximity, amount of land owned, and self-rated knowledge of wind energy were not related to perceptions of or support for wind farm development. Social beliefs about positive outcomes were strongly related to perceptions of wind farm development, followed by economic beliefs about outcomes of wind farm development. Respondents who were neutral in their opinions before development tended to perceive wind farms negatively after construction. Social and environmental beliefs about positive outcomes of wind turbines were strongly related to support for wind farm development, yet concerns regarding impact on the environment, economy and people existed.

  12. Avian collision risk at an offshore wind farm

    PubMed Central

    Desholm, Mark; Kahlert, Johnny

    2005-01-01

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision. PMID:17148191

  13. Avian collision risk at an offshore wind farm.

    PubMed

    Desholm, Mark; Kahlert, Johnny

    2005-09-22

    We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision. PMID:17148191

  14. A wake detector for wind farm control

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Cacciola, S.; Schreiber, J.

    2015-06-01

    The paper describes an observer capable of detecting the impingement on a wind turbine rotor of the wake of an upstream machine. The observer estimates the local wind speed and turbulence intensity on the left and right parts of the rotor disk. The estimation is performed based on blade loads measured by strain gages or optical fibers, sensors which are becoming standard equipment on many modern machines. A lower wind speed and higher turbulence intensity on one part of the rotor, possibly in conjunction with other information, can then be used to infer the presence of a wake impinging on the disk. The wake state information is useful for wind plant control strategies, as for example wake deflection by active yawing. In addition, the local wind speed estimates may be used for a rough evaluation of the vertical wind shear.

  15. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  16. Mapping surface disturbance from wind farms

    NASA Astrophysics Data System (ADS)

    Diffendorfer, James E.

    2013-04-01

    Wind energy is one of the fastest growing segments of the electricity market and this trend will likely continue as countries strive to reduce CO2 production while meeting growing energy demands. One impact of wind facilities is surface disturbance, including roads, that lead to habitat loss and fragmentation. Numerous studies of wind power utilize estimates of surface disturbance for GIS-based modeling or basic calculations of the land area required to generate energy using wind. However published estimates of the land use required for a MW of electricity from wind facilities vary by more than 10 times (0.83 to 250 MW/Km2). We report results from a geospatial analysis of 39 wind facilities in the United States that we fully digitized using high resolution photo-imagery. The selected sites and analyses were designed to elucidate the effects of turbine size, topography, and land use on the area requirements of wind facilities. The results indicate point estimates of average surface disturbance/MW have wide levels of variation, explained primarily by Landcover and Topography. Wind facilities in agricultural landscapes had smaller surface disturbance/ha than facilities in forests and shrublands, and facilities in relatively flat topography had smaller surface disturbance/ha than facilities on hills, ridges, or mesas. Land use, topography, and turbine size all influenced turbine spacing. The statistical models suggest we can predict geographic locations where new wind facilities could be placed with minimized surface disturbance.

  17. Modelling complex terrain effects for wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Schmidt, Jonas; Stoevesandt, Bernhard

    2014-06-01

    The flow over four analytical hill geometries was calculated by CFD RANS simulations. For each hill, the results were converted into numerical models that transform arbitrary undisturbed inflow profiles by rescaling the effect of the obstacle. The predictions of such models are compared to full CFD results, first for atmospheric boundary layer flow, and then for a single turbine wake in the presence of an isolated hill. The implementation of the models into the wind farm modelling software flapFOAM is reported, advancing their inclusion into a fully modular wind farm layout optimization routine.

  18. Observed Thermal Impacts of Wind Farms Over Northern Illinois.

    PubMed

    Slawsky, Lauren M; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A

    2015-01-01

    This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003-2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18-0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613

  19. Observed Thermal Impacts of Wind Farms Over Northern Illinois

    PubMed Central

    Slawsky, Lauren M.; Zhou, Liming; Baidya Roy, Somnath; Xia, Geng; Vuille, Mathias; Harris, Ronald A.

    2015-01-01

    This paper assesses impacts of three wind farms in northern Illinois using land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites for the period 2003–2013. Changes in LST between two periods (before and after construction of the wind turbines) and between wind farm pixels and nearby non-wind-farm pixels are quantified. An areal mean increase in LST by 0.18–0.39 °C is observed at nighttime over the wind farms, with the geographic distribution of this warming effect generally spatially coupled with the layout of the wind turbines (referred to as the spatial coupling), while there is no apparent impact on daytime LST. The nighttime LST warming effect varies with seasons, with the strongest warming in winter months of December-February, and the tightest spatial coupling in summer months of June-August. Analysis of seasonal variations in wind speed and direction from weather balloon sounding data and Automated Surface Observing System hourly observations from nearby stations suggest stronger winds correspond to seasons with greater warming and larger downwind impacts. The early morning soundings in Illinois are representative of the nighttime boundary layer and exhibit strong temperature inversions across all seasons. The strong and relatively shallow inversion in summer leaves warm air readily available to be mixed down and spatially well coupled with the turbine. Although the warming effect is strongest in winter, the spatial coupling is more erratic and spread out than in summer. These results suggest that the observed warming signal at nighttime is likely due to the net downward transport of heat from warmer air aloft to the surface, caused by the turbulent mixing in the wakes of the spinning turbine rotor blades. PMID:26121613

  20. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  1. Residents' Perceptions toward Utility-Scale Wind Farm Development

    ERIC Educational Resources Information Center

    Campbell, Joseph; Romich, Eric

    2015-01-01

    Increased development of wind farms in the U.S. has fostered debates surrounding the siting and support for the projects. Prior research demonstrates the importance of understanding the attitudes and opinions of community members when developing projects. This article reviews a case study of an Ohio community that integrated a local survey to…

  2. Assessing vulnerability of marine bird populations to offshore wind farms.

    PubMed

    Furness, Robert W; Wade, Helen M; Masden, Elizabeth A

    2013-04-15

    Offshore wind farms may affect bird populations through collision mortality and displacement. Given the pressures to develop offshore wind farms, there is an urgent need to assess population-level impacts on protected marine birds. Here we refine an approach to assess aspects of their ecology that influence population vulnerability to wind farm impacts, also taking into account the conservation importance of each species. Flight height appears to be a key factor influencing collision mortality risk but improved data on flight heights of marine birds are needed. Collision index calculations identify populations of gulls, white-tailed eagles, northern gannets and skuas as of particularly high concern in Scottish waters. Displacement index calculations identify populations of divers and common scoters as most vulnerable to population-level impacts of displacement, but these are likely to be less evident than impacts of collision mortality. The collision and displacement indices developed here for Scottish marine bird populations could be applied to populations elsewhere, and this approach will help in identifying likely impacts of future offshore wind farms on marine birds and prioritising monitoring programmes, at least until data on macro-avoidance rates become available. PMID:23454414

  3. 75 FR 23666 - Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Forest Service Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI AGENCY... Pines Wind Farm Project on National Forest System (NFS) lands managed by the Huron-Manistee National... process for the White Pines Wind Farm Project. DATES: The Notice of Intent to prepare the White Pines...

  4. Simulation of wake effects between two wind farms

    NASA Astrophysics Data System (ADS)

    Hansen, K. S.; Réthoré, P.-E.; Palma, J.; Hevia, B. G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M. P.; Volker, P.

    2015-06-01

    SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distinct visible maximum deficit zone located only 5-10D downstream from the entrance. This zone, representing 20-30% speed reduction, increases and moves downstream for increasing cluster effect and is not visible outside a flow sector of 20-30°. The eight flow models represented in this benchmark include both RANS models, mesoscale models and engineering models. The flow cases, identified according to the wind speed level and inflow sector, have been simulated and validated with the SCADA results. The model validation concludes that all models more or less are able to predict the location and size of the deficit zone inside the downwind wind farm.

  5. Optimization of wind farm performance using low-order models

    NASA Astrophysics Data System (ADS)

    Dabiri, John; Brownstein, Ian

    2015-11-01

    A low order model that captures the dominant flow behaviors in a vertical-axis wind turbine (VAWT) array is used to maximize the power output of wind farms utilizing VAWTs. The leaky Rankine body model (LRB) was shown by Araya et al. (JRSE 2014) to predict the ranking of individual turbine performances in an array to within measurement uncertainty as compared to field data collected from full-scale VAWTs. Further, this model is able to predict array performance with significantly less computational expense than higher fidelity numerical simulations of the flow, making it ideal for use in optimization of wind farm performance. This presentation will explore the ability of the LRB model to rank the relative power output of different wind turbine array configurations as well as the ranking of individual array performance over a variety of wind directions, using various complex configurations tested in the field and simpler configurations tested in a wind tunnel. Results will be presented in which the model is used to determine array fitness in an evolutionary algorithm seeking to find optimal array configurations given a number of turbines, area of available land, and site wind direction profile. Comparison with field measurements will be presented.

  6. Optimization of rotating equipment in offshore wind farm

    NASA Astrophysics Data System (ADS)

    Okunade, O. A.

    2014-07-01

    The paper considered the improvement of rotating equipment in a wind farm, and how these could maximise the farm power capacity. It aimed to increase capacity of electricity generation through a renewable source in UK and contribute to 15 per cent energy- consumption target, set by EU on electricity through renewable sources by 2020. With reference to a case study in UK offshore wind farm, the paper analysed the critique of the farm, as a design basis for its optimization. It considered power production as design situation, load cases and constraints, in order to reflect characteristics and behaviour of a standard design. The scope, which considered parts that were directly involved in power generation, covered rotor blades and the impacts of gearbox and generator to power generation. The scope did not however cover support structures like tower design. The approaches of detail data analysis of the blade at typical wind load conditions, were supported by data from acceptable design standards, relevant authorities and professional bodies. The findings in proposed model design showed at least over 3 per cent improvement on the existing electricity generation. It also indicated overall effects on climate change.

  7. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  8. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  9. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  10. Wind assessment and power prediction from a wind farm in southern Saskatchewan

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Mukundhan

    Mesoscale and Microscale Modeling are two methods used to estimate wind energy resources. The main parameters of wind resource estimation are the mean wind speed and the mean wind power density. Mesoscale Modeling was applied to three different regions, Regina, Saskatoon, and Gull Lake, located in southern Saskatchewan, Canada. The areas were selected as centers of a domain for a grid with a horizontal resolution of 3 kilometers. Mesoscale Modeling was performed using the software tool, Anemoscope. Wind resources for the regions and the areas surrounding them have been generated for three elevations (30, 50, and 80 meters). As it is a site for a large wind turbine farm, the region in and around Swift Current in southern Saskatchewan (approximately 36 km x 36 km in area) was the site of choice for this study in Microscale Modeling. A widely popular software, WAsP, was chosen to perform the study. Statistical wind data was obtained from a Swift Current meteorological station over a period of ten years (2000-2009). A wind resource grid has been set up for the area at a horizontal resolution of 200 meters, and wind resource maps have been generated for heights of 50, 65, and 80 meters above ground level as the heights are the potential wind turbine hub heights. In order to simulate the SaskPower Centennial Wind Power Station, a wind farm was set up with 83 wind turbines in the Coulee Municipality region near Swift Current. The annual energy production for the entire farm, along with those of the individual turbines, has been calculated. Both total and individual wind turbine productions were accurately modeled.

  11. Temporal characteristics of POD modes from wind farm LES

    NASA Astrophysics Data System (ADS)

    Verhulst, Claire; Meneveau, Charles

    2014-11-01

    Large eddy simulations of a fully developed wind farm in the turbulent atmospheric boundary layer have been analyzed using 3D Proper Orthogonal Decomposition (POD). In this study we consider the temporal variations of the POD modes and their relationship to unsteadiness in the wind turbine power production. We find that the streamwise-constant counter-rotating roller modes vary on time-scales much longer that the mean advection time from turbine to turbine. The structure of these roller modes and their long-time variations are consistent with meandering of high- and low-speed streaks in the turbulent flow within the wind farm. Another class of POD modes--one with significant streamwise-variation--is found to correspond to advection of velocity perturbations in the streamwise direction. Temporal variations of the shear-type modes are found to strongly correlate with power production of the wind farm as a whole. Overall, the long-time power production is well captured by reconstructions using fewer than 50 POD modes (<1% of the total), but variations faster than the inter-turbine advection time are only captured by higher-order, less energetic modes. This work was supported by NSF Grant 1243482 (the WINDINSPIRE project).

  12. MOD-2 wind turbine farm stability study

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1980-01-01

    The dynamics of single and multiple 2.5 ME, Boeing MOD-2 wind turbine generators (WTGs) connected to utility power systems were investigated. The analysis was based on digital simulation. Both time response and frequency response methods were used. The dynamics of this type of WTG are characterized by two torsional modes, a low frequency 'shaft' mode below 1 Hz and an 'electrical' mode at 3-5 Hz. High turbine inertia and low torsional stiffness between turbine and generator are inherent features. Turbine control is based on electrical power, not turbine speed as in conventional utility turbine generators. Multi-machine dynamics differ very little from single machine dynamics.

  13. Measuring wind turbine wakes and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Meneveau, Charles; Meyers, Johan

    2014-11-01

    Very large wind farms, approximating the ``infinite'' asymptotic limit, are often studied with LES using periodic boundary conditions. In order to create an experimental realization of such large wind-turbine arrays in a wind tunnel experiment including over 100 turbines, a very small-scale turbine model based on a 3 cm diameter porous disk is designed. The porous disc matches a realistic thrust coefficient between 0.75--0.85, and the far wake flow characteristics of a rotating wind turbine. As a first step, we characterize the properties of a single model turbine. Hot-wire measurements are performed for uniform inflow conditions with different background turbulence intensity levels. Strain gage measurements are used to measure the mean value and power spectra of the thrust force, power output and wind velocity in front of the turbine. The dynamics of the wind turbine are modeled making it possible to measure force spectra at least up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow and the vortex shedding signatures of an upstream obstruction. An array with a large number of these instrumented model turbines is placed in JHU's Corrsin wind tunnel, to study effects of farm layout on total power output and turbine loading. Work supported by ERC (ActiveWindFarms, Grant No: 306471), and by NSF (CBET-113380 and IIA-1243482).

  14. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Wind Farm Project AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Intent to... GRC Plum Brook Station Wind Farm Project located near Sandusky, Ohio, pursuant to the National... and operation of the wind farm. The purpose of constructing and operating the wind farm is for NASA...

  15. Control voltage and power fluctuations when connecting wind farms

    NASA Astrophysics Data System (ADS)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  16. Control voltage and power fluctuations when connecting wind farms

    SciTech Connect

    Berinde, Ioan Bălan, Horia Oros, Teodora Susana

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  17. Short-term Wind Forecasting at Wind Farms located on Mountainous Terrains

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan

    2016-04-01

    Power uncertainty and fluctuations are recognized as major challenges for expanding wind energy. Here we aim at better understanding and characterizing fluctuations in wind power caused by rapid changes in wind resource. By means of Large Eddy Simulations (LES), we expect to gain new knowledge about the sources of spatial and temporal variability of wind fluctuations such as different configurations of wind turbines and complex topography. We will present the recent progress on our LES simulations for a wind farm located near a mountainous terrain. We performed multi-scale simulations using WRF's different Planetary Boundary Layer (PBL) parameterizations as well as Large Eddy Simulation (LES). WRF ensembles with different PBL parameterizations showed little spread for wind speed forecasts. LES models improved the forecasts. Statistical error analysis is performed and ramp events are analyzed.

  18. Volumetric characterization of the flow over miniature wind farms: An experimental study

    NASA Astrophysics Data System (ADS)

    Wing, Lai; Troolin, Dan; Hyun, Jin Kim; Tobin, Nicolas; Zuniga Zamalloa, Carlo; Chamorro, Leonardo P.

    2014-11-01

    An internal boundary layer is known to develop from the interaction between wind farms and the atmospheric boundary layer. It possesses characteristic features able to modulate the turbulence dynamics over large regions and eventually modify the micro climate in the vicinity of the wind farm. In this study, we examine the structure of the turbulence above various miniature wind farm configurations using 3D Particle Image velocimetry (PIV). Each miniature wind farm is placed in the boundary-layer wind tunnel at the Mechanical Science Engineering, UIUC. The turbines are fabricated using 3D printing and have a loading system that controls their tip-speed ratio and allows for characterizing the loads. Volumetric PIV is performed at various locations over and downstream a series of wind farm layouts. High-order turbulence statistics, turbulence structure and characteristic coherent motions are obtained and discussed in terms of the wind farm layout.

  19. Factoid forensics: have "more than 40" Australian families abandoned their homes because of wind farm noise?

    PubMed

    Chapman, Simon

    2014-01-01

    Anti-wind farm activists repeatedly claim that families said to be adversely affected by noise from wind turbines "abandon" their homes. In Australia, a claim of "more than 40 families" has been made by a prominent anti-wind farm activist. Six sources (parliamentary submissions, media reports, an anti-wind farm website, wind industry sources, correspondence with known anti-wind farm activists and with three politicians opposed to wind farms) were used to find evidence of home "abandonments." Claims about 12 Australian households permanently (n = 10) or periodically (n = 2) leaving their homes were found. However, no house appears to have been permanently "abandoned" without sale, as the expression implies. These 12 cases need contextualizing against considerations that several of those involved were either dedicated activists against wind farms from times sometimes pre-dating their construction, were engaged in protracted negotiations for home purchase with wind companies, had pre-existing health problems, grievances with the wind company over employment or had left the area for unrelated reasons of employment elsewhere. The statement that "more than 40" houses have been "abandoned" because of wind turbines in Australia is a factoid promoted by wind farm opponents for dramatic, rhetorical impact. Other considerations are often involved in abandonment unrelated to the claims made about wind farm noise. PMID:25033786

  20. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  1. Optimizing wind farm layout via LES-calibrated geometric models inclusive of wind direction and atmospheric stability effects

    NASA Astrophysics Data System (ADS)

    Archer, Cristina; Ghaisas, Niranjan

    2015-04-01

    The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines

  2. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  3. Fish schooling as a basis for wind farm design

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2009-11-01

    It is known that horizontal axis wind turbines (HAWT) suffer from reduced aerodynamic efficiency when in close proximity to neighboring turbines. In contrast, recent work has shown that closely spaced vertical axis wind turbines (VAWT) may benefit from enhanced performance, reducing the associated land use for VAWT wind farm installations. A potential flow model of VAWT interactions is developed to determine configurations that optimize the power output of the array. A geometric arrangement based on fish schooling has been shown to significantly increase the array performance as measured by an Array Power Coefficient, which compares the average performance of turbines in the array to an isolated turbine. The results suggest that significant gains may be obtained through careful arrangement of VAWTs, showing up to a two order of magnitude decrease in land use (equivalently, a two order of magnitude increase in power density) compared to HAWTs.

  4. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  5. Wind farm power maximization based on a cooperative static game approach

    NASA Astrophysics Data System (ADS)

    Park, Jinkyoo; Kwon, Soonduck; Law, Kincho H.

    2013-04-01

    The objective of this study is to improve the cost-effectiveness and production efficiency of wind farms using cooperative control. The key factors in determining the power production and the loading for a wind turbine are the nacelle yaw and blade pitch angles. However, the nacelle and blade angles may adjust the wake direction and intensity in a way that may adversely affect the performance of other wind turbines in the wind farm. Conventional wind-turbine control methods maximize the power production of a single turbine, but can lower the overall wind-farm power efficiency due to wake interference. This paper introduces a cooperative game concept to derive the power production of individual wind turbine so that the total wind-farm power efficiency is optimized. Based on a wake interaction model relating the yaw offset angles and the induction factors of wind turbines to the wind speeds experienced by the wind turbines, an optimization problem is formulated with the objective of maximizing the sum of the power production of a wind farm. A steepest descent algorithm is applied to find the optimal combination of yaw offset angles and the induction factors that increases the total wind farm power production. Numerical simulations show that the cooperative control strategy can increase the power productions in a wind farm.

  6. Power Performance Verification of a Wind Farm Using the Friedman's Test.

    PubMed

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  7. Power Performance Verification of a Wind Farm Using the Friedman’s Test

    PubMed Central

    Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.

    2016-01-01

    In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628

  8. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  9. Competing mechanisms of momentum transport in large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Meneveau, Charles

    2011-11-01

    In very large wind farms in the atmospheric boundary layer, energy, and momentum are on average transported from layers above the farm downward towards the turbines (Calaf, Meneveau, Meyers, Phys. Fluids 2010). In the current work, we investigate in more detail the three-dimensional flows of mass, momentum and energy towards individual turbines, based on a suite of large-eddy simulations. We find that there are two competing mechanisms which bring momentum to the turbines, i.e. a sideways flux, and a top-down flux of momentum (sideways fluxes themselves are fed by a top-down flux in regions outside the turbine wake area). For large spanwise turbine spacings, sideways momentum fluxes are dominating; for small spanwise spacings, the top-down mechanism is dominant. Inspired by these observations, we propose a new integral model for wind-farm performance, in which competing fluxes of momentum are represented by closed analytical expressions obtained by integrating momentum equations over different regions in the ABL. The research of CM is supported by NSF AGS 1045189.

  10. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGESBeta

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  11. Modeling and Control of VSC Based DC Connection for Active Stall Wind Farms to Grid

    NASA Astrophysics Data System (ADS)

    Iov, Florin; Sørensen, Poul; Hansen, Anca Daniela; Blaabjerg, Frede

    Currently, there is an increasing trend to connect large MW wind farms to the transmission system. Therefore the power system becomes more vulnerable and dependent on the wind energy production. At the same time requirements that focus on the influence of the farms on the grid stability and power quality, and on the control capabilities of wind farms have already been established. The main trends of modern wind turbines/farms are clearly the variable speed operation and a grid connection through a power electronic interface, especially using doubly-fed induction generators. Using power electronics the control capabilities of these wind turbines/farms are extended and thus the grid requirements are fulfilled. However, the traditional squirrel-cage generators based wind turbines/wind farms directly connected to the grid does not have such control capabilities. They produce maximum possible power in continuous operation and are becoming disconnected in the case of a grid fault. Moreover, these wind turbines/farms cannot regulate their production and contribute to power system stability. A DC transmission system for connection of the active stall wind farms to the grid can be a solution to these problems. Such a system has special regulating properties e.g. decoupled control of active and reactive power, continuous AC voltage regulation, variable frequency control, black-start capability, etc. This paper focuses on the modeling of such systems and proposes a control method of a voltage source converter based DC transmission system for connecting active stall wind farms to the grid.

  12. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  13. Maiden Wind Farm, Final NEPA/SEPA Environmental Impact Statement

    SciTech Connect

    N /A

    2003-01-03

    BPA's proposed action is the execution of power purchase and construction and generation interconnection agreements to acquire and transmit up to 50 aMW (up to about 200 MW) of output from the proposed Maiden Wind Farm, which would be developed to generate up to 494 MW. Benton and Yakima Counties' proposed action is to grant Conditional Use Permits (CUPs) and other required permits for full build-out of the project, which would require construction of up to 549 wind turbines for a 494-MW project. The EIS evaluates two alternatives--the Proposed Action (which means that part or all of the proposed project would be built) and No Action. BPA would not purchase or transmit power from the project under the No Action Alternative and it is therefore likely that the project would not be constructed. Washington Winds Inc. proposes to construct and operate up to 494 megawatts (MW) of wind generation on privately- and publicly-owned property in Benton and Yakima Counties, Washington. This EIS evaluates the environmental effects of BPA's Proposed Action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer's proposed Maiden Wind Farm. The project developer has requested a CUP for up to 494 MW. Although the full 494 MW of power may or may not be constructed, this EIS evaluates impacts from full buildout of the project. The project would be located about 10 miles northeast of Sunnyside in the Rattlesnake Hills and would occupy approximately 251 acres of land. Approximately 1,063 acres would be temporarily occupied during construction by facilities such as staging areas, equipment laydown areas, and rock quarries. Except for portions of two sections of land owned by the Washington Department of Natural Resources (DNR), the project would be constructed on privately-owned farm and ranch land in Benton and Yakima Counties. The major facilities of the project include up to

  14. Stratificaiton Effects on wake of large wind turbines in wind farm

    NASA Astrophysics Data System (ADS)

    Bhaganagar, Kiran; Debnath, Mithu

    2013-11-01

    The focus of the present talk is to demonstrate the interplay of the complex interactions between the wind turbulence and the wake turbulence under different stratification conditions. Large eddy simulation (LES) has been used to simulate flow over multi mega-watt wind turbines. The results have revealed different empirical relations for the mean velocity deficit decay and turbulence kinetic energy decay rates in the wake region of the wind turbine. The simulation for wind farm has revealed the wake decay rates as a function of the radial and streamwise distance from the upstream wind turbine. Vertical mixing plays a major role in altering the flow dynamics in the wake region. Support from NSF CBET-1348480, NSF HRD-1242180 and TACC Supercomputing.

  15. Large-scale wind power farms as power plants

    NASA Astrophysics Data System (ADS)

    Gjengedal, Terje

    2005-07-01

    The integration of large-scale wind power into weak power systems raises several issues that must be clarified. Typically these include the practical connection to the network, integration with the network system, system stability, system operation, necessary installations and extensions of the network, etc. At the same time, careful attention must be paid to the functional requirements such wind farms should meet in order to enhance system responses. Different wind power technologies have different characteristics and control possibilities. In this article, three technologies have been studied with respect to their dynamic performance, and a transient stability study has been performed in order to illustrate the differences in the three technologies. The results clearly show that there are differences in behaviour and in control possibilities. Hence there are also differences in how well they can meet functional requirements. When discussing to what degree strict requirements should be imposed on wind power, it should be kept in mind that some requirements can be met with small or moderate costs, while others may be expensive or difficult to meet. Some requirements may also mean a reduction in generation and hence in revenues. Rather than imposing strict requirements on wind turbines as such, ancillary services should be met in the most suitable way. It is not obvious that the same requirements should apply to wind power in hydro power-dominated systems compared with, for instance, systems with a large share of nuclear or thermal power. It may well be cheaper to incorporate primary power control and system-stabilizing equipment in other power plants or grid points than in many small wind turbine generators. General conclusions cannot be made on this, but the issue should be the focal point of system operators everywhere. Copyright

  16. Forecasting wind power production from a wind farm using the RAMS model

    NASA Astrophysics Data System (ADS)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.; Sempreviva, A. M.; Calidonna, C. R.; Transerici, C.; Federico, S.

    2015-04-01

    The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution of the RAMS model, which is 3 km (R3) and 12 km (R12), respectively. Both forecasts use the 12 UTC analysis/forecast cycle issued by the European Centre for Medium range Weather Forecast (ECMWF) as initial and boundary conditions. As an additional comparison, the results of R3 and R12 are compared with those of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. v Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available at 00:00, 06:00, 12:00 and 18:00 UTC for the years 2010 and 2011. Also, for R3 and R12, the RAMS model was used to refine the horizontal resolution of the ECMWF analyses by a two-years hindcast at 3 and 12 km horizontal resolution, respectively. The R3 reduces the RMSE of the predicted wind power of the whole 2011 by 5% compared to R12, showing an impact of the meteorological model horizontal resolution in forecasting the wind power for the specific site.

  17. Expert systems to aid in wind farm operations

    NASA Astrophysics Data System (ADS)

    Schluter, L. L.; Nateghian, F.; Luger, G. F.

    1991-12-01

    An expert system is a knowledge-based program that provides solutions to problems in a specific domain by mimicking the behavior of a human expert. Expert systems can have several advantages over traditional programming methods; however, developing an expert system generally involves a considerable amount of time and money. Therefore, careful investigation must be done to ensure that a problem is suited for an expert system application. This paper examines several areas where an expert system may help wind farm operators lower their operational costs. Justifications for using expert systems rather than traditional programming methods are given. This paper also discusses some of the design decisions that were made in developing an expert system for US Windpower that will aid in diagnosing wind turbine failures.

  18. Integrative modeling and novel particle swarm-based optimal design of wind farms

    NASA Astrophysics Data System (ADS)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  19. Risk analysis for U.S. offshore wind farms: the need for an integrated approach.

    PubMed

    Staid, Andrea; Guikema, Seth D

    2015-04-01

    Wind power is becoming an increasingly important part of the global energy portfolio, and there is growing interest in developing offshore wind farms in the United States to better utilize this resource. Wind farms have certain environmental benefits, notably near-zero emissions of greenhouse gases, particulates, and other contaminants of concern. However, there are significant challenges ahead in achieving large-scale integration of wind power in the United States, particularly offshore wind. Environmental impacts from wind farms are a concern, and these are subject to a number of on-going studies focused on risks to the environment. However, once a wind farm is built, the farm itself will face a number of risks from a variety of hazards, and managing these risks is critical to the ultimate achievement of long-term reductions in pollutant emissions from clean energy sources such as wind. No integrated framework currently exists for assessing risks to offshore wind farms in the United States, which poses a challenge for wind farm risk management. In this "Perspective", we provide an overview of the risks faced by an offshore wind farm, argue that an integrated framework is needed, and give a preliminary starting point for such a framework to illustrate what it might look like. This is not a final framework; substantial work remains. Our intention here is to highlight the research need in this area in the hope of spurring additional research about the risks to wind farms to complement the substantial amount of on-going research on the risks from wind farms. PMID:25691292

  20. Airborne sound propagation over sea during offshore wind farm piling.

    PubMed

    Van Renterghem, T; Botteldooren, D; Dekoninck, L

    2014-02-01

    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario. PMID:25234870

  1. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  2. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    ERIC Educational Resources Information Center

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  3. Estimating the Power Characteristics of Clusters of Large Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Drew, D.; Barlow, J. F.; Coceal, O.; Coker, P.; Brayshaw, D.; Lenaghan, D.

    2014-12-01

    The next phase of offshore wind projects in the UK focuses on the development of very large wind farms clustered within several allocated zones. However, this change in the distribution of wind capacity brings uncertainty for the operational planning of the power system. Firstly, there are concerns that concentrating large amounts of capacity in one area could reduce some of the benefits seen by spatially dispersing the turbines, such as the smoothing of the power generation variability. Secondly, wind farms of the scale planned are likely to influence the boundary layer sufficiently to impact the performance of adjacent farms, therefore the power generation characteristics of the clusters are largely unknown. The aim of this study is to use the Weather Research and Forecasting (WRF) model to investigate the power output of a cluster of offshore wind farms for a range of extreme events, taking into account the wake effects of the individual turbines and the neighbouring farms. Each wind farm in the cluster is represented as an elevated momentum sink and a source of turbulent kinetic energy using the WRF Wind Farm Parameterization. The research focuses on the Dogger Bank zone (located in the North Sea approximately 125 km off the East coast of the UK), which could have 7.2 GW of installed capacity across six separate wind farms. For this site, a 33 year reanalysis data set (MERRA, from NASA-GMAO) has been used to identify a series of extreme event case studies. These are characterised by either periods of persistent low (or high) wind speeds, or by rapid changes in power output. The latter could be caused by small changes in the wind speed inducing large changes in power output, very high winds prompting turbine shut down, or a change in the wind direction which shifts the wake effects of the neighbouring farms in the cluster and therefore changes the wind resource available.

  4. Evaluation of wind energy cost and site selection for a wind-farm in the south of Algeria

    NASA Astrophysics Data System (ADS)

    Benmemdejahed, M.; Mouhadjer, S.

    2016-07-01

    The aim of this paper is to evaluate the wind resource on five sites situated in Algerian Sahara, namely Adrar, Ain Salah, Bordj Badji Mokhtar, Hassi R'Mel and Tindouf. The hourly data used in this study span a period of last five years. The parameters considered are the wind speed. After the evaluation of wind energy, the economic evaluation was conducted for wind farm (18 MW). We select the best site from the five sites and an appropriate wind turbine from nine wind turbine, according to the lowest possible unity cost of energy. Hassi R'Mel is favorable site for installed wind frame In order to reach the rated power 18 MW of the wind farm; our choice is focused on one row of twelve wind turbines (wgt1.5MW) from East South East (ESE) to West North West (WNW), 320 m of distance between each two turbines.

  5. 76 FR 75542 - Rail Splitter Wind Farm, LLC v. Ameren Services Company Midwest Independent Transmission, System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... Federal Energy Regulatory Commission Rail Splitter Wind Farm, LLC v. Ameren Services Company Midwest... Regulatory Commission's (Commission) Rules of Practice and Procedures, 18 CFR 385.206, Rail Splitter Wind Farm, LLC (Rail Splitter or Complainant) filed a formal complaint against Ameren Services...

  6. Wind farm performance in conventionally neutral atmospheric boundary layers with varying inversion strengths

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-06-01

    In this study we consider large wind farms in a conventionally neutral atmospheric boundary layer. In large wind farms the energy extracted by the turbines is dominated by downward vertical turbulent transport of kinetic energy from the airflow above the farm. However, atmospheric boundary layers are almost always capped by an inversion layer which slows down the entrainment rate and counteracts boundary layer growth. In a suite of large eddy simulations the effect of the strength of the capping inversion on the boundary layer and on the performance of a large wind farm is investigated. For simulations with and without wind turbines the results indicate that the boundary layer growth is effectively limited by the capping inversion and that the entrainment rate depends strongly on the inversion strength. The power output of wind farms is shown to decrease for increasing inversions.

  7. Extreme Winds in the Pampa del Castillo Plateau, Patagonia, Argentina, with Reference to Wind Farm Settlement.

    NASA Astrophysics Data System (ADS)

    Labraga, Juan C.

    1994-01-01

    Wind farm settlement in Argentina is likely to be initiated in the extended and uniform Pampa del Castillo tablelands (5100 km2) in central cast Patagonia, due to its suitable wind regime and local economic factors. The magnitude of these investments requires not only a detailed wind energy assessment and optimum site selection but also a comprehensive evaluation of the extreme winds experienced in the region.Statistical results, with emphasis on severe winds, of two regional programs of one-year observations at four levels above the ground are presented in this paper. The highest frequencies of hourly mean wind velocities above 40, 60, and 80 km h1 are observed during November and December. The spring power spectrum shows a considerable amount of energy in components with a periodicity ranging from 2.5 to 4 days. Severe wind episodes are usually related to the displacement of low pressure systems from the Atlantic to the Pacific Ocean through the Drake Passage with a periodicity consistent with spectral results. The highest hourly mean wind speed registered in each experimental period (at 60 m AGL) is about 25 m s1. The estimated modal value of the theoretical probability distribution of annual extreme values is in good agreement with observed values. The annual peak gust for an averaging time of 240 s is about 27 m s. The gust factor was computed for different averaging intervals and compared with empirical formulations. Its variation with height and time of year was also analyzed. The general form of the vertical wind profile and its dependence on stability conditions was characterized and compared with that of typical episodes of severe winds.

  8. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  9. Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven

    2014-11-01

    In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.

  10. Potential Impacts of Offshore Wind Farms on North Sea Stratification.

    PubMed

    Carpenter, Jeffrey R; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions-both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  11. Potential Impacts of Offshore Wind Farms on North Sea Stratification

    PubMed Central

    Carpenter, Jeffrey R.; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  12. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)

  13. LES of large wind farm during a diurnal cycle: Analysis of Energy and Scalar flux budgets

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Calaf, M.; Parlange, M. B.

    2014-12-01

    With an expanding role of wind energy in satisfying energy demands around the world, wind farms are covering increasingly larger surfaces to the point where interaction between wind farms and the atmospheric boundary layer (ABL) might have significant implications. Furthermore, many wind farm sites lie over existing farmland for which water is a precious resource. In this context, a relevant question yet to be fully understood, is whether large wind farms alter near surface temperatures and evaporation rates and if so, by how much. In the present study, Large Eddy Simulation (LES) of a geostrophic wind driven ABL with two active scalars, temperature and specific humidity, in the presence of Coriolis forces with an embedded wind farm are performed. Multiple 'synthetic' diurnal cycles are simulated by imposing a time-varying surface temperature and specific humidity. Wind turbines are modeled using the "actuator disk" approach along with the flexibility to reorient according to varying flow directions. LES is performed using the "pseudo-spectral" approach implying that an infinitely large wind farm is simulated. Comparison of simulations with and without wind farms show clear differences in vertical profiles of horizontal velocity magnitude and direction, turbulent kinetic energy and scalar fluxes. To better understand these differences, a detailed analysis of the constituent terms of budget equations of mean and turbulent kinetic energy and sensible and latent heat fluxes has been performed for different stratification regimes as the ABL evolves during the diurnal cycle. The analyses help explain the effect of wind farms on the characteristics of the low-level jet, depth of the stable boundary layer, formation and growth of the convective boundary layer (CBL) and scalar fluxes at the surface.

  14. Turbulent flow and scalar flux through and over aligned and staggered wind farms

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.; Zhang, W.; Porté-Agel, F.

