Science.gov

Sample records for 1b receptor gene

  1. Reappraisal of the serotonin 5-HT(1B) receptor gene in alcoholism: of mice and men.

    PubMed

    Gorwood, Philip; Aissi, Franck; Batel, Philippe; Adès, Jean; Cohen-Salmon, Charles; Hamon, Michel; Boni, Claudette; Lanfumey, Laurence

    2002-01-01

    Because pharmacological and genetic data supported the idea that serotonin receptors of the 5-HT(1B) type can play a modulatory role in alcohol consumption in both human and rodents, the 5-HT(1B) receptor gene is considered as a candidate gene for alcohol dependence. However, contradictory results have been reported as a positive association between alcohol dependence, and either the 861C or the 861G allele of the G861C polymorphism of the 5-HT(1B) receptor gene can be found in the literature. Further investigations in a population of 136 male alcoholics compared with 72 male control subjects demonstrated that none of these alleles was actually associated with alcohol dependence. In addition, in contrast with previous results of the literature, ethanol intake under free choice conditions (i.e., ethanol solution vs. water) was found to be similar in 5-HT(1B)-/- knock mice and paired wild-type controls. The 5-HT(1B) receptor gene may thus not be a key component in the genetic background underlying alcohol dependence in human and alcohol preference in rodents, although these results should be considered as preliminary according to the small size of our sample. PMID:11827742

  2. Association Between 5HT1b Receptor Gene and Methamphetamine Dependence

    PubMed Central

    Ujike, H; Kishimoto, M; Okahisa, Y; Kodama, M; Takaki, M; Inada, T; Uchimura, N; Yamada, M; Iwata, N; Iyo, M; Sora, I; Ozaki, N

    2011-01-01

    Several lines of evidence implicate serotonergic dysfunction in diverse psychiatric disorders including anxiety, depression, and drug abuse. Mice with a knock-out of the 5HT1b receptor gene (HTR1B) displayed increased locomotor response to cocaine and elevated motivation to self-administer cocaine and alcohol. Previous genetic studies showed significant associations of HTR1B with alcohol dependence and substance abuse, but were followed by inconsistent results. We examined a case-control genetic association study of HTR1B with methamphetamine-dependence patients in a Japanese population. The subjects were 231 patients with methamphetamine dependence, 214 of whom had a co-morbidity of methamphetamine psychosis, and 248 age- and sex-matched healthy controls. The three single nucleotide polymorphisms (SNPs), rs130058 (A-165T), rs1228814 (A-700C) and rs1228814 (A+1180G) of HTR1B were genotyped. There was no significant difference in allelic and genotypic distributions of the SNPs between methamphetamine dependence and the control. Genetic associations of HTR1B were tested with several clinical phenotypes of methamphetamine dependence and/or psychosis, such as age at first abuse, duration of latency from the first abuse to onset of psychosis, prognosis of psychosis after therapy, and complication of spontaneous relapse of psychotic state. There was, however, no asscocation between any SNP and the clinical phenotypes. Haplotype analyses showed the three SNPs examined were within linkage disequilibrium, which implied that the three SNPs covered the whole HTR1B, and distribution of estimated haplotype frequency was not different between the groups. The present findings may indicate that HTR1B does not play a major role in individual susceptibility to methamphetamine dependence or development of methamphetamine-induced psychosis. PMID:21886584

  3. Serotonin 1B Receptor Gene (HTR1B) Methylation as a Risk Factor for Callous-Unemotional Traits in Antisocial Boys.

    PubMed

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David J; Dadds, Mark R

    2015-01-01

    The serotonin system is thought to play a role in the aetiology of callous-unemotional (CU) traits in children. Previous research identified a functional single nucleotide polymorphism (SNP) from the promoter region of the serotonin 1B receptor gene as being associated with CU traits in boys with antisocial behaviour problems. This research tested the hypothesis that CU traits are associated with reduced methylation of the promoter region of the serotonin 1B receptor gene due to the influence of methylation on gene expression. Participants (N = 117) were boys with antisocial behaviour problems aged 3-16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered a saliva sample from which the genotype of a SNP from the promoter region of the serotonin 1B receptor gene and the methylation levels of 30 CpG sites from 3 CpG regions surrounding the location of this polymorphism were assayed. Lower levels of serotonin 1B receptor gene methylation were associated with higher levels of CU traits. This relationship, however, was found to be moderated by genotype and carried exclusively by two CpG sites for which levels of methylation were negatively associated with overall methylation levels in this region of the gene. Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of CU traits. Furthermore, the results suggest that there may be two pathways to CU traits that involve methylation of the serotonin 1B receptor gene; one that is driven by a genotypic risk and another that is associated with risk for generally increased levels of methylation. Future research that aims to replicate and further investigate these results is required. PMID:25993020

  4. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism.

    PubMed

    Huang, Yung-yu; Oquendo, Maria A; Friedman, Jill M Harkavy; Greenhill, Lawrence L; Brodsky, Beth; Malone, Kevin M; Khait, Vadim; Mann, J John

    2003-01-01

    The 5-HT(1B) receptor has been implicated in several psychopathologies, including pathological aggression, alcoholism and suicide. To test these and related potential genetic relationships in a single population, the human 5-HT(1B) receptor (h5-HTR(1B)) genotype for the G861C polymorphism was determined in 394 psychiatric patients and 96 healthy volunteers. Structured clinical interviews generated DSM III-R diagnoses. No significant association of the genotype or allele frequencies of the h5-HTR(1B) G861C locus was observed with diagnoses of alcoholism, bipolar disorder, schizophrenia or a history of a suicide attempt. Exploratory analyses indicated an association of the genotype and allele frequencies of the h5-HTR(1B) G861C locus with a history of substance abuse disorder (chi(2) = 9.51, df = 2, p = 0.009; chi(2) = 7.31, df = 1, p = 0.007, respectively) and with a diagnosis of a major depressive episode (chi(2) = 6.83, df = 2, p = 0.033; chi(2) = 5.81, df = 1, p = 0.016, respectively). Significant gene dose effects on the risk for substance abuse disorder and a major depressive episode were observed with the 861C allele (Armitage linearity tendency test: chi(2) = 7.20, df = 1, p = 0.008; chi(2) = 6.80, df = 1, p = 0.009, respectively). Substance abuse disorder and major depression appear to be associated with the h5-HTR(1B) G861C locus in the patient population, but other psychopathologies such as bipolar disorder, schizophrenia, alcoholism, and suicide attempts were not found to be associated with this polymorphism. This preliminary result will need replication, given the limitations of association studies. PMID:12496953

  5. Melatonin receptor 1B gene associated with hyperglycemia in bipolar disorder.

    PubMed

    Hukic, Dzana S; Lavebratt, Catharina; Frisén, Louise; Backlund, Lena; Hilding, Agneta; Gu, Harvest F; Östenson, Claes-Göran; Erlinge, David; Ehrenborg, Ewa; Schalling, Martin; Ösby, Urban

    2016-06-01

    Bipolar patients are at a higher risk of developing metabolic disorders. Cardiovascular morbidity and mortality is twice the rate reported in the population. Antipsychotic medication increases the risk of metabolic abnormalities. However, bipolar disorder and schizophrenia have a similarly increased mortality from cardiovascular causes of death, although bipolar patients medicate with antipsychotic drugs to a much smaller extent than schizophrenic patients. Bipolar disorder and schizophrenia share substantial genetic risk components; thus, increased metabolic abnormalities is hypothesized to be an effect of specific sets of metabolic risk genes, which might overlap with the metabolic risk genes in schizophrenia. This study reports that a functional genetic variant of MTNR1B, previously implicated in the impairment of glucose-stimulated insulin release also in schizophrenia, was associated with elevated fasting glucose levels in bipolar patients and controls. This finding suggests that the MTNR1B-dependent vulnerability for elevated fasting plasma glucose levels is shared between bipolar disorder and schizophrenia. PMID:26991397

  6. Increased expression of 5-HT1B receptors by Herpes simplex virus gene transfer in septal neurons: new in-vitro and in-vivo models to study 5-HT1B receptor function

    PubMed Central

    Riegert, Céline; Rothmaier, Anna Katharina; Leemhuis, Jost; Sexton, Timothy J.; Neumaier, John F.; Cassel, Jean-Christophe; Jackisch, Rolf

