Science.gov

Sample records for 1a1 gene regulation

  1. Cadmium and arsenic override NF-κB developmental regulation of the intestinal UGT1A1 gene and control of hyperbilirubinemia.

    PubMed

    Liu, Miao; Chen, Shujuan; Yueh, Mei-Fei; Fujiwara, Ryoichi; Konopnicki, Camille; Hao, Haiping; Tukey, Robert H

    2016-06-15

    Humanized UDP-glucuronosyltransferase (UGT)-1 (hUGT1) mice encode the UGT1 locus including the UGT1A1 gene. During neonatal development, delayed expression of the UGT1A1 gene leads to hyperbilirubinemia as determined by elevated levels of total serum bilirubin (TSB). We show in this report that the redox-sensitive NF-κB pathway is crucial for intestinal expression of the UGT1A1 gene and control of TSB levels. Targeted deletion of IKKβ in intestinal epithelial cells (hUGT1/Ikkβ(ΔIEC) mice) leads to greater neonatal accumulation of TSB than observed in control hUGT1/Ikkβ(F/F) mice. The elevation in TSB levels in hUGT1/Ikkβ(ΔIEC) mice correlates with a reduction in intestinal UGT1A1 expression. As TSB levels accumulate in hUGT1/Ikkβ(ΔIEC) mice during the neonatal period, the increase over that observed in hUGT1/Ikkβ(F/F) mice leads to weight loss, seizures and eventually death. Bilirubin accumulates in brain tissue from hUGT1/Ikkβ(ΔIEC) mice inducing an inflammatory state as shown by elevated TNFα, IL-1β and IL-6, all of which can be prevented by neonatal induction of hepatic or intestinal UGT1A1 and lowering of TSB levels. Altering the redox state of the intestines by oral administration of cadmium or arsenic to neonatal hUGT1/Ikkβ(F/F) and hUGT1/Ikkβ(ΔIEC) mice leads to induction of UGT1A1 and a dramatic reduction in TSB levels. Microarray analysis following arsenic treatment confirms upregulation of oxidation-reduction processes and lipid metabolism, indicative of membrane repair or synthesis. Our findings indicate that the redox state in intestinal epithelial cells during development is important in maintaining UGT1A1 gene expression and control of TSB levels. PMID:27060662

  2. Mutations in COL1A1 Gene Change Dentin Nanostructure.

    PubMed

    Duan, Xiaohong; Liu, Zhenxia; Gan, Yunna; Xia, Dan; Li, Qiang; Li, Yanling; Yang, Jiaji; Gao, Shan; Dong, Mingdong

    2016-04-01

    Although many studies have attempted to associate specific gene mutations with dentin phenotypic severity, it remains unknown how the mutations in COL1A1 gene influence the mechanical behavior of dentin collagen and matrix. Here, we reported one osteogenesis imperfecta (OI) pedigree caused by two new inserting mutations in exon 5 of COL1A1 (NM_000088.3:c.440_441insT;c.441_442insA), which resulted in the unstable expression of COL1A1 mRNA and half quantity of procollagen production. We investigated the morphological and mechanical features of proband's dentin using atomic force microscope (AFM), scanning electron microscope, and transmission electron microscope. Increased D-periodic spacing, variably enlarged collagen fibrils coating with fewer minerals were found in the mutated collagen. AFM analysis demonstrated rougher dentin surface and sparsely decreased Young's modulus in proband's dentin. We believe that our findings provide new insights into the genetic-/nano- mechanisms of dentin diseases, and may well explain OI dentin features with reduced mechanical strength and a lower crosslinked density. Anat Rec, 299:511-519, 2016. © 2015 Wiley Periodicals, Inc. PMID:26694865

  3. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Korashy, Hesham M; El Gendy, Mohamed A M; Alhaider, Abdulqader A; El-Kadi, Ayman O

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels. PMID:22570534

  4. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    PubMed Central

    Korashy, Hesham M.; El Gendy, Mohamed A. M.; Alhaider, Abdulqader A.; El-Kadi, Ayman O.

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels. PMID:22570534

  5. Regulation of the CYP1A1 gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin but not by beta-naphthoflavone or 3-methylcholanthrene is altered in hepatitis C virus replicon-expressing cells.

    PubMed

    Anderson, Garret R; Hasan, Aliya; Yin, Hao; Qadri, Ishtiaq; Quattrochi, Linda C

    2006-09-01

    Exposure to hepatitis C virus (HCV) can lead to the development of cirrhosis and hepatocellular carcinoma. To examine the effects of long-term HCV infection on hepatic cytochrome P450 1A1 (CYP1A1) expression and function, we used a human hepatoma cell line expressing the HCV subgenomic replicon (Huh.8) to evaluate CYP1A1 induction by the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this study, we demonstrate that the induction of CYP1A1 expression in Huh.8 cells by TCDD but not by beta-naphthoflavone or 3-methylcholanthrene was significantly diminished. TCDD exposure of Huh.8 cells resulted in greater than 55% suppression of CYP1A1 transcription compared with the parent cell line Huh7, whereas protein levels and enzyme activities were further diminished. Suppression of CYP1A1 mRNA expression in TCDD-treated Huh.8 cells was partially reversed after pretreatment with the antioxidants N-acetylcysteine and nordihydroguaiaretic acid, suggesting a role for oxidative stress. Induced CYP1A1 message, protein, and enzyme activity were partially restored in an Huh7 cell line expressing the HCV replicon containing a deletion in the nonstructural protein NS5A. Furthermore, adenoviral expression of NS5A in Huh7 partially suppressed TCDD-induced CYP1A1 protein and enzyme activity, implicating this protein in the mechanism of suppression. These findings demonstrate that TCDD-mediated AhR signaling is impaired in hepatocytes in which HCV is present and that NS5A alone or in the presence of other nonstructural proteins of the subgenomic replicon is in part responsible. PMID:16788090

  6. Transcriptional regulation of the human ALDH1A1 promoter by the oncogenic homeoprotein TLX1/HOX11

    PubMed Central

    Rice, Kim L.; Heidari, Mansour; Taplin, Ross H.; Kees, Ursula R.; Greene, Wayne K.

    2009-01-01

    The homeoprotein TLX1, which is essential to spleen organogenesis and oncogenic when aberrantly expressed in immature T cells, functions as a bifunctional transcriptional regulator, being capable of activation or repression depending on cell type and/or promoter context. However, the detailed mechanisms by which it regulates the transcription of target genes such as ALDH1A1 remains to be elucidated. We therefore functionally assessed the ability of TLX1 to regulate ALDH1A1 expression in two hematopoietic cell lines, PER-117 T-leukemic cells and human erythroleukemic (HEL) cells, by use of luciferase reporter and mobility shift assays. We showed that TLX1 physically interacts with the general transcription factor TFIIB via its homeodomain, and identified two activities in respect to TLX1-mediated regulation of the CCAAT box-containing ALDH1A1 promoter. The first involved CCAAT-dependent transcriptional repression via perturbation of GATA factor-containing protein complexes assembled at a non-canonical TATA (GATA) box. A structurally intact homeodomain was essential for repression by TLX1 although direct DNA binding was not required. The second activity, which involved CCAAT-independent transcriptional activation did not require an intact homeodomain, indicating that the activation and repression functions of TLX1 are distinct. These findings confirm ALDH1A1 gene regulation by TLX1 and support an indirect model for TLX1 function, in which protein-protein interactions, rather than DNA binding at specific sites, are crucial for its transcriptional activity.

  7. Secretoglobin 1A1 and 1A1A Differentially Regulate Neutrophil Reactive Oxygen Species Production, Phagocytosis and Extracellular Trap Formation

    PubMed Central

    Côté, Olivier; Clark, Mary Ellen; Viel, Laurent; Labbé, Geneviève; Seah, Stephen Y. K.; Khan, Meraj A.; Douda, David N.; Palaniyar, Nades; Bienzle, Dorothee

    2014-01-01

    Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases. PMID:24777050

  8. Cytochrome P450 1A1 Regulates Breast Cancer Cell Proliferation and Survival

    PubMed Central

    Rodriguez, Mariangellys; Potter, David A.

    2013-01-01

    Cytochrome P450 1A1 (CYP1A1) is an extrahepatic phase I metabolizing enzyme whose expression is suppressed under physiologic conditions, but can be induced by substrates via the aryl hydrocarbon receptor (AhR). Nonetheless, recent studies show that the majority of breast tumors constitutively express CYP1A1. These findings led us to test the hypothesis that CYP1A1 promotes breast cancer progression by evaluating the effects of CYP1A1 knock down on the proliferation and survival of the MCF7 and MDA-MB-231 lines. Independently of estrogen receptor status, CYP1A1 knock down decreases cell proliferation, decreases colony formation, blocks the cell cycle at G0/G1 associated with reduction of cyclin D1, and increases apoptosis associated with reduction of survivin. CYP1A1 knock down markedly increases phosphorylation of AMP-activated protein kinase (AMPK) and decreases phosphorylation of AKT, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and 70kDa ribosomal protein S6 kinase (P70S6K). AMPK inhibition by compound C partially abrogates the pro-apoptotic effects of CYP1A1siRNA, suggesting that CYP1A1siRNA effects are mediated, in part, through AMPK signaling. Consistent with CYP1A1 knock down results, pharmacologic reduction of CYP1A1 levels by the phytopolyphenol carnosol also correlates with impaired proliferation and induced AMPK phosphorylation. These results indicate that reduction of basal CYP1A1 expression is critical for inhibition of proliferation, which is not affected by alpha-naphthoflavone-mediated inhibition of CYP1A1 activity nor modulated by AhR silencing. This study supports that CYP1A1 may promote breast cancer proliferation and survival, at least in part, through AMPK signaling and that reduction of CYP1A1 levels is a potential strategy for breast cancer therapeutics. PMID:23576571

  9. Cytokine-mediated down-regulation of CYP1A1 in Hepa1 cells.

    PubMed

    Paton, T E; Renton, K W

    1998-06-01

    The activation of host defense mechanisms down-regulates microsomal cytochrome P450 in cell culture, humans, and animals. Investigation into various aspects of this effect using in vivo models has yet to define clearly the role that cytokines play in this phenomenon. The mechanism of down-regulation by immunostimulants, such as lipopolysaccharide (LPS), is explored with an in vitro model, utilizing a murine hepatoma (Hepa1) and a murine macrophage (IC-21) cell line. It is hypothesized that down-regulation of P450 activity by immunostimulants involves the activation of immune cells and the subsequent release of cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). The effects of immunostimulation on P450 activity are assessed by ethoxyresorufin O-dealkylase, an assay that measures CYP1A activity in Hepa1 cells. Initial studies demonstrated that LPS added directly to hepatoma cells had no effect on the levels of CYP1A1 activity. In contrast, a significant down-regulation in CYP1A1 activity occurred when hepatoma cells were incubated with monocyte conditioned medium obtained by incubating LPS with IC-21 cells. When pentoxifylline, a TNF-alpha synthesis inhibitor, was co-administered with LPS to macrophages, the down-regulation of CYP1A1 activity was prevented. The direct administration of murine recombinant TNF-alpha to hepatoma cells resulted in a down-regulation of CYP1A1 activity. These results implicated the release of TNF-alpha from macrophages as an important step in the down-regulation of CYP1A1 by LPS. PMID:9714297

  10. Human CYP1A1 gene: cosegregation of the enzyme inducibility phenotype and an RFLP.

    PubMed Central

    Petersen, D D; McKinney, C E; Ikeya, K; Smith, H H; Bale, A E; McBride, O W; Nebert, D W

    1991-01-01

    The human CYP1A1 (cytochrome P1450) gene encodes an enzyme involved in the activation of procarcinogens, such as benzo[a]pyrene, to the ultimate reactive intermediate. Approximately 10% of the human population exhibit high CYP1A1 inducibility, and Kouri et al. reported that the high-inducibility phenotype might be at greater risk than low-inducibility individuals for cigarette smoke-induced bronchogenic carcinoma. In one 3-generation family of 15 individuals, we show here that the high-CYP1A1-inducibility phenotype segregates concordantly with an infrequent polymorphic site located 450 bases downstream from the CYP1A1 gene. Our findings are consistent with the study of Kawajiri et al., who demonstrated an association between this polymorphism and an increased incidence of squamous-cell lung cancer. Our data suggest that the CYP1A1 structural gene, or a region near this gene, might be correlated with the inducibility phenotype. Images Figure 3 PMID:1707592

  11. Association of ATP1A1 gene polymorphism with thermotolerance in Tharparkar and Vrindavani cattle

    PubMed Central

    Kashyap, Neeraj; Kumar, Pushpendra; Deshmukh, Bharti; Bhat, Sandip; Kumar, Amit; Chauhan, Anuj; Bhushan, Bharat; Singh, Gyanendra; Sharma, Deepak

    2015-01-01

    Aim: One of the major biochemical aspects of thermoregulation is equilibrium of ion gradient across biological membranes. Na+/K+-ATPase, a member of P type-ATPase family, is a major contributor to the mechanism that actively controls cross-membrane ion gradient. Thus, we examined ATP1A1 gene that encodes alpha-1 chain of Na+/K+-ATPase, for genetic polymorphisms. Materials and Methods: A total of 100 Vrindavani (composite cross strain of Hariana x Holstein-Friesian/Brown Swiss/Jersey) and 64 Tharparkar (indigenous) cattle were screened for genetic polymorphism in ATP1A1 gene, using polymerase chain reaction single-strand conformation polymorphism and DNA sequencing. For association studies, rectal temperature (RT) and respiration rate (RR) of all animals were recorded twice daily for 3 seasons. Results: A SNP (C2789A) was identified in exon 17 of ATP1A1 gene. Three genotypes namely CC, CA, and AA were observed in both, Vrindavani and Tharparkar cattle. The gene frequencies in Tharparkar and Vrindavani for allele A were 0.51 and 0.48, and for allele C were 0.49 and 0.52, respectively, which remained at intermediate range. Association study of genotypes with RT and RR in both cattle population revealed that the animals with genotype CC exhibited significantly lower RT and higher heat tolerance coefficient than CA and AA genotypes. Conclusion: Differential thermoregulation between different genotypes of ATP1A1 gene indicate that the ATP1A1 gene could be potentially contributing to thermotolerance in both, Tharparkar, an indigenous breed and Vrindavani, a composite crossbred cattle. PMID:27047171

  12. Multiple variants in UGT1A1 gene are factors to develop indirect hyper-bilirubinemia.

    PubMed

    Hu, Rei-Ting; Wang, Nai-Yuan; Huang, May-Jen; Huang, Ching-Shan; Chen, Ding-Shinn; Yang, Sien-Sing

    2014-08-01

    Most Taiwanese patients with hyper-bilirubinemia have genetic abnormalities in the uridine diphosphoglucuronate-glucuronosyltransferase 1A1 (UGT1A1) gene beyond the variants in the TATA box upstream of UGT1A1 associated with Gilbert's syndrome. To investigate the role of UGT1A1 in the pathogenesis of indirect hyper-bilirubinemia, we prospectively studied 97 consecutive patients with indirect hyper-bilirubinemia for genotypes of promoter [(TA)6TAA6, (TA)7TAA7] and coding region [nucleotide (nt)-211, nt-686, nt-1,091 and nt-1,456] of UGT1A1. Thirty-six of the patients (45.6%) were found to have Gilbert's syndrome with 7/7 genotype; among them, 14 also carried variants at nt-686. Forty-two patients (43.3%) had the 6/7 genotype; among them, 36 patients were found to have one or more variants in the coding region. Patients with higher serum total bilirubin are associated with higher likelihood of carrying Gilbert's syndrome genotype: 60.0% (P=0.007) patients with serum total bilirubin level ≥2.5 mg/dL carried the Gilbert's syndrome genotype, while only 23.9% of patients with serum total bilirubin level <2.5 mg/dL carry the same genotype (P=0.0006). Forty-one of the 61 non-Gilbert's patients had one homogenous variants or two or more heterozygous variants in UGT1A1. Further studies are necessary to confirm the role of one homo-zygous variant or two or more hetero-zygous variants in UGT1A1 gene as factors for indirect hyper-bilirubinemia. PMID:25202696

  13. Bilirubin UDP-Glucuronosyltransferase 1A1 (UGT1A1) Gene Promoter Polymorphisms and HPRT, Glycophorin A, and Micronuclei Mutant Frequencies in Human Blood

    SciTech Connect

    Grant, D; Hall, I J; Eastmond, D; Jones, I M; Bell, D A

    2004-10-06

    A dinucleotide repeat polymorphism (5-, 6-, 7-, or 8-TA units) has been identified within the promoter region of UDP-glucuronosyltransferase 1A1 gene (UGT1A1). The 7-TA repeat allele has been associated with elevated serum bilirubin levels that cause a mild hyperbilirubinemia (Gilbert's syndrome). Studies suggest that promoter transcriptional activity of UGT1A1 is inversely related to the number of TA repeats and that unconjugated bilirubin concentration increases directly with the number of TA repeat elements. Because bilirubin is a known antioxidant, we hypothesized that UGT1A1 repeats associated with higher bilirubin may be protective against oxidative damage. We examined the effect of UGT1A1 genotype on somatic mutant frequency in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) gene in human lymphocytes and the glycophorin A (GPA) gene of red blood cells (both N0, NN mutants), and the frequency of lymphocyte micronuclei (both kinetochore (K) positive or micronuclei K negative) in 101 healthy smoking and nonsmoking individuals. As hypothesized, genotypes containing 7-TA and 8-TA displayed marginally lower GPA{_}NN mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). In contrast, our analysis showed that lower expressing UGT1A1 alleles (7-TA and 8-TA) were associated with modestly increased HPRT mutation frequency (p<0.05) while the same low expression genotypes were not significantly associated with micronuclei frequencies (K-positive or K-negative) when compared to high expression genotypes (5-TA and 6-TA). We found weak evidence that UGT1A1 genotypes containing 7-TA and 8-TA were associated with increased GPA{_}N0 mutant frequency relative to 5/5, 5/6, 6/6 genotypes (p<0.05). These data suggest that UGT1A1 genotype may modulate somatic mutation of some types, in some cell lineages, by a mechanism not involving bilirubin antioxidant activity. More detailed studies examining UGT1A1 promoter variation, oxidant/antioxidant balance and genetic

  14. Association of Neonatal Hyperbilirubinemia with UGT1A1 Gene Polymorphisms: A Meta-Analysis

    PubMed Central

    Yu, Zibi; Zhu, Kaichang; Wang, Li; Liu, Ying; Sun, Jianmei

    2015-01-01

    Background The results of studies on association between the polymorphisms in the coding region and the promoter of uridine diphosphateglucuronosyl transferase 1A1 (UGT1A1) and neonatal hyperbilirubinemia are controversial. This study aimed to determine whether the UGT1A1 gene polymorphisms of Gly71Arg and TATA promoter were significant risk factors associated with neonatal hyperbilirubinemia. Material/Methods The PubMed, Cochrane Library, and Embase databases were searched for papers that describe the association between UGT1A1 polymorphisms and neonatal hyperbilirubinemia. Summary odds ratios and 95% confidence intervals (CI) were estimated based on a fixed-effects model or random-effects model, depending on the absence or presence of significant heterogeneity. Results A total of 32 eligible studies and 6520 participants were identified. Among them, 24 studies focused on the association of neonatal hyperbilirubinemia with UGT1A1 Gly71Arg polymorphisms, and a significant difference was found for the comparison of AA vs. AG+GG (OR=3.47, 95% CI=2.29–5.28, P<0.0001). We included 19 studies on the association of neonatal hyperbilirubinemia with UGT1A1 TATA promoter polymorphism, which also found a statistically significant difference between 7/7 and 6/7 + 6/6 (OR=2.24, 95% CI=1.29–3.92, P=0.004). Conclusions This meta-analysis demonstrated that UGT1A1 polymorphisms (Gly71Arg and TATA promoter) significantly increase the risk of neonatal hyperbilirubinemia. PMID:26467199

  15. Dietary Lecithin Decreases Skeletal Muscle COL1A1 and COL3A1 Gene Expression in Finisher Gilts

    PubMed Central

    Akit, Henny; Collins, Cherie; Fahri, Fahri; Hung, Alex; D’Souza, Daryl; Leury, Brian; Dunshea, Frank

    2016-01-01

    Simple Summary In this study, the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes was investigated in gilts. Thirty-six finisher gilts were fed with diets containing either 0, 4, 20 or 80 g/kg soybean lecithin for six weeks. Then, rectus abdominis muscle was sampled and analyzed for eight genes involved in collagen synthesis and degradation (COL1A1, COL3A1, MMP-1, MMP-13, TIMP-1, TIMP-3, lysyl oxidase and α-subunit P4H) using quantitative real-time PCR. The results showed that lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. Abstract The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression (p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated (p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin (p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required

  16. Analysis of flavonoids regulating the expression of UGT1A1 via xenobiotic receptors in intestinal epithelial cells.

    PubMed

    Hiura, Yuto; Satsu, Hideo; Hamada, Mika; Shimizu, Makoto

    2014-01-01

    UDP-glucuronosyltransferase (UGT) 1A1 is one of the major metabolic enzymes for the detoxification of harmful xenobiotics in intestines, and its expression is regulated by transcription factors like the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). A screening assay using real-time PCR showed that baicalein and 3-hydroxyflavone induced human UGT1A1 mRNA expression in LS180 cells. Experimental results confirmed that these flavonoids increased UGT1A protein expression as well as its enzymatic activity. The results indicated that baicalein and 3-hydroxyflavone increased the transcriptional activity of UGT1A1 via AhR and PXR, respectively. Observation via immunofluorescence microscopy suggested that baicalein and 3-hydroxyflavone further induced nuclear translocation of AhR and PXR, respectively. In addition, direct interaction between baicalein and AhR or 3-hydroxyflavone and PXR were observed using the quartz crystal microbalance method. These results elucidate the molecular mechanism of flavonoid-induced UGT1A1 gene expression via xenobiotic receptors in the intestines. PMID:24375494

  17. Dietary Lecithin Decreases Skeletal Muscle COL1A1 and COL3A1 Gene Expression in Finisher Gilts.

    PubMed

    Akit, Henny; Collins, Cherie; Fahri, Fahri; Hung, Alex; D'Souza, Daryl; Leury, Brian; Dunshea, Frank

    2016-01-01

    The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression ( p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated ( p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions. PMID:27338483

  18. Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p.

    PubMed

    Dluzen, Douglas F; Sun, Dongxiao; Salzberg, Anna C; Jones, Nate; Bushey, Ryan T; Robertson, Gavin P; Lazarus, Philip

    2014-03-01

    The UDP-glucuronosyltransferase (UGT) 1A enzymes are involved in the phase II metabolism of many important endogenous and exogenous compounds. The nine UGT1A isoforms exhibit high interindividual differences in expression, but their epigenetic regulation is not well understood. The purpose of the present study was to examine microRNA (miRNA) regulation of hepatic UGT1A enzymes and determine whether or not that regulation impacts enzymatic activity. In silico analysis identified miRNA 491-3p (miR-491-3p) as a potential regulator of the UGT1A gene family via binding to the shared UGT1A 3'-untranslated region common to all UGT1A enzymes. Transfection of miR-491-3p mimic into HuH-7 cells significantly repressed UGT1A1 (P < 0.001), UGT1A3 (P < 0.05), and UGT1A6 (P < 0.05) mRNA levels. For UGT1A1, this repression correlated with significantly reduced metabolism of raloxifene into raloxifene-6-glucuronide (ral-6-gluc; P < 0.01) and raloxifene-4'-glucuronide (ral-4'-gluc; P < 0.01). In HuH-7 cells with repressed miR-491-3p expression, there was a significant increase (~80%; P < 0.01) in UGT1A1 mRNA and a corresponding increase in glucuronidation of raloxifene into ral-6-gluc (50%; P < 0.05) and ral-4'-gluc (22%; P < 0.01). Knockdown of endogenous miR-491-3p in HepG2 cells did not significantly alter UGT1A1 mRNA levels but did increase the formation of ral-6-gluc (50%; P < 0.05) and ral-4'-gluc (34%; P < 0.001). A significant inverse correlation between miR-491-3p expression and both UGT1A3 (P < 0.05) and UGT1A6 (P < 0.01) mRNA levels was observed in a panel of normal human liver specimens, with a significant (P < 0.05) increase in UGT1A3 and UGT1A6 mRNA levels observed in miR-491-3p nonexpressing versus expressing liver specimens. These results suggest that miR-491-3p is an important factor in regulating the expression of UGT1A enzymes in vivo. PMID:24399855

  19. Genes and gene regulation

    SciTech Connect

    MacLean, N.

    1988-01-01

    Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

  20. Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139

  1. Disruption of endogenous regulator homeostasis underlies the mechanism of rat CYP1A1 mRNA induction by metyrapone.

    PubMed Central

    Harvey, J L; Paine, A J; Wright, M C

    1998-01-01

    The transcriptional induction of the cytochrome P-450 1A1 (CYP1A1) gene by xenobiotics such as polyaromatic hydrocarbons is dependent on their interaction with the aryl hydrocarbon receptor. Administration of the structurally unrelated compounds metyrapone (a cytochrome P-450 inhibitor) or dexamethasone (a glucocorticoid) to male rats does not induce hepatic CYP1A1 mRNA. However, administration of both metyrapone and dexamethasone to male rats results in the induction of hepatic CYP1A1 mRNA expression. The induction response is mimicked in vitro in cultured rat hepatocytes by the addition of metyrapone and dexamethasone to a serum-free culture medium, suggesting that these compounds act directly on the liver in vivo to effect hepatic CYP1A1 mRNA induction. An examination of the characteristics of CYP1A1 induction by metyrapone and dexamethasone in combination in vitro indicate that at least 6 h of treatment is required for detectable levels of CYP1A1 mRNA to accumulate in hepatocytes. In contrast, beta-naphthoflavone, which is known to bind to the aryl hydrocarbon receptor to effect CYP1A1 gene expression, induces detectable levels of CYP1A1 mRNA within 2 h of treatment. CYP1A1 mRNA is also induced when hepatocytes are treated with metyrapone in combination with the protein synthesis inhibitor cycloheximide but not with dexamethasone in combination with cycloheximide, indicating that CYP1A1 mRNA induction is strictly dependent on the presence of metyrapone and suggesting that the metyrapone-associated induction of CYP1A1 mRNA is dependent on a loss of a constitutively expressed protein that functions to suppress CYP1A1 gene expression. The role of dexamethasone in metyrapone-associated induction of CYP1A1 is probably mediated through the glucocorticoid receptor since the glucocorticoid receptor antagonist RU486 reduces the levels of CYP1A1 mRNA induced by metyrapone and dexamethasone in combination. Increasing the levels of the photosensitizer riboflavin present in

  2. Isoforms of the neuronal glutamate transporter gene, SLC1A1/EAAC1, negatively modulate glutamate uptake: relevance to obsessive-compulsive disorder

    PubMed Central

    Porton, B; Greenberg, B D; Askland, K; Serra, L M; Gesmonde, J; Rudnick, G; Rasmussen, S A; Kao, H-T

    2013-01-01

    The SLC1A1 gene, which encodes the neuronal glutamate transporter, EAAC1, has consistently been implicated in obsessive-compulsive disorder (OCD) in genetic studies. Moreover, neuroimaging, biochemical and clinical studies support a role for glutamatergic dysfunction in OCD. Although SLC1A1 is an excellent candidate gene for OCD, little is known about its regulation at the genomic level. Here, we report the identification and characterization of three alternative SLC1A1/EAAC1 mRNAs: a transcript derived from an internal promoter, termed P2 to distinguish it from the transcript generated by the primary promoter (P1), and two alternatively spliced mRNAs: ex2skip, which is missing exon 2, and ex11skip, which is missing exon 11. All isoforms inhibit glutamate uptake from the full-length EAAC1 transporter. Ex2skip and ex11skip also display partial colocalization and interact with the full-length EAAC1 protein. The three isoforms are evolutionarily conserved between human and mouse, and are expressed in brain, kidney and lymphocytes under nonpathological conditions, suggesting that the isoforms are physiological regulators of EAAC1. Moreover, under specific conditions, all SLC1A1 transcripts were differentially expressed in lymphocytes derived from subjects with OCD compared with controls. These initial results reveal the complexity of SLC1A1 regulation and the potential clinical utility of profiling glutamatergic gene expression in OCD and other psychiatric disorders. PMID:23695234

  3. Transcriptional Repression of the Dspp Gene Leads to Dentinogenesis Imperfecta Phenotype in Col1a1-Trps1 Transgenic Mice

    PubMed Central

    Napierala, Dobrawa; Sun, Yao; Maciejewska, Izabela; Bertin, Terry K; Dawson, Brian; D'Souza, Rena; Qin, Chunlin; Lee, Brendan

    2012-01-01

    Dentinogenesis imperfecta (DGI) is a hereditary defect of dentin, a calcified tissue that is the most abundant component of teeth. Most commonly, DGI is manifested as a part of osteogenesis imperfecta (OI) or the phenotype is restricted to dental findings only. In the latter case, DGI is caused by mutations in the DSPP gene, which codes for dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Although these two proteins together constitute the majority of noncollagenous proteins of the dentin, little is known about their transcriptional regulation. Here we demonstrate that mice overexpressing the Trps1 transcription factor (Col1a1-Trps1 mice) in dentin-producing cells, odontoblasts, present with severe defects of dentin formation that resemble DGI. Combined micro–computed tomography (µCT) and histological analyses revealed tooth fragility due to severe hypomineralization of dentin and a diminished dentin layer with irregular mineralization in Col1a1-Trps1 mice. Biochemical analyses of noncollagenous dentin matrix proteins demonstrated decreased levels of both DSP and DPP proteins in Col1a1-Trps1 mice. On the molecular level, we demonstrated that sustained high levels of Trps1 in odontoblasts lead to dramatic decrease of Dspp expression as a result of direct inhibition of the Dspp promoter by Trps1. During tooth development Trps1 is highly expressed in preodontoblasts, but in mature odontoblasts secreting matrix its expression significantly decreases, which suggests a Trps1 role in odontoblast development. In these studies we identified Trps1 as a potent inhibitor of Dspp expression and the subsequent mineralization of dentin. Thus, we provide novel insights into mechanisms of transcriptional dysregulation that leads to DGI. © 2012 American Society for Bone and Mineral Research. PMID:22508542

  4. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  5. Induction of cytochrome P450 1A1 gene expression by a vitamin K3 analog in mouse hepatoma Hepa-1c1c7 cells.

    PubMed

    Chun, Y J; Lee, B Y; Yang, S A; Ryu, C K; Kim, M Y

    2001-10-31

    Nine vitamin K3 analogs were compared with respect to the induction of the cytochrome P450 1A1 (CYP1A1) expression in mouse hepatoma Hepa-1c1c7 cells. 6-(4-Diethylamino)phenyl-7-chloro-5,8-quinolinedione (EA4) caused a significant induction of the CYP1A1-mediated ethoxyresorufin O-deethylase activity in a time- and concentration-dependent manner. The induction was accompanied by an increase of the Cyp1a1 mRNA transcription. The transient expression of the mouse Cyp1a1-CAT gene into cells showed that EA4 induced CAT activity. However, the aryl hydrocarbon receptor and its nuclear partner, aryl hydrocarbon receptor nuclear translocator mRNA transcription, were unaffected by the EA4 treatment. When the cells were incubated with EA4 in the presence of 1 nM TCDD, the ethoxyresorufin O-deethylase activity that was induced by TCDD was significantly suppressed by EA4. Inhibition of protein synthesis by cycloheximide strongly enhanced the EA4-dependent Cyp1a1 mRNA expression. Up-regulation of protein kinase C by a 2 h preincubation with phorbol 12-myristate 13-acetate increased the EA4-dependent expression of the Cyp1a1 gene. In human cells, such as HepG2 (human hepatocarcinoma), MCF-7 (human breast adenocarcinoma cell line), and HL-60 (human promyelocytic cell line), the expression of CYP1A1 mRNA was also induced by EA4 treatment. Moreover, CYP1B1 mRNA was increased by EA4 in MCF-7 cells. These results indicate that EA4 modulates CYP1A1 and CYP1B1 expressions by transcriptional activation. Also, protein kinase C may be involved in the induction mechanism of CYP1A1 by EA4. PMID:11710520

  6. Combination effect of cytochrome P450 1A1 gene polymorphisms on uterine leiomyoma: A case-control study.

    PubMed

    Salimi, Saeedeh; Sajadian, Mojtaba; Khodamian, Maryam; Yazdi, Atefeh; Rezaee, Soodabeh; Mohammadpour-Gharehbagh, Abbas; Mokhtari, Mojgan; Yaghmaie, Minoo

    2016-08-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus, and estrogen metabolizing enzymes affect its progression. This study aimed to evaluate the association between two single-nucleotide polymorphisms of cytochrome P450 1A1 (CYP1A1) gene and UL risk. The study consisted of 105 patients with UL and 112 healthy women as controls. Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene were analyzed by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism methods, respectively. The findings indicated no association between Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene and UL (p < 0.05). However, the combination effect of TT/AG genotypes of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms was associated with 4.3-fold higher risk of UL. In addition, haplotype analysis revealed that TG haplotype of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms could increase the UL risk nearly 4.9-fold. Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms of CYP1A1 gene were not associated with UL susceptibility; however, the combination of the TT/AG genotypes and TG haplotype could increase the UL risk. PMID:27333216

  7. Combination effect of cytochrome P450 1A1 gene polymorphisms on uterine leiomyoma: A case-control study

    PubMed Central

    Salimi, Saeedeh; Sajadian, Mojtaba; Khodamian, Maryam; Yazdi, Atefeh; Rezaee, Soodabeh; Mohammadpour-Gharehbagh, Abbas; Mokhtari, Mojgan; Yaghmaie, Minoo

    2016-01-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus, and estrogen metabolizing enzymes affect its progression. This study aimed to evaluate the association between two single-nucleotide polymorphisms of cytochrome P450 1A1 (CYP1A1) gene and UL risk. The study consisted of 105 patients with UL and 112 healthy women as controls. Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene were analyzed by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism methods, respectively. The findings indicated no association between Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene and UL (p < 0.05). However, the combination effect of TT/AG genotypes of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms was associated with 4.3-fold higher risk of UL. In addition, haplotype analysis revealed that TG haplotype of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms could increase the UL risk nearly 4.9-fold. Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms of CYP1A1 gene were not associated with UL susceptibility; however, the combination of the TT/AG genotypes and TG haplotype could increase the UL risk.

  8. Combination effect of cytochrome P450 1A1 gene polymorphisms on uterine leiomyoma: A case-control study.

    PubMed

    Salimi, Saeedeh; Sajadian, Mojtaba; Khodamian, Maryam; Yazdi, Atefeh; Rezaee, Soodabeh; Mohammadpour-Gharehbagh, Abbas; Mokhtari, Mojgan; Yaghmaie, Minoo

    2016-08-01

    Uterine leiomyoma (UL) is an estrogen-dependent neoplasm of the uterus, and estrogen metabolizing enzymes affect its progression. This study aimed to evaluate the association between two single-nucleotide polymorphisms of cytochrome P450 1A1 (CYP1A1) gene and UL risk. The study consisted of 105 patients with UL and 112 healthy women as controls. Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene were analyzed by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism methods, respectively. The findings indicated no association between Ile462Val (A/G) and Asp449Asp (T/C) polymorphisms of CYP1A1 gene and UL (p < 0.05). However, the combination effect of TT/AG genotypes of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms was associated with 4.3-fold higher risk of UL. In addition, haplotype analysis revealed that TG haplotype of the Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms could increase the UL risk nearly 4.9-fold. Asp449Asp (T/C) and Ile462Val (A/G) polymorphisms of CYP1A1 gene were not associated with UL susceptibility; however, the combination of the TT/AG genotypes and TG haplotype could increase the UL risk. PMID:27483179

  9. A rapid and efficient newly established method to detect COL1A1-PDGFB gene fusion in dermatofibrosarcoma protuberans

    SciTech Connect

    Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko; Ishikawa, Osamu; Motegi, Sei-ichiro

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primers from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.

  10. Rapid molecular diagnosis of the Gilbert's syndrome-associated exon 1 mutation within the UGT1A1 gene.

    PubMed

    Hsieh, T-Y; Shiu, T-Y; Chu, N-F; Chao, T-Y; Chu, H-C; Chang, W-K; Chao, Y-C; Huang, H-H

    2014-01-01

    Gilbert's syndrome is suspected in patients with unconjugated hyperbilirubinemia caused by decreased activity of the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene in the absence of abnormal liver function and hemolysis. The major genetic variants underlying Gilbert's syndrome are TATA-box repeats of the promoter region and exon 1 G211A of the coding region, particularly in Asians. The efficacy of DNA melting curve analysis, however, has not been established for the G211A mutation. For rapid and accurate molecular diagnosis of Gilbert's syndrome, DNA melting curve analysis was evaluated for its genotyping capability not only for TATA-box repeats of the UGT1A1 promoter, but also for G211A of UGT1A1 exon 1. TA repeats within the TATA-box sequence and the exon 1 G211A mutation of the UGT1A1 gene were analyzed by DNA melting curve analysis. To evaluate the assay reliability, direct sequencing or polyacrylamide gel electrophoresis was used as a comparative method. All homozygous and heterozygous polymorphisms of A(TA)7TAA within the TATA-box allele and of exon 1 G211A mutants of the UGT1A1 gene were successfully identified with DNA melting curve analysis. DNA melting curve analysis is, therefore, an effective molecular method for the rapid diagnosis of Gilbert's syndrome, as it detects not only TATA-box polymorphisms but also the exon 1 G211A mutation located within the UGT1A1 gene. PMID:24615032

  11. Psychotropics regulate Skp1a, Aldh1a1, and Hspa8 transcription--potential to delay Parkinson's disease.

    PubMed

    Lauterbach, Edward C

    2013-01-10

    Recently, the genes p19 S-phase kinase-associated protein 1A (SKP1), huntingtin interacting protein-2 (UBE2K), aldehyde dehydrogenase family 1 subfamily A1 (ALDH1A1), 19 S proteasomal protein PSMC4, and heat shock 70-kDa protein 8 (HSPA8) have been found to predict the onset and progression of Parkinson's disease (PD). These findings prompted a review of the effects of commonly prescribed psychiatric medicines, drugs that are used in treating PD, on the expression of these genes. Findings in the published medical literature were reviewed and gene expression data in the Gene Expression Omnibus Profiles database were analyzed. The results indicate that fluoxetine upregulated the risk-attenuating genes Skp1a and Aldh1a1 and olanzapine downregulated risk-enhancing Hspa8 while also downregulating Aldh1a1. Less conclusive evidence suggested that fluoxetine might also downregulate Hspa8 and clozapine might downregulate risk-enhancing Ube2k, but that olanzapine might upregulate Ube2k. Together, the present findings suggest that these psychotropics may delay PD onset (fluoxetine, olanzapine, and perhaps clozapine) and progression (fluoxetine, clozapine, and perhaps olanzapine). These gene expression findings should be replicated by RT-PCR studies in humans and, if confirmed, these drugs should then be studied in animal models and PD patients. PMID:23046827

  12. Early modification of sickle cell disease clinical course by UDP-glucuronosyltransferase 1A1 gene promoter polymorphism.

    PubMed

    Martins, Rute; Morais, Anabela; Dias, Alexandra; Soares, Isabel; Rolão, Cristiana; Ducla-Soares, J L; Braga, Lígia; Seixas, Teresa; Nunes, Baltazar; Olim, Gabriel; Romão, Luísa; Lavinha, João; Faustino, Paula

    2008-01-01

    Elevated erythrocyte destruction in sickle cell disease (SCD) results in chronic hyperbilirubinaemia and, in a subset of patients, cholelithiasis occurs. We investigated whether the (TA)n promoter polymorphism in the UDP-glucuronosyltransferase 1A1 gene (UGT1A1) may modify bilirubin metabolism, influencing bilirubinaemia, predisposition to cholelithiasis and subsequent cholecystectomy, in a group of 153 young SCD patients (mean age 12.0 +/- 9.0 years) predominantly of Bantu beta S haplotype. The concomitant effect of alpha thalassaemia was also analysed. Among the several UGT1A1 genotypes found, the most frequent were the (TA)6/(TA)6 (n = 37), (TA)6/(TA)7 (n = 60) and (TA)7/(TA)7 (n = 29). These groups of patients did not significantly differ in age, gender ratio and haemoglobin, foetal haemoglobin and reticulocyte levels. On the other hand, total bilirubin levels were significantly different between groups, with an increased (TA) repeat number being associated with higher bilirubinaemia. Furthermore, both cholelithiasis and cholecystectomy were more frequent in groups with higher (TA) repeat number, although the former association was not statistically significant. None of the mentioned parameters is statistically different within UGT1A1 groups with the presence of alpha thalassaemia. Thus, the UGT1A1 promoter polymorphism may represent an important nonglobin genetic modifier of Bantu SCD patients' clinical manifestations, even at a young age. PMID:18392554

  13. Down-regulation of murine Cyp1a-1 in mouse hepatoma Hepa-1c1c7 cells by bisphenol A.

    PubMed

    Jeong, H G; Kimand, J Y; Choi, C Y

    2000-11-01

    Cultured mouse hepatoma Hepa-1c1c7 cells were treated with either bisphenol A or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or in combination to assess the role of bisphenol A in the process of Cyp1a-1 induction. Treatment of Hepa-1c1c7 cultures with 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induced Cyp1a-1, as determined by analysis of 7-ethoxyresorufin O-deethylase (EROD) activities. Bisphenol A alone did not affect the activity of Cyp1a-1-specific EROD; in contrast, TCDD-induced EROD activities were markedly reduced in the concomitant treatment of TCDD and bisphenol A in a dose-dependent manner. Treatment with tamoxifen, an antiestrogen that acts through the estrogen receptor, did not affect the suppressive effects of bisphenol A on TCDD-induced EROD activity. TCDD-induced Cyp1a-1 mRNA levels were markedly suppressed in the concomitant treatment of TCDD and bisphenol A consistent with their effects on EROD activity. Transient transfection assay using dioxin-response element (DRE)-linked luciferase revealed that bisphenol A reduced transformation of the aryl hydrocarbons (Ah) receptor to a form capable of specifically binding to the DRE sequence in the promoter of the Cyp1a-1 gene. These results suggest the down-regulation of the Cyp1a-1 gene expression by bisphenol A in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear Ah receptor but not mediated through estradiol receptor. PMID:11061999

  14. Se(VI) Reduction and the Precipitation of Se(0) Precipitation by the Facultative Bacterium Enterobacter Cloacae SLD1a-1 is Regulated by FNR

    SciTech Connect

    Yee,N.; Ma, J.; Dalia, A.; Boonfueng, T.; Kobayashi, D.

    2007-01-01

    The fate of selenium in the environment is controlled, in part, by microbial selenium oxyanion reduction and Se(0) precipitation. In this study, we identified a genetic regulator that controls selenate reductase activity in the Se-reducing bacterium Enterobacter cloacae SLD1a-1. Heterologous expression of the global anaerobic regulatory gene fnr (fumarate nitrate reduction regulator) from E. cloacae in the non-Se-reducing strain Escherichia coli S17-1 activated the ability to reduce Se(VI) and precipitate insoluble Se(0) particles. Se(VI) reduction by E. coli S17-1 containing the fnr gene occurred at rates similar to those for E. cloacae, with first-order reaction constants of k = 2.07 x 10{sup -2} h{sup -1} and k = 3.36 x 10{sup -2} h{sup -1}, respectively, and produced elemental selenium particles with identical morphologies and short-range atomic orders. Mutation of the fnr gene in E. cloacae SLD1a-1 resulted in derivative strains that were deficient in selenate reductase activity and unable to precipitate elemental selenium. Complementation by the wild-type fnr sequence restored the ability of mutant strains to reduce Se(VI). Our findings suggest that Se(VI) reduction and the precipitation of Se(0) by facultative anaerobes are regulated by oxygen-sensing transcription factors and occur under suboxic conditions.