    2012-04-01

    Wind farm-atmosphere interaction is complicated by the effect of turbine array configuration on momentum, scalar and kinetic energy fluxes. Wind turbine arrays are often arranged in rectilinear grids and, depending on the wind direction, may be perfectly aligned or perfectly staggered. The two extreme configurations make up the end members of a spectrum of infinite possible layouts. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux, including heat, evaporation and trace gas (e.g. CO2) fluxes affected by wind farms, need to be properly parameterized in large-scale models. Experiments involving model wind farms in aligned and staggered configurations, consisting of 13 rows with equivalent turbine density, were conducted in a thermally-controlled boundary-layer wind tunnel. Measurements of the turbulent flow were made using a custom x-wire/cold wire within and over the wind farms. Particular focus was placed on studying the effect of wind farm layout on flow adjustment, momentum and scalar fluxes, and turbulent kinetic energy distribution. Results show that the turbulence statistics of the flow exhibit similar turbulent transport properties to those of canopy flows, but retain some characteristic surface layer properties in a limited region above the wind farms as well. The initial wake growth over columns of turbines in the aligned wind farm is faster. However, the overall wake adjusts within and grows more rapidly over the staggered farm. The effective roughness of the staggered farm was found to be significantly larger than that of the aligned farm. The flow equilibrates faster, and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling. Lower surface heat flux was found for the wind farms compared to the boundary

  15. Different Shades of Green: A Case Study of Support for Wind Farms in the Rural Midwest

    NASA Astrophysics Data System (ADS)

    Mulvaney, Kate K.; Woodson, Patrick; Prokopy, Linda Stalker

    2013-05-01

    Benton County, in north-central Indiana, USA has successfully sited more than 500 turbines. To understand Benton County's acceptance of wind farms, a holistic case study was conducted that included a document review, a survey of local residents and interviews with key stakeholders. Survey questionnaires were sent to 750 residents asking questions about attitudes toward the wind farms, perceived benefits and impacts from the wind farms, environmental attitudes, and demographic information. Key stakeholders were also interviewed for a deeper understanding of the historical timeline and community acceptance of the wind farm development. While there is limited opposition to the turbines, on the whole the community presents a front of acceptance. Financial, rather than environmental, benefits are the main reason for the acceptance. Although significant in other case studies, transparency and participation do not play a large role in Benton County's acceptance. Most residents are not concerned with either visual impacts or noise from the wind turbines. More concrete benefits to the community, such as reduced energy bills for county residents, could help to extend acceptance even further within the community. Although there are concerns about the acceptance of wind farms and the impacts of those farms on local residents in both peer-reviewed literature and popular media, we found little evidence of those concerns in Benton County. Instead, we found Benton County to be a community largely accepting of wind farms.

  16. Different shades of green: a case study of support for wind farms in the rural midwest.

    PubMed

    Mulvaney, Kate K; Woodson, Patrick; Prokopy, Linda Stalker

    2013-05-01

    Benton County, in north-central Indiana, USA has successfully sited more than 500 turbines. To understand Benton County's acceptance of wind farms, a holistic case study was conducted that included a document review, a survey of local residents and interviews with key stakeholders. Survey questionnaires were sent to 750 residents asking questions about attitudes toward the wind farms, perceived benefits and impacts from the wind farms, environmental attitudes, and demographic information. Key stakeholders were also interviewed for a deeper understanding of the historical timeline and community acceptance of the wind farm development. While there is limited opposition to the turbines, on the whole the community presents a front of acceptance. Financial, rather than environmental, benefits are the main reason for the acceptance. Although significant in other case studies, transparency and participation do not play a large role in Benton County's acceptance. Most residents are not concerned with either visual impacts or noise from the wind turbines. More concrete benefits to the community, such as reduced energy bills for county residents, could help to extend acceptance even further within the community. Although there are concerns about the acceptance of wind farms and the impacts of those farms on local residents in both peer-reviewed literature and popular media, we found little evidence of those concerns in Benton County. Instead, we found Benton County to be a community largely accepting of wind farms. PMID:23519901

  17. Field investigation of a wake structure downwind of a VAWT (vertical-axis wind turbine) in a wind farm array

    SciTech Connect

    Liu, H.T.; Buck, J.W.; Germain, A.C.; Hinchee, M.E.; Solt, T.S.; LeRoy, G.M.; Srnsky, R.A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management. 17 refs., 66 figs., 6 tabs.

  18. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    NASA Astrophysics Data System (ADS)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  19. Changes in fluxes of heat, H2O, CO2 caused by a large wind farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Crop Wind Energy Experiment (CWEX) provides a platform to investigate the effect of wind turbines and large wind farms on surface fluxes of momentum, heat, moisture and carbon dioxide (CO2). In 2010 and 2011, eddy covariance flux stations were installed between two lines of turbines at the south...

  20. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  1. The structure and strength of public attitudes towards wind farm development

    NASA Astrophysics Data System (ADS)

    Bidwell, David Charles

    A growing social science literature seeks to understand why, despite broad public support for wind energy, proposals for specific projects are often met with strong local opposition. This gap between general and specific attitudes is viewed as a significant obstacle to the deployment of wind energy technologies. This dissertation applies theoretical perspectives and methodological tools from social psychology to provide insights on the structure and strength of attitudes towards the potential development of commercial wind farm in three coastal areas of Michigan. A survey of attitudes was completed by 375 residents in these communities and structural equation modeling was used to explore the relationship among variables. The analysis found that attitudes towards wind farm development are shaped by anticipated economic benefits to the community, but expectations of economic benefit are driven by personal values. Social psychology has long recognized that all attitudes are not created equal. Weak attitudes are fleeting and prone to change, while strong attitudes are stable over time and resistant to change. There are two fundamental paths to strong attitudes: repeated experience with an attitude object or the application of deeply held principles or values to that object. Structural equation models were also used to understand the strength of attitudes among the survey respondents. Both the anticipated effects of wind farm development and personal values were found to influence the strength of attitudes towards wind farms. However, while expectations that wind farm development will have positive effects on the economy bolster two measures of attitude strength (collective identity and importance), these expectations are associated with a decline in a third measure (confidence). A follow-up survey asking identical questions was completed by completed by 187 respondents to the initial survey. Linear regressions models were used to determine the effects of attitude

  2. The Effects of Atmospheric Stability and Wind Shear on Wind Farm Power Production

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2011-12-01

    Power production from wind turbines can vary significantly from manufacturer's ratings due to atmospheric stability and wind shear. In this study, remotely sensed and in-situ data from a wind farm in the High Plains of Central North America were examined to quantify the effects of atmospheric conditions in the boundary layer on power generation. Several approaches for segregating time periods by atmospheric conditions were applied to this dataset, including methods based on the time-of-day, the power law exponent α, the bulk Richardson number RB, and diurnal cycles in wind and temperature. These classifications were used to generate stability-dependent power curves. For this site, all classification metrics indicated underperformance during stable/night regimes and overperformance during convective/day regimes at moderate wind speeds (7-12m/s). A simple attempt at forecasting power production values proved both the feasibility and the utility of applying meteorological classifications for forecasting applications. The success in diagnosis and forecasting of power production using boundary layer data demonstrate that power output is strongly influenced by boundary layer stability, but further research is required that involves measurements taken across the rotor-disk; remote sensing of such profiles is recommended.

  3. An Experimental Investigation on the Interferences among Multiple Turbines in Onshore and Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Ozbay, Ahmet; Hu, Hui

    2013-11-01

    We report an experimental study to investigate the wake interferences among multiple wind turbines on onshore and offshore wind farms. The experimental studies are conducted in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel with an array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. In addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a Particle Image Velocity (PIV) system is used to conduct detailed flow field measurements to quantify the turbulent wake vortex flows and the wake interferences among the wind turbines sited over onshore and offshore wind farms with non-homogenous surface winds. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and wake interferences among multiple wind turbines for higher total power yield and better durability of the wind turbines. The research work is funded by NSF and IAWIND.

  4. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  5. An analytical 1-D model for vertical momentum and energy flux through a fully developed wind farm

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando

    2014-05-01

    Wind farms capture momentum from the atmospheric boundary layer (ABL) both at the leading edge and from the atmosphere above. Momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines until momentum is only available from above the wind farm. This distance can be described by the so-called drag development length scale, which arises from the canopy drag force term in the momentum equation. At this point the flow can be considered fully developed. The horizontally-averaged velocity profile for a fully developed wind farm flow exhibits a characteristic inflection point near the top of the wind farm, similar to that of sparse canopy-type flows (Markfort et al., JoT, 2012). The inflected vertical velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. We evaluate an analytical canopy-type flow model for wind farm-atmosphere interaction by testing it against wind-tunnel experimental data of flow through a model wind farm. The model is adapted to predict the mean flow, vertical momentum flux, and the mean kinetic energy flux as well as kinetic energy dissipation within the wind farm. This model is particularly useful for wind farm configuration optimization, considering wind turbine spacing and surface roughness and can also be useful to represent wind farms in regional scale atmospheric simulations.

  6. Hot air ablowin! 'Media-speak', social conflict, and the Australian 'decoupled' wind farm controversy.

    PubMed

    Hindmarsh, Richard

    2014-04-01

    In work in science, technology, and society social conflict around wind farms has a growing profile, not least because it draws our attention to two key interrelated themes: 'science, technology and governance' and 'socio-technological systems'. In this article on Australian wind farm development and siting, these themes are highlighted in contexts of sustainability, legitimacy, and competency for policy effectiveness. There is enduring social conflict around wind farms at the local community level, but little government understanding of this conflict or willingness to respond adequately to resolve it. This article examines the conflict through the lens of print media analysis. A key finding of the five identified is that people seeing wind farms as spoiling a sense of place is a primary cause of enduring social conflict at the local community level around wind farms, alongside significant environmental issues and inadequate community engagement; this finding also indicates a central reason for the highly problematic state of Australian wind energy transitions. In turn, by identifying this problematic situation as one of a significantly 'decoupled' and 'dysfunctional' condition of the Australian socio-technological wind farm development and siting system, I suggest remedies including those of a deliberative nature that also respond to the Habermas-Mouffe debate. These inform a socio-technical siting approach or pathway to better respect and navigate contested landscapes for enhanced renewable energy transitions at the local level. PMID:24941611

  7. Modelling potential changes in marine biogeochemistry due to large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Rees, Jon; Limpenny, Sian

    2013-04-01

    Large-scale renewable energy generation by offshore wind farms may lead to changes in marine ecosystem processes through the following mechanism: 1) wind-energy extraction leads to a reduction in local surface wind speeds; 2) these lead to a reduction in the local wind wave height; 3) as a consequence there's a reduction in SPM resuspension and concentrations; 4) this results in an improvement in under-water light regime, which 5) may lead to increased primary production, which subsequently 6) cascades through the ecosystem. A three-dimensional coupled hydrodynamics-biogeochemistry model (GETM_ERSEM) was used to investigate this process for a hypothetical wind farm in the central North Sea, by running a reference scenario and a scenario with a 10% reduction (as was found in a case study of a small farm in Danish waters) in surface wind velocities in the area of the wind farm. The ERSEM model included both pelagic and benthic processes. The results showed that, within the farm area, the physical mechanisms were as expected, but with variations in the magnitude of the response depending on the ecosystem variable or exchange rate between two ecosystem variables (3-28%, depending on variable/rate). Benthic variables tended to be more sensitive to the changes than pelagic variables. Reduced, but noticeable changes also occurred for some variables in a region of up to two farm diameters surrounding the wind farm. An additional model run in which the 10% reduction in surface wind speed was applied only for wind speeds below the generally used threshold of 25 m/s for operational shut-down showed only minor differences from the run in which all wind speeds were reduced. These first results indicate that there is potential for measurable effects of large-scale offshore wind farms on the marine ecosystem, mainly within the farm but for some variables up to two farm diameters away. However, the wave and SPM parameterisations currently used in the model are crude and need to be

  8. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  9. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.

    PubMed

    Masden, Elizabeth A; Haydon, Daniel T; Fox, Anthony D; Furness, Robert W

    2010-07-01

    Proposals for wind farms in areas of known importance for breeding seabirds highlight the need to understand the impacts of these structures. Using an energetic modelling approach, we examine the effects of wind farms as barriers to movement on seabirds of differing morphology. Additional costs, expressed in relation to typical daily energetic expenditures, were highest per unit flight for seabirds with high wing loadings, such as cormorants. Taking species-specific differences into account, costs were relatively higher in terns, due to the high daily frequency of foraging flights. For all species, costs of extra flight to avoid a wind farm appear much less than those imposed by low food abundance or adverse weather, although such costs will be additive to these. We conclude that adopting a species-specific approach is essential when assessing the impacts of wind farms on breeding seabird populations, to fully anticipate the effects of avoidance flights. PMID:20188382

  10. Growian 2 for more wind power and first European solar farm inaugurated

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A wind power installation with a power of five megawatts to be used in the Federal Republic of Germany is described. The first European solar farm was inaugurated in Madrid, and its operation is discussed.

  11. Measurements of Heat Flux Differences Within a Large Wind Farm During the 2013 Crop/Wind-Energy Experiment (CWEX-13)

    NASA Astrophysics Data System (ADS)

    Rajewski, D. A.

    2015-12-01

    Wind farms are an important resource for electrical generation in the Central U.S., however with each installation there are many poorly documented interactions with the local and surrounding environment. The impact of wind farms on surface microclimate is largely understood conceptually using numerical or wind tunnel models or ex situ satellite-detected changes. Measurements suitable for calibration of numerical simulations are few and of limited applicability but are urgently needed to improve parameterization of wind farm aerodynamics influenced by the diurnal evolution of the boundary layer. Among large eddy simulations of wind farm wakes in thermally stable stratification, there are discrepancies on the influence of turbine-induced mixing on the surface heat flux. We provide measurements from seven surface flux stations, vertical profiling LiDARs located upwind and downwind of turbines, and SCADA measurements from turbines during the 2013 Crop Wind Energy Experiment (CWEX-13) as the best evidence for the variability of turbine induced heat flux within a large wind farm. Examination of ambient conditions (wind direction, wind veer, and thermal stratification) and on turbine operation factors (hub-height wind speed, normalized power) reveal conditions that lead to the largest modification of heat flux. Our results demonstrate the highest flux change from the reference station to be where the leading few lines of turbines influence the surface. Under stably stratified conditions turbine-scale turbulence is highly efficient at bringing warmer air aloft to the surface, leading to an increase in downward heat flux. Conversely we see that the combination of wakes from several lines of turbines reduces the flux contrast from the reference station. In this regime of deep wind-farm flow, wake turbulence is similar in scale and intensity to the reference conditions. These analysis tools can be extended to other turbine SCADA and microclimate variables (e.g. temperature

  12. Optimal coordinated control of energy extraction in LES of wind farms: effect of turbine arrangement patterns

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Munters, Wim; Goit, Jay

    2015-11-01

    We investigate optimal control of wind-farm boundary layers, considering the individual wind turbines as flow actuators. By controlling the thrust coefficients of the turbines as function of time, the energy extraction can be dynamically regulated with the aim to optimally influence the flow field and the vertical energy transport. To this end, we use Large-Eddy Simulations (LES) of wind-farm boundary layers in a receding-horizon optimal control framework. Recently, the approach was applied to fully developed wind-farm boundary layers in a 7D by 6D aligned wind-turbine arrangement. For this case, energy extraction increased up to 16%, related to improved wake mixing by slightly anti-correlating the turbine thrust coefficient with the local wind speed at the turbine level. Here we discuss optimal control results for finite wind farms that are characterized by entrance effects and a developing internal boundary layer above the wind farm. Both aligned and staggered arrangement patterns are considered, and a range of different constraints on the controls is included. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the infrastructure of the Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Governement.

  13. 78 FR 6316 - Big Blue Wind Farm, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Energy Regulatory Commission Big Blue Wind Farm, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status Docket Nos. Big Blue Wind Farm, LLC EG13-1-000 Calpine Bosque Energy Center, LLC EG13-2-000 Homer City Generation, L.P EG13-3-000 Texas Dispatchable Wind 1, LLC EG13-4-000 Blue Creek Wind Farm...

  14. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  15. Optimal control of energy extraction in LES of large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay; Munters, Wim

    2014-11-01

    We investigate the use of optimal control combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large ``infinite'' wind farms and in finite farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with an actuator-disk representation of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in the actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. In a first infinite wind-farm case, we find that farm power is increases by approximately 16% over one hour of operation. This comes at the cost of a deceleration of the outer layer of the boundary layer. A detailed analysis of energy balances is presented, and a comparison is made between infinite and finite farm cases, for which boundary layer entrainment plays an import role. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Govern.

  16. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2013-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  17. Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.

    2011-12-01

    The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of

  18. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    DOE PAGESBeta

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  19. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    SciTech Connect

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines creates the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.

  20. Building a stakeholder's vision of an offshore wind-farm project: A group modeling approach.

    PubMed

    Château, Pierre-Alexandre; Chang, Yang-Chi; Chen, Hsin; Ko, Tsung-Ting

    2012-03-15

    This paper describes a Group Model Building (GMB) initiative that was designed to discuss the various potential effects that an offshore wind-farm may have on its local ecology and socioeconomic development. The representatives of various organizations in the study area, Lu-Kang, Taiwan, have held several meetings, and structured debates have been organized to promote the emergence of a consensual view on the main issues and their implications. A System Dynamics (SD) model has been built and corrected iteratively with the participants through the GMB process. The diverse interests within the group led the process toward the design of multifunctional wind-farms with different modalities. The scenario analyses, using the SD model under various policies, including no wind-farm policy, objectively articulates the vision of the local stakeholders. The results of the SD simulations show that the multifunctional wind-farms may have superior economic effects and the larger wind-farms with bird corridors could reduce ecological impact. However, the participants of the modeling process did not appreciate any type of offshore wind-farm development when considering all of the identified key factors of social acceptance. The insight gained from the study can provide valuable information to actualize feasible strategies for the green energy technique to meet local expectations. PMID:22326310

  1. Minimizing Collision Risk Between Migrating Raptors and Marine Wind Farms: Development of a Spatial Planning Tool

    NASA Astrophysics Data System (ADS)

    Baisner, Anette Jægerfeldt; Andersen, Jonas Lembcke; Findsen, Anders; Yde Granath, Simon Wilhelm; Madsen, Karin Ølgaard; Desholm, Mark

    2010-11-01

    An increased focus on renewable energy has led to the planning and construction of marine wind farms in Europe. Since several terrestrial studies indicate that raptors are especially susceptible to wind turbine related mortality, a Spatial Planning Tool is needed so that wind farms can be sited, in an optimal way, to minimize risk of collisions. Here we use measurements of body mass, wingspan and wing area of eight European raptor species, to calculate their Best Glide Ratio (BGR). The BGR was used to construct a linear equation, which, by the use of initial take-off altitude, could be used to calculate a Theoretical Maximum Distance (TMD) from the coast, attained by these soaring-gliding raptor species. If the nearest turbine, of future marine wind farms, is placed farther away from the coast than the estimated TMD, the collision risk between the turbine blades and these gliding raptors will be minimized. The tool was demonstrated in a case study at the Rødsand II wind farm in Denmark. Data on raptor migration altitude were gathered by radar. From the TMD attained by registered soaring-gliding raptors in the area, we concluded that the Rødsand II wind farm is not sited ideally, from an ornithological point of view, as potentially all three registered species are at risk of gliding through the area swept by the turbine rotor blades, and thereby at risk of colliding with the wind turbines.

  2. Minimizing collision risk between migrating raptors and marine wind farms: development of a spatial planning tool.

    PubMed

    Baisner, Anette Jaegerfeldt; Andersen, Jonas Lembcke; Findsen, Anders; Yde Granath, Simon Wilhelm; Madsen, Karin Olgaard; Desholm, Mark

    2010-11-01

    An increased focus on renewable energy has led to the planning and construction of marine wind farms in Europe. Since several terrestrial studies indicate that raptors are especially susceptible to wind turbine related mortality, a Spatial Planning Tool is needed so that wind farms can be sited, in an optimal way, to minimize risk of collisions. Here we use measurements of body mass, wingspan and wing area of eight European raptor species, to calculate their Best Glide Ratio (BGR). The BGR was used to construct a linear equation, which, by the use of initial take-off altitude, could be used to calculate a Theoretical Maximum Distance (TMD) from the coast, attained by these soaring-gliding raptor species. If the nearest turbine, of future marine wind farms, is placed farther away from the coast than the estimated TMD, the collision risk between the turbine blades and these gliding raptors will be minimized. The tool was demonstrated in a case study at the Rødsand II wind farm in Denmark. Data on raptor migration altitude were gathered by radar. From the TMD attained by registered soaring-gliding raptors in the area, we concluded that the Rødsand II wind farm is not sited ideally, from an ornithological point of view, as potentially all three registered species are at risk of gliding through the area swept by the turbine rotor blades, and thereby at risk of colliding with the wind turbines. PMID:20711780

  3. Use of meteorological information in the risk analysis of a mixed wind farm and solar

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Bendel, D.

    2010-09-01

    Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it

  4. LES study of scalar transport in wind farms: Do wind turbine wakes increase or decrease surface fluxes?

    NASA Astrophysics Data System (ADS)

    Calaf Bracons, M.; Parlange, M. B.; Meneveau, C. V.

    2011-12-01

    With the rapid growth of wind energy, wind farms are attaining scales at which two-way interactions with the atmospheric boundary layer (ABL) must be taken into account. A recent study by Baidya et al. (PNAS 2010) has shown that there is a quantifiable effect of wind farms on the local meteorology, with wind farms increasing scalar fluxes at the surface. This effect has been conjectured to be due to an overall increase of turbulence in the wind turbines wakes. On the other hand, numerical simulations (Calaf et al. Phys. Fluids 22, 2010) together with laboratory experiments (Cal et al. JRSE 2, 2010) showed that wind turbines can decrease the friction velocity underneath the wind turbines due to screening (extraction of momentum by wind turbines), while above the turbine, the friction velocity is increased. The net effect on scalar transport at the surface is therefore still an open question. To better understand the relevant phenomena, a suite of Large Eddy Simulations (LES) of an infinite (fully developed) wind turbine array boundary layer, including passive scalar transport, is performed. The LES use the scale dependent Lagrangian dynamics subgrid model for both momentum and scalar fluxes. A generalization of the ratio-based approach of Bou-Zeid et al. (Phys Fluids 2005) to the case of scalar transport is introduced and tested. The wind turbines are parameterized using the drag disk method. Results show that the scalar fluxes increase by about 10-15% in the presence of wind turbines. The results also show that this increase is not highly dependent on wind turbine loading or spacing distances. A single-column model is developed which confirms the previously mentioned trends. The increase in the scalar fluxes can be explained through a balance between two competing effects in which increased mixing in wakes "wins" by a small amount over the screening effect. Funding provided by Swiss Science Foundation (200021-107910/1) and NSF (AGS-1045189).

  5. Improved electrical load match in California by combining solar thermal power plants with wind farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of wind and solar electrical energy generation to match the current utility electrical load in California was analyzed. We compared the renewable electrical generation and the utility load in California using actual hourly wind farm data at two different locations and predicted hourly p...

  6. Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

    SciTech Connect

    Wharton, S; Lundquist, J K

    2010-02-22

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow and turbulence at these heights in the boundary layer. Depending on whether the boundary layer is stable, neutral, or convective, the mean wind speed, direction, and turbulence properties may vary greatly across the tall turbine swept area (40 to 120 m AGL). This variability can cause tall turbines to produce difference amounts of power during time periods with identical hub height wind speeds. Using meteorological and power generation data from a West Coast North American wind farm over a one-year period, our study synthesizes standard wind park observations, such as wind speed from turbine nacelles and sparse meteorological tower observations, with high-resolution profiles of wind speed and turbulence from a remote sensing platform, to quantify the impact of atmospheric stability on power output. We first compare approaches to defining atmospheric stability. The standard, limited, wind farm operations enable the calculation only of a wind shear exponent ({alpha}) or turbulence intensity (I{sub U}) from cup anemometers, while the presence at this wind farm of a SODAR enables the direct observation of turbulent kinetic energy (TKE) throughout the turbine rotor disk. Additionally, a nearby research meteorological station provided observations of the Obukhov length, L, a direct measure of atmospheric stability. In general, the stability parameters {alpha}, I{sub U}, and TKE are in high agreement with the more physically-robust L, with TKE exhibiting the best agreement with L. Using these metrics, data periods are segregated by stability class to investigate power performance dependencies. Power output at this wind farm is highly correlated with atmospheric stability during the spring and summer months, while atmospheric stability exerts

  7. Effects of wave induced motion on power generation of offshore floating wind farms

    NASA Astrophysics Data System (ADS)

    Shoele, Kourosh

    2014-11-01

    Wind power has been the world's fastest growing energy source for more than a decade. There is a continuous effort to study the potentials of offshore floating wind farms in producing electricity. One of the major technical challenges in studying the performance of offshore floating wind farms is the hydrodynamic and aerodynamic interactions between individual turbines. In this study, a novel approach is presented to study the hydrodynamic interaction between group of floating wind turbines and determine how wave induced motion of the platforms modifies the power generation of the farm. In particular, exact analytical models are presented to solve the hydrodynamic diffraction and radiation problem of a group of floating wind turbine platforms, to model the aerodynamic interaction between turbines, and to quantify the nonlinear dynamic of the mooring lines used to stabilize the floating platforms through connecting them to the seabed. The overall performance of the farm with different configuration and at different wind and wave conditions are investigated and the effects of the sea state condition as well as the distance between the turbines in the farm on the low frequency temporal variation of the power output are discussed.

  8. Assessing the impact of marine wind farms on birds through movement modelling.

    PubMed

    Masden, Elizabeth A; Reeve, Richard; Desholm, Mark; Fox, Anthony D; Furness, Robert W; Haydon, Daniel T

    2012-09-01

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage. PMID:22552921

  9. Assessing the impact of marine wind farms on birds through movement modelling

    PubMed Central

    Masden, Elizabeth A.; Reeve, Richard; Desholm, Mark; Fox, Anthony D.; Furness, Robert W.; Haydon, Daniel T.

    2012-01-01

    Advances in technology and engineering, along with European Union renewable energy targets, have stimulated a rapid growth of the wind power sector. Wind farms contribute to carbon emission reductions, but there is a need to ensure that these structures do not adversely impact the populations that interact with them, particularly birds. We developed movement models based on observed avoidance responses of common eider Somateria mollissima to wind farms to predict, and identify potential measures to reduce, impacts. Flight trajectory data that were  collected post-construction of the Danish Nysted offshore wind farm were used to parameterize competing models of bird movements around turbines. The model most closely fitting the observed data incorporated individual variation in the minimum distance at which birds responded to the turbines. We show how such models can contribute to the spatial planning of wind farms by assessing their extent, turbine spacing and configurations on the probability of birds passing between the turbines. Avian movement models can make new contributions to environmental assessments of wind farm developments, and provide insights into how to reduce impacts that can be identified at the planning stage. PMID:22552921

  10. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as

  11. Analysis and modeling study of inter-farm and intra-farm wind variations with the NCAR high-resolution multi-scale WRF-RTFDDA system

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Warner, T.; Mahoney, B.; Parks, K.; Bigley, R.; Wan, Y.; Corbus, D.; Ela, E.

    2009-04-01

    Significant variations of wind power capacity factors (cfs) were observed for turbines across individual wind farms, where the farms span a distance of 10 - 20 km. These variations have a vital impact on power integration and loading. To study these cfs variations, we investigate the inter-farm and intra-farm wind characteristics for farms in northeastern Colorado. This is accomplished by analyzing the wind-farm data, and performing a modeling study using the NCAR Real-Time Four-Dimensional Data Assimilation (RTFDDA) and forecasting system. The RTFDDA system, built around the US Weather Research and Forecasting (WRF) model, is capable of continuously collecting and ingesting diverse synoptic and asynoptic weather observations, including WMO standard upper-air and surface reports, wind-profiler data, satellite cloud-drift winds, commercial aircraft reports, all available mesonet/wind-farm weather data, radar observations, and any special instruments that report temperature, winds and moisture. The WRF RTFDDA provides continuous 4-D weather analyses, nowcasts and short-term forecasts. In this study, the WRF-RTFDDA system is run with successive nested domains to simulate the multiscale weather and provide a detailed view of wind circulations at farms. The fine-mesh domains are run at a resolution of 1 - 3 km for spanning the overall environment of wind farms, and ~0.1 - 0.35 km for the study of intra-farm weather features. Fine scale topography (100 m) and land use (30 seconds) data are used to specify the lower boundaries of the fine-mesh domains for simulation of the local underlying forcing. It is well known that the modeling of weather at these scales is a challenge. Thus, a set of sensitivity experiments is conducted to study the impact of available state-of-the-art modeling dynamics, physics and data assimilation schemes on the model performance. The findings will be reported at the meeting.

  12. Evaluation of Quality of Life of Those Living near a Wind Farm

    PubMed Central

    Mroczek, Bożena; Banaś, Joanna; Machowska-Szewczyk, Małgorzata; Kurpas, Donata

    2015-01-01

    Objectives: Health-related quality of life (HRQoL) can serve as a multidimensional means of evaluating the relationship between the presence of wind turbines in residential areas and their consequence for health. The purpose of this study was to determine whether a relationship exists between the presence of wind farms at different stages of development and the HRQoL of people living in their vicinity in Poland. Method: The instruments employed in this study were the SF-36v2, a questionnaire measuring self-reported health problems, and a sociodemographic questionnaire. The study involved 1277 people who lived within 2 km from a wind turbine. Results: The highest overall QoL scores were obtained by respondents living the closest to wind turbines. The mental health, role emotional, and social functioning scores were significantly higher among respondents living near wind farms and wind-farm construction sites than among those living close to locations where wind farms were planned but where construction had not yet begun. Positive correlations were found between physical and mental component scores and reactions to the news of plans to construct a wind farm. Significant differences in physical and mental component scores were observed between residents who reacted calmly and those who responded with apprehension. Residents who expected the improvement of their financial standing as a result of the wind farm assessed their general health higher than those who did not expect to receive any economic benefits. The lowest QoL scores corresponded to frequent headaches, stomach aches, and back pain over the previous three months, as well as recurrent problems with falling asleep, anxiety, and a lack of acceptance of the project. Conclusion: The lowest overall QoL and general health scores were noted among residents of places where wind-farm developments were either at the stage of planning or under construction. In order to find ways of reducing environmental stress and its

  13. Shifted periodic boundary conditions for large-eddy simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Munters, Wim; Meneveau, Charles; Meyers, Johan

    2015-11-01

    In wall-bounded turbulent flow simulations, periodic boundary conditions combined with insufficiently long domains lead to persistent spanwise locking of large-scale turbulent structures. In the context of wind-farm large-eddy simulations, this effect induces artificial spanwise inhomogeneities in the time-averaged local wind conditions as seen by the wind turbines, leading to spurious differences in power prediction between otherwise equivalent columns of wind turbines in a wind farm (a column is defined here as a set of turbines parallel to the mean flow direction). We propose a shifted periodic boundary condition that eliminates this effect without the need for excessive streamwise domain lengths. Instead of straightforwardly reintroducing the velocity from the outlet plane back at the inlet, as in classic periodic boundary conditions, this plane is first shifted in the spanwise direction by a predefined and constant distance. The method is tested based on a set of direct numerical simulations of a turbulent channel flow, and large-eddy simulations of a high Reynolds number rough-wall half-channel flow. Finally, we apply the method in a precursor simulation, generating inlet conditions for a spatially developing wind-farm boundary layer. WM and JM are supported by the ERC (ActiveWindFarms, grant no: 306471). CM acknowledges support by the NSF (grant IIA-1243482, the WINDINSPIRE project).

  14. An integrated methodology on the suitability of offshore sites for wind farm development

    NASA Astrophysics Data System (ADS)

    Patlakas, Platon; Galanis, George; Péray, Marie; Filipot, Jean-François; Kalogeri, Christina; Spyrou, Christos; Diamantis, Dimitris; Kallos, Gerorge

    2016-04-01

    During, the last decades the potential and interest in wind energy investments has been constantly increasing in the European countries. As technology changes rapidly, more and more areas can be identified as suitable for energy applications. Offshore wind farms perfectly illustrate how new technologies allow to build bigger, more efficient and resistant in extreme conditions wind power plants. The current work proposes an integrated methodology to determine the suitability of an offshore marine area for the development of wind farm structures. More specifically, the region of interest is evaluated based both on the natural resources, connected to the local environmental characteristics, and potential constrains set by anthropogenic or other activities. State of the art atmospheric and wave models and a 10-year hindcast database are utilized in conjunction with local information for a number of potential constrains, leading to a 5-scale suitability index for the whole area. In this way, sub regions are characterized, at a high resolution mode, as poorly or highly suitable for wind farm development, providing a new tool for technical/research teams and decision makers. In addition, extreme wind and wave conditions and their 50-years return period are analyzed and used to define the safety level of the wind farms structural characteristics.

  15. Impacts of Wind Farms on the Regional Climate on the North Sea

    NASA Astrophysics Data System (ADS)

    Chatterjee, Fabien; Allaerts, Dries; van Lipzig, Nicole; Meyers, Johan

    2015-04-01

    Offshore wind deployment is foreseen to expand dramatically in the coming years. The strong expansion of offshore wind parks is likely to affect the regional climatology of the coastal areas surrounding the Atlantic, North Sea and Baltic Sea. A wind farm parameterisation based on Blahak et al. 2010 and Fitch et al. 2010 has been implemented in an idealised version of COSMO-CLM, where an Ekman spiral in neutral conditions is simulated, and has been validated against LES data. A mean bias of 8.5% is observed for the wind speed below the rotor top tip. In a second step, the wind farm parameterisation is implemented in a non idealised version of COSMO-CLM over the North Sea at a kilometer scale resolution. The wind farms enhance the turbulent kinetic energy above and within the rotor. This has an impact on the evaporation at the surface, and low level cloud cover. Futhermore, wind farms change the shape of the Ekman spiral. This has consequences on the height of the planetary boundary layer, which may affect power production.

  16. Summary Report of Wind Farm Data: September 2008

    SciTech Connect

    Wan, Y. H.

    2009-05-01

    The National Renewable Energy Laboratory (NREL) began a project to collect wind power plant output data from several large commercial wind plants during the spring of 2000. This data is summarized in this report.

  17. Characteristics of Wind-Infective Farms of the 2006 Bluetongue Serotype 8 Epidemic in Northern Europe.

    PubMed

    Sedda, Luigi; Morley, David; Brown, Heidi E

    2015-09-01

    Bluetongue is a Culicoides-borne viral disease of livestock. In 2006, northern Europe experienced a major outbreak of this disease with devastating effects on the livestock industry. The outbreak quickly spread over the region, primarily affecting cattle and sheep. A previous analysis of the role of vector flight and wind in the spread of this virus across northern Europe indicated that infection at 1,326 (65%) of the reported infected farms could be traced back to just 599 (29%) farms (wind-infective farms). Rather than focusing on presence or absence of vectors or difference between infected and non-infected farms, we investigate the zoological and environmental characteristics of these 599 wind-infective farms (which can be thought of as super-spreaders) in order to characterize what makes them distinct from non-infective farms. Differences in temperature, precipitation, and the density of sheep at individual farms were identified between these two groups. These environmental and zoological factors are known to affect vector abundance and may have promoted bluetongue virus transmission. Identifying such ecological differences can help in the description and quantification of relative risk in affected areas. PMID:25552249

  18. A preliminary benefit-cost study of a Sandia wind farm.

    SciTech Connect

    Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

    2011-03-01

    In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm. Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.

  19. Evaluation of drag forcing models for vertical axis wind turbine farms

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Moin, Parviz; Dabiri, John

    2013-11-01

    Vertical axis wind turbines (VAWTs) have the potential to produce more power per unit area than horizontal axis wind turbines (HAWTs) in a wind farm setting (Kinzel et al. J. Turb. [2012]), but further understanding of the flow physics is required to design such farms. In this study we will model a large wind farm of VAWTs as an array of 100 circular cylinders which will allow a comparison with a laboratory experiment (Craig et al. DFD 2013). The geometric complexity and high Reynolds numbers necessitate phenomenological modeling of the interaction of the turbine with the fluid, which is done through point drag models similar to those found in canopy flow simulations (e.g. Dupont et al. J. Fluid Mech. [2010]). We will present a detailed study of the point drag model performance for flow over one cylinder, providing an evaluation of the model's fidelity as it relates to quantities of interest for the VAWT farm. Next we will present results for flow through the cylinder array, emphasizing validation of the model and insight into VAWT wind farm dynamics. We will also discuss the effect of wall modeling on the calculations, as the Reynolds number of the problem requires the application of wall modeling of the turbulent boundary layer above the ground to keep the cost manageable. Brian Pierce acknowledges support from the Stanford Graduate Fellowship.

  20. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  1. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.

    PubMed

    Desholm, Mark

    2009-06-01

    Wind power generation is likely to constitute one of the most extensive human physical exploitation activities of European marine areas in the near future. The many millions of migrating birds that pass these man-made obstacles are protected by international obligations and the subject of public concerns. Yet some bird species are more sensitive to bird-wind turbine mortality than others. This study developed a simple and logical framework for ranking bird species with regard to their relative sensitivity to bird-wind turbine-collisions, and applied it to a data set comprising 38 avian migrant species at the Nysted offshore wind farm in Denmark. Two indicators were selected to characterize the sensitivity of each individual species: 1) relative abundance and 2) demographic sensitivity (elasticity of population growth rate to changes in adult survival). In the case-study from the Nysted offshore wind farm, birds of prey and waterbirds dominated the group of high priority species and only passerines showed a low risk of being impacted by the wind farm. Even where passerines might be present in very high numbers, they often represent insignificant segments of huge reference populations that, from a demographic point of view, are relatively insensitive to wind farm-related adult mortality. It will always be important to focus attention and direct the resources towards the most sensitive species to ensure cost-effective environmental assessments in the future, and in general, this novel index seems capable of identifying the species that are at high risk of being adversely affected by wind farms. PMID:19299065

  2. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  3. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York

    SciTech Connect

    2012-04-30

    Installing a small wind turbine can sometimes be challenging due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  4. Dependence of Wind Turbine Curves on Atmospheric Stability Regimes - An Analysis of a West Coast North American Tall Wind Farm

    SciTech Connect

    Wharton, S; Lundquist, J K; Sharp, J; Zulauf, M

    2009-08-24

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow in the boundary layer. Depending on whether the boundary layer is stable, convective or neutral, mean wind speed (U) and turbulence ({sigma}{sub U}) may vary greatly across the tall turbine swept area (40 m to 120 m). This variation can cause a single turbine to produce difference amounts of power during time periods of identical hub height wind speeds. The study examines the influence that atmospheric mixing or stability has on power output at a West Coast North American wind farm. They first examine the accuracy and applicability of two, relatively simple stability parameters, the wind shear-exponent, {alpha}, and the turbulence intensity, I{sub u}, against the physically-based, Obukhov length, L, to describe the wind speed and turbulence profiles in the rotor area. In general, the on-site stability parameters {alpha} and I{sub u} are in high agreement with the off-site, L stability scale parameter. Next, they divide the measurement period into five stability classes (strongly stable, stable, neutral, convective, and strongly convective) to discern stability-effects on power output. When only the mean wind speed profile is taken into account, the dependency of power output on boundary layer stability is only subtly apparent. When turbulence intensity I{sub u} is considered, the power generated for a given wind speed is twenty percent higher during strongly stable conditions than during strongly convective conditions as observed in the spring and summer seasons at this North American wind farm.