    2009-01-01

    Serotonergic modulation of acetylcholine (ACh) release after neuron-specific increase of the expression of 5-HT1B receptors by gene transfer was studied in-vitro and in-vivo. The increased expression of the 5-HT1B receptor in-vitro was induced by treating rat primary fetal septal cell cultures for 3 days with a viral vector inducing the expression of green fluorescent protein alone (GFP vector), or, in addition, of 5-HT1B receptors (HA1B/GFP vector). The transfection resulted in a high number of GFP-positive cells, part of which being immunopositive for choline acetyltransferase. In HA1B/GFP-cultures (vs. GFP-cultures), electrically-evoked ACh release was significantly more sensitive to the inhibitory action of the 5-HT1B agonist CP-93,129. Increased expression of the 5-HT1B receptor in-vivo was induced by stereotaxic injections of the vectors into the rat septal region. Three days later, electrically-evoked release of ACh in hippocampal slices of HA1B/GFP-treated rats was lower than in their GFP-treated counterparts, showing a higher inhibitory efficacy of endogenous 5-HT on cholinergic terminals after transfection. Moreover, CP-93,129 had a higher inhibitory potency. In conclusion, the HA1B/GFP vector reveals a useful tool to induce a targeted increase of 5-HT1B heteroreceptors on cholinergic neurons in selected CNS regions, which provides interesting perspectives for functional approaches at more integrated levels. PMID:18502320

  7. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    PubMed Central

    Hirai, Takao; Tanaka, Kenjiro; Togari, Akifumi

    2015-01-01

    ABSTRACT Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN) and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG), was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR) agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1) and Bmal1 (Bmal1, also known as Arntl), which are components of the core loop of the circadian clock in osteoblasts. PMID:26453621

  8. Analysis of differential β variable region of T cell receptor expression and NAV3/TNFRSF1B gene mutation in mycosis fungoides

    PubMed Central

    Li, Li; Ren, Jingyu; Guo, Shuping; Bai, Li

    2016-01-01

    Objective This study aimed to analyze the predominant expression of the variable region of T cell receptor (TRBV) and determine whether NAV3 or TNFRSF1B gene mutation involved in the pathogenesis of MF. Results TRBV5-7 expression increased from the normal, early-stage to advanced-stage lesion in MF patient. By contrast, TRBV2 decreased with the lesion developed. We found no mutations of NAV3 or TNFRSF1B in the lesions from this study. Materials and Methods Real-time PCR were used to screen differential expression of TRBV in different lesions. Mutational analyses were used to validate genetic alterations in the skin lesions. Conclusions The identification of TRBV gene expression differences between normal and different stages of MF lesions provide insight into promising new diagnostic and prognostic biomarkers. None of the reported genetic abnormalities suggests complexity of progress from a primary cytogenetic event to an advanced stage with poor prognosis in MF. PMID:26918607

  9. Social dominance in male vasopressin 1b receptor knockout mice.

    PubMed

    Caldwell, Heather K; Dike, Obianuju E; Stevenson, Erica L; Storck, Kathryn; Young, W Scott

    2010-07-01

    We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b -/-) mice. We then went on to test the ability of Avpr1b -/- mice to form dominance hierarchies. No major differences were found between Avpr1b -/- and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b -/- mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b -/- mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b -/- mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b -/- mice may be able to form dominance hierarchies they appear to employ alternate strategies. PMID:20298692

  10. Association between the Melatonin Receptor 1B Gene Polymorphism on the Risk of Type 2 Diabetes, Impaired Glucose Regulation: A Meta-Analysis

    PubMed Central

    Wang, Yi-Chao; Ma, Yu-Shui; Zhang, Feng; Che, Wu; Fu, Da; Wang, Xiao-Feng

    2012-01-01

    Background Melatonin receptor 1B (MTNR1B) belongs to the seven-transmembrane G protein-coupled receptor superfamily involved in insulin secretion, which has attracted considerable attention as a candidate gene for type 2 diabetes (T2D) since it was first identified as a loci associated with fasting plasma glucose level through genome wide association approach. The relationship between MTNR1B and T2D has been reported in various ethnic groups. The aim of this study was to consolidate and summarize published data on the potential of MTNR1B polymorphisms in T2D risk prediction. Methods PubMed, EMBASE, ISI web of science and the CNKI databases were systematically searched to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity and publication bias were also tested. Results A total of 23 studies involving 172,963 subjects for two common polymorphisms (rs10830963, rs1387153) on MTNR1B were included. An overall random effects per-allele OR of 1.05 (95% CI: 1.02–1.08; P<10−4) and 1.04 (95% CI: 0.98–1.10; P = 0.20) were found for the two variants respectively. Similar results were also observed using dominant or recessive genetic model. There was strong evidence of heterogeneity, which largely disappeared after stratification by ethnicity. Significant results were found in Caucasians when stratified by ethnicity; while no significant associations were observed in East Asians and South Asians. Besides, we found that the rs10830963 polymorphism is a risk factor associated with increased impaired glucose regulation susceptibility. Conclusions This meta-analysis demonstrated that the rs10830963 polymorphism is a risk factor for developing impaired glucose regulation and T2D. PMID:23226241

  11. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. PMID:23436703

  12. [Suppressing effect of the serotonin 5HT1B/D receptor agonist rizatriptan on calcitonin gene-related peptide (CGRP) concentration in migraine attacks].

    PubMed

    Stepień, Adam; Jagustyn, Piotr; Trafny, Elzbieta Anna; Widerkiewicz, Krzysztof

    2003-01-01

    Calcitonin gene-related peptide (CGRP) is one of the neuropeptides most abundant in the nervous tissue. Recent studies indicate that local cranial release of CGRP from the trigeminal nerve perivascular endings within arachnoidea plays an important role in the pathophysiology of migraine attacks and cluster headaches. Elevated CGRP levels in cranial venous blood (in the jugular vein) during an acute spontaneous migraine attack have been reported in rather few studies so far. Sumatriptan--a selective serotonin 5HT1B/D receptor agonist, highly effective in terminating migraine attacks, decreases the elevated CGRP level back to normal. The aim of our study was to determine the effect of rizatriptan (a drug from a new generation of triptans) on CGRP release in migraine attacks. In 45 patients suffering from migraine attacks with and without aura, plasma CGRP levels were assessed during an attack twice: before treatment and two hours after rizatriptan administration. In the group under study the plasma CGRP level before treatment was significantly higher than that measured two hours after rizatriptan administration. The decrease in CGRP levels was associated with subsidence of the migraine attack. There was no difference between migraine patients with and without aura. These results suggest that triptans as serotonin 5HT1B/D receptor agonists decrease CGRP plasma concentration in migraine attacks. PMID:15174248

  13. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens

    PubMed Central

    Mu, F.; Jing, Y.; Qin, N.; Zhu, H. Y.; Liu, D. H.; Yuan, S. G.; Xu, R. F.

    2016-01-01

    Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3′-untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding. PMID:26954135

  14. Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens.

    PubMed

    Mu, F; Jing, Y; Qin, N; Zhu, H Y; Liu, D H; Yuan, S G; Xu, R F

    2016-09-01

    Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3'-untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding. PMID:26954135

  15. The effects of aging and chronic fluoxetine treatment on circadian rhythms and suprachiasmatic nucleus expression of neuropeptide genes and 5-HT1B receptors

    PubMed Central

    Duncan, Marilyn J.; Hester, James M.; Hopper, Jason A.; Franklin, Kathleen M.

