Science.gov

Sample records for 199mhg perturbed angular

  1. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  2. Drell-Yan lepton angular distributions in perturbative QCD

    NASA Astrophysics Data System (ADS)

    Lambertsen, Martin; Vogelsang, Werner

    2016-06-01

    We present a comprehensive comparison of the available experimental data for the Drell-Yan lepton angular coefficients λ and ν to calculations at leading and next-to-leading order of perturbative QCD. To obtain the next-to-leading order corrections, we make use of publicly available numerical codes that allow us to compute the Drell-Yan cross section at second order in perturbation theory and from which the contributions we need can be extracted. Our comparisons reveal that perturbative QCD is able to describe the experimental data overall rather well, especially at colliders, but also in the fixed-target regime. On the basis of the angular coefficients alone, there appears to be little (if any) convincing evidence for effects that go beyond fixed-order collinear factorized perturbation theory, although the presence of such effects is not ruled out.

  3. Fully digital time differential perturbed angular correlation (TDPAC) spectrometer

    NASA Astrophysics Data System (ADS)

    Herden, C.; Röder, J.; Gardner, J. A.; Becker, K. D.

    2008-09-01

    A new generation time differential perturbed angular correlation (PAC) spectrometer has been designed and built. The design strategy and details of the data collection and reduction methodology are reported. First results obtained by the new spectrometer are reported and compared with PAC data obtained by more conventional means.

  4. Studying oxygen vacancies in ceramics by perturbed angular correlation spectroscopy

    SciTech Connect

    Su, Han-Tzong; Wang, Ruiping; Fuchs, H.; Gardner, J.A. . Dept. of Physics); Evenson, W.E. . Dept. of Physics); Sommers, J.A. )

    1990-01-01

    Perturbed angular correlation measurements in tetragonal and cubic zirconia and in ceria are described. A physically reasonable and self-consistent interpretation of these data implies that oxygen vacancies are trapped at a second neighbor position by Cd in tetragonal zirconia and by In in ceria. For Cd in tetragonal zirconia, the vacancy trap energy is found to be 0.44 eV, and the energy barrier between adjacent trap sites is approximately 0.8 eV. The activation energy of an oxygen vacancy hopping between trap sites around {sup 111}Cd in ceria is found to be 0.55 eV. The activation energy for oxygen vacancy hopping in cubic zirconia, as detected by {sup 181}Ta PAC, is about 1.0 eV and independent of the Y concentration. 12 refs., 4 figs.

  5. Contribution from cosmological scalar perturbations to the angular velocity spectrum of extragalactic sources

    SciTech Connect

    Marakulin, A. O. Sazhina, O. S.; Sazhin, M. V.

    2012-07-15

    The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.

  6. Contribution from cosmological scalar perturbations to the angular velocity spectrum of extragalactic sources

    NASA Astrophysics Data System (ADS)

    Marakulin, A. O.; Sazhina, O. S.; Sazhin, M. V.

    2012-07-01

    The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of Λ-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.

  7. Linear force and moment equations for an annular smooth shaft seal perturbed both angularly and laterally

    NASA Technical Reports Server (NTRS)

    Fenwick, J.; Dijulio, R.; Ek, M. C.; Ehrgott, R.

    1982-01-01

    Coefficients are derived for equations expressing the lateral force and pitching moments associated with both planar translation and angular perturbations from a nominally centered rotating shaft with respect to a stationary seal. The coefficients for the lowest order and first derivative terms emerge as being significant and are of approximately the same order of magnitude as the fundamental coefficients derived by means of Black's equations. Second derivative, shear perturbation, and entrance coefficient variation effects are adjudged to be small.

  8. Interpretation of perturbed angular distribution results for19F implanted into diamond

    NASA Astrophysics Data System (ADS)

    Connell, S.; Sellschop, J. P. F.; Stemmet, M. C.; Appel, H.; Bharuth-Ram, K.; Verwoerd, W. S.

    1990-08-01

    Perturbed Angular Distribution measurements have been made on natural diamond using recoil implanted fluorine ions as probes. Two distinct lattice sites for fluorine in diamond were found. Site identifications prompted by theoretical cluster calculations are presented. The PAD data are well described by a texture theory, though the origin of the texture effects is presently not known.

  9. Static Magnetic Properties of Films Measured by Means of Angular Perturbative Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Oliveira, Alexandre; Melo, Abner; da Costa, Ricardo; Chesman, Carlos

    In this work we introduced a new technique to measure magnetic anisotropies and magnetoelectrical properties, such as Anisotropic Magnetoresistance (AMR) and Giant Magnetoresistance (GMR) amplitudes. The Perturbative Magnetoresistance (PMR) consist of a regular collinear four probe magnetoresistance set up with an AC magnetic field (hac) applied perpendicular to the DC (Hdc) one. hac amplitude is about 1.0 Oe and oscillate at 270 Hz. We successfully interpreted the signal response from the voltage measured by lock-in amplifier and proposed a model based on energy minimization to extract magnetic anisotropies, AMR and GMR amplitudes. Measuring the in-plane angular dependency of PMR signal we were able to identify the usual magnetic anisotropy, such as uniaxial, unidirectional and cubic. Taking into account the perturbative nature of this technique (small hac amplitude and low frequency), we argue that angular PMR can be used to investigate some dynamic magnetic effects where static technique can not provide such information. A distinct feature of angular PMR is the capability to be used in saturated and non-saturated regime, so revealing magnetic properties dependency on applied field strength. We addressed the Rotatable Anisotropy as an example in this work.

  10. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  11. Perturbed angular correlation study of radiation-induced defects in Rh metal

    NASA Astrophysics Data System (ADS)

    Chawda, M.; Patel, N.; Sebastian, K. C.; Somayajulu, D. R. S.; Sarkar, M.; Singh, R. P.; Murlithar, S.; Awasthi, D. K.

    2006-06-01

    Radiation-induced defects are studied in cubic rhodium metal, using the local probe technique 'Time differential perturbed angular correlation (TDPAC) at liquid N-2 temperature. Isochronal annealing was done at 300, 1073 and 1473 K temperatures. The irradiated sample showed two quadrupole interaction frequencies at 1150 and 93 MHz. The low frequency disappeared at room-temperature annealing, which was assigned to In trapped at a vacancy, whereas the higher frequency remained up to high temperatures and was attributed to In trapped at Rh-C complexes in the Rh matrix.

  12. Perturbed angular correlation experiments on the pressure-induced structural modification of bovine serum albumin.

    PubMed

    Ceolín, M

    2000-09-11

    The hydrodynamic behaviour of the bovine serum albumin (BSA) was studied by means of the Perturbed Angular Correlation (PAC) technique as a function of the hydrostatic pressure (up to 4.1 kbar) applied to the sample. The results have clearly shown that at moderated pressures (around 1.5 kbar) the BSA molecule suffers structural modifications which produces an increase of the molecular volume and the rotational correlation time of the molecule. About the reversibility of the process, our results indicate that the changes are fully irreversible. Our experiments are the first devoted to the study of the high-pressure behaviour of biological molecules using the PAC technique. PMID:10989128

  13. Magnetic interaction in NdScGe: a local investigation by perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, S. N.; Dhar, S. K.

    2004-02-01

    The magnetic and electric hyperfine interactions for the 111Cd probe nucleus in the equi-atomic ferromagnetic compound NdScGe (T_{\\mathrm {c}}\\sim 200 K) have been investigated by the time differential perturbed angular correlation (TDPAC) technique. The Cd probe occupying the Sc site experiences a large magnetic hyperfine field with saturation value Bhf(0) = -8.5 T. By comparing the results with the hyperfine field data in Nd metal and estimates made with the RKKY interaction, we find an indication for sizeable spin polarization of the conduction electrons in NdScGe. In addition, we find evidence of lattice softening near the Curie temperature reflected by an abrupt decrease in the quadrupole interaction frequency ngrQ(T).

  14. Hyperfine magnetic field at Ta impurities in nickel: Perturbed angular correlation and first principle calculation study

    NASA Astrophysics Data System (ADS)

    Cekić, B. Dj.; Umićević, A. B.; Belošević-Čavor, J. N.; Koteski, V. J.; Ivanovski, V. N.; Stojković, M. N.

    2008-03-01

    The hyperfine magnetic field (H) in 0.2 at.% Hf-Ni alloy is measured at the 181Ta probe using the time-differential perturbed angular correlation (TDPAC) method, in the temperature range 78-675 K. The obtained value of 8.6 (3) T at room temperature is in good agreement with the previously reported measurements for similar Hf concentrations in Ni. X-ray powder diffraction (XRPD) experiments confirmed that small atomic concentrations of Hf atoms (<1 at.%) mainly substitute on Ni lattice sites in the fcc crystal lattice without forming any intermetallic phase. In addition, ab-initio calculation using all-electron augmented plane waves plus local orbitals (APW+lo) formalism is performed and the obtained result for the hyperfine magnetic field at Ta site is in accordance with the measurement.

  15. Quantum beats in the 3γ annihilation decay of Positronium observed by perturbed angular distribution

    NASA Astrophysics Data System (ADS)

    Ivanov, Eugeniu; Vata, Ion; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor

    2008-10-01

    We have applied conventional Time Differential Perturbed Angular Correlation (TDPAC) method to observe the anisotropy oscillations in the 3γ annihilation decay of polarized Positronium in a weak magnetic field. The effect, as predicted theoretically and experimentally demonstrated by Barishevsky et al. [V.G. Barishevsky, O.N. Metelitsa, V.V. Tikhomirov, Oscillations of the positronium decay γ-quantum angular distribution in a magnetic field, J. Phys. B: At. Mol. Opt. Phys.22 (1989) 2835], is induced by the coherent admixture of the m = 0 states of ortho-Positronium ( o-Ps) and para-Positronium ( p-Ps) in interaction with the magnetic field. The following experimental characteristics are to be considered: the oscillation frequency corresponds to the difference in energy of the Ps atom levels in magnetic field and is proportional with H2; in a fixed geometry the modulation depth (oscillations amplitude) depends on the mean positron polarization; privileged angles of the polarization vector, magnetic field and detectors are required for optimizing the observed oscillations amplitude. The normalized difference spectrum function ( R( t)) obtained from time spectra measured in vacuum and in different gaseous atmospheres (Ar, H 2, N 2) have the oscillations amplitude constant and we conclude that the Ps atoms are not fully thermalized over a time interval of about 400 ns. The R( t) functions obtained for o-Ps annihilation decays, in dry air or Ar-O mixture, have the oscillations amplitude time dependent due, probably, to the paramagnetism of the Oxygen molecules.

  16. On angularly perturbed Laplace equations in the unit ball of IR{sup n+2} and their distributional boundary values

    SciTech Connect

    Massopust, P.R.

    1997-08-01

    All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.

  17. Time differential perturbed angular correlation (TDPAC) studies of the 133Ba ion uptake in bone crystals.

    PubMed

    Rimbert, J N; Kellershohn, C; Dumas, F; Hubert, C

    1981-03-01

    TDPAC measurements of the 356-81 keV gamma-ray cascade resulting from electron capture decay of 133Ba have been performed at room temperature on BaCl2 (aqueous solution and polycrystalline powder), and on samples where the 133Ba nucleus is bound to bone powder, and also to synthesised hydroxylapatite, all after absorption in vitro. As expected, the angular correlation is not perturbed in the solution. However, in the polycrystalline chloride the time dependence of the anisotropy of the cascade of 133Cs nuclide indicates that the decaying nucleus undergoes electric interactions due to different electric field gradients acting at the site of the nucleus. In 133Ba-bone powder the results show a static quadrupolar interaction differing with the absorption contact time during sample preparation, indicating that depth of 133Ba ion fixation in the bone crystal is dependent on this contact time. These results seem to be confirmed by the TDPAC measurements performed on 133Ba-hydroxylapatite samples where the contact times for absorption of active-ion 133Ba and hydroxylapatite in suspension were very different. PMID:7220599

  18. Perturbed angular correlation study of the ion exchange of indium into silicalite zeolites

    NASA Astrophysics Data System (ADS)

    Ramallo-López, J. M.; Requejo, F. G.; Rentería, M.; Bibiloni, A. G.; Miró, E. E.

    1999-09-01

    Two indium-containing silicalite zeolites (In/H ZSM5) catalysts prepared by wet impregnation and ionic exchange were characterized by the Perturbed Angular Correlation (PAC) technique using 111In as probe to determine the nature of the indium species. Some of these species take part in the catalytic reaction of the selective reduction (SCR) of NOx with methane. PAC experiments were performed at 500ºC in air before and after reduction reoxidation treatments on the catalysts in order to determine the origin of the different hyperfine interactions and then the degree of ionic exchange. Complementary catalytic activity characterizations were also performed. PAC experiments performed on the catalyst obtained by wet impregnation showed that all In-atoms form In2O3 crystallites while almost 70% of In-atoms form In2O3 in the catalyst obtained by ionic exchange. The PAC experiments of both catalysts performed after the reduction reoxidation treatment revealed the presence of two hyperfine interactions, different from those corresponding to indium in In2O3. These hyperfine interactions should be associated to disperse In species responsible of the catalytic activity located in the ionic exchange-sites of the zeolites.

  19. Stability of erythrocyte ghosts: a gamma-ray perturbed angular correlation study.

    PubMed Central

    Kruse, C A; Tin, G W; Baldeschwieler, J D

    1983-01-01

    The structural integrity of erythrocyte ghosts made by the preswell and slow-dialysis techniques has been studied in vitro by use of gamma-ray perturbed angular correlation (PAC) techniques and also by standard in vitro leakage methods employing sequestered labeled markers. Complexes of 111In3+ and nitrilotriacetate were encapsulated in ghosts made from human, rabbit, rat, and mouse erythrocytes, and their leakage was monitored by both methods. In addition, 125I-labeled bovine serum albumin was encapsulated, and ghost integrity was monitored by conventional leakage measurements. With the PAC technique the percentage of material released from human ghosts was determined quantitatively, and the results were equivalent to those obtained by the conventional method. In addition, at various times after intravenous injection, tissue distribution of the ghosts in the mouse was studied. The percent injected dose per gram of tissue of the labeled surface proteins of erythrocyte ghosts in circulation approximated that of the entrapped labeled albumin. This suggests that the ghost membrane and contents are strongly associated in vivo. Large 125I-labeled bovine serum albumin molecules and small 111In3+-nitrilotriacetate complexes were delivered in high quantitites to the lung initially, and to the liver and spleen. Because erythrocyte ghosts have the ability to entrap a wide range of substances and deliver them to specific organs, ghosts may be preferable to other drug carriers or drug therapy for treatment of certain disorders. PMID:6572379

  20. Atomic jump frequencies in intermetallic compounds studied using perturbed angular correlation of gamma rays

    NASA Astrophysics Data System (ADS)

    Newhouse, Randal Leslie

    Atomic jump frequencies were determined in a variety of intermetallic compounds through analysis of nuclear relaxation of spectra measured using the nuclear hyperfine technique, perturbed angular correlation (PAC) of gamma rays. Observed at higher temperatures, this relaxation is attributed to fluctuations in the orientation or magnitude of electric field gradients (EFG) at nuclei of 111In/Cd probe atoms as the atoms make diffusive jumps. Jump frequencies were obtained by fitting dynamically relaxed PAC spectra using either an empirical relaxation function or using ab initio relaxation models created using the program PolyPacFit. Jump frequency activation enthalpies were determined from measurements over a range of temperatures. Diffusion was studied in the following systems: 1) Pseudo-binary alloys having the L12 crystal structure such as In3(La1-xPrx). The goal was to see how jump frequencies were affected by random disorder. 2) The family of layered phases, LanCoIn3n+2 ( n=0,1,2,3…∞). The goal was to see how jump frequencies varied with the spacing of Co layers, which were found to block diffusion. 3) Phases having the FeGa3 structure. The goal was to analyze dynamical relaxation for probe atoms having multiple inequivalent jump vectors. 4) Phases having the tetragonal Al4Ba structure. The goal was to search for effects in the PAC spectra caused by fluctuations in magnitudes of EFGs without fluctuations in orientations. Ab initio relaxation models were developed to simulate and fit dynamical relaxation for PAC spectra of FeGa3, and several phases with the Al4Ba structure in order to determine underlying microscopic jump frequencies. In the course of this work, site preferences also were observed for 111In/Cd probe atoms in several FeGa 3 and Al4Ba phases.

  1. Studies of point-defect interactions in solids using perturbed angular correlations

    SciTech Connect

    Schuhmann, R.B.

    1988-01-01

    Vacancy defect production and migration in {sup 111}In doped Au, Pt and Ni following plastic deformation are studied via {sup 111}Cd perturbed {gamma}-{gamma} angular correlations (TDPAC). In all three metals, deformation produces the same defect species as are seen following irradiation. In Au, a particular In-vacancy complex which is probably a trapped divacancy exists in two distinct configurations. Thermal conversion from one configuration to the other occurs near 200K. In Pt, an In-vacancy complex exhibits a strongly temperature dependent electric field gradient, indicating the presence of local resonant modes. In Ni, a relaxed In-trivacancy complex forms via simple, single-step trapping of a migrating trivacancy. Once formed, the In-trivacancy complex in Ni can trap up to four guest H or D atoms. These are bound to the complex with an energy of {approximately}0.5 eV, irrespective of isotopic mass. By monitoring the damping of the TDPAC precession not associated with a bound defect, the author observed release of untrapped interstitial H from the lattice. These experiments give a consistent, microscopic picture of H diffusion and release from Ni. The use of BaF{sub 2} scintillators allows for an eightfold improvement in TDPAC time resolution. This makes possible experiments in systems previously inaccessible due to large precessional frequencies. The author demonstrates the utility of BaF{sub 2} in several examples, including {sup 100}RhNi, {sup 99}TcFe, {sup 101}RuFe, {sup 100}RhCo and {sup 100}RhFe, systems which had not been studied previously due to time resolution limitation. The Larmor frequency for {sup 100}RhFe, 5565 Mrad/s, is the highest frequency ever measured via TDPAC.

  2. Resonance and absorption spectra of the Schwarzschild black hole for massive scalar perturbations: A complex angular momentum analysis

    SciTech Connect

    Decanini, Yves; Raffaelli, Bernard; Folacci, Antoine

    2011-10-15

    We reexamine some aspects of scattering by a Schwarzschild black hole in the framework of complex angular momentum techniques. More precisely, we consider, for massive scalar perturbations, the high-energy behavior of the resonance spectrum and of the absorption cross section by emphasizing analytically the role of the mass. This is achieved (i) by deriving asymptotic expansions for the Regge poles of the S-matrix and then for the associated weakly damped quasinormal frequencies and (ii) by taking into account the analytic structure of the greybody factors which allows us to extract by resummation the physical information encoded in the absorption cross section.

  3. A Perturbed-Angular-Correlation Study of Hyperfine Interactions at 181Ta in α-Fe2O3

    NASA Astrophysics Data System (ADS)

    Pasquevich, A. F.; Junqueira, A. C.; Carbonari, A. W.; Saxena, R. N.