  15. Sexually Dimorphic Expression of eGFP Transgene in the Akr1A1 Locus of Mouse Liver Regulated by Sex Hormone-Related Epigenetic Remodeling

    PubMed Central

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Tsai, Tung-Chou; Chu, Te-Wei; Yang, Shang-Hsun; Chong, Kowit-Yu; Chen, Chuan-Mu

    2016-01-01

    Sexually dimorphic gene expression is commonly found in the liver, and many of these genes are linked to different incidences of liver diseases between sexes. However, the mechanism of sexually dimorphic expression is still not fully understood. In this study, a pCAG-eGFP transgenic mouse strain with a specific transgene integration site in the Akr1A1 locus presented male-biased EGFP expression in the liver, and the expression was activated by testosterone during puberty. The integration of the pCAG-eGFP transgene altered the epigenetic regulation of the adjacent chromatin, including increased binding of STAT5b, a sexually dimorphic expression regulator, and the transformation of DNA methylation from hypermethylation into male-biased hypomethylation. Through this de novo sexually dimorphic expression of the transgene, the Akr1A1eGFP mouse provides a useful model to study the mechanisms and the dynamic changes of sexually dimorphic gene expression during either development or pathogenesis of the liver. PMID:27087367

  16. UGT1A1 gene polymorphism: Impact on toxicity and efficacy of irinotecan-based regimens in metastatic colorectal cancer

    PubMed Central

    Schulz, Christoph; Heinemann, Volker; Schalhorn, Andreas; Moosmann, Nikolas; Zwingers, Thomas; Boeck, Stefan; Giessen, Clemens; Stemmler, Hans-Joachim

    2009-01-01

    AIM: To investigate the correlation between uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) gene polymorphisms and irinotecan-associated side effects and parameters of drug efficacy in patients with metastatic colorectal cancer (mCRC) receiving a low-dose weekly irinotecan chemotherapeutic regimen. METHODS: Genotypes were retrospectively evaluated by gene scan analysis on the ABI 310 sequencer of the TATAA box in the promoter region of the UGT1A1 gene in blood samples from 105 patients who had received 1st line irinotecan-based chemotherapy for mCRC. RESULTS: The distribution of the genotypes was as follows: wild type genotype (WT) (6/6) 39.0%, heterozygous genotype (6/7) 49.5%, and homozygous genotype (7/7) 9.5%. The overall response rate (OR) was similar between patients carrying the (6/7, 7/7) or the WT genotype (6/6) (44.3% vs 43.2%, P = 0.75). Neither time to progression [(TTP) 8.1 vs 8.2 mo, P = 0.97] nor overall survival [(OS) 21.2 vs 18.9 mo, P = 0.73] differed significantly in patients who carried the (6/6) when compared to the (6/7, 7/7) genotype. No significant differences in toxicity were observed: Grade 3 and 4 delayed diarrhoea [(6/7, 7/7) vs (6/6); 13.0% vs 6.2%, P = 0.08], treatment delays [(6/7, 7/7) vs (6/6); 25.1% vs 19.3%, P =0.24] or dose reductions [(6/7, 7/7) vs (6/6); 21.5% vs 27.2%, P = 0.07]. CONCLUSION: This analysis demonstrates the non-significant influence of the UGT1A1 gene polymorphism on efficacy and rate of irinotecan-associated toxicity in mCRC patients receiving low-dose irinotecan based chemotherapy. PMID:19859999

  17. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  18. Regulation of CYP1A1 and Inflammatory Cytokine by NCOA7 Isoform 4 in Response to Dioxin Induced Airway Inflammation

    PubMed Central

    Cho, Sung-Hwan; Park, Shin Young; Lee, Eun Jeong; Cho, Yo Han; Park, Hyun Sun; Hong, Seok-Ho

    2015-01-01

    Background Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, binds to a wide variety of synthetic and naturally occurring compounds. AhR is involved in the regulation of inflammatory response during acute and chronic respiratory diseases. We investigated whether nuclear receptor coactivator 7 (NCOA7) could regulate transcriptional levels of AhR target genes and inflammatory cytokines in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated human bronchial epithelial cells. This study was based on our previous study that NCOA7 was differentially expressed between normal and chronic obstructive pulmonary disease lung tissues. Methods BEAS-2B and A549 cells grown under serum-free conditions were treated with or without TCDD (0.15 nM and 6.5 nM) for 24 hours after transfection of pCMV-NCOA7 isoform 4. Expression levels of cytochrome P4501A1 (CYP1A1), IL-6, and IL-8 were measured by quantitative real-time polymerase chain reaction. Results The transcriptional activities of CYP1A1 and inflammatory cytokines were strongly induced by TCDD treatment in both BEAS-2B and A549 cell lines. The NCOA7 isoform 4 oppositely regulated the transcriptional activities of CYP1A1 and inflammatory cytokines between BEAS-2B and A549 cell lines. Conclusion Our results suggest that NCOA7 could act as a regulator in the TCDD-AhR signaling pathway with dual roles in normal and abnormal physiological conditions. PMID:25861343

  19. Sex-dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA

    PubMed Central

    Penaloza, Carlos G.; Estevez, Brian; Han, Dinah M.; Norouzi, Melissa; Lockshin, Richard A.; Zakeri, Zahra

    2014-01-01

    Sexual differences are only partially attributable to hormones. Cultured male or female cells, even from embryos before sexual differentiation, differ in gene expression and sensitivity to toxins, and these differences persist in isolated primary cells. Male and female cells from Swiss Webster CWF mice manifest sex-distinct patterns of DNA methylation for X-ist and for cytochrome P450 (CYP; family members 1a1, 2e1m, and 7b1. Dnmt3l is differentially expressed but not differentially methylated, and Gapdh is neither differentially methylated nor expressed. CYP family genes differ in expression in whole tissue homogenates and cell cultures, with female Cyp expression 2- to 355-fold higher and Dnmt3l 12- to 32-fold higher in males. DNA methylation in the promoters of these genes is sex dimorphic; reducing methylation differences reduces to 1- to 6-fold differences in the expression of these genes. Stress or estradiol alters both methylation and gene expression. We conclude that different methylation patterns partially explain the sex-based differences in expression of CYP family members and X-ist, which potentially leads to inborn differences between males and females and their different responses to chronic and acute changes. Sex-differential methylation may have medical effects.—Penaloza, C.G., Estevez, B., Han, D.M., Norouzi, M., Lockshin, R.A., Zakeri, Z. Sex-dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA. PMID:24161885

  20. Double replacement: strategy for efficient introduction of subtle mutations into the murine Col1a-1 gene by homologous recombination in embryonic stem cells.

    PubMed Central

    Wu, H; Liu, X; Jaenisch, R

    1994-01-01

    A subtle mutation that rendered type I collagen resistant to mammalian collagenase has been introduced into the murine Col1a-1 (recently redesignated Cola-1) gene by homologous recombination in embryonic stem (ES) cells. Initially, a "hit and run" procedure was used. Since two steps were required for introducing each mutation and more than one mutation was to be introduced in the same genomic region independently, we have developed a streamlined procedure that involves two sequential replacement-type homologous recombination events. In the first step, an internal deletion was introduced into the Col1a-1 locus along with the positive and negative selectable markers, neo and tk, to mark the region of interest. G418-resistant homologous recombinants were isolated and used in the second step in which the deleted Col1a-1 allele was replaced with a construct containing the desired mutation. Homologous recombinants containing the mutation were identified among the Tk- ES clones after selection with FIAU [1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (called fialuridine)]. Approximately 10% of such clones contained the desired mutation. The double replacement procedure greatly reduces the time and amount of work required to introduce mutations independently into the same or closely linked regions. Once the homologous recombinants derived from the first step are established, the introduction of other mutations into the deleted region becomes a one-step procedure. For X number of introduced mutations, 2X selections are required with the "hit and run" approach, but only X + 1 are required with the double-replacement method. This innovative procedure could be very useful in studies of gene structure and function as well as gene expression and regulation. Images PMID:8146196

  1. Prolonged Hyperbilirubinemia in a Neonate with a Novel Mutation in the UDP-glucuronosyltransferase 1A1 Gene.

    PubMed

    Mu, Shu-Chi; Chen, Yi-Ling; Tsai, Li-Yi; Shih, Yung-Luen; Chen, En-Sung; Huang, Ching-Shan

    2016-01-01

    The total bilirubin value of a male infant was 385 μmol/l on day 5. Liver function test results were normal and there was no evidence of sepsis and no hemolysis reaction. Phototherapy was administered and on day 8 the patient's total bilirubin level was 255 μmol/l. Intermittent episodes of hyperbilirubinemia occurred without phototherapy, with the total bilirubin level reaching 335 μmol/l on day 19. A 3-day regimen of phenobarbital was administered and on day 24 his total bilirubin level was 180 μmol/l. The patient was discharged. At the age of 2 months, the total bilirubin value was 27 μmol/l. His direct bilirubin value was <15% of total bilirubin in every determination. A family study of the UDP-glucuronosyltransferase(UGT)1A1 gene showed that the infant carries a homozygous mutation at nucleotide -3279 plus compound heterozygous mutations at nucleotides 782 and 1091. The mutation at nucleotide 782 is a novel finding. Gilbert's syndrome was diagnosed. PMID:26859599

  2. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. PMID:25110054

  3. CYP1A1 and CYP1A2 expression levels are differentially regulated in three-dimensional spheroids of liver cancer cells compared to two-dimensional monolayer cultures.

    PubMed

    Terashima, Jun; Goto, Shinpei; Hattori, Hiroki; Hoshi, Sawaka; Ushirokawa, Midori; Kudo, Kenzo; Habano, Wataru; Ozawa, Shogo

    2015-12-01

    Compared to two-dimensional (2D) monolayer cultures, three-dimensional (3D) tumor cell culture models are thought to be structurally more similar to the in vivo tumor microenvironment. We investigated the regulation of the expression of genes encoding the drug-metabolizing enzymes CYP1A1 and CYP1A2 in 3D spheroids comprised of cells of the human hepatocellular carcinoma cell JHH1, Huh7, and HepG2. Expression of CYP1A1 and CYP1A2 in the spheroids was higher than that in 2D cultured cells. Expression of CYP1A1 and CYP1A2 is regulated by aryl hydrocarbon receptor (AhR) in 2D cultured cells. Knockdown of AhR in spheroids suppressed CYP1A1 expression; however, CYP1A2 expression levels remained unchanged. Moreover, we found that pregnane X receptor (PXR) likely regulated CYP1A2 expression in JHH1, HepG2, and Huh7 spheroids and that CYP1A1 expression in JHH1 and Huh7 3D spheroids is regulated not only by AhR but also by PXR. It is well known that gene expression levels are different between 3D spheroids and 2D monolayer cultured cells, and our results indicate that the regulation of gene expression also varies between the two culture conditions. Taken together, these results underlie a novel finding regarding the regulation of drug-metabolizing enzyme expression in liver cancer cells growing as 3D spheroids. PMID:26643992

  4. The relationship between UGT1A1 gene polymorphism and irinotecan effect on extensive-stage small-cell lung cancer

    PubMed Central

    Xiao, Xiao-guang; Xia, Shu; Zou, Man; Mei, Qi; Zhou, Lei; Wang, Shu-jing; Chen, Yuan

    2015-01-01

    Aims To analyze the distribution of uridine diphosphate glucuronosyltransferase (UGT)1A1 gene polymorphisms in Chinese patients with extensive-stage small-cell lung cancer (E-SCLC), and to evaluate correlations between the UGT1A1 gene polymorphisms and toxicity, and efficacy of irinotecan (CPT-11) based regimen in the patients with E-SCLC. Methods The study analyzed the distribution of UGT1A1*28/*6 gene polymorphisms by polymerase chain reaction amplification and pyrosequencing. The analysis of UGT1A1*28 and UGT1A1*6 gene polymorphisms was performed in 67 patients with E-SCLC admitted to the clinic in the Department of Oncology from June 2011 to January 2013. A total of 67 cases with E-SCLC treated with irinotecan (CPT-11)-based regimen were enrolled to observe the adverse events and efficacy during the chemotherapy, including objective response rate, progression-free survival (PFS) and overall survival (OS). The correlation between UGT1A1 gene polymorphisms and severe adverse events was analyzed. The influences of UGT1A1*6/*28 polymorphisms on objective response rate, PFS, and OS were also analyzed. Results The distribution of UGT1A1 genotypes among 67 patients was as follows: UGT1A1*28 wild-type (WT) genotype TA6/6 (56, 83.6%), heterozygous mutant genotype TA6/7 (11, 16.4%); UGT1A1*6 WT genotype G/G (45, 67.2%), heterozygous mutant genotype G/A (22, 32.8%); no significant difference of PFS and OS was observed between different genotypes. The incidence of grade 3 and 4 delayed diarrhea and neutropenia in the patients carrying UGT1A1*6 G/A mutation was higher than that in the WT genotype (36.4% vs 6.6% P=0.034; 27.2% vs 4.4% P=0.026, respectively). The incidence of grade 3 and 4 thrombocytopenia in the patients carrying UGT1A1*28 TA6/7 mutation was higher than that in the WT genotype (27.2% vs 1.8% P=0.017). The patients simultaneously carrying UGT1A1*28 TA6/7 and UGT1A1*6 G/A mutations were prone to suffering grade 3 and 4 delayed diarrhea and neutropenia

  5. 3-Methylcholanthrene elicits DNA adduct formation in the CYP1A1 promoter region and attenuates reporter gene expression in rat H4IIE cells

    SciTech Connect

    Moorthy, Bhagavatula . E-mail: bmoorthy@bcm.tmc.edu; Muthiah, Kathirvel; Fazili, Inayat S.; Kondraganti, Sudha R.; Wang Lihua; Couroucli, Xanthi I.; Jiang Weiwu

    2007-03-23

    Cytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 {mu}g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 {sup o}C for 2 h, giving rise to 9 adducts, as determined by {sup 32}P-postlabeling. Eighty percent of adducts was located in the promoter region. Transient transfection of the adducted plasmids into rat hepatoma (H4IIE) cells for 16 h, followed by MC (1 {mu}M) treatment for 24 h inhibited reporter (luciferase) gene expression by 75%, compared to unadducted controls. Our results suggest that CYP1A2 plays a key role in sequence-specific MC-DNA adduct formation in the CYP1A1 promoter region, leading to attenuation of CYP1A1 gene expression.

  6. Three-dimensional polyacrylamide gel-based DNA microarray method effectively identifies UDP-glucuronosyltransferase 1A1 gene polymorphisms for the correct diagnosis of Gilbert's syndrome.

    PubMed

    Song, Jinyun; Sun, Mei; Li, Jiayan; Zhou, Dongrui; Wu, Xuping

    2016-03-01

    Gilbert's syndrome is a mild genetic liver disorder characterized by unconjugated hyperbilirubinemia due to defects in the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene. The T-3279G mutation in the phenobarbital responsive enhancer module (PBREM), the TA-insertion in the TATA box, creating the A(TA)7TAA motif instead of A(TA)6TAA and the G211A mutation in coding exon 1, particularly in Asian populations, of the human UGT1A1 gene are the three common genotypes found in patients with Gilbert's syndrome. Different approaches for detecting the T-3279G, A(TA)6/7TAA and G211A mutations of the UGT1A1 gene have been described. In this study, to the best of our knowledge, we established a three-dimensional polyacrylamide gel-based DNA microarray method for the first time, in order to study UGT1A1 gene polymorphisms. This method, based on a step-by-step three-dimensional polyacrylamide gel-based DNA microarray protocol, successfully identified all possible genotypes of T-3279G, A(TA)6/7TAA and G211A in 20 patients with hyperbilirubinemia. In addition, sequencing was performed to confirm these results. The data from the current study demonstrate that the three-dimensional polyacrylamide gel microarray method has the potential to be applied as a useful, reliable and cost-effective tool to detect the T-3279G, the A(TA)6/7TAA and the G211A mutations of the UGT1A1 gene in patients with hyperbilirubinemia and thereby aid in the diagnosis of Gilbert's syndrome. PMID:26781906

  7. Three-dimensional polyacrylamide gel-based DNA microarray method effectively identifies UDP-glucuronosyltransferase 1A1 gene polymorphisms for the correct diagnosis of Gilbert's syndrome

    PubMed Central

    SONG, JINYUN; SUN, MEI; LI, JIAYAN; ZHOU, DONGRUI; WU, XUPING

    2016-01-01

    Gilbert's syndrome is a mild genetic liver disorder characterized by unconjugated hyperbilirubinemia due to defects in the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene. The T-3279G mutation in the phenobarbital responsive enhancer module (PBREM), the TA-insertion in the TATA box, creating the A(TA)7TAA motif instead of A(TA)6TAA and the G211A mutation in coding exon 1, particularly in Asian populations, of the human UGT1A1 gene are the three common genotypes found in patients with Gilbert's syndrome. Different approaches for detecting the T-3279G, A(TA)6/7TAA and G211A mutations of the UGT1A1 gene have been described. In this study, to the best of our knowledge, we established a three-dimensional polyacrylamide gel-based DNA microarray method for the first time, in order to study UGT1A1 gene polymorphisms. This method, based on a step-by-step three-dimensional polyacrylamide gel-based DNA microarray protocol, successfully identified all possible genotypes of T-3279G, A(TA)6/7TAA and G211A in 20 patients with hyperbilirubinemia. In addition, sequencing was performed to confirm these results. The data from the current study demonstrate that the three-dimensional polyacrylamide gel microarray method has the potential to be applied as a useful, reliable and cost-effective tool to detect the T-3279G, the A(TA)6/7TAA and the G211A mutations of the UGT1A1 gene in patients with hyperbilirubinemia and thereby aid in the diagnosis of Gilbert's syndrome. PMID:26781906

  8. Genetic polymorphisms in CYP1A1, GSTM1, GSTP1 and GSTT1 metabolic genes and risk of lung cancer in Asturias

    PubMed Central

    2012-01-01

    Background Metabolic genes have been associated with the function of metabolizing and detoxifying environmental carcinogens. Polymorphisms present in these genes could lead to changes in their metabolizing and detoxifying ability and thus may contribute to individual susceptibility to different types of cancer. We investigated if the individual and/or combined modifying effects of the CYP1A1 MspI T6235C, GSTM1 present/null, GSTT1 present/null and GSTP1 Ile105Val polymorphisms are related to the risk of developing lung cancer in relation to tobacco consumption and occupation in Asturias, Northern Spain. Methods A hospital-based case–control study (CAPUA Study) was designed including 789 lung cancer patients and 789 control subjects matched in ethnicity, age, sex, and hospital. Genotypes were determined by PCR or PCR-RFLP. Individual and combination effects were analysed using an unconditional logistic regression adjusting for age, pack-years, family history of any cancer and occupation. Results No statistically significant main effects were observed for the carcinogen metabolism genes in relation to lung cancer risk. In addition, the analysis did not reveal any significant gene-gene, gene-tobacco smoking or gene-occupational exposure interactions relative to lung cancer susceptibility. Lastly, no significant gene-gene combination effects were observed. Conclusions These results suggest that genetic polymorphisms in the CYP1A1, GSTM1, GSTT1 and GSTP1 metabolic genes were not significantly associated with lung cancer risk in the current study. The results of the analysis of gene-gene interactions of CYP1A1 MspI T6235C, GSTM1 present/null, GSTT1 present/null and GSTP1 Ile105Val polymorphisms in lung cancer risk indicate that these genes do not interact in lung cancer development. PMID:23013535

  9. Mechanism of superinduction of the CYP1A1 gene by 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD) plus cycloheximide

    SciTech Connect

    Lusska, A.E.; Whitlock, J.P. Jr. )

    1991-03-11

    TCDD increases CYP1A1 transcription by activating the Ah receptor, which binds to a specific DNA recognition sequence within an enhancer upstream of the CYP1A1 gene. Cycloheximide produces an additional increase of transcription. Nuclear runoff analyses of mouse hepatoma cells stably transfected with plasmids containing CYP1A1 regulatory DNA linked to a heterologous promoter and gene reveal that a DNA domain containing the receptor's recognition motif mediates superinduction. Gel retardation analyses reveal that mouse hepatoma cells contain a cycloheximide-sensitive, labile protein that binds to a DNA domain which overlaps the recognition motif for the Ah receptor. The labile protein is distinct from the Ah receptor in size and DNA binding specificity. Mutation of the binding site for the labile protein abolishes superinduction.

  10. Fibrinogen gene regulation.

    PubMed

    Fish, Richard J; Neerman-Arbez, Marguerite

    2012-09-01

    The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression. PMID:22836683

  11. Brief Report: Glutamate Transporter Gene ("SLC1A1") Single Nucleotide Polymorphism (rs301430) and Repetitive Behaviors and Anxiety in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2010-01-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…

  12. The combination of new missense mutation with [A(TA)7TAA] dinucleotide repeat in UGT1A1 gene promoter causes Gilbert's syndrome.

    PubMed

    D'Angelo, Rosalia; Rinaldi, Carmela; Donato, Luigi; Nicocia, Giacomo; Sidoti, Antonina

    2015-01-01

    Gilbert's syndrome is a benign form of unconjugated hyperbilirubinemia caused by reduction of hepatic activity of bilirubin glucuronosyltranferase. The most common genotype of Gilbert's syndrome is the homozygous polymorphism [A(TA)7TAA] in the promoter of the gene for UDP-glucuronosyltransferase 1A1 (UGT1A1), which results in a decrease in UGT1A1 activity. However, individuals with normal bilirubin levels and no clinical symptoms of Gilbert's syndrome may also present this in a homozygous condition. By direct sequencing, we performed UGT1A1 gene analysis on a 31-year-old man with Gilbert's syndrome and homozygous for [A(TA)7TAA], and on his parents. Two UGT1A1 mutations were identified. Both mutations were inherited from each of the two parents, both with normal levels of bilirubin. One of the two mutations, c.993 (p.Q331H), is a missense mutation and is predicted to have a deleterious effect on protein functionality. Given the importance for clinicians to consider the Gilbert genotype in cases with unexplained indirect hyperbilirubinemia, the case we report may add a new variant to the spectrum of mutations of Gilbert's syndrome. PMID:25887876

  13. ALDH1A1 Maintains Ovarian Cancer Stem Cell-Like Properties by Altered Regulation of Cell Cycle Checkpoint and DNA Repair Network Signaling

    PubMed Central

    Meng, Erhong; Mitra, Aparna; Tripathi, Kaushlendra; Finan, Michael A.; Scalici, Jennifer; McClellan, Steve; da Silva, Luciana Madeira; Reed, Eddie; Shevde, Lalita A.; Palle, Komaraiah; Rocconi, Rodney P.

    2014-01-01

    Objective Aldehyde dehydrogenase (ALDH) expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. Methods Isogenic ovarian cancer cell lines for platinum sensitivity (A2780) and platinum resistant (A2780/CP70) as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. Results ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01). ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ) and replication checkpoint (pS317 Chk1) were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. Conclusion This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling. PMID:25216266

  14. Total saponins from dioscorea septemloba thunb reduce serum uric acid levels in rats with hyperuricemia through OATP1A1 up-regulation.

    PubMed

    Chen, Yan; Chen, Xiao-lin; Xiang, Ting; Sun, Bao-guo; Luo, Hao-xuan; Liu, Meng-ting; Chen, Ze-xiong; Zhang, Shi-jun; Wang, Chang-Jun

    2016-04-01

    The aim of this study is to evaluate the efficacy of total saponins of Dioscorea (TSD), an extract of the Chinese herbal Bi Xie, on hyperuricemia and to elucidate the underlying mechanisms. The rat hyperuricemia model was established by administration of adenine. Thirty-two rats were randomly allocated into 4 groups: model group, low/high-dose TSD-treated groups, and allopurinol-treated group. Meanwhile, 8 rats were used as normal controls. Serum uric acid (UA), blood urea nitrogen (BUN), serum creatinine (Scr), and organic anion transporting polypeptide 1A1 (OATP1A1) levels were measured. Comparison between the model group and treatment (allopurinol and TSD) groups showed the serum UA levels were significantly decreased in treatment groups. TSD had similar effects to allopurinol. It was found that the OATP1A1 protein expression levels in treatment groups were higher than in model group and normal controls. And different from the allopurinol-treated groups, TSD-treated group had elevated OATP1A1 expression levels in the stomach, liver, small intestine and large intestine tissues. It was suggested that TSD may facilitate the excretion of UA and lower UA levels by up-regulating OATP1A1 expression. PMID:27072969

  15. Differential expression of CYP1A1 and CYP1A2 genes in H4IIE rat hepatoma cells exposed to TCDD and PAHs.

    PubMed

    Kaisarevic, Sonja; Dakic, Vanja; Hrubik, Jelena; Glisic, Branka; Lübcke-von Varel, Urte; Pogrmic-Majkic, Kristina; Fa, Svetlana; Teodorovic, Ivana; Brack, Werner; Kovacevic, Radmila

    2015-01-01

    Rat hepatoma cells H4IIE were treated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs) (dibenz(a,h)anthracene, benzo(a)pyrene, benz(a)anthracene, chrysene), low-concentration mixtures of PAHs and TCDD, and environmental mixtures contaminated by PAHs and their derivatives. Expression of the gene battery comprising cytochrome P450 Cyp1a1, Cyp1a2, Cyp1b1, and glutathione-s-transferase Gsta2 and Gstp was investigated using quantitative real time polymerase chain reaction (qRT-PCR) analysis. The results revealed that TCDD induce Cyp1a1>Cyp1a2>Cyp1b1, while PAHs and PAH-containing environmental mixtures induce Cyp1a2>Cyp1a1>Cyp1b1 gene expression pattern. While low-concentration mixtures elicited a more pronounced response in comparison to single treatments, the typical gene expression patterns were not observed. In all samples, Gsta2 was predominantly expressed relative to Gstp. These findings indicate that differential Cyp1a1 and Cyp1a2 expression in the H4IIE cells might be used for detection of PAHs in highly contaminated environmental mixtures, but not in low-concentration mixtures of these compounds. PMID:25555259

  16. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    SciTech Connect

    Lind, Lars; Penell, Johanna; Syvänen, Anne-Christine; Axelsson, Tomas; Ingelsson, Erik; Morris, Andrew P.; Lindgren, Cecilia; Salihovic, Samira; Bavel, Bert van; Lind, P. Monica

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.

  17. Cytogenetic evaluation and the association with polymorphisms of the CPY1A1 and NR1I3 genes in individuals exposed to BTEX.

    PubMed

    da Rosa, João Carlos Fraga; Fiegenbaum, Marilu; Soledar, Ane Lise; Claus, Matheus Souza; de Souza Nunes, Antonio Daniel; Cardoso, Valesca Veiga

    2013-07-01

    The gas station attendants are exposed daily to chemical agents that compose gasoline, such as BTEX (benzene, toluene, ethylbenzene, and xylene), and the exposure to these agents can cause a variety of effects on the human health. Among the various possible cell alterations associated with these exposures are the formation of micronuclei and of binucleated cells which are used as indicators of clastogenic action. Benzene, the main carcinogenic agent, is metabolized to more soluble forms and easily excreted by isoenzymes of cytochrome P450, such as CYP1A1. The CYP1A1 gene is highly polymorphic and one of its allele variations can be detected by the use of restriction endonucleasis MspI and is originated by the transition of a thymine by a cytosine (3798T>C), resulting in the polymorphic allele CYP1A1*2A. The objective of this study was to evaluate the cytogenetic damage induced by the exposure to BTEX and to associate it with the polymorphisms of the CYP1A1 and NR1I3 genes. Samples of exfoliated cells from the oral mucosa of 27 gas station attendants and from a control group were collected. The results found show that the group exposed to BTEX presents significantly higher alterations than those in the control group for micronuclei (MN; 6.85 ± 1.33 vs. 2.96 ± 1.91, P < 0.001) and for the total of nuclear alterations observed (MN + binucleated cells (BNC); 9.59 ± 4.73 vs. 5.07 ± 2.21, P < 0.001). When comparing the cytological alterations and the genotypes among the exposed individuals for the polymorphism 3798T>C of the CYP1A1 gene, homozygotes TT present MN + BNC significantly higher than carriers of the allele C (10.88 ± 5.36 vs. 5.33 ± 2.52, P = 0.028). No association was observed in the control group or for the NR1I3 gene. These results show that molecular and cytogenetic data can be used in the future as tools to monitor individuals exposed to such compounds. PMID:23138419

  18. A functional polymorphism in the SULT1A1 gene (G638A) is associated with risk of lung cancer in relation to tobacco smoking.

    PubMed

    Liang, Gang; Miao, Xiaoping; Zhou, Yifeng; Tan, Wen; Lin, Dongxin

    2004-05-01

    Sulfotransferase 1A1, an important member of sulfotransferase superfamily, is involved in the biotransformation of many compounds including tobacco carcinogens. A single nucleotide polymorphism (G638A) in the sulfotransferase 1A1 (SULT1A1) gene causes Arg213His amino acid change and consequently results in significantly reduced enzyme activity and thermostability. We thus hypothesized that the variant SULT1A1 allele may protect against the risk of lung cancer related to tobacco smoking. To examine this hypothesis, we analyzed 805 patients with lung cancer and 809 controls for this polymorphism in a hospital-based, case-control study. We observed that, compared with the GG genotype, the variant SULT1A1 genotype (638GA or AA) was associated with a significantly increased risk for overall lung cancer [odds ratio (OR) 1.85; 95% confidence interval (CI) 1.44-2.37]. Stratification analysis showed that the increased risk of lung cancer related to the variant SULT1A1 genotypes was more pronounced in younger subjects and limited to smokers but not non-smokers [OR 2.28 (95% CI 1.66-3.13) versus OR 1.35 (95% CI 0.91-1.99); P for homogeneity = 0.000]. Furthermore, the risk of lung cancer for the variant genotypes was increased consistently with cumulative smoking dose, with the ORs being 1.66 (95% CI, 0.75-3.68), 2.28 (95% CI, 1.47-3.54) and 3.35 (95% CI, 1.71-6.57) for those who smoked <15 pack-years, 15-36 pack-years and >36 pack-years, respectively (P for trend = 0.000). When analysis was stratified by histological subtypes of lung cancer, consistent results were observed for all three major types of the cancer, i.e. squamous cell carcinoma, adenocarcinoma and other types. Our results, which are against the original hypothesis, demonstrate that the variant SULT1A1 638A allele is associated with susceptibility to lung cancer in relation to tobacco smoking. PMID:14688021

  19. Sex-dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA.

    PubMed

    Penaloza, Carlos G; Estevez, Brian; Han, Dinah M; Norouzi, Melissa; Lockshin, Richard A; Zakeri, Zahra

    2014-02-01

    Sexual differences are only partially attributable to hormones. Cultured male or female cells, even from embryos before sexual differentiation, differ in gene expression and sensitivity to toxins, and these differences persist in isolated primary cells. Male and female cells from Swiss Webster CWF mice manifest sex-distinct patterns of DNA methylation for X-ist and for cytochrome P450 (CYP; family members 1a1, 2e1m, and 7b1. Dnmt3l is differentially expressed but not differentially methylated, and Gapdh is neither differentially methylated nor expressed. CYP family genes differ in expression in whole tissue homogenates and cell cultures, with female Cyp expression 2- to 355-fold higher and Dnmt3l 12- to 32-fold higher in males. DNA methylation in the promoters of these genes is sex dimorphic; reducing methylation differences reduces to 1- to 6-fold differences in the expression of these genes. Stress or estradiol alters both methylation and gene expression. We conclude that different methylation patterns partially explain the sex-based differences in expression of CYP family members and X-ist, which potentially leads to inborn differences between males and females and their different responses to chronic and acute changes. Sex-differential methylation may have medical effects. PMID:24161885

  20. Polymorphisms of estrogen metabolism-related genes ESR1, UGT2B17, and UGT1A1 are not associated with osteoporosis in surgically menopausal Japanese women

    PubMed Central

    Yokota, Megumi; Makita, Kazuya; Akahane, Tomoko; Sakai, Kensuke; Makabe, Takeshi; Horiba, Yuko; Yamagami, Wataru; Ogawa, Mariko; Iwata, Takashi; Yanamoto, Shigehisa; Deshimaru, Ryota; Banno, Kouji; Susumu, Nobuyuki; Aoki, Daisuke

    2015-01-01

    Introduction Bilateral salpingo-oophorectomy (BSO) is a risk factor for osteoporosis. Previous studies have reported an association between genetic polymorphisms and the risk of developing osteoporosis. However, the relationship between osteoporosis and genetic polymorphisms in Japanese women treated with BSO is not well understood. To improve the quality of life for post-BSO patients, it is important to determine the genetic factors that influence their risk for osteoporosis. The aim of this study was to investigate the association between gene variations of estrogen metabolism-related genes and osteoporosis in surgically menopausal patients, which may improve their quality of life. Material and methods This study included 203 menopausal women treated with BSO because of gynecologic disorders. One hundred and twenty-six women with artificial (surgical) menopause, who had undergone BSO in the premenopausal period, were compared with 77 women with natural menopause, who had undergone BSO in the postmenopausal period. The women were tested for bone mineral density to diagnose osteoporosis. Polymorphisms of estrogen receptor 1 (ESR1) and UDP-glucuronosyl transferase (UGT) genes UGT2B17 and UGT1A1 were analyzed, and their association with bone mass and osteoporosis was statistically evaluated. Results No significant association was found between osteoporosis and polymorphisms in ESR1, UGT2B17, or UGT1A1 in both groups, suggesting that BSO might be a more significant physiological factor in influencing bone mass density compared to genetic variations. Conclusions These results suggest that the ESR1, UGT2B17, and UGT1A1 polymorphisms are not genetic factors affecting osteoporosis in postmenopausal Japanese women. PMID:26528103

  1. Gene sequences for cytochromes p450 1A1 and 1A2: the need for biomarker development in sea otters (Enhydra lutris).

    PubMed

    Hook, Sharon E; Cobb, Michael E; Oris, James T; Anderson, Jack W

    2008-11-01

    There has been recent public concern regarding the impacts of environmental pollution on populations of otters. Population level impacts have been seen with otter (Lutra lutra) populations in Europe due to polychlorinated biphenyls, and with some segments of the Prince William Sound, AK, sea otter (Enhydra lutris) population following the Exxon Valdez oil spill. Despite public interest in these animals and their ecological significance, there are few tools that allow for the study of otter's response to contaminant exposure. Cytochrome p450 1A (CYP1A) performs the first step in metabolizing many xenobiotics, including many polychlorinated biphenyls and polycyclic aromatic hydrocarbons. CYP1A induction is a frequently used biomarker of exposure to these compounds. Despite the potential importance of this gene in ecological risk assessment, the complete coding sequence has not been published for any otter species. This study's objective was to isolate the gene for CYP1A1 and CYP1A2 in sea otters using a series of PCR-based approaches. The coding sequences from CYP1A1 and CYP1A2 from sea otters were identified and published in GenBank. Both CYP1A sequences are homologous to those obtained from marine mammals and other carnivores. These sequences will be useful as tools for researchers assessing contaminant exposure in mustelid populations. PMID:18761099

  2. Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds

    SciTech Connect

    Zhang Xiaowei; Moore, Jeremy N.; Newsted, John L.; Hecker, Markus Zwiernik, Matthew J.; Jones, Paul D.; Bursian, Steven J.

    2009-02-01

    As part of an ongoing effort to understand aryl hydrocarbon receptor (AhR) mediated toxicity in mink, cDNAs encoding for CYP1A1 and the CYP1A2 mixed function monooxygenases were cloned and characterized. In addition, the effects of selected dibenzofurans on the expression of these genes and the presence of their respective proteins (P4501A) were investigated, and then correlated with the catalytic activities of these proteins as measured by ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities. The predicted protein sequences for CYP1A1 and CYP1A2 comprise 517 and 512 amino acid residues, respectively. The phylogenetic analysis of the mink CYP1As with protein sequences of other mammals revealed high sequence homology with sea otter, seals and the dog, with amino acid identities ranging from 89 to 95% for CYP1A1 and 81 to 93% for CYP1A2. Since exposure to both 2,3,7,8-Tetrachlorodibenzofuran (TCDF) and 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) resulted in dose-dependent increases of CYP1A1 mRNA, CYP1A2 mRNA and CYP1A protein levels an underlying AhR-mediated mechanism is suggested. The up-regulation of CYP1A mRNA in liver was more consistent to the sum adipose TEQ concentration than to the liver TEQ concentration in minks treated with TCDF or PeCDF. The result suggested that the hepatic-sequestered fraction of PeCDF was biologically inactive to the induction of CYP1A1 and CYP1A2.

  3. Endocrine regulation of HOX genes.

    PubMed

    Daftary, Gaurang S; Taylor, Hugh S

    2006-06-01

    Hox genes have a well-characterized role in embryonic development, where they determine identity along the anteroposterior body axis. Hox genes are expressed not only during embryogenesis but also in the adult, where they are necessary for functional differentiation. Despite the known function of these genes as transcription factors, few regulatory mechanisms that drive Hox expression are known. Recently, several hormones and their cognate receptors have been shown to regulate Hox gene expression and thereby mediate development in the embryo as well as functional differentiation in the adult organism. Estradiol, progesterone, testosterone, retinoic acid, and vitamin D have been shown to regulate Hox gene expression. In the embryo, the endocrine system directs axial Hox gene expression; aberrant Hox gene expression due to exposure to endocrine disruptors contributes to the teratogenicity of these compounds. In the adult, endocrine regulation of Hox genes is necessary to enable such diverse functions as hematopoiesis and reproduction; endocrinopathies can result in dysregulated HOX gene expression affecting physiology. By regulating HOX genes, hormonal signals utilize a conserved mechanism that allows generation of structural and functional diversity in both developing and adult tissues. This review discusses endocrine Hox regulation and its impact on physiology and human pathology. PMID:16632680

  4. Basal and 3,3',4,4',5-pentachlorobiphenyl-induced expression of cytochrome P450 1A, 1B and 1C genes in zebrafish

    SciTech Connect

    Joensson, Maria E. . E-mail: mjonsson@whoi.edu; Orrego, Rodrigo; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2007-05-15

    The cytochrome P4501C (CYP1C) gene subfamily was recently discovered in fish, and zebrafish (Danio rerio) CYP1C1 transcript has been cloned. Here we cloned the paralogous CYP1C2, showing that the amino acid sequence is 78% identical to CYP1C1, and examined gene structure and expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2. Xenobiotic response elements were observed upstream of the coding regions in all four genes. Zebrafish adults and embryos were exposed (24 h) to 100 nM 3,3',4,4',5-polychlorinated biphenyl (PCB126) or 20 ppm acetone and subsequently held in clean water for 24 h (adults) or 48 h (embryos). All adult organs examined (eye, gill, heart, liver, kidney, brain, gut, and gonads) and embryos showed basal expression of the four genes. CYP1A was most strongly expressed in liver, whereas CYP1B1, CYP1C1, and CYP1C2 were most strongly expressed in heart and eye. CYP1B1 and the CYP1C genes showed an expression pattern similar to one another and to mammalian CYP1B1. In embryos CYP1C1 and CYP1C2 tended to have a higher basal expression than CYP1A and CYP1B1. PCB126 induced CYP1A in all organs, and CYP1B1 and CYP1C1 in all organs except gonads, or gonads and brain, respectively. CYP1C2 induction was significant only in the liver. However, in embryos all four genes were induced strongly by PCB126. The results are consistent with CYP1C1 and CYP1C2, as well as CYP1A and CYP1B1, being regulated by the aryl hydrocarbon receptor. While CYP1A may have a protective role against AHR agonists in liver and gut, CYP1B1, CYP1C1, and CYP1C2 may also play endogenous roles in eye and heart and possibly other organs, as well as during development.

  5. Basal and 3-methylcholanthrene-induced expression of cytochrome P450 1A, 1B and 1C genes in the Brazilian guppy, Poecilia vivipara

    PubMed Central

    Dorrington, Tarquin; Zanette, Juliano; Zacchi, Flávia L.; Stegeman, John J.; Bainy, Afonso C.D.

    2015-01-01

    In fish there are four cytochrome P450 (CYP1) subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Here we cloned Poecilia vivipara CYP1A, with an inferred amino acid sequence 91% identical to CYP1A from the killifish Fundulus heteroclitus, another member of the Cypriniformes, and an important model in ecotoxicology. In addition, we examined the expression of CYP1A, CYP1B1, and CYP1C1 by qPCR in liver, gill, and intestine of adult P. vivipara injected with 3-methylcholanthrene (3-MC) or held in clean water (control group) for 24 h. All three tissues examined showed basal expression of the three CYP1 genes. CYP1A was most strongly expressed in the liver, while CYP1B1, and CYP1C1 were most strongly expressed in the gill and intestine respectively. 3-MC induced CYP1A, CYP1B1, and CYP1C1 significantly (20–120-fold) in the three organs, consistent with the regulation of CYP1A, CYP1B1 and CYP1C1 via the aryl hydrocarbon receptor. Validation of CYP1 gene biomarkers in fish collected from a contaminated urban mangrove environment was confirmed with significant induction of CYP1A and CYP1C1 in gills (10–15-fold) and CYP1B1 in liver (23-fold), relative to fish from a control site. The responsiveness of these CYP1 genes indicates P. vivipara is suitable as a model for environmental toxicology studies and environmental assessment in Brazil. PMID:22940225

  6. Serum Total Bilirubin, not Cholelithiasis, is Influenced by UGT1A1 Polymorphism, Alpha Thalassemia and βs Haplotype: First Report on Comparison between Arab-Indian and African βs Genes

    PubMed Central

    Alkindi, Said Y.; Pathare, Anil; Al Zadjali, Shoaib; Panjwani, Vinodhkumar; Wasim, Fauzia; Khan, Hammad; Chopra, Pradeep; Krishnamoorthy, Rajagopal; Alkindi, Salam

    2015-01-01

    Background We explored the potential relationship between steady state serum bilirubin levels and the incidence of cholelithiasis in the context of UGT1A1 gene A(TA)nTAA promoter polymorphism in Omani sickle cell anemia (SCA) patients, homozygotes for African (Benin and Bantu) and Arab-Indian βS haplotypes, but sharing the same microgeographical environment and comparable life style factors. Methods 136 SCA patients were retrospectively studied in whom imaging data including abdominal CT scan, MRI or Ultrasonography were routinely available. Available data on the mean steady state hematological/biochemical parameters (n=136), βs haplotypes(n=136), α globin gene status (n=105) and UGT1A1 genotypes (n=133) were reviewed from the respective medical records. Results The mean serum total bilirubin level was significantly higher in the homozygous UGT1A1(AT)7 group as compared to UGT1A1(AT)6 group. Thus, not cholelithiasis but total serum bilirubin was influenced by UGT1A1 polymorphism in this SCA cohort. Conclusion As observed in other population groups, the UGT1A1 (AT)7 homozygosity was significantly associated with raised serum total bilirubin level, but the prevalence of gallstones in the Omani SCA patients was not associated with α thalassaemia, UGT1A1 polymorphism, or βs haplotypes. PMID:26543529

  7. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  8. Lack of Association between ESR1 and CYP1A1 Gene Polymorphisms and Susceptibility to Uterine Leiomyoma in Female Patients of Iranian Descent

    PubMed Central

    Taghizade Mortezaee, Fatemeh; Tabatabaiefar, Mohammad Amin; Hashemzadeh Chaleshtori, Morteza; Miraj, Sepideh

    2014-01-01

    Uterine leiomyoma (UL) is the most common benign smooth muscle cell tumor with as yet unknown etiology and pathogenesis. This study was carried out to investigate the association of ESR1-351 A>G, ESR1 -397 T>C and CYP1A1 (Ile462Val) polymorphisms with UL in female patients of Iranian origin. In this case-control study, 276 patients with UL and 156 healthy women were recruited. The genetic polymorphisms ESR1-351 A>G, ESR1-397 T>C and CYP1A1 (Ile462Val) were genotyped by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). No significant difference were found in frequencies of both genotypes and alleles of ESR1-351 A>G, ESR1-397 T>C and CYP1A1 (Ile462Val) polymorphisms between the two groups (p>0.05). Our findings indicated that these ESR1 and CYP1A1 polymorphisms were not associated with the development of UL in the cases reported here. PMID:24567938

  9. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    NASA Technical Reports Server (NTRS)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; Rowe, D. W. (Principal Investigator)

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  10. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR.

    PubMed

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  11. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  12. Chromatin Structure Regulates Gene Conversion

    PubMed Central

    Cummings, W. Jason; Yabuki, Munehisa; Ordinario, Ellen C; Bednarski, David W; Quay, Simon; Maizels, Nancy

    2007-01-01

    Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. PMID:17880262

  13. Early Complication in Sickle Cell Anemia Children due to A(TA)nTAA Polymorphism at the Promoter of UGT1A1 Gene

    PubMed Central

    Chaouch, Leila; Talbi, Emna; Moumni, Imen; Ben Chaabene, Arij; Kalai, Miniar; Chaouachi, Dorra; Mallouli, Fethi; Ghanem, Abderraouf; Abbes, Salem

    2013-01-01

    Aim. To determine the implication of the polymorphism, namely, A(TA)nTAA of UGT1A1 in lithogenesis for the first time in Tunisia among sickle cell anemia (SCA) children patients. Material and Methods. Our study was performed in 2010 and it involved 76 subjects chosen as control group characterized with normal hemoglobin status and presence of cholelithiasis and 102 SCA pediatric patients among whom 52 have cholelithiasis. We analyzed the polymorphism A(TA)nTAA at the UGT1A1 promoter and the relationships between the various A(TA)nTAA genotypes and alleles and bilirubin levels and occurrence of cholelithiasis. Results and Discussion. The repartition of genotypes found according to serum bilirubin level shows a significant association between genotypes carrying variant (TA)7 and hyperbilirubinemia (P < 0.05). We demonstrated the association of two genotypes with gallstones formation among SCA children patients: (TA)7/(TA)7 and (TA)7/(TA)8 with P = 8.1 × 10−8 and P = 0.01, respectively. (TA)7 and (TA)8 allele variants act as a risk factor for early gallstones formation in SCA patients with P = 5.8 × 10−9 and P = 0.01, respectively. As for the control group only the genotype (TA)7/(TA)7 presented a risk factor for gallstones formation. Conclusion. The novelty of this report is that it is the first time that a similar study was made on the Tunisian children sickle cell population and that the results show a clear association of (TA)7 variant in early gallstones formation in Tunisian SCA children. Interestingly our findings highlighted the association of (TA)8 variant as well, which was not found in previous studies. PMID:24167350

  14. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  15. Mathematical Models of Gene Regulation

    NASA Astrophysics Data System (ADS)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  16. Gene regulation by mechanical forces

    NASA Technical Reports Server (NTRS)

    Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.

    1997-01-01

    Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.

  17. Tobacco carcinogen-metabolizing genes CYP1A1, GSTM1, and GSTT1 polymorphisms and their interaction with tobacco exposure influence the risk of head and neck cancer in Northeast Indian population.