    2010-01-01

    Age-related changes in circadian rhythms, including attenuation of photic phase shifts, are associated with changes in the central pacemaker in the suprachiasmatic nucleus (SCN). Aging decreases expression of mRNA for vasoactive intestinal peptide (VIP), a key neuropeptide for rhythm generation and photic phase shifts, and increases expression of serotonin transporters and 5-HT1B receptors, whose activation inhibits these phase shifts. Here we describe studies in hamsters showing that aging decreases SCN expression of mRNA for gastrin-releasing peptide, which also modulates photic phase resetting. Because serotonin innervation trophically supports SCN VIP mRNA expression, and serotonin transporters decrease extracellular serotonin, we predicted that chronic administration of the serotonin-selective reuptake inhibitor, fluoxetine, would attenuate the age-related changes in SCN VIP mRNA expression and 5-HT1B receptors. In situ hybridization studies showed that fluoxetine treatment does not alter SCN VIP mRNA expression, in either age group, at zeitgeber time (ZT)6 or 13 (ZT12 corresponds to lights off). However, receptor autoradiographic studies showed that fluoxetine prevents the age-related increase in SCN 5-HT1B receptors at ZT6, and decreases SCN 5-HT1B receptors in both ages at ZT13. Therefore, aging effects on SCN VIP mRNA and SCN 5-HT1B receptors are differentially regulated; the age-related increase in serotonin transporter sites mediates the latter but not the former. The studies also showed that aging and chronic fluoxetine treatment decrease total daily wheel running without altering the phase of the circadian wheel running rhythm, in contrast to previous reports of phase resetting by acute fluoxetine treatment. PMID:20525077

  16. Gene profiling of growth factor independence 1B gene (Gfi-1B) in leukemic cells.

    PubMed

    Koldehoff, Michael; Zakrzewski, Johannes L; Klein-Hitpass, Ludger; Beelen, Dietrich W; Elmaagacli, Ahmet H

    2008-01-01

    To investigate the molecular effects of growth factor independence 1B (Gfi-1B), a transcription factor essential for the development of hematopoietic cells and differentiation of erythroid and megakaryocytic lineages, the naturally Gfi-1B overexpressing cell line K562 was cultured in the presence of Gfi-1B target-specific small interfering RNA (siRNA). SiRNA treatment significantly knocked down Gfi-1B expression with an efficiency of nearly 90%. Analysis of the siRNA silencing protocol by colony-forming units ensured that it was not cytotoxic. Samples from Gfi-1B overexpressing cells and cells with knocked-down Gfi-1B were analyzed by oligonucleotide microarray technology and based upon rigorous statistical analysis of the data; relevant genes were chosen for confirmation by reserve transcriptase-polymerase chain reaction, including MYC/MYCBP and CDKN1A. Interestingly, transcripts within components of the signalling cascade of immune cells (PLD1, LAMP1, HSP90, IL6ST), of the tyrosine kinase pathway (TPR, RAC3) and of the transcription factors (RAC3, CEP290, JEM-1, ATR, MYC, SMC3, RARA, RBBP6) were found to be differentially expressed in Gfi-1B overexpressing cells compared to controls. Individual genes such as ZDHHC17, DMXL1, ZNF292 were found to be upregulated in Gfi-1B overexpressing cells. In addition, down-regulated transcripts showed cell signaling transcripts for several chemokine gene members including GNAL, CXCL5, GNL3L, GPR65, TMEM30, BCL11B and transcription factors (GTF2H3, ATXN3). In conclusion, several essential cell signalling factors, as well as transcriptional and post-translational regulation genes were differentially expressed in cells that overexpressed Gfi-1B compared to control cells with knocked-down Gfi-1B. Our data indicate that Gfi-1B signalling is important for commitment and maturation of hematopoietic cell populations. PMID:18224412

  17. Recombinant saphenous vein 5-HT1B receptors of the rabbit: comparative pharmacology with human 5-HT1B receptors.

    PubMed

    Wurch, T; Palmier, C; Colpaert, F C; Pauwels, P J

    1997-01-01

    1. The rabbit recombinant saphenous vein 5-hydroxytryptamine1B (r 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by measuring adenosine 3':5'-cyclic monophosphate (cycle AMP) formation upon exposure to various 5-HT receptor ligands. The effects of agonists and antagonists were compared with their effects determined previously at the human cloned 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Intact C6-glial cells expressing rb HT1B receptors exhibited [3H]-5-carboxamidotryptamine (5-CT) binding sites with a Kd of 0.80 +/- 0.13 nM and a Bmax between 225 to 570 fmol mg-1 protein. The binding affinities of a series of 5-HT receptor ligands determined in a membrane preparation with [3H]-5-CT or [3H]-N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(-4 -pyridyl) benzamide (GR 125,743) were similar. With the exception of ketanserin, ligand affinities were comparable to those determined at the clones h 5-HT1B receptor site. 3. rb 5-HT1B receptors were negatively coupled to cyclic AMP formation upon stimulation with 5-HT agonists. Of the several 5-HT agonists tested, 5-CT was the most potent, the potency rank order being: 5-CT > 5-HT > zolmitriptan > naratriptan > rizatriptan > sumatriptan > R (+)-8-(hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The maximal responses of these agonists were similar to those induced by 5-HT. The potency of these agonists showed a positive correlation (r2 = 0.87; P < 0.002) with their potency at the cloned h 5-HT1B receptor subtype. 4. 2'-Methyl-4-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carboxylic acid [4-methoxy-e-(4-methyl-piperazin-1-yl)-phenyl]-amide (GR 127,935), methiothepin and ketanserin each behaved as silent, competitive antagonists at rb 5HT1B receptors; pKB values were 8.41, 8.32 and 7.05, respectively when naratriptan was used as an agonist. These estimates accorded with their binding affinities and the potencies found on 5-HT and/or sumatriptan

  18. 5-HT1B receptor modulation of the serotonin transporter in vivo: studies using KO mice.

    PubMed

    Montañez, Sylvia; Munn, Jaclyn L; Owens, W Anthony; Horton, Rebecca E; Daws, Lynette C

    2014-07-01

    treatment of psychiatric disorders, particularly those linked to gene variants of the 5-HT1B receptor. PMID:24246466

  19. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    PubMed Central

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  20. CYP1B1: a unique gene with unique characteristics.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Sharma, Reetika; Saluja, Daman; Dada, Tanuj

    2014-01-01

    CYP1B1, a recently described dioxin inducible oxidoreductase, is a member of the cytochrome P450 superfamily involved in the metabolism of estradiol, retinol, benzo[a]pyrene, tamoxifen, melatonin, sterols etc. It plays important roles in numerous physiological processes and is expressed at mRNA level in many tissues and anatomical compartments. CYP1B1 has been implicated in scores of disorders. Analyses of the recent studies suggest that CYP1B1 can serve as a universal/ideal cancer marker and a candidate gene for predictive diagnosis. There is plethora of literature available about certain aspects of CYP1B1 that have not been interpreted, discussed and philosophized upon. The present analysis examines CYP1B1 as a peculiar gene with certain distinctive characteristics like the uniqueness in its chromosomal location, gene structure and organization, involvement in developmentally important disorders, tissue specific, not only expression, but splicing, potential as a universal cancer marker due to its involvement in key aspects of cellular metabolism, use in diagnosis and predictive diagnosis of various diseases and the importance and function of CYP1B1 mRNA in addition to the regular translation. Also CYP1B1 is very difficult to express in heterologous expression systems, thereby, halting its functional studies. Here we review and analyze these exceptional and startling characteristics of CYP1B1 with inputs from our own experiences in order to get a better insight into its molecular biology in health and disease. This may help to further understand the etiopathomechanistic aspects of CYP1B1 mediated diseases paving way for better research strategies and improved clinical management. PMID:25658124

  1. Myelin protein zero gene mutated in Charcot-Marie-Tooth type 1B patients

    SciTech Connect

    Su, Ying; Li, Lanying; Lepercq, J.; Lebo, R.V. ); Brooks, D.G.; Ravetch, J.V. ); Trofatter, J.A. )

    1993-11-15

    The autosomal dominant of Charcot-Marie-Tooth disease (CMT), whose gene is type 1B (CMT1B), has slow nerve conduction with demyelinated Schwann cells. In this study the abundant peripheral myelin protein zero (MPZ) gene, MPZ, was mapped 130 kb centromeric to the Fc receptor immunoglobulin gene cluster in band 1q22, and a major MPZ point mutation was found to cosegregate with CMT1B in one large CMT1B family. The MPZ point mutation in 18 of 18 related CMT1B pedigree 1 patients converts a positively charged lysine in codon 96 to a negatively charged glutamate. The same MPZ locus cosegregates with the CMT1B disease gene in a second CMT1B family [total multipoint logarithm of odds (lod) = 11.4 at [theta] = 0.00] with a splice junction mutation. Both mutations occur in MPZ protein regions otherwise conserved identically in human, rat, and cow since these species diverged 100 million years ago. MPZ protein, expressed exclusively in myelinated peripheral nerve Schwann cells, constitutes >50% of myelin protein. These mutations are anticipated to disrupt homophilic MPZ binding and result in CMT1B peripheral nerve demyelination.