    2004-11-01

    The hyperfine interactions at 181Ta ions on Fe3+ sites in α-Fe2O3 (hematite) were studied in the temperature range 11 1100 K by means of the perturbed angular correlation (PAC) technique. The 181Hf(β-)181Ta probe nuclei were introduced chemically into the sample during the preparation. The hyperfine interaction measurements allow to observe the magnetic phase transition and to characterize the supertransferred hyperfine magnetic field Bhf and the electric field gradient (EFG) at the impurity sites. The angles between Bhf and the principal axes of the EFG were determined. The Morin transition was also observed. The results are compared with those of similar experiments carried out using 111Cd probe.

  4. Perturbed Angular Correlation of the stretched cascade in the decay of 180mHf using a digital spectrometer

    NASA Astrophysics Data System (ADS)

    Jäger, Markus; Butz, Tilman

    2012-05-01

    We report on the measurement of the nuclear quadrupole interaction (NQI) at Hf sites using the nuclear probe 180mHf in HfF4·HF·2H2O at 300 K by exploiting all possible start quanta in the stretched cascade with a digital Time Differential Perturbed Angular Correlation (TDPAC) spectrometer. With conventional spectrometers, multiple prompt start signals would paralyze the router. The gain in coincidence rate is about a factor of 5 compared to a conventional spectrometer using a single start only. With multiple starts 180mHf is a promising new isomeric nuclear probe in TDPAC experiments. As an additional feature we implemented the possibility to measure up to four cascades simultaneously in order to save data collection time or to measure isobaric contaminations like 111mCd and 111In.

  5. Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: Time differential perturbed angular correlation measurements and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, P.; Guin, R.; Das, S. K.

    2012-09-01

    The thermal behavior of hafnium dioxide fiber has been investigated with the aid of time differential perturbed angular correlation (TDPAC) technique along with XRD and SEM measurements. This study has proved a good thermal stability of the fibrous material up to 1173 K and the fiber loses its crystallinity to a meager extent at 1673 K. No phase transition has been observed up to 1673 K in this fiber. TDPAC parameters for the HfO2 fiber annealed at 1173 K are ωQ=124.6 (3) Mrad/s and η=0.36 (1). These values remain unaltered for the HfO2 fiber annealed even at 1673 K. Electronic structure calculations based on the density functional theory (DFT) for HfO2 doped with tantalum impurity have been performed and the calculated EFG parameters are in reasonable agreement with the experimental values.

  6. Oxidation of Hafnium and Diffusion of Hafnium Atoms in Hexagonal Close-Packed Hafnium; Microscopic Investigations by Perturbed Angular Correlations

    NASA Astrophysics Data System (ADS)

    Dey, Chandi C.

    2012-11-01

    Time-differential perturbed angular correlation (TDPAC) studies in hafnium metal (~5%Zr) have been carried out at different temperatures. It is found that hafnium metal on heating at 873 K continuously for two days in air, transforms partially and abruptly to HfO2 while no component of oxide has been observed for heating up to 773 K and during initial heating at 873 K for 1 day. This result is strikingly different to that expected from the Arrhenius theory. Also, a strong nuclear relaxation effect has been observed at 873 K due to rapid fluctuation of hafnium atoms in hexagonal closepacked (hcp) hafnium. At this temperature, ~ 5% probe nuclei experience static perturbation due to monoclinic HfO2, ~ 50% experience fluctuating interaction, and ~ 5% produce static defect configuration of hcp hafnium. With lowering of temperature, defect configurations of hafnium increase at the cost of fluctuating interaction. An almost total fluctuating interaction observed in hcp hafnium at a temperature much lower than its melting point is another interesting phenomenon.

  7. Low temperature structural modification in Rb2ZrF6: Investigations by perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dey, S. K.; Dey, C. C.; Saha, S.

    2016-06-01

    Temperature dependent perturbed angular correlation (PAC) measurements in crystalline compounds Rb2ZrF6 and Cs2HfF6 have been performed in the temperature range 298-753 K. In Rb2ZrF6, four discrete quadrupole interaction frequencies have been observed at room temperature which correspond to four minor structural modifications. From previous measurements, on the other hand, two structural modifications of this compound were known. A displacive phase transition, probably, occurs at low temperature due to rotation of the ZrF62- octahedron and produces different structural modifications. From present measurements in Rb2ZrF6, two quadrupole interaction frequencies [ωQ=26.1(3) Mrad/s, η=0.55(2), δ=5(1)% and ωQ=148.7(3) Mrad/s, η=0.538(5), δ=1.2%] have been found at room temperature which were not found from previous studies. In Cs2HfF6, these new structural modifications have not been observed.

  8. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms.

    PubMed

    Jäger, Markus; Iwig, Kornelius; Butz, Tilman

    2011-06-01

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the γ-γ correlation diagrams. Tests were performed which showed that the time resolution using a (60)Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr(3)(Ce) scintillators and 254 ps with BaF(2) scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a (44)Ti in rutile source and a positron lifetime measurement using (22)Na. The maximum possible data rate of the spectrometer is 1.1 × 10(6) γ quanta per detector and second. PMID:21721728

  9. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms

    SciTech Connect

    Jaeger, Markus; Butz, Tilman; Iwig, Kornelius

    2011-06-15

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the {gamma}-{gamma} correlation diagrams. Tests were performed which showed that the time resolution using a {sup 60}Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr{sub 3}(Ce) scintillators and 254 ps with BaF{sub 2} scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a {sup 44}Ti in rutile source and a positron lifetime measurement using {sup 22}Na. The maximum possible data rate of the spectrometer is 1.1 x 10{sup 6} {gamma} quanta per detector and second.

  10. Interaction of positronium atoms, with paramagnetic molecules, measured by perturbed angular distribution in 3γ annihilation decay

    NASA Astrophysics Data System (ADS)

    Ivanov, Eugeniu; Vata, Ion; Teodorian, Stefan; Rusen, Ion; Stefan, Nitisor

    2009-01-01

    Positronium in the triplet spin state (S = 1) decays by 3γ annihilation having a life time of about 140 ns in vacuum. Positronium annihilation is affected by magnetic fields which mix the M = 0 state of ortho-positronium with the M = 0 state of para-positronium. The mixing fraction depends on the magnetic field intensity and causes quantum beats in the time distribution of γ annihilation decay. This effect was predicted by Barishevsky et al. [V.G. Barishevsky, O.N. Metelitsa, V.V. Tikhomirov, J. Phys. B Atom. Mol. Opt. Phys. 22 (1989) 2835]. The time differential perturbed angular correlation method (TDPAC), combined with long-lived positron life time spectroscopy (PLTS), has been used to observe these quantum beats. It is found that the characteristics of the annihilation time distribution are not influenced by the presence of diamagnetic species such as Ar, N2 and H2 but are affected by the presence of the paramagnetic O2 molecule. Our results are encouraging in developing a new method for investigating magnetic fields on an atomic scale.

  11. PAC (perturbed angular correlation) analysis of defect motion by Blume's stochastic model for I = 5/2 electric quadrupole interactions

    SciTech Connect

    Evenson, W.E. . Dept. of Physics and Astronomy); Gardner, J.A.; Wang, Ruiping . Dept. of Physics); Su, Han-Tzong ); McKale, A.G. )

    1990-01-01

    Using Blume's stochastic model and the approach of Winkler and Gerdau, we have computed-time-dependent effects on perturbed angular correlation (PAC) spectra due to defect motion in solids in the case of I = (5/2) electric quadrupole interactions. We report detailed analysis for a family of simple models: XYZ + Z'' models, in which the symmetry axis of an axial efg is allowed to fluctuate among orientations along x, y, and z axes, and a static axial efg oriented along the z axis is added to the fluctuating efgs. When the static efg is zero, this model is termed the XYZ'' model. Approximate forms are given for G{sub 2}(t) in the slow and rapid fluctuation regimes, i.e. suitable for the low and high temperature regions, respectively. Where they adequately reflect the underlying physical processes, these expressions allow one to fit PAC data for a wide range of temperatures and dopant concentrations to a single model, thus increasing the uniqueness of the interpretation of the defect properties. Application of the models are given for zirconia and ceria ceramics. 14 refs.

  12. A compact digital time differential perturbed angular correlation-spectrometer using field programmable gate arrays and various timestamp algorithms

    NASA Astrophysics Data System (ADS)

    Jäger, Markus; Iwig, Kornelius; Butz, Tilman

    2011-06-01

    A user-friendly fully digital time differential perturbed angular correlation (TDPAC)-spectrometer with six detectors and fast digitizers using field programmable gate arrays (FPGA) is described and performance data are given. The new spectrometer has an online data analysis feature, a compact size, and a time resolution such as conventional analog spectrometers. Its calculation intensive part was implemented inside the digitizer. This gives the possibility to change parameters (energy windows, constant fraction trigger delay) and see their influence immediately in the γ-γ correlation diagrams. Tests were performed which showed that the time resolution using a 60Co source with energy window set at 1.17 MeV and 1.33 MeV is 265 ps with LaBr3(Ce) scintillators and 254 ps with BaF2 scintillators. A true constant fraction algorithm turned out to be slightly better than the constant fraction of amplitude method. The spectrometer performance was tested with a TDPAC measurement using a 44Ti in rutile source and a positron lifetime measurement using 22Na. The maximum possible data rate of the spectrometer is 1.1 × 106 γ quanta per detector and second.

  13. Temperature dependence of electric field gradient in LaCoO3 perovskite investigated by perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Junqueira, Astrogildo C.; Carbonari, Artur W.; Saxena, Rajendra N.; Mestnik-Filho, José; Dogra, Rakesh

    2005-11-01

    The time differential perturbed angular correlation (TDPAC) technique was used to study the temperature dependence of electric field gradient (EFG) in LaCoO3 perovskite using {}^{111}\\mathrm {In}\\rightarrow {}^{111}\\mathrm {Cd} and {}^{181}\\mathrm {Hf} \\rightarrow {}^{181}\\mathrm {Ta} nuclear probes. The radioactive parent nuclei 111In and 181Hf were introduced into the oxide lattice through a chemical process during sample preparation and were found to occupy only the Co sites in LaCoO3. The PAC measurements with 111Cd and 181Ta probes were made in the temperature range of 4.2-1146 K and 4.2-1004 K, respectively. No long-range magnetic order was observed up to 4.2 K. The EFGs at 111Cd and 181Ta show very similar temperature dependences. They increase slowly between 4.2 and about 77 K and then decrease almost linearly with increasing temperature until about 500-600 K, where a broad peak-like structure is observed, followed by linear decrease at still higher temperatures. These discontinuities at about 77 K and 500-600 K have been interpreted as thermally activated spin state transitions from the low-spin (t2g6eg0) ground state configuration to the intermediate-spin (t2g5eg1) state and from the intermediate-spin to the high-spin (t2g4eg2) state of the Co3+ ion, confirming previous observation in other recent studies. An indication of a Jahn-Teller distortion, which stabilizes the intermediate-spin state with orbital ordering, is also pointed out.

  14. Time-differential perturbed angular correlation study of the electric field gradient in Ti2Rh MoSi2-type compound

    NASA Astrophysics Data System (ADS)

    Wodniecki, P.; Kulińska, A.; Wodniecka, B.

    The electric field gradient (EFG) at the 181Hf→181Ta site in Ti2Rh C11 b -type compound was measured as a function of temperature using time-differential perturbed angular correlation (TDPAC) technique. The room temperature results show one EFG with the parameters of: ν Q =336(1) MHz→V zz =5.9×1017 V cm-2, η=0.1. Very week linear temperature dependence of this EFG was measured with the slope of 3.6 (2)×10-5 K-1. The results are compared with those for other isostructural compounds.

  15. Time-differential perturbed angular correlation study of the electric field gradient in Ti2Rh MoSi2-type compound

    NASA Astrophysics Data System (ADS)

    Wodniecki, P.; Kulińska, A.; Wodniecka, B.

    2007-06-01

    The electric field gradient (EFG) at the 181Hf→181Ta site in Ti2Rh C11 b -type compound was measured as a function of temperature using time-differential perturbed angular correlation (TDPAC) technique. The room temperature results show one EFG with the parameters of: ν Q = 336(1) MHz→V zz =5.9 × 1017 V cm - 2, η = 0.1. Very week linear temperature dependence of this EFG was measured with the slope of 3.6 (2) × 10 - 5 K - 1. The results are compared with those for other isostructural compounds.

  16. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    SciTech Connect

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-08-15

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2{yields}3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2{pi}/3 and 4{pi}/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2{yields}3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  17. PAC (perturbed angular correlation) perturbation factor for spin 5/2 nuclei subject to a rapidly fluctuation EFC (electric field gradient)

    SciTech Connect

    Evenson, W.E. . Dept. of Physics and Astronomy); McKale, A.G.; Su, H.T.; Gardner, J.A. . Dept. of Physics)

    1990-01-01

    We report numerical computations of the PAC perturbation factor G{sub 2}(t) for spin 5/2 nuclei subject to a static EFG symmetric about the z-axis and an additional axially-symmetric EFG hose symmetry axis fluctuates randomly among the x,y,z directions. For sufficiently large fluctuation rates, the numerical results are described by the expression for the static interaction alone with the addition of relaxation terms. Results of applying this model to {sup 111}Cd TDPAC measurements on tetragonal ZrO{sub 2} are described briefly. The model allows one to evaluate the probability that oxygen vacancies are trapped, the energy of association of vacancy-metal pairs, and the vacancy activation energy of motion. 4 refs., 3 figs.

  18. Local probe studies of Fe hyperfine field in CaFe2As2 by time differential perturbed angular distribution (TDPAD) spectroscopy and ab initio methods

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Kumar, Neeraj; Thamizhavel, A.; Layek, S.; Hossain, Z.; Srivastava, S. K.

    2013-03-01

    Applying the γ-ray perturbed angular distribution technique we have measured the magnetic hyperfine field and spin relaxation time of recoil implanted 54Fe in single and polycrystalline CaFe2As2 over the temperature range 20-360 K, encompassing both tetragonal and orthorhombic structural phases of the material. The magnetic response of Fe in the high temperature tetragonal phase (T ⩾ 180 K), show Curie-Weiss type local susceptibility and Korringa like spin relaxation, reflecting the presence of localized moment on Fe. In the orthorhombic phase, the spin rotation spectra of 54Fe show two magnetic hyperfine field components, both exhibiting quasi two dimensional magnetic ordering. The experimentally measured hyperfine field and Fe moment show good agreement with results obtained from ab initio calculations performed within the frame work of local spin density approximation (LSDA).

  19. A weak magnetism observed in SnO2 doped with Fe by means of Perturbed Gamma-Gamma Angular Correlation and Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramos, J. M.; Carbonari, A. W.; Martucci, T.; Costa, M. S.; Cabrera-Pasca, G. A.; Macedo, M. A. V.; Saxena, R. N.

    Nano-structured samples of SnO2 doped with Fe prepared by the sol-gel method were studied by the Perturbed Gamma-Gamma Angular Correlation (PAC) Spectroscopy using 111In (111Cd) probe nuclei as well as by 57Fe Mšssbauer spectroscopy. The samples were prepared from very pure metallic Sn and Fe. Carrier-free 111In nuclei were introduced during the sol-gel process of sample preparation for PAC measurements. The PAC measurements were carried out after annealing the samples at different temperatures and the results show a combined electric quadrupole and magnetic dipole interaction for probe nuclei that do not occupy the regular Sn sites. The hyperfine parameters revealed weak magnetic interactions.

  20. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  1. Dynamic lattice distortions in Sr2RuO4: microscopic studies by perturbed angular correlation spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mishra, S. N.; Rots, M.; Cottenier, S.

    2010-09-01

    Applying time differential perturbed angular correlation (TDPAC) spectroscopy and ab initio calculations, we have investigated possible lattice instabilities in Sr2RuO4 by studying the electric quadrupole interaction of a 111Cd probe at the Ru site. We find evidence for a dynamic lattice distortion, revealed from the observations of: (i) a rapidly fluctuating electric-field gradient (EFG) tensor showing non-Arrhenius relaxation, (ii) an anomalous temperature dependence of the quadrupole interaction frequency, and (iii) a monotonic increase of the EFG asymmetry (η) below 300 K. We argue that the observed dynamic lattice distortion is caused by strong spin fluctuations associated with the inherent magnetic instability in Sr2RuO4.

  2. Dynamic lattice distortions in Sr2RuO4: microscopic studies by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N; Rots, M; Cottenier, S

    2010-09-29

    Applying time differential perturbed angular correlation (TDPAC) spectroscopy and ab initio calculations, we have investigated possible lattice instabilities in Sr(2)RuO(4) by studying the electric quadrupole interaction of a (111)Cd probe at the Ru site. We find evidence for a dynamic lattice distortion, revealed from the observations of: (i) a rapidly fluctuating electric-field gradient (EFG) tensor showing non-Arrhenius relaxation, (ii) an anomalous temperature dependence of the quadrupole interaction frequency, and (iii) a monotonic increase of the EFG asymmetry (η) below 300 K. We argue that the observed dynamic lattice distortion is caused by strong spin fluctuations associated with the inherent magnetic instability in Sr(2)RuO(4). PMID:21386555

  3. Oxygen ordering in the high-Tc superconductor HgBa2CaCu2O6+δ as revealed by perturbed angular correlation

    NASA Astrophysics Data System (ADS)

    Mendonça, T. M.; Correia, J. G.; Haas, H.; Odier, P.; Tavares, P. B.; da Silva, M. R.; Lopes, A. M. L.; Pereira, A. M.; Gonçalves, J. N.; Amaral, J. S.; Darie, C.; Araujo, J. P.

    2011-09-01

    Lattice sites and collective ordering of oxygen atoms in HgBa2CaCu2O6+δ were studied using the perturbed angular correlation (PAC) technique at ISOLDE/CERN. The electric field gradients (EFG) at 199mHg nuclei have been measured as functions of oxygen doping on the Hg planes, above and below Tc. In comparison with the results obtained for oxygen and fluorine doping in Hg-1201, the analysis shows a different oxygen ordering exhibited by Hg-1212. Moreover, for all studied cases, the experimental results show that at a local scale there is non uniform oxygen distribution. A series of ab initio EFG calculations allowed to infer that at low concentrations, regions without oxygen coexist with regions where O2δ dumbbell molecules are located at the center of the Hg mesh. On the other side, at high concentrations, O2δ dumbbell molecules coexist with single Oδ atoms occupying the center of the Hg mesh. The present results suggest that oxygen sits on the Hg planes in the form of a molecule and not as a single atom.

  4. Magnetic behavior of La-doped Fe{sub 3}O{sub 4} studied by perturbed angular correlation spectroscopy with {sup 111}Cd and {sup 140}Ce

    SciTech Connect

    Matos, I. T. Bosch-Santos, B.; Cabrera-Pasca, G. A.; Carbonari, A. W.