    PubMed

    Choudhury, Javed Hussain; Singh, Seram Anil; Kundu, Sharbadeb; Choudhury, Biswadeep; Talukdar, Fazlur R; Srivasta, Shilpee; Laskar, Ruhina S; Dhar, Bishal; Das, Raima; Laskar, Shaheen; Kumar, Manish; Kapfo, Wetetsho; Mondal, Rosy; Ghosh, Sankar Kumar

    2015-08-01

    Genetic polymorphisms in tobacco-metabolizing genes may modulate the risk of head and neck cancer (HNC). In Northeast India, head and neck cancers and tobacco consumption remains most prevalent. The aim of the study was to investigate the combined effect of cytochrome P450 1A1 (CYP1A1) T3801C, glutathione S-transferases (GSTs) genes polymorphisms and smoking and tobacco-betel quid chewing in the risk of HNC. The study included 420 subjects (180 cases and 240 controls) from Northeast Indian population. Polymorphisms of CYP1A1 T3801C and GST (M1 & T1) were studied by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and multiplex PCR, respectively. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approach were applied for statistical analysis. LR analysis revealed that subjects carrying CYP1A1 TC/CC + GSTM1 null genotypes had 3.52-fold (P < 0.001) increase the risk of head and neck squamous cell carcinoma (HNSCC). Smokers carrying CYP1A1 TC/CC + GSTM1 null and CYP1A1 TC/CC + GSTT1 null genotypes showed significant association with HNC risk (odds ratio [OR] = 6.42; P < 0.001 and 3.86; P = 0.005, respectively). Similarly, tobacco-betel quid chewers carrying CYP1A1 TC/CC + GSTM1 null genotypes also had several fold increased risk of HNC (P < 0.001). In MDR analysis, the best model for HNSCC risk was the four-factor model of tobacco-betel quid chewing, smoking, CYP1A1 TC/CC, and GSTM1 null genotypes (testing balance accuracy [TBA] = 0.6292; cross-validation consistency [CVC] = 9/10 and P < 0.0001). These findings suggest that interaction of combined genotypes of carcinogen-metabolizing genes with environmental factors might modulate susceptibility of HNC in Northeast Indian population. PMID:25724184

  18. Transcriptional regulation of tenascin genes

    PubMed Central

    Chiovaro, Francesca; Chiquet-Ehrismann, Ruth; Chiquet, Matthias

    2015-01-01

    Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an “oncofetal” protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease. PMID:25793574

  19. Transcriptional regulation of tenascin genes.

    PubMed

    Chiovaro, Francesca; Chiquet-Ehrismann, Ruth; Chiquet, Matthias

    2015-01-01

    Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an "oncofetal" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease. PMID:25793574

  20. A type I collagen reporter gene construct for protein engineering studies. Functional equivalence of transfected reporter COL1A1 and endogenous gene products during biosynthesis and in vitro extracellular matrix accumulation.

    PubMed

    Lamandé, S R; Bateman, J F

    1993-07-15

    A type I collagen reporter gene construct, designed to facilitate detailed analysis of the consequences of introduced structural and regulatory mutations on collagen biosynthesis and participation in the extracellular matrix, was produced by site-directed mutagenesis of the mouse COL1A1 gene. The reporter construct, pWTCI-Ile822, carried a single base change which converted the codon for amino acid 822 of the triple helix from methionine to isoleucine. This change allowed the reporter protein, [Ile822]alpha 1(I), to be distinguished from the wild-type alpha 1(I), and quantified, by its altered CNBr cleavage pattern. In mouse Mov13 cells, which synthesize no endogenous pro alpha 1(I), reporter chains associated with endogenous pro alpha 2(I), formed pepsin-stable triple helices and were secreted efficiently from the cell. The thermal stability of wild-type molecules and molecules containing the reporter [Ile822]alpha 1(I) chains was identical. The biosynthetic characteristics of wild-type and reporter chains were directly compared in stably transfected 3T6 cells. These cells did not make a distinction between reporter and endogenous alpha 1(I) chains, which were secreted from the cells at the same rate and were processed and deposited into the 3T6 cell in vitro accumulated extracellular matrix with equal efficiency. These data demonstrate that the helical sequence alteration in the reporter protein is functionally neutral and that the reporter construct, pWTCI-Ile822, is a suitable vector for the analysis of the biochemical effects of site-directed mutations in the putative COL1A1 functional domains. PMID:8343119

  1. The transcriptional regulation of regucalcin gene expression.

    PubMed

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  2. Dynamics of bacterial gene regulation

    NASA Astrophysics Data System (ADS)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  3. Cytogenetic damage in Turkish coke oven workers exposed to polycyclic aromatic hydrocarbons: Association with CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms.

    PubMed

    Ada, Ahmet Oguz; Demiroglu, Canan; Yilmazer, Meltem; Suzen, Halit Sinan; Demirbag, Ali Eba; Efe, Sibel; Alemdar, Yilmaz; Iscan, Mumtaz; Burgaz, Sema

    2013-09-01

    The aim of this study was to determine the frequencies of chromosomal aberrations (CA) and cytochalasin-blocked micronuclei (CBMN) in peripheral blood lymphocytes from Turkish coke oven workers and the influence of CYP1A1, CYP1B1, EPHX1, GSTM1, GSTT1, and GSTP1 gene polymorphisms on these biomarkers. Cytogenetic analysis showed that occupational exposure significantly increased the CA and CBMN frequencies. Gene polymorphisms, on the other hand, did not affect CA or CBMN in either exposed or control subjects. However, due to the limited sample size, our findings need to be verified in future studies with a larger sample. PMID:24084344

  4. Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers

    SciTech Connect

    Yongwen Chen; Yun Bai; Jing Yuan; Weihong Chen; Jianya Sun; Hong Wang; Huashan Liang; Liang Guo; Xiaobo Yang; Hao Tan; Yougong Su; Qingyi Wei; Tangchun Wu

    2006-09-15

    Accumulating evidence has shown that both DNA damage caused by the metabolites of polycyclic aromatic hydrocarbons (PAH) and genetic polymorphisms in PAH-metabolic genes contribute to individual susceptibility to PAH-induced carcinogenesis. However, the functional relevance of genetic polymorphisms in PAH-metabolic genes in exposed individuals is still unclear. In this study of 240 coke-oven workers (the exposed group) and 123 non-coke-oven workers (the control group), we genotyped for polymorphisms in the AhR, CYP1A1, GSTM1, and GSTT1 genes by PCR methods, and determined the levels of DNA damage in peripheral blood lymphocytes using the alkaline comet assay. It was found that the ln-transformed Olive tail moment (Olive TM) values in the exposed group were significantly higher than those in the control group. Furthermore, in the exposed group, the Olive TM values in subjects with the AhR Lys{sup 554} variant genotype were higher than those with the AhR Arg{sup 554}/Arg{sup 554} genotype. Similarly, the Olive TM values in the non-coke-oven workers with the CYP1A1 MspI CC + CT genotype were lower than the values of those with the CYP1A1 MspI TT genotype. However, these differences were not evident for GSTM1 and GSTT1. These results suggested that the polymorphism of AhR might modulate the effects of PAHs in the exposed group; however, the underlying molecular mechanisms by which this polymorphism may have affected the levels of PAH-induced DNA damage warrant further investigation.

  5. Symmetry and Stochastic Gene Regulation

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José E. M.

    2007-09-01

    Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and lowering operators are constructed and their actions increase or decrease the affinity parameter. The classification of the noise regime of the gene arises from the group theoretical numbers.

  6. Breast cancer risk, fungicide exposure and CYP1A1*2A gene-environment interactions in a province-wide case control study in Prince Edward Island, Canada.

    PubMed

    Ashley-Martin, Jillian; VanLeeuwen, John; Cribb, Alastair; Andreou, Pantelis; Guernsey, Judith Read

    2012-05-01

    Scientific certainty regarding environmental toxin-related etiologies of breast cancer, particularly among women with genetic polymorphisms in estrogen metabolizing enzymes, is lacking. Fungicides have been recognized for their carcinogenic potential, yet there is a paucity of epidemiological studies examining the health risks of these agents. The association between agricultural fungicide exposure and breast cancer risk was examined in a secondary analysis of a province-wide breast cancer case-control study in Prince Edward Island (PEI) Canada. Specific objectives were: (1) to derive and examine the level of association between estimated fungicide exposures, and breast cancer risk among women in PEI; and (2) to assess the potential for gene-environment interactions between fungicide exposure and a CYP1A1 polymorphism in cases versus controls. After 1:3 matching of 207 cases to 621 controls by age, family history of breast cancer and menopausal status, fungicide exposure was not significantly associated with an increased risk of breast cancer (OR = 0.74; 95% CI: 0.46-1.17). Moreover, no statistically significant interactions between fungicide exposure and CYP1A1*2A were observed. Gene-environment interactions were identified. Though interpretations of findings are challenged by uncertainty of exposure assignment and small sample sizes, this study does provide grounds for further research. PMID:22754477

  7. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  8. MicroRNA: Mechanism of Gene Regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA (miR) are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through activation of a specific cellular pathway. The small RNA classified as miR are short sequences of 18-26 nucleotide long, encoded by nuclear genes with distinctive...

  9. Cytoskeletal genes regulating brain size.

    PubMed

    Bond, Jacquelyn; Woods, C Geoffrey

    2006-02-01

    One of the most notable trends in human evolution is the dramatic increase in brain size that has occurred in the great ape clade, culminating in humans. Of particular interest is the vast expanse of the cerebral cortex, which is believed to have resulted in our ability to perform higher cognitive functions. Recent investigations of congenital microcephaly in humans have resulted in the identification of several genes that non-redundantly and specifically influence mammalian brain size. These genes appear to affect neural progenitor cell number through microtubular organisation at the centrosome. PMID:16337370

  10. Genetic susceptibility to esophageal cancer due to CYP1A1 gene variant rs4646903 in tobacco addicted patients of Pashtun ethnicity: a case control study in Khyber Pakhtunkhwa province of Pakistan.

    PubMed

    Zakiullah; Saeed, Muhammad; Ali, Sajid; Javed, Nabila; Khisroon, Muhammad; Muhammad, Basir; Khuda, Fazli; Ahmad, Saeed; Ismail, Mohammad

    2014-01-01

    The purpose of this study was to evaluate associations of the CYP1A1 gene variant rs4646903 polymorphism with the risk of developing esophageal cancer (EC). A case-control study was carried out in Pashtun population of Khyber Pakhtunkhwa province of Pakistan in which 140 hospital based EC cases and 196 population based healthy controls exposed to similar environmental conditions were included. A specific method based on the real time polymerase chain reaction (RT-PCR) was used to detect genotypes in case and control groups and results were then analyzed with SPSS version 20. In our population, individuals with CC and TC genotypes of the CYP1A1 rs4646903 polymorphism had significantly higher risk of EC (adjusted odds (OR): 15.709, 95%CI: 6.065-40.686, OR: 3.256 95%CI: 1.902-5.574 respectively). The 'C' allele was strongly associated with the disease (p< 0.0001). Adjusted OR was higher (1.5 times in C/C) in case of variant alleles that show the contribution of environmental and nutritional factors towards the development of EC. Our findings suggest that presence of the 'C' allele of rs4646903 (T>C) may be one of the risk alleles for EC susceptibility in Pashtun population. PMID:25169514

  11. How Europe regulates its genes

    SciTech Connect

    Balter, M.

    1991-06-07

    As Europe moves toward unification in 1992, more than two dozen regulations and directives that will affect biotech are working their way through the complex European legislative system. The result could mean tough scrutiny for genetically engineered products. One reason is that the European Community (EC) has chosen to examine genetically engineered products as a special category - an approach the FDA has rejected. Another is that the EC is considering enacting regulations that would mandate consideration of the socioeconomic effects of biotech products in addition to their safety. In addition, some - particularly in industry - fear a nightmare of overlapping and contradictory regulations. It's too soon to tell how well the European system will work, or how stifling the regulations might be. In all likelihood the regulations emerging in Europe won't be demonstrably superior - or inferior - to the American ones, just different, with different strengths and weaknesses. But since many US biotech companies are looking to the huge market that a unified Europe represents, the specifics of those strengths and weaknesses will ultimately be of more than passing interest.

  12. Gene Regulation by Cytokinin in Arabidopsis

    PubMed Central

    Brenner, Wolfram G.; Ramireddy, Eswar; Heyl, Alexander; Schmülling, Thomas

    2011-01-01

    The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5′-GAT(T/C)-3′ as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling

  13. [UGT1A1 Genotyping for Proper Use of Irinotecan].

    PubMed

    Matsuoka, Ayumu; Ando, Yuichi

    2015-07-01

    Irinotecan is a camptothecin analog used worldwide for a broad range of solid tumors, including colorectal and lung cancers. It can cause severe adverse drug reactions, such as neutropenia or diarrhea. Irinotecan is metabolized to form active SN-38, which is further conjugated and detoxified by the UDP-glucuronosyltransferase (UGT) 1A1 enzyme. Recent pharmacogenetic studies on irinotecan have revealed the impact of UGT1A1 polymorphisms on severe adverse effects. A variant in the promoter of the UGT1A1 gene, the UGT1A1 *28 allele, has been extensively studied, and pharmacogenetic relationships between the variant and severe toxicities of irinotecan have been reported. The US FDA and pharmaceutical companies revised the irinotecan label in 2005, and it now includes homozygosity for the UGT1A1*28 genotype as one of the risk factors for severe neutropenia. A variant in exon 1 of the UGT1A1 gene, the UGT1A1*6 allele, mainly found in East Asians, is also an important risk factor associated with severe neutropenia. The concurrence of UGT1A1*28 and UGT1A1*6, even when heterozygous, markedly alters the disposition of irinotecan, potentially increasing toxicity, which is now written on the label of irinotecan in Japan. For patients showing homozygosity for UGT1A1*28, *6, or compound heterozygosity for UGT1A1*6 and *28, dose reduction of irinotecan is strongly recommended. Genotyping tests for UGT1A1 *6 and *28 have been approved in Japan and are currently used in oncology practice. Moreover, a recent Phase 2 trial for FOLFIRINOX in Japan excluded patients who showed homozygosity for UGT1A1*28, *6, or compound heterozygosity for UGT1A1*6 and *28. At present, irinotecan chemotherapy based on a patient's UGT1A1 genetic status is scientifically reasonable. PMID:26591441

  14. Identification of novel TCDD-regulated genes by microarray analysis

    SciTech Connect

    Hanlon, Paul R.; Zheng, Wenchao; Ko, Alex Y.; Jefcoate, Colin R. . E-mail: jefcoate@facstaff.wisc.edu

    2005-02-01

    TCDD exposure of multipotential C3H10T1/2 fibroblasts for 72 h altered the expression of over 1000 genes, including coordinated changes across large functionally similar gene clusters. TCDD coordinately induced 23 cell cycle-related genes similar to epidermal growth factor (EGF)-induced levels but without any affect on the major mitogenic signaling pathway (extracellular signal-regulated kinase, ERK). TCDD treatment also decreased glycolytic and ribosomal clusters. Most of these TCDD-induced changes were attenuated by the presence of EGF or an adipogenic stimulus, each added during the final 24 h. TCDD prevented 10% of EGF-induced gene responses and 40% of adipogenic responses. Over 100 other genes responded to TCDD during adipogenesis. This group of responses included complete suppression of three proliferins and stimulations of several cytokine receptors. Despite these varied secondary effects of TCDD, direct AhR activation measured by integrated AhR-responsive luciferase reporters was similar under quiescent, EGF-stimulated or adipogenic conditions. Only 23 genes were similarly induced by TCDD regardless of conditions and 10 were suppressed. These 23 genes include: 4 genes previously recognized to contain AhR response elements (cytochrome P450 (CYP) 1B1, CYP1A1, NAD(P)H quinone reductase 1 (NQO1), and aldehyde dehydrogenase 3A1); two novel oxidative genes (alcohol dehydrogenase 3 and superoxide dismutase 3); and glypican 1, a plasma membrane proteoglycan that affects cell signaling. Further experiments demonstrated that TCDD maximally induced NQO1, glypican 1 and alcohol dehydrogenase 3 by 6 h. Glypican 1 activates the actions of many growth factors and therefore may contribute to secondary effects on gene expression.

  15. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  16. Natural furocoumarins as inducers and inhibitors of cytochrome P450 1A1 in rat hepatocytes.

    PubMed

    Baumgart, Annette; Schmidt, Melanie; Schmitz, Hans-Joachim; Schrenk, Dieter

    2005-02-15

    Furocoumarins are natural plant constituents present in medicinal plants and in a variety of foods such as grapefruit juice. They are phototoxic and act as potent inhibitors of drug metabolism. We have investigated the interaction of four furocoumarins angelicin, bergamottin, isopimpinellin, and 8-methoxypsoralen with the expression and activity of aryl hydrocarbon receptor (AhR)-regulated CYP1A1 in rat hepatocytes in primary culture, both in the presence and absence of light. In intact hepatocytes pretreated with 2,3,7,8-tetrachlorodibenzo-p-dioxin and in microsomes isolated thereof, all furocoumarins tested acted as potent inhibitors of CYP1A1 activity bergamottin being the most potent inhibitor in microsomes with an IC(50) of 10 nM in the presence and 60 nM in the absence of light. 8-Methoxypsoralen and angelicin led to a significant induction of CYP1A1 mRNA in hepatocytes, while all furocoumarins except bergamottin increased xenobiotic-responsive element-driven reporter gene expression in transfected H4IIE rat hepatoma cells when light was excluded. Furthermore, all furocoumarins tested induced the expression of endogenous, immunoreactive CYP1A1 protein, primarily in the dark. In conclusion, our results demonstrate that individual furocoumarins present in food and medicinal plants can interfere with AhR-regulated CYP1A1 expression and activity in at least three major ways, i.e., (i) act as highly potent inhibitors of the catalytic activity of CYP1A1 both in the presence and absence of light, (ii) induce CYP1A1 gene expression in the absence of light via activation of the AhR, and (iii) induce CYP1A1 gene expression without activation of the AhR. PMID:15670584

  17. Developmental regulation of embryonic genes in plants

    SciTech Connect

    Borkird, C.; Choi, Jung, H.; Jin, Zhenghua; Franz, G.; Hatzopoulos, P.; Chorneaus, R.; Bonas, U.; Pelegri, F.; Sung, Z.R.

    1988-09-01

    Somatic embryogenesis from cultured carrot cells progresses through successive morphogenetic stages termed globular, heart, and torpedo. To understand the molecular mechanisms underlying plant embryogenesis, the authors isolated two genes differentially expressed during embryo development. The expression of these two genes is associated with heart-stage embryogenesis. By altering the culture conditions and examining their expressions in a developmental variant cell line, they found that these genes were controlled by the developmental program of embryogenesis and were not directly regulated by 2,4-dichlorophenoxyacetic acid, the growth regulator that promotes unorganized growth of cultured cells and suppresses embryo morphogenesis. These genes are also expressed in carrot zygotic embryos but not in seedlings or mature plants.

  18. Gene regulation by dietary microRNAs.

    PubMed

    Zempleni, Janos; Baier, Scott R; Howard, Katherine M; Cui, Juan

    2015-12-01

    MicroRNAs (miRNAs) silence genes through destabilizing mRNA or preventing translation of mRNA, thereby playing an essential role in gene silencing. Traditionally, miRNAs have been considered endogenous regulators of genes, i.e., miRNAs synthesized by an organism regulate the genes in that organism. Recently, that dogma has been challenged in studies suggesting that food-borne miRNAs are bioavailable and affect gene expression in mice and humans. While the evidence in support of this theory may be considered weak for miRNAs that originate in plants, there is compelling evidence to suggest that humans use bovine miRNAs in cow's milk and avian miRNAs in chicken eggs for gene regulation. Importantly, evidence also suggests that mice fed a miRNA-depleted diet cannot compensate for dietary depletion by increased endogenous synthesis. Bioinformatics predictions implicate bovine miRNAs in the regulation of genes that play roles in human health and development. Current challenges in this area of research include that some miRNAs are unable to establish a cause-and-effect between miRNA depletion and disease in miRNA knockout mice, and sequence similarities and identities for bovine and human miRNAs render it difficult to distinguish between exogenous and endogenous miRNAs. Based on what is currently known about dietary miRNAs, the body of evidence appears to be sufficient to consider milk miRNA bioactive compounds in foods, and to increase research activities in this field. PMID:26222444

  19. Prospective study of the UGT1A1*27 gene polymorphism during irinotecan therapy in patients with lung cancer: Results of Lung Oncology Group in Kyusyu (LOGIK1004B)

    PubMed Central

    Suetsugu, Takayuki; Shimada, Midori; Kitazaki, Takeshi; Hashiguchi, Kohji; Kishimoto, Junji; Harada, Taishi; Seto, Takashi; Ebi, Noriyuki; Takayama, Koichi; Sugio, Kenji; Semba, Hiroshi; Nakanishi, Yoichi; Ichinose, Yukito

    2016-01-01

    Background Uridine 5′‐diphospho‐glucuronosyltransferase 1A1 (UGT1A1*27) is known to impair the effect of UGT in basic research; however, little clinical investigation has been conducted. To evaluate the effect of the UGT1A1*27 polymorphism in irinotecan therapy, we conducted a prospective study. Methods Eligibility criteria included: lung cancer patients; scheduled irinotecan therapy doses of single ≥ 80, combination ≥ 50, radiation with single ≥ 50, or radiation with combination ≥ 40 mg/m2; age ≥ 20; and Eastern Cooperative Oncology Group performance score (PS) 0–2. Patients were examined for UGT1A1*28 and *6 polymorphisms and received irinotecan. When the UGT1A1*28 polymorphism was detected, a search for UGT1A1*27 was conducted. Fifty patients were enrolled, with 48 patients determined eligible. Results UGT1A1 polymorphisms *28/*28, *6/*6, *28/*6, *28/−, *6/−, −/− observed 0 (0%), 1 (2%), 1 (2%), 7 (15%), 17 (35%) and 22 (46%), respectively. UGT1A1*27 were examined in nine patients including one ineligible patient; however, no polymorphisms were found. The study ceased after interim analysis. In an evaluation of the side effects of irinotecan, patients with UGT1A1*28 and UGT1A1*6 polymorphisms had a higher tendency to experience febrile neutropenia than wild type (25% and 32% vs. 14%). Incidences of grade 3/4 leukopenia and neutropenia were significantly higher in patients with UGT1A1*28 polymorphisms compared with wild type (75% vs. 32%, P = 0.049; 75% vs. 36%, P = 0.039, respectively). Conclusion Our prospective study did not locate the UGT1A1*27 polymorphism, suggesting that UGT1A1*27 does not significantly predict severe irinotecan toxicity in cancer patients. PMID:27385990

  20. A New Synthetic Allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: Bridging for Simultaneously Transferring Favorable Genes from These Two Diploid Species into Upland Cotton

    PubMed Central

    Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  1. A new synthetic allotetraploid (A1A1G2G2) between Gossypium herbaceum and G. australe: bridging for simultaneously transferring favorable genes from these two diploid species into upland cotton.

    PubMed

    Liu, Quan; Chen, Yu; Chen, Yu; Wang, Yingying; Chen, Jinjin; Zhang, Tianzhen; Zhou, Baoliang

    2015-01-01

    Gossypium herbaceum, a cultivated diploid cotton species (2n = 2x = 26, A1A1), has favorable traits such as excellent drought tolerance and resistance to sucking insects and leaf curl virus. G. australe, a wild diploid cotton species (2n = 2x = 26, G2G2), possesses numerous economically valuable characteristics such as delayed pigment gland morphogenesis (which is conducive to the production of seeds with very low levels of gossypol as a potential food source for humans and animals) and resistance to insects, wilt diseases and abiotic stress. Creating synthetic allotetraploid cotton from these two species would lay the foundation for simultaneously transferring favorable genes into cultivated tetraploid cotton. Here, we crossed G. herbaceum (as the maternal parent) with G. australe to produce an F1 interspecific hybrid and doubled its chromosome complement with colchicine, successfully generating a synthetic tetraploid. The obtained tetraploid was confirmed by morphology, cytology and molecular markers and then self-pollinated. The S1 seedlings derived from this tetraploid gradually became flavescent after emergence of the fifth true leaf, but they were rescued by grafting and produced S2 seeds. The rescued S1 plants were partially fertile due to the existence of univalents at Metaphase I of meiosis, leading to the formation of unbalanced, nonviable gametes lacking complete sets of chromosomes. The S2 plants grew well and no flavescence was observed, implying that interspecific incompatibility, to some extent, had been alleviated in the S2 generation. The synthetic allotetraploid will be quite useful for polyploidy evolutionary studies and as a bridge for transferring favorable genes from these two diploid species into Upland cotton through hybridization. PMID:25879660

  2. Virulence Gene Regulation in Escherichia coli.

    PubMed

    Mellies, Jay L; Barron, Alex M S

    2006-01-01

    Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression. PMID:26443571

  3. GENE REGULATION BY MAPK SUBSTRATE COMPETITION

    PubMed Central

    Kim, Yoosik; Andreu, María José; Lim, Bomyi; Chung, Kwanghun; Terayama, Mark; Jiménez, Gerardo; Berg, Celeste A.; Lu, Hang; Shvartsman, Stanislav Y.

    2011-01-01

    SUMMARY Developing tissues are patterned by coordinated activities of signaling systems, which can be integrated by a regulatory region of a gene that binds multiple transcription factors or by a transcription factor that is modified by multiple enzymes. Based on a combination of genetic and imaging experiments in the early Drosophila embryo, we describe a signal integration mechanism that cannot be reduced to a single gene regulatory element or a single transcription factor. This mechanism relies on an enzymatic network formed by Mitogen Activated Protein Kinase (MAPK) and its substrates. Specifically, anteriorly localized MAPK substrates, such as Bicoid, antagonize MAPK-dependent downregulation of Capicua, a repressor which is involved in gene regulation along the dorsoventral axis of the embryo. MAPK substrate competition provides a basis for ternary interaction of the anterior, dorsoventral, and terminal patterning systems. A mathematical model of this interaction can explain gene expression patterns with both anteroposterior and dorsoventral polarities. PMID:21664584

  4. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    SciTech Connect

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S.

    2010-11-15

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels in a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.

  5. Transposable element origins of epigenetic gene regulation.

    PubMed

    Lisch, Damon; Bennetzen, Jeffrey L

    2011-04-01

    Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation. PMID:21444239

  6. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  7. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  8. IBD Candidate Genes and Intestinal Barrier Regulation

    PubMed Central

    McCole, Declan F.

    2015-01-01

    Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn’s disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution. PMID:25215613

  9. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms. PMID:26518266

  10. Virulence gene regulation inside and outside.

    PubMed

    DiRita, V J; Engleberg, N C; Heath, A; Miller, A; Crawford, J A; Yu, R

    2000-05-29

    Much knowledge about microbial gene regulation and virulence is derived from genetic and biochemical studies done outside of hosts. The aim of this review is to correlate observations made in vitro and in vivo with two different bacterial pathogens in which the nature of regulated gene expression leading to virulence is quite different. The first is Vibrio cholerae, in which the concerted action of a complicated regulatory cascade involving several transcription activators leads ultimately to expression of cholera toxin and the toxin-coregulated pilus. The regulatory cascade is active in vivo and is also required for maintenance of V. cholerae in the intestinal tract during experimental infection. Nevertheless, specific signals predicted to be generated in vivo, such as bile and a temperature of 37 degrees C, have a severe down-modulating effect on activation of toxin and pilus expression. Another unusual aspect of gene regulation in this system is the role played by inner membrane proteins that activate transcription. Although the topology of these proteins suggests an appealing model for signal transduction leading to virulence gene expression, experimental evidence suggests that such a model may be simplistic. In Streptococcus pyogenes, capsule production is critical for virulence in an animal model of necrotizing skin infection. Yet capsule is apparently produced to high levels only from mutation in a two-component regulatory system, CsrR and CsrS. Thus it seems that in V. cholerae a complex regulatory pathway has evolved to control virulence by induction of gene expression in vivo, whereas in S. pyogenes at least one mode of pathogenicity is potentiated by the absence of regulation. PMID:10874738

  11. Gene regulation and speciation in house mice.

    PubMed

    Mack, Katya L; Campbell, Polly; Nachman, Michael W

    2016-04-01

    One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence betweenMus musculus musculusandM. m. domesticuswas characterized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found extensive regulatory divergence betweenM. m. musculusandM. m. domesticus, largely attributable tocis-regulatory changes. When bothcisandtranschanges occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive selection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. PMID:26833790

  12. Promoter architectures and developmental gene regulation.

    PubMed

    Haberle, Vanja; Lenhard, Boris

    2016-09-01

    Core promoters are minimal regions sufficient to direct accurate initiation of transcription and are crucial for regulation of gene expression. They are highly diverse in terms of associated core promoter motifs, underlying sequence composition and patterns of transcription initiation. Distinctive features of promoters are also seen at the chromatin level, including nucleosome positioning patterns and presence of specific histone modifications. Recent advances in identifying and characterizing promoters using next-generation sequencing-based technologies have provided the basis for their classification into functional groups and have shed light on their modes of regulation, with important implications for transcriptional regulation in development. This review discusses the methodology and the results of genome-wide studies that provided insight into the diversity of RNA polymerase II promoter architectures in vertebrates and other Metazoa, and the association of these architectures with distinct modes of regulation in embryonic development and differentiation. PMID:26783721

  13. Abnormal dentin structure in two novel gene mutations [COL1A1, Arg134Cys] and [ADAMTS2, Trp795-to-ter] causing rare type I collagen disorders.

    PubMed

    De Coster, P J; Cornelissen, M; De Paepe, A; Martens, L C; Vral, A

    2007-02-01

    Histological and ultrastructural observations of dentin of two patients affected with rare types of type I collagen disorders are presented. In the first case, a homozygous nonsense mutation in ADAMTS2 (substitution of a codon for tryptophan by a stopcodon) causes type VIIC Ehlers-Danlos syndrome (EDS) with multiple tooth agenesis and focal dysplastic dentin defects. In the second case, a missense mutation in COL1A1 (substitution of arginine by cysteine) results in a type I EDS phenotype with clinically normal-appearing dentition. Tooth samples are investigated by using light microscopy (LM), transmission electron microscopy (TEM) and immunostaining for types I and III collagen, and tenascin. These are compared with samples from patients with types III and IV osteogenesis imperfecta (OI) in association with dentinogenesis imperfecta (DI), showing a consistently abnormal appearance of the dentin in all specimens, with variations being primarily those of degree of change. Similarities in histological changes include the alternating presence of normal and severe pathological areas in primary and secondary dentin, the latter being characterized by large canal-like structures in atubular areas. Ultrastructural evidence of pathological dentinogenesis include abnormal distribution, size and organization of collagen fibers, which may also be found in clinically unaffected teeth. The histological and ultrastructural changes seen can be explained on the basis of odontoblast dysfunction which may be secondary to the collagen defect, interfering with different levels of odontoblast cell function and intercellular communication. These observations on (ultra)structural dentin defects associated with the two novel gene mutations are the first ever reported. PMID:17118335

  14. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  15. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases. PMID:23566848

  16. Posttranscriptional gene regulation by long noncoding RNA.

    PubMed

    Yoon, Je-Hyun; Abdelmohsen, Kotb; Gorospe, Myriam

    2013-10-01

    Eukaryotic cells transcribe a vast number of noncoding RNA species. Among them, long noncoding RNAs (lncRNAs) have been widely implicated in the regulation of gene transcription. However, examples of posttranscriptional gene regulation by lncRNAs are emerging. Through extended base-pairing, lncRNAs can stabilize or promote the translation of target mRNAs, while partial base-pairing facilitates mRNA decay or inhibits target mRNA translation. In the absence of complementarity, lncRNAs can suppress precursor mRNA splicing and translation by acting as decoys of RNA-binding proteins or microRNAs and can compete for microRNA-mediated inhibition leading to increased expression of the mRNA. Through these regulatory mechanisms, lncRNAs can elicit differentiation, proliferation, and cytoprotective programs, underscoring the rising recognition of lncRNA roles in human disease. In this review, we summarize the mechanisms of posttranscriptional gene regulation by lncRNAs identified until now. PMID:23178169

  17. Coactivators in PPAR-Regulated Gene Expression

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Vluggens, Aurore; Borensztajn, Jayme; Xu, Jianming; Reddy, Janardan K.

    2010-01-01

    Peroxisome proliferator-activated receptor (PPAR)α, β (also known as δ), and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism. PMID:20814439

  18. Gene regulation in parthenocarpic tomato fruit.

    PubMed

    Martinelli, Federico; Uratsu, Sandra L; Reagan, Russell L; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M; Gasser, Charles S; Dandekar, Abhaya M

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P <0.05) (1748 genes) were studied by assigning a predicted function (when known) based on BLAST to the TAIR database. Among them several genes belong to cell wall, hormone metabolism and response (auxin in particular), and metabolism of sugars and lipids. Up-regulation of lipid transfer proteins and differential expression of several indole-3-acetic acid (IAA)- and ethylene-associated genes were observed in transgenic parthenocarpic fruits. Despite differences in several fatty acids, amino acids, and other metabolites, the fundamental metabolic profile remains unchanged. This work showed that parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable. PMID:19700496

  19. Regulation of ceruloplasmin gene in mammals.

    PubMed

    Gyulikhandanova, N E; Tsymbalenko, N V; Platonova, N A; Babich, V S; Puchkova, L V

    2004-05-01

    A site of rat DNA (about 1800 b. p.) adjacent to the first ceruloplasmin gene contains, apart from regulatory sequences common for all eukaryotic promotors, cis-elements, which are potential binding sites for soluble nuclear receptors of some hormones. Sequences characteristic of genes expressed in liver cells and mammary gland cells during lactation were detected. Full-length fragment of this locus of ceruloplasmin gene (1800 b. p.) was synthesized by PCR and used in gel shift experiments. It was found that soluble proteins extracted from purified nuclei of mammary gland cells during lactation and from the liver of adult and newborn rats, contain proteins specifically interacting with the PCR product. A fragment of chromosome gene containing exons encoding the central part of rat ceruloplasmin was cloned in pTZ19 bacterial vector. Gel shift assay showed that the cloned fragment contained binding sites for specific transcription factor YY1, whose level in nuclear protein fractions varied during ontogeny (according to immunoblotting data). Monoclonal antibodies detected protein YY1 in the complex of cloned DNA-nuclear proteins. Possible mechanisms of tissue-specific regulation of ceruloplasmin gene varying during ontogeny are discussed. PMID:15455125

  20. Following the Footsteps of Chlamydial Gene Regulation

    PubMed Central

    Domman, D.; Horn, M.

    2015-01-01

    Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored. PMID:26424812

  1. Following the Footsteps of Chlamydial Gene Regulation.

    PubMed

    Domman, D; Horn, M

    2015-12-01

    Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored. PMID:26424812

  2. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. PMID:26912865

  3. 3D Shortcuts to Gene Regulation

    PubMed Central

    Hakim, Ofir; Sung, Myong-Hee; Hager, Gordon L.

    2010-01-01

    Summary of recent advances Recent technologies have allowed high resolution genome-wide binding profiles of numerous transcription factor and other proteins. A widespread observation has emerged from studies in diverse mammalian systems: most binding events are located at great distances from gene promoters. It is becoming apparent that the traditional one-dimensional view of gene regulation via the proximal cis regulatory elements is over-simplified. True proximity and functional relevance can be revealed by studying the three-dimensional structure of the genome packaged inside the nucleus. Thus the spatial architecture of the genome has attracted a lot of interest and has intensified its significance in modern cell biology. Here we discuss current methods, concepts, and controversies in this rapidly evolving field. PMID:20466532

  4. Regulation of interferon-gamma gene expression.

    PubMed

    Young, H A

    1996-08-01

    Interferon-gamma (IFN-gamma), also known as type II interferon, is an important immunoregulatory gene that has multiple effects on the development, maturation, and function of the immune system. IFN-gamma mRNA and protein are expressed predominantly by T cells and large granular lymphocytes. The IFN-gamma mRNA is induced/inhibited in these cell types by a wide variety of extracellular signals, thus implicating a number of diverse, yet convergent signal transduction pathways in its transcriptional control. In this review, I describe how DNA methylation and specific DNA binding proteins may regulate transcription of the IFN-gamma gene in response to extracellular signals. PMID:8877725

  5. Dietary methanol regulates human gene activity.

    PubMed

    Shindyapina, Anastasia V; Petrunia, Igor V; Komarova, Tatiana V; Sheshukova, Ekaterina V; Kosorukov, Vyacheslav S; Kiryanov, Gleb I; Dorokhov, Yuri L

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  6. Dietary Methanol Regulates Human Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Sheshukova, Ekaterina V.; Kosorukov, Vyacheslav S.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling. PMID:25033451

  7. Regulation of gene transcription by Polycomb proteins

    PubMed Central

    Aranda, Sergi; Mas, Gloria; Di Croce, Luciano

    2015-01-01

    The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation. PMID:26665172

  8. Pharmacogenetics of SULT1A1

    PubMed Central

    Daniels, Jaclyn; Kadlubar, Susan

    2015-01-01

    Cytosolic SULT1A1 participates in the bioconversion of a plethora of endogenous and xenobiotic substances. Genetic variation in this important enzyme such as SNPs can vary by ethnicity and have functional consequences on its activity. Most SULT1A1 genetic variability studies have been centered on the SULT1A1*1/2 SNP. Highlighted here are not only this SNP, but other genetic variants associated with SULT1A1 that could modify drug efficacy and xenobiotic metabolism. Some studies have investigated how differential metabolism of xenobiotic substances influences susceptibility to or protection from cancer in multiple sites. This review will focus primarily on the impact of SULT1A1 genetic variation on the response to anticancer therapeutic agents and subsequently how it relates to environmental and dietary exposure to both cancer-causing and cancer-preventative compounds. PMID:25493573

  9. Aldehyde dehydrogenase 1A1 in stem cells and cancer

    PubMed Central

    Tomita, Hiroyuki; Tanaka, Kaori; Tanaka, Takuji; Hara, Akira

    2016-01-01

    The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies. PMID:26783961

  10. Regulation of gene expression by hypoxia.

    PubMed

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  11. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  12. Epigenetic Gene Regulation in the Bacterial World

    PubMed Central

    Casadesús, Josep; Low, David

    2006-01-01

    Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions. PMID:16959970

  13. Redox regulation of photosynthetic gene expression

    PubMed Central

    Queval, Guillaume; Foyer, Christine H.

    2012-01-01

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability. PMID:23148274

  14. Transcriptional regulation of human UDP-glucuronosyltransferase genes.

    PubMed

    Hu, Dong Gui; Meech, Robyn; McKinnon, Ross A; Mackenzie, Peter I

    2014-11-01

    Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes. PMID:25336387

  15. Transcriptional regulation of the human biglycan gene.

    PubMed

    Ungefroren, H; Krull, N B

    1996-06-28

    The small leucine-rich proteoglycan biglycan is involved in several physiological and pathophysiological processes through the ability of its core protein to interact with other extracellular matrix molecules and transforming growth factor-beta (TGF-beta). To learn more about the regulation of biglycan core protein expression, we have cloned and sequenced 1218 base pairs from the 5'-flanking region of the human biglycan gene, demonstrated functional promoter activity, and investigated the molecular mechanisms through which various agents modulate its transcriptional activity. Sequencing revealed the presence of several cis-acting elements including multiple AP-2 sites and interleukin-6 response elements, a NF-kappaB site, a TGF-beta negative element, and an E-box. The TATA and CAAT box-lacking promoter possesses many features of a growth-related gene, e.g. a GC-rich immediate 5' region, many Sp1 sites, and the use of multiple transcriptional start sites. Transient transfections of the tumor cell lines MG-63, SK-UT-1, and T47D with various biglycan 5'-flanking region-luciferase reporter gene constructs showed that the proximal 78 base pairs are sufficient for full promoter activity. Several agents among them interleukin-6, and tumor necrosis factor-alpha. were capable of altering biglycan promoter activity. However, in MG-63 cells, TGF-beta1 failed to increase either activity of the biglycan promoter constructs or specific transcription from the endogenous biglycan gene. Since TGF-beta1 also did not alter the stability of cytoplasmic biglycan mRNA as determined from Northern analysis after inhibition of transcription with 5,6-dichloro-1beta-D-ribofuranosylbenzimidazole, an as yet unidentified nuclear post-transcriptional mechanism was considered responsible for the TGF-beta effect in this cell type. These results might help to elucidate the molecular pathways leading to pathological alterations of biglycan expression observed in atherosclerosis, glomerulonephritis

  16. G to A substitution in 5{prime} donor splice site of introns 18 and 48 of COL1A1 gene of type I collagen results in different splicing alternatives in osteogenesis imperfecta type I cell strains

    SciTech Connect

    Willing, M.; Deschenes, S.

    1994-09-01

    We have identified a G to A substitution in the 5{prime} donor splice site of intron 18 of one COL1A1 allele in two unrelated families with osteogenesis imperfecta (OI) type I. A third OI type I family has a G to A substitution at the identical position in intron 48 of one COL1A1 allele. Both mutations abolish normal splicing and lead to reduced steady-state levels of mRNA from the mutant COL1A1 allele. The intron 18 mutation leads to both exon 18 skipping in the mRNA and to utilization of a single alternative splice site near the 3{prime} end of exon 18. The latter results in deletion of the last 8 nucleotides of exon 18 from the mRNA, a shift in the translational reading-frame, and the creation of a premature termination codon in exon 19. Of the potential alternative 5{prime} splice sites in exon 18 and intron 18, the one utilized has a surrounding nucleotide sequence which most closely resembles that of the natural splice site. Although a G to A mutation was detected at the identical position in intron 48 of one COL1A1 allele in another OI type I family, nine complex alternative splicing patterns were identified by sequence analysis of cDNA clones derived from fibroblast mRNA from this cell strain. All result in partial or complete skipping of exon 48, with in-frame deletions of portions of exons 47 and/or 49. The different patterns of RNA splicing were not explained by their sequence homology with naturally occuring 5{prime} splice sites, but rather by recombination between highly homologous exon sequences, suggesting that we may not have identified the major splicing alternative(s) in this cell strain. Both G to A mutations result in decreased production of type I collagen, the common biochemical correlate of OI type I.

  17. Transcriptional control of human p53-regulated genes.

    PubMed

    Riley, Todd; Sontag, Eduardo; Chen, Patricia; Levine, Arnold

    2008-05-01

    The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation. PMID:18431400

  18. Down-regulation of aryl hydrocarbon receptor-regulated genes by tumor necrosis factor-alpha and lipopolysaccharide in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Gharavi, Negar; El-Kadi, Ayman O S

    2005-03-01

    Although much is known concerning the effects of inflammation and oxidative stress on the cytochrome P450 1A1 (CYP1A1), little is known about the modulation of other aryl hydrocarbon receptor (AHR)-regulated genes such as glutathione-S-transferase Ya (GST Ya) and NAD(P)H:quinone oxidoreductase (QOR) by inflammation. In the present study, the effect of tumor necrosis factor (TNF)-alpha and lipopolysaccharides (LPS) on the constitutive and inducible expression of the AHR-regulated genes cyp1a1, GST Ya, and QOR was determined in murine hepatoma Hepa 1c1c7 (WT), AHR-deficient (C12), and AHR nuclear translocator protein (ARNT)-deficient (C4) cells. We found that both TNF-alpha and LPS strongly repressed the constitutive expression and the beta-naphthoflavone-mediated induction of cyp1a1, GST Ya, and QOR in WT but not in C12 and C4 cells. The induction of GST Ya and QOR activities and mRNA levels by phenolic antioxidant, tert-butylhydroquinone, through the antioxidant response element was not significantly affected by TNF-alpha or LPS. In addition, a significant increase in reactive oxygen species was observed in WT, C12, and C4 cells treated with TNF-alpha or LPS which was completely prevented by tert-butylhydroquinone. These results show that the down-regulation of AHR-regulated genes by TNF-alpha and LPS is dependent on the presence of both heterodimeric transcription factors, AHR and ARNT. Furthermore, reactive oxygen species may be involved in the down-regulation of AHR-regulated genes. PMID:15627257

  19. Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks

    PubMed Central

    Li, Jing-Ru; Suzuki, Takahiro; Nishimura, Hajime; Kishima, Mami; Maeda, Shiori; Suzuki, Harukazu

    2016-01-01

    Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs. PMID:27483142

  20. A Rule-Based Framework for Gene Regulation Pathways Discovery

    SciTech Connect

    Wilczynski, B; Hvidsten, T; Kryshtafovych, A; Stubbs, L; Komorowski, J; Fidelis, K

    2003-07-21

    We present novel approach to discover the rules that govern gene regulation mechanisms. The method is based on supervised machine learning and is designed to reveal relationships between transcription factors and gene promoters. As the representation of the gene regulatory circuit we have chosen a special form of IF-THEN rules associating certain features (a generalized idea of a Transcription Factor Binding Site) in gene promoters with specific gene expression profiles.

  1. Gene regulation in hepatic stellate cell.

    PubMed

    Lang, A; Brenner, D A

    1999-03-01

    Hepatic stellate cells are now recognized as the major source of extracellular matrix in hepatic fibrosis. Following liver injury the hepatic stellate cell changes from a quiescent to an activated cell. The activation process includes an increased proliferation rate, a phenotypic change to a myofibroblast-like cell, loss of vitamin A stores, increased extra-cellular matrix protein synthesis and contractility. Furthermore, hepatic stellate cells have been implicated in hepatic inflammation through their ability to secrete cytokines and chemokines. Here, we review the literature on the molecular pathogenesis of hepatic stellate cells activation with emphasis on the most recent findings. The reviewed topics include transcriptional and post-transcriptional regulation of the genes encoding type I collagen in hepatic stellate cells; the role of the transcription factor nuclear factor Kappa B in the hepatic stellate cell activation; focal adhesion kinase and integrin-mediated signal transduction in hepatic stellate cell, and apoptosis in hepatic stellate cells. New insight into hepatic stellate cell activation and death may lead to the development of novel therapies for hepatic fibrosis. PMID:10363203

  2. Correlation between mutations in the core and NS5A genes of hepatitis C virus genotypes 1a, 1b, 3a, 3b, 6f and the response to pegylated interferon and ribavirin combination therapy.