  2. Serotonin 1B Receptor Imaging in Alcohol Dependence

    PubMed Central

    Hu, Jian; Henry, Shannan; Gallezot, Jean-Dominique; Ropchan, Jim; Neumaier, John F.; Potenza, Marc N.; Sinha, Rajita; Krystal, John H.; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E.; Neumeister, Alexander

    2010-01-01

    Background Although animal models suggest that alcohol dependence (AD) is associated with elevations in the number of serotonin-1B receptors (5HT1BR), 5HT1BR levels have not been investigated in people with AD. The selective 5HT1BR antagonist radioligand, [11C]P943, permits in vivo assessment of central 5HT1BR binding potential (BPND) using positron emission tomography (PET). Because of its central role in AD, we were particularly interested in ventral striatal 5HT1BR BPND values. Methods Twelve medication-free, recently abstinent (at least 4 weeks) patients with AD (mean age 35.2±10.1 years, 5 women) and 12 healthy control subjects (HC) (mean age 30.6±9.2 years, 5 women) completed [11C]P943 PET on a high resolution research tomograph (HRRT). Individual MRI scans were collected to exclude individuals with anatomical abnormalities and for co-registration. Imaging data were analyzed using a multilinear reference tissue model. Results Ventral striatal 5-HT1BR BPND values (2.01±0.57 and 1.55±0.09, 29% between-group difference, p=.006) were increased in AD compared to HC subjects. No influence of demographic or clinical variables or amount of injected radiotracer was observed. Conclusions This study provides the first evidence that AD in humans, like in rodent models, is associated with increased levels of ventral striatal 5HT1BRs. PMID:20172504

  3. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed. PMID:26481614

  4. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression.

    PubMed

    Lin, Hai-Shuang; Gong, Jia-Nan; Su, Rui; Chen, Ming-Tai; Song, Li; Shen, Chao; Wang, Fang; Ma, Yan-Ni; Zhao, Hua-Lu; Yu, Jia; Li, Wei-Wei; Huang, Li-Xia; Xu, Xin-Hua; Zhang, Jun-Wu

    2014-12-01

    miRNAs are short, noncoding RNAs that regulate expression of target genes at post-transcriptional levels and function in many important cellular processes, including differentiation, proliferation, etc. In this study, we observed down-regulation of miR-199a-5p during monocyte/macrophage differentiation of HL-60 and THP-1 cells, as well as human CD34(+) HSPCs. This down-regulation of miR-199a-5p resulted from the up-regulation of PU.1 that was demonstrated to regulate transcription of the miR-199a-2 gene negatively. Overexpression of miR-199a-5p by miR-199a-5p mimic transfection or lentivirus-mediated gene transfer significantly inhibited monocyte/macrophage differentiation of the cell lines or HSPCs. The mRNA encoding an ACVR1B was identified as a direct target of miR-199a-5p. Gradually increased ACVR1B expression level was detected during monocyte/macrophage differentiation of the leukemic cell lines and HSPCs, and knockdown of ACVR1B resulted in inhibition of monocyte/macrophage differentiation of HL-60 and THP-1 cells, which suggested that ACVR1B functions as a positive regulator of monocyte/macrophage differentiation. We demonstrated that miR-199a-5p overexpression or ACVR1B knockdown promoted proliferation of THP-1 cells through increasing phosphorylation of Rb. We also demonstrated that the down-regulation of ACVR1B reduced p-Smad2/3, which resulted in decreased expression of C/EBPα, a key regulator of monocyte/macrophage differentiation, and finally, inhibited monocyte/macrophage differentiation. PMID:25258381

  5. A complex selection signature at the human AVPR1B gene

    PubMed Central

    Cagliani, Rachele; Fumagalli, Matteo; Pozzoli, Uberto; Riva, Stefania; Cereda, Matteo; Comi, Giacomo P; Pattini, Linda; Bresolin, Nereo; Sironi, Manuela

    2009-01-01

    Background The vasopressin receptor type 1b (AVPR1B) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses. Results Here we have analyzed the two exons of the gene and the data we present suggest that AVPR1B has been subjected to natural selection in humans. In particular, analysis of exon 2 strongly suggests the action of balancing selection in African populations and Europeans: the region displays high nucleotide diversity, an excess of intermediate-frequency alleles, a higher level of within-species diversity compared to interspecific divergence and a genealogy with common haplotypes separated by deep branches. This relatively unambiguous situation coexists with unusual features across exon 1, raising the possibility that a nonsynonymous variant (Gly191Arg) in this region has been subjected to directional selection. Conclusion Although the underlying selective pressure(s) remains to be identified, we consider this to be among the first documented examples of a gene involved in mood disorders and subjected to natural selection in humans; this observation might add support to the long-debated idea that depression/low mood might have played an adaptive role during human evolution. PMID:19486526

  6. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity.

    PubMed

    Maples, Jill M; Brault, Jeffrey J; Witczak, Carol A; Park, Sanghee; Hubal, Monica J; Weber, Todd M; Houmard, Joseph A; Shewchuk, Brian M

    2015-08-15

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  7. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  8. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2.

    PubMed

    Pagani, J H; Zhao, M; Cui, Z; Avram, S K Williams; Caruana, D A; Dudek, S M; Young, W S

    2015-04-01

    The vasopressin 1b receptor (Avpr1b) is critical for social memory and social aggression in rodents, yet little is known about its specific roles in these behaviors. Some clues to Avpr1b function can be gained from its profile of expression in the brain, which is largely limited to the pyramidal neurons of the CA2 region of the hippocampus, and from experiments showing that inactivation of the gene or antagonism of the receptor leads to a reduction in social aggression. Here we show that partial replacement of the Avpr1b through lentiviral delivery into the dorsal CA2 region restored the probability of socially motivated attack behavior in total Avpr1b knockout mice, without altering anxiety-like behaviors. To further explore the role of the Avpr1b in this hippocampal region, we examined the effects of Avpr1b agonists on pyramidal neurons in mouse and rat hippocampal slices. We found that selective Avpr1b agonists induced significant potentiation of excitatory synaptic responses in CA2, but not in CA1 or in slices from Avpr1b knockout mice. In a way that is mechanistically very similar to synaptic potentiation induced by oxytocin, Avpr1b agonist-induced potentiation of CA2 synapses relies on NMDA (N-methyl-D-aspartic acid) receptor activation, calcium and calcium/calmodulin-dependent protein kinase II activity, but not on cAMP-dependent protein kinase activity or presynaptic mechanisms. Our data indicate that the hippocampal CA2 is important for attacking in response to a male intruder and that the Avpr1b, likely through its role in regulating CA2 synaptic plasticity, is a necessary mediator. PMID:24863146

  9. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  10. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  11. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  12. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  13. The vasopressin 1b receptor and the neural regulation of social behavior.

    PubMed

    Stevenson, Erica L; Caldwell, Heather K

    2012-03-01

    To date, much of the work in rodents implicating vasopressin (Avp) in the regulation of social behavior has focused on its action via the Avp 1a receptor (Avpr1a). However, there is mounting evidence that the Avp 1b receptor (Avpr1b) also plays a significant role in Avp's modulation of social behavior. The Avpr1b is heavily expressed on the anterior pituitary cortiocotrophs where it acts as an important modulator of the endocrine stress response. In the brain, the Avpr1b is prominent in the CA2 region of the hippocampus, but can also be found in areas such as the paraventricular nucleus of the hypothalamus and the olfactory bulb. Studies that have employed genetic knockouts or pharmacological manipulation of the Avpr1b point to the importance of central Avpr1b in the modulation of social behavior. However, there continues to be a knowledge gap in our understanding of where in the brain this is occurring, as well as how and if the central actions of Avp acting via the Avpr1b interact with the stress axis. In this review we focus on the genetic and pharmacological studies that have implicated the Avpr1b in the neural regulation of social behaviors, including social forms of aggressive behavior, social memory, and social motivation. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22178035

  14. PTP1B: mediating ROS signaling to silence genes

    PubMed Central

    Boivin, Benoit; Tonks, Nicholas K.

    2015-01-01

    Numerous studies have shown that normal cells often respond to the activation of oncogenes by undergoing reactive oxygen species-dependent induction of senescence. Here, we discuss our recent publication identifying protein tyrosine phosphatase PTP1B as an important redox-controlled checkpoint for senescence downstream of oncogenic RAS.

  15. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    PubMed Central

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  16. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization.