    2015-05-07

    In this paper, the local magnetic properties of La-doped Fe{sub 3}O{sub 4} (5% and 10%) bulk and Nanoparticles (NPs) samples were studied by measuring hyperfine interactions in a wide range of temperature from 10 to 900 K with perturbed γ-γ angular correlation spectroscopy using {sup 111}In({sup 111}Cd) and {sup 140}La({sup 140}Ce) as probe nuclei. Results for the temperature dependence of the magnetic hyperfine field (B{sub hf}) for bulk and NP samples, pure and doped with La show that its behavior follows a second order Brillouin-like transition from which the Curie temperature (T{sub C}) was determined (T{sub C} ∼ 855 K). Results also show two different regions in NP samples: the core where a minor fraction of probe nuclei with well defined magnetic dipole frequency was observed and the shell where a major fraction with broad distributed electric quadrupolar frequency (surface effect in NP) was observed. The Verwey transition T{sub V} ∼ 120 K, due the order disorder phase, was also observed in all samples. The results are discussed in terms of the magnetic exchange interaction between Fe{sup 2+} and Fe{sup 3+} ions in the two regions of NP.

  5. Magnetic behavior of La-doped Fe3O4 studied by perturbed angular correlation spectroscopy with 111Cd and 140Ce

    NASA Astrophysics Data System (ADS)

    Matos, I. T.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Carbonari, A. W.

    2015-05-01

    In this paper, the local magnetic properties of La-doped Fe3O4 (5% and 10%) bulk and Nanoparticles (NPs) samples were studied by measuring hyperfine interactions in a wide range of temperature from 10 to 900 K with perturbed γ-γ angular correlation spectroscopy using 111In(111Cd) and 140La(140Ce) as probe nuclei. Results for the temperature dependence of the magnetic hyperfine field (Bhf) for bulk and NP samples, pure and doped with La show that its behavior follows a second order Brillouin-like transition from which the Curie temperature (TC) was determined (TC ˜ 855 K). Results also show two different regions in NP samples: the core where a minor fraction of probe nuclei with well defined magnetic dipole frequency was observed and the shell where a major fraction with broad distributed electric quadrupolar frequency (surface effect in NP) was observed. The Verwey transition TV ˜ 120 K, due the order disorder phase, was also observed in all samples. The results are discussed in terms of the magnetic exchange interaction between Fe2+ and Fe3+ ions in the two regions of NP.

  6. Studies of interaction between He and elements with mass number 140 in Fe by time-differential perturbed-angular-correlation measurements

    NASA Astrophysics Data System (ADS)

    Ohkubo, Yoshitaka; Taniguchi, Akihiro; Xu, Qiu; Tanigaki, Minoru; Sato, Koichi

    2014-08-01

    Room-temperature time-differential perturbed-angular-correlation (TDPAC) spectra of 140Ce arising through 140Ba-140La from 140Cs in He-doped Fe, unannealed and annealed in vacuum at various temperatures, were obtained in order to examine whether Ce (or rather, La and Ba) and He form complexes having a definite geometrical structure in Fe, as suggested by first-principles density-functional theory calculations. No clear signal of such complexes was observed in the TDPAC spectra. However, the TDPAC spectra indicate that Ce and He form complexes having a variety of geometrical structures. Comparison with reported TDPAC results on 111Cd arising from 111In in He-doped stainless steel shows that the parent atoms (La and Ba) of 140Ce trap He atoms more efficiently than In atoms do, indicating stronger bonding of He to the former atoms, while different from the present case, 111Cd (In)-He complexes form a unique geometrical structure.

  7. Electric field gradients at 181Ta probe in ZrNi: Results from perturbed angular correlation and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Dey, C. C.; Das, Rakesh; Srivastava, S. K.

    2015-07-01

    Results of temperature dependent perturbed angular correlation (PAC) measurements in the equiatomic ZrNi alloy have been reported for the first time using 181Hf probe. At room temperature, values of quadrupole frequency and asymmetry parameter for the major component (~80%) are found to be ωQ=26.8(4) Mrad/s, and η=0.413(7). The resulting electric field gradient comes out to be Vzz=2.99 ×1017 V/cm2 and this corresponds to the probe nuclei occupying the regular substitutional Zr sites. In ZrNi system, no magnetic interaction is observed down to 77 K indicating absence of any magnetism in this material. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies on an inactive but similarly prepared sample confirm the dominant presence of the orthorhombic ZrNi phase in the sample. A complementary density functional theory (DFT) calculation results in Vzz=-2.35×1017 V/cm2, η=0.46 at the 181Ta probe impurity site and zero magnetic moment on each atomic site, in close agreement with the experimental results. Furthermore, it is found that electric field gradient for the regular component follows a T3/2 temperature dependence between 77 and 353 K, beyond which it varies linearly with temperature.

  8. Hyperfine interaction measurements in LaCrO3 and LaFeO3 perovskites using perturbed angular correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dogra, R.; Junqueira, A. C.; Saxena, R. N.; Carbonari, A. W.; Mestnik-Filho, J.; Moralles, M.

    2001-06-01

    The perturbed angular correlation (PAC) technique was used to study the hyperfine interactions in the antiferromagnetic and paramagnetic regions of the distorted perovskites LaCrO3 and LaFeO3. The dilute 111In-->111Cd nuclear probes were introduced into the samples through a chemical process. The present measurements cover the temperature ranges from 15 to 848 K for LaCrO3 and 77 to 1324 K for LaFeO3. Two distinct electric-quadrupole interactions were observed in each compound. The lower quadrupole frequency was assigned to the transition-metal atom site while the higher frequency was attributed to the lanthanum site in both cases. Temperature dependence of the electric-quadrupole interaction parameters indicated structural phase transitions at around 512 and 1223 K, respectively, in LaCrO3 and LaFeO3. The phase transitions were associated with the change from an orthorhombic to rhombohedral structure and characterized by a sudden increase in the electric field gradient Vzz and a decrease in the asymmetry parameter η for both sites. PAC spectra measured below the Néel temperature revealed that at 0 K the supertransferred magnetic hyperfine field on 111Cd at the Cr site in LaCrO3 (2.4 T) is much smaller than at the Fe site in LaFeO3 (19.4 T). The magnetic field on 111Cd at La sites in both compounds is of the order of 0.3 T. Additional measurements were made to determine the magnetic hyperfine field using the probe nucleus 140La-->140Ce. The result reconfirmed that a relatively weak hyperfine field is supertransferred to the probe atoms at La sites.

  9. Perturbed Angular Correlation Study of the Static and Dynamic Aspects of Cadmium and Mercury Atoms Inside and Attached to a C60 Fullerene Cage

    NASA Astrophysics Data System (ADS)

    Das, Satyendra K.; Guin, Rashmohan; Banerjee, Debasish; Johnston, Karl; Das, Parnika; Butz, Tilman; Amaral, Vitor S.; Correia, Joao G.; Barbosa, Marcelo B.

    2014-11-01

    30 keV 111mCd and 50 keV 199mHg beams from ISOLDE were used to implant on preformed targets of C60 with a thickness of 1 mg cm-2. Endofullerene compounds, viz. 111mCd@C60 and 199mHg@C60 formed during implantation were separated by filtration through micropore filter paper followed by solvent extraction. Dried samples of the endofullerene compounds were counted for the time differential perturbed angular correlation (TDPAC) measurement using the coincidence of the 151 - 245 keV cascade of 111mCd and the 374 - 158 keV cascade of 199mHg on a six LaBr3(Ce) detector system coupled with digital electronics. The results for 111mCd@C60 indicate a single static component (27%) and a fast relaxing component (73%), the latter implying that the cadmium atom moves rapidly inside the cage at room temperature. The quadrupole interaction frequency and asymmetry parameter of the cadmium atom occupying the static site in C60 are wQ=8.21(36) Mrad s-1 and η = 0.41(9), respectively. The fast relaxation constant is 0.0031(4) ns-1. Similarly, mercury atoms also exhibit a single static and a fast component. The static site has a quadrupole frequency wQ=283.0(12.4) Mrad s-1 and η =0 with a fraction of 30%. The fast relaxation constant is 0.045(8) ns-1 with a fraction of 70%, very similar to that of cadmium.

  10. Magnetic and Structural Properties of LANTHANUM(2-X) Strontium(x) Copper OXYGEN(4+DELTA) Studied with Time - Perturbed Angular Correlations

    NASA Astrophysics Data System (ADS)

    Saylor, Janet Marie

    Structural and magnetic properties of the high temperature superconductor La_{2-x}Sr_{x} CuO_{4-y} have been studied with ^{111} In/^{111}Cd perturbed angular gammagamma-correlations (PAC). In these measurements ppm of the radioactive probe, ^{111}In, is diffused into small samples by heat treatment. During the 2.8 day half-life of ^{111}In, the hyperfine spectrum of the I = 5/2, 85 ns. excited state of ^{111}Cd can be studied. A number of complex combined magnetic-dipole -electric-quadrupole interactions are observed. These depend simply on the sample preparation which controls the types and concentration of oxygen defects which exist in the sample. In particular, we have found that vacuum annealing results in a unique PAC spectrum. In this case, which only occurs when the samples are nearly exactly oxygen stoichiometric, the ^{111}Cd probe sits at the La site with no oxygen defects nearby. The principle axis of the electric field gradient ( omega_{o} = 240 Mrad/s) is found to be nearly parallel to the tetragonal c-axis and perpendicular to the hyperfine field ( omega_{L} = 10 Mrad/s). The temperature dependence and orientation of the hyperfine field, the electric field gradient and its asymmetry parameter (eta~ 0.1) have been studied for lightly doped La_{2-x }Sr_{x}CuO _4. We found first that hyperfine field is proportional to bulk magnetization, and second that eta is proportional orthorhombic distortion (To = 530 K). This unique sensitivity of our probe to both the magnetic and structural phase transitions in La _2CuO_{4+delta }, combined with the microscopic information on oxygen stoichiometry it can provide, have made ^{111}In/^{111 }Cd PAC ideal for studies of complex phase diagram of La_{2-x}Sr _{x}CuO _4. Results from these investigations include the first microscopic determination of the oxygen stoichiometry of La_{2-x}Sr _{x}CuO _4 and observation of the maximum Neel temperature; measurement of the magnetic critical exponent, beta = 0.50(4), and the

  11. LOCAL MAGNETIC BEHAVIOR OF 54Fe in EuFe2As2 AND Eu0.5K0.5Fe2As2: MICROSCOPIC STUDY USING TIME DIFFERENTIAL PERTURBED ANGULAR DISTRIBUTION (TDPAD) SPECTROSCOPY

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Layek, S.; Hossain, Z.

    2013-12-01

    In this paper, we report the time differential perturbed angular distribution measurements of 54Fe on a polycrystalline EuFe2As2 and Eu0.5K0.5Fe2As2. The hyperfine field and nuclear spin-relaxation rate are strongly temperature dependent in the paramagnetic state suggesting strong spin fluctuation in the parent compound. The local susceptibility show Curie-Weiss-like temperature dependence and Korringa-like relaxation in the tetragonal phase indicating the presence of local moment. In the orthorhombic phase, the hyperfine field behavior suggesting quasi two-dimensional magnetic ordering. The experimental results are in a good agreement with first-principle calculations based on density functional theory.

  12. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  13. First-principles and time-differential γ-γ perturbed-angular-correlation spectroscopy study of structural and electronic properties of Ta-doped TiO2 semiconductor

    NASA Astrophysics Data System (ADS)

    Darriba, G. N.; Errico, L. A.; Eversheim, P. D.; Fabricius, G.; Rentería, M.

    2009-03-01

    The, time-differential γ-γ perturbed-angular-correlation (TDPAC) technique using ion-implanted H181f(→T181a) tracers was applied to study the hyperfine interactions of T181a impurities in the rutile structure of TiO2 single crystals. The experiments were performed in air in the temperature range of 300-1273 K, allowing the electric-field-gradient (EFG) tensor characterization (in magnitude, asymmetry, and orientation) at T181a probe atoms located in defect-free cation sites of the structure. The measured EFG is parallel to the [001] crystal axis, as occurs at Ti sites, but normal to the EFG orientation observed at C111d impurities in TiO2 single crystals [L. A. Errico , Phys. Rev. Lett. 89, 055503 (2002)]. In addition, ab initio calculations were performed using the full-potential augmented plane wave plus local orbital method that allow us to treat the electronic structure of the doped system and the atomic relaxations induced by the Ta impurity in a fully self-consistent way. We considered different dilutions of the doped system (using the supercell approach) and studied the electronic properties and structural atomic relaxation dependence on the charge state of the impurity. The accuracy of the calculations and the excellent agreement of the predicted magnitude, asymmetry, and orientation of the EFG tensor with the experimental results enable us to infer the EFG sign, not accessible with conventional TDPAC experiments. The comparison of the measured EFG at Ta sites with experimental and ab initio theoretical results reported in the literature at Cd, Ta, and Ti sites in TiO2 allowed us to obtain a deeper insight on the role played by metal impurities in oxide semiconductors.

  14. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mishra, S N

    2009-03-01

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the 111Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values Bhf(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component Vzz in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 1021 V m-2, 5.5 × 1021 V m-2 and 5.6 × 1021 V m-2, respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μB in CeScGe to ≈0.3 μB in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.

  15. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in

  16. Renormalized Lie perturbation theory

    SciTech Connect

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another.

  17. Angular Cheilitis

    MedlinePlus

    ... the mouth. Overview Angular cheilitis (perlèche) is a chronic inflammatory condition of the corners of the mouth. Usually associated with a fungal ( Candidal ) or bacterial ( Staphylococcal ) infection, those ... people of all ages. Chronic pooling of saliva encourages fungal and bacterial growth, ...

  18. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  19. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  20. Phonons with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-01

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  1. Phonons with orbital angular momentum

    SciTech Connect

    Ayub, M. K.; Ali, S.; Mendonca, J. T.

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  2. Topology and perturbation theory

    NASA Astrophysics Data System (ADS)

    Manjavidze, J.

    2000-08-01

    This paper contains description of the fields nonlinear modes successive quantization scheme. It is shown that the path integrals for absorption part of amplitudes are defined on the Dirac (δ-like) functional measure. This permits arbitrary transformation of the functional integral variables. New form of the perturbation theory achieved by mapping the quantum dynamics in the space WG of the (action, angle)-type collective variables. It is shown that the transformed perturbation theory contributions are accumulated exactly on the boundary ∂WG. Abilities of the developed formalism are illustrated by the Coulomb problem. This model is solved in the WC=(angle, angular momentum, Runge-Lentz vector) space and the reason of its exact integrability is emptiness of ∂WC.

  3. The angular momentum of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values.

  4. The angular momentum of the Oort cloud

    SciTech Connect

    Weissman, P.R. )

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values. 21 refs.

  5. Time-differential perturbed-angular-correlation and emission Moessbauer studies on {sup 99}Ru dispersed in YBa{sub 2}Cu{sub 3}O{sub 6.8} and YBa{sub 2}Cu{sub 3}O{sub 6}

    SciTech Connect

    Ohkubo, Y.; Kobayashi, Y.; Harasawa, K.; Ambe, S.; Okada, T.; Ambe, F.; Asai, K.; Shibata, S.

    1995-06-29

    The hyperfine interactions at {sup 99}Ru({sup $IMP@99}Rh) dispersed in YBa{sub 2}Cu{sub 3}O{sub 6.8} and YBa{sub 2}Cu{sub 3}O{sub 6} were studied by means of time-differential perturbed-angular-correlation (TDPAC) and emission Moessbauer spectroscopy. The TDPAC and Moessbauer measurements show that Ru ions are in the tetravalent state and exclusively occupy the Cu-1 sites, which form one-dimensional Cu-O chains in the orthorhombic phase. The oxygen coordinations around the Ru ions are discussed on the basis of the observed electric field gradients at {sup 99}Ru in YBa{sub 2}Cu{sub 3}O{sub 6.8} and YBa{sub 2}Cu{sub 3}O{sub 6}. 35 refs., 6 figs., 1 tab.

  6. PERTURBING LIGNIFICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perturbing lignification is possible in multiple and diverse ways. Without obvious growth/development phenotypes, transgenic angiosperms can have lignin levels reduced to half the normal level, can have compositions ranging from very high-guaiacyl/low-syringyl to almost totally syringyl, and can eve...

  7. Cosmological Perturbations

    NASA Astrophysics Data System (ADS)

    Lesgourges, J.

    2013-08-01

    We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.

  8. Primordial power spectrum of tensor perturbations in Finsler spacetime

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Sai

    2016-02-01

    We first investigate the gravitational wave in the flat Finsler spacetime. In the Finslerian universe, we derive the perturbed gravitational field equation with tensor perturbations. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. Then we obtain the modified primordial power spectrum of the tensor perturbations. The parity violation feature requires that the anisotropic effect contributes to the TT, TE, EE, BB angular correlation coefficients with l'=l+1 and TB, EB with l'=l. The numerical results show that the anisotropic contributions to the angular correlation coefficients depend on m, and TE and ET angular correlation coefficients are different.

  9. Gyroscope test of gravitation: An analysis of the important perturbations

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.

    1971-01-01

    Two perturbations, the earth's quadrupole moment and the earth's revolution around the sun, are discussed. Schiff's proposed gyroscope test of gravitation is analyzed, along with the capability of deciphering each separate contribution to the angular velocity of spin precession.

  10. Perturbative fragmentation

    SciTech Connect

    Kopeliovich, B. Z.; Pirner, H.-J.; Potashnikova, I. K.; Schmidt, Ivan; Tarasov, A. V.

    2008-03-01

    The Berger model of perturbative fragmentation of quarks to pions is improved by providing an absolute normalization and keeping all terms in a (1-z) expansion, which makes the calculation valid at all values of fractional pion momentum z. We also replace the nonrelativistic wave function of a loosely bound pion by the more realistic procedure of projecting to the light-cone pion wave function, which in turn is taken from well known models. The full calculation does not confirm the (1-z){sup 2} behavior of the fragmentation function (FF) predicted in [E. L. Berger, Z. Phys. C 4, 289 (1980); Phys. Lett. 89B, 241 (1980] for z>0.5, and only works at very large z>0.95, where it is in reasonable agreement with phenomenological FFs. Otherwise, we observe quite a different z-dependence which grossly underestimates data at smaller z. The disagreement is reduced after the addition of pions from decays of light vector mesons, but still remains considerable. The process dependent higher twist terms are also calculated exactly and found to be important at large z and/or p{sub T}.

  11. Phenomenological Determination of the Orbital Angular Momentum

    SciTech Connect

    Ramsey, Gordon P.

    2009-08-04

    Measurements involving the gluon spin, {delta}G(x, t) and the corresponding asymmetry, A(x,t) = {delta}G(x,t)/G(x,t) play an important role in quantitative understanding of proton structure. We have modeled the asymmetry perturbatively and calculated model corrections to obtain information about non-perturbative spin-orbit effects. These models are consistent with existing COMPASS and HERMES data on the gluon asymmetry. The J{sub z} = (1/2) sum rule is used to generate values of orbital angular momentum at LO and NLO. For models consistent with data, the orbital angular momentum is small. Our studies specify accuracy that future measurements should achieve to constrain theoretical models for nucleon structure.