    PubMed

    Kumthip, K; Pantip, C; Chusri, P; Thongsawat, S; O'Brien, A; Nelson, K E; Maneekarn, N

    2011-04-01

    Several studies have reported correlation between mutations in core and NS5A proteins of hepatitis C virus (HCV) and response to interferon (IFN) therapy. In particular, mutations in NS5A protein have been shown to correlate with responsiveness to IFN treatment of HCV-1b in Japanese patients. This study investigated whether amino acid (aa) mutations in the core and NS5A proteins of HCV-1a, 1b, 3a, 3b and 6f correlated with the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy in Thai patients. The entire sequences of core and NS5A of HCV from 76 HCV-infected patients were analysed in comparison with corresponding reference sequences. The data revealed that the number of aa mutations in full-length NS5A, its C-terminus, IFN sensitivity-determining region, variable region 3 (V3) and V3 plus flanking region of HCV-1b NS5A protein were significantly higher in responders than in the treatment failure group (P = 0.010, 0.031, 0.046, 0.020 and 0.006, respectively). Similar results were found in a putative protein kinase R binding domain region in HCV-6f NS5A protein (P = 0.022). Moreover, specific aa substitutions in NS5A that appeared to be associated with responders or the treatment failure group were observed at positions 78 and 305 for HCV-1b (P = 0.028), 64 and 52 for HCV-1a (P = 0.033) and 6f (P = 0.045). Nevertheless, analysis of aa sequences of core protein revealed highly conserved sequences among HCV genotypes and no significant differences between the viruses from responders and the treatment failure group. Our findings indicate that mutations in aa residues of NS5A of HCV-1a, 1b and 6f correlated well with responsiveness to Peg-IFN and RBV combination therapy. PMID:20955493

  3. Pluralistic and stochastic gene regulation: examples, models and consistent theory

    PubMed Central

    Salas, Elisa N.; Shu, Jiang; Cserhati, Matyas F.; Weeks, Donald P.; Ladunga, Istvan

    2016-01-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution. PMID:26823500

  4. Pluralistic and stochastic gene regulation: examples, models and consistent theory.

    PubMed

    Salas, Elisa N; Shu, Jiang; Cserhati, Matyas F; Weeks, Donald P; Ladunga, Istvan

    2016-06-01

    We present a theory of pluralistic and stochastic gene regulation. To bridge the gap between empirical studies and mathematical models, we integrate pre-existing observations with our meta-analyses of the ENCODE ChIP-Seq experiments. Earlier evidence includes fluctuations in levels, location, activity, and binding of transcription factors, variable DNA motifs, and bursts in gene expression. Stochastic regulation is also indicated by frequently subdued effects of knockout mutants of regulators, their evolutionary losses/gains and massive rewiring of regulatory sites. We report wide-spread pluralistic regulation in ≈800 000 tightly co-expressed pairs of diverse human genes. Typically, half of ≈50 observed regulators bind to both genes reproducibly, twice more than in independently expressed gene pairs. We also examine the largest set of co-expressed genes, which code for cytoplasmic ribosomal proteins. Numerous regulatory complexes are highly significant enriched in ribosomal genes compared to highly expressed non-ribosomal genes. We could not find any DNA-associated, strict sense master regulator. Despite major fluctuations in transcription factor binding, our machine learning model accurately predicted transcript levels using binding sites of 20+ regulators. Our pluralistic and stochastic theory is consistent with partially random binding patterns, redundancy, stochastic regulator binding, burst-like expression, degeneracy of binding motifs and massive regulatory rewiring during evolution. PMID:26823500

  5. Antipsychotic Induced Gene Regulation in Multiple Brain Regions

    PubMed Central

    Girgenti, Matthew James; Nisenbaum, Laura K.; Bymaster, Franklin; Terwilliger, Rosemarie; Duman, Ronald S; Newton, Samuel Sathyanesan

    2010-01-01

    The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach we investigated gene regulation in rat striatum, frontal cortex and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in-situ hybridization, realtime PCR and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action. PMID:20070867

  6. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression.

    PubMed

    Suter, Melissa; Abramovici, Adi; Showalter, Lori; Hu, Min; Shope, Cynthia Do; Varner, Michael; Aagaard-Tillery, Kjersti

    2010-10-01

    The metabolic pathways used by higher-eukaryotic organisms to deal with potentially carcinogenic xenobiotic compounds from tobacco smoke have been well characterized. Carcinogenic compounds such as polycyclic aromatic hydrocarbons are metabolized sequentially in 2 phases: in phase I, CYP1A1 catalyzes conversion into harmful hydrophilic DNA adducts, whereas in phase II, GSTT1 enables excretion via conjugation into polar electrophiles. In an effort to understand susceptibility to in utero tobacco exposure, we previously characterized known metabolic functional polymorphisms and demonstrated that although deletion of fetal GSTT1 significantly modified birth weight in smokers, no polymorphism fully accounted for fetal growth restriction. Because smoking up-regulates CYP1A1 expression, we hypothesized that nonallelic (epigenetic) dysregulation of placental CYP1A1 expression via alterations in DNA methylation (meCpG) may further modify fetal growth. In the present article, we compared placental expression of multiple CYP family members among gravidae and observed significantly increased CYP1A1 expression among smokers relative to controls (4.4-fold, P < .05). To fully characterize CYP1A1 meCpG status, bisulfite modification and sequencing of the entire proximal 1-kilobase promoter (containing 59 CpG sites) were performed. CpG sites immediately proximal to the 5′-xenobiotic response element transcription factor binding element were significantly hypomethylated among smokers (55.6% vs 45.9% meCpG, P = .027), a finding that uniquely correlated with placental gene expression (r = 0.737, P = .007). Thus, in utero tobacco exposure significantly increases placental CYP1A1 expression in association with differential methylation at a critical xenobiotic response element. PMID:20462615

  7. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  8. Expression of THR1, a 1,3,8-trihydroxynaphthalene reductase gene involved in melanin biosynthesis in the phytopathogenic fungus Bipolaris oryzae, is enhanced by near-ultraviolet radiation.

    PubMed

    Kihara, Junichi; Moriwaki, Akihiro; Ito, Machiko; Arase, Sakae; Honda, Yuichi

    2004-02-01

    1,3,8-Trihydroxynaphthalene (1,3,8-THN) reductase is involved in the production of fungal dihydroxynaphthalene (DHN) melanin. We isolated and characterized THR1, a gene encoding 1,3,8-THN reductase, from the phytopathogenic fungus Bipolaris oryzae. Sequence analysis showed that THR1 encodes a putative protein of 267 amino acids having a molecular weight of 28.5 kDa and 68-98% sequence identity to other fungal 1,3,8-THN reductases. Targeted disruption of the THR1 gene showed that it is essential for melanin biosynthesis in B. oryzae. Northern blot analysis showed that THR1 transcripts are constitutively expressed during normal growth but are specifically enhanced by near-ultraviolet (NUV) radiation in a dose-dependent manner. These results indicate that THR1 expression is transcriptionally enhanced by NUV radiation in B. oryzae. PMID:14717841

  9. Suppression of CYP1A1 expression by naringenin in murine Hepa-1c1c7 cells.

    PubMed

    Kim, Ji Young; Han, Eun Hee; Shin, Dong Weon; Jeong, Tae Cheon; Lee, Eung Seok; Woo, Eun-Rhan; Jeong, Hye Gwang

    2004-08-01

    Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1A1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringenin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specifically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR. PMID:15460448

  10. Evolution of gene regulation during transcription and translation.

    PubMed

    Wang, Zhe; Sun, Xuepeng; Zhao, Yi; Guo, Xiaoxian; Jiang, Huifeng; Li, Hongye; Gu, Zhenglong

    2015-04-01

    Understanding how gene regulation evolves is a key area in the current evolutionary field. Gene regulation occurs at various levels. Previous work on the evolution of gene regulation has largely focused on gene transcription. In this study, we used a recently developed ribosomal footprint profiling method to investigate how gene regulation evolves at both the transcription (mRNA abundance) and translation (ribosomal density) levels. By constructing a hybrid between Saccharomyces cerevisiae (Scer) and Saccharomyces bayanus (Sbay), which diverged ∼20 Ma, and quantifying transcriptome and translatome in both parental strains and their hybrid, we showed that translation is much more conserved than transcription, mostly due to the buffering effect of translational regulation for the transcriptional divergence. More conservation in translation than transcription is also confirmed by the inheritance mode of transcription and translation between two species. Furthermore, cis and trans effects are widely involved in changes at both transcription and translation levels. Finally, our results showed that genes with certain functions and sequence features might employ specific modes for evolution at these two critical levels of gene regulation. Our results demonstrated that it is essential to investigate the evolution of gene regulation at various levels from different genetic backgrounds to obtain a complete picture of its evolutionary modes in nature. PMID:25877616

  11. Expression noise facilitates the evolution of gene regulation

    PubMed Central

    Wolf, Luise; Silander, Olin K; van Nimwegen, Erik

    2015-01-01

    Although it is often tacitly assumed that gene regulatory interactions are finely tuned, how accurate gene regulation could evolve from a state without regulation is unclear. Moreover, gene expression noise would seem to impede the evolution of accurate gene regulation, and previous investigations have provided circumstantial evidence that natural selection has acted to lower noise levels. By evolving synthetic Escherichia coli promoters de novo, we here show that, contrary to expectations, promoters exhibit low noise by default. Instead, selection must have acted to increase the noise levels of highly regulated E. coli promoters. We present a general theory of the interplay between gene expression noise and gene regulation that explains these observations. The theory shows that propagation of expression noise from regulators to their targets is not an unwanted side-effect of regulation, but rather acts as a rudimentary form of regulation that facilitates the evolution of more accurate regulation. DOI: http://dx.doi.org/10.7554/eLife.05856.001 PMID:26080931

  12. Regulation of prokaryotic gene expression by eukaryotic-like enzymes

    PubMed Central

    Burnside, Kellie; Rajagopal, Lakshmi

    2011-01-01

    Summary A growing body of evidence indicates that serine/threonine kinases (STK) and phosphatases (STP) regulate gene expression in prokaryotic organisms. As prokaryotic STKs and STPs are not DNA binding proteins, regulation of gene expression is accomplished through post-translational modification of their targets. These include two-component response regulators, DNA binding proteins and proteins that mediate transcription and translation. This review summarizes our current understanding of how STKs and STPs mediate gene expression in prokaryotes. Further studies to identify environmental signals that trigger the signaling cascade and elucidation of mechanisms that regulate cross-talk between eukaryotic-like signaling enzymes, two-component systems, and components of the transcriptional and translational machinery will facilitate a greater understanding of prokaryotic gene regulation. PMID:22221896

  13. Identification of Sinorhizobium meliloti Genes Regulated during Symbiosis

    PubMed Central

    Cabanes, Didier; Boistard, Pierre; Batut, Jacques

    2000-01-01

    RNA fingerprinting by arbitrarily primed PCR was used to isolate Sinorhizobium meliloti genes regulated during the symbiotic interaction with alfalfa (Medicago sativa). Sixteen partial cDNAs were isolated whose corresponding genes were differentially expressed between symbiotic and free-living conditions. Thirteen sequences corresponded to genes up-regulated during symbiosis, whereas three were instead repressed during establishment of the symbiotic interaction. Seven cDNAs corresponded to known or predicted nif and fix genes. Four presented high sequence similarity with genes not yet identified in S. meliloti, including genes encoding a component of the pyruvate dehydrogenase complex, a cell surface protein component, a copper transporter, and an argininosuccinate lyase. Finally, five cDNAs did not exhibit any similarity with sequences present in databases. A detailed expression analysis of the nine non-nif-fix genes provided evidence for an unexpected variety of regulatory patterns, most of which have not been described so far. PMID:10850975

  14. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  15. Prediction of epigenetically regulated genes in breast cancer cell lines

    SciTech Connect

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  16. A Discovery Lab for Studying Gene Regulation.

    ERIC Educational Resources Information Center

    Moss, Robert

    1997-01-01

    Presents a laboratory in which students are provided with cultures of three bacterial strains. Using the results, students will determine which of the strains corresponds to a mutant lacking a particular functional gene. (DDR)

  17. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929

  18. Suppression of CYP1A1 expression by 4-nonylphenol in murine Hepa-1c1c7 cells.

    PubMed

    Jeong, H G; Kim, J Y; Choi, C Y; You, H J; Hahm, K

    2001-04-10

    This study investigated the effects that 4-nonylphenol (NP) has on CYP1A1 expression in Hepa-1c1c7 cell cultures. NP alone did not affect CYP1A1-specific 7-ethoxyresorufin-O-deethylase (EROD) activity. In contrast, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and NP in a dose-dependent manner. Treatment with tamoxifen, an anti-estrogen that acts through the estrogen receptor, did not affect the suppressive effects that NP has on TCDD-inducible EROD activity. The TCDD-inducible CYP1A1 mRNA levels were markedly suppressed upon concomitant treatment with TCDD and NP that is consistent with their effects on EROD activity. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and an electrophoretic mobility shift assay revealed that NP reduced the transformation of the aryl hydrocarbon (Ah) receptor to a form capable of binding specifically to the DRE sequence of the CYP1A1 gene promoter. These results suggest that the down-regulation of CYP1A1 gene expression by NP in Hepa-1c1c7 cells might be an antagonism of the DRE-binding potential of the nuclear Ah receptor, but is not mediated through the estradiol receptor. PMID:11248424

  19. Regulation of gene expression in the nervous system

    SciTech Connect

    Stella, A.M.G. ); de Vellis, J. ); Perez-Polo, J.R. 62230.

    1990-01-01

    This book covers subjects under the following topics: Plenary Lecture; Growth factors; Regulation of gene expression in neurons; Cell adhesion molecules and development; Nervous tissue reaction to injury-aging; and Poster presentation.

  20. Transcriptional regulation of human small nuclear RNA genes

    PubMed Central

    Jawdekar, Gauri W.; Henry, R. William

    2009-01-01

    The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated. PMID:18442490

  1. MUC1-C Oncoprotein Activates ERK→C/EBPβ Signaling and Induction of Aldehyde Dehydrogenase 1A1 in Breast Cancer Cells*

    PubMed Central

    Alam, Maroof; Ahmad, Rehan; Rajabi, Hasan; Kharbanda, Akriti; Kufe, Donald

    2013-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1) activity is used as a marker of breast cancer stem cells; however, little is known about the regulation of ALDH1A1 expression. Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly overexpressed in most human breast cancers. In studies of breast cancer cells stably silenced for MUC1 or overexpressing the oncogenic MUC1-C subunit, we demonstrate that MUC1-C is sufficient for induction of MEK→ERK signaling and that treatment with a MUC1-C inhibitor suppresses ERK activation. In turn, MUC1-C induces ERK-mediated phosphorylation and activation of the CCAAT/enhancer-binding protein β (C/EBPβ) transcription factor. The results further show that MUC1-C and C/EBPβ form a complex on the ALDH1A1 gene promoter and activate ALDH1A1 gene transcription. MUC1-C-induced up-regulation of ALDH1A1 expression is associated with increases in ALDH activity and is detectable in stem-like cells when expanded as mammospheres. These findings demonstrate that MUC1-C (i) activates a previously unrecognized ERK→C/EBPβ→ALDH1A1 pathway, and (ii) promotes the induction of ALDH activity in breast cancer cells. PMID:24043631

  2. Rat Organic Anion Transporting Protein 1A1 (OATP1A1)

    PubMed Central

    Xiao, Yansen; Nieves, Edward; Angeletti, Ruth H.; Orr, George A.; Wolkoff, Allan W.

    2008-01-01

    Rat organic anion transporting protein 1a1 (oatp1a1), a hepatocyte basolateral plasma membrane protein, mediates transport of various amphipathic compounds. Our previous studies indicated that serine phosphorylation of a single tryptic peptide inhibits its transport activity without changing its cell surface content. The site of phosphorylation is unknown and was the subject of the present study. Following immunoaffinity chromatographic purification from rat liver, oatp1a1 was subjected to trypsin digestion and MALDI-TOF. Except for predicted N-glycosylated peptides, 97% of oatp1a1 tryptic peptides were observed. A single tryptic phosphopeptide was found in the C-terminus (aa 626-647), existing in unphosphorylated, singly, or doubly phosphorylated forms, and sensitive to alkaline phosphatase treatment. β-elimination reaction resulted in mass loss of 98 or 196 Da from this peptide, and subsequent Michael addition with cysteamine increased masses by the predicated 77 and 154 Da, indicating that oatp1a1 can be singly or doubly phosphorylated at serine or threonine residues in the C-terminal sequence SSATDHT (aa 634-640). Subsequent tandem MS/MS analysis revealed that phosphorylation at S634 accounted for all singly phosphorylated peptide, while phosphorylation at S634 and S635 accounted for all doubly phosphorylated peptide. These findings identify the site of oatp1a1 phosphorylation and demonstrate that it is an ordered process, in which phosphorylation at S634 precedes that at S635. The mechanism by which phosphorylation results in loss of transport activity in hepatocytes remains to be established. Whether phosphorylation near the C-terminus inhibits C-terminal oligomerization of oatp1a1, required for normal transport function, can be speculated upon, but is as yet unknown. PMID:16519530

  3. Regulation of toxin gene expression in Clostridium perfringens.

    PubMed

    Ohtani, Kaori; Shimizu, Tohru

    2015-05-01

    The Gram-positive, anaerobic, spore-forming, rod-shaped Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens causes clostridial myonecrosis (or gas gangrene), enteritis and enterotoxemia in humans and livestock by producing numerous extracellular toxins and enzymes. The toxin gene expression is regulated by a two-component regulatory system and regulatory RNA VirR/VirS-VR-RNA cascade. The VirR/VirS system was originally found in a type A strain, but a recent report showed that it is also important for the toxin gene regulation in other types of strains. Two types of cell-cell signaling, i.e., agr-system and AI-2 signaling, are also important for the regulation of toxin genes. Several regulatory systems independent from the VirR/VirS system, including virX, the orphan histidine kinase ReeS and orphan response regulator RevR, are also involved in the regulation of toxin genes. In addition, the expression of toxin genes is upregulated after contact with Caco-2 cells. C. perfringens has a complex regulatory network for toxin gene expression and thus the coordination of toxin gene expression is important for the process of infection. PMID:25303832

  4. Regulation of gene expression in the intestinal epithelium.

    PubMed

    Richmond, Camilla A; Breault, David T

    2010-01-01

    Regulation of gene expression within the intestinal epithelium is complex and controlled by various signaling pathways that regulate the balance between proliferation and differentiation. Proliferation is required both to grow and to replace cells lost through apoptosis and attrition, yet in all but a few cells, differentiation must take place to prevent uncontrolled growth (cancer) and to provide essential functions. In this chapter, we review the major signaling pathways underlying regulation of gene expression within the intestinal epithelium, based primarily on data from mouse models, as well as specific morphogens and transcription factor families that have a major role in regulating intestinal gene expression, including the Hedgehog family, Forkhead Box (FOX) factors, Homeobox (HOX) genes, ParaHox genes, GATA transcription factors, canonical Wnt/β-catenin signaling, EPH/Ephrins, Sox9, BMP signaling, PTEN/PI3K, LKB1, K-RAS, Notch pathway, HNF, and MATH1. We also briefly highlight important emerging areas of gene regulation, including microRNA (miRNA) and epigenetic regulation. PMID:21075346

  5. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  6. CONSERVATION OF THE RESPONSE REGULATOR GENE GACA IN PSEUDOMONAS SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regulator gene gacA influences production of several secondary metabolites in Pseudomonas spp. Primers and a probe for the gacA gene of Pseudomonas spp. were developed and a gacA fragment was sequenced from 10 strains isolated from different plant-associated environments. PCR analysis and Sou...

  7. Identification of LytSR-regulated genes from Staphylococcus aureus.

    PubMed

    Brunskill, E W; Bayles, K W

    1996-10-01

    In this report, the characterization of a Staphylococcus aureus operon containing two LytSR-regulated genes, lrgA and lrgB, is described. Sequence and mutagenesis studies of these genes suggest that lrgA encodes a murein hydrolase exporter similar to bacteriophage holin proteins while lrgB may encode a protein having murein hydrolase activity. PMID:8824633

  8. Biotic Stress Globally Down-Regulates Photosynthesis Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upon herbivore and pathogen attacks, plants switch from processes supporting growth and reproduction to defense by inducing a set of defense genes and down-regulating most of the nuclear encoded photosynthetic genes. To determine if this transcriptional response is universal we used transcriptome da...

  9. The Allosteric Binding Sites of Sulfotransferase 1A1

    PubMed Central

    Cook, Ian; Wang, Ting; Falany, Charles N.

    2015-01-01

    Human sulfotransferases (SULTs) comprise a small, 13-member enzyme family that regulates the activities of thousands of compounds—endogenous metabolites, drugs, and other xenobiotics. SULTs transfer the sulfuryl-moiety (–SO3) from a nucleotide donor, PAPS (3′-phosphoadenosine 5′-phosphosulfate), to the hydroxyls and primary amines of acceptors. SULT1A1, a progenitor of the family, has evolved to sulfonate compounds that are remarkably structurally diverse. SULT1A1, which is found in many tissues, is the predominant SULT in liver, where it is a major component of phase II metabolism. Early work demonstrated that catechins and nonsteroidal anti-inflammatory drugs inhibit SULT1A1 and suggested that the inhibition was not competitive versus substrates. Here, the mechanism of inhibition of a single, high affinity representative from each class [epigallocatechin gallate (EGCG) and mefenamic acid] is determined using initial-rate and equilibrium-binding studies. The findings reveal that the inhibitors bind at sites separate from those of substrates, and at saturation turnover of the enzyme is reduced to a nonzero value. Further, the EGCG inhibition patterns suggest a molecular explanation for its isozyme specificity. Remarkably, the inhibitors bind at sites that are separate from one another, and binding at one site does not affect affinity at the other. For the first time, it is clear that SULT1A1 is allosterically regulated, and that it contains at least two, functionally distinct allosteric sites, each of which responds to a different class of compounds. PMID:25534770

  10. TBR1 regulates autism risk genes in the developing neocortex.

    PubMed

    Notwell, James H; Heavner, Whitney E; Darbandi, Siavash Fazel; Katzman, Sol; McKenna, William L; Ortiz-Londono, Christian F; Tastad, David; Eckler, Matthew J; Rubenstein, John L R; McConnell, Susan K; Chen, Bin; Bejerano, Gill

    2016-08-01

    Exome sequencing studies have identified multiple genes harboring de novo loss-of-function (LoF) variants in individuals with autism spectrum disorders (ASD), including TBR1, a master regulator of cortical development. We performed ChIP-seq for TBR1 during mouse cortical neurogenesis and show that TBR1-bound regions are enriched adjacent to ASD genes. ASD genes were also enriched among genes that are differentially expressed in Tbr1 knockouts, which together with the ChIP-seq data, suggests direct transcriptional regulation. Of the nine ASD genes examined, seven were misexpressed in the cortices of Tbr1 knockout mice, including six with increased expression in the deep cortical layers. ASD genes with adjacent cortical TBR1 ChIP-seq peaks also showed unusually low levels of LoF mutations in a reference human population and among Icelanders. We then leveraged TBR1 binding to identify an appealing subset of candidate ASD genes. Our findings highlight a TBR1-regulated network of ASD genes in the developing neocortex that are relatively intolerant to LoF mutations, indicating that these genes may play critical roles in normal cortical development. PMID:27325115

  11. Identifying the genes regulated by IDH1 via gene-chip in glioma cell U87

    PubMed Central

    Ren, Jie; Lou, Meiqing; Shi, Jinlong; Xue, Yajun; Cui, Daming

    2015-01-01

    Glioma is the most common form of primary brain tumor. Increasing evidence show that IDH1 gene mutation is implicated in glioma. However, the mechanism involved in the progression of glioma remains unclear until now. In the study reported here, we used gene chip to identifying the genes regulated with IDH mutanted at R132. The results showed that IDH1-mutant leads to 1255 up-regulated genes and 1862 down-regulated genes in U87 cell lines. Meanwhile, GO and gene-network was performed and shown IDH1-mutant mainly affect small molecule metabolic process, mitotic cell cycle and apoptosis. This result will lay a foundation for further study of IDH1 gene function in the future. PMID:26770405

  12. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    PubMed Central

    Núñez-López, Lizeth; Aguirre-Cruz, Andrés

    2015-01-01

    Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene) can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0), mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1), juvenile transition (SPL3-5) and meristematic identity (FUL, SOC1) but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production. PMID:25780769

  13. Plant defense genes are regulated by ethylene

    SciTech Connect

    Ecker, J.R.; Davis, R.W.

    1987-08-01

    One of the earliest detectable events during plant-pathogen interaction is a rapid increase in ethylene biosynthesis. This gaseous plant stress hormone may be a signal for plants to activate defense mechanisms against invading pathogens such as bacteria, fungi, and viruses. The effect of ethylene on four plant genes involved in three separate plant defense response pathways was examined; these included (i and ii) genes that encode L-phenylalanine ammonia-lyase (EC 4.3.1.5) and 4-coumarate:CoA ligase (4-coumarate:CoA ligase (AMP-forming), EC 6.2.1.12), enzymes of the phenylpropanoid pathway, (iii) the gene encoding chalcone synthase, an enzyme of the flavonoid glycoside pathway, and (iv) the genes encoding hydroxyproline-rich glycoprotein, a major protein component(s) of plant cell walls. Blot hybridization analysis of mRNA from ethylene-treated carrot roots reveals marked increases in the levels of phenylalanine ammonia-lyase mRNA, 4-coumarate CoA ligase mRNA, chalcone synthase mRNA, and certain hydroxyproline-rich glycoprotein transcripts. The effect of ethylene on hydroxyproline-rich glycoprotein mRNA accumulation was different from that of wounding. Ethylene induces two hydroxyproline-rich glycoprotein mRNAs (1.8 and 4.0 kilobases), whereas wounding of carrot root leads to accumulation of an additional hydroxyproline-rich mRNA (1.5 kilobases). These results indicate that at least two distinct signals, ethylene and a wound signal, can affect the expression of plant defense-response genes.

  14. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    SciTech Connect

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  15. Cost benefit theory and optimal design of gene regulation functions

    NASA Astrophysics Data System (ADS)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  16. Cold-responsive gene regulation during cold acclimation in plants.

    PubMed

    Lissarre, Mickael; Ohta, Masaru; Sato, Aiko; Miura, Kenji

    2010-08-01

    Regulation of the transcriptome is necessary for plants to acquire cold tolerance, and cold induces several genes via a cold signaling pathway. The transcription factors CBF/DREB1 (C-repeat binding factor/dehydration responsive element binding1) and ICE1 (inducer of CBF expression1) have important roles in the regulation of cold-responsive gene expression. ICE1 is post-translationally regulated by ubiquitylation-mediated proteolysis and sumoylation. This mini-review highlights some recent studies on plant cold signaling. The relationships among cold signaling, salicylic acid accumulation and stomatal development are also discussed. PMID:20699657

  17. Cohesin: a critical chromatin organizer in mammalian gene regulation

    PubMed Central

    Chien, Richard; Zeng, Weihua; Ball, Alexander R.; Yokomori, Kyoko

    2014-01-01

    Cohesins are evolutionarily conserved essential multi-protein complexes important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders. PMID:21851156

  18. Segment-specific regulation of epididymal gene expression.

    PubMed

    Sipilä, Petra; Björkgren, Ida

    2016-09-01

    The epididymis is necessary for post-testicular sperm maturation. During their epididymal transit, spermatozoa gain ability for progressive movement and fertilization. The epididymis is composed of several segments that have distinct gene expression profiles that enable the establishment of the changing luminal environment required for sperm maturation. The epididymal gene expression is regulated by endocrine, lumicrine, and paracrine factors in a segment-specific manner. Thus, in addition to its importance for male fertility, the epididymis is a valuable model tissue for studying the regulation of gene expression. This review concentrates on recent advances in understanding the androgen, small RNA, and epigenetically mediated regulation of segment-specific gene expression in the epididymis. PMID:27222594

  19. In the loop: long range chromatin interactions and gene regulation

    PubMed Central

    2011-01-01

    Enhancers, silencer and insulators are DNA elements that play central roles in regulation of the genome that are crucial for development and differentiation. In metazoans, these elements are often separated from target genes by distances that can reach 100 Kb. How regulation can be accomplished over long distances has long been intriguing. Current data indicate that although the mechanisms by which these diverse regulatory elements affect gene transcription may vary, an underlying feature is the establishment of close contacts or chromatin loops. With the generalization of this principle, new questions emerge, such as how the close contacts are formed and stabilized and, importantly, how they contribute to the regulation of transcriptional output at target genes. This review will concentrate on examples where a functional role and a mechanistic understanding has been explored for loops formed between genes and their regulatory elements or among the elements themselves. PMID:21258045

  20. Intrinsic limits to gene regulation by global crosstalk

    PubMed Central

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  1. Intrinsic limits to gene regulation by global crosstalk.

    PubMed

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C; Barton, Nicholas H; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)-DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF-DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  2. Sperm is epigenetically programmed to regulate gene transcription in embryos.

    PubMed

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M; Zegerman, Philip; Bradshaw, Charles R; Peters, Antoine H F M; Gurdon, John B; Jullien, Jerome

    2016-08-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  3. Sperm is epigenetically programmed to regulate gene transcription in embryos

    PubMed Central

    Teperek, Marta; Simeone, Angela; Gaggioli, Vincent; Miyamoto, Kei; Allen, George E.; Erkek, Serap; Kwon, Taejoon; Marcotte, Edward M.; Zegerman, Philip; Bradshaw, Charles R.; Peters, Antoine H.F.M.; Gurdon, John B.; Jullien, Jerome

    2016-01-01

    For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health. PMID:27034506

  4. Regulation of immunoglobulin gene rearrangement and expression.

    PubMed

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  5. Attenuating Staphylococcus aureus Virulence Gene Regulation: A Medicinal Chemistry Perspective

    PubMed Central

    2013-01-01

    Virulence gene expression in Staphylococcus aureus is tightly regulated by intricate networks of transcriptional regulators and two-component signal transduction systems. There is now an emerging body of evidence to suggest that the blockade of S. aureus virulence gene expression significantly attenuates infection in experimental models. In this Perspective, we will provide insights into medicinal chemistry strategies for the development of chemical reagents that have the capacity to inhibit staphylococcal virulence expression. These reagents can be broadly grouped into four categories: (1) competitive inhibitors of the accessory gene regulator (agr) quorum sensing system, (2) inhibitors of AgrA–DNA interactions, (3) RNAIII transcription inhibitors, and (4) inhibitors of the SarA family of transcriptional regulators. We discuss the potential of specific examples of antivirulence agents for the management and treatment of staphylococcal infections. PMID:23294220

  6. From analog to digital models of gene regulation

    NASA Astrophysics Data System (ADS)

    Munsky, Brian; Neuert, Gregor

    2015-07-01

    Recently, major progress has been made to develop computational models to predict and explain the mechanisms and behaviors of gene regulation. Here, we review progress on how these mechanisms and behaviors have been interpreted with analog models, where cell properties continuously modulate transcription, and digital models, where gene modulation involves discrete activation and inactivation events. We introduce recent experimental approaches, which measure these gene regulatory behaviors at single-cell and single-molecule resolution, and we discuss the integration of these approaches with computational models to reveal biophysical insight. By analyzing simple toy models in the context of existing experimental capabilities, we discuss the interplay between different experiments and different models to measure and interpret gene regulatory behaviors. Finally, we review recent successes in the development of predictive computational models for the control of gene regulation behaviors.

  7. From Analog to Digital Models of Gene Regulation

    PubMed Central

    Munsky, Brian; Neuert, Gregor

    2015-01-01

    Recently, major progress has been made to develop computational models to predict and explain the mechanisms and behaviors of gene regulation. Here, we review progress on how these mechanisms and behaviors have been interpreted with analog models, where cell properties continuously modulate transcription, and digital models, where gene modulation involves discrete activation and inactivation events. We introduce recent experimental approaches, which measure these gene regulatory behaviors at single-cell and single-molecule resolution, and we discuss the integration of these approaches with computational models to reveal biophysical insight. By analyzing simple toy models in the context of existing experimental capabilities, we discuss the interplay between different experiments and different models to measure and interpret gene regulatory behaviors. Finally, we review recent successes in the development of predictive computational models for the control of gene regulation behaviors. PMID:26086470

  8. DNA Methylation is Developmentally Regulated for Genes Essential for Cardiogenesis

    PubMed Central

    Chamberlain, Alyssa A.; Lin, Mingyan; Lister, Rolanda L.; Maslov, Alex A.; Wang, Yidong; Suzuki, Masako; Wu, Bingruo; Greally, John M.; Zheng, Deyou; Zhou, Bin

    2014-01-01

    Background DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. Methods and Results We performed the genome‐wide DNA methylation profiling of mouse embryonic hearts using methyl‐sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real‐time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co‐expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. Conclusions DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease. PMID:24947998

  9. Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.

    PubMed Central

    Bartosiewicz, M; Penn, S; Buckpitt, A

    2001-01-01

    Toxicity testing of unknown chemicals currently uses a number of short-term bioassays. These tests are costly and time consuming, require large numbers of animals, and generally focus on a single end point. The recent development of DNA arrays provides a potential mechanism for increasing the efficiency of standard toxicity testing through genome-wide assessments of gene regulation. In this study, we used DNA arrays containing 148 genes for xenobiotic metabolizing enzymes, DNA repair enzymes, heat shock proteins, cytokines, and housekeeping genes to examine gene expression patterns in the liver in response to cadmium chloride, benzo(a)pyrene (BaP), and trichloroethylene (TCE). Dose-response studies were carried out in mice for each chemical; each produced a unique pattern of gene induction. As expected, CdCl2 markedly up-regulated metallothionine I and II (5- to 10,000-fold at the highest doses) and several of the heat shock/stress response proteins and early response genes. In contrast, administration of BaP up-regulated only Cyp1a1 and Cyp1a2 genes and produced no significant increases in any of the stress response genes or any of the DNA repair genes present on the array. Likewise, TCE-induced gene induction was highly selective; only Hsp 25 and 86 and Cyp2a were up-regulated at the highest dose tested. Microarray analysis with a highly focused set of genes is capable of discriminating between different classes of toxicants and has potential for differentiating highly noxious versus more subtle toxic agents. These data suggest that use of microarrays to evaluate the potential hazards of unknown chemicals or chemical mixtures must include multiple doses and time points to provide effective assessments of potential toxicity of these substances. PMID:11171528

  10. Pancreatic regeneration: basic research and gene regulation.

    PubMed

    Okita, Kenji; Mizuguchi, Toru; Shigenori, Ota; Ishii, Masayuki; Nishidate, Toshihiko; Ueki, Tomomi; Meguro, Makoto; Kimura, Yasutoshi; Tanimizu, Naoki; Ichinohe, Norihisa; Torigoe, Toshihiko; Kojima, Takashi; Mitaka, Toshihiro; Sato, Noriyuki; Sawada, Norimasa; Hirata, Koichi

    2016-06-01

    Pancreatic regeneration (PR) is an interesting phenomenon that could provide clues as to how the control of diabetes mellitus might be achieved. Due to the different regenerative abilities of the pancreas and liver, the molecular mechanism responsible for PR is largely unknown. In this review, we describe five representative murine models of PR and thirteen humoral mitogens that stimulate β-cell proliferation. We also describe pancreatic ontogenesis, including the molecular transcriptional differences between α-cells and β-cells. Furthermore, we review 14 murine models which carry defects in genes related to key transcription factors for pancreatic ontogenesis to gain further insight into pancreatic development. PMID:26148809

  11. Distance Matters: The Impact of Gene Proximity in Bacterial Gene Regulation

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Otto; Metzler, Ralf

    2013-05-01

    Following recent discoveries of colocalization of downstream-regulating genes in living cells, the impact of the spatial distance between such genes on the kinetics of gene product formation is increasingly recognized. We here show from analytical and numerical analysis that the distance between a transcription factor (TF) gene and its target gene drastically affects the speed and reliability of transcriptional regulation in bacterial cells. For an explicit model system, we develop a general theory for the interactions between a TF and a transcription unit. The observed variations in regulation efficiency are linked to the magnitude of the variation of the TF concentration peaks as a function of the binding site distance from the signal source. Our results support the role of rapid binding site search for gene colocalization and emphasize the role of local concentration differences.

  12. Design and Interpretation of Human Sulfotransferase 1A1 Assays.

    PubMed

    Wang, Ting; Cook, Ian; Leyh, Thomas S

    2016-04-01

    The human sulfotransferases (SULTs) regulate the activities of hundreds, if not thousands, of small molecule metabolites via transfer of the sulfuryl-moiety (-SO3) from the nucleotide donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyls and amines of the recipients. Our understanding of the molecular basis of SULT catalysis has expanded considerably in recent years. The basic kinetic mechanism of these enzymes, previously thought to be ordered, has been redefined as random for SULT2A1, a representative member of the superfamily. An active-site cap whose structure and dynamics are highly responsive to nucleotides was discovered and shown to be critical in determining SULT selectivity, a topic of longstanding interest to the field. We now realize that a given SULT can operate in two specificity modes-broad and narrow-depending on the disposition of the cap. More recent work has revealed that the caps of the SULT1A1 are controlled by homotropic allosteric interactions between PAPS molecules bound at the dimer's active sites. These interactions cause the catalytic efficiency of SULT1A1 to vary in a substrate-dependent fashion by as much as two orders of magnitude over a range of PAPS concentrations that spans those found in human tissues. SULT catalysis is further complicated by the fact that these enzymes are frequently inhibited by their substrates. This review provides an overview of the mechanistic features of SULT1A1 that are important for the design and interpretation of SULT1A1 assays. PMID:26658224

  13. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  14. Epigenetic regulation of transposable element derived human gene promoters.

    PubMed

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome. PMID:21215797

  15. Social Regulation of Gene Expression in Threespine Sticklebacks

    PubMed Central

    Greenwood, Anna K.; Peichel, Catherine L.

    2015-01-01

    Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions. PMID:26367311

  16. All-optical regulation of gene expression in targeted cells

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; He, Hao; Li, Shiyang; Liu, Dayong; Lan, Bei; Hu, Minglie; Cao, Youjia; Wang, Chingyue

    2014-06-01

    Controllable gene expression is always a challenge and of great significance to biomedical research and clinical applications. Recently, various approaches based on extra-engineered light-sensitive proteins have been developed to provide optogenetic actuators for gene expression. Complicated biomedical techniques including exogenous genes engineering, transfection, and material delivery are needed. Here we present an all-optical method to regulate gene expression in targeted cells. Intrinsic or exogenous genes can be activated by a Ca2+-sensitive transcription factor nuclear factor of activated T cells (NFAT) driven by a short flash of femtosecond-laser irradiation. When applied to mesenchymal stem cells, expression of a differentiation regulator Osterix can be activated by this method to potentially induce differentiation of them. A laser-induced ``Ca2+-comb'' (LiCCo) by multi-time laser exposure is further developed to enhance gene expression efficiency. This noninvasive method hence provides an encouraging advance of gene expression regulation, with promising potential of applying in cell biology and stem-cell science.

  17. Epigenetics, cellular memory and gene regulation.

    PubMed

    Henikoff, Steven; Greally, John M

    2016-07-25

    The field described as 'epigenetics' has captured the imagination of scientists and the lay public. Advances in our understanding of chromatin and gene regulatory mechanisms have had impact on drug development, fueling excitement in the lay public about the prospects of applying this knowledge to address health issues. However, when describing these scientific advances as 'epigenetic', we encounter the problem that this term means different things to different people, starting within the scientific community and amplified in the popular press. To help researchers understand some of the misconceptions in the field and to communicate the science accurately to each other and the lay audience, here we review the basis for many of the assumptions made about what are currently referred to as epigenetic processes. PMID:27458904

  18. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  19. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes

    PubMed Central

    Xiao, Fei; Gao, Lin; Ye, Yusen; Hu, Yuxuan; He, Ruijie

    2016-01-01

    Combining path consistency (PC) algorithms with conditional mutual information (CMI) are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference), to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise. PMID:27171286

  20. Toehold Switches: De-Novo-Designed Regulators of Gene Expression

    PubMed Central

    Green, Alexander A.; Silver, Pamela A.; Collins, James J.; Yin, Peng

    2014-01-01

    SUMMARY Efforts to construct synthetic networks in living cells have been hindered by the limited number of regulatory components that provide wide dynamic range and low crosstalk. Here, we report a new class of de-novo-designed prokaryotic riboregulators called toehold switches that activate gene expression in response to cognate RNAs with arbitrary sequences. Toehold switches provide a high level of orthogonality and can be forward-engineered to provide average dynamic range above 400. We show that switches can be integrated into the genome to regulate endogenous genes and use them as sensors that respond to endogenous RNAs. We exploit the orthogonality of toehold switches to regulate 12 genes independently and to construct a genetic circuit that evaluates 4-input AND logic. Toehold switches, with their wide dynamic range, orthogonality, and programmability, represent a versatile and powerful platform for regulation of translation, offering diverse applications in molecular biology, synthetic biology, and biotechnology. PMID:25417166

  1. Let there be light: Regulation of gene expression in plants

    PubMed Central

    Petrillo, Ezequiel; Godoy Herz, Micaela A; Barta, Andrea; Kalyna, Maria; Kornblihtt, Alberto R

    2014-01-01

    Gene expression regulation relies on a variety of molecular mechanisms affecting different steps of a messenger RNA (mRNA) life: transcription, processing, splicing, alternative splicing, transport, translation, storage and decay. Light induces massive reprogramming of gene expression in plants. Differences in alternative splicing patterns in response to environmental stimuli suggest that alternative splicing plays an important role in plant adaptation to changing life conditions. In a recent publication, our laboratories showed that light regulates alternative splicing of a subset of Arabidopsis genes encoding proteins involved in RNA processing by chloroplast retrograde signals. The light effect on alternative splicing is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. These results point at alternative splicing regulation by retrograde signals as an important mechanism for plant adaptation to their environment. PMID:25590224

  2. Transcriptional Regulation of Gene Expression in C. elegans

    PubMed Central

    Reinke, Valerie; Krause, Michael; Okkema, Peter

    2013-01-01

    Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single cell and minute time scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated protein and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation. PMID:23801596

  3. Absence of canonical active chromatin marks in developmentally regulated genes

    PubMed Central

    Ruiz-Romero, Marina; Corominas, Montserrat; Guigó, Roderic

    2015-01-01

    The interplay of active and repressive histone modifications is assumed to play a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated to stable production of RNA, while unmarked chromatin would permit rapid gene activation and de-activation during development. In this case, regulation by transcription factors would play a comparatively more important regulatory role. PMID:26280901

  4. Multidimensional regulation of gene expression in the C. elegans embryo

    PubMed Central

    Murray, John Isaac; Boyle, Thomas J.; Preston, Elicia; Vafeados, Dionne; Mericle, Barbara; Weisdepp, Peter; Zhao, Zhongying; Bao, Zhirong; Boeck, Max; Waterston, Robert H.

    2012-01-01

    How cells adopt different expression patterns is a fundamental question of developmental biology. We quantitatively measured reporter expression of 127 genes, primarily transcription factors, in every cell and with high temporal resolution in C. elegans embryos. Embryonic cells are highly distinct in their gene expression; expression of the 127 genes studied here can distinguish nearly all pairs of cells, even between cells of the same tissue type. We observed recurrent lineage-regulated expression patterns for many genes in diverse contexts. These patterns are regulated in part by the TCF-LEF transcription factor POP-1. Other genes' reporters exhibited patterns correlated with tissue, position, and left–right asymmetry. Sequential patterns both within tissues and series of sublineages suggest regulatory pathways. Expression patterns often differ between embryonic and larval stages for the same genes, emphasizing the importance of profiling expression in different stages. This work greatly expands the number of genes in each of these categories and provides the first large-scale, digitally based, cellular resolution compendium of gene expression dynamics in live animals. The resulting data sets will be a useful resource for future research. PMID:22508763

  5. Regulation of gene expression by a metabolic enzyme.

    PubMed

    Hall, David A; Zhu, Heng; Zhu, Xiaowei; Royce, Thomas; Gerstein, Mark; Snyder, Michael

    2004-10-15

    Gene expression in eukaryotes is normally believed to be controlled by transcriptional regulators that activate genes encoding structural proteins and enzymes. To identify previously unrecognized DNA binding activities, a yeast proteome microarray was screened with DNA probes; Arg5,6, a well-characterized mitochondrial enzyme involved in arginine biosynthesis, was identified. Chromatin immunoprecipitation experiments revealed that Arg5,6 is associated with specific nuclear and mitochondrial loci in vivo, and Arg5,6 binds to specific fragments in vitro. Deletion of Arg5,6 causes altered transcript levels of both nuclear and mitochondrial target genes. These results indicate that metabolic enzymes can directly regulate eukaryotic gene expression. PMID:15486299

  6. Chromatin Remodeling Inactivates Activity Genes and Regulates Neural Coding

    PubMed Central

    Hill, Kelly K.; Hemberg, Martin; Reddy, Naveen C.; Cho, Ha Y.; Guthrie, Arden N.; Oldenborg, Anna; Heiney, Shane A.; Ohmae, Shogo; Medina, Javier F.; Holy, Timothy E.; Bonni, Azad

    2016-01-01

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating mRNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. PMID:27418512

  7. Regulation of Salmonella typhimurium ilvYC genes.

    PubMed

    Blazey, D L; Burns, R O

    1984-09-01

    The Salmonella typhimurium LT2 ilvYC genes were studied by fusion of each gene to the Escherichia coli K-12 galK gene. The expression of ilvY and ilvC could then be determined by measurement of the galK-encoded galactokinase enzyme. The promoter for ilvC, pC, was located by this technique to a 0.42-kilobase BglII-EcoRI fragment of the S. typhimurium ilvGEDAYC gene cluster. This sequence was completely sufficient for alpha-acetohydroxyacid-inducible galK expression. The ilvY gene was located within a 1.0-kilobase XhoI-SalI fragment. ilvY gene expression was constitutive with respect to ilv-specific control signals. The ilvY gene was transcribed in the same direction as the other two transcriptional units in the ilvGEDAYC gene cluster, ilvGEDA and ilvC. Transcription of the ilvC gene was completely dependent upon the activity of its own promoter, pC, and independent from transcription of the ilvY gene. The role of the intervening region between ilvY and ilvC in regulation of ilvC expression was explored. PMID:6090400

  8. Polymorphisms of UGT1A1*6, UGT1A1*27 & UGT1A1*28 in three major ethnic groups from Malaysia

    PubMed Central

    Teh, L. K.; Hashim, H.; Zakaria, Z. A.; Salleh, M. Z.