    PubMed

    Castillo-Badillo, Jean A; Sánchez-Reyes, Omar B; Alfonzo-Méndez, Marco A; Romero-Ávila, M Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  17. AKR1B7 Is Induced by the Farnesoid X Receptor and Metabolizes Bile Acids*

    PubMed Central

    Schmidt, Daniel R.; Schmidt, Samuel; Holmstrom, Sam R.; Makishima, Makoto; Yu, Ruth T.; Cummins, Carolyn L.; Mangelsdorf, David J.; Kliewer, Steven A.

    2011-01-01

    Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids. PMID:21081494

  18. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells.

    PubMed

    van Arensbergen, Joris; García-Hurtado, Javier; Maestro, Miguel Angel; Correa-Tapia, Miguel; Rutter, Guy A; Vidal, Miguel; Ferrer, Jorge

    2013-01-01

    Polycomb-mediated gene repression is essential for embryonic development, yet its precise role in lineage-specific programming is poorly understood. Here we inactivated Ring1b, encoding a polycomb-repressive complex 1 subunit, in pancreatic multipotent progenitors (Ring1b(progKO)). This caused transcriptional derepression of a subset of direct Ring1b target genes in differentiated pancreatic islet cells. Unexpectedly, Ring1b inactivation in differentiated islet β cells (Ring1b(βKO)) did not cause derepression, even after multiple rounds of cell division, suggesting a role for Ring1b in the establishment but not the maintenance of repression. Consistent with this notion, derepression in Ring1b(progKO) islets occurred preferentially in genes that were targeted de novo by Ring1b during pancreas development. The results support a model in which Ring1b bookmarks its target genes during embryonic development, and these genes are maintained in a repressed state through Ring1b-independent mechanisms in terminally differentiated cells. This work provides novel insights into how epigenetic mechanisms contribute to shaping the transcriptional identity of differentiated lineages. PMID:23271347

  19. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxytryptamine 1B receptor antagonist.

    PubMed

    Zhang, Minli; Zhou, Diansong; Wang, Yi; Maier, Donna L; Widzowski, Daniel V; Sobotka-Briner, Cynthia D; Brockel, Becky J; Potts, William M; Shenvi, Ashok B; Bernstein, Peter R; Pierson, M Edward

    2011-11-01

    The preclinical pharmacology and pharmacokinetic properties of (2R)-6-methoxy-8-(4-methylpiperazin-1-yl)-N-(4-morpholin-4-ylphenyl)chromane-2-carboxamide (AZD3783), a potent 5-hydroxytryptamine 1B (5-HT(1B)) receptor antagonist, were characterized as part of translational pharmacokinetic/pharmacodynamic hypothesis testing in human clinical trials. The affinity of AZD3783 to the 5-HT(1B) receptor was measured in vitro by using membrane preparations containing recombinant human or guinea pig 5-HT(1B) receptors and in native guinea pig brain tissue. In vivo antagonist potency of AZD3783 for the 5HT(1B) receptor was investigated by measuring the blockade of 5-HT(1B) agonist-induced guinea pig hypothermia. The anxiolytic-like potency was assessed using the suppression of separation-induced vocalization in guinea pig pups. The affinity of AZD3783 for human and guinea pig 5-HT(1B) receptor (K(i), 12.5 and 11.1 nM, respectively) was similar to unbound plasma EC(50) values for guinea pig receptor occupancy (11 nM) and reduction of agonist-induced hypothermia (18 nM) in guinea pig. Active doses of AZD3783 in the hypothermia assay were similar to doses that reduced separation-induced vocalization in guinea pig pups. AZD3783 demonstrated favorable pharmacokinetic properties. The predicted pharmacokinetic parameters (total plasma clearance, 6.5 ml/min/kg; steady-state volume of distribution, 6.4 l/kg) were within 2-fold of the values observed in healthy male volunteers after a single 20-mg oral dose. This investigation presents a direct link between AZD3783 in vitro affinity and in vivo receptor occupancy to preclinical disease model efficacy. Together with predicted human pharmacokinetic properties, we have provided a model for the quantitative translational pharmacology of AZD3783 that increases confidence in the optimal human receptor occupancy required for antidepressant and anxiolytic effects in patients. PMID:21825000

  20. Detection of Genes Regulated by Lmx1b During Limb Dorsalization

    PubMed Central

    Feenstra, Jennifer M.; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E.; Eppey, Richard J.; Oberg, Kerby C.

    2012-01-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wildtype mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism which includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. PMID:22417325

  1. Detection of genes regulated by Lmx1b during limb dorsalization.

    PubMed

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. PMID:22417325

  2. Interaction between 5-HT1B receptors and nitric oxide in zebrafish responses to novelty.

    PubMed

    Maximino, Caio; Lima, Monica Gomes; Batista, Evander de Jesus Oliveira; Oliveira, Karen Renata Herculano Matos; Herculano, Anderson Manoel

    2015-02-19

    Nitric oxide (NO) and serotonin (5-HT) interact at the molecular and systems levels to control behavioral variables, including agression, fear, and reactions to novelty. In zebrafish, the 5-HT1B receptor has been implicated in anxiety and reactions to novelty, while the 5-HT1A receptor is associated with anxiety-like behavior; this role of the 5-HT1A receptor is mediated by NO. This work investigated whether NO also participates in the mediation of novelty responses by the 5-HT1B receptor. The 5-HT1B receptor inverse agonist SB 224,289 decreased bottom-dwelling and erratic swimming in zebrafish; the effects on bottom-dwelling, but not on erratic swimming, were blocked by pre-treatment with the nitric oxide synthase inhibitor L-NAME. These effects underline a novel mechanism by which 5-HT controls zebrafish reactivity to novel environments, with implications for the study of neotic reactions, exploratory behavior, and anxiety-like states. PMID:25545556

  3. Long-Range Communication Network in the Type 1B Bone Morphogenetic Protein Receptor.

    PubMed

    Evangelista, Wilfredo; Yeh, Lee-Chuan C; Gmyrek, Aleksandra; Lee, J Ching; Lee, John C

    2015-12-01

    Protein-protein interactions are recognized as a fundamental phenomenon that is intimately associated with biological functions and thus are ideal targets for developing modulators for regulating biological functions. A challenge is to identify a site that is situated away from but functionally connected to the protein-protein interface. We employed bone morphogenetic proteins (BMPs) and their receptors as a model system to develop a strategy for identifying such a network of communication. Accordingly, using computational analyses with the COREX/BEST algorithm, we uncovered an overall pattern connecting various regions of BMPR-1B ectodomain, including the four conserved residues in the protein-protein interface. In preparation for testing the long-range effects of mutations of distal residues for future studies, we examined the extent of measurable perturbation of the four conserved residues by determination of the conformation and relative affinities of these BMPR-1B mutants for ligands BMP-2, -6, and -7 and GDF-5. Results suggest no significant structural changes in the receptor but do suggest that the four residues play different roles in defining ligand affinity and both intra- and intermolecular interactions play a role in defining ligand affinity. Thus, these results established two primary but necessary goals: (1) the baseline knowledge of perturbation of conserved interfacial residues for future reference and (2) the ability of the computational approach to identify the distal residues connecting to the interfacial residues. The data presented here provide the foundation for future experiments to identify the effects of distal residues that affect the specificity and affinity of BMP recognition. Protein-protein interactions are integral reactions in essentially all biological activities such as gene regulation and age-related development. Often, diseases are consequences of the alteration of these intermacromolecular interactions, which are thus recognized

  4. Cross-talk between receptors with intrinsic tyrosine kinase activity and alpha1b-adrenoceptors.

    PubMed Central

    del Carmen Medina, L; Vázquez-Prado, J; García-Sáinz, J A

    2000-01-01

    The effect of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) on the phosphorylation and function of alpha(1b)-adrenoceptors transfected into Rat-1 fibroblasts was studied. EGF and PDGF increased the phosphorylation of these adrenoceptors. The effect of EGF was blocked by tyrphostin AG1478 and that of PDGF was blocked by tyrphostin AG1296, inhibitors of the intrinsic tyrosine kinase activities of the receptors for these growth factors. Wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked the alpha(1b)-adrenoceptor phosphorylation induced by EGF but not that induced by PDGF. Inhibition of protein kinase C blocked the adrenoceptor phosphorylation induced by EGF and PDGF. The ability of noradrenaline to increase [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding in membrane preparations was used as an index of the functional coupling of the alpha(1b)-adrenoceptors and G-proteins. Noradrenaline-stimulated [(35)S]GTP[S] binding was markedly decreased in membranes from cells pretreated with EGF or PDGF. Our data indicate that: (i) activation of EGF and PDGF receptors induces phosphorylation of alpha(1b)-adrenoceptors, (ii) phosphatidylinositol 3-kinase is involved in the EGF response, but does not seem to play a major role in the action of PDGF, (iii) protein kinase C mediates this action of both growth factors and (iv) the phosphorylation of alpha(1b)-adrenoceptors induced by EGF and PDGF is associated with adrenoceptor desensitization. PMID:10947955