  5. Dependence of Wind Turbine Curves on Atmospheric Stability Regimes - An Analysis of a West Coast North American Tall Wind Farm

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Lundquist, J. K.; Sharp, J.; Zulauf, M.

    2009-12-01

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow in the boundary layer. Depending on whether the boundary layer is stable, convective or neutral, mean wind speed (U) and turbulence (σU) may vary greatly across a tall turbine swept area (40 m to 120 m). This variation can cause a single turbine to produce difference amounts of power during time periods of identical hub height wind speeds. Our study examines the influence that atmospheric mixing or stability has on power output at a West Coast North American wind farm. We first examine the accuracy and applicability of two, relatively simple stability parameters, the wind shear-exponent, α, and the turbulence intensity, IU, against the physically-based, Obukhov length, L, to describe the wind speed and turbulence profiles in the rotor area. In general, the on-site stability parameters α and IU are in high agreement with the off-site, L stability scale parameter. Next, we divide the measurement period into five stability classes (strongly stable, stable, neutral, convective, and strongly convective) to discern stability-effects on power output. When only the mean wind speed profile is taken into account, the dependency of power output on boundary layer stability is only subtly apparent. When turbulence intensity IU is considered, the power generated for a given wind speed is twenty percent higher during strongly stable conditions than during strongly convective conditions as observed in the spring and summer seasons at this North American wind farm.

  6. Effects of Offshore Wind Farms on the Early Life Stages of Dicentrarchus labrax.

    PubMed

    Debusschere, Elisabeth; De Coensel, Bert; Vandendriessche, Sofie; Botteldooren, Dick; Hostens, Kris; Vincx, Magda; Degraer, Steven

    2016-01-01

    Anthropogenically generated underwater noise in the marine environment is ubiquitous, comprising both intense impulse and continuous noise. The installation of offshore wind farms across the North Sea has triggered a range of ecological questions regarding the impact of anthropogenically produced underwater noise on marine wildlife. Our interest is on the impact on the "passive drifters," i.e., the early life stages of fish that form the basis of fish populations and are an important prey for pelagic predators. This study deals with the impact of pile driving and operational noise generated at offshore wind farms on Dicentrarchus labrax (sea bass) larvae. PMID:26610960

  7. Large-eddy simulations of wind farm production and long distance wakes

    NASA Astrophysics Data System (ADS)

    Eriksson, O.; Nilsson, K.; Breton, S.-P.; Ivanell, S.

    2015-06-01

    The future development of offshore wind power will include many wind farms built in the same areas. It is known that wind farms produce long distance wakes, which means that we will see more occasions of farm to farm interaction, namely one wind farm operating in the wake of another wind farm. This study investigates how to perform accurate power predictions on large wind farms and how to assess the long distance wakes generated by these farms. The focus of this paper is the production's and wake's sensitivity to the extension of the grid as well as the turbulence when using Large-eddy simulations (LES) with pregenerated Mann turbulence. The aim is to determine an optimal grid which minimizes blockage effects and ensures constant resolution in the entire wake region at the lowest computational cost. The simulations are first performed in the absence of wind turbines in order to assess how the atmospheric turbulence and wind profile are evolving downstream (up to 12,000 m behind the position where the turbulence is imposed). In the second step, 10 turbines are added in the domain (using an actuator disc method) and their production is analyzed alongside the mean velocities in the domain. The blockage effects are tested using grids with different vertical extents. An equidistant region is used in order to ensure high resolution in the wake region. The importance of covering the entire wake structure inside the equidistant region is analyzed by decreasing the size of this region. In this step, the importance of the lateral size of the Mann turbulence box is also analyzed. In the results it can be seen that the flow is acceptably preserved through the empty domain if a larger turbulence box is used. The relative production is increased (due to blockage effects) for the last turbines using a smaller vertical domain, increased for a lower or narrower equidistant region (due to the smearing of the wake in the stretched area) and decreased when using a smaller turbulence

  8. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    SciTech Connect

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Qualley, G.; Newman, J. F.; Miller, W. O.

    2015-09-28

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resource areas in the U.S. and are representative of typical wind farms found in their respective areas.

  9. Increase in fault ride through capability of direct drive permanent magnet based wind farm using VSC-HVDC

    NASA Astrophysics Data System (ADS)

    Maleki, Hesamaldin; Ramachandaramurthy, V. K.; Lak, Moein

    2013-06-01

    Burning of fossil fuels and green house gasses causes global warming. This has led to governments to explore the use of green energies instead of fossil fuels. The availability of wind has made wind technology a viable alternative for generating electrical power. Hence, many parts of the world, especially Europe are experiencing a growth in wind farms. However, by increasing the number of wind farms connected to the grid, power quality and voltage stability of grid becomes a matter of concern. In this paper, VSC-HVDC control strategy which enables the wind farm to ride-through faults and regulate voltage for fault types is proposed. The results show that the wind turbine output voltage fulfills the E.ON grid code requirements, when subjected to three phase to ground fault. Hence, continues operation of the wind farm is achieved.

  10. Gis-Based Wind Farm Site Selection Model Offshore Abu Dhabi Emirate, Uae

    NASA Astrophysics Data System (ADS)

    Saleous, N.; Issa, S.; Mazrouei, J. Al

    2016-06-01

    The United Arab Emirates (UAE) government has declared the increased use of alternative energy a strategic goal and has invested in identifying and developing various sources of such energy. This study aimed at assessing the viability of establishing wind farms offshore the Emirate of Abu Dhabi, UAE and to identify favourable sites for such farms using Geographic Information Systems (GIS) procedures and algorithms. Based on previous studies and on local requirements, a set of suitability criteria was developed including ocean currents, reserved areas, seabed topography, and wind speed. GIS layers were created and a weighted overlay GIS model based on the above mentioned criteria was built to identify suitable sites for hosting a new offshore wind energy farm. Results showed that most of Abu Dhabi offshore areas were unsuitable, largely due to the presence of restricted zones (marine protected areas, oil extraction platforms and oil pipelines in particular). However, some suitable sites could be identified, especially around Delma Island and North of Jabal Barakah in the Western Region. The environmental impact of potential wind farm locations and associated cables on the marine ecology was examined to ensure minimal disturbance to marine life. Further research is needed to specify wind mills characteristics that suit the study area especially with the presence of heavy traffic due to many oil production and shipping activities in the Arabian Gulf most of the year.

  11. Wake interaction and power production of variable height model wind farms

    NASA Astrophysics Data System (ADS)

    Vested, M. H.; Hamilton, N.; Sørensen, J. N.; Cal, R. B.

    2014-06-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating.

  12. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity

  13. 77 FR 62509 - Big Blue Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Big Blue Wind Farm, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of Big Blue Wind Farm, LLC's application for market-based rate authority, with...

  14. 75 FR 48665 - Heritage Stoney Corners Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Heritage Stoney Corners Wind Farm I, LLC; Supplemental Notice That Initial... supplemental notice in the above-referenced proceeding, of Heritage Stoney Corners Wind Farm I,...

  15. 76 FR 72697 - Heritage Garden Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Heritage Garden Wind Farm I, LLC; Supplemental Notice That Initial... notice in the above-referenced proceeding of Heritage Garden Wind Farm I, LLC's application for...

  16. 75 FR 71426 - Blue Creek Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Blue Creek Wind Farm, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding, of Blue Creek Wind Farm, LLC's application for...

  17. 76 FR 10581 - Pioneer Trail Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pioneer Trail Wind Farm, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Pioneer Trail Wind Farm, LLC's application for market-based...

  18. 75 FR 63466 - Flat Water Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Flat Water Wind Farm, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Flat Water Wind Farm, LLC's application for...

  19. 75 FR 27339 - Blackstone Wind Farm II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Blackstone Wind Farm II, LLC; Supplemental Notice That Initial Market-Based... notice in the above-referenced proceeding of Blackstone Wind Farm, LLCs application for market-based...

  20. 77 FR 36529 - Patton Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Patton Wind Farm, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding of Patton Wind Farm, LLC's application for market-based rate authority, with...

  1. 76 FR 23580 - Dempsey Ridge Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Dempsey Ridge Wind Farm, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Dempsey Ridge Wind Farm, LLC's application for market-based...

  2. 77 FR 20380 - Wildcat Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Wildcat Wind Farm I, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of Wildcat Wind Farm I, LLC's application for market-based rate authority, with...

  3. 75 FR 26747 - Meadow Lake Wind Farm III LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Meadow Lake Wind Farm III LLC; Supplemental Notice That Initial Market-Based... notice in the above-referenced proceeding of Meadow Lake Wind Farm III LLC's application for...

  4. 76 FR 10581 - Settlers Trail Wind Farm, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Settlers Trail Wind Farm, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Settlers Trail Wind Farm, LLC's application for market-based...

  5. 76 FR 11774 - Paulding Wind Farm II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Paulding Wind Farm II LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Paulding Wind Farm II LLC's application for market-based rate...

  6. 75 FR 26747 - Meadow Lake Wind Farm IV LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Meadow Lake Wind Farm IV LLC; Supplemental Notice That Initial Market-Based... notice in the above-referenced proceeding of Meadow Lake Wind Farm IV LLC's application for...

  7. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m‑3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  8. A high performance finite element model for wind farm modeling in forested areas

    NASA Astrophysics Data System (ADS)

    Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis

    2015-04-01

    Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.

  9. Study on Comprehensive Evaluation Model of Wind Farm Operation Performances Based on the Multi-Level Fuzzy Method

    NASA Astrophysics Data System (ADS)

    Zhao, Junyi; Huang, Yuanchao; Yang, Chaoying; Han, Yu

    In order to evaluate comprehensively and objectively the safety performance of the grid connected wind farms, a comprehensive evaluation index system is built, and multilayer fuzzy synthesis evaluation method is used to evaluate the grid connected wind farm operation safety. Firstly, a judgment matrix is built to determine the weight of each index, then, according to the fuzzy boundary tectonic membership description of each factor and factor fuzzy evaluation matrix, finally, through the composite operation of multi-layer evaluation object belongs to grade fuzzy behavior index and membership function, implementation of the system, on the performance of grid connected wind farm, a comprehensive evaluation of the quantitative and the relative ranking of wind farm. In the example analysis, the comprehensive evaluation of three typical wind farm to verify the effectiveness and feasibility of the method.

  10. Simulation and study of power quality issues in a fixed speed wind farm substation.

    PubMed

    Magesh, T; Chellamuthu, C

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  11. Simulation and Study of Power Quality Issues in a Fixed Speed Wind Farm Substation

    PubMed Central

    Magesh, T.; Chellamuthu, C.

    2015-01-01

    Power quality issues associated with the fixed speed wind farm substation located at Coimbatore district are investigated as the wind generators are tripping frequently. The investigations are carried out using two power quality analyzers, Fluke 435 and Dranetz PX5.8, with one of them connected at group control breaker of the 110 kV feeder and the other at the selected 0.69 kV generator busbar during the period of maximum power generation. From the analysis of the recorded data it is found that sag, swell, and transients are the major events which are responsible for the tripping of the generators. In the present study, simulation models for wind, turbine, shaft, pitch mechanism, induction generator, and grid are developed using DIgSILENT. Using the turbine characteristics, a two-dimensional lookup table is designed to generate a reference pitch angle necessary to simulate the power curve of the passive stall controlled wind turbine. Various scenarios and their effects on the performance of the wind farm are studied and validated with the recorded data and waveforms. The simulation model will be useful for the designers for planning and development of the wind farm before implementation. PMID:25950016

  12. Environmental management framework for wind farm siting: methodology and case study.

    PubMed

    Tegou, Leda-Ioanna; Polatidis, Heracles; Haralambopoulos, Dias A

    2010-11-01

    This paper develops an integrated framework to evaluate land suitability for wind farm siting that combines multi-criteria analysis (MCA) with geographical information systems (GIS); an application of the proposed framework for the island of Lesvos, Greece, is further illustrated. A set of environmental, economic, social, and technical constraints, based on recent Greek legislation, identifies the potential sites for wind power installation. Furthermore, the area under consideration is evaluated by a variety of criteria, such as wind power potential, land cover type, electricity demand, visual impact, land value, and distance from the electricity grid. The pair-wise comparison method in the context of the analytic hierarchy process (AHP) is applied to estimate the criteria weights in order to establish their relative importance in site evaluation. The overall suitability of the study region for wind farm siting is appraised through the weighted summation rule. Results showed that only a very small percentage of the total area of Lesvos could be suitable for wind farm installation, although favourable wind potential exists in many more areas of the island. PMID:20541310

  13. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.

    PubMed

    Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele

    2014-01-01

    The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions. PMID:24518587

  14. Transient stability enhancement of wind farms using power electronics and facts controllers

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Hossein Ali

    Nowadays, it is well-understood that the burning of fossil fuels in electric power station has a significant influence on the global climate due to greenhouse gases. In many countries, the use of cost-effective and reliable low-carbon electricity energy sources is becoming an important energy policy. Among different kinds of clean energy resources- such as solar power, hydro-power, ocean wave power and so on, wind power is the fastest-growing form of renewable energy at the present time. Moreover, adjustable speed generator wind turbines (ASGWT) has key advantages over the fixed-speed generator wind turbines (FSGWT) in terms of less mechanical stress, improved power quality, high system efficiency, and reduced acoustic noise. One important class of ASGWT is the doubly-fed induction generator (DFIG), which has gained a significant attention of the electric power industry due to their advantages over the other class of ASGWT, i.e. fully rated converter-based wind turbines. Because of increased integration of DFIG-based wind farms into electric power grids, it is necessary to transmit the generated power from wind farms to the existing grids via transmission networks without congestion. Series capacitive compensation of DFIG-based wind farm is an economical way to increase the power transfer capability of the transmission line connecting wind farm to the grid. For example, a study performed by ABB reveals that increasing the power transfer capability of an existing transmission line from 1300 MW to 2000 MW using series compensation is 90% less than the cost of building a new transmission line. However, a factor hindering the extensive use of series capacitive compensation is the potential risk of sub- synchronous resonance (SSR). The SSR is a condition where the wind farm exchanges energy with the electric network, to which it is connected, at one or more natural frequencies of the electric or mechanical part of the combined system, comprising the wind farm and the

  15. Evaluation of Dynamical Downscaling Resolution Effect on Wind Energy Forecast Value for a Wind Farm in Central Sweden

    NASA Astrophysics Data System (ADS)

    Rosgaard, Martin; Hahmann, Andrea; Skov Nielsen, Torben; Giebel, Gregor; Ejnar Sørensen, Poul; Madsen, Henrik

    2014-05-01

    For any energy system relying on wind power, accurate forecasts of wind fluctuations are essential for efficient integration into the power grid. Increased forecast precision allows end-users to plan day-ahead operation with reduced risk of penalties which in turn supports the feasibility of wind energy. This study aims to quantify value added to wind energy forecasts in the 12-48 hour leadtime by downscaling global numerical weather prediction (NWP) data using a limited-area NWP model. The accuracy of statistical wind power forecasting tools depends strongly on this NWP input. Typical performance metrics are mean absolute error or root mean square error for predicted- against observed wind power production, and these metrics are closely related to wind speed forecast bias and correlation with observations. Wind speed bias can be handled in the statistical wind power forecasting model, though it is entirely up to it's NWP input to describe the wind speed correlation correctly. The basis of comparison for forecasts is data from the Stor-Rotliden wind farm in central Sweden. The surrounding forest adds to the forecasting challenge, thus motivating the downscaling experiment as the potential for wind power forecast improvement is higher in complex terrain. The 40 Vestas V90 turbines were erected in 2009 and correspond to 78MWe installed electrical capacity. Forecasts from global and limited-area NWP models, together covering five different horizontal computational grid spacings of ~50km down to ~1km, are studied for a yearlong, continuous time period. The preliminary results shown quantify forecast strengths and weaknesses for each NWP model resolution.

  16. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  17. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km. PMID:22348042

  18. 75 FR 19959 - Uilk Wind Farm, LLC; Notice of Effectiveness of Exempt Wholesale Generator Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Uilk Wind Farm, LLC; Notice of Effectiveness of Exempt Wholesale Generator Status April 9, 2010. Take notice that during the month March, 2010, the status of the...

  19. Large eddy simulations of vertical axis wind turbines to optimize farm design

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie

    2013-11-01

    Wind energy production, and research have expanded considerably in the past decade. These efforts aim to reduce dependence on fossil fuels and the greenhouse gas emissions associated with current modes of energy production. However, with expanding wind farms, the land areas occupied by such farms become a limitation. Recently, interest in vertical axis wind turbines (VAWTs) has increased due to key advantages of this technology: compared to horizontal axis turbines, VAWTs can be built with larger scales, their performance is not sensitive to wind direction, and the ability to place their generators at the bottom of the mast can make them more stable offshore. In this study, we focus on how the Aspheric Boundary Layer (ABL) will react to the presence of large VAWT farms. We present a state-of-art representation of VAWTs using an actuator line model in a Large Eddy Simulations code for the ABL. Validations are made against several experimental datasets, which include flow details and power coefficient curves, the wake of an individual turbine is visualized and analyzed, and the interaction of adjacent turbines is investigated in view of optimizing their interactions and the configuration of VAWT farms.

  20. USDA's Vick tells radio audience wind farms mean huge water savings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since most of the electricity in the U.S. is generated using coal and natural gas as fuel, almost every wind farm announcement includes the estimated amount of carbon dioxide which was not released to the atmosphere. According to Wikipedia, 2.25 tons of CO2 and 1.14 tons of CO2 were released for eve...

  1. Risk formulation for the sonic effects of offshore wind farms on fish in the EU region.

    PubMed

    Kikuchi, Ryunosuke

    2010-02-01

    In 2007, European leaders agreed to source 20% of their energy needs from renewable energy; since that time, offshore wind farms have been receiving attention in the European Union (EU). In 2008, the European Community submitted a proposal to the United Nations Environment Program (UNEP) in order to combat marine noise pollution. In consideration of these facts, the present paper aims to deduce a preliminary hypothesis and its formulation for the effect of offshore wind farm noise on fish. The following general picture is drawn: the short-term potential impact during pre-construction; the short-term intensive impact during construction; and the physiological and/or masking effects that may occur over a long period while the wind farm is in operation. The EU's proposal to UNEP includes noise databases that list the origins of man-made sounds; it is advisable that offshore wind farms should be listed in the noise databases in order to promote rational environment management. PMID:19857880

  2. Project demonstration of wind turbine electricity: Interconnecting a northern Michigan fruit farm with a major utility

    NASA Astrophysics Data System (ADS)

    Amon, D. M.

    1982-10-01

    A project to interconnect a farm wind turbine with a utility is reported. Included are a summary of accomplishments and daily major events, correspondence relevant to the project (letters explaining the delay of installation, extending the period of performance, tax credits, net energy sellback legislation, etc.), publicity, legal aspects, maintenance and repair, analysis of test data, and accounting.

  3. Modeling and simulation of offshore wind farm O&M processes

    SciTech Connect

    Joschko, Philip; Widok, Andi H.; Appel, Susanne; Greiner, Saskia; Albers, Henning; Page, Bernd

    2015-04-15

    This paper describes a holistic approach to operation and maintenance (O&M) processes in the domain of offshore wind farm power generation. The acquisition and process visualization is followed by a risk analysis of all relevant processes. Hereafter, a tool was designed, which is able to model the defined processes in a BPMN 2.0 notation, as well as connect and simulate them. Furthermore, the notation was enriched with new elements, representing other relevant factors that were, to date, only displayable with much higher effort. In that regard a variety of more complex situations were integrated, such as for example new process interactions depending on different weather influences, in which case a stochastic weather generator was combined with the business simulation or other wind farm aspects important to the smooth running of the offshore wind farms. In addition, the choices for different methodologies, such as the simulation framework or the business process notation will be presented and elaborated depending on the impact they had on the development of the approach and the software solution. - Highlights: • Analysis of operation and maintenance processes of offshore wind farms • Process modeling with BPMN 2.0 • Domain-specific simulation tool.

  4. Measurements in support of wind farm simulations and power forecasts: The Crop/Wind-energy Experiments (CWEX)

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Gallus, W. A., Jr.; Sharma, A.

    2014-06-01

    The Midwest US currently is experiencing a large build-out of wind turbines in areas where the nocturnal low-level jet (NLLJ) is a prominent and frequently occurring feature. We describe shear characteristics of the NLLJ and their influence on wind power production. Reports of individual turbine power production and concurrent measurements of near-surface thermal stratification are used to turbine wake interactions and turbine interaction with the overlying atmosphere. Progress in forecasting conditions such as wind ramps and shear are discussed. Finally, the pressure perturbation introduced by a line of turbines produces surface flow convergence that may create a vertical velocity and hence a mesoscale influence on cloud formation by a wind farm.

  5. Observed impacts of wind farms on land surface temperature in Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Tang, B.; Zhao, X.; Wu, D.; Zhao, W.; Wei, H.

    2015-12-01

    Abstract: The wind turbine industry in china has experienced a dramatic increase in recent years and wind farms (WFs) have an impact on the underlying surface conditions of climate system. This paper assesses the impacts of wind farms by analyzing the variations of the land surface temperature (LST) data for the period of 2003-2014 over a region consisted of 1097 turbines in the Huitengxile Wind Farm, the largest wind farm in Asia. We first compare the spatial coupling between the geographic layouts of the WFs and the spatial patterns of LST changes of two periods (post- versus pre- wind turbines construction) and then employ the difference of LST between WF pixels and surrounding non-WF pixels to quantify the effects of WFs. The results reveal that the LST at daytime increases by 0.52-0.86°C in winter, spring and autumn and decreases by about 0.56°C in summer over the WFs on average, with the spatial pattern of this warming or cooling generally coupled with the geographic distribution of the wind turbines, while the changes in LST at nighttime are much noisier. The daytime LST warming or cooling effects vary with seasons, and the strongest warming and tightest spatial coupling are in autumn months of September-November. The seasonal variations in albedo due to the construction of wind turbines are primarily responsible for the daytime LST changes. Areal mean decreases in winter, spring and autumn and increase in summer in albedo are observed over the WFs and the spatial pattern and magnitude of the changes in albedo couple very well with the layouts of the wind turbines. The increase (decrease) in albedo over the WFs indicates that WFs across the Huitengxile grassland absorb less (more) incoming radiation, thus resulting in a decrease (increase) in LST at daytime. The inter-annual variations in areal mean LST differences at daytime are highly correlated with those in areal mean albedo differences for all four seasons (R2=0.48~0.67). Our findings are in contrast

  6. Estimating direct fatality impacts at wind farms: how far we’ve come, where we have yet to go

    USGS Publications Warehouse

    Huso, Manuela M.

    2013-01-01

    Measuring the potential impacts of wind farms on wildlife can be difficult and may require development of new statistical tools and models to accurately reflect the measurement process. This presentation reviews the recent history of approaches to estimating wildlife fatality under the unique conditions encountered at wind farms, their unifying themes and their potential shortcomings. Avenues of future research are suggested to continue to address the needs of resource managers and industry in understanding direct impacts of wind turbine-caused wildlife fatality.

  7. Effect of Wind Turbine Noise on Workers' Sleep Disorder: A Case Study of Manjil Wind Farm in Northern Iran

    NASA Astrophysics Data System (ADS)

    Abbasi, Milad; Monnazzam, Mohammad Reza; Zakerian, Sayedabbolfazl; Yousefzadeh, Arsalan

    2015-04-01

    Noise from wind turbines is one of the most important factors affecting the health, welfare, and human sleep. This research was carried out to study the effect of wind turbine noise on workers' sleep disorder. For this, Manjil Wind Farm, because of the greater number of staff and turbines than other wind farms in Iran, was chosen as case study. A total number of 53 participants took part in this survey. They were classified into three groups of mechanics, security, and official. In this study, daytime sleepiness data of workers were gathered using Epworth Sleepiness Scales (ESS) was used to determine the level of daytime sleepiness among the workers. The 8-h equivalent sound level (LAeq,8h) was measured to determine the individuals' exposure at each occupational group. Finally, the effect of sound, age, and workers' experience on individuals' sleep disorder was analyzed through multiple regression analysis in the R software. The results showed that there was a positive and significant relationship between age, workers' experience, equivalent sound level, and the level of sleep disorder. When age is constant, sleep disorder will increase by 26% as per each 1 dB increase in equivalent sound level. In situations where equivalent sound level is constant, an increase of 17% in sleep disorder is occurred as per each year of work experience. Because of the difference in sound exposure in different occupational groups. The effect of noise in repairing group was about 6.5 times of official group and also 3.4 times of the security group. Sleep disorder effect caused by wind turbine noise in the security group is almost two times more than the official group. Unlike most studies on wind turbine noise that address the sleep disorder among inhabitants nearby wind farms, this study, for the first time in the world, examines the impact of wind turbine noise on sleep disorder of workers who are more closer to wind turbines and exposed to higher levels of noise. So despite all the

  8. Crop/Wind-energy Experiment (CWEX): Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...

  9. CWEX: Crop/wind-energy experiment: Observations of surface-layer, boundary-layer and mesoscale interactions with a wind farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...

  10. Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework

    SciTech Connect

    Masden, Elizabeth A.; Fox, Anthony D.; Furness, Robert W.; Bullman, Rhys; Haydon, Daniel T.

    2010-01-15

    The wind power industry has grown rapidly in the UK to meet EU targets of sourcing 20% of energy from renewable sources by 2020. Although wind power is a renewable energy source, there are environmental concerns over increasing numbers of wind farm proposals and associated cumulative impacts. Individually, a wind farm, or indeed any action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. EU and UK legislation requires a cumulative impact assessment (CIA) as part of Environmental Impact Assessments (EIA). However, in the absence of detailed guidance and definitions, such assessments within EIA are rarely adequate, restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Here we propose a conceptual framework to promote transparency in CIA through the explicit definition of impacts, actions and scales within an assessment. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development EIAs. We propose that benefits would be gained from elevating CIA to a strategic level, as a component of spatially explicit planning.

  11. Dynamic modelling and analysis of multi-machine power systems including wind farms

    NASA Astrophysics Data System (ADS)

    Tabesh, Ahmadreza

    2005-11-01

    This thesis introduces a small-signal dynamic model, based on a frequency response approach, for the analysis of a multi-machine power system with special focus on an induction machine based wind farm. The proposed approach is an alternative method to the conventional eigenvalue analysis method which is widely employed for small-signal dynamic analyses of power systems. The proposed modelling approach is successfully applied and evaluated for a power system that (i) includes multiple synchronous generators, and (ii) a wind farm based on either fixed-speed, variable-speed, or doubly-fed induction machine based wind energy conversion units. The salient features of the proposed method, as compared with the conventional eigenvalue analysis method, are: (i) computational efficiency since the proposed method utilizes the open-loop transfer-function matrix of the system, (ii) performance indices that are obtainable based on frequency response data and quantitatively describe the dynamic behavior of the system, and (iii) capability to formulate various wind energy conversion unit, within a wind farm, in a modular form. The developed small-signal dynamic model is applied to a set of multi-machine study systems and the results are validated based on comparison (i) with digital time-domain simulation results obtained from PSCAD/EMTDC software tool, and (ii) where applicable with eigenvalue analysis results.

  12. Spectrum Analysis of the Wind Farm Power based on the Spatial Structures of Wind

    NASA Astrophysics Data System (ADS)

    Kawamoto, Teru; Yamashita, Masaru

    Spectrum analysis has been carried out based on the spatial structure model of wind. Power fluctuation from nine wind turbines arranged in 3 × 3 manner is less than that from a single turbine, regardless of wind direction. The increased distance between two turbines slightly reduces power fluctuation. In case of an inline arrangement, power fluctuation caused by the wind perpendicular to the turbine line is lower than that by the wind parallel to the turbine line, because the coherence of wind perpendicular to the wind direction decays sharply. For double line arrangement, fluctuation will be almost the same for the 3 × 3 arrangement.

  13. Wind farm layout design optimization through multi-scenario decomposition with complementarity constraints

    NASA Astrophysics Data System (ADS)

    Lu, Shen; Kim, Harrison M.

    2014-12-01

    This article presents a multi-scenario decomposition with complementarity constraints approach to wind farm layout design to maximize wind energy production under region boundary and inter-turbine distance constraints. A complementarity formulation technique is introduced such that the wind farm layout design can be described with a continuously differentiable optimization model, and a multi-scenario decomposition approach is proposed to ensure efficient solution with local optimality. To combine global exploration and local optimization, a hybrid solution algorithm is presented, which combines the multi-scenario approach with a bi-objective genetic algorithm that maximizes energy production and minimizes constraint violations simultaneously. A numerical case study demonstrates the effectiveness of the proposed approach.

  14. Data-driven RANS for simulations of large wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.

  15. On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides

    NASA Astrophysics Data System (ADS)

    Marcillo, Omar; Arrowsmith, Stephen; Blom, Philip; Jones, Kyle

    2015-10-01

    Infrasound from a 60-turbine wind farm was found to propagate to distances up to 90 km under nighttime atmospheric conditions. Four infrasound sensor arrays were deployed in central New Mexico in February 2014; three of these arrays captured infrasound from a large wind farm. The arrays were in a linear configuration oriented southeast with 13, 54, 90, and 126 km radial distances and azimuths of 166°, 119°, 113°, and 111° from the 60 1.6 MW turbine Red Mesa Wind Farm, Laguna Pueblo, New Mexico, USA. Peaks at a fundamental frequency slightly below 0.9 Hz and its harmonics characterize the spectrum of the detected infrasound. The generation of this signal is linked to the interaction of the blades, flow gradients, and the supporting tower. The production of wind-farm sound, its propagation, and detection at long distances can be related to the characteristics of the atmospheric boundary layer. First, under stable conditions, mostly occurring at night, winds are highly stratified, which enhances the production of thickness sound and the modulation of other higher-frequency wind turbine sounds. Second, nocturnal atmospheric conditions can create low-altitude waveguides (with altitudes on the order of hundreds of meters) allowing long-distance propagation. Third, night and early morning hours are characterized by reduced background atmospheric noise that enhances signal detectability. This work describes the characteristics of the infrasound from a quasi-continuous source with the potential for long-range propagation that could be used to monitor the lower part of the atmospheric boundary layer.

  16. Scavenger removal: Bird and bat carcass persistence in a tropical wind farm

    NASA Astrophysics Data System (ADS)

    Villegas-Patraca, Rafael; Macías-Sánchez, Samuel; MacGregor-Fors, Ian; Muñoz-Robles, Carlos

    2012-08-01

    Energy produced by wind farms has diverse positive environmental effects, but can also be related to negative impacts, including wildlife mortality through collisions with wind turbines. Bird and bat mortality caused by collisions with wind turbines can be estimated indirectly by counting carcasses within wind farms. However, carcass removal by scavengers often biases such measurements. In this study, we identified the main scavengers removing bird and bat carcasses in a tropical wind farm. A known fate analysis was done to assess the effect of carcass type (i.e., small bird, large bird, bat), vegetation type (i.e., secondary vegetation, croplands) and season (dry and rainy seasons of 2009) on carcass persistence rates. We identified three main scavenger groups, with mammals being the most abundant group. Our results show high rates of carcass removal relative to previous studies, especially for bats; there were fewer remaining carcasses after 20 days in our tropical site than in non-tropical environments reported elsewhere. We found a higher carcass persistence rate during the rainy season than in the dry season, possibly due to a greater abundance of food resources for scavenger organisms in the rainy season. Although we found some evidence for higher persistence rates for large bird carcasses than for small bird and bat carcasses during the rainy season, overall carcass type was not a strong predictor of persistence rates. Similarly, we did not find a strong effect of vegetation type on carcass persistence rates. Results suggest that in order to estimate accurate bird and bat mortality in tropical wind farm areas, seasonality should be incorporated to correction factors of carcass removal rates.

  17. First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurement in the offshore wind farm "alpha ventus"

    NASA Astrophysics Data System (ADS)

    Vollmer, L.; Trabucchi, D.; Witha, B.; van Dooren, M.; Trujillo, J. J.; Schneemann, J.; Kühn, M.

    2014-12-01

    The planning of offshore wind farms is still tainted with high risks due to unknown power losses and a higher level of fatigue loads due to wake effects. Recently, Large Eddy Simulations (LES) are more and more used for simulating offshore wind turbine wakes as they resolve the atmospheric turbulence as well as the wake turbulence.However, for an application of LES wind fields to assess offshore wind farm flow a proper validation with measured data is necessary.Several methods have been investigated at the University of Oldenburg to compare LES wind fields and lidar measurements. In this study we apply one of these methods to validate wake simulations of a single wake of a 5MW wind turbine in the German offshore wind farm "alpha ventus" with processed dual-Doppler lidar measurements in the same wind farm.The simulations are performed with the LES model PALM, which has been enhanced by two different approaches of actuator models to simulate the wake of single wind turbines and the interaction of wakes in wind farms. Effects of tower and nacelle are regarded as well as simple turbine control mechanisms. The simulations are initialized with comparable atmospheric conditions as during the time of lidar operation by using measurements from the adjacent meteorological mast FINO 1.Plan Position Indicator (PPI) measurements have been performed with two long-range wind lidars installed at different opposing platforms at the border of the wind farm. A Cartesian grid was overlapped to the scanned region and a dual-Doppler algorithm was applied in order to estimate the horizontal stationary wind field on the grid nodes. To our knowledge, the presented study is one of the first validations of LES wake simulations with lidar measurements and first which validates offshore LES wake simulations with 2D lidar data.

  18. Farm silo application of the ''TARP'' wind energy conversion system

    SciTech Connect

    Duffy, R.E.; Butler, L.; Weisbrich, A.

    1983-08-01

    In this study, previously developed methods of determining wind turbine performance are adapted to the prediction of the performance of the silo application of the Toroidal Augmentor Rotor Platform (TARP). The system studied had three bladed turbines with untwisted, constant chord blades with a NACA 0015 airfoil section. Power coefficients of over one were predicted for two TARP configurations. The effects of varying blade chord, blade angle, and turbine angular velocity were evaluated. The economic feasibility of the silo application of the TARP was analyzed. It was found that this system could be economical in areas of high average wind velocity or where the cost of the energy available from other sources is high.

  19. Mitigating avian impacts: Applying the wetlands experience to wind farms

    SciTech Connect

    Wolff, B.

    1995-12-31

    The National Environmental Policy Act (NEPA) and state environmental laws spawned by NEPA, such as the California Environmental Quality Act (CEQA) and Washington State`s Environmental Policy Act (SEPA) have made us familiar with the concept of {open_quotes}mitigating{close_quotes} a project`s adverse environmental impacts. As wind energy projects expand to state with widely varying environmental regulation, the wind industry can look to other experiences in land use regulation, such as wetlands, for approaches to mitigation. Wetlands have been a point of friction between environmentalists, property rights advocates, local and state governments, and a host of federal agencies. A highly developed conceptual framework to mitigating environmental impacts has risen from this regulatory swamp of conflicting interests and overlapping jurisdictions.

  20. The influence of wind farm development on the hydrochemistry and ecology of an upland stream.

    PubMed

    Millidine, K J; Malcolm, I A; McCartney, A; Laughton, R; Gibbins, C N; Fryer, R J

    2015-08-01

    Despite perceptions of pristine condition, upland environments are increasingly subject to a range of anthropogenic pressures including air pollution, climate change, land-use change and evolving land management strategies. Although they have received little attention to date, the large-scale development of upland wind farms also has the potential to disturb vegetation and soils, alter hydrology and water quality and, thus, impact freshwater ecosystems. This paper presents the findings of a 5-year study of the impacts of wind farm construction on the freshwater environment. Data on water quality, invertebrate and fish populations were collected for 2 years before construction and for the following 3 years covering the construction period and the initial period of the farm's operation. In contrast to previous studies, the impacts of the wind farm development were assessed for a suite of potentially affected hydrochemical variables using a before-after-control-impact (BACI) analysis that allowed separation of construction effects from spatial and temporal variability in hydroclimatological conditions, thereby providing an improved, more robust evidence base. There was a small but significant negative effect of construction on pH, alkalinity (Alk) and acid neutralising capacity (ANC) in the upper part of the treatment catchment, which was where the wind farm was situated. The effects were more marked under higher flow conditions. It is hypothesised that this reflects changes in hydrological processes with increased near-surface runoff or organic acid mobilisation. There was no indication that either invertebrate community structure or fish densities were impacted by construction and the resulting effects on water quality. PMID:26205284

  1. Simulation of irregular waves in an offshore wind farm with a spectral wave model

    NASA Astrophysics Data System (ADS)

    Ponce de León, S.; Bettencourt, J. H.; Kjerstad, N.