    2012-01-01

    Background & objectives: Genetic polymorphisms of uridine diphosphate glucuronyltransferase 1A1 (UGT1A1) have been associated with a wide variation of responses among patients prescribed with irinotecan. Lack of this enzyme is known to be associated with a high incidence of severe toxicity. The objective of this study was to investigate the prevalence of three different variants of UGT1A1 (UGT1A1*6, UGT1A1*27 and UGT1A1*28), which are associated with reduced enzyme activity and increased irinotecan toxicity, in the three main ethnic groups in Malaysia (Malays, Chinese and Indians). Methods: A total of 306 healthy unrelated volunteers were screened for UGT1A1*28, UGT1A1*6 and UGT1A1*27. Blood samples (5 ml) were obtained from each subject and DNA was extracted. PCR based methods were designed and validated for detection of UGT1A1*6, UGT1A1*27 and UGT1A1*28. Direct DNA sequencing was performed to validate the results of randomly selected samples. Results: Malays and Indian have two-fold higher frequency of homozygous of UGT1A1*28 (7TA/7TA) which was 8 and 8.8 per cent, respectively compared to the Chinese (4.9%). However, the distribution of UGT1A1*6 and UGT1A1*27 showed no significant differences among them. UGT1A1*27 which has not been detected in Caucasian and African American population, was found in the Malaysian Malays (3.33%) and Malaysian Chinese (2.0%). Interpretation & conclusions: There was interethnic variability in the frequency of UGT1A1*28 in the Malaysian population. Our results suggest that genotyping of UGT1A1*6, UGT1A1*28 and UGT1A1*27 need to be performed before patients are prescribed with irinotecan due to their high prevalence of allelic variant which could lead to adverse drug reaction. PMID:22960892

  9. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  10. Cell cycle regulation of the human cdc2 gene.

    PubMed Central

    Dalton, S

    1992-01-01

    Transcription of the human cdc2 gene is cell cycle regulated and restricted to proliferating cells. Nuclear run-on assays show that cdc2 transcription is high in S and G2 phases of the cell cycle but low in G1. To investigate transcriptional control further, genomic clones of the human cdc2 gene containing 5' flanking sequences were isolated and shown to function as a growth regulated promoter in vivo when fused to a CAT reporter gene. In primary human fibroblasts, the human cdc2 promoter is negatively regulated by arrest of cell growth in a similar fashion to the endogenous gene. This requires specific 5' flanking upstream negative control (UNC) sequences which mediate repression. The retinoblastoma susceptibility gene product (Rb) specifically represses cdc2 transcription in cycling cells via 136 bp of 5' flanking sequence located between -245 and -109 within the UNC region. E2F binding sites in this region were shown to be essential for optimal repression. A model is proposed where Rb negatively regulates the cdc2 promoter in non-cycling and cycling G1 cells. Images PMID:1582409

  11. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    PubMed

    Roy, Sourav; Saha, Tusar T; Johnson, Lisa; Zhao, Bo; Ha, Jisu; White, Kevin P; Girke, Thomas; Zou, Zhen; Raikhel, Alexander S

    2015-08-01

    In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously

  12. Molecular nutrition: Interaction of nutrients, gene regulations and performances.

    PubMed

    Sato, Kan

    2016-07-01

    Nutrition deals with ingestion of foods, digestion, absorption, transport of nutrients, intermediary metabolism, underlying anabolism and catabolism, and excretion of unabsorbed nutrients and metabolites. In addition, nutrition interacts with gene expressions, which are involved in the regulation of animal performances. Our laboratory is concerned with the improvement of animal productions, such as milks, meats and eggs, with molecular nutritional aspects. The present review shows overviews on the nutritional regulation of metabolism, physiological functions and gene expressions to improve animal production in chickens and dairy cows. PMID:27110862

  13. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  14. Positive and negative regulators of the metallothionein gene (review).

    PubMed

    Takahashi, Shinichiro

    2015-07-01

    Metallothioneins (MTs) are metal-binding proteins involved in diverse processes, including metal homeostasis and detoxification, the oxidative stress response and cell proliferation. Aberrant expression and silencing of these genes are important in a number of diseases. Several positive regulators of MT genes, including metal-responsive element-binding transcription factor (MTF)-1 and upstream stimulatory factor (USF)-1, have been identified and mechanisms of induction have been well described. However, the negative regulators of MT genes remain to be elucidated. Previous studies from the group of the present review have revealed that the hematopoietic master transcription factor, PU.1, directly represses the expression levels of MT genes through its epigenetic activities, and upregulation of MT results in the potent inhibition of myeloid differentiation. The present review focuses on PU.1 and several other negative regulators of this gene, including PZ120, DNA methyltransferase 3a with Mbd3 and Brg1 complex, CCAAT enhancer binding protein α and Ku protein, and describes the suppression of the MT genes through these transcription factors. PMID:25760317

  15. Global regulation of Staphylococcus aureus genes by Rot.

    PubMed

    Saïd-Salim, B; Dunman, P M; McAleese, F M; Macapagal, D; Murphy, E; McNamara, P J; Arvidson, S; Foster, T J; Projan, S J; Kreiswirth, B N

    2003-01-01

    Staphylococcus aureus produces a wide array of cell surface and extracellular proteins involved in virulence. Expression of these virulence factors is tightly controlled by numerous regulatory loci, including agr, sar, sigB, sae, and arl, as well as by a number of proteins with homology to SarA. Rot (repressor of toxins), a SarA homologue, was previously identified in a library of transposon-induced mutants created in an agr-negative strain by screening for restored protease and alpha-toxin. To date, all of the SarA homologues have been shown to act as global regulators of virulence genes. Therefore, we investigated the extent of transcriptional regulation of staphylococcal genes by Rot. We compared the transcriptional profile of a rot agr double mutant to that of its agr parental strain by using custom-made Affymetrix GeneChips. Our findings indicate that Rot is not only a repressor but a global regulator with both positive and negative effects on the expression of S. aureus genes. Our data also indicate that Rot and agr have opposing effects on select target genes. These results provide further insight into the role of Rot in the regulatory cascade of S. aureus virulence gene expression. PMID:12511508

  16. Denitrification Genes Regulate Brucella Virulence in Mice

    PubMed Central

    Baek, Seung-Hun; Rajashekara, Gireesh; Splitter, Gary A.; Shapleigh, James P.

    2004-01-01

    Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. Genome sequencing of B. suis and B. melitensis revealed that both are complete denitrifiers. To learn more about the role of denitrification in these animal pathogens, a study of the role of denitrification in the closely related B. neotomae was undertaken. In contrast to B. suis and B. melitensis, it was found that B. neotomae is a partial denitrifier that can reduce nitrate to nitrite but no further. Examination of the B. neotomae genome showed that a deletion in the denitrification gene cluster resulted in complete loss of nirV and the partial deletion of nirK and nnrA. Even though the nor operon is intact, a norC-lacZ promoter fusion was not expressed in B. neotomae. However, the norC-lacZ fusion was expressed in the related denitrifier Agrobacterium tumefaciens, suggesting that the lack of expression in B. neotomae is due to inactivation of NnrA. A narK-lacZ promoter fusion was found to exhibit nitrate-dependent expression consistent with the partial denitrifier phenotype. Complementation of the deleted region in B. neotomae by using nirK, nirV, and nnrA from B. melitensis restored the ability of B. neotomae to reduce nitrite. There was a significant difference in the death of IRF-1−/− mice when infected with B. neotomae containing nirK, nirV, and nnrA and those infected with wild-type B. neotomae. The wild-type strain killed all the infected mice, whereas most of the mice infected with B. neotomae containing nirK, nirV, and nnrA survived. PMID:15342571

  17. Harnessing mobile genetic elements to explore gene regulation.

    PubMed

    Shakes, Leighcraft A; Wolf, Hope M; Norford, Derek C; Grant, Delores J; Chatterjee, Pradeep K

    2014-01-01

    Sequences that regulate expression of a gene in cis but are located at large distances along the DNA from the gene, as found with most developmentally regulated genes in higher vertebrates, are difficult to identify if those sequences are not conserved across species. Mutating suspected gene-regulatory sequences to alter expression then becomes a hit-or-miss affair. The relaxed specificity of transposon insertions offers an opportunity to develop alternate strategies, to scan in an unbiased manner, pieces of chromosomal DNA cloned in BACs for transcription enhancing elements. This article illustrates how insertions of Tn10 with enhancer-traps into BAC DNA containing the gene, and its germ-line expression in zebrafish, have identified distal regulatory elements functionally. Transposition of Tn10 first introduces the enhancer-trap with a loxP site randomly into BAC DNA. Cre-recombination between the inserted loxP and the loxP endogenous to a BAC-end positions the enhancer-trap to the newly created truncated end of BAC DNA. The procedure generates a library of integration-ready enhancer-trap BACs with progressive truncations from an end in a single experiment. Individual enhancer-trap BACs from the library can be evaluated functionally in zebrafish or mice. Furthermore, the ability to readily alter sequences in a small transposon plasmid containing a regulatory domain of the gene allows re-introduction of altered parts of a BAC back into itself. It serves as a useful strategy to functionally dissect multiple discontinuous regulatory domains of a gene quickly. These methodologies have been successfully used in identifying novel regulatory domains of the Amyloid Precursor Protein (appb) gene in zebrafish, and provided important clues for regulation of the gene in humans. PMID:25054085

  18. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational.

    PubMed

    Kardassis, Dimitris; Gafencu, Anca; Zannis, Vassilis I; Davalos, Alberto

    2015-01-01

    HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease. PMID:25522987

  19. Regulation of major histocompatibility complex class II genes

    PubMed Central

    Choi, Nancy M.; Majumder, Parimal; Boss, Jeremy M.

    2010-01-01

    Summary The major histocompatibility complex class II (MHC-II) genes are regulated at the level of transcription. Recent studies have shown that chromatin modification is critical for efficient transcription of these genes, and a number of chromatin modifying complexes recruited to MHC-II genes have been described. The MHC-II genes are segregated from each other by a series of chromatin elements, termed MHC-II insulators. Interactions between MHC-insulators and the promoters of MHC-II genes are mediated by the insulator factor CCCTC-binding protein and are critical for efficient expression. This regulatory mechanism provides a novel view of how the entire MHC-II locus is assembled architecturally and can be coordinately controlled. PMID:20970972

  20. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  1. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    PubMed

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis. PMID:26626937

  2. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  3. Regulation of Cellulase and Hemicellulase Gene Expression in Fungi

    PubMed Central

    Amore, Antonella; Giacobbe, Simona; Faraco, Vincenza

    2013-01-01

    Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi. PMID:24294104

  4. Tbx16 regulates hox gene activation in mesodermal progenitor cells.

    PubMed

    Payumo, Alexander Y; McQuade, Lindsey E; Walker, Whitney J; Yamazoe, Sayumi; Chen, James K

    2016-09-01

    The transcription factor T-box 16 (Tbx16, or Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. However, the mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic. We describe here the use of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identified 124 Tbx16-regulated genes that were expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis and somitogenesis. Unexpectedly, we observed that a loss of Tbx16 function precociously activated posterior hox genes in MPCs, and overexpression of a single posterior hox gene was sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691

  5. Role for LSM genes in the regulation of circadian rhythms

    PubMed Central

    Perez-Santángelo, Soledad; Mancini, Estefanía; Francey, Lauren J.; Schlaen, Ruben Gustavo; Chernomoretz, Ariel; Hogenesch, John B.; Yanovsky, Marcelo J.

    2014-01-01

    Growing evidence suggests that core spliceosomal components differentially affect RNA processing of specific genes; however, whether changes in the levels or activities of these factors control specific signaling pathways is largely unknown. Here we show that some SM-like (LSM) genes, which encode core components of the spliceosomal U6 small nuclear ribonucleoprotein complex, regulate circadian rhythms in plants and mammals. We found that the circadian clock regulates the expression of LSM5 in Arabidopsis plants and several LSM genes in mouse suprachiasmatic nucleus. Further, mutations in LSM5 or LSM4 in Arabidopsis, or down-regulation of LSM3, LSM5, or LSM7 expression in human cells, lengthens the circadian period. Although we identified changes in the expression and alternative splicing of some core clock genes in Arabidopsis lsm5 mutants, the precise molecular mechanism causing period lengthening remains to be identified. Genome-wide expression analysis of either a weak lsm5 or a strong lsm4 mutant allele in Arabidopsis revealed larger effects on alternative splicing than on constitutive splicing. Remarkably, large splicing defects were not observed in most of the introns evaluated using RNA-seq in the strong lsm4 mutant allele used in this study. These findings support the idea that some LSM genes play both regulatory and constitutive roles in RNA processing, contributing to the fine-tuning of specific signaling pathways. PMID:25288739

  6. Synapsins are late activity-induced genes regulated by birdsong

    PubMed Central

    Velho, Tarciso A. F.; Mello, Claudio V.

    2008-01-01

    The consolidation of long-lasting sensory memories requires the activation of gene expression programs in the brain. In spite of considerable knowledge about the early components of this response, little is known about late components (i.e. genes regulated 2-6 hr after stimulation) and the relationship between early and late genes. Birdsong represents one of the best natural behaviors to study sensory-induced gene expression in awake, freely behaving animals. Here we show that the expression of several isoforms of synapsins, a group of phosphoproteins thought to regulate the dynamics of synaptic vesicle storage and release, is induced by auditory stimulation with birdsong in the caudomedial nidopallium (NCM) of the zebra finch (Taeniopygia guttata) brain. This induction occurs mainly in excitatory (non-GABAergic) neurons and is modulated (suppressed) by early song-inducible proteins. We also show that ZENK, an early song-inducible transcription factor, interacts with the syn3 promoter in vivo, consistent with a direct regulatory effect and an emerging novel view of ZENK action. These results demonstrate that synapsins are a late component of the genomic response to neuronal activation and that their expression depends on a complex set of regulatory interactions between early and late regulated genes. PMID:19005052

  7. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    PubMed

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs. PMID:26908883

  8. Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae.

    PubMed Central

    Brown, T A; Evangelista, C; Trumpower, B L

    1995-01-01

    Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression. PMID:7592476

  9. Regulation of gonadotropin-releasing hormone gene expression.

    PubMed

    Kim, Helen H

    2007-09-01

    Reproductive function is influenced by several internal and external cues, which ultimately exert their effects on the gonadotropin-releasing hormone (GnRH) neuron. As the final common pathway in the brain for regulating reproduction, GnRH neurons receive signals from multiple cell types, and alterations in GnRH production impact reproductive competence. Historically, the paucity of GnRH neurons and their scattered distribution in the brain have limited the study of GnRH gene expression. With transgenic technology, newer model systems (such as immortalized GnRH-expressing cell lines and GnRH-reporter gene transgenic mice) have been developed, making molecular studies possible. This article provides an update on the molecular mechanisms responsible for the regulation of GnRH gene expression, focusing on tissue-specific expression and transcriptional regulation. After an overview of GnRH gene structure, synthesis, and secretion, the model systems for studying GnRH neurons are examined. The molecular mechanisms that translate physiologic stimuli, such as nutritional status or stress, into changes in GnRH expression will be reviewed, concentrating on the regulatory regions within the GnRH gene promoter and the critical transcription factors. PMID:17710727

  10. Non-Equilibrium Thermodynamics of Gene Expression and Transcriptional Regulation

    NASA Astrophysics Data System (ADS)

    Lemus, Enrique Hernández

    2009-12-01

    In recent times whole-genome gene expression analysis has turned out to be a highly important tool to study the coordinated function of a very large number of genes within their corresponding cellular environment, especially in relation to phenotypic diversity and disease. A wide variety of methods of quantitative analysis has been developed to cope with high throughput data sets generated by gene expression profiling experiments. Due to the complexity associated with transcriptomics, especially in the case of gene regulation phenomena, most of these methods are of a probabilistic or statistical nature. Even if these methods have reached a central status in the development of an integrative, systematic understanding of the associated biological processes, they very rarely constitute a concrete guide to the actual physicochemical mechanisms behind biological function, and the role of these methods is more on a hypotheses generating line. An important improvement could lie in the development of a thermodynamic theory for gene expression and transcriptional regulation that will build the foundations for a proper integration of the vast amount of molecular biophysical data and could lead, in the future, to a systemic view of genetic transcription and regulation.

  11. Coordinately up-regulated genes in ovarian cancer.

    PubMed

    Hough, C D; Cho, K R; Zonderman, A B; Schwartz, D R; Morin, P J

    2001-05-15

    A better understanding of the molecular circuitry in normal ovarian tissues and in ovarian cancer will likely provide new targets for diagnosis and therapy. Recently, much has been learned about the genes expressed in ovarian cancer through studies with cDNA arrays and serial analysis of gene expression. However, these methods do not allow highly quantitative analysis of gene expression on a large number of specimens. Here, we have used quantitative real-time RT-PCR in a panel of 39 microdissected ovarian carcinomas of various subtypes to systematically analyze the expression of 13 genes, many of which were previously identified as up-regulated in a subset of ovarian cancers by serial analyses of gene expression. The genes analyzed are glutathione peroxidase 3 (GPX3), apolipoprotein J/clusterin, insulin-like growth factor-binding protein 2, epithelial cell adhesion molecule/GA733-2, Kop protease inhibitor, matrix gla protein, tissue inhibitor of metalloproteinase 3, folate receptor 1, S100A2, signal transducer and activator of transcription 1, secretory leukocyte protease inhibitor, apolipoprotein E, and ceruloplasmin. All of the genes were found overexpressed, some at extremely high levels, in the vast majority of ovarian carcinomas irrespective of the subtype. Interestingly, GPX3 was found at much higher levels in tumors with clear cell histology and may represent a biomarker for this subtype. Some of the genes studied here may thus represent targets for early detection ovarian cancer. The gene expression patterns were not associated with age at diagnosis, stage, or K-ras mutation status in ovarian cancer. We find that several genes are coordinately regulated in ovarian cancer, likely representing the fact that many genes are activated as part of common signaling pathways or that extensive cross-talk exists between several pathways in ovarian cancer. A statistical analysis shows that genes commonly up-regulated in ovarian cancer may result from the aberrant

  12. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes

    PubMed Central

    2009-01-01

    Background The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. Results Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a

  13. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  14. Regulation of methanol utilisation pathway genes in yeasts

    PubMed Central

    Hartner, Franz S; Glieder, Anton

    2006-01-01

    Methylotrophic yeasts such as Candida boidinii, Hansenula polymorpha, Pichia methanolica and Pichia pastoris are an emerging group of eukaryotic hosts for recombinant protein production with an ever increasing number of applications during the last 30 years. Their applications are linked to the use of strong methanol-inducible promoters derived from genes of the methanol utilisation pathway. These promoters are tightly regulated, highly repressed in presence of non-limiting concentrations of glucose in the medium and strongly induced if methanol is used as carbon source. Several factors involved in this tight control and their regulatory effects have been described so far. This review summarises available data about the regulation of promoters from methanol utilisation pathway genes. Furthermore, the role of cis and trans acting factors (e.g. transcription factors, glucose processing enzymes) in the expression of methanol utilisation pathway genes is reviewed both in the context of the native cell environment as well as in heterologous hosts. PMID:17169150

  15. Self-targeting by CRISPR: gene regulation or autoimmunity?

    PubMed Central

    Stern, Adi; Keren, Leeat; Wurtzel, Omri; Amitai, Gil; Sorek, Rotem

    2010-01-01

    CRISPR/Cas is a recently discovered prokaryotic immune system, which is based on small RNAs (“spacers”) that restrict phage and plasmid infection. It has been hypothesized that CRISPRs can also regulate self gene expression by utilizing spacers that target self genes. By analyzing CRISPRs from 330 organisms we found that one in every 250 spacers is self targeting, and that such self-targeting occurs in 18% of all CRISPR-bearing organisms. However, complete lack of conservation across species, combined with abundance of degraded repeats near self-targeting spacers, suggests that self-targeting is a consequence of autoimmunity rather than gene regulation. We propose that accidental incorporation of self nucleic-acids by CRISPR can incur an autoimmune fitness cost, which may explain the abundance of degraded CRISPR systems across prokaryotes. PMID:20598393

  16. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients. PMID:26374219

  17. Hypoxia-mediated regulation of gene expression in mammalian cells

    PubMed Central

    Shih, Shu-Ching; Claffey, Kevin P.

    1998-01-01

    The molecular mechanism underlying oxygen sensing in mammalian cells has been extensively investigated in the areas of glucose transport, glycolysis, erythropoiesis, angiogenesis and catecholamine metabolism. Expression of functionally operative representative proteins in these specific areas, such as the glucose transporter 1, glycolytic enzymes, erythropoietin, vascular endothelial growth factor and tyrosine hydroxylase are all induced by hypoxia. Recent studies demonstrated that both transcriptional activation and post-transcriptional mechanisms are important to the hypoxia-mediated regulation of gene expression. In this article, the cis-acting elements and trans-acting factors involved in the transcriptional activation of gene expression will be reviewed. In addition, the mechanisms of post-transcriptional mRNA stabilization will also be addressed. We will discuss whether these two processes of regulation of hypoxia-responsive genes are mechanistically linked and co-operative in nature. PMID:10319016

  18. Deciphering c-MYC-regulated genes in two distinct tissues

    PubMed Central

    2011-01-01

    Background The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively. Results Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells), as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt) and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins. Conclusions Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19Arf/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti-apoptotic signalling pathways

  19. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  20. Identification of Master Regulator Genes in Human Periodontitis.

    PubMed

    Sawle, A D; Kebschull, M; Demmer, R T; Papapanou, P N

    2016-08-01

    Analytic approaches confined to fold-change comparisons of gene expression patterns between states of health and disease are unable to distinguish between primary causal disease drivers and secondary noncausal events. Genome-wide reverse engineering approaches can facilitate the identification of candidate genes that may distinguish between causal and associative interactions and may account for the emergence or maintenance of pathologic phenotypes. In this work, we used the algorithm for the reconstruction of accurate cellular networks (ARACNE) to analyze a large gene expression profile data set (313 gingival tissue samples from a cross-sectional study of 120 periodontitis patients) obtained from clinically healthy (n = 70) or periodontitis-affected (n = 243) gingival sites. The generated transcriptional regulatory network of the gingival interactome was subsequently interrogated with the master regulator inference algorithm (MARINA) and gene expression signature data from healthy and periodontitis-affected gingiva. Our analyses identified 41 consensus master regulator genes (MRs), the regulons of which comprised between 25 and 833 genes. Regulons of 7 MRs (HCLS1, ZNF823, XBP1, ZNF750, RORA, TFAP2C, and ZNF57) included >500 genes each. Gene set enrichment analysis indicated differential expression of these regulons in gingival health versus disease with a type 1 error between 2% and 0.5% and with >80% of the regulon genes in the leading edge. Ingenuity pathway analysis showed significant enrichment of 36 regulons for several pathways, while 6 regulons (those of MRs HCLS1, IKZF3, ETS1, NHLH2, POU2F2, and VAV1) were enriched for >10 pathways. Pathways related to immune system signaling and development were the ones most frequently enriched across all regulons. The unbiased analysis of genome-wide regulatory networks can enhance our understanding of the pathobiology of human periodontitis and, after appropriate validation, ultimately identify target molecules of

  1. Living without Oxygen: Anoxia-Responsive Gene Expression and Regulation.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2009-04-01

    Many species of marine mollusks demonstrate exceptional capacities for long term survival without oxygen. Analysis of gene expression under anoxic conditions, including the subsequent translational responses, allows examination of the functional mechanisms that support and regulate natural anaerobiosis and permit noninjurious transitions between aerobic and anoxic states. Identification of stress-specific gene expression can provide important insights into the metabolic adaptations that are needed for anoxia tolerance, with potential applications to anoxia-intolerant systems. Various methods are available to do this, including high throughput microarray screening and construction and screening of cDNA libraries. Anoxia-responsive genes have been identified in mollusks; some have known functions in other organisms but were not previously linked with anoxia survival. In other cases, completely novel anoxia-responsive genes have been discovered, some that show known motifs or domains that hint at function. Selected genes are expressed at different times over an anoxia-recovery time course with their transcription and translation being actively regulated to ensure protein expression at the optimal time. An examination of transcript status over the course of anoxia exposure and subsequent aerobic recovery identifies genes, and the proteins that they encode, that enhance cell survival under oxygen-limited conditions. Analysis of data generated from non-mainstream model systems allows for insight into the response by cells to anoxia stress. PMID:19794879

  2. Non-equilibrium dynamics of stochastic gene regulation.

    PubMed

    Ghosh, Anandamohan

    2015-01-01

    The process of gene regulation is comprised of intrinsically random events resulting in large cell-to-cell variability in mRNA and protein numbers. With gene expression being the central dogma of molecular biology, it is essential to understand the origin and role of these fluctuations. An intriguing observation is that the number of mRNA present in a cell are not only random and small but also that they are produced in bursts. The gene switches between an active and an inactive state, and the active gene transcribes mRNA in bursts. Transcriptional noise being bursty, so are the number of proteins and the subsequent gene expression levels. It is natural to ask the question: what is the reason for the bursty mRNA dynamics? And can the bursty dynamics be shown to be entropically favorable by studying the reaction kinetics underlying the gene regulation mechanism? The dynamics being an out-of-equilibrium process, the fluctuation theorem for entropy production in the reversible reaction channel is discussed. We compute the entropy production rate for varying degrees of burstiness. We find that the reaction parameters that maximize the burstiness simultaneously maximize the entropy production rate. PMID:25288134

  3. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing

    PubMed Central

    Guo, Wei; Schafer, Sebastian; Greaser, Marion L.; Radke, Michael H.; Liss, Martin; Govindarajan, Thirupugal; Maatz, Henrike; Schulz, Herbert; Li, Shijun; Parrish, Amanda M.; Dauksaite, Vita; Vakeel, Padmanabhan; Klaassen, Sabine; Gerull, Brenda; Thierfelder, Ludwig; Regitz-Zagrosek, Vera; Hacker, Timothy A.; Saupe, Kurt W.; Dec, G. William; Ellinor, Patrick T.; MacRae, Calum A.; Spallek, Bastian; Fischer, Robert; Perrot, Andreas; Özcelik, Cemil; Saar, Kathrin; Hubner, Norbert; Gotthardt, Michael

    2013-01-01

    Alternative splicing plays a major role in the adaptation of cardiac function exemplified by the isoform switch of titin, which adjusts ventricular filling. We previously identified a rat strain deficient in titin splicing. Using genetic mapping, we found a loss-of-function mutation in RBM20 as the underlying cause for the pathological titin isoform expression. Mutations in human RBM20 have previously been shown to cause dilated cardiomyopathy. We showed that the phenotype of Rbm20 deficient rats resembles the human pathology. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20 dependent regulation of alternative splicing. Additionally to titin we identified a set of 30 genes with conserved regulation between human and rat. This network is enriched for genes previously linked to cardiomyopathy, ion-homeostasis, and sarcomere biology. Our studies emphasize the importance of posttranscriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure. PMID:22466703

  4. Quantitative characterization of gene regulation by Rho dependent transcription termination.

    PubMed

    Hussein, Razika; Lee, Tiffany Y; Lim, Han N

    2015-08-01

    Rho factor dependent transcription termination (RTT) is common within the coding sequences of bacterial genes and it acts to couple transcription and translation levels. Despite the importance of RTT for gene regulation, its effects on mRNA and protein concentrations have not been quantitatively characterized. Here we demonstrate that the exogenous cfp gene encoding the cyan fluorescent protein can serve as a model for gene regulation by RTT. This was confirmed by showing that Psu and bicyclomycin decrease RTT and increase full length cfp mRNAs (but remarkably they have little effect on protein production). We then use cfp to characterize the relationship between its protein and full length mRNA concentrations when the translation initiation rate is varied by sequence modifications of the translation initiation region (TIR). These experiments reveal that the fold change in protein concentration (RP) and the fold change in full length mRNA concentration (Rm) have the relationship RP≈Rm(b), where b is a constant. The average value of b was determined from three separate data sets to be ~3.6. We demonstrate that the above power law function can predict how altering the translation initiation rate of a gene in an operon will affect the mRNA concentrations of downstream genes and specify a lower bound for the associated changes in protein concentrations. In summary, this study defines a simple phenomenological model to help program expression from single genes and operons that are regulated by RTT, and to guide molecular models of RTT. PMID:25982507

  5. The PRY/SPRY/B30.2 Domain of Butyrophilin 1A1 (BTN1A1) Binds to Xanthine Oxidoreductase

    PubMed Central

    Jeong, Jaekwang; Rao, Anita U.; Xu, Jinling; Ogg, Sherry L.; Hathout, Yetrib; Fenselau, Catherine; Mather, Ian H.

    2009-01-01

    Butyrophilin 1A1 (BTN1A1) and xanthine oxidoreductase (XOR) are highly expressed in the lactating mammary gland and are secreted into milk associated with the milk fat globule membrane (MFGM). Ablation of the genes encoding either protein causes severe defects in the secretion of milk lipid droplets, suggesting that the two proteins may function in the same pathway. Therefore, we determined whether BTN1A1 and XOR directly interact using protein binding assays, surface plasmon resonance analysis, and gel filtration. Bovine XOR bound with high affinity in a pH- and salt-sensitive manner (KD = 101 ± 31 nm in 10 mm HEPES, 150 mm NaCl, pH 7.4) to the PRY/SPRY/B30.2 domain in the cytoplasmic region of bovine BTN1A1. Binding was stoichiometric, with one XOR dimer binding to either two BTN1A1 monomers or one dimer. XOR bound to BTN1A1 orthologs from mice, humans, or cows but not to the cytoplasmic domains of the closely related human paralogs, BTN2A1 or BTN3A1, or to the B30.2 domain of human RoRet (TRIM 38), a protein in the TRIM family. Analysis of the protein composition of the MFGM of wild type and BTN1A1 null mice showed that most of the XOR in mice lacking BTN1A1 was released from the MFGM in a soluble form when the milk lipid droplets were disrupted to prepare membrane, compared with wild-type mice, in which most of the XOR remained membrane-bound. Thus BTN1A1 functions in vivo to stabilize the association of XOR with the MFGM by direct interactions through the PRY/SPRY/B30.2 domain. The potential significance of BTN1A1/XOR interactions in the mammary gland and other tissues is discussed. PMID:19531472

  6. Drosha Regulates Gene Expression Independently of RNA Cleavage Function

    PubMed Central

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara; Plass, Mireya; Eyras, Eduardo; Cáceres, Javier F.; Proudfoot, Nicholas J.

    2013-01-01

    Summary Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression. PMID:24360955

  7. Stochastic Gene Expression in Networks of Post-transcriptional Regulators

    NASA Astrophysics Data System (ADS)

    Baker, Charles; Jia, Tao; Pendar, Hodjat; Kulkarni, Rahul

    2012-02-01

    Post-transcriptional regulators, such as small RNAs and microRNAs, are critical elements of diverse cellular pathways. It has been postulated that, in several important cases, the role of these regulators is to to modulate the noise in gene expression for the regulated target. Correspondingly, general stochastic models have been developed, and results obtained, for the case in which a single sRNA regulates a single mRNA target. We generalize these results to networks containing a single mRNA regulated by multiple sRNAs and to networks containing multiple mRNAs regulated by a single sRNA. For these systems, we obtain exact expressions relating the mean levels of the sRNAs to the mean levels of the mRNAs. Additionally, we consider the convergence of the original model to an approximate model which considers sRNA concentrations to be high; for the latter model we derive an analytic form for the generating function of the protein distribution. Finally, we discuss potential experimental protocols which, in combination with the derived results, can be used to infer the underlying gene expression parameters.

  8. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  9. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  10. Intron retention-dependent gene regulation in Cryptococcus neoformans

    PubMed Central

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  11. New roles of SHOX as regulator of target genes.

    PubMed

    Rappold, G A; Durand, C; Decker, E; Marchini, A; Schneider, K U

    2012-05-01

    The homeobox gene SHOX encodes a transcription factor which is important for normal limb development. Approximately 5 to 10% of short patients exhibit a mutation or deletion in either the SHOX gene or its downstream enhancer regions. In humans, SHOX deficiency has been associated with various short stature syndromes as well as non-syndromic idiopathic short stature. A common feature of these syndromes is disproportionate short stature with a particular shortening of the forearms and lower legs. Madelung deformity, cubitus valgus, high-arched palate and muscular hypertrophy also differed markedly between patients with or without SHOX gene defects. A clinical trial in patients with SHOX deficiency and Turner syndrome demonstrated highly significant growth hormone-stimulated increases in height velocity and height SDS in both groups. Employing microarray analyses and cell culture experiments, a strong effect of SHOX on the expression of the natriuretic peptide BNP and the fibroblast growth factor receptor gene FGFR3 could be demonstrated. We found that BNP was positively regulated, while Fgfr3 was negatively regulated by SHOX. A regulation that occurs mainly in the mesomelic segments, a region where SHOX is known to be strongly expressed, offers a possible explanation for the phenotypes seen in patients with FGFR3 (e.g. achondroplasia) and SHOX defects (e.g. Léri-Weill dyschondrosteosis). PMID:22946287

  12. Combinatorial gene regulation by modulation of relative pulse timing

    PubMed Central

    Lin, Yihan; Sohn, Chang Ho; Dalal, Chiraj K.; Cai, Long; Elowitz, Michael B.

    2015-01-01

    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell. PMID:26466562

  13. Intron retention-dependent gene regulation in Cryptococcus neoformans.

    PubMed

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  14. Gene bionetworks that regulate ovarian primordial follicle assembly

    PubMed Central

    2013-01-01

    Background Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female’s reproductive life. Results The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence (increase or decrease) primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. Conclusions A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease. PMID:23875758

  15. Six genes strongly regulated by mercury in Pisum sativum roots.

    PubMed

    Sävenstrand, Helena; Strid, Ake

    2004-02-01

    Suppression subtractive hybridisation was used to isolate heavy metal-induced genes from Pisum sativum roots hydroponically exposed to 5 microM HgCl2 and 10 microM EDTA. Six genes were induced out of which one, PsHMIP6B, was novel. The other genes (PsSAMT, PsI2'H, PsNDA, PsAPSR, PsPOD) had not previously been isolated from pea and sequenced. All six genes were also induced after exposure to 5 microM HgCl2 in the absence of EDTA. The induction pattern was in some cases different for the two Hg species, demonstrating a quicker response to-free Hg2+ than Hg-EDTA. The stress-specificity of the gene regulation was investigated by hydroponically adding 5 microM Cd2+. Most Hg-induced cDNAs were also induced by Cd2+ but to a smaller extent than after Hg exposure. In addition, the gene expression was also probed for tissue specificity, which showed that all six genes were expressed in roots and not in leaves. PMID:15283129

  16. Regulation of proboscipedia in Drosophila by homeotic selector genes.

    PubMed Central

    Rusch, D B; Kaufman, T C

    2000-01-01

    The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct. PMID:10978284

  17. Gene regulation by structured mRNA elements.

    PubMed

    Wachter, Andreas

    2014-05-01

    The precise temporal and spatial coordination of gene activity, based on the integration of internal and external signals, is crucial for the accurate functioning of all biological processes. Although the basic principles of gene expression were established some 60 years ago, recent research has revealed a surprising complexity in the control of gene activity. Many of these gene regulatory mechanisms occur at the level of the mRNA, including sophisticated gene control tasks mediated by structured mRNA elements. We now know that mRNA folds can serve as highly specific receptors for various types of molecules, as exemplified by metabolite-binding riboswitches, and interfere with pro- and eukaryotic gene expression at the level of transcription, translation, and RNA processing. Gene regulation by structured mRNA elements comprises versatile strategies including self-cleaving ribozymes, RNA-folding-mediated occlusion or presentation of cis-regulatory sequences, and sequestration of trans-acting factors including other RNAs and proteins. PMID:24780087

  18. Complex structure and regulation of the ABP/SHBG gene.

    PubMed

    Joseph, D R; Sullivan, P M; Wang, Y M; Millhorn, D E; Bayliss, D M

    1991-01-01

    Extracellular androgen-binding proteins (ABPs) are thought to modulate the regulatory functions of androgens and the trans-acting nuclear androgen receptor. Testicular ABP and plasma sex hormone-binding globulin (SHBG), which is produced in the liver, are encoded by the same gene. We report here that the ABP/SHBG gene is also expressed in fetal rat liver and adult brain. Immunoreactive ABP was localized in the brain and fetal liver and mRNAs were identified in both tissues by northern blot hybridization. Analysis of brain and fetal liver cDNA clones revealed alternatively processed RNAs with sequence characteristics suggesting the encoded proteins could act as competitors of ABP/SHBG binding to cell surface receptors. One cDNA represented a fused transcript of the ABP/SHBG gene and the histidine decarboxylase gene that was apparently formed by a trans-splicing process. Gene sequencing experiments indicate that tissue-specific ABP/SHBG gene promoter-enhancer elements are utilized in testis, brain and fetal liver. These data demonstrate that the structure, RNA transcript processing and likely regulation of the ABP/SHBG gene are very complex. PMID:1958575

  19. Mechanism of cardiomyocyte PGC-1α gene regulation by ERRα.

    PubMed

    Ramjiawan, Angela; Bagchi, Rushita A; Albak, Laura; Czubryt, Michael P

    2013-06-01

    Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α) regulates critical genes involved in cardiac mitochondrial biogenesis and fatty acid oxidation, and its loss is associated with impaired metabolism and various cardiac pathologies. Estrogen-related receptor α (ERRα) targets many of the same genes as PGC-1α, and extensive cross talk exists between these 2 regulators. Here we report the identification of an evolutionarily conserved ERRα binding site within the PGC-1α promoter. Using luciferase reporter assays and overexpression, inhibition, or knockdown of ERRα, we show that PGC-1α expression is critically dependent upon ERRα in primary cardiomyocytes. We demonstrate that short-term hypoxia results in reduced ERRα mRNA expression, which precedes a similar loss of PGC-1α mRNA. However, chromatin immunoprecipitation reveals that despite a key role for ERRα in regulating PGC-1α in normoxic cardiomyocytes, ERRα loss is not responsible for PGC-1α loss in hypoxia. Histone deacetylase 5 (HDAC5) has previously been demonstrated to strongly inhibit expression of PGC-1α, and we show that overexpression of ERRα is sufficient to overcome this repressive effect. Our data elucidates the mechanism by which ERRα regulates cardiac PGC-1α gene expression, and suggests that ERRα may provide a means to normalize PGC-1α expression that could be useful in the development of strategies aimed at improving cardiac metabolism in disease. PMID:23668787

  20. Epigenetic Regulation of Bovine Spermatogenic Cell-Specific Gene Boule

    PubMed Central

    Luo, Hua; Xu, Hongtao; Pan, Zengxiang; Xie, Zhuang; Li, Qifa

    2015-01-01

    Non-primate mammals have two deleted azoospermia (DAZ) family genes, DAZL and Boule; genes in this family encode RNA-binding proteins essential for male fertility in diverse animals. Testicular DAZL transcription is regulated by epigenetic factors such as DNA methylation. However, nothing is known about the epigenetic regulation of Boule. Here, we explored the role of DNA methylation in the regulation of the bovine Boule (bBoule) gene. We found that a long CpG island (CGI) in the bBoule promoter was hypermethylated in the testes of cattle-yak hybrids with low bBoule expression, whereas cattle had relatively low methylation levels (P < 0.01), and there was no difference in the methylation level in the short CGI of the gene body between cattle and cattle-yak hybrids (P > 0.05). We identified a 107 bp proximal core promoter region of bBoule. Intriguingly, the differences in the methylation level between cattle and cattle-yak hybrids were larger in the core promoter than outside the core promoter. An in vitro methylation assay showed that the core promoter activity of bBoule decreased significantly after M.SssI methylase treatment (P < 0.01). We also observed dramatically increased bBoule transcription in bovine mammary epithelial cells (BMECs) after treatment with the methyltransferase inhibitor 5-Aza-dC. Taken together, our results establish that methylation status of the core promoter might be involved in testicular bBoule transcription, and may provide new insight into the epigenetic regulation of DAZ family genes and clinical insights regarding male infertility. PMID:26030766

  1. Local and global responses in complex gene regulation networks

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  2. Cloning and regulation of the rat mdr2 gene.

    PubMed Central

    Brown, P C; Thorgeirsson, S S; Silverman, J A

    1993-01-01

    We have cloned the complete cDNA encoding the rat mdr2 gene by a combination of library screening and the polymerase chain reaction. The sequence of rat mdr2 cDNA is highly similar to other members of the mdr gene family but the initiation of transcription, tissue distribution and regulation of expression of rat mdr2 diverge from the other isoforms. Primer extension analysis showed rat mdr2 mRNA to have a major transcription start point at -277 and a minor one at approximately -518. We constructed gene specific probes for rat mdr2 and mdr1b and compared the expression patterns of these two genes. The highest expression of mdr2 mRNA was in the muscle, heart, liver and spleen. Both mdr2 and 1b mRNA levels were elevated in the livers of rats treated with CCl4 or following partial hepatectomies although the time course of induction of each gene differed. Mdr1b increased by 12 to 24 hours while mdr2 did not increase until 48 hours. Treatment of isolated hepatocytes or RC3 cells with cycloheximide did not effect mdr2 mRNA. In contrast, mdr1b expression was increased. These data suggest that rat mdr2, unlike mdr1b, is not regulated by a negative trans-acting protein factor. Images PMID:8103593

  3. Common genes regulate food and ethanol intake in Drosophila.

    PubMed

    Sekhon, Morgan L; Lamina, Omoteniola; Hogan, Kerry E; Kliethermes, Christopher L

    2016-06-01

    The abuse liability of alcohol (ethanol) is believed to result in part from its actions on neurobiological substrates that underlie the motivation toward food and other natural reinforcers, and a growing body of evidence indicates that these substrates are broadly conserved among animal phyla. Understanding the extent to which the substrates regulating ethanol and food intake overlap is an important step toward developing therapeutics that selectively reduce ethanol intake. In the current experiments, we measured food and ethanol intake in Recombinant Inbred (RI) lines of Drosophila melanogaster using several assays, and then calculated genetic correlations to estimate the degree to which common genes might underlie behavior in these assays. We found that food intake and ethanol intake as measured in the capillary assay are genetically correlated traits in D. melanogaster, as well as in a panel of 11 Drosophila species that we tested subsequently. RI line differences in food intake in a dyed food assay were genetically unrelated to ethanol intake in the capillary assay or to ethanol preference measured using an olfactory trap apparatus. Using publicly available gene expression data, we found that expression profiles across the RI lines of a number of genes (including the D2-like dopamine receptor, DOPA decarboxylase, and fruitless) correlated with the RI line differences in food and ethanol intake we measured, while the expression profiles of other genes, including NPF, and the NPF and 5-HT2 receptors, correlated only with ethanol intake or preference. Our results suggest that food and ethanol intake are regulated by some common genes in Drosophila, but that other genes regulate ethanol intake independently of food intake. These results have implications toward the development of therapeutics that preferentially reduce ethanol intake. PMID:27286934

  4. UGT1A1 predicts outcome in colorectal cancer treated with irinotecan and fluorouracil

    PubMed Central

    Wang, Yan; Shen, Lin; Xu, Nong; Wang, Jin-Wan; Jiao, Shun-Chang; Liu, Ze-Yuan; Xu, Jian-Ming

    2012-01-01

    AIM: To evaluate effects of UDP-glucuronosyltransferase1A1 (UGT1A1) and thymidylate synthetase (TS) gene polymorphisms on irinotecan in metastatic colorectal cancer (mCRC). METHODS: Two irinotecan- and fluorouracil-based regimens, FOLFIRI and IFL, were selected as second-line therapy for 138 Chinese mCRC patients. Genomic DNA was extracted from peripheral blood samples before treatment. UGT1A1 and TS gene polymorphisms were determined by direct sequencing and restriction fragment length polymorphism, respectively. Gene polymorphisms of UGT1A1*28, UGT1A1*6 and promoter enhancer region of TS were analyzed. The relationship between genetic polymorphisms and clinical outcome, that is, response, toxicity and survival were assessed. Pharmacokinetic analyses were performed in a subgroup patients based on different UGT1A1 genotypes. Plasma concentration of irinotecan and its active metabolite SN-38 and inactive metabolite SN-38G were determined by high performance liquid chromatography. Differences in irinotecan and its metabolites between UGT1A1 gene variants were compared. RESULTS: One hundred and eight patients received the FOLFIRI regimen, 29 the IFL regimen, and one irinotecan monotherapy. One hundred and thirty patients were eligible for toxicity and 111 for efficacy evaluation. One hundred and thirty-six patients were tested for UGT1A1*28 and *6 genotypes and 125 for promoter enhancer region of TS. Patients showed a higher frequency of wild-type UGT1A1*28 (TA6/6) compared with a Caucasian population (69.9% vs 45.2%). No significant difference was found between response rates and UGT1A1 genotype, although wild-type showed lower response rates compared with other variants (17.9% vs 24.2% for UGT1A1*28, 15.7% vs 26.8% for UGT1A1*6). When TS was considered, the subgroup with homozygous UGT1A1*28 (TA7/7) and non-3RG genotypes showed the highest response rate (33.3%), while wild-type UGT1A1*28 (TA6/6) with non-3RG only had a 13.6% response rate, but no significant

  5. Cold stress regulation of gene expression in plants.

    PubMed

    Chinnusamy, Viswanathan; Zhu, Jianhua; Zhu, Jian-Kang

    2007-10-01

    Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses. PMID:17855156

  6. Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism?