  5. Age Effects on the Serotonin1B Receptor as Assessed by PET Imaging

    PubMed Central

    Matuskey, David; Pittman, Brian; Planeta-Wilson, Beata; Walderhaug, Espen; Henry, Shannan; Gallezot, Jean-Dominique; Nabulsi, Nabeel; Ding, Yu-Shin; Bhagwagar, Zubin; Malison, Robert; Carson, Richard E.; Neumeister, Alexander

    2013-01-01

    Previous imaging studies have suggested that there is an age-related decline in brain serotonin (5HT) measures in healthy subjects. This paper addresses whether 5HT1B receptor availability decreases with aging via positron emission tomography (PET) imaging. Methods 48 healthy control subjects (mean 30±10 years; age range 18 to 61; 33 men, 15 women) completed [11C]P943 scans on a high resolution PET tomograph. Regions were examined with and without grey matter masking (GMM), the latter in an attempt to control for age related grey matter atrophy on binding potential (BPND) as determined by a validated multilinear reference tissue model (MRTM2). Results 5-HT1B BPND receptor binding decreased in the cortex at an average rate of 8% per decade without and 9% with GMM. A negative association with age was also observed in all individual cortical regions. Differences in the putamen and pallidum (positive association) were significant following adjustment for multiple comparisons. No effects of 5-HT1B BPND were found with gender or race in any regions. Conclusion These findings indicate that age is a relevant factor for the 5-HT1B receptor in the cortex of healthy adults. PMID:22851636

  6. Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in Xenopus embryos

    PubMed Central

    Maeda, Ryu; Ishimura, Akihiko; Mood, Kathleen; Park, Eui Kyun; Buchberg, Arthur M.; Daar, Ira O.

    2002-01-01

    Pbx1 is a homeodomain protein that functions in complexes with other homeodomain-containing proteins to regulate gene expression during embryogenesis and oncogenesis. Pbx proteins bind DNA cooperatively as heterodimers or higher order complexes with Meis family members and Hox proteins and are believed to specify cell identity during development. Here, we present evidence that Pbx1, in partnership with Meis1b, can regulate posterior neural markers and neural crest marker genes during Xenopus development. A Xenopus homolog of the Pbx1b homeodomain protein was isolated and shown to be expressed throughout embryogenesis. Xpbx1b expression overlaps with Xmeis1 in several areas, including the lateral neural folds, caudal branchial arch, hindbrain, and optic cup. When ectopically expressed, Xpbx1b can synergize with Xmeis1b to promote posterior neural and neural crest gene expression in ectodermal explants. Further, a physical interaction between these two homeodomain proteins is necessary for induction of these genes in embryonic tissue. In addition, coexpression of Xmeis1b and Xpbx1b leads to a prominent shift in the localization of Xmeis1b from the cytoplasm to the nucleus, suggesting that nuclear transport or retention of Xmeis1b may depend upon Xpbx1b. Finally, expression of a mutant construct in which Xpbx1b protein is fused to the repressor domain from Drosophila Engrailed inhibits posterior neural and neural crest gene expression. These data indicate that Xpbx1b and its partner, Xmeis1b, function in a transcriptional activation complex during hindbrain and neural crest development. PMID:11960001

  7. Pharmacological Evidence for an Abstinence-Induced Switch in 5-HT1B Receptor Modulation of Cocaine Self-Administration and Cocaine-Seeking Behavior

    PubMed Central

    2013-01-01

    Studies examining serotonin-1B (5-HT1B) receptor manipulations on cocaine self-administration and cocaine-seeking behavior initially seemed discrepant. However, we recently suggested based on viral-mediated 5-HT1B-receptor gene transfer that the discrepancies are likely due to differences in the length of abstinence from cocaine prior to testing. To further validate our findings pharmacologically, we examined the effects of the selective 5-HT1B receptor agonist CP 94,253 (5.6 mg/kg, s.c.) on cocaine self-administration during maintenance and after a period of protracted abstinence with or without daily extinction training. We also examined agonist effects on cocaine-seeking behavior at different time points during abstinence. During maintenance, CP 94,253 shifted the cocaine self-administration dose–effect function on an FR5 schedule of reinforcement to the left, whereas following 21 days of abstinence CP 94,253 downshifted the function and also decreased responding on a progressive ratio schedule of reinforcement regardless of extinction history. CP 94,253 also attenuated cue-elicited and cocaine-primed drug-seeking behavior following 5 days, but not 1 day, of forced abstinence. The attenuating effects of CP 94,253 on the descending limb of the cocaine dose–effect function were blocked by the selective 5-HT1B receptor antagonist SB 224289 (5 mg/kg, i.p.) at both time points, indicating 5-HT1B receptor mediation. The results support a switch in 5-HT1B receptor modulation of cocaine reinforcement from facilitatory during self-administration maintenance to inhibitory during protracted abstinence. These findings suggest that the 5-HT1B receptor may be a novel target for developing medication for treating cocaine dependence. PMID:24369697

  8. Pharmacological evidence for an abstinence-induced switch in 5-HT1B receptor modulation of cocaine self-administration and cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Harder, Bryan G; Brunwasser, Samuel J; Bastle, Ryan M; Peartree, Natalie A; Yanamandra, Krishna; Adams, Matt D; Der-Ghazarian, Taleen; Neisewander, Janet L

    2014-03-19

    Studies examining serotonin-1B (5-HT1B) receptor manipulations on cocaine self-administration and cocaine-seeking behavior initially seemed discrepant. However, we recently suggested based on viral-mediated 5-HT1B-receptor gene transfer that the discrepancies are likely due to differences in the length of abstinence from cocaine prior to testing. To further validate our findings pharmacologically, we examined the effects of the selective 5-HT1B receptor agonist CP 94,253 (5.6 mg/kg, s.c.) on cocaine self-administration during maintenance and after a period of protracted abstinence with or without daily extinction training. We also examined agonist effects on cocaine-seeking behavior at different time points during abstinence. During maintenance, CP 94,253 shifted the cocaine self-administration dose-effect function on an FR5 schedule of reinforcement to the left, whereas following 21 days of abstinence CP 94,253 downshifted the function and also decreased responding on a progressive ratio schedule of reinforcement regardless of extinction history. CP 94,253 also attenuated cue-elicited and cocaine-primed drug-seeking behavior following 5 days, but not 1 day, of forced abstinence. The attenuating effects of CP 94,253 on the descending limb of the cocaine dose-effect function were blocked by the selective 5-HT1B receptor antagonist SB 224289 (5 mg/kg, i.p.) at both time points, indicating 5-HT1B receptor mediation. The results support a switch in 5-HT1B receptor modulation of cocaine reinforcement from facilitatory during self-administration maintenance to inhibitory during protracted abstinence. These findings suggest that the 5-HT1B receptor may be a novel target for developing medication for treating cocaine dependence. PMID:24369697

  9. SynCAM1 recruits NMDA receptors via protein 4.1B.

    PubMed

    Hoy, Jennifer L; Constable, John R; Vicini, Stefano; Fu, Zhanyan; Washbourne, Philip

    2009-12-01

    Cell adhesion molecules have been implicated as key organizers of synaptic structures, but there is still a need to determine how these molecules facilitate neurotransmitter receptor recruitment to developing synapses. Here, we identify erythrocyte protein band 4.1-like 3 (protein 4.1B) as an intracellular effector molecule of Synaptic Cell Adhesion Molecule 1 (SynCAM1) that is sufficient to recruit NMDA-type receptors (NMDARs) to SynCAM1 adhesion sites in COS7 cells. Protein 4.1B in conjunction with SynCAM1 also increased the frequency of NMDAR-mediated mEPSCs and area of presynaptic contact in an HEK293 cell/ neuron co-culture assay. Studies in cultured hippocampal neurons reveal that manipulation of protein 4.1B expression levels specifically affects NMDAR-mediated activity and localization. Finally, further experimentation in COS7 cells show that SynCAM1 may also interact with protein 4.1N to specifically effect AMPA type receptor (AMPAR) recruitment. Thus, SynCAM1 may recruit both AMPARs and NMDARs by independent mechanisms during synapse formation. PMID:19796685

  10. Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity

    PubMed Central

    Nautiyal, Katherine M.; Tanaka, Kenji F.; Barr, Mary M.; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J.; Gardier, Alain M.; Blanco, Carlos; Hen, René; Ahmari, Susanne E.