  12. Hadronic Structure from Perturbative Dressing

    NASA Astrophysics Data System (ADS)

    Arash, Firooz

    2005-09-01

    Perturbative dressing of a valence quark in QCD produces the internal structure of an extended object, the so-called Valon. The valon structure is universal and independent of the hosting hadron. Polarized and unpolarized proton and pion structure functions are calculated in the valon representation. One finds that although all the available data on g1p,n,d are easily reproduced, a sizable orbital angular momentum associated with the partonic structure of the valon is required in order to have a spin 1/2 valon.

  13. Cosmological perturbations in unimodular gravity

    SciTech Connect

    Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu

    2014-09-01

    We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.

  14. Partonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  15. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  16. A Comparative Time Differential Perturbed Angular Correlation Study of the Nuclear Quadrupole Interaction in HfF4·HF·2H2O Using 180mHf and 181Hf(β-)181Ta as Nuclear Probes: Is Ta an Innocent Spy?

    NASA Astrophysics Data System (ADS)

    Butz, Tilman; Das, Satyendra K.; Manzhur, Yurij

    2009-02-01

    We report on a comparative study of the nuclear quadrupole interaction of the nuclear probes 180mHf and 181Hf(β -)181Ta in HfF4・HF・2H2O using time differential perturbed angular correlations (TDPAC) at 300 K. For the first probe, assuming a Lorentzian frequency distribution, we obtained ωQ= 103(4) Mrad/s, an asymmetry parameter η = 0.68(3), a linewidth δ = 7.3(3.9)%, and full anisotropy within experimental accuracy. For the second probe, assuming a Lorentzian frequency distribution, we obtained three fractions: (1) with 56.5(7)%, ωQ= 126.64(4) Mrad/s and η = 0.9241(4) with a rather small distribution δ = 0.40(8)% which is attributed to HfF4・HF・2H2O; (2) with 4.6(4)%, ωQ = 161.7(3) Mrad/s and η = 0.761(4) assuming no line broadening which is tentatively attributed to a small admixture of Hf2OF6・H2O; (3) the remainder of 39.0(7)% accounts for a rapid loss of anisotropy and is modelled by a perturbation function with a sharp frequency multiplied by an exponential factor exp(-λ t) with λ = 0.55(2) ns-1. Whereas the small admixture of Hf2OF6・H2O escapes detection by the 180mHf probe, there is no rapid loss of roughly half the anisotropy as is the case with 181Hf(β -)181Ta. This loss could in principle be due to fluctuating electric field gradients originating from movements of nearest neighbour HF adducts and/or H2O molecules after nuclear transmutation to the foreign atom Ta which are absent for the isomeric probe. Alternatively, paramagnetic Ta ions could lead to fluctuating magnetic dipole fields which, when combined with fluctuating electric field gradients, could also lead to a rapid loss of anisotropy. In any case, Ta is not an "innocent spy" in this compound. Although 180mHf is not a convenient probe for conventional spectrometers, the use of fast digitizers and software coincidences would allow to use all γ -quanta in the stretched cascade which would greatly improve the efficiency of the spectrometer. 180mHf could also serve as a Pu

  17. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  18. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  19. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  20. Transient dynamics of perturbations in astrophysical disks

    NASA Astrophysics Data System (ADS)

    Razdoburdin, D. N.; Zhuravlev, V. V.

    2015-11-01

    We review some aspects of a major unsolved problem in understanding astrophysical (in particular, accretion) disks: whether the disk interiors can be effectively viscous in spite of the absence of magnetorotational instability. A rotational homogeneous inviscid flow with a Keplerian angular velocity profile is spectrally stable, making the transient growth of perturbations a candidate mechanism for energy transfer from regular motion to perturbations. Transient perturbations differ qualitatively from perturbation modes and can grow substantially in shear flows due to the nonnormality of their dynamical evolution operator. Because the eigenvectors of this operator, also known as perturbation modes, are not pairwise orthogonal, they can mutually interfere, resulting in the transient growth of their linear combinations. Physically, a growing transient perturbation is a leading spiral whose branches are shrunk as a result of the differential rotation of the flow. We discuss in detail the transient growth of vortex shearing harmonics in the spatially local limit, as well as methods for identifying the optimal (fastest growth) perturbations. Special attention is given to obtaining such solutions variationally by integrating the respective direct and adjoint equations forward and backward in time. The presentation is intended for experts new to the subject.

  1. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  2. A UNIFIED THEORY FOR THE EFFECTS OF STELLAR PERTURBATIONS AND GALACTIC TIDES ON OORT CLOUD COMETS

    SciTech Connect

    Collins, Benjamin F.; Sari, Re'em

    2010-11-15

    We examine the effects of passing field stars on the angular momentum of a nearly radial orbit of an Oort cloud comet bound to the Sun. We derive the probability density function of the change in angular momentum from one stellar encounter, assuming a uniform and isotropic field of perturbers. We show that the total angular momentum follows a Levy flight, and determine its distribution function. If there is an asymmetry in the directional distribution of perturber velocities, the marginal probability distribution of each component of the angular momentum vector can be different. The constant torque attributed to Galactic tides arises from a non-cancellation of perturbations with an impact parameter of order the semimajor axis of the comet. When the close encounters are rare, the angular momentum is best modeled by the stochastic growth of stellar encounters. If trajectories passing between the comet and the Sun occur frequently, the angular momentum exhibits the coherent growth attributed to the Galactic tides.

  3. Hyperfine Magnetic Field Measurements in the Heusler Alloys COBALT(2)-TITANIUM-Z, COBALT(2)-MAGNESIUM-Z (z = Silicon, Germanium, and Tin) and COBALT(2)-MAGNESIUM- Gallium Using the Moessbauer Effect (me) and the Time Differential Perturbed Angular Correlation (tdpac) Techniques

    NASA Astrophysics Data System (ADS)

    Lahamer, Amer Said

    1990-01-01

    Measurements of the hyperfine magnetic field in a series of Heusler alloys were performed. The probes were in (^{119}Sn) and cadmium (^{111}Cd). These measurements were performed at the University of Cincinnati in Cincinnati, Ohio. Two techniques were used. The first technique was the Mossbauer effect, which was used to measure the hyperfine magnetic field on ^{119 }Sn in Co_2TiZ (Z = Si, Ge, and Sn), and the second technique was the Time Differential Perturbed Angular Correlation which was used to measure the hyperfine magnetic field on ^ {111}Cd in the Co_2MnZ (Z = Si, Ge, Sn, and Ga). The probes are expected to go to the Z sites of the alloys. The hyperfine magnetic field measurements on ^{119}Sn in Co _2TiZ (Z = Si, Ge, and Sn) alloys were done at room, dry ice and liquid nitrogen temperatures by using the Mossbauer effect technique. The data were fitted by using a least squares fit from which three parameters were extracted. These parameters are the isomer shift, the quadrupole splitting and the hyperfine magnetic field. Temperature variation measurements of the hyperfine magnetic field were performed on ^{111 }Cd in Co_2MnZ (Z = Si, Ge, Sn, and Ga) alloys. The data were fitted again by using a least squares fit from which the Larmor frequency which is related to the hyperfine magnetic field was extracted. Also the Fourier Transforms were taken of the data, on the one hand to confirm the results of the least squares fit and on the other hand to look for more frequencies. Results of the Fourier Transforms show that some of the probe, ^{111}In, did go to the Co site in the Co_2MnZ (Z = Ga, Si, and Ge) alloys. The hmf on ^{111 }Cd in the Co site of these alloys is found to be 68 kOe which is consistent with the value found in the literature. Two theoretical models were examined for the trends of hyperfine magnetic field on ^{119 }Sn and ^{111}Cd in Co_2MnZ (Z = Si, Ge, Sn, and Ga) alloys. These are the Campbell and Blandin model and the Stearns' overlap model

  4. Angular momentum radio

    NASA Astrophysics Data System (ADS)

    Thidé, B.; Tamburini, F.; Then, H.; Someda, C. G.; Mari, Elletra; Parisi, G.; Spinello, F.; Romanato, Fra

    2014-02-01

    Wireless communication amounts to encoding information onto physical observables carried by electromagnetic (EM) fields, radiating them into surrounding space, and detecting them remotely by an appropriate sensor connected to an informationdecoding receiver. Each observable is second order in the fields and fulfills a conservation law. In present-day radio only the EM linear momentum observable is fully exploited. A fundamental physical limitation of this observable, which represents the translational degrees of freedom of the charges (typically an oscillating current along a linear antenna) and the fields, is that it is single-mode. This means that a linear-momentum radio communication link comprising one transmitting and one receiving antenna, known as a single-input-single-output (SISO) link, can provide only one transmission channel per frequency (and polarization). In contrast, angular momentum, which represents the rotational degrees of freedom, is multi-mode, allowing an angular-momentum SISO link to accommodate an arbitrary number of independent transmission channels on one and the same frequency (and polarization). We describe the physical properties of EM angular momentum and how they can be exploited, discuss real-world experiments, and outline how the capacity of angular momentum links may be further enhanced by employing multi-port techniques, i.e., the angular momentum counterpart of linear-momentum multiple-input-multiple-output (MIMO).

  5. Do cosmological perturbations have zero mean?

    SciTech Connect

    Armendariz-Picon, Cristian

    2011-03-01

    A central assumption in our analysis of cosmic structure is that cosmological perturbations have a constant ensemble mean, which can be set to zero by appropriate choice of the background. This property is one of the consequences of statistical homogeneity, the invariance of correlation functions under spatial translations. In this article we explore whether cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homogeneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives in which primordial perturbations have inhomogeneous non-vanishing means, but homogeneous and isotropic covariances. Apart from Gaussianity, our test does not make any additional assumptions about the nature of the perturbations and is thus rather generic and model-independent. The test statistic we employ is essentially Student's t statistic, applied to appropriately masked, foreground-cleaned cosmic microwave background anisotropy maps produced by the WMAP mission. We find evidence for a non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypothesis goes away when we correct for multiple testing. We also place constraints on the mean of the temperature multipoles as a function of angular scale. On angular scales smaller than four degrees, a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of the temperature anisotropies.

  6. Metamaterial broadband angular selectivity

    NASA Astrophysics Data System (ADS)

    Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin

    2014-09-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  7. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  8. Angular diameter distances reconsidered in the Newman and Penrose formalism

    NASA Astrophysics Data System (ADS)

    Kling, Thomas P.; Aly, Aly

    2016-02-01

    Using the Newman and Penrose spin coefficient (NP) formalism, we provide a derivation of the Dyer-Roeder equation for the angular diameter distance in cosmological space-times. We show that the geodesic deviation equation written in NP formalism is precisely the Dyer-Roeder equation for a general Friedman-Robertson-Walker (FRW) space-time, and then we examine the angular diameter distance to redshift relation in the case that a flat FRW metric is perturbed by a gravitational potential. We examine the perturbation in the case that the gravitational potential exhibits the properties of a thin gravitational lens, demonstrating how the weak lensing shear and convergence act as source terms for the perturbed Dyer-Roeder equation.

  9. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  10. Vector potential and metric perturbations of a rotating black hole

    NASA Technical Reports Server (NTRS)

    Chrzanowski, P. L.

    1975-01-01

    The assumption of factorized Green's functions together with the inhomogeneous Teukolsky equations are used to derive analytic expressions for homogeneous metric (and vector potential) perturbations of a Kerr black hole. These homogeneous solutions are used to construct solutions to the perturbation equations when sources are present. What one finds are particularly simple formulas for the energy and angular momentum flux in the asymptotic regions at plus or minus infinity.-

  11. "Angular" plasma cell cheilitis.

    PubMed

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure. PMID:24656273

  12. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  13. Angular momentum and star formation

    NASA Astrophysics Data System (ADS)

    Strittmatter, P. A.

    The present investigation is mainly concerned with the importance of high angular resolution observations in studies of star formation and, in particular, with elucidating the role which angular momentum plays in the process. A brief report is included on recent high angular resolution observations made with the Steward Observatory speckle camera system. A consideration of the angular momentum in interstellar clouds indicates that rotation precludes quasi-spherical contraction. A number of solutions to this angular momentum problem are examined, taking into account questions concerning the help provided by high angular resolution observations for an elucidation of the various possible scenarios of star formation. Technical aspects involved in obtaining suitable data are investigated. It is concluded that high angular resolution observations hold considerable promise for solving at least some of the problems associated with the role of angular momentum in star formation.

  14. Angular momentum projected semiclassics

    NASA Astrophysics Data System (ADS)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  15. Frame independent cosmological perturbations

    SciTech Connect

    Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl

    2013-09-01

    We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and n-point functions.

  16. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  17. Inflationary tensor perturbations after BICEP2.

    PubMed

    Caligiuri, Jerod; Kosowsky, Arthur

    2014-05-16

    The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision. PMID:24877926

  18. The Perturbed Puma Model

    NASA Astrophysics Data System (ADS)

    Rong, Shu-Jun; Liu, Qiu-Yu

    2012-04-01

    The puma model on the basis of the Lorentz and CPT violation may bring an economical interpretation to the conventional neutrinos oscillation and part of the anomalous oscillations. We study the effect of the perturbation to the puma model. In the case of the first-order perturbation which keeps the (23) interchange symmetry, the mixing matrix element Ue3 is always zero. The nonzero mixing matrix element Ue3 is obtained in the second-order perturbation that breaks the (23) interchange symmetry.

  19. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  20. Orbital angular momentum microlaser.

    PubMed

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  1. Orbital angular momentum microlaser

    NASA Astrophysics Data System (ADS)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  2. On the relation between angular momentum and angular velocity

    NASA Astrophysics Data System (ADS)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  3. Chiral Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Tiburzi, Brian C.

    The era of high-precision lattice QCD has led to synergy between lattice computations and phenomenological input from chiral perturbation theory. We provide an introduction to chiral perturbation theory with a bent towards understanding properties of the nucleon and other low-lying baryons. Four main topics are the basis for this chapter. We begin with a discussion of broken symmetries and the procedure to construct the chiral Lagrangian. The second topic concerns specialized applications of chiral perturbation theory tailored to lattice QCD, such as partial quenching, lattice discretization, and finite-volume effects. We describe inclusion of the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action. Issues of convergence are taken up as our final topic. We consider expansions in powers of the strange-quark mass, and the appearance of unphysical singularities in the heavy-particle formulation. Our aim is to guide lattice practitioners in understanding the predictions chiral perturbation theory makes for baryons, and show how the lattice will play a role in testing the rigor of the chiral expansion at physical values of the quark masses.

  4. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  5. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  6. Angular signal radiography.

    PubMed

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  7. The Angular Gyrus

    PubMed Central

    2013-01-01

    There is considerable interest in the structural and functional properties of the angular gyrus (AG). Located in the posterior part of the inferior parietal lobule, the AG has been shown in numerous meta-analysis reviews to be consistently activated in a variety of tasks. This review discusses the involvement of the AG in semantic processing, word reading and comprehension, number processing, default mode network, memory retrieval, attention and spatial cognition, reasoning, and social cognition. This large functional neuroimaging literature depicts a major role for the AG in processing concepts rather than percepts when interfacing perception-to-recognition-to-action. More specifically, the AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information. In addition, this review discusses recent findings that point to the existence of multiple subdivisions in the AG. This spatial parcellation can serve as a framework for reporting AG activations with greater definition. This review also acknowledges that the role of the AG cannot comprehensibly be identified in isolation but needs to be understood in parallel with the influence from other regions. Several interesting questions that warrant further investigations are finally emphasized. PMID:22547530

  8. Annihilation of angular momentum bias during thrusting and spinning-up maneuvers

    NASA Technical Reports Server (NTRS)

    Longuski, J. M.; Kia, T.; Breckenridge, W. G.

    1989-01-01

    During spinning-up and thrusting maneuvers of rockets and spacecraft, undesired transverse torques (from error sources such as thruster misalignment, center-of-mass offset and thruster mismatch) perturb the angular momentum vector from its original orientation. In this paper a maneuver scheme is presented which virtually annihilates the angular momentum vector bias, even though the magnitude and direction of the perturbing body-fixed torques are unknown. In the analysis it is assumed that the torques are small and constant and that the spacecraft or rocket can be approximated by a rigid body, which may be asymmetric. Typical maneuvers of the Galileo spacecraft are simulated to demonstrate the technique.

  9. Barothropic relaxing media under pressure perturbations: Nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Kuetche, Victor K.

    2015-12-01

    In this paper, we delve into the dynamics of a barothropic relaxing medium under pressure perturbations originating from blast wave explosions in the milieu. Analyzing the problem within the viewpoint of the Lyakhov formalism of geodynamic systems, we derive a complex-valued nonlinear evolution equation which models the wave propagation of the pressure perturbations within the barothropic medium. As a result, we find that the previous system can be circularly polarized and hence support traveling rotating pressure excitations which profiles strongly depend upon their angular momenta. In the wake of these results, we address some physical implications of the findings alongside their potential applications.

  10. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  11. Even perturbations of the self-similar Vaidya space-time

    SciTech Connect

    Nolan, Brien C.; Waters, Thomas J.

    2005-05-15

    We study even parity metric and matter perturbations of all angular modes in self-similar Vaidya space-time. We focus on the case where the background contains a naked singularity. Initial conditions are imposed, describing a finite perturbation emerging from the portion of flat space-time preceding the matter-filled region of space-time. The most general perturbation satisfying the initial conditions is allowed to impinge upon the Cauchy horizon (CH), where the perturbation remains finite: There is no 'blue-sheet' instability. However, when the perturbation evolves through the CH and onto the second future similarity horizon of the naked singularity, divergence necessarily occurs: This surface is found to be unstable. The analysis is based on the study of individual modes following a Mellin transform of the perturbation. We present an argument that the full perturbation remains finite after resummation of the (possibly infinite number of) modes.

  12. Liouvillian perturbations of black holes

    NASA Astrophysics Data System (ADS)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  13. Electromagnetically induced angular Talbot effect

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Yang, Guojian

    2015-12-01

    The discrete angular spectrum (angular Talbot effect) of a periodic grating illuminated by a suitable spherical wave front has been observed recently (Azaña and Chatellus 2104 Phys. Rev. Lett. 112 213902). In this paper we study the possibility of such a phenomenon being realized with a medium that has no macroperiodic structure itself. Tunable electromagnetically induced grating (EIG) could be such a kind of medium. We obtain an EIG based on the periodically modulated strong susceptibility due to the third-order nonlinear effect generated in a double Λ-type four-level atomic system, and show the angular Talbot effect of an amplitude EIG, as well as a hybrid EIG, as the condition of the discrete phase-modulation shift of the illumination light front is satisfied. EIG parameters are tunable and the EIG-based angular Talbot effect may have the same potential applications as its periodic grating counterpart has.

  14. Transverse angular momentum of photons

    SciTech Connect

    Aiello, Andrea

    2010-05-15

    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.

  15. Angular Momentum Ejection and Recoil*

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Coppi, B.