    PubMed Central

    Petrosino, Jennifer M.; DiSilvestro, David; Ziouzenkova, Ouliana

    2014-01-01

    In this review, we summarize recent advances in understanding vitamin A-dependent regulation of sex-specific differences in metabolic diseases, inflammation, and certain cancers. We focus on the characterization of the aldehyde dehydrogenase-1 family of enzymes (ALDH1A1, ALDH1A2, ALDH1A3) that catalyze conversion of retinaldehyde to retinoic acid. Additionally, we propose a “horizontal transfer of signaling” from estrogen to retinoids through the action of ALDH1A1. Although estrogen does not directly influence expression of Aldh1a1, it has the ability to suppress Aldh1a2 and Aldh1a3, thereby establishing a female-specific mechanism for retinoic acid generation in target tissues. ALDH1A1 regulates adipogenesis, abdominal fat formation, glucose tolerance, and suppression of thermogenesis in adipocytes; in B cells, ALDH1A1 plays a protective role by inducing oncogene suppressors Rara and Pparg. Considering the conflicting responses of Aldh1a1 in a multitude of physiological processes, only tissue-specific regulation of Aldh1a1 can result in therapeutic effects. We have shown through successful implantation of tissue-specific Aldh1a1−/− preadipocytes that thermogenesis can be induced in wild-type adipose tissues to resolve diet-induced visceral obesity in females. We will briefly discuss the emerging role of ALDH1A1 in multiple myeloma, the regulation of reproduction, and immune responses, and conclude by discussing the role of ALDH1A1 in future therapeutic applications. PMID:24594504

  7. Reversible histone methylation regulates brain gene expression and behavior

    PubMed Central

    Xu, Jun; Andreassi, Megan

    2011-01-01

    Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior. PMID:20816965

  8. Zebrafish rest regulates developmental gene expression but not neurogenesis.

    PubMed

    Kok, Fatma O; Taibi, Andrew; Wanner, Sarah J; Xie, Xiayang; Moravec, Cara E; Love, Crystal E; Prince, Victoria E; Mumm, Jeff S; Sirotkin, Howard I

    2012-10-01

    The transcriptional repressor Rest (Nrsf) recruits chromatin-modifying complexes to RE1 'silencer elements', which are associated with hundreds of neural genes. However, the requirement for Rest-mediated transcriptional regulation of embryonic development and cell fate is poorly understood. Conflicting views of the role of Rest in controlling cell fate have emerged from recent studies. To address these controversies, we examined the developmental requirement for Rest in zebrafish using zinc-finger nuclease-mediated gene targeting. We discovered that germ layer specification progresses normally in rest mutants despite derepression of target genes during embryogenesis. This analysis provides the first evidence that maternal rest is essential for repression of target genes during blastula stages. Surprisingly, neurogenesis proceeds largely normally in rest mutants, although abnormalities are observed within the nervous system, including defects in oligodendrocyte precursor cell development and a partial loss of facial branchiomotor neuron migration. Mutants progress normally through embryogenesis but many die as larvae (after 12 days). However, some homozygotes reach adulthood and are viable. We utilized an RE1/NRSE transgenic reporter system to dynamically monitor Rest activity. This analysis revealed that Rest is required to repress gene expression in mesodermal derivatives including muscle and notochord, as well as within the nervous system. Finally, we demonstrated that Rest is required for long-term repression of target genes in non-neural tissues in adult zebrafish. Our results point to a broad role for Rest in fine-tuning neural gene expression, rather than as a widespread regulator of neurogenesis or cell fate. PMID:22951640

  9. Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*

    PubMed Central

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-01-01

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215

  10. MicroRNA-33a-5p Modulates Japanese Encephalitis Virus Replication by Targeting Eukaryotic Translation Elongation Factor 1A1

    PubMed Central

    Chen, Zheng; Ye, Jing; Ashraf, Usama; Li, Yunchuan; Wei, Siqi; Wan, Shengfeng; Zohaib, Ali; Song, Yunfeng; Chen, Huanchun

    2016-01-01

    ABSTRACT Japanese encephalitis virus (JEV) is a typical mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. However, the molecular mechanism for JEV pathogenesis is still unclear. MicroRNAs (miRNAs) are small noncoding RNAs that act as gene regulators. They are directly or indirectly involved in many cellular functions owing to their ability to target mRNAs for degradation or translational repression. However, how cellular miRNAs are regulated and their functions during JEV infection are largely unknown. In the present study, we found that JEV infection downregulated the expression of endogenous cellular miR-33a-5p. Notably, artificially transfecting with miR-33a-5p mimics led to a significant decrease in viral replication, suggesting that miR-33a-5p acts as a negative regulator of JEV replication. A dual-luciferase reporter assay identified eukaryotic translation elongation factor 1A1 (EEF1A1) as one of the miR-33a-5p target genes. Our study further demonstrated that EEF1A1 can interact with the JEV proteins NS3 and NS5 in replicase complex. Through this interaction, EEF1A1 can stabilize the components of viral replicase complex and thus facilitates viral replication during JEV infection. Taken together, these results suggest that miR-33a-5p is downregulated during JEV infection, which contributes to viral replication by increasing the intracellular level of EEF1A1, an interaction partner of JEV NS3 and NS5. This study provides a better understanding of the molecular mechanisms of JEV pathogenesis. IMPORTANCE MiRNAs are critical regulators of gene expression that utilize sequence complementarity to bind to and modulate the stability or translation efficiency of target mRNAs. Accumulating data suggest that miRNAs regulate a wide variety of molecular mechanisms in the host cells during viral infections. JEV, a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans worldwide. The roles of cellular mi

  11. Regulation of Caulobacter crescentus ilvBN gene expression.

    PubMed Central

    Tarleton, J C; Malakooti, J; Ely, B

    1994-01-01

    As part of an effort to determine the mechanisms employed by Caulobacter crescentus to regulate gene expression, the ilvBN genes encoding the two subunits of an acetohydroxy acid synthase (AHAS) have been characterized. Analysis of the DNA sequences indicated that the C. crescentus AHAS was highly homologous to AHAS isozymes from other organisms. S1 nuclease and primer extension studies demonstrated that transcription initiation occurred 172 bp upstream of the AHAS coding region. The region between the AHAS coding region and the transcription initiation site was shown to have the properties of a transcription attenuator. Deletion analysis of the region containing the stem-loop structure of the proposed attenuator resulted in the derepression of ilvBN expression. Thus, it appears that C. crescentus uses attenuation to regulate the expression of the ilvBN operon. Images PMID:8206855

  12. Obtain osteoarthritis related molecular signature genes through regulation network.

    PubMed

    Li, Yawei; Wang, Bing; Lv, Guohua; Xiong, Guangzhong; Liu, Wei Dong; Li, Lei

    2012-01-01

    Osteoarthritis (OA), also known as degenerative joint disease or osteoarthrosis, is the most common form of arthritis. OA occurs when cartilage in the joints wears down over time. We used the GSE1919 series to identify potential genes that correlated to OA. The aim of our study was to obtain a molecular signature of OA through the regulation network based on differentially expressed genes. From the result of regulation network construction in OA, a number of transcription factors (TFs) and pathways closely related to OA were linked by our method. Peroxisome proliferator-activated receptor γ also arises as hub nodes in our transcriptome network and certain TFs containing CEBPD, EGR2 and ETS2 were shown to be related to OA by a previous study. PMID:21946934

  13. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  14. Sequence and regulation of the porcine FSHR gene promoter.

    PubMed

    Wu, Wangjun; Han, Jing; Cao, Rui; Zhang, Jinbi; Li, Bojiang; Liu, Zequn; Liu, Kaiqing; Li, Qifa; Pan, Zengxiang; Chen, Jie; Liu, Honglin

    2015-03-01

    Follicle-stimulating hormone (FSH) plays a crucial role in animal reproduction and exerts its physiological functions by interacting with the FSH receptor (FSHR). The FSHR is exclusively expressed in granulose cells in the ovary and its expression level is closely related to granulose cell differentiation and follicle maturation. In mammal, most of the follicles undergo atresia, while follicle atresia is mainly caused by granulosa cell apoptosis. However, knowledge on the transcriptional regulatory mechanisms of the porcine FSHR gene in granulosa cell is still limited. In this study, approximately 2.1kb of the proximal promoter sequence of the porcine FSHR gene were obtained by genome walking, and the regulatory elements and transcription factors in the porcine FSHR promoter sequence were predicted. Furthermore, the core promoter region (-1195/-598) of the porcine FSHR gene was identified using a luciferase assay. Subsequently, the relationship between expression levels of the porcine FSHR gene and histone H3K9 acetylation levels around the core promoter region (-787/-572) in vivo and invitro were analyzed. Our results showed that an increased FSHR gene expression level was accompanied with an increase in histone H3K9 acetylation levels, suggesting that histone H3K9 acetylation could regulate the expression of the porcine FSHR gene. PMID:25599592

  15. Tools for regulated gene expression in the chloroplast of Chlamydomonas.

    PubMed

    Rochaix, Jean-David; Surzycki, Raymond; Ramundo, Silvia

    2014-01-01

    The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region. PMID:24599871

  16. Cold stress initiates the Nrf2/UGT1A1/L-FABP signaling pathway in chickens.

    PubMed

    Chen, X Y; Li, R; Geng, Z Y

    2015-11-01

    Cold stress triggers an anti-oxidative response in animals regulated by Nrf2 (nuclear factor 2-like, NFE2L2) binding to deoxyribonucleic acid-regulatory sequences near stress-responsive genes. To identify chicken Nrf2-regulated genes, 3 genetically related experimental groups (EG) with 40 Huainan partridge chickens in each group were chosen. The chickens were maintained at 20°C environmental temperature from 5 wk of age. At 6 wk of age, 10 chickens from each EG were still maintained at 20°C as control, and the other 30 chickens from each EG were exposed to 6 ± 2°C. Liver samples were collected from the control and from chickens exposed to 6 ± 2°C for 12, 24, and 72 h for co-immuno-precipitation (CoIP) analysis. Chromatin immunoprecipitation (ChIP)-sequencing experiment in liver cells treated with Dimethyl fumarate (DMF) were carried out. A de novo motif was discovered which closely matched the core Nrf2 consensus binding motif. Genes involved in de novo motif discovery were further analyzed for their enrichment in the anti-oxidative response pathway and the lipid anabolism pathway. There were 14 genes found which are related to oxidative stress. To examine the downstream factors of the 14 responsive genes, one of them, UGT1A1 (UDP glucuronosyltransferase), was further analyzed by CoIP experiment and nano LC-ESI-MS/MS analysis. It was detected that fatty acid-binding protein (L-FABP, 127 AA) might be the potential UGT1A1 downstream interaction proteins. In conclusion, it is proposed that chickens under cold stress generate anti-oxidative stress and thus trigger the Nrf2/ARE signaling pathway, which further up-regulates the expression of L-FABP to inactivate lipid peroxidation of the cell membrane and promote fatty acid storage against the cold environment. PMID:26453599

  17. Regulation of cry gene expression in Bacillus thuringiensis.

    PubMed

    Deng, Chao; Peng, Qi; Song, Fuping; Lereclus, Didier

    2014-01-01

    Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels. PMID:25055802

  18. Regulation of clock-controlled genes in mammals.

    PubMed

    Bozek, Katarzyna; Relógio, Angela; Kielbasa, Szymon M; Heine, Markus; Dame, Christof; Kramer, Achim; Herzel, Hanspeter

    2009-01-01

    The complexity of tissue- and day time-specific regulation of thousands of clock-controlled genes (CCGs) suggests that many regulatory mechanisms contribute to the transcriptional output of the circadian clock. We aim to predict these mechanisms using a large scale promoter analysis of CCGs.Our study is based on a meta-analysis of DNA-array data from rodent tissues. We searched in the promoter regions of 2065 CCGs for highly overrepresented transcription factor binding sites. In order to compensate the relatively high GC-content of CCG promoters, a novel background model to avoid a bias towards GC-rich motifs was employed. We found that many of the transcription factors with overrepresented binding sites in CCG promoters exhibit themselves circadian rhythms. Among the predicted factors are known regulators such as CLOCKratioBMAL1, DBP, HLF, E4BP4, CREB, RORalpha and the recently described regulators HSF1, STAT3, SP1 and HNF-4alpha. As additional promising candidates of circadian transcriptional regulators PAX-4, C/EBP, EVI-1, IRF, E2F, AP-1, HIF-1 and NF-Y were identified. Moreover, GC-rich motifs (SP1, EGR, ZF5, AP-2, WT1, NRF-1) and AT-rich motifs (MEF-2, HMGIY, HNF-1, OCT-1) are significantly overrepresented in promoter regions of CCGs. Putative tissue-specific binding sites such as HNF-3 for liver, NKX2.5 for heart or Myogenin for skeletal muscle were found. The regulation of the erythropoietin (Epo) gene was analysed, which exhibits many binding sites for circadian regulators. We provide experimental evidence for its circadian regulated expression in the adult murine kidney. Basing on a comprehensive literature search we integrate our predictions into a regulatory network of core clock and clock-controlled genes. Our large scale analysis of the CCG promoters reveals the complexity and extensiveness of the circadian regulation in mammals. Results of this study point to connections of the circadian clock to other functional systems including metabolism

  19. Defining human insulin-like growth factor I gene regulation.

    PubMed

    Mukherjee, Aditi; Alzhanov, Damir; Rotwein, Peter

    2016-08-01

    Growth hormone (GH) plays an essential role in controlling somatic growth and in regulating multiple physiological processes in humans and other species. Insulin-like growth factor I (IGF-I), a conserved, secreted 70-amino acid peptide, is a critical mediator of many of the biological effects of GH. Previous studies have demonstrated that GH rapidly and potently promotes IGF-I gene expression in rodents and in some other mammals through the transcription factor STAT5b, leading to accumulation of IGF-I mRNAs and production of IGF-I. Despite this progress, very little is known about how GH or other trophic factors control human IGF1 gene expression, in large part because of the absence of any cellular model systems that robustly express IGF-I. Here, we have addressed mechanisms of regulation of human IGF-I by GH after generating cells in which the IGF1 chromosomal locus has been incorporated into a mouse cell line. Using this model, we found that physiological levels of GH rapidly stimulate human IGF1 gene transcription and identify several potential transcriptional enhancers in chromatin that bind STAT5b in a GH-regulated way. Each of the putative enhancers also activates a human IGF1 gene promoter in reconstitution experiments in the presence of the GH receptor, STAT5b, and GH. Thus we have developed a novel experimental platform that now may be used to determine how human IGF1 gene expression is controlled under different physiological and pathological conditions. PMID:27406741

  20. Accurate identification of UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibitors using UGT1A1-overexpressing HeLa cells.

    PubMed

    Sun, Hua; Zhou, Xiaotong; Wu, Baojian

    2015-01-01

    1. UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an irreplaceable role in detoxification of bilirubin and many drugs (e.g., SN-38). Here we aimed to explore the potential of UGT1A1-overexpressing HeLa cells (or HeLa1A1 cells) as a tool to accurately identify UGT1A1 inhibitors. 2. Determination of glucuronidation rates (β-estradiol and SN-38 as the substrates) was performed using HeLa1A1 cells and uridine diphosphoglucuronic acid (UDPGA)-supplemented cDNA expressed UGT1A1 enzyme (or microsomes). The inhibitory effects (IC50 values) of 20 structurally diverse compounds on the UGT1A1 activity were determined using HeLa1A1 cells and microsomal incubations. 3. In HeLa1A1 cells, the IC50 values for inhibition of β-estradiol glucuronidation by the tested compounds ranged from 0.33 to 94.6 µM. In the microsomal incubations, the IC50 values ranged from 0.47 to 155 µM. It was found that the IC50 values of all test compounds derived from the cells were well consistent with those from the microsomes (deviated by less than two-fold). Further, the IC50 values from the cells were strongly correlated with those from microsomes (r = 0.944, p < 0.001). Likewise, the IC50 values (0.37-77.3 µM) for inhibition of SN-38 glucuronidation in the cells were close to those (0.42-122 µM) for glucuronidation inhibition in microsomes. A strong correlation was also observed between the two sets of IC50 values (r = 0.978, p < 0.001). 4. In conclusion, UGT1A1-overexpressing HeLa cells were an appropriate tool to accurately depict the inhibition profiles of chemicals against UGT1A1. PMID:26068529

  1. Epigenetic Modulation of Collagen 1A1: Therapeutic Implications in Fibrosis and Endometriosis.

    PubMed

    Zheng, Ye; Khan, Zaraq; Zanfagnin, Valentina; Correa, Luiz F; Delaney, Abigail A; Daftary, Gaurang S

    2016-04-01

    Progressive fibrosis is recalcitrant to conventional therapy and commonly complicates chronic diseases and surgical healing. We evaluate here a novel mechanism that regulates scar-tissue collagen (COL1A1/Col1a1) expression and characterizes its translational relevance as a targeted therapy for fibrosis in an endometriosis disease model. Endometriosis is caused by displacement and implantation of uterine endometrium onto abdominal organs and spreads with progressive scarring. Transcription factor KLF11 is specifically diminished in endometriosis lesions. Loss of KLF11-mediated repression of COL1A1/Col1a1 expression resulted in increased fibrosis. To determine the biological significance of COL1A1/Col1a1 expression on fibrosis, we modulated its expression. In human endometrial-stromal fibroblasts, KLF11 recruited SIN3A/HDAC (histone deacetylase), resulting in COL1A1-promoter deacetylation and repression. This role of KLF11 was pharmacologically replicated by a histone acetyl transferase inhibitor (garcinol). In contrast, opposite effects were obtained with a HDAC inhibitor (suberoyl anilide hydroxamic acid), confirming regulatory specificity for these reciprocally active epigenetic mechanisms. Fibrosis was concordantly reversed in Klf11(-/-)animals by histone acetyl transferase inhibitor and in wild-type animals by HDAC inhibitor treatments. Aberrant lesional COL1A1 regulation is significant because fibrosis depended on lesion rather than host genotype. This is the first report demonstrating feasibility for targeted pharmacological reversal of fibrosis, an intractable phenotype of diverse chronic diseases. PMID:26935598

  2. Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes.

    PubMed

    Schriemer, Duco; Sribudiani, Yunia; IJpma, Arne; Natarajan, Dipa; MacKenzie, Katherine C; Metzger, Marco; Binder, Ellen; Burns, Alan J; Thapar, Nikhil; Hofstra, Robert M W; Eggen, Bart J L

    2016-08-01

    The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR. PMID:27266404

  3. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    PubMed Central

    Martínez, Luary C.; Vadyvaloo, Viveka

    2014-01-01

    Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria. PMID:24724055

  4. mRNA modifications: Dynamic regulators of gene expression?

    PubMed Central

    Hoernes, Thomas Philipp; Hüttenhofer, Alexander; Erlacher, Matthias David

    2016-01-01

    ABSTRACT The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ) and N1-methyladenosine (m1A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression. PMID:27351916

  5. Alternative RNA Structure-Coupled Gene Regulations in Tumorigenesis

    PubMed Central

    Chen, Feng-Chi

    2014-01-01

    Alternative RNA structures (ARSs), or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs) and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s) into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions. PMID:25551597

  6. Mechanical regulation of osteoclastic genes in human osteoblasts

    SciTech Connect

    Kreja, Ludwika Liedert, Astrid; Hasni, Sofia; Claes, Lutz; Ignatius, Anita

    2008-04-11

    Bone adaptation to mechanical load is accompanied by changes in gene expression of bone-forming cells. Less is known about mechanical effects on factors controlling bone resorption by osteoclasts. Therefore, we studied the influence of mechanical loading on several key genes modulating osteoclastogenesis. Human osteoblasts were subjected to various cell stretching protocols. Quantitative RT-PCR was used to evaluate gene expression. Cell stretching resulted in a significant up-regulation of receptor activator of nuclear factor-{kappa}B ligand (RANKL) immediate after intermittent loading (3 x 3 h, 3 x 6 h, magnitude 1%). Continuous loading, however, had no effect on RANKL expression. The expression of osteoprotegerin (OPG), macrophage-colony stimulating factor (M-CSF), and osteoclast inhibitory lectin (OCIL) was not significantly altered. The data suggested that mechanical loading could influence osteoclasts recruitment by modulating RANKL expression in human osteoblasts and that the effects might be strictly dependent on the quality of loading.

  7. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor); Dai, Shunhong (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  8. Virulence Gene Regulation by l-Arabinose in Salmonella enterica

    PubMed Central

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-01-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal. PMID:25991823

  9. The DEK oncoprotein and its emerging roles in gene regulation.

    PubMed

    Sandén, C; Gullberg, U

    2015-08-01

    The DEK oncogene is highly expressed in cells from most human tissues and overexpressed in a large and growing number of cancers. It also fuses with the NUP214 gene to form the DEK-NUP214 fusion gene in a subset of acute myeloid leukemia. Originally characterized as a member of this translocation, DEK has since been implicated in epigenetic and transcriptional regulation, but its role in these processes is still elusive and intriguingly complex. Similarly multifaceted is its contribution to cellular transformation, affecting multiple cellular processes such as self-renewal, proliferation, differentiation, senescence and apoptosis. Recently, the roles of the DEK and DEK-NUP214 proteins have been elucidated by global analysis of DNA binding and gene expression, as well as multiple functional studies. This review outlines recent advances in the understanding of the basic functions of the DEK protein and its role in leukemogenesis. PMID:25765544

  10. Regulation of Rubisco gene expression in C4 plants.

    PubMed

    Berry, James O; Mure, Christopher M; Yerramsetty, Pradeep

    2016-06-01

    Ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) incorporates inorganic carbon into an organic form, making this chloroplastic enzyme one of the most essential factors for all life on earth. Despite its central role in photosynthesis, research into regulation of the chloroplast rbcL and nuclear RbcS genes that encode this enzyme has lagged behind other plant gene systems. A major characteristic of kranz-type C4 plants is the accumulation of Rubisco only within chloroplasts of internalized bundle sheath cells that surround the leaf vascular centers. In plants that utilize the less common single cell C4 system, Rubisco accumulates only within one type of dimorphic chloroplasts localized to a specific region of leaf chlorenchyma cells. Understanding regulatory processes that restrict Rubisco gene expression to only one cell type or chloroplast type is a major focus of C4 research. Regulatory steps may include transcriptional, post-transcriptional, and post-translational processes. PMID:27026038

  11. slo K+ channel gene regulation mediates rapid drug tolerance

    NASA Astrophysics Data System (ADS)

    Ghezzi, Alfredo; Al-Hasan, Yazan M.; Larios, Leo E.; Bohm, Rudolf A.; Atkinson, Nigel S.

    2004-12-01

    Changes in neural activity caused by exposure to drugs may trigger homeostatic mechanisms that attempt to restore normal neural excitability. In Drosophila, a single sedation with the anesthetic benzyl alcohol changes the expression of the slo K+ channel gene and induces rapid drug tolerance. We demonstrate linkage between these two phenomena by using a mutation and a transgene. A mutation that eliminates slo expression prevents tolerance, whereas expression from an inducible slo transgene mimics tolerance in naïve animals. The behavioral response to benzyl alcohol can be separated into an initial phase of hyperkinesis and a subsequent phase of sedation. The hyperkinetic phase causes a drop in slo gene expression and makes animals more sensitive to benzyl alcohol. It is the sedative phase that stimulates slo gene expression and induces tolerance. We demonstrate that the expression level of slo is a predictor of drug sensitivity. drug abuse | potassium channel | transcription regulation

  12. Systematic identification of signal-activated stochastic gene regulation.

    PubMed

    Neuert, Gregor; Munsky, Brian; Tan, Rui Zhen; Teytelman, Leonid; Khammash, Mustafa; van Oudenaarden, Alexander

    2013-02-01

    Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model. This model yields insight into several dynamical features, including multistep regulation and switchlike activation for several osmosensitive genes. Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different environmental and genetic perturbations. Because our approach is general, it should facilitate a predictive understanding for signal-activated transcription of other genes in other pathways or organisms. PMID:23372015

  13. Sex chromosome complement regulates expression of mood-related genes

    PubMed Central

    2013-01-01

    , sex-related factors differentially influence expression of genes linked to mood regulation in the frontal cortex. The main factor influencing expression of GABA-, serotonin-, and dopamine-related genes was sex chromosome complement, with an unexpected pro-disease effect in XY mice relative to XX mice. This effect was partially opposed by gonadal sex and circulating testosterone, although all three factors influenced signal transduction pathways in males. Since GABA, serotonin, and dopamine changes are also observed in other psychiatric and neurodegenerative disorders, these findings have broader implications for the understanding of sexual dimorphism in adult psychopathology. PMID:24199867

  14. LEF-1 Regulates Tyrosinase Gene Transcription In Vitro

    PubMed Central

    Wang, Xueping; Liu, Yalan; Chen, Hongsheng; Mei, Lingyun; He, Chufeng; Jiang, Lu; Niu, Zhijie; Sun, Jie; Luo, Hunjin; Li, Jiada; Feng, Yong

    2015-01-01

    TYR, DCT and MITF are three important genes involved in maintaining the mature phenotype and producing melanin; they therefore participate in neural crest cell development into melanocytes. Previous studies have revealed that the Wnt signaling factor lymphoid enhancer-binding factor (LEF-1) can enhance DCT and MITF gene expression. However, whether LEF-1 also affects TYR gene expression remains unclear. In the present study, we found that LEF-1 regulated TYR transcription in vitro. LEF-1 overexpression increased TYR gene promoter activity, whereas LEF-1 knockdown by RNA interference significantly decreased TYR expression. Moreover, the core GTTTGAT sequence (-56 to -50) within the TYR promoter is essential for the effect of LEF-1 on TYR expression, and chromatin immunoprecipitation (ChIP) assay indicated that endogenous LEF-1 interacts with the TYR promoter. In addition, we observed a synergistic transactivation of the TYR promoter by LEF-1 and MITF. These data suggest that Wnt signaling plays an important role in regulating melanocyte development and differentiation. PMID:26580798

  15. Regulated expression of a vitellogenin fusion gene in transgenic nematodes.

    PubMed

    Spieth, J; MacMorris, M; Broverman, S; Greenspoon, S; Blumenthal, T

    1988-11-01

    In Caenorhabditis elegans the vitellogenin genes are expressed abundantly in the adult hermaphrodite intestine, but are otherwise silent. In order to begin to understand the mechanisms by which this developmental regulation occurs, we used the transformation procedure developed for C. elegans by A. Fire (EMBO. J., 1986, 5, 2673-2680) to obtain regulated expression of an introduced vitellogenin fusion gene. A plasmid with vit-2 upstream and coding sequences fused to coding and downstream sequences of vit-6 was injected into oocytes and stable transgenic strains were selected. We obtained seven independent strains, in which the plasmid DNA is integrated at a low copy number. All strains synthesize substantial amounts of a novel vitellogenin-like polypeptide of 155 kDa that accumulates in the intestine and pseudocoelom, but is not transported efficiently into oocytes. In two strains examined in detail the fusion gene is expressed with correct sex, tissue, and stage specificity. Thus we have demonstrated that the nematode transgenic system can give proper developmental expression of introduced genes and so can be used to identify DNA regulatory regions. PMID:3181632

  16. Osmotic Pressure Can Regulate Matrix Gene Expression in Bacillus subtilis

    PubMed Central

    Rubinstein, Shmuel M.; Kolodkin-Gal, Ilana; Mcloon, Anna; Chai, Liraz; Kolter, Roberto; Losick, Richard; Weitz, David A

    2012-01-01

    Many bacteria organize themselves into structurally complex communities known as biofilms in which the cells are held together by an extracellular matrix. In general, the amount of extracellular matrix is related to the robustness of the biofilm. Yet, the specific signals that regulate the synthesis of matrix remain poorly understood. Here we show that the matrix itself can be a cue that regulates the expression of the genes involved in matrix synthesis in Bacillus subtilis. The presence of the exopolysaccharide component of the matrix causes an increase in osmotic pressure that leads to an inhibition of matrix gene expression. We further show that non-specific changes in osmotic pressure also inhibit matrix gene expression and do so by activating the histidine kinase KinD. KinD, in turn, directs the phosphorylation of the master regulatory protein Spo0A, which at high levels represses matrix gene expression. Sensing a physical cue such as osmotic pressure, in addition to chemical cues, could be a strategy to non-specifically coordinate the behavior of cells in communities composed of many different species. PMID:22882172

  17. Mucin 1 Regulates Cox-2 Gene in Pancreatic Cancer

    PubMed Central

    Nath, Sritama; Roy, Lopamudra Das; Grover, Priyanka; Rao, Shanti; Mukherjee, Pinku

    2015-01-01

    Objective Eighty percent of pancreatic ductal adenocarcinomas (PDAs) overexpress mucin 1 (MUC1), a transmembrane mucin glycoprotein. MUC1high PDA patients also express high levels of cyclooxygenase 2 (COX-2) and show poor prognosis. The cytoplasmic tail of MUC1 (MUC1-CT) partakes in oncogenic signaling, resulting in accelerated cancer progression. Our aim was to understand the regulation of Cox-2 expression by MUC1. Methods Levels of COX-2 and MUC1 were determined in MUC1−/−, MUC1low, and MUC1high PDA cells and tumors using reverse transcriptase–polymerase chain reaction, Western blot, and immunohistochemistry. Proliferative and invasive potential was assessed using MTT and Boyden chamber assays. Chromatin immunoprecipitation was performed to evaluate binding of MUC1-CT to the promoter of COX-2 gene. Results Significantly higher levels of COX-2 mRNA and protein were detected in MUC1high versus MUC1low/null cells, which were recapitulated in vivo. In addition, deletion of MUC1 gene and transient knockdown of MUC1 led to decreased COX-2 level. Also, MUC1-CT associated with the COX-2 promoter at ∼1000 base pairs upstream of the transcription start site, the same gene locus where nuclear factor κB p65 associates with the COX-2 promoter. Conclusions Data supports a novel regulation of COX-2 gene by MUC1 in PDA, the intervention of which may lead to a better therapeutic targeting in PDA patients. PMID:26035123

  18. Genes regulated by Kctd15 in the developing neural crest

    PubMed Central

    Wong, Thomas Chi Bun; Rebbert, Martha; Wang, Chengdong; Chen, Xiongfong; Heffer, Alison; Zarelli, Valeria E.; Dawid, Igor B.; Zhao, Hui

    2016-01-01

    Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identify genes that are affected by overexpression of Kctd15. Among many genes identified we chose Duf domain containing protein 1(ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development. PMID:27389986

  19. Social regulation of gene expression in human leukocytes

    PubMed Central

    Cole, Steve W; Hawkley, Louise C; Arevalo, Jesusa M; Sung, Caroline Y; Rose, Robert M; Cacioppo, John T

    2007-01-01

    Background Social environmental influences on human health are well established in the epidemiology literature, but their functional genomic mechanisms are unclear. The present study analyzed genome-wide transcriptional activity in people who chronically experienced high versus low levels of subjective social isolation (loneliness) to assess alterations in the activity of transcription control pathways that might contribute to increased adverse health outcomes in social isolates. Results DNA microarray analysis identified 209 genes that were differentially expressed in circulating leukocytes from 14 high- versus low-lonely individuals, including up-regulation of genes involved in immune activation, transcription control, and cell proliferation, and down-regulation of genes supporting mature B lymphocyte function and type I interferon response. Promoter-based bioinformatic analyses showed under-expression of genes bearing anti-inflammatory glucocorticoid response elements (GREs; p = 0.032) and over-expression of genes bearing response elements for pro-inflammatory NF-κB/Rel transcription factors (p = 0.011). This reciprocal shift in pro- and anti-inflammatory signaling was not attributable to differences in circulating cortisol levels, or to other demographic, psychological, or medical characteristics. Additional transcription control pathways showing differential activity in bioinformatic analyses included the CREB/ATF, JAK/STAT, IRF1, C/EBP, Oct, and GATA pathways. Conclusion These data provide the first indication that human genome-wide transcriptional activity is altered in association with a social epidemiological risk factor. Impaired transcription of glucocorticoid response genes and increased activity of pro-inflammatory transcription control pathways provide a functional genomic explanation for elevated risk of inflammatory disease in individuals who experience chronically high levels of subjective social isolation. PMID:17854483

  20. MTA3 regulates CGB5 and Snail genes in trophoblast

    SciTech Connect

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  1. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    PubMed Central

    Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value < 10e−16), which highlights their importance in T1D. Functional annotation of T1D genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value < 10e−6). We also identified eight T1D genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes. PMID:26184322

  2. Hormones in Synergy: Regulation of the Pituitary Gonadotropin Genes

    PubMed Central

    Thackray, Varykina G.; Mellon, Pamela L.; Coss, Djurdjica

    2009-01-01

    The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHβ and FSHβ subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHβ and FSHβ gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH. PMID:19747958

  3. Decorin gene expression and its regulation in human keratinocytes

    SciTech Connect

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico; Kuri-Harcuch, Walid

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  4. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer. PMID:18347132

  5. COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients

    PubMed Central

    2014-01-01

    Background The majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype. Methods In this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System. Results We have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples. Conclusions Results suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b. PMID:24767406

  6. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line

    SciTech Connect

    Zhang Rong; Sun Jianguo; Ma Liping; Wu Xiaolan; Pan Guoyu; Hao Haiping; Zhou Fang; Jiye, A; Liu Changhui; Ai Hua; Shang Lili; Gao Haiyan; Peng Ying; Wan Ping; Wu Hui; Wang Guangji

    2011-04-01

    Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components from Danshen. The major aim of our present study was to investigate the induction potential of these four main components of tanshinones (TIIA, CTS, TI, and DHTI) on the expression of CYP1A1 and CYP1A2 in HepG2 cells. Our results showed that all of these four tanshinones caused a significant time- and concentration-dependent increase in the amount of CYP1A1/2 expression in HepG2 cells. These induction effects were further characterized through transcriptional regulation: the induction of CYP1A1/2 mRNA level by tanshinones was completely blocked by the transcription inhibitor actinomycin D; the expression of CYP1A1/2 heterogeneous nuclear RNA was induced by tanshinone treatment; and CYP1A1 mRNA stability was not influenced by these tanshinones. Interestingly, tanshinones plus B[a]P produced additive/synergistic effect on CYP1A1/2 induction. In addition, the tanshinone-induced CYP1A1/2 expression was abolished by the aryl hydrocarbon receptor (AhR) antagonist resveratrol, suggesting an AhR dependent transcription mechanism. In the reporter gene assay, while TI and DHTI significantly induced AhR-dependent luciferase activity, TIIA and CTS failed to induce this activity. Collectively, the tanshinones could induce CYP1A1 and CYP1A2 expression through transcriptional activation mechanism and exert differential effects on activating AhR in HepG2 cells. Our findings suggest that rational administration of tanshinones should be considered with respect to their effect on AhR and CYP1A1/2 expression.

  7. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    PubMed

    Srikhanta, Yogitha N; Gorrell, Rebecca J; Steen, Jason A; Gawthorne, Jayde A; Kwok, Terry; Grimmond, Sean M; Robins-Browne, Roy M; Jennings, Michael P

    2011-01-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M) system, controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates). Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis. PMID:22162751

  8. A Plant Gene Up-Regulated at Rust Infection Sites

    PubMed Central

    Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.

    2002-01-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348

  9. Regulation of collagen I gene expression by ras.

    PubMed Central

    Slack, J L; Parker, M I; Robinson, V R; Bornstein, P

    1992-01-01

    Although transformation of rodent fibroblasts can lead to dramatic changes in expression of extracellular matrix genes, the molecular basis and physiological significance of these changes remain poorly understood. In this study, we have investigated the mechanism(s) by which ras affects expression of the genes encoding type I collagen. Levels of both alpha 1(I) and alpha 2(I) collagen mRNAs were markedly reduced in Rat 1 fibroblasts overexpressing either the N-rasLys-61 or the Ha-rasVal-12 oncogene. In fibroblasts conditionally transformed with N-rasLys-61, alpha 1(I) transcript levels began to decline within 8 h of ras induction and reached 1 to 5% of control levels after 96 h. In contrast, overexpression of normal ras p21 had no effect on alpha 1(I) or alpha 2(I) mRNA levels. Nuclear run-on experiments demonstrated that the transcription rates of both the alpha 1(I) and alpha 2(I) genes were significantly reduced in ras-transformed cells compared with those in parental cells. In addition, the alpha 1(I) transcript was less stable in transformed cells. Chimeric plasmids containing up to 3.6 kb of alpha 1(I) 5'-flanking DNA and up to 2.3 kb of the 3'-flanking region were expressed at equivalent levels in both normal and ras-transformed fibroblasts. However, a cosmid clone containing the entire mouse alpha 1(I) gene, including 3.7 kb of 5'- and 4 kb of 3'-flanking DNA, was expressed at reduced levels in fibroblasts overexpressing oncogenic ras. We conclude that oncogenic ras regulates the type I collagen genes at both transcriptional and posttranscriptional levels and that this effect, at least for the alpha 1(I) gene, may be mediated by sequences located either within the body of the gene itself or in the distal 3'-flanking region. Images PMID:1406656

  10. The regulation of human immunodeficiency virus type-1 gene expression.

    PubMed

    Kingsman, S M; Kingsman, A J

    1996-09-15

    Despite 15 years of intensive research we still do not have an effective treatment for AIDS, the disease caused by human immunodeficiency virus (HIV). Recent research is, however, revealing some of the secrets of the replication cycle of this complex retrovirus, and this may lead to the development of novel antiviral compounds. In particular the virus uses strategies for gene expression that seem to be unique in the eukaryotic world. These involve the use of virally encoded regulatory proteins that mediate their effects through interactions with specific viral target sequences present in the messenger RNA rather than in the proviral DNA. If there are no cellular counterparts of these RNA-dependent gene-regulation pathways then they offer excellent targets for the development of antiviral compounds. The viral promoter is also subject to complex regulation by combinations of cellular factors that may be functional in different cell types and at different cell states. Selective interference of specific cellular factors may also provide a route to inhibiting viral replication without disrupting normal cellular functions. The aim of this review is to discuss the regulation of HIV-1 gene expression and, as far as it is possible, to relate the observations to viral pathogenesis. Some areas of research into the regulation of HIV-1 replication have generated controversy and rather than rehearsing this controversy we have imposed our own bias on the field. To redress the balance and to give a broader view of HIV-1 replication and pathogenesis we refer you to a number of excellent reviews [Cullen, B. R. (1992) Microbiol. Rev. 56, 375-394; Levy, J. A. (1993) Microbiol. Rev. 57, 183-394; Antoni, B. A., Stein, S. & Rabson, A. B. (1994) Adv. Virus Res. 43, 53-145; Rosen, C. A. & Fenyoe, E. M. (1995) AIDS (Phila.) 9, S1-S3]. PMID:8856047

  11. Regulation of the ansB gene of Salmonella enterica.

    PubMed

    Jennings, M P; Scott, S P; Beacham, I R

    1993-07-01

    The expression of L-asparaginase II (encoded by ansB) in Salmonella enterica was found to be positively regulated by the cAMP receptor protein (CRP) and anaerobiosis. The anaerobic regulation of the S. enterica ansB gene is not mediated by the anaerobic transcriptional activator FNR. This is unlike the situation of the ansB gene of Escherichia coli, which is dependent on both CRP and FNR. To investigate this fundamental difference in the regulation of L-asparaginase II expression in S. enterica, the ansB gene was cloned and the nucleotide sequence of the promoter region determined. Sequence analysis and transcript mapping of the 5' promoter region revealed a single transcriptional start point (tsp) and two regulatory sites with substantial homology with those found in E. coli. One site, centred -90.5 bp from the tsp, is homologous to a hybrid CRP/FNR ('CF') site which is the site of CRP regulation in the E. coli promoter. The other site, centred 40.5 bp upstream of the tsp, is homologous to the FNR binding site of the E. coli promoter. Significantly, however, a single base-pair difference exists in this site, at a position of the related CRP and FNR DNA-binding site consensus sequences known to be involved in CRP versus FNR specificity. Site-directed mutagenesis indicates that this single difference, relative to the homologous E. coli site, results in a CRP binding site and the observed FNR-independent ansB expression in S. enterica.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8412661

  12. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene

    NASA Technical Reports Server (NTRS)

    Breault, D. T.; Lichtler, A. C.; Rowe, D. W.

    1997-01-01

    Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.

  13. ARID3B Directly Regulates Ovarian Cancer Promoting Genes

    PubMed Central

    Bobbs, Alexander; Gellerman, Katrina; Hallas, William Morgan; Joseph, Stancy; Yang, Chao; Kurkewich, Jeffrey; Cowden Dahl, Karen D.

    2015-01-01

    The DNA-binding protein AT-Rich Interactive Domain 3B (ARID3B) is elevated in ovarian cancer and increases tumor growth in a xenograft model of ovarian cancer. However, relatively little is known about ARID3B's function. In this study we perform the first genome wide screen for ARID3B direct target genes and ARID3B regulated pathways. We identified and confirmed numerous ARID3B target genes by chromatin immunoprecipitation (ChIP) followed by microarray and quantitative RT-PCR. Using motif-finding algorithms, we characterized a binding site for ARID3B, which is similar to the previously known site for the ARID3B paralogue ARID3A. Functionality of this predicted site was demonstrated by ChIP analysis. We next demonstrated that ARID3B induces expression of its targets in ovarian cancer cell lines. We validated that ARID3B binds to an epidermal growth factor receptor (EGFR) enhancer and increases mRNA expression. ARID3B also binds to the promoter of Wnt5A and its receptor FZD5. FZD5 is highly expressed in ovarian cancer cell lines, and is upregulated by exogenous ARID3B. Both ARID3B and FZD5 expression increase adhesion to extracellular matrix (ECM) components including collagen IV, fibronectin and vitronectin. ARID3B-increased adhesion to collagens II and IV require FZD5. This study directly demonstrates that ARID3B binds target genes in a sequence-specific manner, resulting in increased gene expression. Furthermore, our data indicate that ARID3B regulation of direct target genes in the Wnt pathway promotes adhesion of ovarian cancer cells. PMID:26121572

  14. Structural Mechanisms of Peptide Recognition and Allosteric Modulation of Gene Regulation by the RRNPP Family of Quorum-Sensing Regulators.

    PubMed

    Do, Hackwon; Kumaraswami, Muthiah

    2016-07-17

    The members of RRNPP family of bacterial regulators sense population density-specific secreted oligopeptides and modulate the expression of genes involved in cellular processes, such as sporulation, competence, virulence, biofilm formation, conjugative plasmid transfer and antibiotic resistance. Signaling by RRNPP regulators include several steps: generation and secretion of the signaling oligopeptides, re-internalization of the signaling molecules into the cytoplasm, signal sensing by the cytosolic RRNPP regulators, signal-specific allosteric structural changes in the regulators, and interaction of the regulators with their respective regulatory target and gene regulation. The recently determined structures of the RRNPP regulators provide insight into the mechanistic aspects for several steps in this signaling circuit. In this review, we discuss the structural principles underlying peptide specificity, regulatory target recognition, and ligand-induced allostery in RRNPP regulators and its impact on gene regulation. Despite the conserved tertiary structure of these regulators, structural analyses revealed unexpected diversity in the mechanism of activation and molecular strategies that couple the peptide-induced allostery to gene regulation. Although these structural studies provide a sophisticated understanding of gene regulation by RRNPP regulators, much needs to be learned regarding the target DNA binding by yet-to-be characterized RNPP regulators and the several aspects of signaling by Rgg regulators. PMID:27283781

  15. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.

    PubMed

    Sherwood, Anna V; Henkin, Tina M

    2016-09-01

    Riboswitches are RNA elements that act on the mRNA with which they are cotranscribed to modulate expression of that mRNA. These elements are widely found in bacteria, where they have a broad impact on gene expression. The defining feature of riboswitches is that they directly recognize a physiological signal, and the resulting shift in RNA structure affects gene regulation. The majority of riboswitches respond to cellular metabolites, often in a feedback loop to repress synthesis of the enzymes used to produce the metabolite. Related elements respond to the aminoacylation status of a specific tRNA or to a physical parameter, such as temperature or pH. Recent studies have identified new classes of riboswitches and have revealed new insights into the molecular mechanisms of signal recognition and gene regulation. Application of structural and biophysical approaches has complemented previous genetic and biochemical studies, yielding new information about how different riboswitches operate. PMID:27607554

  16. Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome.