    2015-01-01

    Summary Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs, and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulate impulsive behavior during adulthood. PMID:25892302

  11. Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity.

    PubMed

    Nautiyal, Katherine M; Tanaka, Kenji F; Barr, Mary M; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J; Gardier, Alain M; Blanco, Carlos; Hen, René; Ahmari, Susanne E

    2015-05-01

    Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulates impulsive behavior during adulthood. PMID:25892302

  12. Mechanisms of action of the 5-HT1B/1D receptor agonists.

    PubMed

    Tepper, Stewart J; Rapoport, Alan M; Sheftell, Fred D

    2002-07-01

    Recent studies of the pathophysiology of migraine provide evidence that the headache phase is associated with multiple physiologic actions. These actions include the release of vasoactive neuropeptides by the trigeminovascular system, vasodilation of intracranial extracerebral vessels, and increased nociceptive neurotransmission within the central trigeminocervical complex. The 5-HT(1B/1D) receptor agonists, collectively known as triptans, are a major advance in the treatment of migraine. The beneficial effects of the triptans in patients with migraine are related to their multiple mechanisms of action at sites implicated in the pathophysiology of migraine. These mechanisms are mediated by 5-HT(1B/1D) receptors and include vasoconstriction of painfully dilated cerebral blood vessels, inhibition of the release of vasoactive neuropeptides by trigeminal nerves, and inhibition of nociceptive neurotransmission. The high affinity of the triptans for 5-HT(1B/1D) receptors and their favorable pharmacologic properties contribute to the beneficial effects of these drugs, including rapid onset of action, effective relief of headache and associated symptoms, and low incidence of adverse effects. PMID:12117355

  13. Structural and functional analysis of the mouse mdr1b gene promoter.

    PubMed

    Cohen, D; Piekarz, R L; Hsu, S I; DePinho, R A; Carrasco, N; Horwitz, S B

    1991-02-01

    The overproduction of P-glycoprotein, an integral membrane protein thought to function as a drug efflux pump, is the hallmark of the multidrug resistance phenotype. In murine multidrug resistant J774.2 cell lines, distinct mdr genes, mdr1a and mdr1b, encode unique P-glycoprotein isoforms. To examine the transcriptional regulation of the mdr1b gene, its promoter was isolated and characterized. The transcription initiation site was mapped by primer extension, and the 5'-flanking region was sequenced. Several potential regulatory elements were identified in this region. A transient expression vector was constructed by fusion of 540 base pairs of 5'-flanking sequence and part of the first untranslated exon to the chloramphenicol acetyltransferase (CAT) gene. When transfected into monkey kidney COS-1, rat pituitary GH3 or T47D human breast cells, the mdr1b 5'-flanking sequences were capable of driving CAT expression. Transient transfection studies using deletion subclones of the mdr1b-CAT construct were done to locate potential cis-acting sequences. The studies indicate the presence of cis-acting elements in the 5'-flanking region of the mdr1b gene. The implications of these findings for expression and regulation of the mdr1b gene are discussed. PMID:1671222

  14. Jarid1b targets genes regulating development and is involved in neural differentiation

    PubMed Central

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina; Morey, Lluis; Johansen, Jens V; Bak, Mads; Tommerup, Niels; Abarrategui, Iratxe; Helin, Kristian

    2011-01-01

    H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation. PMID:22020125

  15. TASP0434299: A Novel Pyridopyrimidin-4-One Derivative as a Radioligand for Vasopressin V1B Receptor.

    PubMed

    Koga, Kazumi; Yoshinaga, Mitsukane; Uematsu, Yoshikatsu; Nagai, Yuji; Miyakoshi, Naoki; Shimoda, Yoko; Fujinaga, Masayuki; Minamimoto, Takafumi; Zhang, Ming-Rong; Higuchi, Makoto; Ohtake, Norikazu; Suhara, Tetsuya; Chaki, Shigeyuki

    2016-06-01

    A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin 1B (V1B) receptor. TASP0434299 exhibited high binding affinities for human and rat V1B receptors with IC50 values of 0.526 and 0.641 nM, respectively, and potent antagonistic activity at the human V1B receptor with an IC50 value of 0.639 nM without apparent binding affinities for other molecules at 1 μM. [(3)H]TASP0434299 bound to membranes expressing the human V1B receptor as well as those prepared from the rat anterior pituitary in a saturable manner. The binding of [(3)H]TASP0434299 to the membranes was dose-dependently displaced by several ligands for the V1B receptor. In addition, the intravenous administration of [(3)H]TASP0434299 to rats produced a saturable radioactive accumulation in the anterior pituitary where the V1B receptor is enriched, and it was dose-dependently blocked by the oral administration of 2-[2-(3-chloro-4-fluorophenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]-N-isopropylacetamide hydrochloride, a V1B receptor antagonist, indicating that [(3)H]TASP0434299 can be used as an in vivo radiotracer to measure the occupancy of the V1B receptor. Finally, the intravenous administration of [(11)C]TASP0434299 provided positron emission tomographic images of the V1B receptor in the pituitary in an anesthetized monkey, and the signal was blocked by pretreatment with an excess of unlabeled TASP0434299. These results indicate that radiolabeled TASP0434299 is the first radioligand to be capable of quantifying the V1B receptor selectively in both in vitro and in vivo studies and will provide a clinical biomarker for determining the occupancy of the V1B receptor during drug development or for monitoring the levels of the V1B receptor in diseased conditions. PMID:27029585

  16. Histone Demethylase Jumonji AT-rich Interactive Domain 1B (JARID1B) Controls Mammary Gland Development by Regulating Key Developmental and Lineage Specification Genes*

    PubMed Central

    Zou, Mike Ran; Cao, Jian; Liu, Zongzhi; Huh, Sung Jin; Polyak, Kornelia; Yan, Qin

    2014-01-01

    The JmjC domain-containing H3K4 histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) (also known as KDM5B and PLU1) is overexpressed in breast cancer and is a potential target for breast cancer treatment. To investigate the in vivo function of JARID1B, we developed Jarid1b−/− mice and characterized their phenotypes in detail. Unlike previously reported Jarid1b−/− strains, the majority of these Jarid1b−/− mice were viable beyond embryonic and neonatal stages. This allowed us to further examine phenotypes associated with the loss of JARID1B in pubertal development and pregnancy. These Jarid1b−/− mice exhibited decreased body weight, premature mortality, decreased female fertility, and delayed mammary gland development. Related to these phenotypes, JARID1B loss decreased serum estrogen level and reduced mammary epithelial cell proliferation in early puberty. In mammary epithelial cells, JARID1B loss diminished the expression of key regulators for mammary morphogenesis and luminal lineage specification, including FOXA1 and estrogen receptor α. Mechanistically, JARID1B was required for GATA3 recruitment to the Foxa1 promoter to activate Foxa1 expression. These results indicate that JARID1B positively regulates mammary ductal development through both extrinsic and cell-autonomous mechanisms. PMID:24802759

  17. Arterial expression of 5-HT2B and 5-HT1B receptors during development of DOCA-salt hypertension

    PubMed Central

    Banes, Amy KL; Watts, Stephanie W

    2003-01-01

    Background 5-hydroxytryptamine (5-HT)2B and 5-HT1B receptors are upregulated in arteries from hypertensive DOCA-salt rats and directly by mineralocorticoids. We hypothesized that increased 5-HT2B and 5-HT1B receptor density and contractile function would precede increased blood pressure in DOCA-high salt rats. We performed DOCA-salt time course (days 1, 3, 5 and 7) studies using treatment groups of: DOCA-high salt, DOCA-low salt, Sham and Sham-high salt rats. Results In isolated-tissue baths, DOCA-high salt aorta contracted to the 5-HT2B receptor agonist BW723C86 on day 1; Sham aorta did not contract. The 5-HT1B receptor agonist CP93129 had no effect in arteries from any group. On days 3, 5 and 7 CP93129 and BW723C86 contracted DOCA-high salt and Sham-high salt aorta; Sham and DOCA-low salt aorta did not respond. Western analysis of DOCA-high salt aortic homogenates revealed increased 5-HT2B receptor levels by day 3; 5-HT1B receptor density was unchanged. Aortic homogenates from the other groups showed unchanged 5-HT2B and 5-HT1B receptor levels. Conclusion These data suggest that functional changes of 5-HT2B but not 5-HT1B receptors may play a role in the development of DOCA-salt hypertension. PMID:12974983

  18. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy.