    2011-10-01

    A numerical study of irregular waves in the Norwegian continental shelf wind farm (HAVSUL-II) was conducted using 3rd generation spectral wave models. The study was composed of two parts: the study of the effect of a single windmill monopile in the local incoming wave field using an empirical JONSWAP spectrum, and a wave hindcast study in the wind farm area using realistic incoming wave spectra obtained from large scale simulations for the 1991-1992 winter period. In the single windmill monopile study the SWAN wave model was used, while the hindcast study was conducted by successively nesting from a coarse grid using the WAM model up to a high-resolution (56 m) grid covering 26.2 km 2 of the HAVSUL-II windmill farm using the SWAN model. The effect of a single monopile on incident waves with realistic spectra was also studied. In the single windmill study the monopile was represented as a closed circular obstacle and in the hindcast study it was represented as a dry grid point. The results showed that the single windmill monopile creates a shadow zone in the down wave region with lower significant wave height ( Hs) values and a slight increase of Hs in the up wave region. The effects of the windmill monopile on the wave field were found to be dependent on the directional distribution of the incoming wave spectrum and also on the wave diffraction and reflection. The hindcast study showed that the group of windmill monopiles may contribute to the reduction of the wave energy inside the offshore wind farm and that once the waves enter into the offshore wind farm they experience modifications due to the presence of the windmill monopiles, which cause a blocking of the wave energy propagation resulting in an altered distribution of the Hs field.

  2. Large-eddy simulation of an infinitely large wind farm in a stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Lu, H.; Porté-Agel, F.

    2010-09-01

    When deployed as large arrays, wind turbines interact among themselves and with atmospheric boundary layer. To optimize their geometric arrangements, accurate knowledge of wind-turbine array boundary layer is of great importance. In this study, we integrated large eddy simulation with an actuator line technique, and used it to study the characteristics of wind-turbine wake in an idealized wind farm inside a stably stratified atmospheric boundary layer (SBL). The wind turbines, with a rotor diameter of 112m and a tower height of 119m, were placed in a well-known SBL turbulent case that has a boundary layer height of approximately 180m. The super-geostrophic nocturnal jet near the top of the boundary layer was eliminated due to the energy extraction and the enhanced mixing of momentum. Non-axisymmetric behavior of wake structure was observed in response to the non-uniform incoming turbulence, the Coriolis effects, and the rotational effects induced by blade motions. The turbulence intensity in the simulated turbine wakes was found to reach a maximum at the top-tip level and a downwind distance of approximately 3-5 rotor diameters from the turbines. The Coriolis effects caused a skewed spatial structure and drove certain amount of turbulent energy away from the center of the wake. The SBL height was increased, while the magnitudes of the surface momentum flux and the surface buoyancy flux were reduced by approximately 30%. The wind farm was also found to have a strong effect on area-averaged vertical turbulent fluxes of momentum and heat, which highlights the potential impact of wind farms on local meteorology.

  3. Collective phenomena in large-eddy simulations of extended wind farms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Meneveau, Charles

    2012-11-01

    A major issue with respect to the incorporation of large wind farms in power grids is that their power output strongly fluctuates over time. Understanding these fluctuations, especially its spatio-temporal characteristics, is important for the design of the backup power that must be available. The power fluctuations of the turbines depend on the effect of the wakes, created by a prior row of turbines, on the operation of the turbines, the inter-turbine correlations, and the interaction between the turbines and the atmospheric boundary layer (ABL). We analyze the power fluctuations in large eddy simulations of extended wind-parks in the ABL. We consider various aggregates of wind turbines such as the total average power signal, or sub-averages within the wind farm. In particular, we find that the power variations of the total wind park decreases more than one would expect if one assumes the power output of the turbines to be uncorrelated. The non-trivial correlations are due to the interactions between turbines placed down-stream from each other. Surprisingly, the frequency spectra of the total wind-farm output show a decay that follows approximately a -5/3 power-law scaling regime, qualitatively consistent with observations made in field-scale operational wind parks (Apt, 2007). RS is supported by a ``Fellowship for Young Energy Scientists'' (YES!) of the Foundation for Fundamental Research on Matter (FOM), which is supported by the Netherlands Organization for Scientific Research (NWO). CM is supported by NSF-CBET 1133800.

  4. Large Wind Farms and the Scalar Flux over an Heterogeneously Rough Land Surface

    NASA Astrophysics Data System (ADS)

    Calaf, Marc; Higgins, Chad; Parlange, Marc B.

    2014-12-01

    The influence of surface heterogeneities extends vertically within the atmospheric surface layer to the so-called blending height, causing changes in the fluxes of momentum and scalars. Inside this region the turbulence structure cannot be treated as horizontally homogeneous; it is highly dependent on the local surface roughness, the buoyancy and the horizontal scale of heterogeneity. The present study analyzes the change in scalar flux induced by the presence of a large wind farm installed across a heterogeneously rough surface. The change in the internal atmospheric boundary-layer structure due to the large wind farm is decomposed and the change in the overall surface scalar flux is assessed. The equilibrium length scale characteristic of surface roughness transitions is found to be determined by the relative position of the smooth-to-rough transition and the wind turbines. It is shown that the change induced by large wind farms on the scalar flux is of the same order of magnitude as the adjustment they naturally undergo due to surface patchiness.

  5. Wind Farms in Rural Areas: How Far Do Community Benefits from Wind Farms Represent a Local Economic Development Opportunity?

    ERIC Educational Resources Information Center

    Munday, Max; Bristow, Gill; Cowell, Richard

    2011-01-01

    Although the large-scale deployment of renewable technologies can bring significant, localised economic and environmental changes, there has been remarkably little empirical investigation of the rural development implications. This paper seeks to redress this through an analysis of the economic development opportunities surrounding wind energy…

  6. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.

    PubMed

    Villegas-Patraca, Rafael; Cabrera-Cruz, Sergio A; Herrera-Alsina, Leonel

    2014-01-01

    The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura) and Swainson's Hawks (Buteo swainsoni). We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region. PMID:24647442

  7. Soaring Migratory Birds Avoid Wind Farm in the Isthmus of Tehuantepec, Southern Mexico

    PubMed Central

    Villegas-Patraca, Rafael; Cabrera-Cruz, Sergio A.; Herrera-Alsina, Leonel

    2014-01-01

    The number of wind farms operating in the Isthmus of Tehuantepec, southern Mexico, has rapidly increased in recent years; yet, this region serves as a major migration route for various soaring birds, including Turkey Vultures (Cathartes aura) and Swainson's Hawks (Buteo swainsoni). We analyzed the flight trajectories of soaring migrant birds passing the La Venta II wind farm during the two migratory seasons of 2011, to determine whether an avoidance pattern existed or not. We recorded three polar coordinates for the flight path of migrating soaring birds that were detected using marine radar, plotted the flight trajectories and estimated the number of trajectories that intersected the polygon defined by the wind turbines of La Venta II. Finally, we estimated the actual number of intersections per kilometer and compared this value with the null distributions obtained by running 10,000 simulations of our datasets. The observed number of intersections per kilometer fell within or beyond the lower end of the null distributions in the five models proposed for the fall season and in three of the four models proposed for the spring season. Flight trajectories had a non-random distribution around La Venta II, suggesting a strong avoidance pattern during fall and a possible avoidance pattern during spring. We suggest that a nearby ridgeline plays an important role in this pattern, an issue that may be incorporated into strategies to minimize the potential negative impacts of future wind farms on soaring birds. Studies evaluating these issues in the Isthmus of Tehuantepec have not been previously published; hence this work contributes important baseline information about the movement patterns of soaring birds and its relationship to wind farms in the region. PMID:24647442

  8. Proposal of a methodology for the design of offshore wind farms

    NASA Astrophysics Data System (ADS)

    Esteban, Dolores; Diez, J. Javier; Santos Lopez, J.; Negro, Vicente

    2010-05-01

    In fact, the wind power installed in the sea is still very scarce, with only 1,500 megawatts in operation in the middle of 2009. Although the first offshore wind farm experiment took place in 1990, the facilities built up to now have been mainly pilot projects. These previous statements confirm the incipient state of offshore wind power, Anyway, in this moment this technology is being strongly pushed, especially by the governments of some countries - like the United Kingdom, Germany, etc. - which is due above all to the general commitments made to reduce the emission of greenhouses gases. All of these factors lead to predict a promising future for offshore wind power. Nevertheless, it has not been still established a general methodology for the design and the management of this kind of installations. This paper includes some of the results of a research project, which consists on the elaboration of a methodology to enable the optimization of the global process of the operations leading to the implantation of offshore wind facilities. The proposed methodology allows the planning of offshore wind projects according to an integral management policy, enabling not only technical and financial feasibility of the offshore wind project to be achieved, but also respect for the environment. For that, it has been necessary to take into account multiple factors, including the territory, the terrain, the physical-chemical properties of the contact area between the atmosphere and the ocean, the dynamics resulting in both as a consequence of the Earth's behaviour as a heat machine, external geodynamics, internal geodynamics, planetary dynamics, biokenosis, the legislative and financial framework, human activities, wind turbines, met masts, electric substations and lines, foundations, logistics and the project's financial profitability. For its validation, this methodology has been applied to different offshore wind farms in operation.

  9. Modelling impacts of offshore wind farms on trophic web: the Courseulles-sur-Mer case study

    NASA Astrophysics Data System (ADS)

    Raoux, Aurore; Pezy, Jean-Philippe; Dauvin, Jean-Claude; Tecchio, samuele; Degraer, Steven; Wilhelmsson, Dan; Niquil, Nathalie

    2016-04-01

    The French government is planning the construction of three offshore wind farms in Normandy. These offshore wind farms will integrate into an ecosystem already subject to a growing number of anthropogenic disturbances such as transportation, fishing, sediment deposit, and sediment extraction. The possible effects of this cumulative stressors on ecosystem functioning are still unknown, but they could impact their resilience, making them susceptible to changes from one stable state to another. Understanding the behaviour of these marine coastal complex systems is essential in order to anticipate potential state changes, and to implement conservation actions in a sustainable manner. Currently, there are no global and integrated studies on the effects of construction and exploitation of offshore wind farms. Moreover, approaches are generally focused on the conservation of some species or groups of species. Here, we develop a holistic and integrated view of ecosystem impacts through the use of trophic webs modelling tools. Trophic models describe the interaction between biological compartments at different trophic levels and are based on the quantification of flow of energy and matter in ecosystems. They allow the application of numerical methods for the characterization of emergent properties of the ecosystem, also called Ecological Network Analysis (ENA). These indices have been proposed as ecosystem health indicators as they have been demonstrated to be sensitive to different impacts on marine ecosystems. We present here in detail the strategy for analysing the potential environmental impacts of the construction of the Courseulles-sur-Mer offshore wind farm (Bay of Seine) such as the reef effect through the use of the Ecopath with Ecosim software. Similar Ecopath simulations will be made in the future on the Le Tréport offshore wind farm site. Results will contribute to a better knowledge of the impacts of the offshore wind farms on ecosystems. They also allow to

  10. First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm

    NASA Astrophysics Data System (ADS)

    Vollmer, L.; van Dooren, M.; Trabucchi, D.; Schneemann, J.; Steinfeld, G.; Witha, B.; Trujillo, J.; Kühn, M.

    2015-06-01

    Large-Eddy Simulations (LES) are more and more used for simulating wind turbine wakes as they resolve the atmospheric as well as the wake turbulence. Considering the expenses and sparsity of offshore measurements, LES can provide valuable insights into the flow field in offshore wind farms. However, for an application of LES wind fields to assess offshore wind farm flow, a proper validation with measured data is necessary. Such a proper validation requires that the LES can closely reproduce the atmospheric conditions during the measurement. For this purpose, a representation of the large-scale features that drive the wind flow is required. Large-scale-forcing and nudging of the LES model PALM is tested with reanalysis data of the COSMO-DE model for a case study during one particular day in the beginning of 2014 at a German offshore wind farm. As wind and temperature profiles of the LES prove to follow the large-scale features closely, the wake of a single wind turbine is simulated with an advanced version of an actuator disc model. Measurement data is provided by processed dual-Doppler lidar measurements during the same day in the same wind farm. Several methods have been investigated at the University of Oldenburg to compare LES wind fields and lidar measurements. In this study a dual-Doppler algorithm was applied in order to estimate the horizontal stationary wind field. The raw data originate from Plan Position Indicator (PPI) measurements, which have been performed with two long-range wind lidars installed at different opposing platforms at the border of the wind farm.

  11. Performance and wake predictions of HAWTs in wind farms

    SciTech Connect

    Leclerc, C.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  12. Engineering models for merging wakes in wind farm optimization applications

    NASA Astrophysics Data System (ADS)

    Machefaux, E.; Larsen, G. C.; Murcia Leon, J. P.

    2015-06-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake deficits as applied in e.g. Fuga. The second approach is the square root of sums of squares approach, which is applied in the widely used PARK program. The third approach, which is presently used with the Dynamic Wake Meandering (DWM) model, assumes that the wake affected downstream flow field to be determined by a superposition of the ambient flow field and the dominating wake among contributions from all upstream turbines at any spatial position and at any time. The last approach developed by G.C. Larsen is a newly developed model based on a parabolic type of approach, which combines wake deficits successively. The study indicates that wake interaction depends strongly on the relative wake deficit magnitude, i.e. the deficit magnitude normalized with respect to the ambient mean wind speed, and that the dominant wake assumption within the DWM framework is the most accurate.

  13. Application of LES Technique to Diagnosis of Wind Farm by Using High Resolution Elevation Data

    NASA Astrophysics Data System (ADS)

    Uchida, Takanori; Ohya, Yuji

    We are developing the numerical model called the RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The object domain of this numerical model is from several m to several km, and can predict the airflow and the gas diffusion over complex terrain with high precision. The RIAM-COMPACT has already been marketed by certain tie-up companies. The estimation of the annual electrical power output is also possible now based on the field observation data. In the present study, wind simulation of an actual wind farm was executed using the high resolution elevation data. As a result, an appropriate point and an inappropriate point for locating a wind turbine generator were shown based on the numerical results obtained. This cause was found to be a topographical irregularity in front of the wind turbine generator.

  14. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  15. Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms

    NASA Astrophysics Data System (ADS)

    Steinfeld, Gerald; Tambke, Jens; Peinke, Joachim; Heinemann, Detlev

    2010-05-01

    Flows in the atmospheric boundary layer over a sea surface are characterised by a lower ambient turbulence intensity than boundary layer flows over land surfaces. Thus, offshore the wake turbulence behind a wind turbine might have a stronger impact on subsequent wind turbines than onshore. Due to the lower ambient turbulence intensity and therefore reduced turbulent diffusion, offshore the velocity minimum behind a wind turbine can probably be detected over a longer distance than onshore. Moreover, as the meandering of the wake flow might be due to the ambient atmospheric turbulence, also the meandering of the wake flow offshore might be different. Maps, showing projected wind farms in the North Sea, reveal that also rather small distances between two adjacent wind farms will occur. Therefore, not only single wind turbines within a wind farm but also complete wind farms will affect each other. Up to now all these potential impacts are not taken into account satisfactory when wind farms are planned. Most of the models applied today for estmating the yield of offshore wind farms have been derived about twenty years ago based on measurements at comparatively small onshore, sometimes near-coast, but never offshore sites. Moreover, the models are based on measurements at much smaller wind turbines as those used today. Due to the monotone increase of the wind velocity with height observed in the atmosphere, today's wind turbines experience a much larger variation of the mean wind velocity than their predecessors twenty years ago - increasing the potential for a vertical asymmetry of the wake flow. The measurements carried out by the RAVE initiative at the German offshore test site "alpha ventus" will allow a validation and further development of models that estimate the flow conditions within a wind farm consisting of multi-MW wind turbines under the special conditions of the marine atmospheric boundary layer. ForWind at the University of Oldenburg supplements the data

  16. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign

    NASA Astrophysics Data System (ADS)

    Xia, Geng; Zhou, Liming; Freedman, Jeffrey M.; Roy, Somnath Baidya; Harris, Ronald A.; Cervarich, Matthew Charles

    2016-04-01

    Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31-0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface-atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day-night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.

  17. Regional scale hydrodynamic modelling of offshore wind farm development areas off the east coast of Scotland

    NASA Astrophysics Data System (ADS)

    O'Hara Murray, Rory; Gallego, Alejandro

    2013-04-01

    There is considerable interest in Scotland, supported by the Scottish Government, in the expansion of renewable energy production. In particular, significant offshore wind energy developments are already planned in coastal waters to the east of the Forth and Tay estuaries. It is important to understand the local and cumulative environmental impact of such developments within this region, to aid licensing decisions but also to inform marine spatial planning in general. Substantial wind farm developments may affect physical processes within the region, such as tidal-, wind-, and wave-driven circulation, as well as coastal sediment transport and more complex estuarine dynamics. Such physical impacts could have ecological and, ultimately, socio-economic consequences. The Firth of Forth and Tay areas both exhibit complex estuarine characteristics due to fresh water input, complex bathymetry and coastline, and tidal mixing. Our goal is to construct an unstructured grid hydrodynamic model of the wider Firth of Forth and Tay region using the Finite-Volume Coastal Ocean Model (FVCOM), resolving the complex estuarine hydrography of the area and representing offshore wind developments. Hydrodynamic modelling will provide an accurate baseline of the hydrography in this region but also allow the assessment of the effect on the physical environment of multiple wind farm development scenarios.

  18. Philippine Wind Farm Analysis and Site Selection Analysis, 1 January 2000 - 31 December 2000

    SciTech Connect

    Conover, K.

    2001-12-01

    The U.S. Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has been working in partnership with the U.S. Agency for International Development (USAID) in an ongoing process to quantify the Philippine wind energy potential and foster wind farm development. As part of that process, NREL retained Global Energy Concepts, LLC (GEC) to review and update the policy needs as well as develop a site-screening process applicable for the Philippines. GEC worked closely with the Philippines National Power Corporation (NPC) in completing this work. This report provides the results of the policy needs and site selection analyses conducted by GEC.

  19. Economic analysis of wind-powered farmhouse and farm building heating systems

    NASA Astrophysics Data System (ADS)

    Stafford, R. W.; Greeb, F. J.; Smith, M. H.; Deschenes, C.; Weaver, N. L.

    1981-01-01

    The break even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production were evaluated. Farmhouse structural models include three types derived from a national survey: an older, a more modern, and a passive solar structure. The eight farm building applications include: (1) poultry layers; (2) poultry brooding/layers; (3) poultry broilers; (4) poultry turkeys; (5) swine farrowing; (6) swine growing/finishing; (7) dairy; and (8) lambing. The farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses are based on hour by hour computations which allow for growth of animals, sensible and latent heat production, and ventilation requirements.

  20. Economic analysis of wind-powered farmhouse and farm building heating systems. Final report

    SciTech Connect

    Stafford, R.W.; Greeb, F.J.; Smith, M.F.; Des Chenes, C.; Weaver, N.L.

    1981-01-01

    The study evaluated the break-even values of wind energy for selected farmhouses and farm buildings focusing on the effects of thermal storage on the use of WECS production and value. Farmhouse structural models include three types derived from a national survey - an older, a more modern, and a passive solar structure. The eight farm building applications that were analyzed include: poultry-layers, poultry-brooding/layers, poultry-broilers, poultry-turkeys, swine-farrowing, swine-growing/finishing, dairy, and lambing. These farm buildings represent the spectrum of animal types, heating energy use, and major contributions to national agricultural economic values. All energy analyses were based on hour-by-hour computations which allowed for growth of animals, sensible and latent heat production, and ventilation requirements. Hourly or three-hourly weather data obtained from the National Climatic Center was used for the nine chosen analysis sites, located throughout the United States and corresponding to regional agricultural production centers.

  1. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    DOE PAGESBeta

    Yang, Shang-Te; Ling, Hao

    2013-01-01

    An efficienmore » t approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3 × 3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.« less

  2. Assessment of Subsynchronous Resonance in Series Compensated Type-1 Wind Farm

    NASA Astrophysics Data System (ADS)

    Gotmare, Gajanan V.; Virulkar, Vasudeo B.

    2014-07-01

    Series compensation is used in power systems for enhancing the power transfer capability of the transmission line when transmission distances are large. Now, it is well known fact that subsynchronous resonance (SSR) is predominant in traditional turbine-generators connected to series compensated transmission line. Although SSR and its mitigation techniques for conventional turbine-generator system are well documented, enough literature is not available on SSR phenomenon in the context of series compensated wind farm systems. This work addresses the assessment of SSR in wind farm connected to the series compensated electrical power system. The Eigen value analysis tool is used to ascertain the existence of SSR. The PSCAD/EMTDC software is used for simulation and validation of the results in this work.

  3. Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms

    NASA Astrophysics Data System (ADS)

    Buck, B. H.; Krause, G.; Michler-Cieluch, T.; Brenner, M.; Buchholz, C. M.; Busch, J. A.; Fisch, R.; Geisen, M.; Zielinski, O.

    2008-09-01

    Along the German North Sea coast, the observed high spatial competition of stakeholders has encouraged the idea of integrating open ocean aquaculture in conjunction with offshore wind farms beyond the 12 miles zone. The article provides an overview on the current state of transdisciplinary research on a potential implementation of such a multifunctional use concept on a showcase basis, covering biological, technical, economic and social/policy aspects as well as private-public partnerships and the relevant institutional bodies. We show that the cultivation of seaweeds and blue mussels is biologically and technically feasible in a high-energy environment using modified cultivation strategies. The point of departure of our multi-use concept was that the solid groundings of wind turbines could serve as attachment points for the aquaculture installations and become the key to the successful commercial cultivation of any offshore aquatic organism. However, spaces in between the turbines are also attractive for farming projects, since public access is restricted and thus the cultivation site protected from outside influences. An economic analysis of different operation scenarios indicates that the market price and the annual settlement success of juvenile mussels are the main factors that determine the breakeven point. Social and policy science research reveals that the integration of relevant actors into the development of a multi-use concept for a wind farm-mariculture interaction is a complex and controversial issue. Combining knowledge and experience of wind farm planners as well as mussel fishermen and mariculturists within the framework of national and EU policies is probably the most important component for designing and developing an effective offshore co-management regime to limit the consumption of ocean space.

  4. LES studies of wind farms including wide turbine spacings and comparisons with the CWBL engineering model

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meyers, Johan; Meneveau, Charles

    2015-11-01

    We present results from large eddy simulations (LES) of wind farms consisting of tens to hundreds of turbines with respective streamwise and spanwise spacings approaching 35 and 12 turbine diameters. Even in staggered farms where the distance between consecutive turbines in the flow direction is more than 50 turbine diameters, we observe visible wake effects. In aligned farms, the performance of the turbines in the fully developed regime, where the power output as function of the downstream position becomes constant, is shown to primarily depend on the streamwise distance between consecutive turbine rows. However, for other layouts the power production in the fully developed regime mainly depends on the geometrical mean turbine spacing (inverse turbine density). These findings agree very well with predictions from our recently developed coupled wake boundary layer (CWBL) model, which introduces a two way coupling between the wake (Jensen) and top-down model approaches (Stevens et al. JRSE 7, 023115, 2015). To further validate the CWBL model we apply it to the problem of determining the optimal wind turbine thrust coefficient for power maximization over the entire farm. The CWBL model predictions agree very well with recent LES results (Goit & Meyers, JFM 768, 5-50, 2015). FOM Fellowships for Young Energy Scientists (YES!), NSF (IIA 1243482, the WINDINSPIRE project), ERC (FP7-Ideas, 306471).

  5. Data-Mining-Based Intelligent Differential Relaying for Transmission Lines Including UPFC and Wind Farms.

    PubMed

    Jena, Manas Kumar; Samantaray, Subhransu Ranjan

    2016-01-01

    This paper presents a data-mining-based intelligent differential relaying scheme for transmission lines, including flexible ac transmission system device, such as unified power flow controller (UPFC) and wind farms. Initially, the current and voltage signals are processed through extended Kalman filter phasor measurement unit for phasor estimation, and 21 potential features are computed at both ends of the line. Once the features are extracted at both ends, the corresponding differential features are derived. These differential features are fed to a data-mining model known as decision tree (DT) to provide the final relaying decision. The proposed technique has been extensively tested for single-circuit transmission line, including UPFC and wind farms with in-feed, double-circuit line with UPFC on one line and wind farm as one of the substations with wide variations in operating parameters. The test results obtained from simulation as well as in real-time digital simulator testing indicate that the DT-based intelligent differential relaying scheme is highly reliable and accurate with a response time of 2.25 cycles from the fault inception. PMID:25807570

  6. Energy profiling of demersal fish: a case-study in wind farm artificial reefs.

    PubMed

    De Troch, Marleen; Reubens, Jan T; Heirman, Elke; Degraer, Steven; Vincx, Magda

    2013-12-01

    The construction of wind farms introduces artificial hard substrates in sandy sediments. As Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) tend to aggregate in order to feed around these reefs, energy profiling and trophic markers were applied to study their feeding ecology in a wind farm in the Belgian part of the North Sea. The proximate composition (carbohydrates, proteins and lipids) differed significantly between liver and muscle tissue but not between fish species or between their potential prey species. Atlantic cod showed to consume more energy than pouting. The latter had a higher overall energy reserve and can theoretically survive twice as long on the available energy than cod. In autumn, both fish species could survive longer on their energy than in spring. Polyunsaturated fatty acids were found in high concentrations in fish liver. The prey species Jassa and Pisidia were both rich in EPA while Jassa had a higher DHA content than Pisidia. Energy profiling supported the statement that wind farm artificial reefs are suitable feeding ground for both fish species. Sufficient energy levels were recorded and there is no indication of competition. PMID:24210053

  7. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed. PMID:24180764

  8. Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model

    NASA Astrophysics Data System (ADS)

    Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan

    2015-05-01

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.

  9. Peatland carbon cycling at a Scottish wind farm: the role of plant-soil interactions

    NASA Astrophysics Data System (ADS)

    Richardson, Harriett; Whitaker, Jeanette; Waldron, Susan; Ostle, Nick

    2013-04-01

    Peatlands play a fundamental role in the terrestrial carbon cycle by storing 1/3 of the world's soil carbon (Limpens et al. 2008). In the UK, peatlands are often located in areas with potential for electricity generation by harvesting wind energy. Concerns have been raised, however, over the stability of these carbon stocks when large scale wind developments are sited upon them. This project aims to improve understanding of the impact of wind farms on carbon sequestration in peatlands. Wind turbine 'wake-effects' can alter microclimatic conditions, as a result of significant differences in air temperature, humidity, wind speed and turbulence (Baidya Roy and Traiteur 2010). These changes are likely to have a significant impact on above and below ground abiotic conditions and biotic properties, together with the processes they regulate that govern peatland carbon cycling. Specifically, the effects of interactions between typical peatland plant functional types (graminoids, bryophytes and shrubs) (Ward et al. 2009) and peat microbial community composition and function are poorly resolved. We examined a spatial gradient across an area of blanket bog at Black Law wind farm (Lanarkshire, Scotland) and executed a series of controlled mesocosm experiments to examine the impacts of potential microclimatic changes on plant-soil interactions and carbon sequestration processes. In particular we focused on the form and function of plant and microbial communities as determinants of decomposition (Ward et al. 2010) and greenhouse gas (GHG) emissions (Artz 2009). Measurements of plant-litter-soil carbon, nitrogen, microbial community composition (i.e. phospholipid fatty acid biomarkers) and litter mass loss have been made across the wind farm peatland to attribute spatial variance in biotic and biogeochemical properties. In addition, multi-factorial mesocosm experiments have been made to determine how abiotic and biotic changes caused by wind farm effects could influence peat GHG

  10. Aquatic carbon export from peatland catchments recently undergone wind farm development

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Waldron, Susan; Henderson, Andrew; Flowers, Hugh; Gilvear, David

    2013-04-01

    Scotland's peat landscapes are desirable locations for wind-based renewables due to high wind resources and low land use pressures in these areas. The environmental impact of sitting wind-based renewables on peats however, is unknown. Globally, peatlands are important terrestrial carbon stores. Given the topical nature of carbon-related issues, e.g. global warming and carbon footprints, it is imperative we help mitigate their degradation and maintain carbon sequestration. To do so, we need to better understand how peatland systems function with regards to their carbon balance (export versus sequestration) so we can assess their resilience and adaptation to hosting land-based renewable energy projects. Predicting carbon lost as a result of construction of wind farms built on peatland has not been fully characterised and this research will provide data that can supplement current 'carbon payback calculator' models for wind farms that aim to reinforce their 'green' credentials. Transfer of carbon from the terrestrial peatland systems to the aquatic freshwater and oceanic systems is most predominant during periods of high rainfall. It has been estimated that 50% of carbon is exported during only 10% of highest river flows, (Hinton et al., 1998). Furthermore, carbon export from peatlands is known to have a seasonal aspect with highest concentrations of dissolved organic carbon (DOC) found mostly in late summer months of August and September and lowest in December and January, (Dawson et al., 2004). Event sampling, where high intensity sample collection is carried out during high river flow periods, offers a better insight, understanding and estimation of carbon aquatic fluxes from peatland landscapes. The Gordonbush estate, near Brora, has an extensive peatland area where a wind farm development has recently been completed (April 2012). Investigations of aquatic carbon fluxes from this peatland system were started in July 2010, in conjunction with the start of

  11. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation.

    PubMed

    Rosin, Zuzanna M; Skórka, Piotr; Szymański, Paweł; Tobolka, Marcin; Luczak, Andrzej; Tryjanowski, Piotr

    2016-01-01

    Background. One of the most difficult challenges for conservation biology is to reconcile growing human demands for resources with the rising need for protecting nature. Wind farms producing renewable energy have been recognised to be a threat for birds, but clear directives for environmental planning are still missing. Methods. Point counts were performed to study the relationship between eight environmental variables and bird populations in different parts of a year on the largest Polish wind farm between March 2011 and February 2013. Variables potentially related to species richness (Chao 1 estimator) and the abundance of the entire bird community as well as five selected farmland species were analysed with the use of generalized linear mixed models. Results. Some associations between the studied variables and bird populations were season/year specific, while others had a constant direction (positive or negative) across seasons and/or years. The latter were distance to the nearest turbine, field size, number of wind turbines, proximity of settlements and water bodies. Spatial autocorrelation and counting time were significantly correlated with bird population estimates but the directions of these relationships varied among seasons and years. Associations between abundance of individual species and environmental variables were species-specific. Conclusions. The results demonstrated a constant negative relationship between wind turbine proximity and bird numbers. Other environmental variables, such as field size, proximity of settlements and water bodies that also had constant associations with bird populations across seasons may be taken into account when minimizing adverse effects of wind farm development on birds or choosing optimal locations of new turbines. PMID:27547516

  12. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation

    PubMed Central

    Skórka, Piotr; Szymański, Paweł; Tobolka, Marcin; Luczak, Andrzej; Tryjanowski, Piotr

    2016-01-01

    Background. One of the most difficult challenges for conservation biology is to reconcile growing human demands for resources with the rising need for protecting nature. Wind farms producing renewable energy have been recognised to be a threat for birds, but clear directives for environmental planning are still missing. Methods. Point counts were performed to study the relationship between eight environmental variables and bird populations in different parts of a year on the largest Polish wind farm between March 2011 and February 2013. Variables potentially related to species richness (Chao 1 estimator) and the abundance of the entire bird community as well as five selected farmland species were analysed with the use of generalized linear mixed models. Results. Some associations between the studied variables and bird populations were season/year specific, while others had a constant direction (positive or negative) across seasons and/or years. The latter were distance to the nearest turbine, field size, number of wind turbines, proximity of settlements and water bodies. Spatial autocorrelation and counting time were significantly correlated with bird population estimates but the directions of these relationships varied among seasons and years. Associations between abundance of individual species and environmental variables were species-specific. Conclusions. The results demonstrated a constant negative relationship between wind turbine proximity and bird numbers. Other environmental variables, such as field size, proximity of settlements and water bodies that also had constant associations with bird populations across seasons may be taken into account when minimizing adverse effects of wind farm development on birds or choosing optimal locations of new turbines. PMID:27547516

  13. Modeling and resonance issues of wind farm integration with related facts applications

    NASA Astrophysics Data System (ADS)

    Auddy, Soubhik

    This thesis deals with electromechanical oscillations, torsional oscillations and resonance issues in power systems fed by conventional steam-turbine generators and emerging wind turbine generators. Solutions to several of these problems are proposed using Flexible AC Transmission Systems (FACTS) Controllers. Inter-area oscillations are investigated in the IEEE 39 bus system and are damped by a novel Static VAR Compensator (SVC) control signal utilizing a weighted sum of remote generator speeds derived from bus voltage angles. The weights are calculated from participation factor analysis using commercial software Dynamic Security Assessment (DSA) Power Tools and are validated by EMTDC/PSCAD simulations. Subsynchronous resonance (SSR) in steam-turbine generators has been traditionally damped with SVC using either local signals or signals derived from a combination of local signals. This thesis proposes a novel SVC controller based on remote generator speed for alleviating SSR. This controller is shown from EMTDC/PSCAD simulations to be much more effective than the previously reported controllers for the IEEE First SSR Benchmark system. The efficacy is demonstrated for all the four critical series compensation levels. With the worldwide growth of renewable energy, large wind farms are likely to be connected to series compensated networks for evacuation of bulk power. This may lead to the potential of SSR in the wind turbine generators. For the first time, a detailed electromagnetic transient study using EMTDC/PSCAD has been conducted in this thesis to demonstrate that subsynchronous resonance can be a cause of concern in series compensated wind farms at realistic levels of power flow and series compensation levels. Novel controllers for two FACTS devices - a Static VAR Compensator (SVC) and a Thyristor Controlled Series Capacitor (TCSC) - are proposed to mitigate SSR under all realistic compensation levels in a modified IEEE First Benchmark system. It is further

  14. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    SciTech Connect

    Chiswell, S.

    2010-01-15

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a

  15. A methodology for optimization of wind farm allocation under land restrictions: the case of the Canary Islands

    NASA Astrophysics Data System (ADS)

    Castaño Moraga, C. A.; Suárez Santana, E.; Sabbagh Rodríguez, I.; Nebot Medina, R.; Suárez García, S.; Rodríguez Alvarado, J.; Piernavieja Izquierdo, G.; Ruiz Alzola, J.

    2010-09-01

    Wind farms authorization and power allocations to private investors promoting wind energy projects requires some planification strategies. This issue is even more important under land restrictions, as it is the case of Canary Islands, where numerous specially protected areas are present for environmental reasons and land is a scarce resource. Aware of this limitation, the Regional Government of Canary Islands designed the requirements of a public tender to grant licences to install new wind farms trying to maximize the energy produced in terms of occupied land. In this paper, we detail the methodology developed by the Canary Islands Institute of Technology (ITC, S.A.) to support the work of the technical staff of the Regional Ministry of Industry, responsible for the evaluation of a competitive tender process for awarding power lincenses to private investors. The maximization of wind energy production per unit of area requires an exhaustive wind profile characterization. To that end, wind speed was statistically characterized by means of a Weibull probability density function, which mainly depends on two parameters: the shape parameter K, which determines the slope of the curve, and the average wind speed v , which is a scale parameter. These two parameters have been evaluated at three different heights (40,60,80 m) over the whole canarian archipelago, as well as the main wind speed direction. These parameters are available from the public data source Wind Energy Map of the Canary Islands [1]. The proposed methodology is based on the calculation of an initially defined Energy Efficiency Basic Index (EEBI), which is a performance criteria that weighs the annual energy production of a wind farm per unit of area. The calculation of this parameter considers wind conditions, windturbine characteristics, geometry of windturbine distribution in the wind farm (position within the row and column of machines), and involves four steps: Estimation of the energy produced by

  16. Exploring the influence of boundary layer stability on wind farms and their interplay with the surrounding environment

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian Joseph

    There is growing awareness in the wind power industry that boundary-layer stability influences wind turbine performance in meaningful ways. Stability is inextricably tied to the diurnal ebb and flow of heat, momentum, and moisture that drives weather. Boundary-layer stability is closely linked to low-level wind speeds, wind shear, wind veer, and turbulence. It is these myriad consequences of stability which directly impact turbines, both modifying performance and contributing to structural fatigue. I describe the influence of near-surface stability on the aggregate power output of a utility-scale wind farm in central North America. During convective conditions, the wind farm produced more power than during neutral conditions, while in stable conditions the farm underperformed. These results are statistically significant, despite the uncertainty involved in using nacelle anemometer measurements of wind speed. Next, I use lidar measurements from Iowa to categorize low-level jets and their impact on rotor-layer winds. Observed jets are similar to those studied in the Great Plains, though regional sloping terrain forcing is absent in Iowa. Rotor-layer wind speeds intensify during jet periods, but detrimental wind shear and veer also increase when jets occur. Simulations using the Weather Research and Forecasting (WRF) model with various input data and boundary-layer physics favorably reproduce jet features. I then utilize the same model to examine the impact of switching from maize to soybeans on rotor-layer winds during the peak of the growing season. The crop change was represented in the simulation by surface roughness. The switch produces a statistically significant increase in both wind speed and power output. Finally, I evaluate the performance of the wind farm parameterization (WFP) in WRF using high-resolution large eddy simulations (LES) from the same model. The wind speed and turbulence impacts estimated by the WFP compare favorably to LES flow for both

  17. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic—evidence of slow recovery

    NASA Astrophysics Data System (ADS)

    Teilmann, Jonas; Carstensen, Jacob

    2012-12-01

    Offshore wind farms constitute a new and fast growing industry all over the world. This study investigates the long term impact on harbour porpoises, Phocoena phocoena, for more than 10 years (2001-12) from the first large scale offshore wind farm in the world, Nysted Offshore Wind Farm, in the Danish western Baltic Sea (72 × 2.3 MW turbines). The wind farm was brought into full operation in December 2003. At six stations, acoustic porpoise detectors (T-PODs) were placed inside the wind farm area and at a reference area 10 km to the east, to monitor porpoise echolocation activity as a proxy of porpoise presence. A modified statistical BACI design was applied to detect changes in porpoise presence before, during and after construction of the wind farm. The results show that the echolocation activity has significantly declined inside Nysted Offshore Wind Farm since the baseline in 2001-2 and has not fully recovered yet. The echolocation activity inside the wind farm has been gradually increasing (from 11% to 29% of the baseline level) since the construction of the wind farm, possibly due to habituation of the porpoises to the wind farm or enrichment of the environment due to reduced fishing and to artificial reef effects.