    PubMed

    Nuber, Ulrike A; Kriaucionis, Skirmantas; Roloff, Tim C; Guy, Jacky; Selfridge, Jim; Steinhoff, Christine; Schulz, Ralph; Lipkowitz, Bettina; Ropers, H Hilger; Holmes, Megan C; Bird, Adrian

    2005-08-01

    Rett syndrome (RTT) is a severe form of mental retardation, which is caused by spontaneous mutations in the X-linked gene MECP2. How the loss of MeCP2 function leads to RTT is currently unknown. Mice lacking the Mecp2 gene initially show normal postnatal development but later acquire neurological phenotypes, including heightened anxiety, that resemble RTT. The MECP2 gene encodes a methyl-CpG-binding protein that can act as a transcriptional repressor. Using cDNA microarrays, we found that Mecp2-null animals differentially express several genes that are induced during the stress response by glucocorticoids. Increased levels of mRNAs for serum glucocorticoid-inducible kinase 1 (Sgk) and FK506-binding protein 51 (Fkbp5) were observed before and after onset of neurological symptoms, but plasma glucocorticoid was not significantly elevated in Mecp2-null mice. MeCP2 is bound to the Fkbp5 and Sgk genes in brain and may function as a modulator of glucocorticoid-inducible gene expression. Given the known deleterious effect of glucocorticoid exposure on brain development, our data raise the possibility that disruption of MeCP2-dependent regulation of stress-responsive genes contributes to the symptoms of RTT. PMID:16002417

  17. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools

    PubMed Central

    Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria

    2014-01-01

    The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches. PMID:25566532

  18. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed Central

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-01-01

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle. Images PMID:7784171

  19. Gene regulation during cold stress acclimation in plants.

    PubMed

    Chinnusamy, Viswanathan; Zhu, Jian-Kang; Sunkar, Ramanjulu

    2010-01-01

    Cold stress adversely affects plant growth and development and thus limits crop productivity. Diverse plant species tolerate cold stress to a varying degree, which depends on reprogramming gene expression to modify their physiology, metabolism, and growth. Cold signal in plants is transmitted to activate CBF-dependent (C-repeat/drought-responsive element binding factor-dependent) and CBF-independent transcriptional pathway, of which CBF-dependent pathway activates CBF regulon. CBF transcription factor genes are induced by the constitutively expressed ICE1 (inducer of CBF expression 1) by binding to the CBF promoter. ICE1-CBF cold response pathway is conserved in diverse plant species. Transgenic analysis in different plant species revealed that cold tolerance can be significantly enhanced by genetic engineering CBF pathway. Posttranscriptional regulation at pre-mRNA processing and export from nucleus plays a role in cold acclimation. Small noncoding RNAs, namely micro-RNAs (miRNAs) and small interfering RNAs (siRNAs), are emerging as key players of posttranscriptional gene silencing. Cold stress-regulated miRNAs have been identified in Arabidopsis and rice. In this chapter, recent advances on cold stress signaling and tolerance are highlighted. PMID:20387039

  20. Identification and Characterization of Clostridium sordellii Toxin Gene Regulator

    PubMed Central

    Sirigi Reddy, Apoorva Reddy; Girinathan, Brintha Parasumanna; Zapotocny, Ryan

    2013-01-01

    Toxigenic Clostridium sordellii causes uncommon but highly lethal infections in humans and animals. Recently, an increased incidence of C. sordellii infections has been reported in women undergoing obstetric interventions. Pathogenic strains of C. sordellii produce numerous virulence factors, including sordellilysin, phospholipase, neuraminidase, and two large clostridial glucosylating toxins, TcsL and TcsH. Recent studies have demonstrated that TcsL toxin is an essential virulence factor for the pathogenicity of C. sordellii. In this study, we identified and characterized TcsR as the toxin gene (tcsL) regulator in C. sordellii. High-throughput sequencing of two C. sordellii strains revealed that tcsR lies within a genomic region that encodes TcsL, TcsH, and TcsE, a putative holin. By using ClosTron technology, we inactivated the tcsR gene in strain ATCC 9714. Toxin production and tcsL transcription were decreased in the tcsR mutant strain. However, the complemented tcsR mutant produced large amounts of toxins, similar to the parental strain. Expression of the Clostridium difficile toxin gene regulator tcdR also restored toxin production to the C. sordellii tcsR mutant, showing that these sigma factors are functionally interchangeable. PMID:23873908

  1. Neighboring Gene Regulation by Antisense Long Non-Coding RNAs

    PubMed Central

    Villegas, Victoria E.; Zaphiropoulos, Peter G.

    2015-01-01

    Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation—pretranscriptional, transcriptional and posttranscriptional—through DNA–RNA, RNA–RNA or protein–RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm. PMID:25654223

  2. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    PubMed Central

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  3. Evidence for differential regulation of genes in the chondroitin sulfate utilization pathway of Bacteroides thetaiotaomicron.

    PubMed Central

    Hwa, V; Salyers, A A

    1992-01-01

    Expression of the chondroitin sulfate utilization (csu) genes of Bacterioides thetaiotaomicron is regulated by chondroitin sulfate. We have now found, however, that the csu genes are not all regulated in the same way. In particular, the gene encoding beta-glucuronidase (csuE) is expressed under two different conditions that do not lead to expression of other csu genes. PMID:1729221

  4. The Discoidin I Gene Family of Dictyostelium Discoideum Is Linked to Genes Regulating Its Expression

    PubMed Central

    Welker, D. L.

    1988-01-01

    The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on linkage group II. This evidence is consistent with the discoidin I genes forming a gene cluster that may be under the control of a single regulatory element. The discoidin I genes are linked to three genetic loci (disA, motA, daxA) that affect the expression of the discoidin I protein. Linkage of the gene family members to regulatory loci may be important in the coordinate maintenance of the gene family and regulatory loci. A duplication affecting the entire discoidin gene family is also linked to group II; this appears to be a small tandem duplication. This duplication was mapped using a DNA polymorphism generated by insertion of the Tdd-3 mobile genetic element into a Tdd-2 element flanking the γ gene. A probe for Tdd-2 identified a restriction fragment length polymorphism in strain AX3K that was consistent with generation by a previously proposed Tdd-3 insertion event. A putative duplication or rearrangement of a second Tdd-2 element on linkage group IV of strain AX3K was also identified. This is the first linkage information available for mobile genetic elements in D. discoideum. PMID:3402731

  5. Identification of sodium chloride-regulated genes in Burkholderia cenocepacia.

    PubMed

    Bhatt, Shantanu; Weingart, Christine L

    2008-05-01

    Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen. PMID:18288523

  6. Stability of the Aryl hydrocarbon Receptor and its Regulated Genes in the Low activity Variant of Hepa-1 cell line

    PubMed Central

    Humphrey-Johnson, Andria; Abukalam, Rawia; Eltom, Sakina E.

    2015-01-01

    We examined the expression kinetics of some of the aryl hydrocarbon receptor (AhR)-regulated genes in LA1 variant cells compared to wild type (WT) Hepa-1 mouse hepatoma cell lines, and we investigated the stability of AhR protein as a key step in the function of this receptor. Treatment of both cell types with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in increased CYP1A1 and CYP1B1 mRNA with a subsequent down regulation of AhR. We show here that co-treatment with transcription inhibitor actinomycin D (ActD) has reversed the TCDD-induced depletion of AhR protein in WT. However, the proteolytic degradation of AhR in absence of TCDD was significantly higher in LA1 cells than in WT, and ActD treatment reduced this loss. Induction of CYP1A1 and CYP1B1 mRNA by TCDD in WT cells each exhibited bursts of activity in the initial hour which were about 3-fold greater than in LAI cells. The induced mRNA levels in LA1 exhibited a slow and sustained increase approximating the WT levels by 20 h. The induction of two other AhR-regulated genes also showed comparable turnover differences between the two cell types. Thus, altered regulation of the AhR responsive genes in LA1 may result from a difference in AhR stability. PMID:25637755

  7. Stability of the aryl hydrocarbon receptor and its regulated genes in the low activity variant of Hepa-1 cell line.

    PubMed

    Humphrey-Johnson, Andria; Abukalam, Rawia; Eltom, Sakina E

    2015-03-01

    We examined the expression kinetics of some of the aryl hydrocarbon receptor (AhR)-regulated genes in LA1 variant cells compared to wild type (WT) Hepa-1 mouse hepatoma cell lines, and we investigated the stability of AhR protein as a key step in the function of this receptor. Treatment of both cell types with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in increased CYP1A1 and CYP1B1 mRNA with a subsequent down regulation of AhR. We show here that co-treatment with transcription inhibitor actinomycin D (ActD) has reversed the TCDD-induced depletion of AhR protein in WT. However, the proteolytic degradation of AhR in absence of TCDD was significantly higher in LA1 cells than in WT, and ActD treatment reduced this loss. Induction of CYP1A1 and CYP1B1 mRNA by TCDD in WT cells each exhibited bursts of activity in the initial hour which were about 3-fold greater than in LAI cells. The induced mRNA levels in LA1 exhibited a slow and sustained increase approximating the WT levels by 20h. The induction of two other AhR-regulated genes also showed comparable turnover differences between the two types of cell. Thus, altered regulation of the AhR responsive genes in LA1 may result from a difference in AhR stability. PMID:25637755

  8. Microarray Analysis of Gene Expression Reveals that Cyclo-oxygenase-2 Gene Therapy Up-regulates Hematopoiesis and Down-regulates Inflammation During Endochondral Bone Fracture Healing

    PubMed Central

    Lau, K.-H. William; Popa, Nicoleta L.

    2014-01-01

    Background Cyclo-oxygenase-2 (Cox-2) is an inflammatory mediator that is necessary for the tissue repair, including bone fracture healing. Although the application of Cox-2 gene therapy to a murine closed femoral fracture has accelerated bony union, but the beneficial effect was not observed until the endochondral stage of bone repair that is well after the inflammatory stage normally subsides. Methods To identify the molecular pathways through which Cox-2 regulates fracture healing, we examined gene expression profile in fracture tissues in response to Cox-2 gene therapy during the endochondral bone repair phase. Cox-2 gene therapy was applied to the closed murine femur fracture model. Microarray analysis was performed at 10 days post-fracture to examine global gene expression profile in the fracture tissues during the endochondral bone repair phase. The entire repertoire of significantly expressed genes was examined by gene set enrichment analysis, and the most up-regulated individual genes were evaluated further. Results The genes that normally promote inflammation were under-represented in the microarray analysis, and the expression of several inflammatory chemokines was significantly down-regulated. There was an up-regulation of two key transcription factor genes that regulate hematopoiesis and erythropoiesis. More surprisingly, there was no significant up-regulation in the genes that are normally involved in angiogenesis or bone formation. However, the expression of two tissue remodeling genes was up-regulated. Conclusions The down-regulation of the inflammatory genes in response to Cox-2 gene therapy was unexpected, given the pro-inflammatory role of prostaglandins. Cox-2 gene therapy could promote bony union through hematopoietic precursor proliferation during endochondral bone repair and thereby enhances subsequently fracture callus remodeling that leads to bony union of the fracture gap. PMID:25247155

  9. Comparative studies of gene expression and the evolution of gene regulation

    PubMed Central

    Romero, Irene Gallego; Ruvinsky, Ilya; Gilad, Yoav

    2014-01-01

    The hypothesis that differences in gene regulation play an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels, as well as developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates, and how they are complemented by studies in model organisms. PMID:22705669

  10. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  11. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  12. Circuit-level input integration in bacterial gene regulation.

    PubMed

    Espinar, Lorena; Dies, Marta; Cagatay, Tolga; Süel, Gürol M; Garcia-Ojalvo, Jordi

    2013-04-23

    Gene regulatory circuits can receive multiple simultaneous inputs, which can enter the system through different locations. It is thus necessary to establish how these genetic circuits integrate multiple inputs as a function of their relative entry points. Here, we use the dynamic circuit regulating competence for DNA uptake in Bacillus subtilis as a model system to investigate this issue. Specifically, we map the response of single cells in vivo to a combination of (i) a chemical signal controlling the constitutive expression of key competence genes, and (ii) a genetic perturbation in the form of copy number variation of one of these genes, which mimics the level of stress signals sensed by the bacteria. Quantitative time-lapse fluorescence microscopy shows that a variety of dynamical behaviors can be reached by the combination of the two inputs. Additionally, the integration depends strongly on the relative locations where the two perturbations enter the circuit. Specifically, when the two inputs act upon different circuit elements, their integration generates novel dynamical behavior, whereas inputs affecting the same element do not. An in silico bidimensional bifurcation analysis of a mathematical model of the circuit offers good quantitative agreement with the experimental observations, and sheds light on the dynamical mechanisms leading to the different integrated responses exhibited by the gene regulatory circuit. PMID:23572583

  13. Pitx2 Regulates Procollagen Lysyl Hydroxylase (Plod) Gene Expression

    PubMed Central

    Hjalt, Tord A.; Amendt, Brad A.; Murray, Jeffrey C.

    2001-01-01

    The Rieger syndrome is an autosomal dominant disease characterized by ocular, craniofacial, and umbilical defects. Patients have mutations in PITX2, a paired-bicoid homeobox gene, also involved in left/right polarity determination. In this study we have identified a family of genes for enzymes responsible for hydroxylizing lysines in collagens as one group of likely cognate targets of PITX2 transcriptional regulation. The mouse procollagen lysyl hydroxylase (Plod)-2 gene was enriched for by chromatin precipitation using a PITX2/Pitx2-specific antibody. Plod-2, as well as the human PLOD-1 promoters, contains multiple bicoid (PITX2) binding elements. We show these elements to bind PITX2 specifically in vitro. The PLOD-1 promoter induces the expression of a luciferase reporter gene in the presence of PITX2 in cotransfection experiments. The Rieger syndrome causing PITX2 mutant T68P fails to induce PLOD-1–luciferase. Mutations and rearrangements in PLOD-1 are known to be prevalent in patients with Ehlers-Danlos syndrome, kyphoscoliosis type (type VI [EDVI]). Several of the same organ systems are involved in Rieger syndrome and EDVI. PMID:11157981

  14. Regulation of global gene expression and cell proliferation by APP.

    PubMed

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer's disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis. PMID:26936520

  15. Regulation of global gene expression and cell proliferation by APP

    PubMed Central

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer’s disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis. PMID:26936520

  16. Identification of genes regulated by UV/salicylic acid.

    SciTech Connect

    Paunesku, T.; Chang-Liu, C.-M.; Shearin-Jones, P.; Watson, C.; Milton, J.; Oryhon, J.; Salbego, D.; Milosavljevic, A.; Woloschak, G. E.; CuraGen Corp.

    2000-02-01

    Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrial NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.

  17. Glycerophosphorylcholine regulates Haemophilus influenzae glpQ gene expression.

    PubMed

    Alrousan, Enas; Fan, Xin

    2015-05-01

    An important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface of the host is the phosphorylcholine (ChoP) decoration of its lipopolysaccharides, which promotes adherence to the host cells. Haemophilus influenzae is able to use glycerophosphorylcholine (GPC) from host for ChoP synthesis. Utilization of GPC requires glpQ, which encodes a glycerophosphodiester phosphodiesterase enzyme. In this study, we investigate the transcriptional regulation of glpQ gene using real-time PCR and transcriptional fusion of H. influenzae glpQ promoter to the Escherichia coli lacZ reporter gene. The glpQ promoter activities were examined under environmental conditions including changes in temperature, oxygen, high salt and minimal growth medium. Our data showed that under room temperature and anaerobic conditions, the glpQ gene expression levels were significantly higher than under other growth conditions. In addition, the glpQ gene expression levels were upregulated in the presence of GPC. These results suggest that H. influenzae may upregulate glpQ expression in response to different environments it encounters during infection, from the airway surfaces (room temperature) to deep tissues (anaerobic). Upregulation of glpQ by GPC may allow efficient use of abundant GPC from mammalian cells by H. influenzae as a source of nutrient and for ChoP decoration of lipopolysaccharide that facilitates bacterial adhesion to host cells and growth during infection. PMID:25837816

  18. Light regulation of gene expression in higher plants

    SciTech Connect

    Tobin, E.M.; Silverthorne, J.

    1985-01-01

    In this review areas of currently active research are considered which have demonstrated that a plant's response to light involves changes in the expression of specific genes at the level of RNA. The regulation of gene expression by phytochrome and the UV-sensitive photoreceptor have been studied most extensively at the molecular level, and this review particularly focuses on such studies in higher plants. Some of the observations made on the differences in gene expression between light-grown and dark-grown plants are also included, although the photoreceptor(s) responsible for the differences may not have been ascertained. In some of these cases, phytochrome involvement has been or may be demonstrated in later studies, while in others the observed differences may be a result of the action of other photoreceptors or of multiple light-affected processes. One such process is the development of chloroplasts, a major developmental step triggered by light in angiosperms. In addition, many of the genes whose expression is changed by light and which have been studied at a molecular level encode chloroplast proteins. 156 references.

  19. Coherent organization in gene regulation: a study on six networks

    NASA Astrophysics Data System (ADS)

    Aral, Neşe; Kabakçıoğlu, Alkan

    2016-04-01

    Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes.

  20. [Strategies for regulating multiple genes in microbial cell factories].

    PubMed

    Jiang, Tianyi; Li, Lixiang; Ma, Cuiqing; Xu, Ping

    2010-10-01

    Microbial metabolic engineering and synthetic biology are important disciplines of microbial technology nowadays. Microbial cells are fast growing, easy to be cultivated in large scale, clear in genetic background and convenient in genetic modification. They play an important role in many domains. Microbial cell factory means an artificial microbial metabolic system that can be used in chemical production. The construction of a microbial cell factory needs transferring of multiple genes or a whole metabolic pathway, which may cause some problems such as metabolism imbalance and accumulation of mesostates. This review focuses on the regulation strategies of different levels involving simultaneous engagement of multiple genes. Future perspectives on the development of this domain were also discussed. PMID:21218630

  1. Coherent organization in gene regulation: a study on six networks.

    PubMed

    Aral, Neşe; Kabakçıoğlu, Alkan

    2016-01-01

    Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes. PMID:27171925

  2. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins

    PubMed Central

    Serganov, Alexander; Patel, Dinshaw J.

    2015-01-01

    Although various functions of RNA are carried out in conjunction with proteins, some catalytic RNAs, or ribozymes, which contribute to a range of cellular processes, require little or no assistance from proteins. Furthermore, the discovery of metabolite-sensing riboswitches and other types of RNA sensors has revealed RNA-based mechanisms that cells use to regulate gene expression in response to internal and external changes. Structural studies have shown how these RNAs can carry out a range of functions. In addition, the contribution of ribozymes and riboswitches to gene expression is being revealed as far more widespread than was previously appreciated. These findings have implications for understanding how cellular functions might have evolved from RNA-based origins. PMID:17846637

  3. Genes Regulating Epithelial Polarity Are Critical Suppressors of Esophageal Oncogenesis

    PubMed Central

    Li, Xiu-Min; Wang, Hui; Zhu, Li-Li; Zhao, Run-Zhen; Ji, Hong-Long

    2015-01-01

    Esophageal cancer is an aggressive disease featured by early lymphatic and hematogenous dissemination, and is the sixth leading cause of cancer-related deaths worldwide. The proper formation of apicobasal polarity is essential for normal epithelium physiology and tissue homeostasis, while loss of polarity is a hallmark of cancer development including esophageal oncogenesis. In this review, we summarized the stages of esophageal cancer development associated with the loss or deregulation of epithelial cell apicobasal polarity. Loss of epithelial apicobasal polarity exerts an indispensable role in the initiation of esophageal oncogenesis, tumor progression, and the advancement of tumors from benign to malignant. In particular, we reviewed the involvement of several critical genes, including Lkb1, claudin-4, claudin-7, Par3, Lgl1, E-cadherin, and the Scnn1 gene family. Understanding the role of apicobasal regulators may lead to new paradigms for treatment of esophageal tumors, including improvement of prognostication, early diagnosis, and individually tailored therapeutic interventions in esophageal oncology. PMID:26185530

  4. MicroRNA-regulated viral vectors for gene therapy.

    PubMed

    Geisler, Anja; Fechner, Henry

    2016-05-20

    Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases. PMID:27226955

  5. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis.

    PubMed

    Rucci, Nadia; Capulli, Mattia; Piperni, Sara Gemini; Cappariello, Alfredo; Lau, Patrick; Frings-Meuthen, Petra; Heer, Martina; Teti, Anna

    2015-02-01

    Mechanical loading represents a crucial factor in the regulation of skeletal homeostasis. Its reduction causes loss of bone mass, eventually leading to osteoporosis. In a previous global transcriptome analysis performed in mouse calvarial osteoblasts subjected to simulated microgravity, the most upregulated gene compared to unit gravity condition was Lcn2, encoding the adipokine Lipocalin 2 (LCN2), whose function in bone metabolism is poorly known. To investigate the mechanoresponding properties of LCN2, we evaluated LCN2 levels in sera of healthy volunteers subjected to bed rest, and found a significant time-dependent increase of this adipokine compared to time 0. We then evaluated the in vivo LCN2 regulation in mice subjected to experimentally-induced mechanical unloading by (1) tail suspension, (2) muscle paralysis by botulin toxin A (Botox), or (3) genetically-induced muscular dystrophy (MDX mice), and observed that Lcn2 expression was upregulated in the long bones of all of them, whereas physical exercise counteracted this increase. Mechanistically, in primary osteoblasts transfected with LCN2-expression-vector (OBs-Lcn2) we observed that Runx2 and its downstream genes, Osterix and Alp, were transcriptionally downregulated, and alkaline phosphatase (ALP) activity was less prominent versus empty-vector transduced osteoblasts (OBs-empty). OBs-Lcn2 also exhibited an increase of the Rankl/Opg ratio and IL-6 mRNA, suggesting that LCN2 could link poor differentiation of osteoblasts to enhanced osteoclast stimulation. In fact, incubation of purified mouse bone marrow mononuclear cells with conditioned media from OBs-Lcn2 cultures, or their coculture with OBs-Lcn2, improved osteoclastogenesis compared to OBs-empty, whereas treatment with recombinant LCN2 had no effect. In conclusion, our data indicate that LCN2 is a novel osteoblast mechanoresponding gene and that its regulation could be central to the pathological response of the bone tissue to low mechanical forces

  6. MicroRNA-regulated viral vectors for gene therapy

    PubMed Central

    Geisler, Anja; Fechner, Henry

    2016-01-01

    Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3’ untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3’ UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases. PMID:27226955

  7. Epigenetic Gene Regulation in Stem Cells and Correlation to Cancer

    PubMed Central

    Mathews, Lesley A.; Crea, Francesco; Farrar, W. L.

    2009-01-01

    Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins and the epigenetic function of non-coding RNA. These changes are modifications inherited both during meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells. PMID:19443100

  8. Genes, enzymes and regulation of arginine biosynthesis in plants.

    PubMed

    Slocum, Robert D

    2005-08-01

    Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate. PMID:16122935

  9. Up-regulation of SNCA gene expression: implications to synucleinopathies.

    PubMed

    Tagliafierro, L; Chiba-Falek, O

    2016-07-01

    Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed by aggregates of alpha-synuclein protein. Accumulating evidence, including genome wide association studies, has implicated alpha-synuclein (SNCA) gene in the etiology of synucleinopathies. However, the precise variants within SNCA gene that contribute to the sporadic forms of Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and other synucleinopathies and their molecular mechanisms of action remain elusive. It has been suggested that SNCA expression levels are critical for the development of these diseases. Here, we review several model systems that have been developed to advance the understanding of the role of SNCA expression levels in the etiology of synucleinopathies. We also describe different molecular mechanisms that regulate SNCA gene expression and discuss possible strategies for SNCA down-regulation as means for therapeutic approaches. Finally, we highlight some examples that underscore the relationships between the genetic association findings and the regulatory mechanisms of SNCA expression, which suggest that genetic variability in SNCA locus is directly responsible, at least in part, to the changes in gene expression and explain the reported associations of SNCA with synucleinopathies. Future studies utilizing induced pluripotent stem cells (iPSCs)-derived neuronal lines and genome editing by CRISPR/Cas9, will allow us to validate, characterize, and manipulate the effects of particular cis-genetic variants on SNCA expression. Moreover, this model system will enable us to compare different neuronal and glial lineages involved in synucleinopathies representing an attractive strategy to elucidate-common and specific-SNCA-genetic variants, regulatory mechanisms, and vulnerable expression levels underlying synucleinopathy spectrum disorders. This forthcoming

  10. Correlation between UGT1A1 polymorphisms and raltegravir plasma trough concentrations in Japanese HIV-1-infected patients.

    PubMed

    Yagura, Hiroki; Watanabe, Dai; Ashida, Misa; Kushida, Hiroyuki; Hirota, Kazuyuki; Ikuma, Motoko; Ogawa, Yoshihiko; Yajima, Keishiro; Kasai, Daisuke; Nishida, Yasuharu; Uehira, Tomoko; Yoshino, Munehiro; Shirasaka, Takuma

    2015-10-01

    Raltegravir (RAL), an HIV integrase inhibitor, is metabolized mainly by UDP-glucuronosyltransferase 1A1 (UGT1A1). Polymorphisms in UGT1A1 may cause alterations in the pharmacodynamics of RAL, which is taken twice daily with no dietary restrictions. We compared the effect of two polymorphic alleles in this gene, UGT1A1*6 and UGT1A1*28 on plasma RAL concentrations in Japanese HIV-1-infected patients. Of 114 Japanese HIV-1-infected patients who received RAL, the frequencies of UGT1A1*6 and UGT1A1*28 were 18% and 13%, respectively. The percentage of homozygotes for UGT1A1*6 and UGT1A1*28 was 6% and 4%, respectively, the percentage of compound heterozygotes for UGT1A1*6 and UGT1A1*28 was 2%, and that of heterozygotes for UGT1A1*6 and UGT1A1*28 was 22% and 17%, respectively. RAL plasma trough concentrations were compared for each polymorphism. Significantly higher levels of RAL were observed with patients who were homozygous for UGT1A1*6 (median: 1.0 μg/mL) than for the normal allele (median: 0.11 μg/mL; p = 0.021). Multivariate logistic regression analysis showed that the presence of one or two alleles of UGT1A1*6 or two alleles of UGT1A1*28 were independent factors associated with high RAL plasma trough concentrations (≥ 0.17 μg/mL). These results indicated that UGT1A1*6 and UGT1A1*28 are both factors influencing the RAL plasma trough concentrations in Japanese HIV-1-infected patients. PMID:26233886

  11. Discovery of NCT-501, a Potent and Selective Theophylline-Based Inhibitor of Aldehyde Dehydrogenase 1A1 (ALDH1A1).

    PubMed

    Yang, Shyh-Ming; Yasgar, Adam; Miller, Bettina; Lal-Nag, Madhu; Brimacombe, Kyle; Hu, Xin; Sun, Hongmao; Wang, Amy; Xu, Xin; Nguyen, Kimloan; Oppermann, Udo; Ferrer, Marc; Vasiliou, Vasilis; Simeonov, Anton; Jadhav, Ajit; Maloney, David J

    2015-08-13

    Aldehyde dehydrogenases (ALDHs) metabolize reactive aldehydes and possess important physiological and toxicological functions in areas such as CNS, metabolic disorders, and cancers. Increased ALDH (e.g., ALDH1A1) gene expression and catalytic activity are vital biomarkers in a number of malignancies and cancer stem cells, highlighting the need for the identification and development of small molecule ALDH inhibitors. A new series of theophylline-based analogs as potent ALDH1A1 inhibitors is described. The optimization of hits identified from a quantitative high throughput screening (qHTS) campaign led to analogs with improved potency and early ADME properties. This chemotype exhibits highly selective inhibition against ALDH1A1 over ALDH3A1, ALDH1B1, and ALDH2 isozymes as well as other dehydrogenases such as HPGD and HSD17β4. Moreover, the pharmacokinetic evaluation of selected analog 64 (NCT-501) is also highlighted. PMID:26207746

  12. The functional UGT1A1 promoter polymorphism decreases endometrial cancer risk.

    PubMed

    Duguay, Yannick; McGrath, Monica; Lépine, Johanie; Gagné, Jean-François; Hankinson, Susan E; Colditz, Graham A; Hunter, David J; Plante, Marie; Têtu, Bernard; Bélanger, Alain; Guillemette, Chantal; De Vivo, Immaculata

    2004-02-01

    UDP-glucuronosyltransferase (UGT) 1A1 is involved in the inactivation of estradiol (E(2)) and its oxidized metabolites. These metabolites have been shown to contribute to the development of endometrial cancer in animal studies. Thus UGT1A1 represents a candidate gene in endometrial carcinogenesis. In this study, we established the substrate specificity of UGT1A1 for E(2) and its 2- and 4-hydroxylated metabolites. Intrinsic clearances indicated that UGT1A1 had a preference for the glucuronidation of 2-hydroxyestradiol, a metabolite associated with antiproliferative activity. Expression analysis demonstrated that UGT1A1 is present in the nonmalignant endometrium. Subsequently, we sought to determine whether the common UGT1A1 promoter allele, UGT1A1*28 [A(TA)(7)TAA], which decreases gene transcription, was associated with endometrial cancer risk in a case-control study nested within the Nurses' Health Study (222 cases, 666 matched controls). Conditional logistic regression demonstrated a significant inverse association with the UGT1A1*28 allele and endometrial cancer risk. Compared with women homozygous for the UGT1A1*1 [A(TA)(6)TAA] allele, the adjusted odds ratio (OR) was 0.81 [95% confidence interval (CI), 0.56-1.16] for the UGT1A1*1/*28 genotype and 0.40 (95% CI, 0.21-0.75) for the homozygous UGT1A1*28 genotype (P(trend) = 0.007). There was a suggestion of an interaction by menopausal status [OR = 0.39 (95% CI, 0.18-0.85) for premenopausal women and OR = 0.79 (95% CI, 0.55-1.13) for postmenopausal women who carry the UGT1A1*28 allele (P(interaction) = 0.05)]. These observations suggest that lower expression of UGT1A1 decreases the risk of endometrial cancer by reducing the excretion of 2-hydroxyestradiol, the antiproliferative metabolite of E(2), in the endometrium. PMID:14871858

  13. Dynamic model of gene regulation for the lac operon

    NASA Astrophysics Data System (ADS)

    Angelova, Maia; Ben-Halim, Asma

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  14. In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.

    PubMed

    Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj

    2014-12-01

    Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels. PMID:25060099

  15. RASSF tumor suppressor gene family: biological functions and regulation.

    PubMed

    Volodko, Natalia; Gordon, Marilyn; Salla, Mohamed; Ghazaleh, Haya Abu; Baksh, Shairaz

    2014-08-19

    Genetic changes through allelic loss and nucleic acid or protein modifications are the main contributors to loss of function of tumor suppressor proteins. In particular, epigenetic silencing of genes by promoter hypermethylation is associated with increased tumor severity and poor survival. The RASSF (Ras association domain family) family of proteins consists of 10 members, many of which are tumor suppressor proteins that undergo loss of expression through promoter methylation in numerous types of cancers such as leukemia, melanoma, breast, prostate, neck, lung, brain, colorectal and kidney cancers. In addition to their tumor suppressor function, RASSF proteins act as scaffolding agents in microtubule stability, regulate mitotic cell division, modulate apoptosis, control cell migration and cell adhesion, and modulate NFκB activity and the duration of inflammation. The ubiquitous functions of these proteins highlight their importance in numerous physiological pathways. In this review, we will focus on the biological roles of the RASSF family members and their regulation. PMID:24607545

  16. Epigenetic Regulation of Virulence Gene Expression in Parasitic Protozoa.

    PubMed

    Duraisingh, Manoj T; Horn, David

    2016-05-11

    Protozoan parasites colonize numerous metazoan hosts and insect vectors through their life cycles, with the need to respond quickly and reversibly while encountering diverse and often hostile ecological niches. To succeed, parasites must also persist within individuals until transmission between hosts is achieved. Several parasitic protozoa cause a huge burden of disease in humans and livestock, and here we focus on the parasites that cause malaria and African trypanosomiasis. Efforts to understand how these pathogens adapt to survive in varied host environments, cause disease, and transmit between hosts have revealed a wealth of epigenetic phenomena. Epigenetic switching mechanisms appear to be ideally suited for the regulation of clonal antigenic variation underlying successful parasitism. We review the molecular players and complex mechanistic layers that mediate the epigenetic regulation of virulence gene expression. Understanding epigenetic processes will aid the development of antiparasitic therapeutics. PMID:27173931

  17. Chromatin higher-order structures and gene regulation

    PubMed Central

    Li, Guohong

    2011-01-01

    Genomic DNA in the eukaryotic nucleus is hierarchically packaged by histones into chromatin to fit inside the nucleus. The dynamics of higher-order chromatin compaction play a critical role in transcription and other biological processes inherent to DNA. Many factors, including histone variants, histone modifications, DNA methylation and the binding of non-histone architectural proteins regulate the structure of chromatin. Although the structure of nucleosomes, the fundamental repeating unit of chromatin, is clear, there is still much discussion on the higher-order levels of chromatin structure. In this review, we focus on the recent progress in elucidating the structure of the 30-nm chromatin fiber. We also discuss the structural plasticity/dynamics and epigenetic inheritance of higher-order chromatin and the roles of chromatin higher-order organization in eukaryotic gene regulation. PMID:21342762

  18. Coordinated Regulation of Hepatic Phase I and II Drug-Metabolizing Genes and Transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-Null Mice

    PubMed Central

    Aleksunes, Lauren M.

    2012-01-01

    The transcription factors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor α (PPARα), and nuclear factor erythroid 2-related factor 2 (Nrf2) regulate genes encoding drug-metabolizing enzymes and transporters in livers of mice after chemical activation. However, the specificity of their transcriptional regulation has not been determined systematically in vivo. The purpose of this study was to identify genes encoding drug-metabolizing enzymes and transporters altered by chemical activators in a transcription factor-dependent manner using wild-type and transcription factor-null mice. Chemical activators were administered intraperitoneally to mice once daily for 4 days. Livers were collected 24 h after the final dose, and total RNA was isolated for mRNA quantification of cytochromes P450, NAD(P)H quinone oxidoreductase 1 (Nqo1), aldehyde dehydrogenases (Aldhs), glutathione transferases (Gsts), sulfotransferases (Sults), UDP-glucuronosyltransferases (Ugts), organic anion-transporting polypeptides (Oatps), and multidrug resistance-associated proteins (Mrps). Pharmacological activation of each transcription factor leads to mRNA induction of drug metabolic and transport genes in livers of male and female wild-type mice, but no change in null mice: AhR (Cyp1a2, Nqo1, Aldh7a1, Ugt1a1, Ugt1a6, Ugt1a9, Ugt2b35, Sult5a1, Gstm3, and Mrp4), CAR (Cyp2b10, Aldh1a1, Aldh1a7, Ugt1a1, Ugt2b34, Sult1e1, Sult3a1, Sult5a1, Papps2, Gstt1, Gsta1, Gsta4, Gstm1–4, and Mrp2–4), PXR (Cyp3a11, Ugt1a1, Ugt1a5, Ugt1a9, Gsta1, Gstm1–m3, Oatp1a4, and Mrp3), PPARα (Cyp4a14, Aldh1a1, mGst3, Gstm4, and Mrp4), and Nrf2 (Nqo1, Aldh1a1, Gsta1, Gsta4, Gstm1–m4, mGst3, and Mrp3–4). Taken together, these data reveal transcription factor specificity and overlap in regulating hepatic drug disposition genes by chemical activators. Coordinated regulation of phase I, phase II, and transport genes by

  19. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Solaimani, Parrisa; Damoiseaux, Robert; Hankinson, Oliver

    2013-11-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  20. Genome-Wide RNAi High-Throughput Screen Identifies Proteins Necessary for the AHR-Dependent Induction of CYP1A1 by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    PubMed Central

    Hankinson, Oliver

    2013-01-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  1. Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    PubMed Central

    Mash, Deborah C.; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-01-01

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

  2. Multiple Mechanisms Influence Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Gene Promoter

    PubMed Central

    Lewandowska, Marzena A.; Costa, Fabricio F.; Bischof, Jared M.; Williams, Sarah H.; Soares, Marcelo B.; Harris, Ann

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene is driven by a promoter that cannot alone account for the temporal and tissue-specific regulation of the gene. This has led to the search for additional regulatory elements that cooperate with the basal promoter to achieve coordinated expression. We previously identified two alternative upstream exons of the gene that were mutually exclusive of the first exon, and one of which showed temporal regulation in the human and sheep lung. We now demonstrate that this alternative splice product generates a stable protein, which initiates translation at an ATG in exon 4, and thus lacks the N terminus of CFTR. The other splice variant inhibits translation of the protein. In a search for the promoter used by the upstream exons, we identified a novel element that contributes to the activity of the basal CFTR promoter in airway epithelial cells, but does not function independently. Finally, we demonstrate that, in primary airway cells, skin fibroblasts, and both airway and intestinal cell lines, the CFTR promoter is unmethylated, irrespective of CFTR expression status. Thus, methylation is not the main cause of inactivation of CFTR transcription. PMID:19855085

  3. Organic anion transporting polypeptide 1a1 null mice are sensitive to cholestatic liver injury.

    PubMed

    Zhang, Youcai; Csanaky, Iván L; Cheng, Xingguo; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2012-06-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na(+)-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance-associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449

  4. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice.

    PubMed

    Achour, Mayada; Le Gras, Stéphanie; Keime, Céline; Parmentier, Frédéric; Lejeune, François-Xavier; Boutillier, Anne-Laurence; Néri, Christian; Davidson, Irwin; Merienne, Karine

    2015-06-15

    Huntington's disease (HD) is a neurodegenerative disease associated with extensive down-regulation of genes controlling neuronal function, particularly in the striatum. Whether altered epigenetic regulation underlies transcriptional defects in HD is unclear. Integrating RNA-sequencing (RNA-seq) and chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq), we show that down-regulated genes in HD mouse striatum associate with selective decrease in H3K27ac, a mark of active enhancers, and RNA Polymerase II (RNAPII). In addition, we reveal that decreased genes in HD mouse striatum display a specific epigenetic signature, characterized by high levels and broad patterns of H3K27ac and RNAPII. Our results indicate that this signature is that of super-enhancers, a category of broad enhancers regulating genes defining tissue identity and function. Specifically, we reveal that striatal super-enhancers display extensive H3K27 acetylation within gene bodies, drive transcription characterized by low levels of paused RNAPII, regulate neuronal function genes and are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Together, our results provide evidence for preferential down-regulation of genes controlled by super-enhancers in HD striatum and indicate that enhancer topography is a major parameter determining the propensity of a gene to be deregulated in a neurodegenerative disease. PMID:25784504

  5. Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation

    PubMed Central

    Xu, Chengqi; Zhang, Hongfu; Lu, Qiulun; Chang, Le; Wang, Fan; Wang, Pengxia; Zhang, Rongfeng; Hu, Zhenkun; Song, Qixue; Yang, Xiaowei; Li, Cong; Li, Sisi; Zhao, Yuanyuan; Yang, Qin; Yin, Dan; Wang, Xiaojing; Si, Wenxia; Li, Xiuchun; Xiong, Xin; Wang, Dan; Huang, Yuan; Luo, Chunyan; Li, Jia; Wang, Jingjing; Chen, Jing; Wang, Longfei; Wang, Li; Han, Meng; Ye, Jian; Chen, Feifei; Liu, Jingqiu; Liu, Ying; Wu, Gang; Yang, Bo; Cheng, Xiang; Liao, Yuhua; Wu, Yanxia; Ke, Tie; Chen, Qiuyun; Tu, Xin; Elston, Robert; Rao, Shaoqi; Yang, Yanzong; Xia, Yunlong; Wang, Qing K.

    2015-01-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia at the clinic. Recent GWAS identified several variants associated with AF, but they account for <10% of heritability. Gene-gene interaction is assumed to account for a significant portion of missing heritability. Among GWAS loci for AF, only three were replicated in the Chinese Han population, including SNP rs2106261 (G/A substitution) in ZFHX3, rs2200733 (C/T substitution) near PITX2c, and rs3807989 (A/G substitution) in CAV1. Thus, we analyzed the interaction among these three AF loci. We demonstrated significant interaction between rs2106261 and rs2200733 in three independent populations and combined population with 2,020 cases/5,315 controls. Compared to non-risk genotype GGCC, two-locus risk genotype AATT showed the highest odds ratio in three independent populations and the combined population (OR=5.36 (95% CI 3.87-7.43), P=8.00×10-24). The OR of 5.36 for AATT was significantly higher than the combined OR of 3.31 for both GGTT and AACC, suggesting a synergistic interaction between rs2106261 and rs2200733. Relative excess risk due to interaction (RERI) analysis also revealed significant interaction between rs2106261 and rs2200733 when exposed two copies of risk alleles (RERI=2.87, P<1.00×10-4) or exposed to one additional copy of risk allele (RERI=1.29, P<1.00×10-4). The INTERSNP program identified significant genotypic interaction between rs2106261 and rs2200733 under an additive by additive model (OR=0.85, 95% CI: 0.74-0.97, P=0.02). Mechanistically, PITX2c negatively regulates expression of miR-1, which negatively regulates expression of ZFHX3, resulting in a positive regulation of ZFHX3 by PITX2c; ZFHX3 positively regulates expression of PITX2C, resulting in a cyclic loop of cross-regulation between ZFHX3 and PITX2c. Both ZFHX3 and PITX2c regulate expression of NPPA, TBX5 and NKX2.5. These results suggest that cyclic cross-regulation of gene expression is a molecular basis for gene-gene

  6. The KM-Algorithm Identifies Regulated Genes in Time Series Expression Data

    PubMed Central

    Bremer, Martina; Doerge, R. W.

    2009-01-01

    We present a statistical method to rank observed genes in gene expression time series experiments according to their degree of regulation in a biological process. The ranking may be used to focus on specific genes or to select meaningful subsets of genes from which gene regulatory networks can be built. Our approach is based on a state space model that incorporates hidden regulators of gene expression. Kalman (K) smoothing and maximum (M) likelihood estimation techniques are used to derive optimal estimates of the model parameters upon which a proposed regulation criterion is based. The statistical power of the proposed algorithm is investigated, and a real data set is analyzed for the purpose of identifying regulated genes in time dependent gene expression data. This statistical approach supports the concept that meaningful biological conclusions can be drawn from gene expression time series experiments by focusing on strong regulation rather than large expression values. PMID:19956417

  7. Thiol-Based Redox Switches and Gene Regulation

    PubMed Central

    2011-01-01

    Abstract Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression. Antioxid. Redox Signal. 14, 1049—1063. PMID:20626317

  8. Polymorphic variants of UGT1A1 in neonatal jaundice in southern Brazil.

    PubMed

    Carvalho, Clarissa Gutiérrez; Castro, Simone Martins; Santin, Ana Paula; de Azevedo, Laura Alencastro; Pereira, Maria Luiza Saraiva; Giugliani, Roberto

    2010-10-01

    Alterations in the hepatic conjugation of bilirubin due to uridyl-diphosphate-glucuronosyltransferase 1A1 (UGT1A1) polymorphisms have been proposed as risk factors to neonatal jaundice. Herein, we estimated the frequency of genotypes of the promoter region of UGT1A1 gene in newborns and evaluated its association with severe hyperbilirubinemia. Prospective study of cases and controls including all newborns admitted for phototherapy at HCPA, Brazil, during 9 months; 490 babies were enrolled and PCR was performed. Polymorphic genotypes were detected in 16% of the patients and 7 of the 10 possible genotypes were identified with higher prevalence of polymorphisms in Afro-descendants. In this sample, the variants of UGT1A1 were not associated to severe hyperbilirubinemia; other genic factors should be sought in this high miscegenation area of Brazil. PMID:20061399

  9. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae.

    PubMed Central

    Ellwood, M S; Craig, E A

    1984-01-01

    Saccharomyces cerevisiae contains a family of genes related to Hsp70, the major heat shock gene of Drosophila melanogaster. The transcription of three of these genes, which show no conservation of sequences 5' to the protein-coding region, was analyzed. The 5' flanking regions from the three genes were fused to the Escherichia coli beta-galactosidase structural gene and introduced into yeasts on multicopy plasmids, putting the beta-galactosidase production under yeast promoter control. Analysis of beta-galactosidase mRNA and protein production in these transformed strains revealed that transcription from the three promoters is differentially regulated. The number of transcripts from one promoter is vastly increased for a brief period after heat shock, whereas mRNA from another declines. Transcripts from a third gene are slightly enhanced upon heat shock; however, multiple 5' ends of the mRNA are found, and a minor species increases in amount after heat shock. Transcription of these promoters in their native state on the chromosome appears to be modulated in the same manner. Images PMID:6436685

  10. Epigenetic regulation of the formyl peptide receptor 2 gene.

    PubMed

    Simiele, Felice; Recchiuti, Antonio; Patruno, Sara; Plebani, Roberto; Pierdomenico, Anna Maria; Codagnone, Marilina; Romano, Mario

    2016-10-01

    Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we examined chromatin patterns of the ALX/FPR2 gene. We report that in MDA-MB231 breast cancer cells, the ALX/FPR2 gene undergoes epigenetic silencing characterized by low acetylation at lysine 27 and trimethylation at lysine 4, associated with high methylation at lysine 27 of histone 3. This pattern, which is consistent with transcriptionally inaccessible chromatin leading to low ALX/FPR2 mRNA and protein expression, is reversed in polymorphonuclear leukocytes that express high ALX/FPR2 levels. Activation of p300 histone acetyltransferase and inhibition of DNA methyltransferase restored chromatin accessibility and significantly increased ALX/FPR2 mRNA transcription and protein levels in MDA-MB231 cells, as well as in pulmonary artery endothelial cells. In both cells types, changes in the histone acetylation/methylation status enhanced ALX/FPR2 signaling in response to LXA4. Collectively, these results uncover unappreciated epigenetic regulation of ALX/FPR2 expression that can be exploited for innovative approaches to inflammatory disorders. PMID:27424221

  11. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.