    2009-11-01

    The spontaneous rotation phenomenon observed in axisymmetric magnetically confined plasmas has been explained by the ``accretion theory'' [1] that considers the plasma angular momentum as gained from its interaction with the magnetic field and the surrounding material wall. The ejection of angular momentum to the wall, and the consequent recoil are attributed to modes excited at the edge while the transport of the (recoil) angular momentum from the edge toward the center is attributed to a different kind of mode. The toroidal phase velocity of the edge mode, to which the sign of the ejected angular momentum is related, is considered to change its direction in the transition from the H-regime to the L-regime. For the latter case, edge modes with phase velocity in the direction of vdi are driven by the temperature gradient of a cold ion population at the edge and damped on the ``hot'' ion population. The ``balanced'' double interaction [2] of the mode with the two populations, corresponding to a condition of marginal stability, leads to ejection of hot ions and loss of angular momentum in the direction of vdi while the cold population acquires angular momentum in the opposite direction. In the H-regime resistive ballooning modes with phase velocities in the direction of vde are viewed as the best candidates for the excited edge modes. *Sponsored in part by the U.S. DOE. [1] B. Coppi, Nucl. Fusion 42, 1 (2002) [2] B. Coppi and F. Pegoraro, Nucl. Fusion 17, 969 (1977)

  16. Intermolecular perturbation theory

    NASA Astrophysics Data System (ADS)

    Hayes, I. C.; Hurst, G. J. B.; Stone, A. J.

    The new intermolecular perturbation theory described in the preceding papers is applied to some van der Waals molecules. HeBe is used as a test case, and the perturbation method converges well at interatomic distances down to about 4 a0, giving results in excellent agreement with supermolecule calculations. ArHF and ArHCl have been studied using large basis sets, and the results agree well with experimental data. The ArHX configuration is favoured over the ArXH configuration mainly because of larger polarization and charge-transfer contributions. In NeH2 the equilibrium geometry is determined by a delicate balance between opposing effects; with a double-zeta-polarization basis the correct configuration is predicted.

  17. Aspects of perturbative unitarity

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2016-07-01

    We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.

  18. Cosmic microwave background bispectrum on small angular scales

    SciTech Connect

    Pitrou, Cyril; Uzan, Jean-Philippe; Bernardeau, Francis

    2008-09-15

    This article investigates the nonlinear evolution of cosmological perturbations on sub-Hubble scales in order to evaluate the unavoidable deviations from Gaussianity that arise from the nonlinear dynamics. It shows that the dominant contribution to modes coupling in the cosmic microwave background temperature anisotropies on small angular scales is driven by the sub-Hubble nonlinear evolution of the dark matter component. The perturbation equations, involving, in particular, the first moments of the Boltzmann equation for photons, are integrated up to second order in perturbations. An analytical analysis of the solutions gives a physical understanding of the result as well as an estimation of its order of magnitude. This allows one to quantify the expected deviation from Gaussianity of the cosmic microwave background temperature anisotropy and, in particular, to compute its bispectrum on small angular scales. Restricting to equilateral configurations, we show that the nonlinear evolution accounts for a contribution that would be equivalent to a constant primordial non-Gaussianity of order f{sub NL}{approx}25 on scales ranging approximately from l{approx}1000 to l{approx}3000.

  19. Uncertainty principle for angular position and angular momentum

    NASA Astrophysics Data System (ADS)

    Franke-Arnold, Sonja; Barnett, Stephen M.; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-08-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry.

  20. The Angular Momentum of Light

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Babiker, Mohamed

    2012-11-01

    Preface D. L. Andrews and M. Babiker; 1. Light beams carrying orbital angular momentum J. B. Götte and S. M. Barnett; 2. Vortex transformation and vortex dynamics in optical fields G. Molina-Terriza; 3. Vector beams in free space E. J. Galvez; 4. Optical beams with orbital angular momentum in nonlinear media A. S. Desyatnikov and Y. S. Kivshar; 5. Ray optics, wave optics and quantum mechanics G. Nienhuis; 6. Quantum formulation of angle and orbital angular momentum J. B. Götte and S. M. Barnett; 7. Dynamic rotational frequency shift I. Bialynicki-Birula and Z. Bialynicka-Birula; 8. Spin-orbit interactions of light in isotropic media K. Y. Bliokh, A. Aiello and M. A. Alonso; 9. Quantum electrodynamics, angular momentum and chirality D. L. Andrews and M. Babiker; 10. Trapping of charged particles by Bessel beams I. Bialynicki-Birula, Z. Bialynicka-Birula and N. Drozd; 11. Theory of atoms in twisted light M. Babiker, D. L. Andrews and V. E. Lembessis; 12. An experimentalist's introduction to orbital angular momentum for quantum optics J. Romero, D. Giovannini, S. Franke-Arnold and M. J. Padgett; 13. Measurement of light's orbital angular momentum M. P. J. Lavery, J. Courtial and M. J. Padgett; 14. Efficient generation of optical twisters using helico-conical beams V. R. Daria, D. Palima and J. Glückstad; 15. Self similar modes of coherent diffusion with orbital angular momentum O. Firstenberg, M. Shuker, R. Pugatch and N. Davidson; 16. Dimensionality of azimuthal entanglement M. van Exter, E. Eliel and H. Woerdman; Index.

  1. Rotation of the polarization vector from distant radio galaxies in the perturbed FRW metric

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Sankha Subhra

    2016-06-01

    Analysis of the correlation between the angular positions of distant radio galaxies on the sky and the orientations of their polarization vectors with respect to their major axes indicates a dipolar anisotropy in the large scale. We consider a single mode of large-scale scalar perturbation to the FRW metric. Using Newman-Penrose formalism, we calculate the rotation of the galaxy major axis with respect to the polarization vector as the elliptic image and the polarization vector are carried through the perturbed spacetime. The dependence of the rotation on the polar angular coordinate of the galaxy is qualitatively similar to the claimed dipole pattern.

  2. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  3. Angular Power Spectrum in Modular Invariant Inflation Model

    SciTech Connect

    Hayashi, Mitsuo J.; Okame, Y.; Takagi, K.; Watanabe, T.; Hirai, S.; Takami, T.

    2008-05-29

    A scalar potential of inflation is proposed and the angular power spectra of the adiabatic density perturbations are computed. The potential consists of three scalar fields, S, Y and T, together with two free parameters. By fitting the parameters to cosmological data at the fixed point T = 1, we find that the potential behaves like the single-field potential of S, which slowly rolls down. We further show that the inflation predictions corresponding to this potential provide a good fit to the recent three-year WMAP data, e.g. the spectral index n{sub s} = 0.951.The TT and TE angular power spectra obtained from our model almost completely coincide with the corresponding results obtained from the {lambda}CDM model. We conclude that our model is considered to be an adequate theory of inflation that explains the present data.

  4. Resilience of hybrid optical angular momentum qubits to turbulence

    PubMed Central

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P.; Sciarrino, Fabio

    2015-01-01

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses. PMID:25672667

  5. Resilience of hybrid optical angular momentum qubits to turbulence.

    PubMed

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio

    2015-01-01

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses. PMID:25672667

  6. Baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  7. Discrete reductive perturbation technique

    SciTech Connect

    Levi, Decio; Petrera, Matteo

    2006-04-15

    We expand a partial difference equation (P{delta}E) on multiple lattices and obtain the P{delta}E which governs its far field behavior. The perturbative-reductive approach is here performed on well-known nonlinear P{delta}Es, both integrable and nonintegrable. We study the cases of the lattice modified Korteweg-de Vries (mKdV) equation, the Hietarinta equation, the lattice Volterra-Kac-Van Moerbeke equation and a nonintegrable lattice KdV equation. Such reductions allow us to obtain many new P{delta}Es of the nonlinear Schroedinger type.

  8. Controlling the Spins Angular Momentum in Ferromagnets with Sequences of Picosecond Acoustic Pulses

    PubMed Central

    Kim, Ji-Wan; Vomir, Mircea; Bigot, Jean-Yves

    2015-01-01

    Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses. PMID:25687970

  9. Interferometric measurement of angular motion

    NASA Astrophysics Data System (ADS)

    Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C.

    2013-04-01

    This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10-11 rad/sqrt{textrm {Hz}} from audioband down to 100 mHz and an angular measurement range of more than ±1°.

  10. Variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1981-01-01

    Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions.

  11. Phenomenology of preequilibrium angular distributions

    SciTech Connect

    Kalbach, C.; Mann, F.M.

    1980-05-01

    The systematics of continuum angular distributions from a wide variety of light ion nuclear reactions have been studied. To first order, the shape of the angular distributions have been found to depend only on the energy of the outgoing particle and on the division of the cross section into multi-step direct and multi-step compound parts. The angular distributions can be described in terms of Legendre polynomials with the reduced polynomial coefficients exhibiting a simple dependence on the outgoing particle energy. Two integer and four continuous parameters with universal values are needed to describe the coefficients for outgoing energies of 2 to 60 MeV in all the reaction types studied. This parameterization combined with a modified Griffin model computer code permits the calculation of double differential cross sections for light ion continuum reactions where no data is available.

  12. Canonical floquet perturbation theory

    NASA Astrophysics Data System (ADS)

    Pohlen, David J.

    1992-12-01

    Classical Floquet theory is examined in order to generate a canonical transformation to modal variables for periodic system. This transformation is considered canonical if the periodic matrix of eigenvectors is symplectic at the initial time. Approaches for symplectic normalization of the eigenvectors had to be examined for each of the different Poincare eigenvalue cases. Particular attention was required in the degenerate case, which depended on the solution of a generalized eigenvector. Transformation techniques to ensure real modal variables and real periodic eigenvectors were also needed. Periodic trajectories in the restricted three-body case were then evaluated using the canonical Floquet solution. The system used for analyses is the Sun-Jupiter system. This system was especially useful since it contained two of the more difficult Poincare eigenvalue cases, the degenerate case and the imaginary eigenvalue case. The perturbation solution to the canonical modal variables was examined using both an expansion of the Hamiltonian and using a representation that was considered exact. Both methods compared quite well for small perturbations to the initial condition. As expected, the expansion solution failed first due to truncation after the third order term of the expansion.

  13. Non-Colinearity of Angular Velocity and Angular Momentum

    ERIC Educational Resources Information Center

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  14. Solar cell angular position transducer

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Gray, D. L. (Inventor)

    1980-01-01

    An angular position transducer utilizing photocells and a light source is disclosed. The device uses a fully rotatable baffle which is connected via an actuator shaft to the body whose rotational displacement is to be measured. The baffle blocks the light path between the light source and the photocells so that a constant semicircular beam of light reaches the photocells. The current produced by the photocells is fed through a resistor, a differential amplifier measures the voltage drop across the resistor which indicates the angular position of the actuator shaft and hence of the object.

  15. Energy and angular momentum transfer in binary galaxies

    NASA Technical Reports Server (NTRS)

    Namboodiri, P. M. S.; Kochhar, R. K.

    1990-01-01

    The authors numerically studied tidal effects of a massive perturber on a satellite galaxy. The model consists of a spherical satellite galaxy and a point mass perturber and the encounter is non-penetrating. A wide range of density ratios and eccentricities of the relative orbits have been considered. The disruption of the satellite galaxy has been observed when the numerical value of the fractional change in the energy is greater than two. The changes in the energy and angular momentum show smooth variation in the case of unbound orbits and irregular variation in the bound orbit cases. It is shown that for a constant pericentral distance, increasing the density ratio decreases the tidal effects; and for a given density ratio an increase in the eccentricity decreases the tidal effects.

  16. Quasi-periodic oscillations of perturbed tori

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Varadarajan; Manousakis, Antonios; Kluźniak, Włodzimierz

    2016-05-01

    We performed axisymmetric hydrodynamical simulations of oscillating tori orbiting a non-rotating black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Kluźniak-Lee). Motions of the torus were triggered by adding subsonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured L2 norm of density and obtained the power spectrum of L2 norm which manifested eigenfrequencies of tori modes. The most prominent modes of oscillation excited in the torus by a quasi-random perturbation are the breathing mode and the radial and vertical epicyclic modes. The radial and the plus modes, as well as the vertical and the breathing modes will have frequencies in an approximate 3:2 ratio if the torus is several Schwarzschild radii away from the innermost stable circular orbit. Results of our simulations may be of interest in the context of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries, as well as in supermassive black holes.

  17. The lunar angular momentum problem

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1984-01-01

    Formation of the Moon by classical Darwin-type fission of a rapidly spinning proto-Earth is discussed. The relationship of angular momentum to accretion disks is examined. The co-accretion scenario and Darwin-type fission are compared and evaluated.

  18. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  19. Olympic Wrestling and Angular Momentum.

    ERIC Educational Resources Information Center

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  20. Flatbands under correlated perturbations.

    PubMed

    Bodyfelt, Joshua D; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-12-01

    Flatband networks are characterized by the coexistence of dispersive and flatbands. Flatbands (FBs) are generated by compact localized eigenstates (CLSs) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLSs without additional renormalization, yet with surprising consequences: (i) states are expelled from the FB energy E_{FB}, (ii) the localization length of eigenstates vanishes as ξ∼1/ln(E-E_{FB}), (iii) the density of states diverges logarithmically (particle-hole symmetry) and algebraically (no particle-hole symmetry), and (iv) mobility edge curves show algebraic singularities at E_{FB}. Our analytical results are based on perturbative expansions of the CLSs and supported by numerical data in one and two lattice dimensions. PMID:25526142

  1. Flatbands under Correlated Perturbations

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua D.; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-12-01

    Flatband networks are characterized by the coexistence of dispersive and flatbands. Flatbands (FBs) are generated by compact localized eigenstates (CLSs) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLSs without additional renormalization, yet with surprising consequences: (i) states are expelled from the FB energy EFB, (ii) the localization length of eigenstates vanishes as ξ ˜1 /ln (E -EFB) , (iii) the density of states diverges logarithmically (particle-hole symmetry) and algebraically (no particle-hole symmetry), and (iv) mobility edge curves show algebraic singularities at EFB . Our analytical results are based on perturbative expansions of the CLSs and supported by numerical data in one and two lattice dimensions.

  2. Discrete Newtonian cosmology: perturbations

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Gibbons, Gary W.

    2015-03-01

    In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.

  3. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  4. Molecular above-threshold-ionization angular distributions with attosecond bichromatic intense XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2012-01-01

    Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.

  5. Cosmological perturbations in massive bigravity

    SciTech Connect

    Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk

    2014-12-01

    We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.

  6. Canonical density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847

  7. Separability of Gravitational Perturbation in Generalized Kerr-Nut Sitter Space-Time

    NASA Astrophysics Data System (ADS)

    Oota, Takeshi; Yasui, Yukinori

    Generalized Kerr-NUT-de Sitter space-time is the most general space-time which admits a rank-2 closed conformal Killing-Yano tensor. It contains the higher-dimensional Kerr-de Sitter black holes with partially equal angular momenta. We study the separability of gravitational perturbations in the generalized Kerr-NUT-de Sitter space-time. We show that a certain type of tensor perturbations admits the separation of variables. The linearized perturbation equations for the Einstein condition are transformed into the ordinary differential equations of Fuchs type.

  8. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2009-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive features, and fracture zones (and wedge-shaped sites

  9. Hybrid perturbation scheme for wide beamwidth circularly polarized stacked patch microstrip antenna for satellite communication

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Shakawat

    Circularly polarized microstrip antennas are popular for satellite communications due to their circularly polarized orientation. They are used frequently in modern day satellite communication. In order to achieve wide angular coverage in satellite communication, a wide beamwidth is required from the antenna. Traditional single layer microstrip antenna inherently demonstrates low angular beamwidth of approximately 600 to 800and thereby lacks wide angular coverage when used for satellite communication. The objective of this thesis is to design a single-fed stacked microstrip antenna using different perturbation techniques in order to achieve a wide angular beamwidth. This thesis presents a new design for a circularly polarized antenna based on the hybrid perturbation scheme. First, a method of stacked patch-ring with negative perturbation was used to generate a significantly larger beamwidth of 1060. The axial ratio (AR) bandwidth obtained is also significantly larger compared to the case when square rings are used as parasitic and driven rings with a single feed. A simulated impedance bandwidth (S11< - 10 dB) of 16%, 3 dB AR bandwidth of 8% and a peak gain of 8.65 dBic are obtained from this design. Next, a new design of stacked hybrid antenna is presented, which uses hybrid perturbations to generate circular polarization radiation. An enhanced beamwidth of 1260 was obtained. The simulation results are confirmed by the measured results.

  10. Full-sky formulae for weak lensing power spectra from total angular momentum method

    SciTech Connect

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya E-mail: namikawa@yukawa.kyoto-u.ac.jp

    2013-08-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra.

  11. On Dunkl angular momenta algebra

    NASA Astrophysics Data System (ADS)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  12. Neoclassical Angular Momentum Flux Revisited

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.

    2004-11-01

    The toroidal angular momentum flux in neoclassical transport theory of small rotations depends on the second order (in ion poloidal gyroradius over plasma scale length) ion distribution function. Owing to the complexity of the calculation, the result obtained a long time ago for circular cross-section tokamak plasmas in the banana regime [M.N. Rosenbluth, et al., Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1971), Vol. 1, p. 495] has never been reproduced. Using a representation of the angular momentum flux based on the solution of an adjoint equation to the usual linearized drift kinetic equation, and performing systematically a large-aspect-ratio expansion, we have obtained the flux for flux surfaces of arbitrary shape. We have found the same analytic form for the temperature gradient driven part of the flux, but the overall numerical multiplier is different and has the opposite sign. Implications for rotations in discharges with no apparent momentum input will be discussed.

  13. NUCLEI AT HIGH ANGULAR MOMENTUM

    SciTech Connect

    Diamond, R.M.; Stephens, F.S.

    1980-06-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  14. Achromatic orbital angular momentum generator

    NASA Astrophysics Data System (ADS)

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W.

    2014-12-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed.

  15. Resumming the string perturbation series

    NASA Astrophysics Data System (ADS)

    Grassi, Alba; Mariño, Marcos; Zakany, Szabolcs

    2015-05-01

    We use the AdS/CFT correspondence to study the resummation of a perturbative genus expansion appearing in the type II superstring dual of ABJM theory. Although the series is Borel summable, its Borel resummation does not agree with the exact non-perturbative answer due to the presence of complex instantons. The same type of behavior appears in the WKB quantization of the quartic oscillator in Quantum Mechanics, which we analyze in detail as a toy model for the string perturbation series. We conclude that, in these examples, Borel summability is not enough for extracting non-perturbative information, due to non-perturbative effects associated to complex instantons. We also analyze the resummation of the genus expansion for topological string theory on local , which is closely related to ABJM theory. In this case, the non-perturbative answer involves membrane instantons computed by the refined topological string, which are crucial to produce a well-defined result. We give evidence that the Borel resummation of the perturbative series requires such a non-perturbative sector.

  16. Computing singularities of perturbation series

    SciTech Connect

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be useful for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.

  17. On dark energy isocurvature perturbation

    SciTech Connect

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn

    2011-06-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.

  18. Statistical anisotropy of the curvature perturbation from vector field perturbations

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co

    2009-05-15

    The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.

  19. Measurements on B-hadron angular correlations at 7 TeV with the CMS experiment

    NASA Astrophysics Data System (ADS)

    Sala, Leonardo; CMS Collaboration

    2012-09-01

    A measurement of the angular correlations between beauty and anti-beauty hadrons produced in LHC proton-proton collisions at √s = 7 TeV is presented, probing for the first time the small angular separation region. The B hadrons are identified by the presence of secondary vertices from their decays and their kinematics reconstructed combining the decay vertex with the primary interaction vertex. The results are compared with predictions based on perturbative QCD calculations at leading and next-to-leading order.