  18. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation

    NASA Astrophysics Data System (ADS)

    Lindeboom, H. J.; Kouwenhoven, H. J.; Bergman, M. J. N.; Bouma, S.; Brasseur, S.; Daan, R.; Fijn, R. C.; de Haan, D.; Dirksen, S.; van Hal, R.; Hille Ris Lambers, R.; ter Hofstede, R.; Krijgsveld, K. L.; Leopold, M.; Scheidat, M.

    2011-07-01

    The number of offshore wind farms is increasing rapidly, leading to questions about the environmental impact of such farms. In the Netherlands, an extensive monitoring programme is being executed at the first offshore wind farm (Offshore Windfarm Egmond aan Zee, OWEZ). This letter compiles the short-term (two years) results on a large number of faunal groups obtained so far. Impacts were expected from the new hard substratum, the moving rotor blades, possible underwater noise and the exclusion of fisheries. The results indicate no short-term effects on the benthos in the sandy area between the generators, while the new hard substratum of the monopiles and the scouring protection led to the establishment of new species and new fauna communities. Bivalve recruitment was not impacted by the OWEZ wind farm. Species composition of recruits in OWEZ and the surrounding reference areas is correlated with mud content of the sediment and water depth irrespective the presence of OWEZ. Recruit abundances in OWEZ were correlated with mud content, most likely to be attributed not to the presence of the farm but to the absence of fisheries. The fish community was highly dynamic both in time and space. So far, only minor effects upon fish assemblages especially near the monopiles have been observed. Some fish species, such as cod, seem to find shelter inside the farm. More porpoise clicks were recorded inside the farm than in the reference areas outside the farm. Several bird species seem to avoid the park while others are indifferent or are even attracted. The effects of the wind farm on a highly variable ecosystem are described. Overall, the OWEZ wind farm acts as a new type of habitat with a higher biodiversity of benthic organisms, a possibly increased use of the area by the benthos, fish, marine mammals and some bird species and a decreased use by several other bird species.

  19. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  20. Influence of Speed Governors of Hydropower Stations on Frequency Stabilization of Fixed-Speed Wind Farm

    NASA Astrophysics Data System (ADS)

    AL Jowder, Fawzi A. Rahman

    2013-05-01

    This paper uses a small power system, consisting of two hydropower stations and a fixed-speed wind farm as sources of power, to study the influence of type of speed governor of hydropower stations on the frequency stabilization of the fixed-speed wind farm. As an example, two types of speed governors are selected which are (1) mechanical-hydraulic speed governor and (2) electrical-hydraulic speed governor. Rest of the speed governors can be also examined following the same methodology presented in the research. Two transfer functions, which correspond to the two speed governors, are developed for each hydropower station. The overall transfer function of the test power system is developed, and different study cases are presented. The frequency response analysis of the different transfer functions is used to compare the two speed governors based on their ability to stabilize the frequency deviation of the fixed-speed wind resulting from electrical or mechanical disturbances in the power systems. Time-domain simulations under a mechanical disturbance, represented by a wind gust, and an electrical disturbance, represented by three-phase to ground fault, are performed to validate the results of the frequency response analysis.

  1. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.

    PubMed

    Bailey, Helen; Brookes, Kate L; Thompson, Paul M

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation. PMID:25250175

  2. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future

    PubMed Central

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically targeted data collection and modeling aimed at answering questions for the consenting process will also allow regulators to make decisions based on the best available information, and achieve a balance between climate change targets and environmental legislation. PMID:25250175

  3. Method for evaluating wind turbine wake effects on wind farm performance

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1985-01-01

    A method of testing the performance of a cluster of wind turbine units an data analysis equations are presented which together form a simple and direct procedure for determining the reduction in energy output caused by the wake of an upwind turbine. This method appears to solve the problems presented by data scatter and wind variability. Test data from the three-unit Mod-2 wind turbine cluster at Goldendale, Washington, are analyzed to illustrate the application of the proposed method. In this sample case the reduction in energy was found to be about 10 percent when the Mod-2 units were separated a distance equal to seven diameters and winds were below rated.

  4. Wind Speed Estimation and Parametrization of Wake Models for Downregulated Offshore Wind Farms within the scope of PossPOW Project

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Mirzaei, Mahmood

    2014-06-01

    With increasing installed capacity, wind farms are requested to downregulate more frequently, especially in the offshore environment. Determination and verification of possible (or available) power of downregulated offshore wind farms are the aims of the PossPOW project (see PossPOW.dtu.dk). Two main challenges encountered in the project so far are the estimation of wind speed and the recreation of the flow inside the downregulated wind farm as if it is operating ideally. The rotor effective wind speed was estimated using power, pitch angle and rotational speed as inputs combined with a generic Cp model. The results have been compared with Horns Rev-I dataset and NREL 5MW simulations under both downregulation and normal operation states. For the real-time flow recreation, the GCLarsen single wake model was re-calibrated using a 1-s dataset from Horns Rev and tested for the downregulated period. The re-calibrated model has to be further parametrized to include dynamic effects such as wind direction variability and meandering also considering different averaging time scales before implemented in full scale wind farms.

  5. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    SciTech Connect

    Chen, Le; MacDonald, Erin

    2013-10-01

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under two land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.

  6. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake

  7. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  8. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    NASA Astrophysics Data System (ADS)

    Volker, P. J. H.; Badger, J.; Hahmann, A. N.; Ott, S.

    2015-11-01

    We describe the theoretical basis, implementation, and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated for a neutral atmospheric boundary layer against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements, and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  9. The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

    NASA Astrophysics Data System (ADS)

    Volker, P. J. H.; Badger, J.; Hahmann, A. N.; Ott, S.

    2015-04-01

    We describe the theoretical basis, implementation and validation of a new parametrisation that accounts for the effect of large offshore wind farms on the atmosphere and can be used in mesoscale and large-scale atmospheric models. This new parametrisation, referred to as the Explicit Wake Parametrisation (EWP), uses classical wake theory to describe the unresolved wake expansion. The EWP scheme is validated against filtered in situ measurements from two meteorological masts situated a few kilometres away from the Danish offshore wind farm Horns Rev I. The simulated velocity deficit in the wake of the wind farm compares well to that observed in the measurements and the velocity profile is qualitatively similar to that simulated with large eddy simulation models and from wind tunnel studies. At the same time, the validation process highlights the challenges in verifying such models with real observations.

  10. Offshore wind farm siting procedures applied offshore of Block Island, Rhode Island

    NASA Astrophysics Data System (ADS)

    O'Reilly, Christopher M.

    Since 2008, the Rhode Island Coastal Resources Management Council (CRMC) has been leading a Rhode Island Ocean Area Management Plan (RIOSAMP) in partnership with the University of Rhode Island, resulting in an extensive multidisciplinary analysis of the Rhode Island offshore environment and its suitability for siting an offshore wind farm. As part of the RIOSAMP project, a standard siting optimization approach was first developed based on a siting index defined as the ratio of costs associated with the wind farm deployment to the available wind resource. This index, combined within a marine spatial planning approach to address ecological and societal constraints, provided an initial macro-siting tool (Spaulding et al., 2010). The multiple GIS layers required in this approach and the absence of theoretical support to optimize the resulting zoning, led to an extension of the initial optimization approach into a more comprehensive macro-siting optimization tool, integrating societal and ecological constraints into the siting tool, the Wind Farm Siting Index (WIFSI) (Grilli et al, 2012). The projects led to the definition of several favorable development areas including a Renewable Energy Zone (REZ) off of Block Island, in State Waters. Deep Water Wind Inc. (DWW) plans to install and commission five 6 MW direct drive Siemens lattice jacket turbines in the REZ area, by 2014. In this thesis two major steps are accomplished to refine and expand the RIOSAMP macro-siting tool. First the macro-siting tool is expanded to include a model simulating the exclusionary zones defined by the Federal Aviation Administration (FAA) regulations. Second a micro-siting model is developed, optimizing the relative position of each turbine within a wind farm area. The micro-siting objective is to minimize, (1) the loss in power due to the loss of wind resource in the wake of the turbines (wake "effect"), and (2) the cable costs that inter-connect the turbines and connecting the farm to the

  11. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  12. The Pattern of Complaints about Australian Wind Farms Does Not Match the Establishment and Distribution of Turbines: Support for the Psychogenic, ‘Communicated Disease’ Hypothesis

    PubMed Central

    Chapman, Simon; St. George, Alexis; Waller, Karen; Cakic, Vince

    2013-01-01

    Background and Objectives With often florid allegations about health problems arising from wind turbine exposure now widespread, nocebo effects potentially confound any future investigation of turbine health impact. Historical audits of health complaints are therefore important. We test 4 hypotheses relevant to psychogenic explanations of the variable timing and distribution of health and noise complaints about wind farms in Australia. Setting All Australian wind farms (51 with 1634 turbines) operating 1993–2012. Methods Records of complaints about noise or health from residents living near 51 Australian wind farms were obtained from all wind farm companies, and corroborated with complaints in submissions to 3 government public enquiries and news media records and court affidavits. These are expressed as proportions of estimated populations residing within 5 km of wind farms. Results There are large historical and geographical variations in wind farm complaints. 33/51 (64.7%) of Australian wind farms including 18/34 (52.9%) with turbine size >1 MW have never been subject to noise or health complaints. These 33 farms have an estimated 21,633 residents within 5 km and have operated complaint-free for a cumulative 267 years. Western Australia and Tasmania have seen no complaints. 129 individuals across Australia (1 in 254 residents) appear to have ever complained, with 94 (73%) being residents near 6 wind farms targeted by anti wind farm groups. The large majority 116/129(90%) of complainants made their first complaint after 2009 when anti wind farm groups began to add health concerns to their wider opposition. In the preceding years, health or noise complaints were rare despite large and small-turbine wind farms having operated for many years. Conclusions The reported historical and geographical variations in complaints are consistent with psychogenic hypotheses that expressed health problems are “communicated diseases” with nocebo effects likely to play an

  13. Identification of wind turbine testing practices and investigation of the performance benefits of closely-spaced lateral wind farm configurations

    NASA Astrophysics Data System (ADS)

    McTavish, Sean

    The current thesis investigates the development of guidelines for testing small-scale wind turbines and identifies a method that can be used to increase the performance of wind farms. The research was conducted using two scaled wind turbine designs. The first design was a three-bladed wind turbine designed in the Department of Mechanical and Aerospace Engineering (MAAE) to operate in a low Reynolds number regime and to generate a thrust coefficient representative of commercial-scale wind turbines. An Eppler E387 airfoil was selected for the wind turbine due to its behaviour at low Reynolds numbers and the chord of the turbine was increased relative to full-scale designs in order to increase the range of Reynolds numbers that could be attained. The second design was a geometrically-scaled version of an existing two-bladed wind turbine with a NACA 0012 airfoil that was originally designed at the Delft University of Technology. Experiments were conducted in a 0.61 m x 0.81 m water channel in order to independently evaluate the effects of increasing blockage and Reynolds number on the development of the wind turbine wake. Quantitative dye visualisation was used to identify the position of tip vortex cores relative to the blade tip in order to assess how blockage and Reynolds number effects modified the initial expansion in the near wake. Blockage effects on the wake development were assessed using five wind turbines with diameters ranging from 20 cm to 40 cm, corresponding to blockage of 6.3% to 25.4%. The rotors were all operated at a similar tip speed ratio of 6 and a Reynolds number of 23,000 based on the blade tip speed and tip chord. One Outcome of the research was the identification of a limit beyond which blockage narrowed the expansion in the near wake of a wind turbine. It was observed that blockage should be maintained at less than 10% in order to prevent the wake from narrowing artificially due to the flow acceleration around the turbine caused by excessive

  14. Review of Offshore Wind Farm Impact Monitoring and Mitigation with Regard to Marine Mammals.

    PubMed

    Verfuss, Ursula K; Sparling, Carol E; Arnot, Charlie; Judd, Adrian; Coyle, Michael

    2016-01-01

    Monitoring and mitigation reports from 19 UK and 9 other European Union (EU) offshore wind farm (OWF) developments were reviewed, providing a synthesis of the evidence associated with the observed environmental impact on marine mammals. UK licensing conditions were largely concerned with mitigation measures reducing the risk of physical and auditory injury from pile driving. At the other EU sites, impact monitoring was conducted along with mitigation measures. Noise-mitigation measures were developed and tested in UK and German waters in German government-financed projects. We highlight some of the review's findings and lessons learned with regard to noise impact on marine mammals. PMID:26611084

  15. A review of noise data collection at the central and south west wind farm in Texas

    SciTech Connect

    Moroz, E.

    1996-12-31

    Evaluation of data collected over a 1-year period from a 6 MW wind farm is presented in the paper. Noise propagation prediction methods are compared with each other and with field data. Three forms of regulating noise are also compared: minimum separation distance, absolute noise limit, and relative noise limit.Relative noise limits were found to offer the most comprehensive approach to regulating noise and to allow each location to be treated independently. A hemispherical spreading model appears to be a useful planning tool. 11 refs., 4 tabs.

  16. Proposed Columbia Wind Farm No. 1 : Final Environmental Impact Statement, Joint NEPA/SEPA.

    SciTech Connect

    United States. Bonneville Power Administration; Klickitat County

    1995-09-01

    CARES proposes to construct and operate the 25 megawatt Columbia Wind Farm No. 1 (Project) in the Columbia Hills area of Klickitat County, Washington known as Juniper Point. Wind is not a constant resource and based on the site wind measurement data, it is estimated that the Project would generate approximately 7 average annual MWs of electricity. BPA proposes to purchase the electricity generated by the Project. CARES would execute a contractual agreement with a wind developer, to install approximately 91 wind turbines and associated facilities to generate electricity. The Project`s construction and operation would include: install concrete pier foundations for each wind turbine; install 91 model AWT-26 wind turbines using 43 m high guyed tubular towers on the pier foundations; construct a new 115/24-kv substation; construct a 149 m{sup 2} steel operations and maintenance building; install 25 pad mount transformers along the turbine access roads; install 4.0 km of underground 24 kv power collection lines to collect power from individual turbines to the end of turbine strings; install 1.2 km of underground communication and transmission lines from each turbine to a pad mount transformer; install 5.6 km of 24 kv wood pole transmission lines to deliver electricity from the pad mount transformers to the Project substation; install 3.2 km of 115 kv wood pole transmission lines to deliver electricity from the Project substation to the Public Utility District No. 1 of Klickitat County(PUD)115 kv Goldendale line; interconnect with the BPA transmission system through the Goldendale line and Goldendale substation owned by the PUD; reconstruct, upgrade, and maintain 8.0 km of existing roads; construct and maintain 6.4 km of new graveled roads along the turbine strings and to individual turbines; and install meteorological towers guyed with rebar anchors on the Project site.

  17. Offshore wind farms in the southwestern Baltic Sea: A model study of regional impacts on oxygen conditions

    NASA Astrophysics Data System (ADS)

    Janßen, Holger; Schröder, Toni; Zettler, Michael L.; Pollehne, Falk

    2015-01-01

    Offshore wind farm piles are secondary hard substrate and hence an attractive colonization surface for many species. Especially in marine areas dominated by soft sediments, wind farms may lead to a significant increase in biomass by enlarging habitats from benthos layers into the pelagic column. A concomitant effect is the increase in oxygen consumption through respiration of living biomass and especially through degradation of dead biomass, mainly Mytilus edulis. This leads to impacts on the regional oxygen budget, and local anoxia in the direct vicinity of wind farm piles has been documented in scientific literature. The present study investigates the regional impact of multiple wind farms on oxygen concentration levels and on the appearance of hypoxia. A five-year data sampling with a steel cylinder and fouling plates delivered data for a 3D ecosystem model. The results show that wind farms do not lead to a significant decrease in oxygen on the mesoscale level. But additional anoxia may occur locally, which may lead to the release of hydrogen sulfide on microscale level and potential subsequent regional impacts.

  18. Turbulent transport in the atmospheric boundary layer with application to wind farm dynamics

    NASA Astrophysics Data System (ADS)

    Waggy, Scott B.

    With the recent push for renewable energy sources, wind energy has emerged as a candidate to replace some of the power produced by traditional fossil fuels. Recent studies, however, have indicated that wind farms may have a direct effect on local meteorology by transporting water vapor away from the Earth's surface. Such turbulent transport could result in an increased drying of soil, and, in turn, negatively affect the productivity of land in the wind farm's immediate vicinity. This numerical study will analyze four scenarios with the goal of understanding turbulence transport in the wake of a turbine: the neutrally-stratified boundary layer with system rotation, the unstably-stratified atmospheric boundary layer, and wind turbine simulations of these previous two cases. For this work, the Ekman layer is used as an approximation of the atmospheric boundary layer and the governing equations are solved using a fully-parallelized direct numerical simulation (DNS). The in-depth studies of the neutrally and unstably-stratified boundary layers without introducing wind farm effects will act to provide a concrete background for the final study concerning turbulent transport due to turbine wakes. Although neutral stratification rarely occurs in the atmospheric boundary layer, it is useful to study the turbulent Ekman layer under such conditions as it provides a limiting case when unstable or stable stratification are weak. In this work, a thorough analysis was completed including turbulent statistics, velocity and pressure autocorrelations, and a calculation of the full turbulent energy budget. The unstably-stratified atmospheric boundary layer was studied under two levels of heating: moderate and vigorous. Under moderate stratification, both buoyancy and shearing contribute significantly to the turbulent dynamics. As the level of stratification increases, the role of shearing is shown to diminish and is confined to the near-wall region only. A recent, multi

  19. Developing Interpretive Turbulence Models from a Database with Applications to Wind Farms and Shipboard Operations

    NASA Astrophysics Data System (ADS)

    Schau, Kyle A.

    This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Karman model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering.

  20. Mean Kinetic Energy Budget of Wakes Within Model Wind Farms: Comparison of an Array of Model Wind Turbines and Porous Discs

    NASA Astrophysics Data System (ADS)

    Camp, E.; Cal, R. B.

    2015-12-01

    To optimize the power production of large wind farms, it is important to understand the flow within the wind turbine array as well as its interaction with the surrounding atmosphere. Computational simulations are often employed to study both the velocity field within and immediately above wind farms. In many computational studies, wind turbines are modeled as stationary, porous actuator discs. A wind tunnel study is done in order to compare the wakes within an array of porous discs and an equivalent array of model wind turbines. To characterize the wakes within a 4×3 model wind farm, stereoscopic particle image velocimetry (SPIV) is employed. SPIV measurements focus on the region along the centerline of the array upstream and downstream of the center turbine in the fourth row. The computed mean flow fields and turbulent stresses provide a basis to compare the near and far wakes of the turbines with those of the porous discs. The detailed analysis of the wakes for each case focus on the mean kinetic energy budget within the wakes. Examining the mean kinetic energy budget is done via computing the mean kinetic energy, flux of kinetic energy, and production of turbulence which are analogous to a measure of extracted power.

  1. Fish schooling as a basis for vertical axis wind turbine farm design.

    PubMed

    Whittlesey, Robert W; Liska, Sebastian; Dabiri, John O

    2010-09-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighboring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbors, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16 x 16 wind turbines. The results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs. PMID:20729568

  2. Long term estimations of low frequency noise levels over water from an off-shore wind farm.

    PubMed

    Bolin, Karl; Almgren, Martin; Ohlsson, Esbjörn; Karasalo, Ilkka

    2014-03-01

    This article focuses on computations of low frequency sound propagation from an off-shore wind farm. Two different methods for sound propagation calculations are combined with meteorological data for every 3 hours in the year 2010 to examine the varying noise levels at a reception point at 13 km distance. It is shown that sound propagation conditions play a vital role in the noise impact from the off-shore wind farm and ordinary assessment methods can become inaccurate at longer propagation distances over water. Therefore, this paper suggests that methodologies to calculate noise immission with realistic sound speed profiles need to be combined with meteorological data over extended time periods to evaluate the impact of low frequency noise from modern off-shore wind farms. PMID:24606254

  3. Individual reactions to a multisensory immersive virtual environment: the impact of a wind farm on individuals.

    PubMed

    Ruotolo, Francesco; Senese, Vincenzo Paolo; Ruggiero, Gennaro; Maffei, Luigi; Masullo, Massimiliano; Iachini, Tina

    2012-08-01

    The aim of this study was to assess the impact of a wind farm on individuals by means of an audio-visual methodology that tried to simulate biologically plausible individual-environment interactions. To disentangle the effects of auditory and visual components on cognitive performances and subjective evaluations, unimodal (Audio or Video) and bimodal (Audio + Video) approaches were compared. Participants were assigned to three experimental conditions that reproduced a wind farm by means of an immersive virtual reality system: bimodal condition, reproducing scenarios with both acoustic and visual stimuli; unimodal visual condition, with only visual stimuli; unimodal auditory condition, with only auditory stimuli. While immersed in the virtual scenarios, participants performed tasks assessing verbal fluency, short-term verbal memory, backward counting, and distance estimations (egocentric: how far is the turbine from you?; allocentric: how far is the turbine from the target?). Afterwards, participants reported their degree of visual and noise annoyance. The results revealed that the presence of a visual scenario as compared to the only availability of auditory stimuli may exert a negative effect on resource-demanding cognitive tasks but a positive effect on perceived noise annoyance. This supports the idea that humans perceive the environment holistically and that auditory and visual features are processed in close interaction. PMID:22806673

  4. Power output of offshore wind farms in relation to atmospheric stability

    NASA Astrophysics Data System (ADS)

    Alblas, Laurens; Bierbooms, Wim; Veldkamp, Dick

    2014-12-01

    Atmospheric stability is known to influence wind farm power output, by affecting power losses due to wakes. This research tries to answer what atmospheric stability does to the power production and how conventional simulations using the Jensen wake model compare and can be improved. Data is used from two offshore wind farms, Egmond aan Zee (OWEZ) and North Hoyle. Stability distributions are determined using metmast data. By combining this data with the production data, the influence of stability on the power output is studied. It is found that very unstable conditions result in higher power output (i.e. smaller wake losses) than near-neutral conditions, and these again show higher power output than during very stable conditions. Differences in normalized power output of 10-20% exist between the very unstable and very stable conditions. Simulations can be improved by adapting the wake decay constant (WDC). Observed WDC values are k >= TI, as opposed to the conventional k ≈ 0.5TI. A hypothesis for further research is proposed regarding the influence of vertical turbulence.

  5. Community investment in wind farms: funding structure effects in wind energy infrastructure development.

    PubMed

    Beery, Joshua A; Day, Jennifer E

    2015-03-01

    Wind energy development is an increasingly popular form of renewable energy infrastructure in rural areas. Communities generally perceive socioeconomic benefits accrue and that community funding structures are preferable to corporate structures, yet lack supporting quantitative data to inform energy policy. This study uses the Everpower wind development, to be located in Midwestern Ohio, as a hypothetical modeling environment to identify and examine socioeconomic impact trends arising from corporate, community and diversified funding structures. Analysis of five National Renewable Energy Laboratory Jobs and Economic Development Impact models incorporating local economic data and review of relevant literature were conducted. The findings suggest that community and diversified funding structures exhibit 40-100% higher socioeconomic impact levels than corporate structures. Prioritization of funding sources and retention of federal tax incentives were identified as key elements. The incorporation of local shares was found to mitigate the negative effects of foreign private equity, local debt financing increased economic output and opportunities for private equity investment were identified. The results provide the groundwork for energy policies focused to maximize socioeconomic impacts while creating opportunities for inclusive economic participation and improved social acceptance levels fundamental to the deployment of renewable energy technology. PMID:25621885

  6. Laboratory modelling of resonant wave-current interaction in the vicinity wind farm masts

    NASA Astrophysics Data System (ADS)

    Gunnoo, Hans; Abcha, Nizar; Garcia-Hermosa, Maria-Isabel; Ezersky, Alexander

    2015-04-01

    In the nearest future, by 2020, about 4% of electricity in Europe will be supplied by sea stations operating from renewable sources: ocean thermal energy, wave and tidal energy, wind farms. By now the wind stations located in the coastal zone, provide the most part of electricity in different European countries. Meanwhile, effects of wind farms on the environment are not sufficiently studied. We report results of laboratory simulations aimed at investigation of hydrodynamic fields arising in the vicinity of wind farm masts under the action of currents and surface waves. The main attention is paid to modeling the resonance effects when the amplitude of velocity pulsations in the vicinity of the masts under the joint action of currents and harmonic waves demonstrate significant growth. This resonance can lead to an increase in Reynolds stress on the bottom, intensification of sediment transport and sound generation. The experiments are performed in the 17 meters hydrodynamical channel of laboratory Morphodynamique Continentale et Côtière UMR CNRS 6143. Mast are modeled by vertical cylinder placed in a steady flow. Behind the cylinder turbulent Karman vortex street occurs. Results are obtained in interval of Reynolds numbers Re=103 - 104(Re=Ud/v, where U is the velocity of the flow, d is diameter of the cylinder, ν is cinematic viscosity). Harmonic surface waves of small amplitude propagating upstream are excited by computer controlled wave maker. In the absence of surface waves, turbulent Karman street with averaged frequency f is observed. It is revealed experimentally that harmonic surface waves with a frequencies closed to 2f can synchronize vortex shedding and increase the amplitude of velocity fluctuations in the wake of the cylinder. Map of regimes is found on the parameter plane amplitude of the surface wave - wave frequency. In order to distinguish the synchronization regimes, we defined phase of oscillations using the Hilbert transform technique. We

  7. Impact hypothesis for offshore wind farms: Explanatory models for species distribution at extremely exposed rocky areas

    NASA Astrophysics Data System (ADS)

    Schläppy, Marie-Lise; Šaškov, Aleksej; Dahlgren, Thomas G.

    2014-07-01

    The increasing need for renewable and clean energy production is likely to result in a diversification of locations for the implementation of offshore wind farms which have been so far predominantly sited on soft substrata. In contrast, offshore wind turbines placed on rocky reefs in highly exposed areas are much less common and the impacts on local flora and fauna can only be hypothesized. On the Western coast of Norway, a rocky reef with a highly complex topography has been chosen to be the first full-scale offshore wind farm in the country. Underwater video analyses and multibeam bathymetry data with a generalized linear model were used opportunistically to investigate the influence of geomorphic explanatory variables on the occurrence of selected taxa (algae, sea urchins and sea stars) identified in the study area. Combining video observations and multibeam bathymetry in a generalized linear model revealed that the geomorphic descriptors: aspect, slope, rugosity, and benthic position indexes (BPI), were of significance for algae, sea urchins and sea stars at Havsul and served in showing their habitat preferences. Kelp occurred in areas of high rugosity, on gentle slopes, at elevated areas with a southerly orientation and on the sheltered side of rock or bedrock. Thus, construction disturbance that modify those variables may lead to a change in the area preferred by kelp. Turbines that shade southerly aspects may affect small kelp plants in reducing their available habitat. Sea urchins were more abundant on steep slopes and both sea stars and sea urchins showed a preference for a complex local relief (high rugosity) and heterogeneity in fine and broad elevation (shown by BPI). Thus, foundations and cable route preparation may significantly change the slope, rugosity of BPI broad, which will change the basis for sea urchin populations. It may likewise significantly change the rugosity or BPI (fine or broad), which may change the distribution of sea stars. The

  8. Damage estimates from long-term structural analysis of a wind turbine in a US wind farm environment

    SciTech Connect

    Kelley, N.D.; Sutherland, H.J.

    1996-10-01

    Time-domain simulations of the loads on wind energy conversion systems have been hampered in the past by the relatively long computational times for nonlinear structural analysis codes. However, recent advances in both the level of sophistication and computational efficiency of available computer hardware and the codes themselves now permit long-term simulations to be conducted in reasonable times. Thus, these codes provide a unique capability to evaluate the spectral content of the fatigue loads on a turbine. To demonstrate these capabilities, a Micon 65/13 turbine is analyzed using the YawDyn and the ADAMS dynamic analysis codes. The SNLWIND-3D simulator and measured boundary conditions are used to simulate the inflow environment that can be expected during a single, 24-hour period by a turbine residing in Row 41 of a wind farm located in San Gorgonio Pass, California. Also, long-term simulations (up to 8 hours of simulated time) with constant average inflow velocities are used to better define the characteristics of the fatigue load on the turbine. Damage calculations, using the LIFE2 fatigue analysis code and the MSU/DOE fatigue data base for composite materials, are then used to determine minimum simulation times for consistent estimates of service lifetimes.

  9. Effects of offshore wind farms on marine wildlife—a generalized impact assessment

    NASA Astrophysics Data System (ADS)

    Bergström, Lena; Kautsky, Lena; Malm, Torleif; Rosenberg, Rutger; Wahlberg, Magnus; Åstrand Capetillo, Nastassja; Wilhelmsson, Dan

    2014-03-01

    Marine management plans over the world express high expectations to the development of offshore wind energy. This would obviously contribute to renewable energy production, but potential conflicts with other usages of the marine landscape, as well as conservation interests, are evident. The present study synthesizes the current state of understanding on the effects of offshore wind farms on marine wildlife, in order to identify general versus local conclusions in published studies. The results were translated into a generalized impact assessment for coastal waters in Sweden, which covers a range of salinity conditions from marine to nearly fresh waters. Hence, the conclusions are potentially applicable to marine planning situations in various aquatic ecosystems. The assessment considered impact with respect to temporal and spatial extent of the pressure, effect within each ecosystem component, and level of certainty. Research on the environmental effects of offshore wind farms has gone through a rapid maturation and learning process, with the bulk of knowledge being developed within the past ten years. The studies showed a high level of consensus with respect to the construction phase, indicating that potential impacts on marine life should be carefully considered in marine spatial planning. Potential impacts during the operational phase were more locally variable, and could be either negative or positive depending on biological conditions as well as prevailing management goals. There was paucity in studies on cumulative impacts and long-term effects on the food web, as well as on combined effects with other human activities, such as the fisheries. These aspects remain key open issues for a sustainable marine spatial planning.

  10. Offshore Wind Farms in the North Sea: Is there an effect on the zooplankton community?

    NASA Astrophysics Data System (ADS)

    Auch, Dominik; Dudeck, Tim; Callies, Ulrich; Riethmüller, Rolf; Hufnagl, Marc; Eckhardt, André; Ove Möller, Klas; Haas, Bianca; Spreitzenbarth, Stefan; van Beusekom, Justus; Walter, Bettina; Temming, Axel; Möllmann, Christian; Floeter, Jens

    2016-04-01

    The climate conference in Paris 2015 has resulted in ambitious goals to mitigate the extent of global climate warming within this century. In Germany, the expansion of renewable energy sources is without any alternative to match the own aims of greenhouse gas reductions. Therefore, in the German EEZ of the North Sea around 10 offshore wind farms (OWFs) are already working and more are currently planned or already under construction. At this already substantial level of offshore wind energy production little is known about the effects of OWFs on the pelagic ecosystem. Earlier investigations have shown an increase of benthic organisms settling on hard substrates provided by the power plant foundations. However, the effects of offshore power plants on lower trophic level organisms within the water column are poorly understood. Thus, we investigated the abundance and distribution of zooplankton within and around OWFs. The analysis was based on optical data derived from a Video Plankton Recorder (VPR). The VPR was mounted on a TRIAXUS system including a suite of different sensors, hence allowing to combine zooplankton information with ambient hydrographic parameters. The combination of the VPR and the TRIAXUS system enabled us to analyse continuous zooplankton and hydrographic data with a high spatial resolution. In this study, we present results of transects through the OWFs Global Tech I, BARD Offshore 1, and Alpha Ventus. The analysis exhibits distinct pattern in the spatial distribution both of physical state variables and of plankton organisms within the vicinity of OWFs, especially of meroplankton, the larval phase of benthic organisms. Keywords: Offshore Wind Farms, Zooplankton, TRIAXUS, Video Plankton Recorder, Meroplankton Corresponding author: Dominik Auch, Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767 Hamburg, Germany; auch.dominik@web.de

  11. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    NASA Astrophysics Data System (ADS)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  12. ANEMOS: Development of a next generation wind power forecasting system for the large-scale integration of onshore and offshore wind farms.

    NASA Astrophysics Data System (ADS)

    Kariniotakis, G.; Anemos Team

    2003-04-01

    Objectives: Accurate forecasting of the wind energy production up to two days ahead is recognized as a major contribution for reliable large-scale wind power integration. Especially, in a liberalized electricity market, prediction tools enhance the position of wind energy compared to other forms of dispatchable generation. ANEMOS, is a new 3.5 years R&D project supported by the European Commission, that resembles research organizations and end-users with an important experience on the domain. The project aims to develop advanced forecasting models that will substantially outperform current methods. Emphasis is given to situations like complex terrain, extreme weather conditions, as well as to offshore prediction for which no specific tools currently exist. The prediction models will be implemented in a software platform and installed for online operation at onshore and offshore wind farms by the end-users participating in the project. Approach: The paper presents the methodology of the project. Initially, the prediction requirements are identified according to the profiles of the end-users. The project develops prediction models based on both a physical and an alternative statistical approach. Research on physical models gives emphasis to techniques for use in complex terrain and the development of prediction tools based on CFD techniques, advanced model output statistics or high-resolution meteorological information. Statistical models (i.e. based on artificial intelligence) are developed for downscaling, power curve representation, upscaling for prediction at regional or national level, etc. A benchmarking process is set-up to evaluate the performance of the developed models and to compare them with existing ones using a number of case studies. The synergy between statistical and physical approaches is examined to identify promising areas for further improvement of forecasting accuracy. Appropriate physical and statistical prediction models are also developed for

  13. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect

    Churchfield, M. J.

    2013-06-01

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  14. Proposed Columbia Wind Farm No. 1 : Draft Environmental Impact Statement, Joint NEPA/SEPA.

    SciTech Connect

    United States. Bonneville Power Administration; Klickitat County

    1995-03-01

    This Draft Environmental Impact Statement (DEIS) addresses the Columbia Wind Farm {number_sign}1 (Project) proposal for construction and operation of a 25 megawatt (MW) wind power project in the Columbia Hills area southeast of Goldendale in Klickitat County, Washington. The Project would be constructed on private land by Conservation and Renewable Energy System (CARES) (the Applicant). An Environmental Impact Statement is required under both NEPA and SEPA guidelines and is issued under Section 102 (2) (C) of the National Environmental Policy Act (NEPA) at 42 U.S.C. 4321 et seq and under the Washington State Environmental Policy Act (SEPA) as provided by RCW 43.21C.030 (2) (c). Bonneville Power Administration is the NEPA lead agency; Klickitat County is the nominal SEPA lead agency and CARES is the SEPA co-lead agency for this DEIS. The Project site is approximately 395 hectares (975 acres) in size. The Proposed Action would include approximately 91 model AWT-26 wind turbines. Under the No Action Alternative, the Project would not be constructed and existing grazing and agricultural activities on the site would continue.

  15. Fluid power network for centralized electricity generation in offshore wind farms

    NASA Astrophysics Data System (ADS)

    Jarquin-Laguna, A.

    2014-06-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network.

  16. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  17. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    SciTech Connect

    Naughton, Brian Thomas; Herges, Thomas

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  18. Investigating the influences of two position (non-staggered and staggered) of wind turbine arrays to produce power in a wind farm

    NASA Astrophysics Data System (ADS)

    Ismail, Kamal, Samsul; Purnomo, Sarjiya

    2016-06-01

    This investigation was conducted to identify the influences of the two positions (non-staggered and staggered) of wind turbine arrays. Identification on down-scaled size wind turbine arrays was carried out in an open circuit, suction-type wind tunnel. Based on the results of the experiment, empirical relations for the centreline velocity deficit, tipline velocity deficit and wake radius are proposed. The non-staggered position results are larger power generated than that of the staggered position, this influenced by the trend deficit in velocity that makes wind turbine generated power difference between staggered position and non-stagger position. The area used non-staggered position larger than staggered position. Result staggered position has become one of the solutions to harness wind farms confined areas.

  19. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas

    NASA Astrophysics Data System (ADS)

    Cazenave, Pierre William; Torres, Ricardo; Allen, J. Icarus

    2016-06-01

    Shelf seas comprise approximately 7% of the world's oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometre-scale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

  20. Integration of offshore wind farms through high voltage direct current networks

    NASA Astrophysics Data System (ADS)

    Livermore, Luke

    The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared..

  1. An ideal limit for the performance of a large, fully-developed wind farm

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, P.; Caulfield, C. P.

    2014-11-01

    Wind turbines are often deployed in arrays of hundreds of units, where interactions lead to drastic losses in power output. Remarkably, while the theoretical ``Betz'' maximum has long been established for the output of a single turbine, no corresponding theory appears to exist for a generic, large-scale energy extraction system, although models exist for specific turbine designs and layouts. Recent work with vertical-axis turbines indicates that large performance gains may be achievable (Dabiri 2011), making the search for a theoretical upper bound even more compelling. We develop a model for an array of energy-extraction devices of arbitrary design and layout, first focusing on the fully-developed regime. When tailoring the model to reflect current designs, the predicted power output is in good agreement with field measurements. Furthermore, by considering a suitable ideal limit, we establish an upper bound on the performance of a large wind farm. This is found to be several times larger than the output of existing arrays, thus supporting the notion that performance improvements may be possible. Finally, we extend our model to include spatially developing flows, as well as to account for the effect of atmospheric stability, finding good agreement with laboratory and field data.