    PubMed

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D; Dupuy, Bruno; Fralick, Joe A

    2009-12-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  12. Nucleosome-driven transcription factor binding and gene regulation.

    PubMed

    Ballaré, Cecilia; Castellano, Giancarlo; Gaveglia, Laura; Althammer, Sonja; González-Vallinas, Juan; Eyras, Eduardo; Le Dily, Francois; Zaurin, Roser; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel

    2013-01-10

    Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation. PMID:23177737

  13. Staphylococcus aureus CodY Negatively Regulates Virulence Gene Expression▿

    PubMed Central

    Majerczyk, Charlotte D.; Sadykov, Marat R.; Luong, Thanh T.; Lee, Chia; Somerville, Greg A.; Sonenshein, Abraham L.

    2008-01-01

    CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus. PMID:18156263

  14. Bacteriophage-Mediated Toxin Gene Regulation in Clostridium difficile▿

    PubMed Central

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D.; Dupuy, Bruno; Fralick, Joe A.

    2009-01-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by ΦCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in ΦCD119 lysogens. During this study we found that repR, a putative repressor gene of ΦCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in ΦCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  15. Epigenetic regulation of inflammatory gene expression in macrophages by selenium.

    PubMed

    Narayan, Vivek; Ravindra, Kodihalli C; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A; Prabhu, K Sandeep

    2015-02-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of proinflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNFα promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1-infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the down-regulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone-marrow-derived macrophages from Trsp(fl/fl)Cre(LysM) mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid contributes, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of proinflammatory genes. PMID:25458528

  16. Androgens Regulate Gene Expression in Avian Skeletal Muscles

    PubMed Central

    Fuxjager, Matthew J.; Barske, Julia; Du, Sienmi; Day, Lainy B.; Schlinger, Barney A.

    2012-01-01

    Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird’s body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR) to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T) up-regulated expression of parvalbumin (PV) and insulin-like growth factor I (IGF-I), two genes whose products enhance cellular Ca2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction. PMID:23284699

  17. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  18. [Interest of UGT1A1 genotyping within digestive cancers treatment by irinotecan].

    PubMed

    Boyer, Jean-Christophe; Etienne-Grimaldi, Marie-Christine; Thomas, Fabienne; Quaranta, Sylvie; Picard, Nicolas; Loriot, Marie-Anne; Poncet, Delphine; Gagnieu, Marie-Claude; Ged, Cécile; Broly, Franck; Le Morvan, Valérie; Bouquié, Régis; Gaub, Marie-Pierre; Philibert, Laurent; Ghiringhelli, François; Le Guellec, Chantal

    2014-06-01

    Irinotecan is a cytotoxic agent administered by IV infusion in the treatment of advanced colorectal cancer. Its anticancer activity results from its bioactivation into SN-38 metabolite, which is cleared through glucuronidation by the hepatic enzyme uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1). In the general population, there is wide inter-subject variability in UGT1A1 enzyme activity related to UGT1A1 gene polymorphisms. The French joint workgroup coming from the National Pharmacogenetic Network (RNPGx) and the Group of Clinical Oncologic Pharmacology (GPCO) herein presents an updated review dealing with efficacy and toxicity clinical studies related to UGT1A1 genetic variants. From a critical analysis of this review it clearly emerges that, for doses higher than 180 mg/m(2), hematologic and digestive irinotecan-induced toxicities could be prevented in daily clinical practice by generalizing the use of a simple pharmacogenetic test before starting treatment. The clinical relevance of this test is also discussed in terms of treatment efficacy improvement, with the possibility of increasing the irinotecan dose in patients not bearing the deleterious allele. This test involves using a blood sample to analyze the promoter region of the UGT1A1 gene (UGT1A1*28 allele). Best execution practices, laboratory costs, as well as results interpretation are described with the aim of facilitating the implementation of this analysis in clinical routine. The existence of a French laboratories network performing this test in clinical routine makes it possible to generalize UGT1A1 deficiency screening, so as to guarantee equal access to safe treatment and optimized irinorecan-based therapy for the many patients receiving irinotecan-based therapy in advanced colorectal cancer. PMID:24977443

  19. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain.

    PubMed

    Paul, R K; Takeuchi, H; Matsuo, Y; Kubo, T

    2005-01-01

    To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees. PMID:15663771

  20. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.

    PubMed

    Lamb, Rebecca S; Hill, Theresa A; Tan, Queenie K-G; Irish, Vivian F

    2002-05-01

    The Arabidopsis APETALA3 (AP3) floral homeotic gene is required for specifying petal and stamen identities, and is expressed in a spatially limited domain of cells in the floral meristem that will give rise to these organs. Here we show that the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are required for the activation of AP3. The LFY transcription factor binds to a sequence, with dyad symmetry, that lies within a region of the AP3 promoter required for early expression of AP3. Mutation of this region abolishes LFY binding in vitro and in yeast one hybrid assays, but has no obvious effect on AP3 expression in planta. Experiments using a steroid-inducible form of LFY show that, in contrast to its direct transcriptional activation of other floral homeotic genes, LFY acts in both a direct and an indirect manner to regulate AP3 expression. This LFY-induced expression of AP3 depends in part on the function of the APETALA1 (AP1) floral homeotic gene, since mutations in AP1 reduce LFY-dependent induction of AP3 expression. LFY therefore appears to act through several pathways, one of which is dependent on AP1 activity, to regulate AP3 expression. PMID:11959818

  1. Identification of microRNA-regulated gene networks by expression analysis of target genes.

    PubMed

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-06-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs. PMID:22345618

  2. Identification of microRNA-regulated gene networks by expression analysis of target genes

    PubMed Central

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-01-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs. PMID:22345618

  3. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene

    PubMed Central

    Zhang, Fan; Cheng, De; Wang, Shuwen; Zhu, Jiyue

    2016-01-01

    Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT), is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development. PMID:27367732

  4. Whole gene family expression and drought stress regulation of aquaporins.

    PubMed

    Alexandersson, Erik; Fraysse, Laure; Sjövall-Larsen, Sara; Gustavsson, Sofia; Fellert, Maria; Karlsson, Maria; Johanson, Urban; Kjellbom, Per

    2005-10-01

    Since many aquaporins (AQPs) act as water channels, they are thought to play an important role in plant water relations. It is therefore of interest to study the expression patterns of AQP isoforms in order to further elucidate their involvement in plant water transport. We have monitored the expression patterns of all 35 Arabidopsis AQPs in leaves, roots and flowers by cDNA microarrays, specially designed for AQPs, and by quantitative real-time reverse transcriptase PCR (Q-RT-PCR). This showed that many AQPs are pre-dominantly expressed in either root or flower organs, whereas no AQP isoform seem to be leaf specific. Looking at the AQP subfamilies, most plasma membrane intrinsic proteins (PIPs) and some tonoplast intrinsic proteins (TIPs) have a high level of expression, while NOD26-like proteins (NIPs) are present at a much lower level. In addition, we show that PIP transcripts are generally down-regulated upon gradual drought stress in leaves, with the exception of AtPIP1;4 and AtPIP2;5, which are up-regulated. AtPIP2;6 and AtSIP1;1 are constitutively expressed and not significantly affected by the drought stress. The transcriptional down-regulation of PIP genes upon drought stress could also be observed on the protein level. PMID:16235111

  5. Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells*

    PubMed Central

    Cai, Zhenyu; Shi, Zhongcheng; Sanchez, Amir; Zhang, Tingting; Liu, Mingyao; Yang, Jianghua; Wang, Fen; Zhang, Dekai

    2009-01-01

    As sensors of invading microorganisms, Toll-like receptors (TLRs) are expressed not only on macrophages and dendritic cells (DCs) but also on epithelial cells. In the TLR family, Tlr11 appears to have the unique feature in that it is expressed primarily on epithelial cells, although it is also expressed on DCs and macrophages. Here, we demonstrate that transcription of the Tlr11 gene is regulated through two cis-acting elements, one Ets-binding site and one interferon regulatory factor (IRF)-binding site. The Ets element interacts with the epithelium-specific transcription factors, ESE-1 and ESE-3, and the IRF motif interacts with IRF-8. Thus, Tlr11 expression on epithelial cells is regulated by the transcription factors that are presumably distinct from transcription factors that regulate the expression of TLRs in innate immune cells such as macrophages and DCs. Our results imply that the distinctive transcription regulatory machinery for TLRs on epithelium may represent a promising new avenue for the development of epithelia-specific therapeutic interventions. PMID:19801549

  6. Human Specific Regulation of the Telomerase Reverse Transcriptase Gene.

    PubMed

    Zhang, Fan; Cheng, De; Wang, Shuwen; Zhu, Jiyue

    2016-01-01

    Telomerase, regulated primarily by the transcription of its catalytic subunit telomerase reverse transcriptase (TERT), is critical for controlling cell proliferation and tissue homeostasis by maintaining telomere length. Although there is a high conservation between human and mouse TERT genes, the regulation of their transcription is significantly different in these two species. Whereas mTERT expression is widely detected in adult mice, hTERT is expressed at extremely low levels in most adult human tissues and cells. As a result, mice do not exhibit telomere-mediated replicative aging, but telomere shortening is a critical factor of human aging and its stabilization is essential for cancer development in humans. The chromatin environment and epigenetic modifications of the hTERT locus, the binding of transcriptional factors to its promoter, and recruitment of nucleosome modifying complexes all play essential roles in restricting its transcription in different cell types. In this review, we will discuss recent progress in understanding the molecular mechanisms of TERT regulation in human and mouse tissues and cells, and during cancer development. PMID:27367732

  7. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  8. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  9. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox.

    PubMed

    Melby, A E; Clements, W K; Kimelman, D

    1999-07-15

    Patterning in the vertebrate embryo is controlled by an interplay between signals from the dorsal organizer and the ventrally expressed BMPs. Here we examine the function of Vox, a homeodomain-containing gene that is activated by the ventralizing signal BMP-4. Inhibition of BMP signaling using a dominant negative BMP receptor (DeltaBMPR) leads to the ectopic activation of dorsal genes in the ventral marginal zone, and this activation is prevented by co-injection of Vox. chordin is the most strongly activated of those genes that are up-regulated by DeltaBMPR and is the gene most strongly inhibited by Vox expression. We demonstrate that Vox acts as a transcriptional repressor, showing that the activity of native Vox is mimicked by a Vox-repressor fusion (VoxEnR) and that a Vox-activator fusion (VoxG4A) acts as an antimorph, causing the formation of a partial secondary axis when expressed on the ventral side of the embryo. Although Vox can ectopically activate BMP-4 expression in whole embryos, we see no activation of BMP-4 by VoxG4A, demonstrating that this activation is indirect. Using a hormone-inducible version of VoxG4A, we find that a critical time window for Vox function is during the late blastula period. Using this construct, we demonstrate that only a subset of dorsal genes is directly repressed by Vox, revealing that there are different modes of regulation for organizer genes. Since the major direct target for Vox repression is chordin, we propose that Vox acts in establishing a BMP-4 morphogen gradient by restricting the expression domain of chordin. PMID:10395789

  10. Nature and regulation of pistil-expressed genes in tomato.

    PubMed

    Milligan, S B; Gasser, C S

    1995-07-01

    The specialized reproductive functions of angiosperm pistils are dependent in part upon the regulated activation of numerous genes expressed predominantly in this organ system. To better understand the nature of these pistil-predominant gene products we have analyzed seven cDNA clones isolated from tomato pistils through differential hybridization screening. Six of the seven cDNAs represent sequences previously undescribed in tomato, each having a unique pistil- and/or floral-predominant expression pattern. The putative protein products encoded by six of the cDNAs have been identified by their similarity to sequences in the database of previously sequenced genes, with a seventh sequence having no significant similarity with any previously reported sequence. Three of the putative proteins appear to be targeted to the endomembrane system and include an endo-beta-1,4-glucanase which is expressed exclusively in pistils at early stages of development, and proteins similar in sequence to gamma-thionin and miraculin which are expressed in immature pistils and stamens, and in either sepals or petals, respectively. Two other clones, similar in sequence to each other, were expressed primarily in immature pistils and stamens and encode distinct proteins with similarity to leucine aminopeptidases. An additional clone, which encodes a protein similar in sequence to the enzyme hyoscyamine 6-beta-hydroxylase and to other members of the family of Fe2+/ascorbate-dependent oxidases, was expressed at high levels in pistils, stamens and sepals, and at detectable levels in some vegetative organs. Together, these observations provide new insight into the nature and possible functional roles of genes expressed during reproductive development. PMID:7647301

  11. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  12. Gene Expression Dosage Regulation in an Allopolyploid Fish

    PubMed Central

    Matos, I; Machado, M. P.; Schartl, M.; Coelho, M. M.

    2015-01-01

    How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional ‘‘diploidization’’ could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64% of transcripts in juveniles’ samples and 44% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression). Yet, respectively 29% and 15% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5). Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock, and be an

  13. DNA methylation and differential gene regulation in photoreceptor cell death.

    PubMed

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  14. A 5' splice site mutation affecting the pre-mRNA splicing of two upstream exons in the collagen COL1A1 gene. Exon 8 skipping and altered definition of exon 7 generates truncated pro alpha 1(I) chains with a non-collagenous insertion destabilizing the triple helix.

    PubMed Central

    Bateman, J F; Chan, D; Moeller, I; Hannagan, M; Cole, W G

    1994-01-01

    A heterozygous de novo G to A point mutation in intron 8 at the +5 position of the splice donor site of the gene for the pro alpha 1(I) chain of type I procollagen, COL1A1, was defined in a patient with type IV osteogenesis imperfecta. The splice donor site mutation resulted not only in the skipping of the upstream exon 8 but also unexpectedly had the secondary effect of activating a cryptic splice site in the next upstream intron, intron 7, leading to re-definition of the 3' limit of exon 7. These pre-mRNA splicing aberrations cause the deletion of exon 8 sequences from the mature mRNA and the inclusion of 96 bp of intron 7 sequence. Since the mis-splicing of the mutant allele product resulted in the maintenance of the correct codon reading frame, the resultant pro alpha 1(I) chain contained a short non-collagenous 32-amino-acid sequence insertion within the repetitive Gly-Xaa-Yaa collagen sequence motif. At the protein level, the mutant alpha 1(I) chain was revealed by digestion with pepsin, which cleaved the mutant procollagen within the protease-sensitive non-collagenous insertion, producing a truncated alpha 1(I). This protease sensitivity demonstrated the structural distortion to the helical structure caused by the insertion. In long-term culture with ascorbic acid, which stimulates the formation of a mature crosslinked collagen matrix, and in tissues, there was no evidence of the mutant chain, suggesting that during matrix formation the mutant chain was unable to stably incorporated into the matrix and was degraded proteolytically. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7945197

  15. Elongation factor-1A1 is a novel substrate of the protein phosphatase 1-TIMAP complex.

    PubMed

    Boratkó, Anita; Péter, Margit; Thalwieser, Zsófia; Kovács, Előd; Csortos, Csilla

    2015-12-01

    TIMAP (TGF-β inhibited membrane associated protein) is a protein phosphatase 1 (PP1) regulatory subunit highly abundant in endothelial cells and it is involved in the maintenance of pulmonary endothelial barrier function. It localizes mainly in the plasma membrane, but it is also present in the nuclei and cytoplasm. Direct interaction of TIMAP with the eukaryotic elongation factor 1 A1 (eEF1A1) is shown by pull-down, LC-MS/MS, Far-Western and immunoprecipitations. In connection with the so called moonlighting functions of the elongation factor, eEF1A is thought to establish protein-protein interactions through a transcription-dependent nuclear export motif, TD-NEM, and to aid nuclear export of TD-NEM containing proteins. We found that a TD-NEM-like motif of TIMAP has a critical role in its specific binding to eEF1A1. However, eEF1A1 is not or not exclusively responsible for the nuclear export of TIMAP. On the contrary, TIMAP seems to regulate membrane localization of eEF1A1 as the elongation factor co-localized with TIMAP in the plasma membrane fraction of control endothelial cells, but it has disappeared from the membrane in TIMAP depleted cells. It is demonstrated that membrane localization of eEF1A1 depends on the phosphorylation state of its Thr residue(s); and ROCK phosphorylated eEF1A1 is a novel substrate for TIMAP-PP1 underlining the complex regulatory role of TIMAP in the endothelium. The elongation factor seems to be involved in the regulation of endothelial cell attachment and spreading as silencing of eEF1A1 positively affected these processes which were monitored by transendothelial resistance measurements. PMID:26497934

  16. Protein expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 in young patients with oral squamous cell carcinoma.

    PubMed

    Kaminagakura, E; Caris, A; Coutinho-Camillo, C; Soares, F A; Takahama-Júnior, A; Kowalski, L P

    2016-06-01

    The purpose of this study was to evaluate the expression of the enzymes involved in the biotransformation of tobacco and alcohol. A study group of 41 young patients (≤40 years old) with oral squamous cell carcinoma (OSCC) was compared to 59 control subjects (≥50 years old) with tumours of similar clinical stages and topographies. The immunohistochemical expression of CYP1A1, CYP1B1, ALDH1A1, and ALDH2 was evaluated using the tissue microarray technique. There was a predominance of males, smokers, and alcohol drinkers in both groups. Most tumours were located in the tongue (43.9% vs. 50.8%), were well-differentiated (63.4% vs. 56.6%), and were in clinical stages III or IV (80.5% vs. 78.0%). No difference was observed in the expression of CYP1A1, ALDH1A1, or ALDH2 between the two groups. CYP1A1 and ALDH2 protein expression had no influence on the prognosis. The immunoexpression of CYP1B1 was significantly higher in the control group than in the young group (P<0.001). The 5-year relapse-free survival was better in patients with CYP1B1 overexpression vs. protein underexpression (64% vs. 25%; P<0.05), regardless of age. ALDH1A1 expression improved relapse-free survival in young patients. These results suggest a lower risk of recurrence with increased metabolism of carcinogens by CYP1B1. Further studies involving other genes and proteins are necessary to complement the results of this research. PMID:26944893

  17. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    DOE PAGESBeta

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages ofmore » maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.« less

  18. Regulation and Function of Adult Neurogenesis. From Genes to Cognition

    SciTech Connect

    Aimone, J. B.; Li, Y.; Lee, S. W.; Clemenson, G. D.; Deng, W.; Gage, F. H.

    2014-10-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. Our review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. Furthermore, the increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.

  19. Regulation and Function of Adult Neurogenesis: From Genes to Cognition

    PubMed Central

    Aimone, James B.; Li, Yan; Lee, Star W.; Clemenson, Gregory D.; Deng, Wei; Gage, Fred H.

    2014-01-01

    Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders. PMID:25287858

  20. Pneumococcal Hydrogen Peroxide–Induced Stress Signaling Regulates Inflammatory Genes

    PubMed Central

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-01

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  1. Regulation of gene expression by hypoxia: a molecular approach.

    PubMed

    Beitner-Johnson, D; Shull, G E; Dedman, J R; Millhorn, D E

    1997-11-01

    Oxygen is a strict requirement for cell function. The cellular mechanisms by which organisms detect and respond to changes in oxygen tension remain a major unanswered question in pulmonary physiology. Part of the difficulty in addressing this question is due to the limited scope of experiments that can be performed in vivo. In the past few years, several laboratories have begun to make progress in this area, using a variety of cell culture model systems and sophisticated genetic manipulations. Here, we review the current state of knowledge of regulation of gene expression by hypoxia, and describe novel experimental approaches that promise to broaden our understanding of how cells and whole organisms respond to alterations in O2 tension. PMID:9407603

  2. Chromatin and epigenetic features of long-range gene regulation

    PubMed Central

    Harmston, Nathan; Lenhard, Boris

    2013-01-01

    The precise regulation of gene transcription during metazoan development is controlled by a complex system of interactions between transcription factors, histone modifications and modifying enzymes and chromatin conformation. Developments in chromosome conformation capture technologies have revealed that interactions between regions of chromatin are pervasive and highly cell-type specific. The movement of enhancers and promoters in and out of higher-order chromatin structures within the nucleus are associated with changes in expression and histone modifications. However, the factors responsible for mediating these changes and determining enhancer:promoter specificity are still not completely known. In this review, we summarize what is known about the patterns of epigenetic and chromatin features characteristic of elements involved in long-range interactions. In addition, we review the insights into both local and global patterns of chromatin interactions that have been revealed by the latest experimental and computational methods. PMID:23766291

  3. Co-modulation analysis of gene regulation in breast cancer reveals complex interplay between ESR1 and ERBB2 genes

    PubMed Central

    2015-01-01

    Background Gene regulation is dynamic across cellular conditions and disease subtypes. From the aspect of regulation under modulation, regulation strength between a pair of genes can be modulated by (dependent on) expression abundance of another gene (modulator gene). Previous studies have demonstrated the involvement of genes modulated by single modulator genes in cancers, including breast cancer. However, analysis of multi-modulator co-modulation that can further delineate the landscape of complex gene regulation is, to our knowledge, unexplored previously. In the present study we aim to explore the joint effects of multiple modulator genes in modulating global gene regulation and dissect the biological functions in breast cancer. Results To carry out the analysis, we proposed the Covariability-based Multiple Regression (CoMRe) method. The method is mainly built on a multiple regression model that takes expression levels of multiple modulators as inputs and regulation strength between genes as output. Pairs of genes were divided into groups based on their co-modulation patterns. Analyzing gene expression profiles from 286 breast cancer patients, CoMRe investigated ten candidate modulator genes that interacted and jointly determined global gene regulation. Among the candidate modulators, ESR1, ERBB2, and ADAM12 were found modulating the most numbers of gene pairs. The largest group of gene pairs was composed of ones that were modulated by merely ESR1. Functional annotation revealed that the group was significantly related to tumorigenesis and estrogen signaling in breast cancer. ESR1−ERBB2 co-modulation was the largest group modulated by more than one modulators. Similarly, the group was functionally associated with hormone stimulus, suggesting that functions of the two modulators are performed, at least partially, through modulation. The findings were validated in majorities of patients (> 99%) of two independent breast cancer datasets. Conclusions We have

  4. Coenzyme Recognition and Gene Regulation by a Flavin Mononucleotide Riboswitch

    SciTech Connect

    Serganov, A.; Huang, L; Patel, D

    2009-01-01

    The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg{sup 2+}-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.

  5. Gaucher disease gene GBA functions in immune regulation

    PubMed Central

    Liu, Jun; Halene, Stephanie; Yang, Mei; Iqbal, Jameel; Yang, Ruhua; Mehal, Wajahat Z.; Chuang, Wei-Lien; Jain, Dhanpat; Yuen, Tony; Sun, Li; Zaidi, Mone; Mistry, Pramod K.

    2012-01-01

    Inherited deficiency of acid β-glucosidase (GCase) due to biallelic mutations in the GBA (glucosidase, β, acid) gene causes the classic manifestations of Gaucher disease (GD) involving the viscera, the skeleton, and the lungs. Clinical observations point to immune defects in GD beyond the accumulation of activated macrophages engorged with lysosomal glucosylceramide. Here, we show a plethora of immune cell aberrations in mice in which the GBA gene is deleted conditionally in hematopoietic stem cells (HSCs). The thymus exhibited the earliest and most striking alterations reminiscent of impaired T-cell maturation, aberrant B-cell recruitment, enhanced antigen presentation, and impaired egress of mature thymocytes. These changes correlated strongly with disease severity. In contrast to the profound defects in the thymus, there were only limited cellular defects in peripheral lymphoid organs, mainly restricted to mice with severe disease. The cellular changes in GCase deficiency were accompanied by elevated T-helper (Th)1 and Th2 cytokines that also tracked with disease severity. Finally, the proliferation of GCase-deficient HSCs was inhibited significantly by both GL1 and Lyso-GL1, suggesting that the “supply” of early thymic progenitors from bone marrow may, in fact, be reduced in GBA deficiency. The results not only point to a fundamental role for GBA in immune regulation but also suggest that GBA mutations in GD may cause widespread immune dysregulation through the accumulation of substrates. PMID:22665763

  6. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes

    PubMed Central

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways. PMID:26617621

  7. Interpathway regulation of the TRP4 gene of yeast.

    PubMed Central

    Braus, G; Mösch, H U; Vogel, K; Hinnen, A; Hütter, R

    1989-01-01

    Two regulatory proteins, PHO2 and the general control regulator GCN4, bind in vitro to the promoter of the tryptophan biosynthetic TRP4 gene; the TRP4 gene product catalyses the phosphoribosylation of anthranilate. PHO2 binds specifically to the TRP4 promoter, but does not bind to any other TRP promoter. PHO2 and GCN4 proteins bind in a mutually exclusive manner to the same sequence, UAS1, one of two GCN4 binding sites in the TRP4 promoter. UAS1 is the major site for GCN4-dependent TRP4 activation. The second GCN4 binding site, UAS2, interacts with GCN4 alone. PHO2 binding interferes with the general control response of TRP4 under low phosphate conditions and simultaneous amino acid starvation and thus the PHO2 regulatory protein connects phosphate metabolism and amino acid biosynthesis in yeast. The GCN4 protein mediates the response of the transcriptional apparatus to the environmental signal 'amino acid limitation', while PHO2 seems to be the phosphate sensor that adjusts the response to the availability of phosphate precursors. Images PMID:2656261

  8. Interactions among Genes Regulating Ovule Development in Arabidopsis Thaliana

    PubMed Central

    Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S.

    1997-01-01

    The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development. PMID:9093862

  9. Metabolic gene regulation in a dynamically changing environment.

    PubMed

    Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff

    2008-08-28

    Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment. PMID:18668041

  10. Craniofacial and Dental Defects in the Col1a1Jrt/+ Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Eimar, H; Tamimi, F; Retrouvey, J-M; Rauch, F; Aubin, J E; McKee, M D

    2016-07-01

    Certain mutations in the COL1A1 and COL1A2 genes produce clinical symptoms of both osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) that include abnormal craniofacial growth, dental malocclusion, and dentinogenesis imperfecta. A mouse model (Col1a1(Jrt)/+) was recently developed that had a skeletal phenotype and other features consistent with moderate-to-severe OI and also with EDS. The craniofacial phenotype of 4- and 20-wk-old Col1a1(Jrt)/+ mice and wild-type littermates was assessed by micro-computed tomography (µCT) and morphometry. Teeth and the periodontal ligament compartment were analyzed by µCT, light microscopy/histomorphometry, and electron microscopy. Over time, at 20 wk, Col1a1(Jrt)/+ mice developed smaller heads, a shortened anterior cranial base, class III occlusion, and a mandibular side shift with shorter morphology in the masticatory region (maxilla and mandible). Col1a1(Jrt)/+ mice also had changes in the periodontal compartment and abnormalities in the dentin matrix and mineralization. These findings validate Col1a1(Jrt)/+ mice as a model for OI and EDS in humans. PMID:26951553

  11. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2016-01-01

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  12. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGESBeta

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  13. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    SciTech Connect

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.

  14. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis.

    PubMed

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L; Mohandas, Narla; Pachter, Lior; Conboy, John G

    2016-01-29

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  15. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    PubMed

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes. PMID:22733202

  16. Regulation of gene expression in vertebrate skeletal muscle

    SciTech Connect

    Carvajal, Jaime J. Rigby, Peter W.J.

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  17. Quantitative influence of macromolecular crowding on gene regulation kinetics

    PubMed Central

    Tabaka, Marcin; Kalwarczyk, Tomasz; Hołyst, Robert

    2014-01-01

    We introduce macromolecular crowding quantitatively into the model for kinetics of gene regulation in Escherichia coli. We analyse and compute the specific-site searching time for 180 known transcription factors (TFs) regulating 1300 operons. The time is between 160 s (e.g. for SoxS Mw = 12.91 kDa) and 1550 s (e.g. for PepA6 of Mw = 329.28 kDa). Diffusion coefficients for one-dimensional sliding are between for large proteins up to for small monomers or dimers. Three-dimensional diffusion coefficients in the cytoplasm are 2 orders of magnitude larger than 1D sliding coefficients, nevertheless the sliding enhances the binding rates of TF to specific sites by 1–2 orders of magnitude. The latter effect is due to ubiquitous non-specific binding. We compare the model to experimental data for LacI repressor and find that non-specific binding of the protein to DNA is activation- and not diffusion-limited. We show that the target location rate by LacI repressor is optimized with respect to microscopic rate constant for association to non-specific sites on DNA. We analyse the effect of oligomerization of TFs and DNA looping effects on searching kinetics. We show that optimal searching strategy depends on TF abundance. PMID:24121687

  18. Transcriptional Regulation of the p16 Tumor Suppressor Gene.

    PubMed

    Kotake, Yojiro; Naemura, Madoka; Murasaki, Chihiro; Inoue, Yasutoshi; Okamoto, Haruna

    2015-08-01

    The p16 tumor suppressor gene encodes a specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 and is found altered in a wide range of human cancers. p16 plays a pivotal role in tumor suppressor networks through inducing cellular senescence that acts as a barrier to cellular transformation by oncogenic signals. p16 protein is relatively stable and its expression is primary regulated by transcriptional control. Polycomb group (PcG) proteins associate with the p16 locus in a long non-coding RNA, ANRIL-dependent manner, leading to repression of p16 transcription. YB1, a transcription factor, also represses the p16 transcription through direct association with its promoter region. Conversely, the transcription factors Ets1/2 and histone H3K4 methyltransferase MLL1 directly bind to the p16 locus and mediate p16 induction during replicative and premature senescence. In the present review, we discuss the molecular mechanisms by which these factors regulate p16 transcription. PMID:26168478

  19. Characterization of CYP1A1 regulatory elements in Atlantic tomcod

    SciTech Connect

    Roy, N.; Wirgin, I.; Courtenay, S.

    1995-12-31

    Coplanar PCBs, TCDD, and PAHs induce cytochrome P4501A1 (CYP1A1) mRNA in Atlantic tomcod from the Miramichi River (MR), whereas only PAHs induce gene expression in tomcod from the Hudson River (HR). Relative to the highly industrialized HR, MR is relatively clean. The authors hypothesize that non-inducibility of CYP1A1 mRNA in PCB (TCB) or TCDD treated tomcod from the HR is due to prior exposure to environmentally-borne xenobiotics. To evaluate the mechanisms which selectively inhibit CYP1A1 inducibility, they isolated and characterized 5{tilde O}and intronic CYP1A1 regulatory elements from tomcod genomic DNA. Tomcod 5{tilde O} CYP1A1 contains four motifs with core sequences identical to the aromatic hydrocarbon receptor elements (AhREs) identified in mammals. Electrophoretic mobility shift assays (EMSAs) with nuclear extracts prepared form the livers of B[a]P treated HR tomcod showed protein binding to 142 and 156 bp tomcod DNA fragments each containing two tomcod AhREs. EMSAs with nuclear extracts prepared from DMBA treated rat livers and human MOLT4 cells also showed protein binding to the fish AhREs. Protein binding at individual tomcod AhREs was characterized with hepatic protein extracts prepared from TCB, B[a]P, and vehicle treated tomcod from the HR and MR. Preliminary studies showed a difference in protein binding between HR and MR tomcod i.p. injected with TCB 1d, 5d, or 15d previous, but not B[a]P 6 hr or 24 hr previous. These results suggest that the mechanisms of CYP1A1 transcription are similar tomcod and mammals and that variation in levels of gene inducibility among individual tomcod may be due to differences in inducible protein binding to CYP1A1 AhREs.

  20. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  1. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  2. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  3. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  4. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  5. The Lupus Susceptibility Gene Pbx1 Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation.

    PubMed

    Choi, Seung-Chul; Hutchinson, Tarun E; Titov, Anton A; Seay, Howard R; Li, Shiwu; Brusko, Todd M; Croker, Byron P; Salek-Ardakani, Shahram; Morel, Laurence

    2016-07-15

    Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant-negative isoform is more frequent in CD4(+) T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus-susceptibility locus. Transgenic (Tg) expression of Pbx1-d in CD4(+) T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4(+) T cells and impaired Foxp3(+) regulatory T cell (Treg) homeostasis. Pbx1-d-Tg expression also expanded the number of follicular helper T cells (TFHs) in a cell-intrinsic and Ag-specific manner, which was enhanced in recall responses and resulted in Th1-biased Abs. Moreover, Pbx1-d-Tg CD4(+) T cells upregulated the expression of miR-10a, miR-21, and miR-155, which were implicated in Treg and follicular helper T cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFHs at the expense of Tregs. In addition, our results identify Pbx1 as a novel regulator of CD4(+) T cell effector function. PMID:27296664

  6. Quasi-Genes: The Many-Body Theory of Gene Regulation in the Presence of Decoys

    NASA Astrophysics Data System (ADS)

    Burger, Anat

    During transcriptional regulation, transcription factor proteins bind to particular sites in the genome in order to switch genes on or off. The regulatory binding site intended for a transcription factor is just one out of millions of potential sites where the transcription factor can bind. Specificity of a binding motif determines whether less than one or up to tens of thousands of strong affinity binding sites can be expected by pure chance. The roles that these additional "decoy" binding sites play in the functioning of a cell are currently unknown. We incorporate decoys into traditional mass action and stochastic models of a simple gene network-the self-regulated gene-and use numerical and analytical techniques to quantify the effects that these extra sites have on altering gene expression properties. Counter-intuitively, we find that if bound transcription factors are protected from degradation, the mean steady state concentration of unbound transcription factors, , is insensitive to the addition of decoys. Many other gene expression properties do change as decoys are added. Decoys linearly increase the time necessary to reach steady state. Noise buffering by decoys occurs because of a coupling between the unbound proteomic environment and the reservoir of sites that can be very large, but the noise reduction is limited Poisson statistics because of the inherent noise resulting from binding and unbinding of transcription factors to DNA. This noise buffering is optimized for a given protein concentration when decoys have a 1/2 probability of being occupied. Decoys are able to preferentially stabilize one state of a bimodal system over the other, and exponentially increase the time to epigenetically switch between these states. In the limit that binding and unbinding rates are fast compared to the fluctuations in transcription factor copy number, we exploit timescale differences to collapse the model and derive analytical expressions that explain our

  7. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  8. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    PubMed

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126

  9. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    PubMed

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  10. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

    PubMed Central

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3′-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  11. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    PubMed Central

    Arbeitman, Michelle N.; New, Felicia N.; Fear, Justin M.; Howard, Tiffany S.; Dalton, Justin E.; Graze, Rita M.

    2016-01-01

    Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation. PMID:27172187

  12. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex.

    PubMed

    Arbeitman, Michelle N; New, Felicia N; Fear, Justin M; Howard, Tiffany S; Dalton, Justin E; Graze, Rita M

    2016-01-01

    Sex differences in gene expression have been widely studied in Drosophila melanogaster Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation. PMID:27172187

  13. Initial evidence that polymorphisms in neurotransmitter-regulating genes contribute to being born small for gestational age

    PubMed Central

    Morgan, Angharad R.; Thompson, John M.D.; Waldie, Karen E.; Cornforth, Christine M.; Turic, Darko; Sonuga-Barke, Edmund J.S.; Lam, Wen-Jiun; Ferguson, Lynnette R.; Mitchell, Edwin A.

    2012-01-01

    Being born small for gestational age (SGA) is a putative risk factor for the development of later cognitive and psychiatric health problems. While the inter-uterine environment has been shown to play an important role in predicting birth weight, little is known about the genetic factors that might be important. Here we test the hypothesis that neurotransmitter-regulating genes implicated in psychiatric disorders previously shown to be associated with SGA (such as attention-deficit hyperactivity disorder) are themselves predictive of SGA. DNA was collected from 227 SGA and 319 appropriate for gestational age children taking part in the Auckland Birthweight Collaborative Study. Candidate single nucleotide polymorphisms in genes regulating activity within dopamine, serotonin, glutamate and gamma-aminobutyric acid pathways were genotyped. Multiple regression analysis, controlling for potentially confounding factors, supported nominally significant associations between SGA and single nucleotide polymorphisms in COMT, HTR2A, SLC1A1 and SLC6A1. This is the first evidence that genes implicated in psychiatric disorders previously linked to SGA status themselves predict SGA. This highlights the possibility that the link between SGA and psychiatric disorders such as attention-deficit hyperactivity disorder may in part be genetically determined – that SGA marks pre-existing genetic risk for later problems.

  14. Regulation of competence and gene expression in Streptococcus mutans by the RcrR transcriptional regulator

    PubMed Central

    Burne, Robert A.

    2014-01-01

    SUMMARY An intimate linkage between the regulation of biofilm formation, stress tolerance and genetic competence exists in the dental caries pathogen Streptococcus mutans. The rcrRPQ genes encode ABC exporters (RcrPQ) and a MarR-family transcriptional repressor of the rcr operon (RcrR) play a dominant role in regulation of the development of genetic competence and connect competence with stress tolerance and (p)ppGpp production in S. mutans. Here we identify the target for efficient RcrR binding in the rcr promoter region using purified recombinant RcrR (rRcrR) protein in electrophoretic mobility shift assays and show that DNA fragments carrying mutations in the binding region were not bound as efficiently by rRcrR in vitro. Mutations in the RcrR binding site impacted expression from the rcrR promoter in vivo and elicited changes in transformation efficiency, competence gene expression, and growth inhibition by competence stimulating peptide; even when the changes in rcrRPQ transcription were minor. An additional mechanistic linkage of RcrR with competence and (p)ppGpp metabolism was identified by showing that the rRcrR protein could bind to the promoter regions of comX, comYA and relP, although the binding was not as efficient as to the rcrRPQ promoter under the conditions tested. Thus, tightly controlled autogenous regulation of the rcrRPQ operon by RcrR binding to specific target sites is essential for cellular homeostasis, and RcrR contributes to the integration of genetic competence, (p)ppGpp metabolism, and acid and oxidative stress tolerance in S. mutans through both direct and indirect mechanisms. PMID:25146832

  15. Characterization of a novel mutation in SLC1A1 associated with schizophrenia

    PubMed Central

    Afshari, Parisa; Myles-Worsley, Marina; Cohen, Ori S.; Tiobech, Josepha; Faraone, Stephen V.; Byerley, William; Middleton, Frank A.

    2015-01-01

    We recently described a hemi-deletion on chromosome 9p24.2 at the SLC1A1 gene lcous and its co-segregation with schizophrenia in an extended Palauan pedigree. This finding represents a point of convergence for several pathophysiological models of schizophrenia. The present report sought to characterize the biological consequences of this hemi-deletion. Dual luciferase assays demonstrated that the partially-deleted allele (lacking exon 1 and the native promoter) can drive expression of a 5'-truncated SLC1A1 using sequence upstream of exon 2 as a surrogate promoter. However, confocal microscopy and electrophysiological recordings demonstrate that the 5'-truncated SLC1A1 lacks normal membrane localization and glutamate transport ability. To identify downstream consequences of the hemi-deletion we first used a themed qRT-PCR array to compare expression of 84 GABA and glutamate genes in RNA from peripheral blood leukocytes in deletion carriers (n=11) vs. non-carriers (n=8) as well as deletion carriers with psychosis (n=5) vs. those without (n=3). Then, targeted RNA-Seq (TREx) was used to quantify expression of 375 genes associated with neuropsychiatric disorders in HEK293 cells subjected to either knockdown of SLC1A1 or overexpression of full-length or 5'-truncated SLC1A1. Expression changes of several genes strongly implicated in schizophrenia pathophysiology were detected (e.g., SLC1A2, SLC1A3, SLC1A6, SLC7A11, GRIN2A, GRIA1, DLX1). PMID:26380821

  16. Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization

    PubMed Central

    Abiko, Mafumi; Maeda, Hiroki; Tamura, Kentaro; Hara-Nishimura, Ikuko; Okamoto, Takashi

    2013-01-01

    In angiosperms, fertilization and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries; therefore, these processes are poorly elucidated. In this study, microarray-based transcriptome analyses were conducted on rice sperm cells, egg cells, and zygotes isolated from flowers to identify candidate genes involved in gametic and/or early zygotic development. Cell type-specific transcriptomes were obtained, and up- or down-regulated genes in zygotes after fertilization were identified, in addition to genes enriched in male and female gametes. A total of 325 putatively up-regulated and 94 putatively down-regulated genes in zygotes were obtained. Interestingly, several genes encoding homeobox proteins or transcription factors were identified as highly up-regulated genes after fertilization, and the gene ontology for up-regulated genes was highly enriched in functions related to chromatin/DNA organization and assembly. Because a gene encoding methyltransferase 1 was identified as a highly up-regulated gene in zygotes after fertilization, the effect of an inhibitor of this enzyme on zygote development was monitored. The inhibitor appeared partially to affect polarity or division asymmetry in rice zygotes, but it did not block normal embryo generation. PMID:23570690

  17. Transcriptional and Posttranscriptional Regulations of the HLA-G Gene

    PubMed Central

    Castelli, Erick C.; Veiga-Castelli, Luciana C.; Yaghi, Layale; Donadi, Eduardo A.

    2014-01-01

    HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-γ and NF-κB, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3′ untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3′UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region. PMID:24741620

  18. Regulation of Metformin Response by Breast Cancer Associated Gene 2123

    PubMed Central

    Buac, Daniela; Kona, Fathima R; Seth, Arun K; Dou, Q Ping

    2013-01-01

    Adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA)-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115), a novel Really Interesting New Gene (RING) finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors. Herein, we report that BCA2 is an endogenous inhibitor of AMPK activation in breast cancer cells and that BCA2 inhibition increases the efficacy of metformin. BCA2 overexpression inhibited both basal and inducible Thr172 phosphorylation/activation of AMPKα1, while BCA2-specific small interfering RNA (siRNA) enhanced phosphorylated AMPKα1 (pAMPKα1). The AMPK-suppressive function of BCA2 requires its E3 ligase-specific RING domain, suggesting that BCA2 targets some protein controlling (de)phosphorylation of AMPKα1 for degradation. Activation of AMPK by metformin triggered a growth inhibitory signal but also increased BCA2 protein levels, which correlated with AKT activation and could be curbed by an AMPK inhibitor, suggesting a potential feedback mechanism from pAMPKα1 to pAkt to BCA2. Finally, BCA2 siRNA, or inhibition of its upstream stabilizing kinase AKT, increased the growth inhibitory effect of metformin in multiple breast cancer cell lines, supporting the conclusion that BCA2 weakens metformin's efficacy. Our data suggest that metformin in combination with a BCA2 inhibitor may be a more effective breast cancer treatment strategy than metformin alone. PMID:24403860

  19. Cross-Regulation among the Polycomb Group Genes in Drosophila melanogaster

    PubMed Central

    Ali, Janann Y.; Bender, Welcome

    2004-01-01

    Genes of the Polycomb group in Drosophila melanogaster function as long-term transcriptional repressors. A few members of the group encode proteins found in two evolutionarily conserved chromatin complexes, Polycomb repressive complex 1 (PRC1) and the ESC-E(Z) complex. The majority of the group, lacking clear biochemical functions, might be indirect regulators. The transcript levels of seven Polycomb group genes were assayed in embryos mutant for various other genes in the family. Three Polycomb group genes were identified as upstream positive regulators of the core components of PRC1. There is also negative feedback regulation of some PRC1 core components by other PRC1 genes. Finally, there is positive regulation of PRC1 components by the ESC-E(Z) complex. These multiple pathways of cross-regulation help to explain the large size of the Polycomb group family of genes, but they complicate the genetic analysis of any single member. PMID:15314179

  20. Gravity regulated genes in Arabidopsis thaliana (GENARA experiment)

    NASA Astrophysics Data System (ADS)

    Boucheron-Dubuisson, Elodie; Carnero-D&íaz, Eugénie; Medina, Francisco Javier; Gasset, Gilbert; Pereda-Loth, Veronica; Graziana, Annick; Mazars, Christian; Le Disquet, Isabelle; Eche, Brigitte; Grat, Sabine; Gauquelin-Koch, Guillemette

    2012-07-01

    In higher plants, post-embryonic development is possible through the expression of a set of genes constituting the morphogenetic program that contribute to the production of tissues and organs during the whole plant life cycle. Plant development is mainly controlled by internal factors such as phytohormones, as well as by environmental factors, among which gravity plays a key role (gravi-morphogenetic program). The GENARA space experiment has been designed with the goal of contributing to a better understanding of this gravi-morphogenetic program through the identification and characterization of some gravity regulated proteins (GR proteins) by using quantitative proteomic methods, and through the study of the impact of plant hormones on the expression of this program. Among plant hormones, auxin is the major regulator of organogenesis. In fact, it affects numerous plant developmental processes, e.g. cell division and elongation, autumnal loss of leaves, and the formation of buds, roots, flowers and fruits. Furthermore, it also plays a key role in the mechanisms of different tropisms (including gravitropism) that modulate fundamental features of plant growth.