  20. Two-dimensional angular filter array for angular domain imaging with 3D printed angular filters

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Carson, Jeffrey J. L.

    2013-02-01

    Angular Domain Imaging (ADI) is a technique that is capable of generating two dimensional shadowgrams of attenuating targets embedded in a scattering medium. In ADI, an angular filter array (AFA) is positioned between the sample and the detector to distinguish between quasi-ballistic photons and scattered photons. An AFA is a series of micro-channels with a high aspect ratio. Previous AFAs from our group were constructed by micro-machining the micro-channels into a silicon wafer, limiting the imaging area to a one dimensional line. Two dimensional images were acquired via scanning. The objective of this work was to extend the AFA design to two dimensions to allow for two dimensional imaging with minimal scanning. The second objective of this work was to perform an initial characterization of the imaging capabilities of the 2D AFA. Our approach was to use rapid 3D prototyping techniques to generate an array of micro-channels. The imaging capabilities were then evaluated by imaging a 0.9 mm graphite rod submerged in a scattering media. Contrast was observed to improve when a second angular filter array was placed in front of the sample to mask the incoming light.

  1. Elementary derivation of the perturbation equations of celestial mechanics

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1976-01-01

    The equations of celestial mechanics that govern the temporal rates of change of orbital elements are completely derived using elementary dynamics and proceeding only from Newton's equation and its solution. Two orbital equations and the four most meaningful orbital elements - semimajor axis, eccentricity, inclination, and longitude of pericenter - are written in terms of the orbital energy (E) and angular momentum (H) per unit mass. The six resulting equations are differentiated with respect to time to see the effect on the orbital elements of small changes in E and H. The usual perturbation equations in terms of disturbing-force components are then derived by computing the manner in which perturbing forces change E and H. The results are applied in a qualitative discussion of the orbital evolution of particles in nonspherical gravitational fields, through atmospheres, and under the action of tides.

  2. Plate tectonics conserves angular momentum

    NASA Astrophysics Data System (ADS)

    Bowin, C.

    2010-03-01

    A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant

  3. Cosmological perturbations during radion stabilization

    NASA Astrophysics Data System (ADS)

    Ashcroft, P. R.; van de Bruck, C.; Davis, A.-C.

    2005-01-01

    We consider the evolution of cosmological perturbations during radion stabilization, which we assume to happen after a period of inflation in the early universe. Concentrating on the Randall-Sundrum brane world scenario, we find that, if matter is present both on the positive and negative tension branes, the coupling of the radion to matter fields could have significant impact on the evolution of the curvature perturbation and on the production of entropy perturbations. We investigate both the case of a long-lived and a short-lived radion and outline similarities and differences to the curvaton scenario.

  4. Uncertainty relations for angular momentum

    NASA Astrophysics Data System (ADS)

    Dammeier, Lars; Schwonnek, René; Werner, Reinhard F.

    2015-09-01

    In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the ‘uncertainty regions’ given by all vectors, whose components are specified by the variances of the three angular momentum components. A basic feature of this set is a lower bound for the sum of the three variances. We give a method for obtaining optimal lower bounds for uncertainty regions for general operator triples, and evaluate these for small s. Further lower bounds are derived by generalizing the technique by which Robertson obtained his state-dependent lower bound. These are optimal for large s, since they are saturated by states taken from the Holstein-Primakoff approximation. We show that, for all s, all variances are consistent with the so-called vector model, i.e., they can also be realized by a classical probability measure on a sphere of radius \\sqrt{s(s+1)}. Entropic uncertainty relations can be discussed similarly, but are minimized by different states than those minimizing the variances for small s. For large s the Maassen-Uffink bound becomes sharp and we explicitly describe the extremalizing states. Measurement uncertainty, as recently discussed by Busch, Lahti and Werner for position and momentum, is introduced and a generalized observable (POVM) which minimizes the worst case measurement uncertainty of all angular momentum components is explicitly determined, along with the minimal uncertainty. The output vectors for the optimal measurement all have the same length r(s), where r(s)/s\\to 1 as s\\to ∞ .

  5. Two-axis angular effector

    DOEpatents

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  6. Variable Distance Angular Symbology Reader

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)

    2006-01-01

    A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.

  7. Coping with perturbations to a layout somersault in tumbling.

    PubMed

    King, M A; Yeadon, M R

    2003-07-01

    Tumbling is a dynamic movement requiring control of the linear and angular momenta generated during the approach and takeoff phases. Both of these phases are subject to some variability even when the gymnast is trying to perform a given movement repeatedly. This paper used a simulation model of tumbling takeoff to establish how well gymnasts can cope with perturbations of the approach and takeoff phases. A five segment planar simulation model with torque generators at each joint was developed to simulate tumbling takeoffs. The model was customised to an elite gymnast by determining subject specific inertia and torque parameters and a simulation was produced which closely matched a performance of a layout somersault by the gymnast. The performance of a layout somersault was found to be sensitive to the approach characteristics and the activation timings but relatively insensitive to the elasticity of the track and maximum muscle strength. Appropriate variation of the activation timings used during the takeoff phase was capable of coping with moderate perturbations of the approach characteristics. A model of aerial movement established that variation of body configuration in the flight phase was capable of adjusting for takeoff perturbations that would lead to rotation errors of up to 8%. Providing the errors in perceiving approach characteristics are less than 5% or 5 degrees and the errors in timing activations are less than 7ms, perturbations in the approach can be accommodated using adjustments during takeoff and flight. PMID:12757800

  8. Third-Body Perturbation Effects on Satellite Formations

    NASA Astrophysics Data System (ADS)

    T. Roscoe, Christopher W.; Vadali, Srinivas R.; Alfriend, Kyle T.

    2013-12-01

    The effects of third-body perturbations on satellite formations are investigated using differential orbital elements to describe the relative motion. Absolute and differential effects of the lunar perturbation on satellite formations are derived analytically based on the simplified model of the circular restricted three-body problem. This analytical description includes averaged long-term effects on the orbital elements, including the full transformation between the osculating elements and the lunar-averaged elements, which is absent from previous research. A simplified Earth-Moon system model is used, but the results are applicable to any formation reference orbit about the Earth. Simulations are performed to determine the effects of the lunar perturbation on example formations in upper MEO, highly eccentric orbits by using the formation design criteria of Phases I and II of the NASA Magnetospheric Multiscale mission. The changes in angular differential orbital elements ( δ ω, δΩ, and δ M 0) and in science return quality due to this perturbation are compared to changes due to J 2. The method is then expanded to include the inclination of the Moon's orbit and results are compared to simulation using the NASA General Mission Analysis Tool.

  9. Causal compensated perturbations in cosmology

    NASA Technical Reports Server (NTRS)

    Veeraraghavan, Shoba; Stebbins, Albert

    1990-01-01

    A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.

  10. Isocurvature perturbations in extra radiation

    SciTech Connect

    Kawasaki, Masahiro; Miyamoto, Koichi; Nakayama, Kazunori; Sekiguchi, Toyokazu E-mail: miyamone@icrr.u-tokyo.ac.jp E-mail: oyokazu.sekiguchi@nagoya-u.jp

    2012-02-01

    Recent cosmological observations, including measurements of the CMB anisotropy and the primordial helium abundance, indicate the existence of an extra radiation component in the Universe beyond the standard three neutrino species. In this paper we explore the possibility that the extra radiation has isocurvatrue fluctuations. A general formalism to evaluate isocurvature perturbations in the extra radiation is provided in the mixed inflaton-curvaton system, where the extra radiation is produced by the decay of both scalar fields. We also derive constraints on the abundance of the extra radiation and the amount of its isocurvature perturbation. Current observational data favors the existence of an extra radiation component, but does not indicate its having isocurvature perturbation. These constraints are applied to some particle physics motivated models. If future observations detect isocurvature perturbations in the extra radiation, it will give us a hint to the origin of the extra radiation.

  11. Robust stability under additive perturbations

    NASA Technical Reports Server (NTRS)

    Bhaya, A.; Desoer, C. A.

    1985-01-01

    A MIMO linear time-invariant feedback system 1S(P,C) is considered which is assumed to be U-stable. The plant P is subjected to an additive perturbation Delta P which is proper but not necessarily stable. It is proved that the perturbed system is U-stable if and only if Delta P(I + Q x Delta P) exp -1 is U-stable.

  12. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  13. Perturbations of the Black Hole-Torus System: Instabilities and QPOs

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    2016-07-01

    The existence of the black hole (BH)-torus system has been given a considerable attention to explain the variability of X-ray and Gamma-ray (γ-ray) data. The perturbation of the black hole-torus system creates instabilities and some of these instabilities are responsible for a quasi-periodic oscillation. In this talk, we present the results from numerical simulation of the dynamical instability of a pressure-supported relativistic torus, rotating around the black hole with a constant specific angular momentum on a fixed space-time background, in case of perturbation. The types of instabilities and their amplitudes strongly depend on what kind of perturbation is applied. The types of perturbations can be a blob of hot gas, Bondi-Hoyle accretion from a finite distance, radial and angular velocity perturbations of the stable accreted torus, and non-spherical accretion as a consequence of isotropic fall of the spherical-shell which has finite thickness. We study the effects of perturbations onto the torus-black hole system by solving the hydrodynamical equations and we have found that the torus around the black hole would have an instability, which is called the Papaloizou-Pringle, and a quasi-periodic oscillation only if we choose a suitable perturbations and initial data. It is noted that, while the perturbations, which are called blob of hot gas, radial velocity perturbations and Bondi-Hoyle accretion, create the Papaloizou-Pringle instability, the Papaloizou-Pringle instability is softly developed and removed in a short time scale for spherical shell accretion. Our studies also indicate that QPOs are common phenomena on the disc around the black holes. If the accretion disc or torus has a quasi-periodic behavior, it emits continuous radiation during the oscillation.

  14. Gauge invariant perturbations of self-similar Lemaitre-Tolman-Bondi spacetime: Even parity modes with l{>=}2

    SciTech Connect

    Waters, Thomas J.; Nolan, Brien C.

    2009-04-15

    In this paper we consider gauge invariant linear perturbations of the metric and matter tensors describing the self-similar Lemaitre-Tolman-Bondi (timelike dust) spacetime containing a naked singularity. We decompose the angular part of the perturbation in terms of spherical harmonics and perform a Mellin transform to reduce the perturbation equations to a set of ordinary differential equations with singular points. We fix initial data so the perturbation is finite on the axis and the past null cone of the singularity, and follow the perturbation modes up to the Cauchy horizon. There we argue that certain scalars formed from the modes of the perturbation remain finite, indicating linear stability of the Cauchy horizon.

  15. Useful angular selectivity in oblique columnar aluminum

    NASA Astrophysics Data System (ADS)

    Ditchburn, R. J.; Smith, G. B.

    1991-03-01

    A useful magnitude of angular selective transmittance of incident unpolarized light is demonstrated in obliquely deposited aluminum. Required deposition procedures and anisotropic optical properties are discussed. Angular selectivity is very strong at visible wavelengths but both experiment and theory indicate that a single oblique layer with well defined columns gives high transmittance at near-infrared wavelengths compared with normal films. There are ways of reducing this to enhance the energy control capability. Both solar and luminous angular selectivity are reported.

  16. Configuration interaction calculations with infinite angular = expansions

    SciTech Connect

    Goldman, S.P.; Glickman, T.

    1996-05-01

    The Modified Configuration Interaction (MCI) method improves the angular convergence of Configuration Interaction (CI) calculations by several orders of magnitude by mixing a priori a large number of angular basis functions. With MCI one can therefore use basis functions with very large angular momentum quantum numbers, overcoming an important limitation of conventional CI. Although this is desirable given the excellent convergence obtained, the large number of angular integrations and the calculation of n-j symbols with large values of l to high accuracy, make the angular calculations lengthy. In this work a new angular representation for CI calculations is presented that is much more efficient and powerful. Instead of the large number of angular functions of MCI the authors use a basis set containing an infinite linear combination of angular functions. All the necessary integrations involving these infinite expansions are done in closed form and are actually easy and fast to compute. The linear coefficients in the angular expansion are optimized in terms of a few non-linear parameters. Several examples will be presented with applications to two-electron systems.

  17. The Angular Momentum of the Solar System

    NASA Astrophysics Data System (ADS)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  18. Gravitational waves from perturbed stars

    NASA Astrophysics Data System (ADS)

    Ferrari, V.

    2011-12-01

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance, in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  19. Gravitational waves from perturbed stars

    NASA Astrophysics Data System (ADS)

    Ferrari, V.

    2011-03-01

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  20. Jet Perturbation by HE target

    SciTech Connect

    Poulsen, P; Kuklo, R M

    2001-03-01

    We have previously reported the degree of attenuation and perturbation by a Cu jet passing through Comp B explosive. Similar tests have now been performed with high explosive (HE) targets having CJ pressures higher than and lower than the CJ pressure of Comp B. The explosives were LX-14 and TNT, respectively. We found that the measured exit velocity of the jet where it transitions from perturbed to solid did not vary significantly as a function of HE type for each HE thickness. The radial momentum imparted to the perturbed jet segment did vary as a function of HE type, however, and we report the radial spreading of the jet and the penetration of a downstream target as a function of HE type and thickness.

  1. Perturbed motion at small eccentricities

    NASA Astrophysics Data System (ADS)

    Emel'yanov, N. V.

    2015-09-01

    In the study of the motion of planets and moons, it is often necessary to have a simple approximate analytical motion model, which takes into account major perturbations and preserves almost the same accuracy at long time intervals. A precessing ellipse model is used for this purpose. In this paper, it is shown that for small eccentricities this model of the perturbed orbit does not correspond to body motion characteristics. There is perturbed circular motion with a constant zero mean anomaly. The corresponding solution satisfies the Lagrange equations with respect to Keplerian orbital elements. There are two families of solutions with libration and circulation changes in the mean anomaly close to this particular solution. The paper shows how the eccentricity and mean anomaly change in these solutions. Simple analytical models of the motion of the four closest moons of Jupiter consistent with available ephemerides are proposed, which in turn are obtained by the numerical integration of motion equations and are refined by observations.

  2. Effects of the type and direction of support surface perturbation on postural responses

    PubMed Central

    2014-01-01

    Background Postural control is organized around a task goal. The two most frequently used types of tasks for postural control research are translational (translation along the anterior-posterior axis) and rotational (rotation in sagittal plane) surface perturbations. These types of perturbations rotate the ankle joint, causing different magnitudes and directions of body sway. The purpose of this study was to investigate the effects of the type (translation vs. rotation) and direction (forward/toe up vs. backward/toe down) of the perturbation on postural responses. Method Nineteen healthy subjects were tested with four perturbations, i.e., forward and backward translation and toe up and toe down rotation. The onset latency and magnitude of muscle activations, angular changes, and COM displacements were measured. In addition, the kinematic data were divided into two phases. The initial phase reflected the balance disturbance induced by the platform movement, and the reversal phase reflected the balance reaction. Results The results showed that, in the initial phase, rotational perturbation induced earlier ankle movement and faster and larger vertical COM displacement, while translational and forward/toe up perturbations induced larger head and trunk angular change and faster and larger horizontal COM displacement. In the reversal phase, balance reaction was attained by multi-joint movements. Translational and forward/toe up perturbations that induced larger upper body instability evoked faster muscle activation as well as faster and larger hip or knee joint movements. Conclusions These findings provide insights into an appropriate support surface perturbation for the evaluation and training of balance. PMID:24708582

  3. Thermal perturbation of the Sun

    NASA Technical Reports Server (NTRS)

    Twigg, L. W.; Endal, A. S.

    1981-01-01

    An investigation of thermal perturbations of the solar convective zone via changes in the mixing length parameter were carried out, with a view toward understanding the possible solar radius and luminosity changes cited in the literature. The results show that: (a) a single perturbation of alpha is probably not the cause of the solar radius change and (b) the parameter W = d lambda nR./d lambda nL. can not be characterized by a single value, as implied in recent work.

  4. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  5. Mean Angular Momenta of Primary Photofission Products

    SciTech Connect

    Bezshyyko, O.A.; Kadenko, I.M.; Plujko, V.A.; Yermolenko, R.V.; Mazur, V.M.; Strilchuk, N.V.; Vishnevsky, I.M.; Zheltonozhsky, V.A.

    2005-05-24

    Isomer ratios and mean angular momenta for photofission products of 237Np and 238U are obtained. The technique of gamma-ray spectrometry for isomeric ratio determination was used. Fissionable nuclei were irradiated by bremsstrahlung spectrum of microtron M-30 with electron energy 16 MeV. Calculations of mean angular momenta were performed by modified version of the EMPIRE II code.

  6. Orbital angular momentum in the nucleon

    SciTech Connect

    Garvey, Gerald T.

    2010-05-15

    Analysis of the measured value of the integrated d-bar-u-bar asymmetry (I{sub fas} = 0.147 +- 0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  7. Flux-torque cross-coupling analysis of FOC schemes: Novel perturbation rejection characteristics.

    PubMed

    Amezquita-Brooks, Luis; Liceaga-Castro, Eduardo; Liceaga-Castro, Jesús; Ugalde-Loo, Carlos E

    2015-09-01

    Field oriented control (FOC) is one of the most successful control schemes for electrical machines. In this article new properties of FOC schemes for induction motors (IMs) are revealed by studying the cross-coupling of the flux-torque subsystem. Through the use of frequency-based multivariable tools, it is shown that FOC has intrinsic stator currents disturbance rejection properties due to the existence of a transmission zero in the flux-torque subsystem. These properties can be exploited in order to select appropriate feedback loop configurations. One of the major drawbacks of FOC schemes is their high sensitivity to slip angular velocity perturbations. These perturbations are related to variations of the rotor time constant, which are known to be problematic for IM control. In this regard, the effect that slip angular velocity perturbations have over the newly found perturbation rejection properties is also studied. In particular, although perturbation rejection is maintained, deviations to the equilibrium point are induced; this introduces difficulties for simultaneous flux and torque control. The existence of equilibrium point issues when flux and torque are simultaneously controlled is documented for the first time in this article. PMID:26187346

  8. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    SciTech Connect

    Giuseppe Palmiotti

    2015-05-01

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  9. VHS Movies: Perturbations for Morphogenesis.

    ERIC Educational Resources Information Center

    Holmes, Danny L.

    This paper discusses the concept of a family system in terms of an interactive system of interrelated, interdependent parts and suggests that VHS movies can act as perturbations, i.e., change promoting agents, for certain dysfunctional family systems. Several distinct characteristics of a family system are defined with particular emphasis on…

  10. Adaptation Strategies in Perturbed /s/

    ERIC Educational Resources Information Center

    Brunner, Jana; Hoole, Phil; Perrier, Pascal

    2011-01-01

    The purpose of this work is to investigate the role of three articulatory parameters (tongue position, jaw position and tongue grooving) in the production of /s/. Six normal speakers' speech was perturbed by a palatal prosthesis. The fricative was recorded acoustically and through electromagnetic articulography in four conditions: (1) unperturbed,…

  11. AGK Rules in Perturbative QCD

    NASA Astrophysics Data System (ADS)

    Bartels, Jochen

    2006-06-01

    I summarize the present status of the AGK cutting rules in perturbative QCD. Particular attention is given to the application of the AGK analysis to diffraction and multiple scattering in DIS at HERA and to pp collisions at the LHC. I also discuss the bootstrap conditions which appear in pQCD.