  2. Development of a Large Scale Field PIV System For Wake Measurement in a Wind Farm

    NASA Astrophysics Data System (ADS)

    Brock, Larry; Castillo, Luciano; Sheng, Jian

    2014-11-01

    Efficient utilization of wind energy requires detailed field measurements. Conventional techniques such as LIDAR and sonic anemometers can only provide low resolution point-wise measurement. Particle Image Velocimetry (PIV) is widely used in laboratory scale studies, however, has considerable difficulties for application in the field. The issues mainly arise due to the presence of background sunlight and the requirement of a large seeding volume. To address these issues, a novel, large-format, field PIV system is developed in this study. The PIV system is capable of measuring 2D velocity in a 1 m × 1 m field of view with 0.2 mm spatial resolution and 7.6 mm vector spacing. The instrument achieves a three-decade measurement range, which enables the quantification of wide spectrum of wake structures as well as those in ABL. It can be applied to assess inflow conditions and to identify coherent structures in turbine wakes. The paper will present the principle of measurement and the development of optical, electrical and mechanical systems, as well as the preliminary measurement in an experimental wind farm.

  3. Analysis of Debris Trajectories at the Scaled Wind Farm Technology (SWiFT) Facility

    SciTech Connect

    White, Jonathan R.; Burnett, Damon J.

    2016-01-01

    Sandia National Laboratories operates the Scaled Wind Farm Technology Facility (SWiFT) on behalf of the Department of Energy Wind and Water Power Technologies Office. An analysis was performed to evaluate the hazards associated with debris thrown from one of SWiFT’s operating wind turbines, assuming a catastrophic failure. A Monte Carlo analysis was conducted to assess the complex variable space associated with debris throw hazards that included wind speed, wind direction, azimuth and pitch angles of the blade, and percentage of the blade that was separated. In addition, a set of high fidelity explicit dynamic finite element simulations were performed to determine the threshold impact energy envelope for the turbine control building located on-site. Assuming that all of the layered, independent, passive and active engineered safety systems and administrative procedures failed (a 100% failure rate of the safety systems), the likelihood of the control building being struck was calculated to be less than 5/10,000 and ballistic simulations showed that the control building would not provide passive protection for the majority of impact scenarios. Although options exist to improve the ballistic resistance of the control building, the recommendation is not to pursue them because there is a low probability of strike and there is an equal likelihood personnel could be located at similar distances in other areas of the SWiFT facility which are not passively protected, while the turbines are operating. A fenced exclusion area has been created around the turbines which restricts access to the boundary of the 1/100 strike probability. The overall recommendation is to neither relocate nor improve passive protection of the control building as the turbine safety systems have been improved to have no less than two independent, redundant, high quality engineered safety systems. Considering this, in combination with a control building strike probability of less than 5/10,000, the

  4. Vegetation, soil property and climatic controls over greenhouse gas fluxes in a blanket peatland hosting a wind farm

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Waldron, Susan; Ostle, Nick; Whitaker, Jeanette

    2013-04-01

    Peatlands are important carbon (C) stores, with boreal and subarctic peatlands containing 15-30 % of the world soil carbon stock (Limpens et al., 2008). Research has demonstrated that greenhouse gas (GHG) fluxes in peatlands are influenced by vegetation, soil property and climatic variables, including plant functional type (PFT), water table height and temperature. In this paper we present data from Black Law Wind Farm, Scotland, where we examined the effect of a predicted wind turbine-induced microclimatic gradient and PFT on carbon dioxide (CO2) and methane (CH4) fluxes. Moreover, we determined the role of vegetation, soil property and climatic variables as predictors of the variation in CO2 and CH4 emissions. We measured CO2 and CH4 at 48 plots within Black Law Wind Farm at monthly intervals from May 2011 to April 2012. Four sampling sites were located along a predicted wind turbine-induced microclimatic gradient. At each site four blocks were established, each with plots in areas dominated by mosses, sedges and shrubs. Plant biomass and PFT (vegetation factors); soil moisture, water table height, peat depth, C content, nitrogen (N) content and C:N (soil properties); and soil temperature and photosynthetically active radiation (PAR) (climatic variables) were measured. Analysis of variance (ANOVA) models based on the microclimatic gradient site, PFT and season when measurements were made explained 58 %, 44 % and 49 % of the variation in ecosystem respiration, photosynthesis and CH4, respectively. Site, PFT, season and their interactions were all significant for respiration and photosynthesis (with the exception of the PFT*site interaction) but for CH4 only the main effects were significant. Parsimonious ANOVA models using the biotic, soil property and climatic explanatory data explained 62 %, 55 % and 49 % of the variation in respiration, photosynthesis and CH4, respectively. Published studies (Baidya Roy and Traiteur 2010; Zhou et al., 2012) and preliminary

  5. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    NASA Astrophysics Data System (ADS)

    Tobin, Isabelle; Jerez, Sonia; Vautard, Robert; Thais, Françoise; van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Fox Maule, Cathrine; Nikulin, Grigory; Noël, Thomas; Teichmann, Claas

    2016-03-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.

  6. Case study of preliminary cyclic load evaluation and triaxial soil testing in offshore wind farm planning

    NASA Astrophysics Data System (ADS)

    Otto, Daniel; Ossig, Benjamin; Kreiter, Stefan; Kouery, Saed; Moerz, Tobias

    2010-05-01

    In 2020 Germany aims to produce 20% of its electrical power trough renewable energy sources. Assigned Offshore Wind farms in the German exclusive economic zone of the North- and the Baltic Sea are important step toward a fulfilment of this goal. However the save erecting of 5-6 MW wind power plants (total construction size: > 200m) in water depth of around 40 m is related to unprecedented technical, logistical and financial challenges. With an intended lifetime expectation of 50 years for the foundations, construction materials and the soils around the foundation are subject to high and continued stresses from self-weight, waves, wind and current. These stresses are not only static, but have also a significant cyclic component. An estimated 250 million cyclic load changes may lead to an accumulation of plastic deformation in the soil that potentially may affect operability or lifespan of the plant. During a preliminary geotechnical site survey of one of the largest (~150 km2) offshore wind project sites within the German Bight (~45 km North off the island Juist) a total of 16 drill cores with in situ cone penetration data and a total sample length of ~800 m where recovered. Preliminary foundation designs and static self weight and lateral load calculations were used to design a cycling triaxial lab testing program on discrete natural soil samples. Individual tests were performed by foundation type and at vertical and lateral load maxima to evaluate the long-term soil behaviour under cyclic load. Tests have been performed on granular, cohesive and intermediate natural soils. Following an introduction to the unique MARUM triaxial apparatus and testing conditions, the cyclic triaxial test results are shown and explained. Furthermore cyclic shear strength and stiffness are compared to their static counterparts. Unique soil behaviour like abrupt partial failure, pore pressure response and unexpected in part load independent cyclic deformation behaviour is discussed and

  7. Effect of Derating and Shutting Down of Turbines on the Extracted Power of Large Wind Farms in Thermally-Stratified Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Adkins, K. A.

    2015-12-01

    Wind power is being increasingly employed to help meet an increasing energy demand in a more environmentally friendly manner and, consequently, large wind farms consisting of thousands of turbines have been constructed and deployed in various areas. Due to a multitude of factors, the layout of these multi-turbine arrays is not always optimized for maximum wind farm power extraction. Additionally, the shutting down or derating of certain wind turbines may impact the efficiency of large wind farms. In this study, a large eddy simulation (LES) of a fully developed wind turbine array boundary layer is performed in thermally stratified conditions. The impact on the overall plant performance, quantified by the collective extracted power of the turbines, is explored using a systematic shut down and derating of selected turbines.

  8. In situ observations of suspended particulate matter plumes at an offshore wind farm, southern North Sea

    NASA Astrophysics Data System (ADS)

    Baeye, Matthias; Fettweis, Michael

    2015-08-01

    Suspended particulate matter (SPM) plumes associated with the monopile foundations of the Belgian offshore wind farm (OWF) Belwind I were acoustically profiled by means of a Doppler current profiler (ADCP). Together with the analysis of a bottom lander dataset of optical and acoustic backscatter sensors (OBSs and ADPs respectively), the spatiotemporal SPM plume dynamics were inferred. The fieldwork comprised (1) near-bed measurements of hydrodynamics and SPM concentrations in the direct vicinity of the wind turbines, by means of a bottom lander over a spring-neap cycle in May 2010; this dataset represents a typically tide-driven situation because there was no significant meteorological forcing during the measurement period; (2) additional vessel-based measurements conducted in May 2013 to capture the SPM plumes inside and outside the OWF over part of a tidal cycle. Both in situ datasets revealed that the SPM plumes were generated at the turbine piles, consistent with aerial and space-borne imagery. The SPM plumes are well aligned with the tidal current direction in the wake of the monopiles, concentrations being estimated to reach up to 5 times that of the background concentration of about 3 mg/l. It is suggested that the epifaunal communities colonizing the monopile surface and the protective rock collar at the base play a key role as source of the suspended matter recorded in the plumes. The organisms filter and trap fine SPM from the water column, resulting in predominant accumulation of SPM, including detritus and (pseudo-) faeces, at the base of the piles. When tidal currents exceed a certain velocity, fine particles in the near-bed fluff layer are re-suspended and transported downstream in the wake of the piles.

  9. Large-eddy Simulation of Atmospheric Boundary-layer Flow through a Wind Farm Sited on Complex Terrain

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2015-04-01

    In this work, the performance of a wind farm situated on a hilly terrain is studied using large-eddy simulation and especial attention is paid to the effect of the topography on the wake flow characteristics. To this end, first, boundary-layer flow is simulated over a two-dimensional hill and the corresponding mean and instantaneous flow-field is captured. Subsequently, flow simulation through a wind farm, consisting of five horizontal-axis wind turbines, sited over the same hill in an aligned layout is performed and the resulting flow characteristics are compared with the former case, i.e., the case without wind turbines. To assess the validity of the simulations, the calculated results are compared with the measurements carried out by Tian et al. (2013) in the aerodynamic/atmospheric boundary layer wind tunnel of Iowa State University. The agreement between the simulation and experimental results is good in terms of mean velocity and turbulence intensity profiles at different streamwise positions.

  10. Population ecology of American marten in New Hampshire: Impact of wind farm development in high elevation habitat

    NASA Astrophysics Data System (ADS)

    Siren, Alexej Peder Kelly

    This study examined marten ecology relative to wind farm development using radio-marked marten, camera trapping, and snow track surveys to meet study objectives. The local population was mostly breeding adults and was considered near carrying capacity. Mortality (predation) was biased towards females and young. Seasonal home ranges were small overall, and largest during summer and when marten used more regenerating and softwood forest. Selection at the landscape scale was more pronounced than at the stand scale; regenerating forest was selected against year-round. Stand selection for mature mixed-wood and softwood occurred in winter. Disturbance from wind farm construction resulted in less use and periodic displacement of marten, although marten maintained presence in the study area. Winter access by competitor canids was enhanced by maintained roads and snowmobile trails at high elevation. A balanced approach is encouraged to minimize developmental impacts in prime, high elevation habitat of recovering marten populations.

  11. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-11-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  12. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  13. Examples of the Influence of Turbine Wakes on Downwind Power Output, Surface Wind Speed, Turbulence and Flow Convergence in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.

    2014-12-01

    We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX

  14. Assessing trophic linkages in and around offshore wind farms using two high-speed optical sensors

    NASA Astrophysics Data System (ADS)

    Dudeck, Tim; Hufnagl, Marc; Auch, Dominik; Eckhardt, André; Möller, Klas-Ove; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian; Floeter, Jens

    2016-04-01

    In search for clean, renewable energy sources European countries have built and planned numerous Offshore Wind Farms (OWF) in the North Sea region. While some research has been carried out on their influence on marine mammals and bottom-dwelling organisms, less is known about fish and lower trophic levels in these areas. Yet, marine mammals purposely seek these structures and there are indications that there are higher chances of fish encounters. However, the local bottom-up effects probably driving these aggregations of higher trophic level organisms are poorly understood. In this study we show preliminary results of primary and secondary production in and around German OWFs in the North Sea using a Laser Optical Particle Counter and a Video Plankton Recorder. With the two sensors working simultaneously on the TRIAXUS system at high speed, we were able to investigate and ground-truth size-spectrum changes on a very high spatial resolution making it possible to detect OWF effects from local to larger scales. Our results show new possibilities in OWF research and the necessity to collect highly resolved field data for meaningful results in these dynamic environments. Furthermore, the use of size spectra simplifies the integration of energy flow through low and medium trophic levels into biogeochemical models by using only a single automatically measurable variable such as size.

  15. Cape Blanco Wind Farm Feasibility Study : Technical Report, No. 3. Geotechnical.

    SciTech Connect

    United States. Bonneville Power Administration.

    1986-04-01

    This preliminary geotechnical investigation of the proposed Cape Blanco Wind Farm site was directed towards the identification and evaluation of significant geologic features, so that a preliminary evaluation could be made of the project feasibility. To accomplish this, two borings were drilled, preliminary geologic reconnaissances were made, and available geologic and geotechnical literature relating to the project area was researched. Preliminary observations and conclusions are presented. The site under evaluation consists of 1600 acres located immediately south of Cape Blanco on the southern Oregon Coast. The project as presently envisioned would have a total design capacity of as much as 80 megawatts. The explorations and research revealed that the site is underlain by variable thicknesses of soil sediments, such as sand, gravel and silt. Typical examples of these sediments are exposed in the very steep ocean-facing bluffs along the western edge of the site. The soils are underlain by sedimentary and volcanic rocks of the Otter Point Formation. This formation includes lithified sandstone, submarine basalt and sheared clay shales. The various geotechnical/geological conditions discussed in the report include: slope stability, foundation considerations, groundwater, earthquakes and earthquake-induced ocean waves, erosion, earthwork, and vibrations.

  16. Diel variation in feeding and movement patterns of juvenile Atlantic cod at offshore wind farms

    NASA Astrophysics Data System (ADS)

    Reubens, Jan T.; De Rijcke, Maarten; Degraer, Steven; Vincx, Magda

    2014-01-01

    Atlantic cod (Gadus morhua) is a commercially important fish species suffering from overexploitation in the North-East Atlantic. In recent years, their natural environment is being intensively altered by the construction of offshore wind farms in many coastal areas. These constructions form artificial reefs influencing local biodiversity and ecosystem functioning. It has been demonstrated that Atlantic cod is present in the vicinity of these constructions. However, empirical data concerning the diel activity and feeding behaviour of Atlantic cod in the vicinity of these artificial reefs is lacking. Atlantic cod has a flexible diel activity cycle linked to spatio-temporal variations in food availability and predation risk. In this study we integrated acoustic telemetry with stomach content analysis to quantify diel activity and evaluate diel feeding patterns at a windmill artificial reef (WAR) in the Belgian part of the North Sea. Atlantic cod exhibited crepuscular movements related to feeding activity; a 12 h cycle was found and the highest catch rates and stomach fullness were recorded close to sunset and sunrise. It is suggested that the observed diel movement pattern is related to the prey species community and to predation pressure. Foraging at low ambient light levels (i.e. at dusk and dawn) probably causes a trade-off between foraging success and reducing predation pressure. Fish did not leave the area in-between feeding periods. Hence other benefits (i.e. shelter against currents and predators) besides food availability stimulate the aggregation behaviour at the WARs.

  17. Real-time Environmental Monitoring from a Wind Farm Platform in the Texas Hypoxic Zone

    NASA Astrophysics Data System (ADS)

    Mullins, R. L.; Dimarco, S. F.; Walpert, J. N.; Guinasso, N. L.; Howard, M. K.

    2009-12-01

    Ocean observing systems (OOS) provide coastal managers with data for informed decision-making. OOS are designed to monitor oceanographic and atmospheric conditions from a variety of offshore platforms. In the summer of 2009, a multi-disciplinary system, the Galveston Instrument Garden for Environmental Monitoring (GIGEM), was deployed off the coast of Galveston, Texas (Location: 29o 08’ 29.654’’N, 94o 44’ 51.339’’W) to monitor coastal waters and provide real-time observations for investigating processes responsible for coastal Texas hypoxia. Hypoxia occurs in the Gulf of Mexico over the continental shelf and refers to low dissolved oxygen concentrations in the bottom waters caused by a combination of environmental and physical parameters. Events form rapidly, last for a few days to weeks, and commonly occur along the Louisiana and Texas coasts; however, little research has been conducted to investigate the processes responsible for Texas hypoxia formation. GIGEM was designed to study this problem by contributing real-time measurements to compare with historical coastal data series. Unlike most coastal OOS, GIGEM is installed on an experimental wind farm platform operated by Wind Energy System Technologies Inc. This platform is the first executed offshore wind energy lease in the United States. GIGEM is comprised of two components, the subsurface mooring and a nearby bottom package. The data telemetry system includes a unique design of underwater and surface inductive modems. GIGEM is the only coastal OOS currently collecting real-time environmental water quality measurements on the Texas shelf. The work presented describes: the obstacles and challenges associated with deploying GIGEM, the flow of information from the water column to the user, and how this type of OOS fulfills the societal goals for protecting coastal ecosystems and improving coastal weather and ocean predictions envisioned by the Integrated Ocean Observing System (IOOS). Data and

  18. Bats in a Mediterranean Mountainous Landscape: Does Wind Farm Repowering Induce Changes at Assemblage and Species Level?

    PubMed

    Ferri, Vincenzo; Battisti, Corrado; Soccini, Christiana

    2016-06-01

    We reported data on flying bat assemblages in a Mediterranean mountain landscape of central Italy on a 5-year time span (2005-2010) where a wind farm repowering has been carried out (from 2009, 17 three-blade turbines substituted an a priori set of one-blade turbines). In 4 yearly based surveys, we calculated a set of univariate metrics at species and assemblage level and also performing a diversity/dominance analysis (k-dominance plots) to evaluate temporal changes. Nine species of bats were present (eight classified at species level, one at genus level). Number of detected taxa, Margalef richness, and Shannon-Wiener diversity apparently decreased between 2005-2007 (one-blade turbine period) and 2009-2010 (three-blade turbines period). We showed a weak temporal turnover only between 2007 and 2009. In k-dominance plots, the occurrence curves of the years before the new wind farming activity (2005 and 2007) were lower when compared to the curves related to the 2009 and 2010 years, suggesting an apparent stress at assemblage level in the second period (2009 and 2010). Myotis emarginatus and Pipistrellus pipistrellus significantly changed their relative frequency during the three-blade wind farming activity, supporting the hypothesis that some bats may be sensitive to repowering. Further research is necessary to confirm a possible sensitivity also for locally rare bats (Miniopterus schreibersii and Plecotus sp.). PMID:26952112

  19. Bats in a Mediterranean Mountainous Landscape: Does Wind Farm Repowering Induce Changes at Assemblage and Species Level?

    NASA Astrophysics Data System (ADS)

    Ferri, Vincenzo; Battisti, Corrado; Soccini, Christiana

    2016-06-01

    We reported data on flying bat assemblages in a Mediterranean mountain landscape of central Italy on a 5-year time span (2005-2010) where a wind farm repowering has been carried out (from 2009, 17 three-blade turbines substituted an a priori set of one-blade turbines). In 4 yearly based surveys, we calculated a set of univariate metrics at species and assemblage level and also performing a diversity/dominance analysis ( k-dominance plots) to evaluate temporal changes. Nine species of bats were present (eight classified at species level, one at genus level). Number of detected taxa, Margalef richness, and Shannon-Wiener diversity apparently decreased between 2005-2007 (one-blade turbine period) and 2009-2010 (three-blade turbines period). We showed a weak temporal turnover only between 2007 and 2009. In k-dominance plots, the occurrence curves of the years before the new wind farming activity (2005 and 2007) were lower when compared to the curves related to the 2009 and 2010 years, suggesting an apparent stress at assemblage level in the second period (2009 and 2010). Myotis emarginatus and Pipistrellus pipistrellus significantly changed their relative frequency during the three-blade wind farming activity, supporting the hypothesis that some bats may be sensitive to repowering. Further research is necessary to confirm a possible sensitivity also for locally rare bats ( Miniopterus schreibersii and Plecotus sp.).

  20. Framework for assessing impacts of pile-driving noise from offshore wind farm construction on a harbour seal population

    SciTech Connect

    Thompson, Paul M.; Hastie, Gordon D.; Nedwell, Jeremy; Barham, Richard; Brookes, Kate L.; Cordes, Line S.; Bailey, Helen; McLean, Nancy

    2013-11-15

    Offshore wind farm developments may impact protected marine mammal populations, requiring appropriate assessment under the EU Habitats Directive. We describe a framework developed to assess population level impacts of disturbance from piling noise on a protected harbour seal population in the vicinity of proposed wind farm developments in NE Scotland. Spatial patterns of seal distribution and received noise levels are integrated with available data on the potential impacts of noise to predict how many individuals are displaced or experience auditory injury. Expert judgement is used to link these impacts to changes in vital rates and applied to population models that compare population changes under baseline and construction scenarios over a 25 year period. We use published data and hypothetical piling scenarios to illustrate how the assessment framework has been used to support environmental assessments, explore the sensitivity of the framework to key assumptions, and discuss its potential application to other populations of marine mammals. -- Highlights: • We develop a framework to support Appropriate Assessment for harbour seal populations. • We assessed potential impacts of wind farm construction noise. • Data on distribution of seals and noise were used to predict effects on individuals. • Expert judgement linked these impacts to vital rates to model population change. • We explore the sensitivity of the framework to key assumptions and uncertainties.

  1. Offshore wind farm flow measured by complementary remote sensing techniques: radar satellite TerraSAR-X and lidar windscanners

    NASA Astrophysics Data System (ADS)

    Schneemann, J.; Hieronimus, J.; Jacobsen, S.; Lehner, S.; Kühn, M.

    2015-06-01

    Scanning Doppler lidar systems offer continuous wind measurements with some kilometres of range and a spatial distribution of concurrent measurements down to some metres. The synthetic aperture radar (SAR) satellite TerraSAR-X is capable to cover offshore areas of hundreds of square kilometres and to obtain wind data spatially distributed with some tens of metres. Images can be taken up to twice a day when the satellite passes the measurement site. Simultaneous wind speed measurements with ground based scanning Doppler lidar and TerraSAR-X in the region of the offshore wind farm ”alpha ventus” in the German North Sea were collected. A comparison of both systems in free stream conditions is performed by extrapolating the lidardata to the measurement height of the radar satellite assuming a logarithmic wind profile. In wake conditions the wake tracks obtained by lidar and TerraSAR-X are compared. In free stream conditions the comparison reveals a mean absolute wind velocity difference ≤ 0.4 m/s in two of the four considered cases and 1.1 m/s in one case. The fourth case shows a bad agreement due to a unusually low radar backscatter in the satellite's measurement. In wake conditions the wind turbine wakes could be tracked in the lidar and the satellite data. The comparison for the considered case reveals similar wake tracks in principle, but no matching due to the time difference of the measurements and the lower spatial resolution of the radar measurements.

  2. How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context

    SciTech Connect

    Peste, Filipa; Paula, Anabela; Silva, Luís P. da; Bernardino, Joana; Pereira, Pedro; Mascarenhas, Miguel; Costa, Hugo; Vieira, José; Bastos, Carlos; Pereira, Maria João Ramos

    2015-02-15

    Wind energy is growing worldwide as a source of power generation. Bat assemblages may be negatively affected by wind farms due to the fatality of a significant number of individuals after colliding with the moving turbines or experiencing barotrauma. The implementation of wind farms should follow standard procedures to prevent such negative impacts: avoid, reduce and offset, in what is known as the mitigation hierarchy. According to this approach avoiding impacts is the priority, followed by the minimisation of the identified impacts, and finally, when residual negative impacts still remain, those must be offset or at least compensated. This paper presents a review on conservation measures for bats and presents some guidelines within the compensation scenario, focusing on negative impacts that remain after avoidance and minimisation measures. The conservation strategies presented aim at the improvement of the ecological conditions for the bat assemblage as a whole. While developed under the European context, the proposed measures are potentially applicable elsewhere, taking into consideration the specificity of each region in terms of bat assemblages present, landscape features and policy context regarding nature and biodiversity conservation and management. An analysis of potential opportunities and constraints arising from the implementation of offset/compensation programmes and gaps in the current knowledge is also considered. - Highlights: • Wind energy impacts bat populations in ways not yet fully understood. • As the use of windfarms is growing worldwide greater impacts on bat populations are also expected. • Mitigation hierarchy provides a way to reduce impacts from new wind farm facilities. • Compensation measures may be used to reduce the residual effects on bat populations. • Identify bats ecological needs and compensate according to the existing surroundings.

  3. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2016-08-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  4. The role of atmospheric stability/turbulence on wakes at the Egmond aan Zee offshore wind farm

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Churchfield, M. J.; Moriarty, P. J.; Lundquist, J. K.; Oxley, G. S.; Hahn, S.; Pryor, S. C.

    2015-06-01

    The aim of the paper is to present results from the NREL SOWFA project that compares simulations from models of different fidelity to meteorological and turbine data from the Egmond aan Zee wind farm. Initial results illustrate that wake behavior and impacts are strongly impacted by turbulence intensity [1]. This includes both power losses from wakes and loading illustrated by the out of plane bending moment. Here we focus on understanding the relationship between turbulence and atmospheric stability and whether power losses due to wakes can effectively be characterized by measures of turbulence alone or whether atmospheric stability as a whole plays a fundamental role in wake behavior. The study defines atmospheric stability using the Monin-Obukhov length estimated based on the temperature difference between 116 and 70 m. The data subset selected using this method for the calculation of the Monin-Obukhov length indicate little diurnal or directional dependence of the stability classes but a dominance of stable classes in the spring/unstable classes in fall and of near-neutral classes at high wind speeds (Figure 2). The analysis is complicated by the need to define turbulence intensity. We can select the ratio of the standard deviation of wind speed to mean wind speed in each observation period using data from the meteorological mast, in which case a substantial amount of data must be excluded due to the presence of the wind farm. An alternative is to use data from the wind turbines which could provide a larger data set for analysis. These approaches are examined and compared to illustrate their robustness. Finally, power losses from wakes are categorized according to stability and/or turbulence in order to understand their relative importance in determining the behavior of wind turbine wakes.

  5. Evaluation of surface energy and carbon fluxes within a large wind farm during the CWEX-10/11 Crop Wind-energy EXperiments

    NASA Astrophysics Data System (ADS)

    Rajewski, D. A.; Takle, E. S.; Prueger, J. H.; Oncley, S.; Horst, T. W.; Pfeiffer, R.; Hatfield, J.; Spoth, K. K.; Doorenbos, R.

    2012-12-01

    The Crop Wind-energy EXperiment conducted in summer 2010 (very moist conditions) and summer 2011 (abnormally dry) included measurements of wind speed, temperature, relative humidity, turbulence kinetic energy, H2O, and CO2 at stations north and south of a line of turbines at the southwest edge of a large-scale 200-turbine wind farm (prevailing wind from the south). In contrast to previous studies that have reported turbine influences on surface wind speed and temperature, this report focuses on scalar fluxes of heat, H2O, and CO2. From previous measurements in agricultural fields we recognize the importance of non-turbine factors in analysis of the flux differences: variability of soil characteristics, moisture content, crop cultivar, management practices, planting dates, etc., which can create differences in what looks like a uniform field of maize (corn). We conceptualize the influences of turbines at canopy height at a given location in the field to arise from (1) wakes of reduced wind speed and turbulence conditions different from ambient that intersect the surface, (2) wakes that are passing overhead and interrupt the ambient turbulence that scales with height, or (3) changes in static pressure upwind and downwind of lines of turbines that create small-scale pressure gradients, localized flows, and changes to the vertical exchange of scalar variables. The turbine SCADA wind speed and wind direction provided by the wind farm operator facilitated our comparison of surface fluxes upwind and downwind as wakes moved laterally throughout the day and night. We report multiple levels of evidence that wind turbines increase vertical exchange of carbon dioxide and water vapor over the canopy. Latent heat and carbon fluxes are responsive to slight changes in the turbine wake position, and the flux differences are maximized when the periphery of the wake edge is above the station. The flux stations north of the turbine line report a larger net ecosystem exchange

  6. Wind Farm Stabilization by using DFIG with Current Controlled Voltage Source Converters Taking Grid Codes into Consideration

    NASA Astrophysics Data System (ADS)

    Okedu, Kenneth Eloghene; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    Recent wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage is recovered. However, fixed speed wind turbine generator system using induction generator (IG) has the stability problem similar to the step-out phenomenon of a synchronous generator. On the other hand, doubly fed induction generator (DFIG) can control its real and reactive powers independently while being operated in variable speed mode. This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs, without incorporating additional FACTS devices. A new current controlled voltage source converter (CC-VSC) scheme is proposed to control the converters of DFIG and the performance is verified by comparing the results with those of voltage controlled voltage source converter (VC-VSC) scheme. Another salient feature of this study is to reduce the number of proportionate integral (PI) controllers used in the rotor side converter without degrading dynamic and transient performances. Moreover, DC-link protection scheme during grid fault can be omitted in the proposed scheme which reduces overall cost of the system. Extensive simulation analyses by using PSCAD/EMTDC are carried out to clarify the effectiveness of the proposed CC-VSC based control scheme of DFIGs.

  7. Turbulent Inflow Precursor Method with Time-Varying Direction for Large-Eddy Simulations and Applications to Wind Farms

    NASA Astrophysics Data System (ADS)

    Munters, Wim; Meneveau, Charles; Meyers, Johan

    2016-05-01

    A major challenge in turbulence-resolving flow simulations is the generation of unsteady and coherent turbulent inflow conditions. Precursor methods have proven to be reliable inflow generators but are limited in applicability and flexibility especially when attempting to couple boundary-layer dynamics with large-scale temporal variations in the direction of the inflow. Here, we propose a methodology that is capable of providing fully developed turbulent inflow for time-varying mean-flow directions. The method is a generalization of a concurrent precursor inflow technique, in which a fully developed boundary-layer simulation that uses periodic boundary conditions is dynamically rotated with the large-scale wind direction that drives the simulation in the domain of interest. The proposed inflow method is applied to large-eddy simulations of boundary-layer flow through the Horns Rev wind farm when subjected to a sinusoidal variation in wind direction at the hourly time scale.

  8. SAR observation and numerical modeling of tidal current wakes at the East China Sea offshore wind farm

    NASA Astrophysics Data System (ADS)

    Li, XiaoMing; Chi, Lequan; Chen, Xueen; Ren, YongZheng; Lehner, Susanne

    2014-08-01

    A TerraSAR-X (TS-X) Synthetic Aperture Radar (SAR) image acquired at the East China Sea offshore wind farm presents distinct wakes at a kilometer scale on the lee of the wind turbines. The presumption was that these wakes were caused by wind movement around turbine blades. However, wind analysis using spaceborne radiometer data, numerical weather prediction, and in situ measurements suggest that the prevailing wind direction did not align with the wakes. By analyzing measurement at the tidal gauge station and modeling of the tidal current field, these trailing wakes are interpreted to have formed when a strong tidal current impinged on the cylindrical monopiles of the wind turbines. A numerical simulation was further conducted to reproduce the tidal current wake under such conditions. Comparison of the simulated surface velocity in the wake region with the TS-X sea surface backscatter intensity shows a similar trend. Consequently, turbulence intensity (T.I.) of the tidal current wakes over multiple piles is studied using the TS-X observation. It is found that the T.I. has a logarithmic relation with distance. Furthermore, another case study showing wakes due to wind movement around turbine blades is presented to discuss the differences in the tidal current wakes and wind turbine wakes. The conclusion is drawn that small-scale wakes formed by interaction of the tidal current and the turbine piles could be also imaged by SAR when certain conditions are satisfied. The study is anticipated to draw more attentions to the impacts of offshore wind foundations on local hydrodynamic field.

  9. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    NASA Astrophysics Data System (ADS)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include

  10. Optimized solar-wind-powered drip irrigation for farming in developing countries

    NASA Astrophysics Data System (ADS)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  11. A forensic investigation into the etiology of bat mortality at a wind farm: barotrauma or traumatic injury?

    PubMed

    Rollins, K E; Meyerholz, D K; Johnson, G D; Capparella, A P; Loew, S S

    2012-03-01

    Migrating bats have increased mortality near moving turbine blades at wind farms. The authors evaluated competing hypotheses of barotrauma and traumatic injury to determine the cause. They first examined the utility of lungs from salvaged bat carcasses for histopathologic diagnosis of barotrauma and studied laboratory mice as a model system. Postmortem time, environmental temperature, and freezing of carcasses all affected the development of vascular congestion, hemorrhage, and edema. These common tissue artifacts mimicked the diagnostic criteria of pulmonary barotrauma; therefore, lung tissues from salvaged bats should not be used for barotrauma diagnosis. The authors next compared wind farm (WF) bats to building collision (BC) bats collected near downtown Chicago buildings. WF bats had an increased incidence in fracture cases and specific bone fractures and had more external lacerations than BC bats. WF bats had additional features of traumatic injury, including diaphragmatic hernia, subcutaneous hemorrhage, and bone marrow emboli. In summary, 73% (190 of 262) of WF bats had lesions consistent with traumatic injury. The authors then examined for ruptured tympana, a sensitive marker of barotrauma in humans. BC bats had only 1 case (2%, 1 of 42), but this was attributed to concurrent cranial fractures, whereas WF bats had a 20% (16 of 81) incidence. When cases with concurrent traumatic injury were excluded, this yielded a small fraction (6%, 5 of 81) of WF bats with lesions possibly consistent with barotrauma etiology. Forensic pathology examination of the data strongly suggests that traumatic injury is the major cause of bat mortality at wind farms and, at best, barotrauma is a minor etiology. PMID:22291071

  12. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect

    Deola, Regina Anne

    2010-01-01

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  13. Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas has the greatest installed wind turbine capacity of any state in the United States, the percentage of wind capacity approaches 10% of the utilities capacity (in 2010 the total wind generated capacity in Texas was 8%). It is becomimg increasingly difficult for the utility to balance the elec...

  14. Using the coupled wake boundary layer model to evaluate the effect of turbulence intensity on wind farm performance

    NASA Astrophysics Data System (ADS)

    Stevens, Richard J. A. M.; Gayme, Dennice; Meneveau, Charles

    2015-06-01

    We use the recently introduced coupled wake boundary layer (CWBL) model to predict the effect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a “top-down” approach to get improved predictions for the power output compared to a stand-alone wake model. Here we compare the CWBL model results for different turbulence intensities with the Horns Rev field measurements by Hansen et al., Wind Energy 15, 183196 (2012). We show that the main trends as function of the turbulence intensity are captured very well by the model and discuss differences between the field measurements and model results based on comparisons with LES results from Wu and Porté-Agel, Renewable Energy 75, 945-955 (2015).

  15. Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.

    NASA Astrophysics Data System (ADS)

    O'Brien, Enda; McKinstry, Alastair; Ralph, Adam

    2015-04-01

    Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.

  16. Brillouin distributed temperature sensing system for monitoring of submarine export cables of off-shore wind farms

    NASA Astrophysics Data System (ADS)

    Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland

    2016-05-01

    For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.

  17. Enhancing kinetic energy entrainment in LES of large wind farms by unconventional forcing at the turbine rotors

    NASA Astrophysics Data System (ADS)

    Verhulst, Claire; Meneveau, Charles

    2015-11-01

    Vertical entrainment of mean kinetic energy is believed to be a limiting factor for power generation in very large wind farms, which operate in the turbulent atmospheric boundary layer and experience detrimental wake effects. A new approach, meant to increase vertical entrainment and aid wake recovery, is proposed and evaluated with a preliminary ``proof of concept'' test using Large Eddy Simulation (LES) with periodic boundary conditions to obtain realistic fully developed flow. In addition to the traditional actuator thrust force, a synthetic vertical force is applied at the turbine rotors to force high-speed flow downward and low-speed flow upward. The ratio of the vertical force and the thrust force, held constant within each case, ranges from 0 to 1 across six cases and is applied independently at each turbine. The proposed approach is found to increase the power extraction and mean kinetic energy entrainment significantly, by up to 95% when the vertical force is similar in magnitude to the thrust force. The effect of the forcing scheme on the mean velocity field is considered in detail. In addition, a quadrant analysis is performed to determine how the synthetic forcing changes the statistical characteristics of the mean kinetic energy entrainment within the wind farm. This work was supported by NSF grant 1243482 (the WINDINSPIRE project).

  18. Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark

    NASA Astrophysics Data System (ADS)

    Maar, Marie; Bolding, Karsten; Petersen, Jens Kjerulf; Hansen, Jørgen L. S.; Timmermann, Karen

    2009-08-01

    The development of off-shore wind farms along the coastline of north-west Europe is rapidly increasing; it is therefore important to study how this will affect the marine environment. The present study modelled the growth and feed-backs of blue mussels in natural beds and on turbine foundations in an off-shore wind farm (OWF) located in a shallow coastal ecosystem by coupling a dynamic energy budget (DEB) model to a small-scale 3D hydrodynamic-biogeochemical model. The model results showed that blue mussels located higher up in the water column on turbine pillars achieved a 7-18 times higher biomass than those located on the scour protection because the former experience an enhanced advective food supply. Secondly, the high biomasses of blue mussels on foundations created local 'hot spots' of biological activity and changed ecosystem dynamics due to their feed-backs e.g. ingestion of microplankton and copepods, excretion of ammonium and egestion of faecal pellets. The model results were supported by field measurements around foundations of Chl a concentrations and biomasses of the fauna community. Our study emphasised that OWFs seem to be particularly favourable for blue mussels in the western Baltic Sea and that the functioning of the OWFs as artificial reef ecosystems depends upon how the blue mussels interact with their local pelagic and benthic environment.

  19. Epifauna dynamics at an offshore foundation--implications of future wind power farming in the North Sea.

    PubMed

    Krone, Roland; Gutow, Lars; Joschko, Tanja J; Schröder, Alexander

    2013-04-01

    In the light of the introduction of thousands of large offshore wind power foundations into the North Sea within the next decades, this manuscript focuses on the biofouling processes and likely reef effects. The study explores the macrozoobenthos (biofouling) colonization at an offshore platform which is comparable to offshore wind turbine foundations. A total of 183 single samples were taken and the parameters water depth and time were considered comparing biofouling masses and communities. The blue mussel Mytilus edulis, Anthozoa and the Amphipoda Jassa spp. were the dominant species. The community from the 1 m zone and those from the 5 and 20-28 m zones can clearly be differentiated. The 10 m zone community represents the transition between the M. edulis dominated 1 m and 5 m zones and the Anthozoa dominated 20-28 m zone. In the future offshore wind farms, thousands of wind turbine foundations will provide habitat for a hard bottom fauna which is otherwise restricted to the sparse rocky habitats scattered within extensive sedimentary soft bottoms of the German Bight. However, offshore wind power foundations cannot be considered natural rock equivalents as they selectively increase certain natural hard bottom species. The surface of the construction (1280 m²) was covered by an average of 4300 kg biomass. This foundation concentrates on its footprint area (1024 m²) 35 times more macrozoobenthos biomass than the same area of soft bottom in the German exclusive economic zone (0.12 kg m(-2)), functioning as a biomass hotspot. Concerning the temporal biomass variation, we assume that at least 2700 kg biomass was exported on a yearly basis. 345 × 10(4) single mussel shells of different sizes were produced during the study period. It is anticipated that the M. edulis abundance will increase in the North Sea due to the expansion of the offshore wind farm development. This will result in the enhanced production of secondary hard substrate (mussel shells

  20. Effects of pile-driving on harbour porpoises (Phocoena phocoena) at the first offshore wind farm in Germany

    NASA Astrophysics Data System (ADS)

    Dähne, Michael; Gilles, Anita; Lucke, Klaus; Peschko, Verena; Adler, Sven; Krügel, Kathrin; Sundermeyer, Janne; Siebert, Ursula

    2013-06-01

    The first offshore wind farm ‘alpha ventus’ in the German North Sea was constructed north east of Borkum Reef Ground approximately 45 km north off the German coast in 2008 and 2009 using percussive piling for the foundations of 12 wind turbines. Visual monitoring of harbour porpoises was conducted prior to as well as during construction and operation by means of 15 aerial line transect distance sampling surveys, from 2008 to 2010. Static acoustic monitoring (SAM) with echolocation click loggers at 12 positions was performed additionally from 2008 to 2011. SAM devices were deployed between 1 and 50 km from the centre of the wind farm. During aerial surveys, 18 600 km of transect lines were covered in two survey areas (10 934 and 11 824 km2) and 1392 harbour porpoise sightings were recorded. Lowest densities were documented during the construction period in 2009. The spatial distribution pattern recorded on two aerial surveys three weeks before and exactly during pile-driving points towards a strong avoidance response within 20 km distance of the noise source. Generalized additive modelling of SAM data showed a negative impact of pile-driving on relative porpoise detection rates at eight positions at distances less than 10.8 km. Increased detection rates were found at two positions at 25 and 50 km distance suggesting that porpoises were displaced towards these positions. A pile-driving related behavioural reaction could thus be detected using SAM at a much larger distance than a pure avoidance radius would suggest. The first waiting time (interval between porpoise detections of at least 10 min), after piling started, increased with longer piling durations. A gradient in avoidance, a gradual fading of the avoidance reaction with increasing distance from the piling site, is hence most probably a product of an incomplete displacement during shorter piling events.

  1. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    PubMed

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers. PMID:26818016

  2. Adding Complex Terrain and Stable Atmospheric Condition Capability to the OpenFOAM-based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint

    SciTech Connect

    Churchfield, M. J.; Sang, L.; Moriarty, P. J.

    2013-09-01

    This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.

  3. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea.

    PubMed

    Coates, Delphine A; Deschutter, Yana; Vincx, Magda; Vanaverbeke, Jan

    2014-04-01

    The growing development of offshore wind energy installations across the North Sea is producing new hard anthropogenic structures in the natural soft sediments, causing changes to the surrounding macrobenthos. The extent of modification in permeable sediments around a gravity based wind turbine in the Belgian part of the North Sea was investigated in the period 2011-2012, along four gradients (south-west, north-east, south-east, north-west). Sediment grain size significantly reduced from 427 μm at 200 m to 312 ± 3 μm at 15 m from the foundation along the south-west and north-west gradients. The organic matter content increased from 0.4 ± 0.01% at 100 m to 2.5 ± 0.9% at 15 m from the foundation. The observed changes in environmental characteristics triggered an increase in the macrobenthic density from 1390 ± 129 ind m⁻² at 200 m to 18 583 ± 6713 ind m⁻² at 15 m together with an enhanced diversity from 10 ± 2 at 200 m to 30 ± 5 species per sample at 15 m. Shifts in species dominance were also detected with a greater dominance of the ecosystem-engineer Lanice conchilega (16-25%) close to the foundation. This study suggests a viable prediction of the effects offshore wind farms could create to the naturally occurring macrobenthos on a large-scale. PMID:24373388

  4. Visualization and analysis of vortex-turbine intersections in wind farms.

    PubMed

    Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I

    2013-09-01

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance. PMID:23846101

  5. Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.

    PubMed

    Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth

    2013-02-13

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance. PMID:23420226

  6. Multiple-Pulse Sounds and Seals: Results of a Harbor Seal (Phoca vitulina) Telemetry Study During Wind Farm Construction.

    PubMed

    Hastie, Gordon D; Russell, Debbie J F; McConnell, Bernie; Thompson, Dave; Janik, Vincent M

    2016-01-01

    Offshore construction and survey techniques can produce pulsed sounds with a high sound pressure level. In coastal waters, the areas in which they are produced are often also used by seals, potentially resulting in auditory damage or behavioral avoidance. Here, we describe a study on harbor seals during a wind farm installation off southeast England. The study used GPS/global system for mobile communication tags on 23 harbor seals that provided distribution and activity data; the closest range of individual seals to piling varied from 6.65 to 46.1 km. Furthermore, the maximum predicted received levels (RLs) at individual seals varied between 146.9 and 169.4 dB re 1 μPa peak to peak. PMID:26610987

  7. Wind farm facilities in Germany kill noctule bats from near and far.

    PubMed

    Lehnert, Linn S; Kramer-Schadt, Stephanie; Schönborn, Sophia; Lindecke, Oliver; Niermann, Ivo; Voigt, Christian C

    2014-01-01

    Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats

  8. Wind Farm Facilities in Germany Kill Noctule Bats from Near and Far

    PubMed Central

    Lehnert, Linn S.; Kramer-Schadt, Stephanie; Schönborn, Sophia; Lindecke, Oliver; Niermann, Ivo; Voigt, Christian C.

    2014-01-01

    Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats

  9. A feasibility assessment for the application of biogas and wind power in the farm environment as sustainable sources of energy

    NASA Astrophysics Data System (ADS)

    Carbo, Laura C.

    The depletion of energy sources and the ever-increasing energy demand---and consequently price escalation---is a problem that concerns the global population. Despite the concept of energy crisis being widely accepted nowadays, there is a lot of scepticism and misinformation on the possible alternatives to alleviate the environmental and economic impacts of conventional energy generation. Renewable energy technologies are constantly experiencing significant innovation and improvements. This thesis sought to assess the potential of small dairy farms to make an energy shift and identify the practical benefits and possible downfalls of this shift. Wind power and biogas digestion were analysed in this thesis, and a model to assess these technologies at any given farm was developed on VBA. For the case studied in this research both technologies were concluded to be feasible from an economic point of view. Although the initial investment can seem costly, considering the relatively low payback period and the currently available subsidies the economic implications are not an obstacle. The model developed on VBA is applicable to any region, given the right data is put into the programme. Considering the global energy concern, models such as the one developed in this thesis are an appropriate tool to identify potential shifts to greener solutions and prove to users that it can be economically profitable for them as well as environmentally beneficial.

  10. Potential climatic impacts and reliability of very large-scale wind farms

    NASA Astrophysics Data System (ADS)

    Wang, C.; Prinn, R. G.

    2009-09-01

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including

  11. Potential climatic impacts and reliability of very large-scale wind farms

    NASA Astrophysics Data System (ADS)

    Wang, C.; Prinn, R. G.

    2010-02-01

    Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability

  12. A theory to explain some physiological effects of the infrasonic emissions at some wind farm sites.

    PubMed

    Schomer, Paul D; Erdreich, John; Pamidighantam, Pranav K; Boyle, James H

    2015-03-01

    For at least four decades, there have been reports in scientific literature of people experiencing motion sickness-like symptoms attributed to low-frequency sound and infrasound. In the last several years, there have been an increasing number of such reports with respect to wind turbines; this corresponds to wind turbines becoming more prevalent. A study in Shirley, WI, has led to interesting findings that include: (1) To induce major effects, it appears that the source must be at a very low frequency, about 0.8 Hz and below with maximum effects at about 0.2 Hz; (2) the largest, newest wind turbines are moving down in frequency into this range; (3) the symptoms of motion sickness and wind turbine acoustic emissions "sickness" are very similar; (4) and it appears that the same organs in the inner ear, the otoliths may be central to both conditions. Given that the same organs may produce the same symptoms, one explanation is that the wind turbine acoustic emissions may, in fact, induce motion sickness in those prone to this affliction. PMID:25786948

  13. The Undercutter Method of Dryland Wheat Farming to Reduce Wind Erosion in Western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion is a major problem in the dryland winter wheat (Triticum aestivum L.) - summer fallow production region of the Columbia Plateau in eastern Washington and north-central Oregon. Several locations within the Columbia Plateau have failed to meet federal clean air standards for PM10 emission...

  14. Mitigating the Acoustic Impacts of Modern Technologies: Acoustic, Health, and Psychosocial Factors Informing Wind Farm Placement

    ERIC Educational Resources Information Center

    Shepherd, Daniel; Billington, Rex

    2011-01-01

    Wind turbine noise is annoying and has been linked to increased levels of psychological distress, stress, difficulty falling asleep, and sleep interruption. For these reasons, there is a need for competently designed noise standards to safeguard community health and well-being. The authors identify key considerations for the development of wind…

  15. Net Energy Payback and CO{sub 2} Emissions from Three Midwestern Wind Farms: An Update

    SciTech Connect

    White, Scott W.

    2006-12-15

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO{sub 2} analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO{sub 2} analysis for each power plant was calculated from the life-cycle energy input data.A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data.The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO{sub 2} emissions, in tonnes of CO{sub 2} per GW{sub e}h, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively.

  16. Net energy payback and CO2 emissions from three midwestern wind farms: An update

    USGS Publications Warehouse

    White, S.W.

    2006-01-01

    This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GW eh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively. ?? Springer Science+Business Media, LLC 2007.

  17. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  18. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  19. Vegetation, soil property and climatic controls over pore water dissolved organic carbon concentrations in a blanket peatland hosting a wind farm

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nick

    2013-04-01

    Rising dissolved organic carbon concentrations ([DOC]) in surface waters have prompted much research to elucidate the cause(s). Given that increases in [DOC] may indicate a destabalisation of carbon stores, increase water treatment costs and affect rates of primary production and respiration in aquatic ecosystems, identifying the causes of the increase is important. Research has demonstrated that [DOC] in peatlands are influenced by vegetation, soil property and climatic controls, including water table height, temperature and plant functional type (PFT). In this paper we present data from Black Law Wind Farm, Scotland, where we examined the effect of a predicted wind turbine-induced microclimatic gradient and PFT on pore water [DOC]. Moreover, we determined the role of vegetation, soil property and climatic variables as predictors of the variation in [DOC]. We measured [DOC] at 48 plots within Black Law Wind Farm at monthly intervals from May 2011 to April 2012. Four sampling sites were located along a predicted wind turbine-induced microclimatic gradient. At each site four blocks were established each with plots in areas dominated by mosses, sedges and shrubs. Plant biomass and PFT (vegetation factors); soil moisture, water table height, peat depth, C content, nitrogen (N) content and C:N (soil properties); and soil temperature and photosynthetically active radiation (PAR) (climatic variables) were measured. An analysis of variance (ANOVA) model based on the microclimatic gradient site, season, site*season and PFT*season explained 55 % of the variation in [DOC]. [DOC] generally increased along the predicted microclimatic gradient and increased from winter through to autumn. A parsimonious ANOVA model using the vegetation, soil property and climatic explanatory data explained 53 % of the variation in [DOC]. Published studies (Baidya Roy and Traiteur 2010; Zhou, Tian et al. 2012) and preliminary results from this study suggest that a wind turbine

  20. Off shore wind farms change the benthic pelagic coupling in the Belgian Part of the North Sea

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, Jan; Coates, Delphine; Braeckman, Ulrike; Soetaert, Karline; Moens, Tom

    2016-04-01

    Since Europe enforced renewable energy target figures upon its member states through the implementation of two main European Directives 11 2001/77/EC and 2009/28/EC, the development of offshore wind farms (OWF) has accelerated. Belgium installed OWFs on sandbanks, characterized by permeable sediments, low in organic matter content and a species-poor macrofaunal community with species occurring in low densities. A detailed monitoring campaign in the immediate vicinity of a wind turbine (1-200m), revealed a significant decrease in median grain size and permeability, coinciding with a 6-fold increase in organic matter content. The observed fining of the sediment is explained by an altered benthic-pelagic coupling in the area. The wind turbines are colonized by an abundant fouling community producing high amounts of detritus and faeces, a continuous additional source of organic matter. The changes in sediment composition, and the availability of additional organic matter resulted in drastic increase in macrofaunal densities (from 1390 ind m-2 to 18600 ind m-2), and a change from a species-poor community to a species-rich community dominated by the ecosystem engineer Lanice conchilega. Large densities of L. conchilega, as observed in our samples, are known to trap fine material from the water column, which can result in a further decrease of sediment permeability in the vicinity of the wind turbines. A preliminary experiment, where permeable sediments were subjected to artificial fining, showed a decreased penetration depth of advective water currents and a reduced trapping of diatoms by the sediment in finer sediments. Additionally, sediment community oxygen consumption rates, and efflux of NH4+ from the sediment, measured after a simulated phytoplankton bloom, decreased significantly when sediment permeability was reduced. We hypothesize that the combination of the altered macrofaunal community composition, together with the changes in the physical properties of the

  1. Wind Farm Monitoring at Storm Lake I Wind Power Project -- Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-369

    SciTech Connect

    Gevorgian, Vahan

    2015-07-09

    Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability of wind power. These data are used for many research and analysis activities consistent with the Wind Program mission.

  2. Assessing bio-physical effects of Offshore Wind Farms on the North Sea pelagic ecosystem using a TRIAXUS ROTV

    NASA Astrophysics Data System (ADS)

    Floeter, Jens; Callies, Ulrich; Dudeck, Tim; Eckhardt, André; Gloe, Dominik; Hufnagl, Marc; Ludewig, Elke; Möller, Klas O.; North, Ryan P.; Pohlmann, Thomas; Riethmüller, Rolf; Temming, Axel; van Beusekom, Justus; Walter, Bettina; Möllmann, Christian

    2015-04-01

    The effects of Offshore Wind Farms (OWFs) on marine ecosystem functioning are largely unknown. OWF foundations may lead to locally increased turbulence levels in the pelagic zone, and as turbines deflect the wind field, the extraction of energy may induce up- and downwelling dipoles in the water column. As a consequence, upwelling cells and locally increased vertical mixing will likely transport nutrients and phytoplankton into the nutrient-depleted surface layer of the stratified water column in summer. Subsequently, locally enhanced primary production could potentially be channelled to higher trophic levels and may lead to an increased habitat quality for demersal & pelagic fish. Here, we present field measurements that allow us to assess the bio-physical effects of OWFs on the North Sea pelagic ecosystem. Data were obtained using a TRIAXUS (a remotely operated towed vehicle, ROTV) during a survey in summer 2014, which included three OWFs located in water depths between 20m and 40m. TRIAXUS is designed to record high-frequency synoptic measurements of biological and physical oceanographic properties. The instrument is equipped with CTD, oxygen, light and fluorescence sensors as well as a Laser Optical Plankton Counter (LOPC) and a Video Plankton Recorder (VPR). Fisheries hydroacoustic and ADCP data were recorded in parallel. Hydrodynamic modelling supported the analysis by backtracking the drift routes of water bodies from which nutrient contents were analysed. To isolate the OWF effects from natural variability in the bio-physical properties of the German Bight, we also analysed spatially and seasonally similar SCANFISH transect data from pre-OWF years (2010, 2011). The survey provided first insights into the potential bio-physical effects of OWFs on the North Sea pelagic ecosystem, e.g., small scale areas of increased mixing, local upwelling and changes in the magnitude of the surface layer with distinct phytoplankton discontinuities.

  3. Offshore wind farms as productive sites or ecological traps for gadoid fishes?--impact on growth, condition index and diet composition.

    PubMed

    Reubens, Jan T; Vandendriessche, Sofie; Zenner, Annemie N; Degraer, Steven; Vincx, Magda

    2013-09-01

    With the construction of wind farms all across the North Sea, numerous artificial reefs are created. These windmill artificial reefs (WARs) harbour high abundances of fish species which can be attracted from elsewhere or can be the result of extra production induced by these wind farms. To resolve the attraction-production debate in suddenly altered ecosystems (cf. wind farms), the possible consequences of attraction should be assessed; thereby bearing in mind that ecological traps may arise. In this paper we investigated whether the wind farms in the Belgian part of the North Sea act as ecological traps for pouting and Atlantic cod. Length-at-age, condition and diet composition of fish present at the windmill artificial reefs was compared to local and regional sandy areas. Fish data from the period 2009-2012 were evaluated. Mainly I- and II-group Atlantic cod were present around the WARs; while the 0- and I-group dominated for pouting. For Atlantic cod, no differences in length were observed between sites, indicating that fitness was comparable at the WARs and in sandy areas. No significant differences in condition index were observed for pouting. At the WARs, they were slightly larger and stomach fullness was enhanced compared to the surrounding sandy areas. Also diet differed considerably among the sites. The outcome of the proxies indicate that fitness of pouting was slightly enhanced compared to the surrounding sandy areas. No evidence was obtained supporting the hypothesis that the WARs act as an ecological trap for Atlantic cod and pouting. PMID:23800713

  4. Likely effects of construction of Scroby Sands offshore wind farm on a mixed population of harbour Phoca vitulina and grey Halichoerus grypus seals.

    PubMed

    Skeate, Eleanor R; Perrow, Martin R; Gilroy, James J

    2012-04-01

    Scroby Sands offshore wind farm was built close to a haul-out and breeding site for harbour seal, a species of conservation concern. An aerial survey programme conducted during a five-year period spanning wind farm construction, revealed a significant post-construction decline in haul-out counts. Multivariate model selection suggested that the decline was not related to the environmental factors considered, nor did it mirror wider population trends. Although cause and effect could not be unequivocally established, the theoretical basis of hearing in pinnipeds and previous studies suggested that extreme noise (to 257 dB re 1 μ Pa(pp) @ 1m) generated by pile-driving of turbine bases led to displacement of seals. A lack of full recovery of harbour seal during the study was also linked to their sensitivity to vessel activity and/or rapid colonisation of competing grey seal. Any impact of offshore wind farm development upon pinnipeds would be much reduced without pile-driving. PMID:22333892

  5. Careers in Wind Energy

    ERIC Educational Resources Information Center

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  6. Repeated mapping of reefs constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site

    NASA Astrophysics Data System (ADS)

    Pearce, Bryony; Fariñas-Franco, Jose M.; Wilson, Christian; Pitts, Jack; deBurgh, Angela; Somerfield, Paul J.

    2014-07-01

    Sabellaria spinulosa reefs are considered to be sensitive and of high conservation status. This article evaluates the feasibility of using remote sensing technology to delineate S. spinulosa reefs. S. spinulosa reef habitats associated with the Thanet Offshore Windfarm site were mapped using high resolution sidescan sonar (410 kHz) and multibeam echo sounder (<1 m2) data in 2005 (baseline), 2007 (pre-construction baseline) and 2012 (post-construction). The S. spinulosa reefs were identified in the acoustic data as areas of distinct irregular texturing. Maps created using acoustic data were validated using quantitative measures of reef quality, namely tube density (as a proxy for the density of live S. spinulosa), percentage cover of S. spinulosa structures (both living and dead) and associated macrofauna derived from seabed images taken across the development site. Statistically significant differences were observed in all physical measures of S. spinulosa as well the number (S) and diversity (H') of associated species, derived from seabed images classified according to the presence or absence of reef, validating the use of high resolution sidescan sonar to map these important biogenic habitats. High precision mapping in the early stages allowed for the micro-siting of wind turbines in a way that caused minimal damage to S. spinulosa reefs during construction. These habitats have since recovered and expanded in extent. The surveys undertaken at the Thanet Offshore Windfarm site demonstrate the importance of repeat mapping for this emerging industry, allowing habitat enhancement to be attributed to the development whilst preventing background habitat degradation from being wrongly attributed to the development.

  7. Characterisation of impacts on the environment of an idealised offshore wind farm foundation, under waves and the combination of waves and currents

    NASA Astrophysics Data System (ADS)

    García-Hermosa, Isabel; Abcha, Nizar; Brossard, Jérôme; Bennis, Anne-Claire; Ezersky, Alexander; Gross, Marcus; Iglesias, Gregorio; Magar, Vanesa; Miles, Jon; Mouazé, Dominique; Perret, Gaële; Pinon, Grégory; Rivier, Aurélie; Rogan, Charlie; Simmonds, David

    2015-04-01

    Offshore wind technology is currently the most widespread and advanced source of marine renewable energy. Offshore wind farms populate waters through the North Sea and the English Channel. The UK and French governments devised deadlines to achieve percentages of electricity from renewable sources by 2020, these deadlines and the direct translation of land based wind farm technology to the offshore environment resulted in the rapid expansion of the offshore wind energy. New wind farms have been designed with a larger number of masts and are moving from shallow offshore banks to deeper waters and in order to produce more power the diameters of monopoles masts are becoming larger to support larger turbines. The three-partner EU INTERREG funded project OFELIA (http://www.interreg-ofelia.eu/) aims to establish a cross-channel (between the UK and France) research collaboration to improve understanding of the environmental impacts of offshore wind farm foundations. The objective of the present study is to characterise changes in the hydrodynamics and sea bed in the vicinity of an offshore wind farm mast and in the wake area under wave and wave-current conditions corresponding to events in the French wind farm site of Courseulles-sur-mer (offshore of Lower Normandy, in the English Channel). Experiments were carried out in two laboratory facilities: a wave flume of 35 m long, 0.9 m wide and 1.2 m in depth with regular and irregular waves (García-Hermosa et al., 2014); and a wave and current flume of 17 m long, 0.5 m wide and 0.4 m depth with regular waves, currents from 180° to the waves and a mobile bed (Gunnoo et al., 2014). Flow velocity measurements were taken with an Acoustic Dopple Velocimeter (ADV) at various points around the cylinder and Particle Image Velocitmetry (PIV) techniques were applied to larger areas upstream and downstream of the cylinder. During the assessment of waves and currents' effects on the bed evolution were assessed using a laser and camera

  8. Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles

    NASA Astrophysics Data System (ADS)

    Sheldon, Dane P. H.

    Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine

  9. Effects of the construction of Scroby Sands offshore wind farm on the prey base of Little tern Sternula albifrons at its most important UK colony.

    PubMed

    Perrow, Martin R; Gilroy, James J; Skeate, Eleanor R; Tomlinson, Mark L

    2011-08-01

    Despite widespread interest in the impacts of wind farms upon birds, few researchers have examined the potential for indirect or trophic (predator-prey) effects. Using surface trawls, we monitored prey abundance before and after construction of a 30 turbine offshore wind farm sited close to an internationally important colony of Little terns. Observations confirmed that young-of-the-year clupeids dominated chick diet, which trawl samples suggested were mainly herring. Multivariate modelling indicated a significant reduction in herring abundance from 2004 onwards that could not be explained by environmental factors. Intensely noisy monopile installation during the winter spawning period was suggested to be responsible. Reduced prey abundance corresponded with a significant decline in Little tern foraging success. Unprecedented egg abandonment and lack of chick hatching tentatively suggested a colony-scale response in some years. We urge a precautionary approach to the timing and duration of pile-driving activity supported with long-term targeted monitoring of sensitive receptors. PMID:21745669

  10. A decentralized charging control strategy for plug-in electric vehicles to mitigate wind farm intermittency and enhance frequency regulation

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Xia, Shiwei; Chan, Ka Wing

    2014-02-01

    This paper proposes a decentralized charging control strategy for a large population of plug-in electric vehicles (PEVs) to neutralize wind power fluctuations so as to improve the regulation of system frequency. Without relying on a central control entity, each PEV autonomously adjusts its charging or discharging power in response to a communal virtual price signal and based on its own urgency level of charging. Simulation results show that under the proposed charging control, the aggregate PEV power can effectively neutralize wind power fluctuations in real-time while differential allocation of neutralization duties among the PEVs can be realized to meet the PEV users' charging requirements. Also, harmful wind-induced cyclic operations in thermal units can be mitigated. As shown in economic analysis, the proposed strategy can create cost saving opportunities for both PEV users and utility.

  11. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 1: Flow-over-terrain models

    NASA Astrophysics Data System (ADS)

    Sanz Rodrigo, Javier; Gancarski, Pawel; Chavez Arroyo, Roberto; Moriarty, Patrick; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Koblitz, Tilman; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko; Prospathopoulos, John; Oxley, Gregory S.; Peralta, Carlos; Zhang, Xiadong; Witha, Björn

    2014-06-01

    The IEA Task 31 Wakebench is setting up a framework for the evaluation of wind farm flow models operating at microscale level. The framework consists on a model evaluation protocol integrated on a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to flow-over-terrain models, including best practices for the benchmarking and data processing procedures for the analysis and qualification of validation datasets from wind resource assessment campaigns. A hierarchy of test cases has been proposed for flow-over-terrain model evaluation, from Monin- Obukhov similarity theory for verification of surface-layer properties, to the Leipzig profile for the near-neutral atmospheric boundary layer, to flow over isolated hills (Askervein and Bolund) to flow over mountaneous complex terrain (Alaiz). A summary of results from the first benchmarks are used to illustrate the model evaluation protocol applied to flow-over-terrain modeling in neutral conditions.

  12. Environmental impact of wind energy

    NASA Astrophysics Data System (ADS)

    Mann, J.; Teilmann, J.

    2013-09-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric emission of eight air pollutants. Finally, noise generation and its impact on humans are studied.

  13. Mobile demersal megafauna at artificial structures in the German Bight - Likely effects of offshore wind farm development

    NASA Astrophysics Data System (ADS)

    Krone, R.; Gutow, L.; Brey, T.; Dannheim, J.; Schröder, A.

    2013-07-01

    Within the next few decades, large underwater structures of thousands of wind turbines in the northern European shelf seas will substantially increase the amount of habitat available for mobile demersal megafauna. As a first indication of the possible effects of this large scale habitat creation on faunal stocks settling on hard substrata, we compared selected taxa of the mobile demersal megafauna (decapods and fish) associated with the foundation of an offshore research platform (a wind-power foundation equivalent) with those of five shipwrecks and different areas of soft bottoms in the southern German Bight, North Sea. When comparing the amount of approximately 5000 planned wind-power foundations (covering 5.1 × 106 m2 of bottom area) with the existing number of at least 1000 shipwrecks (covering 1.2 × 106 m2 of bottom area), it becomes clear that the southern North Sea will provide about 4.3 times more available artificial hard substratum habitats than currently available. With regard to the fauna found on shipwrecks, on soft substrata and on the investigated wind-power foundation, we predict that the amount of added hard substrata will allow the stocks of substrata-limited mobile demersal hard bottom species to increase by 25-165% in that area. The fauna found at the offshore platform foundations is very similar to that at shipwrecks. Megafauna abundances at the foundations, however, are lower compared to those at the highly fractured wrecks and are irregularly scattered over the foundations. The upper regions of the platform construction (5 and 15 m depth) were only sparsely colonized by mobile fauna, the anchorages, however, more densely. The faunal assemblages from the shipwrecks and the foundations, respectively, as well as from the soft bottoms clearly differed from each other. We predict that new wind-power foundations will support the spread of hard bottom fauna into soft bottom areas with low wreck densities.

  14. Wind Turbine Box - energy fluxes around a characteristic wind turbine

    NASA Astrophysics Data System (ADS)

    Calaf, Marc; Cortina, Gerard; Sharma, Varun

    2015-11-01

    This research project presents a new tool, so called ``Wind Turbine Box'', that allows for the direct comparison between the flow around a single wind turbine and the flow around a characteristic wind turbine immersed within a large wind farm. The Wind Turbine Box consists of a limited control volume defined around each wind turbine that is timely co-aligned with each corresponding turbine's yaw-angle. Hence it is possible to extract flow statistics around each wind turbine, regardless of whether the turbine is fully isolated or it is plunged within a large wind farm. The Wind Turbine Box tool has been used to compute the energy fluxes around a characteristic wind turbine of a large wind farm to better understand the wake replenishment processes throughout a complete diurnal cycle. The effective loading of the wind farm has been gradually increased, ranging from quasi-isolated wind turbines to a highly packed wind farm. For this purpose, several Large Eddy Simulations have been run, forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the CASES-99 field experiment. Results illustrate the differences in the flow dynamics as it evolves around a characteristic wind turbine within a large wind farm and its asymptotic transition to the fully developed wind turbine array boundary layer.

  15. Residency, site fidelity and habitat use of Atlantic cod (Gadus morhua) at an offshore wind farm using acoustic telemetry.

    PubMed

    Reubens, Jan T; Pasotti, Francesca; Degraer, Steven; Vincx, Magda

    2013-09-01

    Because offshore wind energy development is fast growing in Europe it is important to investigate the changes in the marine environment and how these may influence local biodiversity and ecosystem functioning. One of the species affected by these ecosystem changes is Atlantic cod (Gadus morhua), a heavily exploited, commercially important fish species. In this research we investigated the residency, site fidelity and habitat use of Atlantic cod on a temporal scale at windmill artificial reefs in the Belgian part of the North Sea. Acoustic telemetry was used and the Vemco VR2W position system was deployed to quantify the movement behaviour. In total, 22 Atlantic cod were tagged and monitored for up to one year. Many fish were present near the artificial reefs during summer and autumn, and demonstrated strong residency and high individual detection rates. When present within the study area, Atlantic cod also showed distinct habitat selectivity. We identified aggregation near the artificial hard substrates of the wind turbines. In addition, a clear seasonal pattern in presence was observed. The high number of fish present in summer and autumn alternated with a period of very low densities during the winter period. PMID:23937893

  16. Assessment by regional modelling of the impact of monopile foundations on the hydrodynamics and sediment transport: case of Courseulles-sur-Mer (France) wind farm

    NASA Astrophysics Data System (ADS)

    Rivier, Aurélie; Bennis, Anne-Claire; Pinon, Grégory; Magar, Vanesa; Gross, Markus

    2015-04-01

    Offshore monopile foundations of wind turbines modify hydrodynamics and sediment transport at local scale and also at regional scale. The aim of this work is to assess these changes and to parametrize them in a regional model. These modifications were previously evaluated using the regional circulation model MARS3D (Lazure and Dumas, 2008) in tests-cases (Rivier et al., 2014) using two approaches: in the first approach, monopiles are explicitly modelled in the mesh as dry cells and in the second approach a sub-grid parametrization which considers the drag force exerted by a monopile on the flow is used. The sub-grid parametrization is improved close to the bed in this paper by adding a drag force term in the momentum equations, source terms in the turbulence model and by increasing the bed shear stress at monopile location. Changes in hydrodynamics regime, especially near-bed, affect sediment transport regime and modifications due to monopiles on sediment dynamics is also investigated using the MARS3D sediment transport module (Le Hir et al., 2011) which solves the advection-diffusion equations. Test-cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France) where an offshore wind farm is planned to be built. Velocity, turbulent kinetic energy and bed thickness changes due to the monopile simulated by both approaches are compared to each other and to experimental measurements made in a flume at the University of Caen or to published data (e.g. Roulund et al., 2005; Dargahi,1989). Then the model is applied in a real configuration on an area including the future offshore wind farm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches and modifications of the hydrodynamics and sediment transport are assessed along a tidal cycle. Currents increase at the side edge of the monopile and decrease in front of and downstream the monopile. Turbulent kinetic

  17. Integrated control of wind farms, FACTS devices and the power network using neural networks and adaptive critic designs

    NASA Astrophysics Data System (ADS)

    Qiao, Wei

    Worldwide concern about the environmental problems and a possible energy crisis has led to increasing interest in clean and renewable energy generation. Among various renewable energy sources, wind power is the most rapidly growing one. Therefore, how to provide efficient, reliable, and high-performance wind power generation and distribution has become an important and practical issue in the power industry. In addition, because of the new constraints placed by the environmental and economical factors, the trend of power system planning and operation is toward maximum utilization of the existing infrastructure with tight system operating and stability margins. This trend, together with the increased penetration of renewable energy sources, will bring new challenges to power system operation, control, stability and reliability which require innovative solutions. Flexible ac transmission system (FACTS) devices, through their fast, flexible, and effective control capability, provide one possible solution to these challenges. To fully utilize the capability of individual power system components, e.g., wind turbine generators (WTGs) and FACTS devices, their control systems must be suitably designed with high reliability. Moreover, in order to optimize local as well as system-wide performance and stability of the power system, real-time local and wide-area coordinated control is becoming an important issue. Power systems containing conventional synchronous generators, WTGs, and FACTS devices are large-scale, nonlinear, nonstationary, stochastic and complex systems distributed over large geographic areas. Traditional mathematical tools and system control techniques have limitations to control such complex systems to achieve an optimal performance. Intelligent and bio-inspired techniques, such as swarm intelligence, neural networks, and adaptive critic designs, are emerging as promising alternative technologies for power system control and performance optimization. This

  18. Global Wind Map

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…

  19. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    PubMed

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance. PMID:25946115

  20. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms

    PubMed Central

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48x104 genome copies/m3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance. PMID:25946115

  1. 75 FR 47301 - Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...; EG10-36-000; EG10-37-000; EG10-38-000] Cedro Hill Wind LLC; Butler Ridge Wind Energy Center, LLC; High Majestic Wind Energy Center, LLC; Wessington Wind Energy Center, LLC; Juniper Canyon Wind Power LLC; Loraine Windpark Project, LLC; White Oak Energy LLC; Meadow Lake Wind Farm III LLC; Meadow Lake Wind...

  2. Sowing the Seeds for a Bountiful Harvest: Shaping the Rules and Creating the Tools for Wisconsin's Next Generation of Wind Farms

    SciTech Connect

    Vickerman, Michael Jay

    2012-03-29

    Project objectives are twofold: (1) to engage wind industry stakeholders to participate in formulating uniform permitting standards applicable to commercial wind energy installations; and (2) to create and maintain an online Wisconsin Wind Information Center to enable policymakers and the public to increaser their knowledge of and support for wind generation in Wisconsin.

  3. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, "brain" of these "hybrid" systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with "else-then-if" logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may

  4. Farm Living.

    ERIC Educational Resources Information Center

    Marcoux, Mary F.

    1990-01-01

    Described are activities using ants. Ant hunting, a list of books on the topic, information, and ant farming are included. The procedures for assembling and maintenance of an ant farm are presented. (KR)

  5. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  6. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  7. An Icelandic wind atlas

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  8. Bittersweet Farms.

    ERIC Educational Resources Information Center

    Kay, Bettye Ruth

    1990-01-01

    The article describes Bittersweet Farms, a rural Ohio farm community for autistic adults. The program is based on the rural, extended family community as a model and includes work components (horticulture, animal care, woodworking and carpentry, maintenance, housekeeping, food preparation), recreational activities, community integration, physical…

  9. Wind Energy Systems.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…

  10. A comparison between a hydro-wind plant and wind speed forecasting using ARIMA models

    NASA Astrophysics Data System (ADS)

    Bayón, L.; Grau, J. M.; Ruiz, M. M.; Suárez, P. M.

    2014-10-01

    In this paper, we will present a comparison between two options for harnessing wind power. We will first analyze the behaviour of a wind farm that goes to the electricity market, having previously made a forecast of wind speed while accepting the deviation penalties that these may incur. Second, we will study the possibility of the wind farm not going to the market individually, but as part of a hydro-wind plant.

  11. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate.

    PubMed

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-06-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant-soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant-soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  12. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate

    PubMed Central

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-01-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  13. 75 FR 43551 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Mohave County Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Mohave County Wind Farm Project, Mohave County, AZ AGENCY: Bureau of Land Management, Interior. ACTION...: KFO_WindEnergy@blm.gov ; Fax: (928) 718-3761; or ] Mail: Mohave County Wind Farm, BLM, Kingman Field... right-of-way (ROW) authorization to construct, operate and maintain a 500 megawatt (MW) wind farm...

  14. Dynamics and stability of wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.; Nolan, P. J.

    1981-01-01

    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered.

  15. Diagnosis of Flow Characteristics in Wind Farm—Case of the Asokurumagaeri Wind Farm—

    NASA Astrophysics Data System (ADS)

    Uchida, Takanori; Ohya, Yuji

    A detailed wind synopsis analysis was performed for the Asokurumagaeri wind farm (operation of this wind farm was initiated in October, 2005) in cooperation with the Kumamoto Prefectural Enterprise Bureau. In this simulation, high-resolution terrain elevation data which included the latest land development information were utilized. The simulation results suggested that the effects of wind risks (terrain-induced turbulence), which have been reported in the media, were successfully reproduced. An appropriate wind direction and an inappropriate wind direction for locating a wind turbine generator were shown based on the numerical results obtained

  16. Farm Equipment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    In production of tractor and a line of farm vehicles, Deere and Company used a COSMIC computer program called FEATS for Finite Element Analysis of Thermal Stress in computer analysis of diesel engine pistons, connecting rods and rocker arms. Company reports that use of FEATS afforded considerable savings and improved analytical accuracies, process efficiencies and product reliability.