  12. Seven topics in perturbative QCD

    SciTech Connect

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e/sup +/e/sup -/ annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics.

  13. Generalized perturbations in neutrino mixing

    NASA Astrophysics Data System (ADS)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-10-01

    We derive expressions for the neutrino mixing parameters that result from complex perturbations on (1) the Majorana neutrino mass matrix (in the basis of charged lepton mass eigenstates) and on (2) the charged lepton mass matrix, for arbitrary initial (unperturbed) mixing matrices. In the first case, we find that the phases of the elements of the perturbation matrix, and the initial values of the Dirac and Majorana phases, strongly impact the leading-order corrections to the neutrino mixing parameters and phases. For experimentally compatible scenarios wherein the initial neutrino mass matrix has μ -τ symmetry, we find that the Dirac phase can take any value under small perturbations. Similarly, in the second case, perturbations to the charged lepton mass matrix can generate large corrections to the mixing angles and phases of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. As an illustration of our generalized procedure, we apply it to a situation in which nonstandard scalar and nonstandard vector interactions simultaneously affect neutrino oscillations.

  14. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  15. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  16. A Computer Program for the Reactivity and Kinetic Parameters for Two-Dimensional Triangular Geometry by Transport Perturbation Theory.

    Energy Science and Technology Software Center (ESTSC)

    1990-04-25

    Version 00 TPTRIA calculates reactivity, effective delayed neutron fractions and mean generation time for two-dimensional triangular geometry on the basis of neutron transport perturbation theory. DIAMANT2 (also designated as CCC-414), is a multigroup two-dimensional discrete ordinates transport code system for triangular and hexagonal geometry which calculates direct and adjoint angular fluxes.

  17. A transport based one-dimensional perturbation code for reactivity calculations in metal systems

    SciTech Connect

    Wenz, T.R.

    1995-02-01

    A one-dimensional reactivity calculation code is developed using first order perturbation theory. The reactivity equation is based on the multi-group transport equation using the discrete ordinates method for angular dependence. In addition to the first order perturbation approximations, the reactivity code uses only the isotropic scattering data, but cross section libraries with higher order scattering data can still be used with this code. The reactivity code obtains all the flux, cross section, and geometry data from the standard interface files created by ONEDANT, a discrete ordinates transport code. Comparisons between calculated and experimental reactivities were done with the central reactivity worth data for Lady Godiva, a bare uranium metal assembly. Good agreement is found for isotopes that do not violate the assumptions in the first order approximation. In general for cases where there are large discrepancies, the discretized cross section data is not accurately representing certain resonance regions that coincide with dominant flux groups in the Godiva assembly. Comparing reactivities calculated with first order perturbation theory and a straight {Delta}k/k calculation shows agreement within 10% indicating the perturbation of the calculated fluxes is small enough for first order perturbation theory to be applicable in the modeled system. Computation time comparisons between reactivities calculated with first order perturbation theory and straight {Delta}k/k calculations indicate considerable time can be saved performing a calculation with a perturbation code particularly as the complexity of the modeled problems increase.

  18. Effects of angular correlations on particle-particle propagation in infinite nuclear matter

    NASA Astrophysics Data System (ADS)

    Romero-Barrientos, J.; Arellano, H. F.

    2016-05-01

    The effect of angular correlations on self-consistent solutions for single-particle (sp) potentials in infinite nuclear matter is investigated. To this end we treat explicitly the angular dependence of the particle-particle (pp) propagator in Brueckner-Hartree-Fock (BHF) equation for the g matrix. It is observed that the exact angular dependence of the pp propagator yields highly fluctuating structures, posing stringent difficulties in the actual search of self-consistent solutions for the sp energy. A perturbative approach is presented to evaluate the effect of the angular correlations in the self-consistent solutions. Solutions at Fermi momenta kF in the range 1.20 - 1.75 fm-1 are reported using Argonne v 18 nucleon- nucleon potential. Although the sp potentials are sensitive to the treatment of the angular behaviour of the propagator, such sensitivity appears at momenta well above the Fermi surface. As a result, the saturation properties of symmetric nuclear matter differ marginally from those calculated using angle-averaged energy denominators in pp propagators.

  19. The Serret-Andoyer formalism in rigid-body dynamics: I. Symmetries and perturbations

    NASA Astrophysics Data System (ADS)

    Gurfil, P.; Elipe, A.; Tangren, W.; Efroimsky, M.

    2007-08-01

    This paper reviews the Serret-Andoyer (SA) canonical formalism in rigid-body dynamics, and presents some new results. As is well known, the problem of unsupported and unperturbed rigid rotator can be reduced. The availability of this reduction is offered by the underlying symmetry, that stems from conservation of the angular momentum and rotational kinetic energy. When a perturbation is turned on, these quantities are no longer preserved. Nonetheless, the language of reduced description remains extremely instrumental even in the perturbed case. We describe the canonical reduction performed by the Serret-Andoyer (SA) method, and discuss its applications to attitude dynamics and to the theory of planetary rotation. Specifically, we consider the case of angular-velocity-dependent torques, and discuss the variation-of-parameters-inherent antinomy between canonicity and osculation. Finally, we address the transformation of the Andoyer variables into action-angle ones, using the method of Sadov.

  20. Angular momentum dependence of complex fragment emission

    SciTech Connect

    Sobotka, L.G.; Sarantites, D.G.; Li, Z.; Dines, E.L.; Halbert, M.L.; Hensley, D.C.; Lisle, J.C.; Schmitt, R.P.; Majka, Z.; Nebbia, G.

    1987-12-01

    The angular momentum dependence of large fragment production in long-lived reactions is studied by measurements of fragment cross sections from reactions with substantially different angular momentum distributions and the coincident ..gamma..-ray multiplicity distributions. The results indicate that the primary l-wave distributions move to larger mean values and decrease in width and skewness with increasing mass symmetry in the decay channel. The results also confirm that the partition of angular momentum kinetic energy relaxed heavy-ion reactions is that expected for a rigidly rotating intermediate.

  1. Optical Mixing of Rydberg Angular Momenta

    SciTech Connect

    Corless, J.D.; Stroud, C.R., Jr.

    1997-07-01

    When optical frequency fields are used to couple a ground state to a Rydberg state, the resonant dipole coupling is to a low angular momentum state. Higher angular momentum states are typically thought not to play a role in the excitation. The extremely large dipole matrix elements coupling Rydberg states of the same n but differing l , however, allow optical fields of modest strengths to produce Rabi frequencies larger than optical frequencies. We demonstrate that these optical fields can therefore readily excite the higher angular momentum states, and we examine the consequences of this coupling. {copyright} {ital 1997} {ital The American Physical Society}

  2. Angular momentum in the Local Group

    SciTech Connect

    Dunn, A.; Laflamme, R.

    1994-04-01

    We briefly review models for the Local Group and the acquisition of its angular momentum. We describe early attempts to understand the origin of the spin of the galaxies discussing the hypothesis that the Local Group has little angular momentum. Finally we show that using Peebles` least action principle there should be a rather large amount of orbital angular momentum compared to the magnitude of the spin of its galaxies. Therefore the Local Group cannot be thought as tidally isolated. Using Peebles` trajectories we give a possible set of trajectories for Local Group galaxies which would predict their spin.

  3. Stellar Angular Diameter Relations for Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Adams, Arthur; Boyajian, Tabetha S.; von Braun, Kaspar

    2016-01-01

    Determining the physical properties of microlensing events depends on having accurate angular radii of the source star. Using long-baseline optical interferometry we are able to determine the angular sizes of nearby stars with uncertainties less than 2 percent. We present empirical estimates of angular diameters for both dwarfs/subgiants and giant stars as functions of five color indices which are relevant to planned microlensing surveys. We find in all considered colors that metallicity does not play a statistically significant role in predicting stellar size for the samples of stars considered.

  4. Vector perturbations of galaxy number counts

    NASA Astrophysics Data System (ADS)

    Durrer, Ruth; Tansella, Vittorio

    2016-07-01

    We derive the contribution to relativistic galaxy number count fluctuations from vector and tensor perturbations within linear perturbation theory. Our result is consistent with the the relativistic corrections to number counts due to scalar perturbation, where the Bardeen potentials are replaced with line-of-sight projection of vector and tensor quantities. Since vector and tensor perturbations do not lead to density fluctuations the standard density term in the number counts is absent. We apply our results to vector perturbations which are induced from scalar perturbations at second order and give numerical estimates of their contributions to the power spectrum of relativistic galaxy number counts.

  5. Neptune's story. [Triton's orbit perturbation

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D.

    1989-01-01

    It is conjectured that Triton was captured from a heliocentric orbit as the result of a collision with what was then one of Neptune's regular satellites. The immediate post-capture orbit was highly eccentric. Dissipation due to tides raised by Neptune in Triton caused Triton's orbit to evolve to its present state in less than one billion years. For much of this time Triton was almost entirely molten. While its orbit was evolving, Triton cannibalized most of the regular satellites of Neptune and also perturbed Nereid, thus accounting for that satellite's highly eccentric and inclined orbit. The only regular satellites of Neptune that survived were those that formed well within 5 Neptune radii, and they move on inclined orbits as the result of chaotic perturbations forced by Triton.

  6. Identifying Network Perturbation in Cancer.

    PubMed

    Grechkin, Maxim; Logsdon, Benjamin A; Gentles, Andrew J; Lee, Su-In

    2016-05-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed-having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  7. Anisotropic CMB distortions from non-Gaussian isocurvature perturbations

    NASA Astrophysics Data System (ADS)

    Ota, Atsuhisa; Sekiguchi, Toyokazu; Tada, Yuichiro; Yokoyama, Shuichiro

    2015-03-01

    We calculate the CMB μ-distortion, langleμrangle, and the angular power spectrum of its cross-correlation with the temperature anisotropy, langleμTrangle, in the presence of the non-Gaussian neutrino isocurvature density (NID) mode. While the pure Gaussian NID perturbations give merely subdominant contributions to langleμrangle and do not create langleμTrangle, we show large langleμTrangle can be realized in case where, especially, the NID perturbations 𝒮(x) are proportional to the square of a Gaussian field g(x), i.e. 𝒮(x)propto g2(x). Such Gaussian-squared perturbations contribute to not only the power spectrum, but also the bispectrum of CMB anisotropies. The constraints from the power spectrum is given by 𝒫𝒮𝒮(k0)~𝒫g2(k0)lesssim10-10 at k0=0.05 Mpc-1. We also forecast constraints from the CMB temperature and E-mode polarisation bispectra, and show that 𝒫g(k0)lesssim10-5 would be allowed from the Planck data. We find that langleμrangle and |l(l+1)CμTl| can respectively be as large as 10-9 and 10-14 with uncorrelated scale-invariant NID perturbations for 𝒫g(k0)=10-5. When the spectrum of the Gaussian field is blue-tilted (with spectral index ngsimeq1.5), langleμTrangle can be enhanced by an order of magnitude.

  8. Perturbation growth in accreting filaments

    NASA Astrophysics Data System (ADS)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  9. R evolution: Improving perturbative QCD

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Jain, Ambar; Scimemi, Ignazio; Stewart, Iain W.

    2010-07-01

    Perturbative QCD results in the MS¯ scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the “MSR scheme” which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS¯. Results in MSR depend on a cutoff parameter R, in addition to the μ of MS¯. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like μ in MS¯). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q˜1GeV, and power corrections are reduced compared to MS¯.

  10. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  11. Path integral for inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Prokopec, Tomislav; Rigopoulos, Gerasimos

    2010-07-01

    The quantum theory of cosmological perturbations in single-field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well-known gauge-invariant quadratic action for scalar and tensor perturbations, and determine the interactions to arbitrary order. This approach does not require the explicit solution of the energy and momentum constraints, a novel feature which simplifies the determination of the interaction vertices. The constraints and the necessary imposition of gauge conditions is reflected in the appearance of various commuting and anticommuting auxiliary fields in the action. These auxiliary fields are not propagating physical degrees of freedom but need to be included in internal lines and loops in a diagrammatic expansion. To illustrate the formalism we discuss the tree-level three-point and four-point functions of the inflaton perturbations, reproducing the results already obtained by the methods used in the current literature. Loop calculations are left for future work.

  12. Calculates Angular Quadrature Weights and Cosines.

    Energy Science and Technology Software Center (ESTSC)

    1988-02-18

    DSNQUAD calculates the angular quadrature weights and cosines for use in CCC-254/ANISN-ORNL. The subroutines in DSNQUAD were lifted from the XSDRN-PM code, which is supplied with the CCC-475/ SCALIAS-77 package.

  13. Gravitational waves carrying orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2016-02-01

    Spinorial formalism is used to map every electromagnetic wave into the gravitational wave (within the linearized gravity). In this way we can obtain the gravitational counterparts of Bessel, Laguerre-Gauss, and other light beams carrying orbital angular momentum.

  14. Angular-divergence calculation for Experimental Advanced Superconducting Tokamak neutral beam injection ion source based on spectroscopic measurements

    SciTech Connect

    Chi, Yuan; Hu, Chundong; Zhuang, Ge

    2014-02-15

    Calorimetric method has been primarily applied for several experimental campaigns to determine the angular divergence of high-current ion source for the neutral beam injection system on the Experimental Advanced Superconducting Tokamak (EAST). A Doppler shift spectroscopy has been developed to provide the secondary measurement of the angular divergence to improve the divergence measurement accuracy and for real-time and non-perturbing measurement. The modified calculation model based on the W7AS neutral beam injectors is adopted to accommodate the slot-type accelerating grids used in the EAST's ion source. Preliminary spectroscopic experimental results are presented comparable to the calorimetrically determined value of theoretical calculation.

  15. Angular performance measure for tighter uncertainty relations

    SciTech Connect

    Hradil, Z.; Rehacek, J.; Klimov, A. B.; Rigas, I.; Sanchez-Soto, L. L.

    2010-01-15

    The uncertainty principle places a fundamental limit on the accuracy with which we can measure conjugate quantities. However, the fluctuations of these variables can be assessed in terms of different estimators. We propose an angular performance that allows for tighter uncertainty relations for angle and angular momentum. The differences with previous bounds can be significant for particular states and indeed may be amenable to experimental measurement with the present technology.

  16. Angular wander measurements of maser clusters

    NASA Astrophysics Data System (ADS)

    Mutel, Robert L.

    Angular wander measurements of the relative positions of closely spaced maser features provides a powerful probe of interstellar turbulence associated with regions of star formation. Differential angular wander is easily measured in a maser complex and can strongly distinguish between shallow and steep power-law turbulence. The best candidates for such measurements appear to be the 6 and 12 GHz type II methanol masers.

  17. A new integrated optical angular velocity sensor

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.

    2005-03-01

    Very compact and low-cost rotation sensors are strongly required for any moving systems in several applications. Integrated optical angular velocity sensors seem to be very promising in terms of low cost, compactness, light weight and high-performance. In the paper a new integrated optical angular velocity sensor having a passive resonant configuration is proposed. Preliminary results are really encouraging and demonstrate the possibility of using the sensor in gyro systems for satellite applications.

  18. Geometric absorption of electromagnetic angular momentum

    NASA Astrophysics Data System (ADS)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  19. Geometric Hamiltonian structures and perturbation theory

    SciTech Connect

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.

  20. Cosmological perturbations: Vorticity, isocurvature and magnetic fields

    NASA Astrophysics Data System (ADS)

    Christopherson, Adam J.

    2014-10-01

    In this paper, I review some recent, interlinked, work undertaken using cosmological perturbation theory — a powerful technique for modeling inhomogeneities in the universe. The common theme which underpins these pieces of work is the presence of nonadiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or nonadiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close this paper with a summary and some potential extensions of this work.

  1. Superconvergent perturbation method in quantum mechanics

    SciTech Connect

    Scherer, W. )

    1995-02-27

    An analog of Kolmogorov's superconvergent perturbation theory in classical mechanics is constructed for self-adjoint operators. It is different from the usual Rayleigh-Schroedinger perturbation theory and yields expansions for eigenvalues and eigenvectors in terms of functions of the perturbation parameter.

  2. Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism

    NASA Astrophysics Data System (ADS)

    Martel, Karl; Poisson, Eric

    2005-05-01

    We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations that leave the angular coordinates unchanged. The formalism is applied to the typical problem of calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime. We examine the radiation escaping to future null infinity as well as the radiation crossing the event horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of these wave equations are presented here, complete with covariant source terms that are derived from the stress-energy tensor of the matter responsible for the perturbation.

  3. Weak lensing generated by vector perturbations and detectability of cosmic strings

    SciTech Connect

    Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp

    2012-10-01

    We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.

  4. A detection system with broad angular acceptance for particle identification and angular distribution measurements

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Arazi, A.; Fernández Niello, J. O.; Capurro, O. A.; Cardona, M. A.; de Barbará, E.; Figueira, J. M.; Hojman, D.; Martí, G. V.; Martinez Heimann, D.; Negri, A. E.; Pacheco, A. J.

    2013-10-01

    A new detection system for time-optimized heavy-ion angular distribution measurements has been designed and constructed. This device is composed by an ionization chamber with a segmented-grid anode and three position-sensitive silicon detectors. This particular arrangement allows identifying reaction products emitted within a 30° wide angular range with better than 1° angular resolution. As a demonstration of its capabilities, angular distributions of the elastic scattering cross-section and the production of alpha particles in the 7Li+27Al system, at an energy above the Coulomb barrier, are presented.

  5. Bringing "The Moth" to Light: A Planet-Perturbed Disk Scenario for the HD 61005 System

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul G.; Millar-Blanchaer, Max; Wang, Jason

    2015-12-01

    The HD 61005 debris disk ("The Moth") is notable for its unusual swept-back "wing" morphology, brightness asymmetries, dust ring offset, and a cleared region inside of ~50 AU. Here we present Gemini Planet Imager data that reveal this disk in scattered light down to Jupiter-like separations of <10 AU. Complementary W.M. Keck NIRC2/AO J,H,K imaging shows the disk's outer regions with high angular resolution. Based on these data, we propose a new explanation for the disk's features: that of an unseen planet on an inclined, eccentric orbit perturbing the disk material. To test this scenario, we used secular perturbation theory to construct 3-D dust distributions that informed 2-D scattered-light models, which we then compared with the data via an MCMC analysis. We found that the best-fit models reproduced morphological disk features similar to those observed, indicating that the perturber scenario is plausible for this system.