  17. Assessment of Wind Energy Production Software

    NASA Astrophysics Data System (ADS)

    Hermannsson, Hermann Reynir

    An examination of two computer programs used for estimating wind energy, RETScreen and System Advisor Model (SAM), are examined and compared to measured data from a wind farm. Wind speed and electrical production estimated by these programs are examined and compared to the measured data. Both programs assume no losses and predict data for an ideal wind farm. Measured data on the other hand includes losses within the farm (e.g. array loss, airfoil loss and availability loss). According to results, RETScreen underestimates the electrical production by 35% and SAM overestimates it by 26%.

  18. Establishing a Comprehensive Wind Energy Program

    SciTech Connect

    Fleeter, Sanford

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  19. High Voltage Power Transmission for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  20. Meteorological Controls on Wind Turbine Wakes

    SciTech Connect

    Barthelmie, RJ; Hansen, KS; Pryor, SC

    2013-04-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient is high, wake losses are proportionally larger and decrease to be virtually undetectable at wind speeds above rated wind speeds. Wind direction is also critical. Not only does it determine the effective spacing between turbines but also the wind speed distribution is primarily determined by synoptic forcing and typically has a predominant direction from which wind speeds tend to be higher (from southwest for much of the central United States and northern Europe). Two other interlinked variables, turbulence intensity (TI), and atmospheric stability also dictate wake losses. Quantifying, understanding, modeling, and predicting this complex and interdependent system is therefore critical to understanding and modeling wind farm power losses due to wakes, and to optimizing wind farm layout. This paper quantifies the impact of these variables on the power loss due to wakes using data from the large offshore wind farms located at Horns Rev and Nysted in Denmark.

  1. Spatial mapping and attribution of Wyoming wind turbines, 2012

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  2. Wind power freshens water

    SciTech Connect

    Pavlor, V.; Sidorov, V.

    1981-01-01

    A wind-powered lighthouse water-freshening installation was installed at lighthouse locations along the Caspian Sea's coast and at one of the collective farms in the Moldavian SSR. From sea water containing up to 36 grams of salts per liter, fresh water with up to 1 gram per liter was produced. Output was 60 liters per hour.

  3. Simplified formulae for the estimation of offshore wind turbines clutter on marine radars.

    PubMed

    Grande, Olatz; Cañizo, Josune; Angulo, Itziar; Jenn, David; Danoon, Laith R; Guerra, David; de la Vega, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario. PMID:24782682

  4. Simplified Formulae for the Estimation of Offshore Wind Turbines Clutter on Marine Radars

    PubMed Central

    Grande, Olatz; Cañizo, Josune; Jenn, David; Danoon, Laith R.; Guerra, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario. PMID:24782682

  5. Economic Development Impacts of 20% Wind (Poster)

    SciTech Connect

    Kelly, M.; Tegen, S.

    2007-06-01

    Meeting 20% of the nation's electricity demand with wind energy will require enourmous investment in wind farms, manufacturing, and infrastructure. This investment will create substantial economic development impacts on local, regional, and national levels. This conference poster for Windpower 2007 outlines the various economic development impacts from a 20% wind scenario.

  6. Illinois Wind Workers Group

    SciTech Connect

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  7. Wind resource in Iceland

    NASA Astrophysics Data System (ADS)

    Jonasson, K.; Bjornsson, H.; Birgisson, T.; Blondal, J.

    2010-12-01

    Iceland has considerable renewable energy resources. While hydropower and geothermal power have been exploited on a significant scale, less attention has been paid to wind power. In preparation for the Nordic IceWind project, this study aims to build up a quality controlled data base of wind observations, and make a preliminary map of the wind resource. The data used come from 130 automatic weather stations distributed around Iceland, and consists of wind measurements every ten minutes in the period 1999 - 2010. The operational period for the stations varies from 5 to 10 years, and in total there were 55 million observations to quality check (QC). In 80 stations more than 99% of the data passed QC. Most problems occurred during winter, especially in harsh climate mountain stations. These problems involved anemometer freezing and faults and electrostatic spikes. The wind speeds were transferred to 90 m agl using a standard power law profile. The resulting data was then averaged for extended winter (Sep-Apr) and summer (May - Aug) seasons. Furthermore, a generic production curve for wind turbines was used to estimate the annual energy production (AEP) per installed megawatt for each season at each station. These results have been interpolated to intra-station locations, thus producing a preliminary wind atlas of for Iceland, which will aid in the selection of sites for potential wind farms. Although the data base has been completed, the analysis of of the data and the production of the wind atlas is ongoing. The inclusion of topographic effects, wind profile measurements and more detailed power production modeling will be further studied within the IceWind project, as well as incorporation of wind from a reanalysis downscaled with a numerical weather prediction model (NWP).

  8. Spatial mapping and attribution of Wyoming wind turbines

    USGS Publications Warehouse

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  9. Current Applications of Scanning Coherent Doppler Lidar in Wind Energy Industry

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, R.; Boquet, M.; Osler, E.

    2016-06-01

    Scanning Doppler Lidars have become more prominent in the wind energy industry for a variety of applications. Scanning Lidar's provide spatial variation of winds and direction over a large area, which can be used to assess the spatial uncertainty of winds and analyze complex flows. Due to the recent growth in wind energy, wind farms are being built in complex terrain areas and fine tuning of the existing wind farms for optimized performance have gained significant interest. Scanning Lidar is an ideal tool for improved assessment of flow over complex terrains and wake characterization of large wind farms. In this article, the various applications of Lidar in the wind industry are discussed and results from several campaigns conducted in US and Europe is presented. The conglomeration of results provided in this article would assist wind energy developers and researchers in making improved decisions about their wind farm operations and pre-construction analysis using scanning Lidar's.

  10. Farm Safety

    PubMed Central

    Wilson, G. S.

    1966-01-01

    Accident and safety are related terms; the higher the accident rate in any industry, the greater is the need for safety measures designed to prevent accidents. This article discusses the accident and safety problems in agriculture, which includes horticulture and forestry. There is still a tendency among townspeople to think of the countryside as peaceful and tranquil, a place where nothing happens very quickly and far removed from violent death or crippling injury. This pleasant rustic picture has undergone a striking change in the last 30 years owing to considerable agricultural mechanization and the development of chemical pesticides, which have brought new dangers to those who live and work on the land. Although men have readily adapted themselves to new machines and methods, they have not proved as able to recognize new dangers and learn how to guard against them. In consequence, accidents have increased to such an extent that the whole industry has realized the need for positive preventive measures. In this country, it is generally accepted that an employer of labour has a responsibility to provide safe working conditions for those he employs. Farm safety legislation goes a little further and usually requires an employer to provide necessary safeguards, with the added requirement on a worker to make use of them. It is a feature of accident prevention work that it never reaches a stage when it can be regarded as complete. Even when a reduction in accidents has been achieved, the effort must be sustained or the trend will be quickly reversed. Images PMID:5904095

  11. Potential errors in using one anemometer to characterize the wind power over an entire rotor disk

    NASA Technical Reports Server (NTRS)

    Simon, R. L.

    1982-01-01

    Wind data collected at four levels on a 90-m tower in a prospective wind farm area are used to evaluate how well the 10-m wind speed data with and without intermittent vertical profile measurements compare with the 90-m tower data. If a standard, or even predictable, wind speed profile existed, there would be no need for a large, expensive tower. This cost differential becomes even more significant if several towers are needed to study a prospective wind farm.

  12. Distributed Wind Market Applications

    SciTech Connect

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  13. Turbulence within variable-size wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Chamorro, L. P.; Arndt, R. E. A.; Sotiropoulos, F.

    2014-12-01

    A wind tunnel experiment was performed to study turbulence processes within a model wind turbine array of 3 by 8 model wind turbines of alternating sizes placed aligned with the mean flow. The model wind farm was placed in a boundary layer developed over both smooth and rough surfaces under neutrally stratified conditions. Turbulence statistics, TKE budget terms, and the spectral structure of the turbulence generated within and above the wind farm reveal relevant information about the processes modulating the turbulent energy transfer from the boundary layer to the turbines. The results of the experiment suggest that heterogeneity in turbine size within a wind farm introduce complex flow interactions not seen in a homogeneous farm, and may have positive effects on turbulent loading on the turbines and turbulent exchange with the atmosphere. In general, large scale motions are heavily dampened behind the first row of turbines but a portion of such structures are generated far inside the wind farm, and the scale of the most energetic eddy motions was relatively consistent at different elevations. Overall, the experiment revealed the possibility that heterogeneity of wind turbine size within wind farms have the potential to change the overall potential to harvest energy from the wind, and alter the economics of a project.

  14. Avian study protocols and wind energy development

    SciTech Connect

    Fisher, K.

    1995-12-01

    This paper identifies the need to develop and use standardized avian study protocols to determine avian impacts at new and existing wind energy facilities. This will allow data collected from various sites to be correlated for better understanding wind energy related avian impacts. Factors contributing to an increased interest in wind energy facilities by electric utilities include: (1) Increased demand for electricity;(2) increased constraints on traditional electrical generating facilities (i.e. hydroelectric and nuclear power plants);(3) improved wind turbine technology. During the 1980`s generous tax credits spawned the development of wind energy facilities, known as wind farms, in California. Commercial scale wind farm proposals are being actively considered in states across the country - Washington, Oregon, Wyoming, Wisconsin, Texas, and Vermont to name a few. From the wind farms in California the unexpected issue of avian impacts, especially to birds-of-prey, or raptor, surfaced and continues to plague the wind industry. However, most of the avian studies did not followed a standardized protocol or methodology and, therefore, data is unavailable to analyze and compare impacts at different sites or with differing technologies and configurations. Effective mitigation can not be designed and applied until these differences are understood. The Bonneville Power Administration is using comparable avian study protocols to collect data for two environmental impact statements being prepared for two separate wind farm proposals. Similar protocol will be required for any other avian impact analysis performed by the agency on proposed or existing wind farms. The knowledge gained from these studies should contribute to a better understanding of avian interactions with wind energy facilities and the identification of effective mitigation measures.

  15. Carbon Farming as a Carbon Negative Technology

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  16. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    NASA Technical Reports Server (NTRS)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  17. Dynamical downscaling of wind fields for wind power applications

    NASA Astrophysics Data System (ADS)

    Mengelkamp, H.-T.; Huneke, S.; Geyer, J.

    2010-09-01

    Dynamical downscaling of wind fields for wind power applications H.-T. Mengelkamp*,**, S. Huneke**, J, Geyer** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH Investments in wind power require information on the long-term mean wind potential and its temporal variations on daily to annual and decadal time scales. This information is rarely available at specific wind farm sites. Short-term on-site measurements usually are only performed over a 12 months period. These data have to be set into the long-term perspective through correlation to long-term consistent wind data sets. Preliminary wind information is often asked for to select favourable wind sites over regional and country wide scales. Lack of high-quality wind measurements at weather stations was the motivation to start high resolution wind field simulations The simulations are basically a refinement of global scale reanalysis data by means of high resolution simulations with an atmospheric mesoscale model using high-resolution terrain and land-use data. The 3-dimensional representation of the atmospheric state available every six hours at 2.5 degree resolution over the globe, known as NCAR/NCEP reanalysis data, forms the boundary conditions for continuous simulations with the non-hydrostatic atmospheric mesoscale model MM5. MM5 is nested in itself down to a horizontal resolution of 5 x 5 km². The simulation is performed for different European countries and covers the period 2000 to present and is continuously updated. Model variables are stored every 10 minutes for various heights. We have analysed the wind field primarily. The wind data set is consistent in space and time and provides information on the regional distribution of the long-term mean wind potential, the temporal variability of the wind potential, the vertical variation of the wind potential, and the temperature, and pressure distribution (air density). In the context of wind power these data are used

  18. Farm Parents' Attitudes Towards Farm Safety Experts

    ERIC Educational Resources Information Center

    Neufeld, Steven J.; Cinnamon, Jennifer L.

    2004-01-01

    Using both qualitative and quantitative data, this article analyzes farm parent's attitudes towards the trustworthiness, usefulness, and use of advice from farm safety experts. The article evaluates four different perspectives on trust in expert: the Validity of Knowledge perspective, the Salient Values Similarity perspective, the Diffusion of…

  19. Farm Safety (For Parents)

    MedlinePlus

    ... wheels or blind spots. Because adults who are operating machinery may be unable to see or hear ... a tractor and farm vehicle safety course before operating farm vehicles. Finally, teach older kids how to ...

  20. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  1. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  2. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV

  3. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  4. Wind energy in the north Netherlands region

    NASA Astrophysics Data System (ADS)

    Vanheemstra, W.; Devries, B.

    1983-03-01

    A computer model was used to estimate the technical/economical potential of wind energy in the northern Netherlands. Local wind supply, technical and economic characteristics of wind turbines, and local energy consumptions were assessed. The data of an average dairy farm are investigated to determine the parameters to be used. Results for several consumer groups are determined. A potential estimate for the province of Friesland is presented.

  5. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect

    Baring-Gould, I.

    2013-07-01

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  6. Wind/Hybrid Electricity Applications

    SciTech Connect

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  7. Measurements of Operational Wind Turbine Noise in UK Waters.

    PubMed

    Cheesman, Samuel

    2016-01-01

    The effects of wind farm operational noise have not been addressed to the same extent as their construction methods such as piling and drilling of the foundations despite their long operational lifetimes compared with weeks of construction. The results of five postconstruction underwater sound-monitoring surveys on wind farms located throughout the waters of the British Isles are discussed. These wind farms consist of differing turbine power outputs, from 3 to 3.6 MW, and differing numbers of turbines. This work presents an overview of the results obtained and discusses both the levels and frequency components of the sound in several metrics. PMID:26610955

  8. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    PubMed

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs. PMID:20931984

  9. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  10. Wind Simulation

    Energy Science and Technology Software Center (ESTSC)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  11. Farm Health and Safety

    MedlinePlus

    ... jobs in the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, ... equipment can also reduce accidents. Occupational Safety and Health Administration

  12. SMITH FARM FROM COOK ROAD, LOOKING WEST. (The farm buildings ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SMITH FARM FROM COOK ROAD, LOOKING WEST. (The farm buildings from left to right are: granary, garage, Gould house, and barn. The Olympic Mountains are visible in the distance.) - Smith Farm, 399 Ebey Road, Coupeville, Island County, WA

  13. 78 FR 15737 - Incidental Take Permit Amendment and Supplemental Environmental Assessment for Wind Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    .... The Service previously advertised (71 FR 951), and issued in September 2006, TE104073 as a 40-year ITP... for Wind Energy Development, Guayanilla, Puerto Rico AGENCY: Fish and Wildlife Service, Interior... documents for wind energy development by San Francisco Wind Farm LLC (formerly WindMar R.E.)...

  14. An assessment of the economic impact of the wind turbine supply chain in Illinois

    SciTech Connect

    Carlson, J. Lon; Loomis, David G.; Payne, James

    2010-08-15

    The enormous growth of wind energy in Illinois and around the country has led to a shortage of wind turbines. Turbine manufacturers have sold out their capacity into 2010. To the extent that Illinois manufacturing can integrate itself into the wind turbine supply chain, Illinois can enjoy the economic benefits from both having wind farms and supplying the parts to build them. (author)

  15. Turbulent character of wind energy.

    PubMed

    Milan, Patrick; Wächter, Matthias; Peinke, Joachim

    2013-03-29

    Wind turbines generate electricity from turbulent wind. Large fluctuations, and, more importantly, frequent wind gusts cause a highly fluctuating electrical power feed into the grid. Such effects are the hallmark of high-frequency turbulence. Here we show evidence that it is the complex structure of turbulence that dominates the power output for one single wind turbine as well as for an entire wind farm. We illustrate the highly intermittent, peaked nature of wind power fed into the grid. Multifractal scaling is observed, as described initially by Kolmogorov's 1962 theory of turbulence. In parallel, we propose a stochastic model that converts wind speed signals into power output signals with appropriate multifractal statistics. As more and more wind turbines become integrated into our electric grids, a proper understanding of this intermittent power source must be worked out to ensure grid stability in future networks. Thus, our results stress the need for a profound understanding of the physics of turbulence and its impact on wind energy. PMID:23581387

  16. Biotechnology on the farm

    SciTech Connect

    Tangley, L.

    1986-10-01

    A new genetically engineered growth hormone promises to boost milk yields for dairy farms. Larger milk yields would worsen economic problems facing dairy farmers especially owners of small farms. The conflicts between new technologies and US agricultural policy are discussed here.

  17. Farming for Net Profit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors can influence farm management decisions. One important factor is economic returns. Staying in farming requires dealing with a wide range of changing conditions. Given these changing conditions, it is particularly important to “get the big decisions right”. This requires evaluating impac...

  18. Occupational Hazards of Farming

    PubMed Central

    White, Gill; Cessna, Allan

    1989-01-01

    A number of occupational hazards exist for the farmer and farm worker. They include the hazards of farm machinery, biologic and chemical hazards, and social and environmental stresses. Recognizing of these hazards will help the family physician care for farmers and their families. PMID:21248929

  19. Not Your Family Farm

    ERIC Educational Resources Information Center

    Tenopir, Carol; Baker, Gayle; Grogg, Jill E.

    2007-01-01

    The information industry continues to consolidate, just as agribusiness has consolidated and now dominates farming. Both the family farm and the small information company still exist but are becoming rarer in an age of mergers, acquisitions, and increased economies of scale. Small companies distinguish themselves by high quality, special themes,…

  20. Occupations and the Farm.

    ERIC Educational Resources Information Center

    Ewert-Krocker, Laurie

    2001-01-01

    Describes "occupation" as a Montessori term, which the Hershey Montessori Farm School, in Huntsburg, Ohio, has adopted for any task arising from the needs of the farm that then generates a scientific or historic study. Includes lists of occupations pursued during 2000-2001 and samples of record forms students used to manage their work. (Author/KB)

  1. Migrant Farm Workers.

    ERIC Educational Resources Information Center

    Slesinger, Doris P.; Pfeffer, Max J.

    This paper documents migrant farm workers as being among the most persistently underprivileged groups in American society. Migrant farm workers typically receive low wages from irregular employment and live in poverty with access to only substandard housing and inadequate health care. The lack of economic improvement stems from a number of…

  2. Foundations for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers. PMID:14667305

  3. Mod-2 wind turbine system development. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Progress in the design, fabrication, and testing of a wind turbine system is reported. The development of the MOD-2 wind turbine through acceptance testing and initial operational evaluation is documented. The MOD-2 project intends to develop early commercialization of wind energy. The first wind turbine farm (three MOD-2 units) are now being operated at the Bonneville Power Administration site near Goldendale, Washington.

  4. How Many Model Evaluations Are Required To Predict The AEP Of A Wind Power Plant?

    NASA Astrophysics Data System (ADS)

    Murcia, J. P.; Réthoré, P. E.; Natarajan, A.; Sørensen, J. D.

    2015-06-01

    Wind farm flow models have advanced considerably with the use of large eddy simulations (LES) and Reynolds averaged Navier-Stokes (RANS) computations. The main limitation of these techniques is their high computational time requirements; which makes their use for wind farm annual energy production (AEP) predictions expensive. The objective of the present paper is to minimize the number of model evaluations required to capture the wind power plant's AEP using stationary wind farm flow models. Polynomial chaos techniques are proposed based on arbitrary Weibull distributed wind speed and Von Misses distributed wind direction. The correlation between wind direction and wind speed are captured by defining Weibull-parameters as functions of wind direction. In order to evaluate the accuracy of these methods the expectation and variance of the wind farm power distributions are compared against the traditional binning method with trapezoidal and Simpson's integration rules. The wind farm flow model used in this study is the semi-empirical wake model developed by Larsen [1]. Three test cases are studied: a single turbine, a simple and a real offshore wind power plant. A reduced number of model evaluations for a general wind power plant is proposed based on the convergence of the present method for each case.

  5. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  6. Erosion: Wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion refers to the detachment, transport and deposition of sediment by wind. It is a dynamic, physical process where loose, dry, bare soils are transported by strong winds. Wind erosion is a soil degrading process that affects over 500 million ha of land worldwide and creates between 500 an...

  7. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind ... be adjusted to heights from 10 to 300 meters using the Gipe power law. Wind speeds may be adjusted for different terrain by selecting from ...

  8. Factors affecting benthic impacts at Scottish fish farms.

    PubMed

    Mayor, Daniel J; Zuur, Alain F; Solan, Martin; Paton, Graeme I; Killham, Ken

    2010-03-15

    The factors affecting patterns of benthic [seabed] biology and chemistry around 50 Scottish fish farms were investigated using linear mixed-effects models that account for inherent correlations between observations from the same farm. The abundance of benthic macrofauna and sediment concentrations of organic carbon were both influenced by a significant, albeit weak, interaction between farm size, defined as the maximum weight of fish permitted on site at any one time, and current speed. Above a farm size threshold of between 800 and 1000 t, the magnitude of effects at farms located in areas of elevated current speeds were greater than at equivalent farms located in more quiescent waters. Sediment concentrations of total organic matter were influenced by an interaction between distance and depth, indicating that wind-driven resuspension events may help reduce the accumulation of organic waste at farms located in shallow waters. The analyses presented here demonstrate that the production and subsequent fate of organic waste at fish farms is more complex than is often assumed; in isolation, current speed, water depth, and farr size are not necessarily good predictors of benthic impact. PMID:20178333

  9. Is EIA part of the wind power planning problem?

    SciTech Connect

    Smart, Duncan Ewan; Stojanovic, Timothy A. Warren, Charles R.

    2014-11-15

    This research evaluates the importance and effectiveness of Environmental Impact Assessment (EIA) within wind farm planning debates, drawing on insights from case studies in Scotland. Despite general public support for renewable energy on the grounds that it is needed to tackle climate change and implement sustainable development, many proposed wind farms encounter significant resistance. The importance of planning issues and (EIA) processes has arguably been overlooked within recent wind farm social acceptability discourse. Through semi-structured interviews with key stakeholders and textual analysis of EIA documents, the characteristics of EIA are assessed in terms of its perceived purpose and performance. The data show that whilst respondents perceive EIA to be important, they express concerns about bias and about the inability of EIA to address climate change and wind farm decommissioning issues adequately. Furthermore, the research identifies key issues which impede the effectiveness of EIA, and reveals differences between theoretical and practical framings of EIA. The paper questions the assumption that EIA is a universally applicable tool, and argues that its effectiveness should be analysed in the context of specific development sectors. The article concludes by reviewing whether the recently amended EIA Directive (2014/52/EU) could resolve identified problems within national EIA practice. - Highlights: • Evaluation of EIA for onshore wind farm planning in Scotland. • EIA is important for multiple aspects of onshore wind farm planning. • Multiple substantive deficiencies of relevance to wind farm planning exist in EIA. • Further research into EIA effectiveness for specific development types is required. • Directive 2014/52/EU may improve EIA effectiveness within wind farm planning.

  10. Wind Erodibility of Biosolids - Amended Soils: A Status Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metro Wastewater Reclamation District in Denver has been applying municipal biosolids to agricultural land known as the METROGRO Farm since 1993. The farm, located approximately 105 km (65 mi) east of Denver, is in an area historically susceptible to wind erosion. Since biosolids can potentially i...

  11. Cost effective seasonal storage of wind energy

    SciTech Connect

    Cavallo, A.J.; Keck, M.B.

    1995-09-01

    Seasonal variation of the wind electric potential on the Great Plains could be a significant obstacle to the large scale utilization of wind generated electricity. Wind power densities usually are greatest during the spring, and decrease by at least 30 percent relative to the annual average in many areas during the summer months, when demand is highest. This problem can be overcome by using an oversized wind farm and a compressed air energy storage system (a baseload wind energy system). A minimum volume storage reservoir is needed to transform intermittent wind energy to baseload power, while a larger reservoir can be used to store excess power produced during the spring for either peak power or baseload output during the summer. The yearly average cost of energy increases by about 3 percent for the largest storage reservoir, indicating the seasonal storage of wind energy is economically as well as technically feasible.

  12. EDITORIAL: Wind energy

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  13. People on the Farm: Corn and Hog Farming.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet provides information on corn and hog farming on a small farm through a profile of a farm family. According to the profile, John and Mary Miller and their three children are a comfortable family operating a corn and hog farm in Iowa. John, the principal farmer, uses a variety of skills in management, veterinary science, soil science,…

  14. White meat-Green farm: case study of Brinson Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive on-farm resource utilization and renewable energy generation at the farm scale are not new concepts. However, truly encompassing implementation of these ideals is lacking. Brinson Farms operates 10 commercial broiler houses. The farm generates heat for its houses using biomass boile...

  15. Hazards of Farming

    PubMed Central

    Guilfoyle, John

    1992-01-01

    Farming is the most dangerous occupation in the industrialized world. Children, in particular, are at high risk for injury and disability. There is ample scope to improve this situation. Parents are the most important group to be educated. Emergency response services in rural areas are sometimes unable to provide optimum care for victims. Better surveillance methods need to be in place, both to gather information and to evaluate strategies aimed at prevention. Farm safety needs to be higher on the agenda for farmers, farm organizations, government, and health care professionals. PMID:21221275

  16. EDITORIAL: Wind energy

    NASA Astrophysics Data System (ADS)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  17. Toward Robust and Efficient Climate Downscaling for Wind Energy

    NASA Astrophysics Data System (ADS)

    Vanvyve, E.; Rife, D.; Pinto, J. O.; Monaghan, A. J.; Davis, C. A.

    2011-12-01

    This presentation describes a more accurate and economical (less time, money and effort) wind resource assessment technique for the renewable energy industry, that incorporates innovative statistical techniques and new global mesoscale reanalyzes. The technique judiciously selects a collection of "case days" that accurately represent the full range of wind conditions observed at a given site over a 10-year period, in order to estimate the long-term energy yield. We will demonstrate that this new technique provides a very accurate and statistically reliable estimate of the 10-year record of the wind resource by intelligently choosing a sample of ±120 case days. This means that the expense of downscaling to quantify the wind resource at a prospective wind farm can be cut by two thirds from the current industry practice of downscaling a randomly chosen 365-day sample to represent winds over a "typical" year. This new estimate of the long-term energy yield at a prospective wind farm also has far less statistical uncertainty than the current industry standard approach. This key finding has the potential to reduce significantly market barriers to both onshore and offshore wind farm development, since insurers and financiers charge prohibitive premiums on investments that are deemed to be high risk. Lower uncertainty directly translates to lower perceived risk, and therefore far more attractive financing terms could be offered to wind farm developers who employ this new technique.

  18. Tifft Farm Nature Preserve.

    ERIC Educational Resources Information Center

    Benjamin, Thomas B.; Gannon, David J.

    1980-01-01

    Described are the creation, development, activities, and programs of Tifft Farm, a 264-acre nature preserve and environmental education center in Buffalo, New York, constructed on a sanitary landfill. (BT)

  19. Farm Health and Safety

    MedlinePlus

    ... the United States. Farms have many health and safety hazards, including Chemicals and pesticides Machinery, tools and ... inspection and maintenance can help prevent accidents. Using safety gloves, goggles and other protective equipment can also ...

  20. National Farm Medicine Center

    MedlinePlus

    Research Areas Applied Sciences Biomedical Informatics Clinical Research Epidemiology Farm Medicine Human Genetics Oral-Systemic Health Clinical Trials Services CM&R Research Lab Research Compliance Research Integrity & ...

  1. Simulation for Grid Connected Wind Turbines with Fluctuating

    NASA Astrophysics Data System (ADS)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  2. An approach for measuring methane emissions from whole farms.

    PubMed

    McGinn, S M; Flesch, T K; Harper, L A; Beauchemin, K A

    2006-01-01

    Estimates of enteric methane (CH4) emissions from ruminants are typically measured by confining animals in large chambers, using head hoods or masks, or by a ratiometric technique involving sampling respired air of the animal. These techniques are not appropriate to evaluate large-scale farm emissions and the variability between farms that may be partly attributed to different farm management. This study describes the application of an inverse-dispersion technique to calculate farm emissions in a controlled tracer-release experiment. Our study was conducted at a commercial dairy farm in southern Alberta, Canada (total of 321 cattle, including 152 lactating dairy cows). Sulfur hexafluoride (SF6) and CH4 were released from 10 outlet locations (barn and open pens) using mass-flow controllers. A Lagrangian stochastic (LS) dispersion model was then used to infer farm emissions from downwind gas concentrations. Concentrations of SF6 and CH4 were measured by gas chromatography analysis and open path lasers, respectively. Wind statistics were measured with a three-dimensional sonic anemometer. Comparing the inferred emissions with the known release rate showed we recovered 86% of the released CH4 and 100% of the released SF6. The location of the concentration observations downwind of the farm was critically important to the success of this technique. PMID:16391273

  3. Improving weather forecasts for wind energy applications

    NASA Astrophysics Data System (ADS)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  4. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    PubMed

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  5. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    PubMed Central

    Sathiyanarayanan, J. S.; Senthil Kumar, A.

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677

  6. Wind turbine wake detection with a single Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.

    2015-06-01

    Using scanning lidar wind turbine wakes can be probed in three dimensions to produce a wealth of temporally and spatially irregular data that can be used to characterize the wakes. Unlike data from a meteorological mast or upward pointing lidar, the spatial coordinates of the measurements are not fixed and the location of the wake also varies in three dimensions. Therefore the challenge is to provide automated detection algorithms to identify wakes and quantify wake characteristics from this type of dataset. Here an algorithm is developed and evaluated on data from a large wind farm in the Midwest. A scanning coherent Doppler wind lidar was configured to measure wind speed in the wake of a continuously yawing wind turbine for two days during the experiment and wake profiles were retrieved with input of wind direction information from the nearby meteorological mast. Additional challenges to the analysis include incomplete coverage of the entire wake due to the limited scanning domain, and large wind shear that can contaminate the wake estimate because of the height variation along the line-of-sight. However, the algorithm developed in this paper is able to automatically capture wakes in lidar data from Plan Position Indicator (PPI) scans and the resultant wake statistics are consistent with previous experiment's results.

  7. Certified safe farm: identifying and removing hazards on the farm.

    PubMed

    Rautiainen, R H; Grafft, L J; Kline, A K; Madsen, M D; Lange, J L; Donham, K J

    2010-04-01

    This article describes the development of the Certified Safe Farm (CSF) on-farm safety review tools, characterizes the safety improvements among participating farms during the study period, and evaluates differences in background variables between low and high scoring farms. Average farm review scores on 185 study farms improved from 82 to 96 during the five-year study (0-100 scale, 85 required for CSF certification). A total of 1292 safety improvements were reported at an estimated cost of $650 per farm. A wide range of improvements were made, including adding 9 rollover protective structures (ROPS), 59 power take-off (PTO) master shields, and 207 slow-moving vehicle (SMV) emblems; improving lighting on 72 machines: placing 171 warning decals on machinery; shielding 77 moving parts; locking up 17 chemical storage areas, adding 83 lockout/tagout improvements; and making general housekeeping upgrades in 62 farm buildings. The local, trained farm reviewers and the CSF review process overall were well received by participating farmers. In addition to our earlier findings where higher farm review scores were associated with lower self-reported health outcome costs, we found that those with higher farm work hours, younger age, pork production in confinement, beef production, poultry production, and reported exposure to agrichemicals had higher farm review scores than those who did not have these characteristics. Overall, the farm review process functioned as expected. encouraging physical improvements in the farm environment, and contributing to the multi-faceted CSF intervention program. PMID:20503809

  8. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  9. Turbulence Analysis Upstream of a Wind Turbine: a LES Approach to Improve Wind LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Calaf, M.

    2015-12-01

    Traditionally wind turbines learn about the incoming wind conditions by means of a wind vane and a cup anemometer. This approach presents two major limitations: 1) because the measurements are done at the nacelle, behind the rotor blades, the wind observations are perturbed inducing potential missalignement and power losses; 2) no direct information of the incoming turbulence is extracted, limiting the capacity to timely adjust the wind turbine against strong turbulent intensity events. Recent studies have explored the possibility of using wind LIDAR (Light Detection and Ranging) to overcome these limitations (Angelou et al. 2010 and Mikelsen et al., 2013). By installing a wind LIDAR at the nacelle of a wind turbine one can learn about the incoming wind and turbulent conditions ahead of time to timely readjust the turbine settings. Yet several questions remain to be answered such as how far upstream one should measure and what is the appropriate averaging time to extract valuable information. In light of recent results showing the relevance of atmospheric stratification in wind energy applications, it is expected that different averaging times and upstream scanning distances are advised for wind LIDAR measurements. A Large Eddy Simulation (LES) study exploring the use of wind LIDAR technology within a wind farm has been developed. The wind farm consists of an infinite array of horizontal axis wind turbines modeled using the actuator disk with rotation. The model also allows the turbines to dynamically adjust their yaw with the incoming wind vector. The flow is forced with a constant geostrophic wind and a time varying surface temperature reproducing a realistic diurnal cycle. Results will be presented showing the relevance of the averaging time for the different flow characteristics as well as the effect of different upstream scanning distances. While it is observed that within a large wind farm there are no-significant gains in power output by scanning further

  10. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  11. Observations and Analysis of Turbulent Wake of Wind Turbine by Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Li, Rongzhong; Wang, Xitao; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Turbulent wake of wind turbine will reduce the power output of wind farm. The access to real turbulent wake of wind turbine blades with different spatial and temporal scales is provided by the pulsed Coherent Doppler Lidar (CDL) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. In this paper, the authors discuss the possibility of using lidar measurements to characterize the complicated wind field, specifically wind velocity deficit by the turbine wake.

  12. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    SciTech Connect

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  13. Wavelet Analysis for Wind Fields Estimation

    PubMed Central

    Leite, Gladeston C.; Ushizima, Daniela M.; Medeiros, Fátima N. S.; de Lima, Gilson G.

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  14. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms. PMID:22219699

  15. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  16. NREL Software Models Performance of Wind Plants (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    This NREL Highlight is being developed for the 2015 February Alliance S&T Meeting, and describes NREL's Simulator for Offshore Wind Farm Applications (SOWFA) software in collaboration with Norway-based Statoil, to optimize layouts and controls of wind plants arrays.

  17. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  18. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  19. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  20. Long Island Solar Farm

    SciTech Connect

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  1. Model Validation at the 204 MW New Mexico Wind Energy Center: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01

    In this paper, we describe methods to derive and validate equivalent models for a large wind farm. FPL Energy's 204-MW New Mexico Wind Energy Center, which is interconnected to the Public Service Company of New Mexico (PNM) transmission system, was used as a case study. The methods described are applicable to any large wind power plant.

  2. ON-FARM ANALYSIS OF PRECISION FARMING PRACTICES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision farming technologies are becoming increasingly popular. However, few studies have addressed the whole farm and per acre expense of these technologies. A 33-acre farm example is used to establish baseline cost estimates of these technologies. Findings suggest that per acre expense is relati...

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  4. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY2001 THRU CY2004

    SciTech Connect

    FAUROTE, J.M.

    2004-09-30

    Investigation into the meteorological influences on vapor incidents in the tank farms to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems.

  5. Wind energy can power a strong recovery.

    PubMed

    Bode, Denise

    2009-01-01

    The U.S. wind industry is a dynamic one that pumps billions of dollars into our economy each year. Wind has gone mainstream and today is the most affordable near-term carbon-free energy source. The U.S. industry experienced a nearly 70 percent increase in total jobs last year-well-paying, family-supporting jobs. But new wind farms now find it hard to secure financing. Thus, the economic stimulus package moving through Congress is critical. PMID:19608519

  6. An overview: Challenges in wind technology development

    SciTech Connect

    Thresher, R W; Hock, S M

    1991-12-01

    Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

  7. Reference Manual for the System Advisor Model's Wind Power Performance Model

    SciTech Connect

    Freeman, J.; Jorgenson, J.; Gilman, P.; Ferguson, T.

    2014-08-01

    This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface and as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.

  8. Measurements of Wind and Turbulence Profiles with Scanning Doppler Lidar for Wind Energy Applications

    SciTech Connect

    Frehlich, R.; Kelley, N.

    2008-03-01

    High-quality profiles of mean and turbulent statistics of the wind field upstream of a wind farm can be produced using a scanning Doppler lidar. Careful corrections for the spatial filtering of the wind field by the lidar pulse produce turbulence estimates equivalent to point sensors but with the added advantage of a larger sampling volume to increase the statistical accuracy of the estimates. For a well-designed lidar system, this permits accurate estimates of the key turbulent statistics over various subdomains and with sufficiently short observation times to monitor rapid changes in conditions. These features may be ideally suited for optimal operation of wind farms and also for improved resource assessment of potential sites.

  9. Who Becomes Established in Farming!

    ERIC Educational Resources Information Center

    Bjoraker, Walter T.; Martinson, Virgil O.

    1971-01-01

    Reports a study of the similarities and differences between individuals presently farming and those who have left farming in Wisconsin. Study is based on Virgil Martinson's 1970 Ph.D. dissertation. (SB)

  10. Coalescing Wind Turbine Wakes

    DOE PAGESBeta

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  11. Coalescing Wind Turbine Wakes

    SciTech Connect

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  12. Coalescing Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  13. Using Synthetic Aperture Radar Wind Measurements to support Offshore Wind Parks

    NASA Astrophysics Data System (ADS)

    Schneiderhan, T.; Lehner, S.; Horstmann, J.; Koch, W.; Schulz-Stellenfleth, J.

    2003-04-01

    In all countries with shallow coastal waters and a strong mean wind speed offshore wind parks are planned and built. The fast development of wind energy production in Europe led to an installation of more than 18 000 MW by the end