  6. Reconstructing cosmological matter perturbations using standard candles and rulers

    SciTech Connect

    Alam, Ujjaini; Sahni, Varun; Starobinsky, Alexei A

    2008-01-01

    For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growth factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper, we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large-scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified or interact directly. We show that for current supernovae (SNe) data, the linear growth factor at z = 0.3 can be constrained to 5% and the linear growth rate to 6%. With future SNe data, such as expected from the Joint Dark Energy Mission, we may be able to constrain the growth factor to 2%-3% and the growth rate to 3%-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future baryon acoustic oscillation data which would deliver measurements of both the angular diameter distance and the Hubble parameter, it should be possible to constrain the growth factor at z = 2.5%-9%. These constraints grow tighter with the errors on the data sets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.

  7. RECONSTRUCTING COSMOLOGICAL MATTER PERTURBATIONS USING STANDARD CANDLES AND RULERS

    SciTech Connect

    Alam, Ujjaini; Sahni, Varun; Starobinsky, Alexei A. E-mail: varun@iucaa.ernet.i

    2009-10-20

    For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growth factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper, we develop a non-parametric method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large-scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified or interact directly. We show that for current supernovae (SNe) data, the linear growth factor at z = 0.3 can be constrained to 5% and the linear growth rate to 6%. With future SNe data, such as expected from the Joint Dark Energy Mission, we may be able to constrain the growth factor to 2%-3% and the growth rate to 3%-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future baryon acoustic oscillation data which would deliver measurements of both the angular diameter distance and the Hubble parameter, it should be possible to constrain the growth factor at z = 2.5%-9%. These constraints grow tighter with the errors on the data sets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.

  8. Identifying Network Perturbation in Cancer

    PubMed Central

    Logsdon, Benjamin A.; Gentles, Andrew J.; Lee, Su-In

    2016-01-01

    We present a computational framework, called DISCERN (DIfferential SparsE Regulatory Network), to identify informative topological changes in gene-regulator dependence networks inferred on the basis of mRNA expression datasets within distinct biological states. DISCERN takes two expression datasets as input: an expression dataset of diseased tissues from patients with a disease of interest and another expression dataset from matching normal tissues. DISCERN estimates the extent to which each gene is perturbed—having distinct regulator connectivity in the inferred gene-regulator dependencies between the disease and normal conditions. This approach has distinct advantages over existing methods. First, DISCERN infers conditional dependencies between candidate regulators and genes, where conditional dependence relationships discriminate the evidence for direct interactions from indirect interactions more precisely than pairwise correlation. Second, DISCERN uses a new likelihood-based scoring function to alleviate concerns about accuracy of the specific edges inferred in a particular network. DISCERN identifies perturbed genes more accurately in synthetic data than existing methods to identify perturbed genes between distinct states. In expression datasets from patients with acute myeloid leukemia (AML), breast cancer and lung cancer, genes with high DISCERN scores in each cancer are enriched for known tumor drivers, genes associated with the biological processes known to be important in the disease, and genes associated with patient prognosis, in the respective cancer. Finally, we show that DISCERN can uncover potential mechanisms underlying network perturbation by explaining observed epigenomic activity patterns in cancer and normal tissue types more accurately than alternative methods, based on the available epigenomic data from the ENCODE project. PMID:27145341

  9. Magnetic field and angular momentum evolution models

    NASA Astrophysics Data System (ADS)

    Gallet, F.

    2013-11-01

    The magnetic field in young stellar object is clearly the most important component when one dealing with the angular momentum evolution of solar-like stars. It controls this latter one from the pre-main sequence, during the ``disk locking'' phase where the stars magnetically interact with their surrounding disk, to the main-sequence through powerful stellar winds that remove angular momentum from the stellar surface. We present new models for the rotational evolution of solar-like stars between 1 Myr and 10 Gyr with the aim to reproduce the distributions of rotational periods observed for star forming regions and young open clusters within this age range. Our simulations are produced by a recent model dedicated to the study of the angular momentum evolution of solar-type stars. This model include a new wind braking law based on recent numerical simulations of magnetized stellar winds and a specific dynamo and mass-loss prescription are used to link the angular momentum loss-rate to angular velocity evolution. The model additionally allows for a core/envelope decoupling with an angular momentum transfer between these two regions. Since this former model didn't include any physical star/disk interaction description, two star/disk interaction processes are eventually added to it in order to reproduce the apparent small angular velocities to which the stellar surface is subject during the disk accretion phase. We have developed rotational evolution models for slow, median and fast rotators including two star/disk interaction scenarios that are the magnetospheric ejection and the accretion powered stellar winds processes. The models appear to fail at reproducing the rotational behaviour of solar-type stars except when a more intense magnetic field is used during the disk accretion phase.

  10. The massive Dirac field on a rotating black hole spacetime: angular solutions

    NASA Astrophysics Data System (ADS)

    Dolan, Sam R.; Gair, Jonathan R.

    2009-09-01

    The massive Dirac equation on a Kerr-Newman background may be solved by the method of separation of variables. The radial and angular equations are coupled via an angular eigenvalue, which is determined from the Chandrasekhar-Page (CP) equation. Obtaining accurate angular eigenvalues is a key step in studying scattering, absorption and emission of the fermionic field. Here we introduce a new method for finding solutions of the CP equation. First, we introduce a novel representation for the spin-half spherical harmonics. Next, we decompose the angular solutions of the CP equation (the mass-dependent spin-half spheroidal harmonics) in the spherical basis. The method yields a three-term recurrence relation which may be solved numerically via continued-fraction methods, or perturbatively to obtain a series expansion for the eigenvalues. In the case μ = ±ω (where ω and μ are the frequency and mass of the fermion) we obtain eigenvalues and eigenfunctions in a closed form. We study the eigenvalue spectrum and the zeros of the maximally co-rotating mode. We compare our results with previous studies, and uncover and correct some errors in the literature. We provide series expansions, tables of eigenvalues and numerical fits across a wide parameter range and present plots of a selection of eigenfunctions. It is hoped that this study will be a useful resource for all researchers interested in the Dirac equation on a rotating black hole background.

  11. "Phonon" scattering beyond perturbation theory

    NASA Astrophysics Data System (ADS)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  12. Dirac Green function for angular projection potentials.

    PubMed

    Zeller, Rudolf

    2015-11-25

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired. PMID:26523824

  13. Ultrafast angular momentum transfer in multisublattice ferrimagnets.

    PubMed

    Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C

    2014-01-01

    Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs. PMID:24614016

  14. Dirac Green function for angular projection potentials

    NASA Astrophysics Data System (ADS)

    Zeller, Rudolf

    2015-11-01

    The aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired.

  15. Angular momentum conservation for dynamical black holes

    SciTech Connect

    Hayward, Sean A.

    2006-11-15

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.

  16. An orbital angular momentum spectrometer for electrons

    NASA Astrophysics Data System (ADS)

    Harvey, Tyler; Grillo, Vincenzo; McMorran, Benjamin

    2016-05-01

    With the advent of techniques for preparation of free-electron and neutron orbital angular momentum (OAM) states, a basic follow-up question emerges: how do we measure the orbital angular momentum state distribution in matter waves? Control of both the energy and helicity of light has produced a range of spectroscopic applications, including molecular fingerprinting and magnetization mapping. Realization of an analogous dual energy-OAM spectroscopy with matter waves demands control of both initial and final energy and orbital angular momentum states: unlike for photons, final state post-selection is necessary for particles that cannot be annihilated. We propose a magnetic field-based mechanism for quantum non-demolition measurement of electron OAM. We show that OAM-dependent lensing is produced by an operator of form U =exp iLzρ2/ℏb2 where ρ =√{x2 +y2 } is the radial position operator, Lz is the orbital angular momentum operator along z, and b is the OAM dispersion length. We can physically realize this operator as a term in the time evolution of an electron in magnetic round lens. We discuss prospects and practical challenges for implementation of a lensing orbital angular momentum measurement. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under the Early Career Research Program Award # DE-SC0010466.

  17. Molecular-frame photoelectron angular distributions Molecular-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Stolow, Albert

    2012-10-01

    Angle-resolved photoelectron measurements in molecular ionization continue to grow in importance due to their sensitivity to molecular dynamics combined with their avoidance of deleterious averaging over molecular orientation. This special issue contains only regularly refereed articles and provides an account of current experimental and theoretical studies of such molecular-frame photoelectron angular distributions (MFPADs). Recent experimental activity in this field has been stimulated by advances in light sources such as x-ray free electron lasers, attosecond XUV laser pulses and phase-stable ultrashort strong laser fields. This effort is further amplified by recent developments in coincidence detection and molecular-frame alignment/orientation techniques. Beyond perturbative light-matter interactions, strong field processes such as tunnel ionization, above threshold ionization and rescattering phenomena such as high harmonic generation and laser-induced electron diffraction are beginning to probe molecular-frame photoelectron-molecule scattering dynamics. Theoretical developments are playing an equally important role in furthering molecular-frame photoelectron science. This issue contains several purely theoretical papers that aim to provide insight into possible schemes for using MFPADs in the study of molecular dynamics. Because the details of the electron-molecule scattering dynamics are important to the interpretation of experimental data, significant progress is made by a close collaboration between theory and experiment. There are a number of such contributions in this issue that combine theory and experiment to obtain a detailed understanding of the observed processes. One recurring theme is the use of measured MFPADs as probes of the molecular state and to uncover information about the dynamics of molecular systems. Contributions in this issue consider using MFPADs to investigate molecular geometry or the rotational, vibrational or electronic state of a

  18. Angular correlations in the two-photon decay of heliumlike heavy ions

    SciTech Connect

    Surzhykov, A.; Fratini, F.; Volotka, A.; Santos, J. P.; Indelicato, P.; Plunien, G.; Stoehlker, Th.; Fritzsche, S.

    2010-04-15

    The two-photon decay of heavy, helium-like ions is investigated based on second-order perturbation theory and Dirac's relativistic equation. Special attention has been paid to the angular emission of the two photons (i.e., how the angular correlation function depends on the shell structure of the ions in their initial and final states). Moreover, the effects from the (electric and magnetic) nondipole terms in the expansion of the electron-photon interaction are discussed. Detailed calculations have been carried out for the two-photon decay of the 1s2s {sup 1}S{sub 0}, 1s2s {sup 3}S{sub 1}, and 1s2p {sup 3}P{sub 0} states of helium-like Xe{sup 52+}, Au{sup 77+}, and U{sup 90+} ions.

  19. Characterization of Optical Components for the Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuo; Essinger-Hileman, Thomas; Xu, Zhilei; Marriage, Tobias

    2016-06-01

    Inflation theory posits a rapid expansion at the beginning of the universe that explains the homogeneity, isotropy and flatness of our universe. The theory postulates perturbations to space-time with both scalar and tensor components, the latter of which would give rise to a "B-mode" polarization in the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS), with its broadband frequency coverage and rapid front-end modulation, has the unique ability to map the entire B-mode angular power spectrum where there the inflationary signal is expected to dominate. In this poster, I give an overview of CLASS and present work on the characterization of CLASS optical components, including infrared filters, using a custom Fourier Transform Interferometer.

  20. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  1. Instability in stratified accretion flows under primary and secondary perturbations

    NASA Astrophysics Data System (ADS)

    Nasraoui, S.; Salhi, A.; Lehner, T.

    2015-04-01

    We consider horizontal linear shear flow (shear rate denoted by Λ ) under vertical uniform rotation (ambient rotation rate denoted by Ω0 ) and vertical stratification (buoyancy frequency denoted by N ) in unbounded domain. We show that, under a primary vertical velocity perturbation and a radial density perturbation consisting of a one-dimensional standing wave with frequency N and amplitude proportional to w0sin(ɛ N x /w0) ≈ɛ N x (≪1 ) , where x denotes the radial coordinate and ɛ a small parameter, a parametric instability can develop in the flow, provided N2>8 Ω0(2 Ω0-Λ ) . For astrophysical accretion flows and under the shearing sheet approximation, this implies N2>8 Ω02(2 -q ) , where q =Λ /Ω0 is the local shear gradient. In the case of a stratified constant angular momentum disk, q =2 , there is a parametric instability with the maximal growth rate (σm/ɛ ) =3 √{3 }/16 for any positive value of the buoyancy frequency N . In contrast, for a stratified Keplerian disk, q =1.5 , the parametric instability appears only for N >2 Ω0 with a maximal growth rate that depends on the ratio Ω0/N and approaches (3 √{3 }/16 )ɛ for large values of N .

  2. Exact-to-precision generalized perturbation for neutron transport calculation

    SciTech Connect

    Wang, C.; Abdel-Khalik, H. S.

    2013-07-01

    This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)

  3. Energy angular momentum closed-loop guidance

    NASA Astrophysics Data System (ADS)

    Patera, Russell P.

    2015-03-01

    A novel guidance algorithm for launch vehicle ascent to the desired mission orbit is proposed. The algorithm uses total specific energy and orbital angular momentum as new state vector parameters. These parameters are ideally suited for the ascent guidance task, since the guidance algorithm steers the launch vehicle along a pre-flight optimal trajectory in energy angular momentum space. The guidance algorithm targets apogee, perigee, inclination and right ascension of ascending node. Computational complexities are avoided by eliminating time in the guidance computation and replacing it with angular momentum magnitude. As a result, vehicle acceleration, mass, thrust, length of motor burns, and staging times are also eliminated from the pitch plane guidance calculations. The algorithm does not involve launch vehicle or target state propagation, which results in minimal computational effort. Proof of concept of the new algorithm is presented using several numerical examples that illustrate performance results.

  4. Inequalities for angular derivatives and boundary interpolation

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Vladimir; Elin, Mark; Shoikhet, David

    2013-03-01

    The classical Julia-Wolff-Carathéodory theorem asserts that the angular derivative of a holomorphic self-mapping of the open unit disk (Schur function) at its boundary fixed point is a positive number. Cowen and Pommerenke (J Lond Math Soc 26:271-289, 1982) proved that if a Schur function has several boundary regular fixed (or mutual contact) points, then the angular derivatives at these points are subject to certain inequalities. We develop a unified approach to establish relations between angular derivatives of Schur functions with a prescribed (possibly, infinite) collection of either mutual contact points or boundary fixed points. This approach yields diverse inequalities improving both classical and more recent results. We apply them to study the Nevanlinna-Pick interpolation problem with boundary data. Our methods lead to fairly explicit formulas describing the set of solutions.

  5. Angular momentum conservation in dipolar energy transfer.

    PubMed

    Guo, Dong; Knight, Troy E; McCusker, James K

    2011-12-23

    Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Förster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions. PMID:22194572

  6. Angular correlations and high energy evolution

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  7. Improved numerical projection of angular momentum

    NASA Astrophysics Data System (ADS)

    O'Mara, Kevin; Johnson, Calvin

    2015-10-01

    Nuclear many-body states have good angular momenta, but many theoretical building blocks such as deformed Slater determinants do not. Hence one must numerically project out states of good angular momenta, usually through a computationally taxing three-dimensional integral. We took an existing code for angular-momentum projected Hartree-Fock and improved its performance, partly through judicious ordering of the loops, precomputing arrays of important combinatorics, and careful application of parallelization. We also investigated a novel inversion scheme. This work is potentially applicable to multiple approaches in many-body calculations, and should also be generalizable to particle number projection. Supported by SDSU Summer Undergraduate Research Program and by DOE Award Number DE-FG02-96ER40985.

  8. Electromagnetic angular momentum transport in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Morfill, G. E.; Ip, W.; Gruen, E.; Havnes, O.

    1986-01-01

    It is shown here that submicrometer dust particles sporadically elevated above Saturn's ring are subject to electromagnetic forces which will reduce their angular momentum inside synchronous orbit and increase it outside. When the dust is reabsorbed by the ring the angular momentum of the ring is decreased (increased) inside (outside) of synchronous orbit. For the case of the spokes in Saturn's B-ring it is estimated that the timescale for transporting ring material due to this angular momentum coupling effect is comparable to the viscous transport time or even smaller. It is suggested that the minimum in the optical depth of the B-ring at synchronous orbit is due to this effect.

  9. Storm Track Response to Perturbations in Climate

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh Oumar

    This thesis advances our understanding of midlatitude storm tracks and how they respond to perturbations in the climate system. The midlatitude storm tracks are regions of maximal turbulent kinetic energy in the atmosphere. Through them, the bulk of the atmospheric transport of energy, water vapor, and angular momentum occurs in midlatitudes. Therefore, they are important regulators of climate, controlling basic features such as the distribution of surface temperatures, precipitation, and winds in midlatitudes. Storm tracks are robustly projected to shift poleward in global-warming simulations with current climate models. Yet the reasons for this shift have remained unclear. Here we show that this shift occurs even in extremely idealized (but still three-dimensional) simulations of dry atmospheres. We use these simulations to develop an understanding of the processes responsible for the shift and develop a conceptual model that accounts for it. We demonstrate that changes in the convective static stability in the deep tropics alone can drive remote shifts in the midlatitude storm tracks. Through simulations with a dry idealized general circulation model (GCM), midlatitude storm tracks are shown to be located where the mean available potential energy (MAPE, a measure of the potential energy available to be converted into kinetic energy) is maximal. As the climate varies, even if only driven by tropical static stability changes, the MAPE maximum shifts primarily because of shifts of the maximum of near-surface meridional temperature gradients. The temperature gradients shift in response to changes in the width of the tropical Hadley circulation, whose width is affected by the tropical static stability. Storm tracks generally shift in tandem with shifts of the subtropical terminus of the Hadley circulation. We develop a one-dimensional diffusive energy-balance model that links changes in the Hadley circulation to midlatitude temperature gradients and so to the storm

  10. Synthetic aperture methods for angular scatter imaging

    NASA Astrophysics Data System (ADS)

    Guenther, Drake A.; Ranganathan, Karthik; McAllister, Michael J.; Rigby, K. W.; Walker, William F.

    2004-04-01

    Angular scatter offers a new source of tissue contrast and an opportunity for tissue characterization in ultrasound imaging. We have previously described the application of the translating apertures algorithm (TAA) to coherently acquire angular scatter data over a range of scattering angles. While this approach works well at the focus, it suffers from poor depth of field (DOF) due to a finite aperture size. Furthermore, application of the TAA with large focused apertures entails a tradeoff between spatial resolution and scattering angle resolution. While large multielement apertures improve spatial resolution, they encompass many permutations of transmit/receive element pairs. This results in the simultaneous interrogation of multiple scattering angles, limiting angular resolution. We propose a synthetic aperture imaging scheme that achieves both high spatial resolution and high angular resolution. In backscatter acquisition mode, we transmit successively from single transducer elements, while receiving on the same element. Other scattering angles are interrogated by successively transmitting and receiving on different single elements chosen with the appropriate spatial separation between them. Thus any given image is formed using only transmit/receive element pairs at a single separation. This synthetic aperture approach minimizes averaging across scattering angles, and yields excellent angular resolution. Likewise, synthetic aperture methods allow us to build large effective apertures to maintain a high spatial resolution. Synthetic dynamic focusing and dynamic apodization are applied to further improve spatial resolution and DOF. We present simulation results and experimental results obtained using a GE Logiq 700MR system modified to obtain synthetic aperture TAA data. Images of wire targets exhibit high DOF and spatial resolution. We also present a novel approach for combining angular scatter data to effectively reduce grating lobes. With this approach we have