    PubMed

    Young, W S; Li, J; Wersinger, S R; Palkovits, M

    2006-12-28

    The vasopressin 1b receptor (Avpr1b) is one of two principal receptors mediating the behavioral effects of vasopressin (Avp) in the brain. Avpr1b has recently been shown to strongly influence social forms of aggression in mice and hamsters. This receptor appears to play a role in social recognition and motivation as well as in regulating the hypothalamic-pituitary-adrenal axis. Most of these studies have been performed in knockout mice, a species in which the localization of the Avpr1b has not been described, thus precluding correlations with the behaviors. We performed in situ hybridization histochemistry (ISHH) with specific probes and found especially prominent expression within the CA2 pyramidal neurons of the hippocampus, with much lower expression in the hypothalamic paraventricular nucleus and amygdala. Reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed expression in those as well other areas in which the ISHH was not sensitive enough to detect labeled cells (e.g. piriform cortex, septum, caudate-putamen and lower brainstem areas). Mouse Avpr1b transcript levels were not altered in the CA2 field by restraint stress or adrenalectomy. Finally, ISHH and RT-PCR showed expression of the Avpr1b gene in the rat and human hippocampi as well. We suggest that the CA2 field may form or retrieve associations (memories) between olfactory cues and social encounters. PMID:17027167

  19. The Vasopressin 1b Receptor is Prominent in the Hippocampal Area CA2 Where It Is Unaffected by Restraint Stress or Adrenalectomy

    PubMed Central

    Young, W. Scott; Li, Jade; Wersinger, Scott R.; Palkovits, Miklós

    2006-01-01

    The vasopressin 1b receptor (Avpr1b) is one of two principal receptors mediating the behavioral effects of vasopressin (Avp) in the brain. Avpr1b has recently been shown to strongly influence social forms of aggression in mice and hamsters. This receptor appears to play a role in social recognition and motivation as well as in regulating the hypothalamic-pituitary-adrenal axis. Most of these studies have been performed in knockout mice, a species in which the localization of the Avpr1b has not been described, thus precluding correlations with the behaviors. We performed in situ hybridization histochemistry (ISHH) with specific probes and found especially prominent expression within the CA2 pyramidal neurons of the hippocampus, with much lower expression in the hypothalamic paraventricular nucleus and amygdala. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) confirmed expression in those as well other areas in which the ISHH was not sensitive enough to detect labeled cells (e.g., piriform cortex, septum, caudate-putamen and lower brainstem areas). Mouse Avpr1b transcript levels were not altered in the CA2 field by restraint stress or adrenalectomy. Finally, ISHH and RT-PCR showed expression of the Avpr1b gene in the rat and human hippocampi as well. We suggest that the CA2 field may form or retrieve associations (memories) between olfactory cues and social encounters. PMID:17027167

  20. Structure and Promoter Characterization of Aldo-Keto Reductase Family 1 B10 Gene

    PubMed Central

    Liu, Ziwen; Zhong, Linlin; Krishack, Paulette A; Robbins, Sarah; Cao, Julia X; Zhao, Yupei; Chung, Stephen; Cao, Deliang

    2009-01-01

    Aldo-keto reductase family 1 member B10 (AKR1B10) is overexpressed in human hepatocellular carcinoma, lung squamous carcinoma, and lung adenocarcinoma in smokers. Our recent studies have showed that AKR1B10 plays a critical role in the growth and proliferation of cancer cells by detoxifying reactive carbonyls and regulating fatty acid biosynthesis. However, little is known about the regulatory mechanisms of AKR1B10 expression. In this study, we determined the structure of AKR1B10 gene and characterized its promoter. The results demonstrated that AKR1B10 consists of 10 exons and 9 introns, stretching approximately 13.8 kb. A 5′-RACE study determined the transcriptional start site of AKR1B10 at 320 bp upstream of the ATG translational start codon. A TATA-like (TAATAA) and a CAAT box are present from −145 to −140 bp and −193 to −190 bp upstream of the transcriptional start site, respectively. Motif analysis recognized multiple putative oncogenic and tumor suppressor protein binding sites in the AKR1B10 promoter, including c-Ets-1, C/EBP, AP-1, and p53, but osmolytic response elements were not found. A -4,091 bp of the 5′-flanking fragment of the AKR1B10 gene was capable of driving GFP and luciferase reporter gene expression in HepG2 cells derived from human hepatocellular carcinoma; progressive 5′-deletions revealed that a −255 bp fragment possesses full promoter activity. PMID:19236911

  1. FCER1B, a candidate gene for atopy, is located in 11q13 between CD20 and TCN1

    SciTech Connect

    Szepetowski, P.; Gaudray, P. )

    1994-01-15

    It is now well established that syntenic regions of the genome such as the pericentromeric region of mouse chromosome 19 and band q12 of human chromosome 11 are conserved in mice and men. One study has linked genetically familial forms of allergic asthma and rhinitis (atopy) to this human chromosome region. The murine gene encoding the [beta]-chain of the high-affinity receptor for IgE (Fce1b) has been mapped to chromosome 19. It is conceivable that this gene could be involved in allergic responses. The authors have thus hypothesized that the human homolog of this gene should be situated in chromosome band 11q13 and could be a good candidate for the atopy gene itself. While work was in progress, the human homolog of Fce1b, which had been cloned and sequenced by Kuester et al., was localized genetically in 11q13, and a dinucleotide (CA) repeat located nearby was strongly linked to familial atopy. However, the precise mapping of this gene and the actual distances separating it from neighboring sequences have not been determined. The authors describe the precise mapping of this gene using fluorescence in situ hybridization and pulsed-field electrophoresis. 11 refs., 1 fig.

  2. Myelin protein zero gene sequencing diagnoses Charcot-Marie-Tooth Type 1B disease

    SciTech Connect

    Su, Y.; Zhang, H.; Madrid, R.

    1994-09-01

    Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, affects about 1 in 2600 people in Norway and is found worldwide. CMT Type 1 (CMT1) has slow nerve conduction with demyelinated Schwann cells. Autosomal dominant CMT Type 1B (CMT1B) results from mutations in the myelin protein zero gene which directs the synthesis of more than half of all Schwann cell protein. This gene was mapped to the chromosome 1q22-1q23.1 borderline by fluorescence in situ hybridization. The first 7 of 7 reported CMT1B mutations are unique. Thus the most effective means to identify CMT1B mutations in at-risk family members and fetuses is to sequence the entire coding sequence in dominant or sporadic CMT patients without the CMT1A duplication. Of the 19 primers used in 16 pars to uniquely amplify the entire MPZ coding sequence, 6 primer pairs were used to amplify and sequence the 6 exons. The DyeDeoxy Terminator cycle sequencing method used with four different color fluorescent lables was superior to manual sequencing because it sequences more bases unambiguously from extracted genomic DNA samples within 24 hours. This protocol was used to test 28 CMT and Dejerine-Sottas patients without CMT1A gene duplication. Sequencing MPZ gene-specific amplified fragments identified 9 polymorphic sites within the 6 exons that encode the 248 amino acid MPZ protein. The large number of major CMT1B mutations identified by single strand sequencing are being verified by reverse strand sequencing and when possible, by restriction enzyme analysis. This protocol can be used to distringuish CMT1B patients from othre CMT phenotypes and to determine the CMT1B status of relatives both presymptomatically and prenatally.

  3. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    SciTech Connect

    Murphy, T.J.

    1988-01-01

    Alpha-2 adrenergic and serotonin-1B (5HT{sub 1B}) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, ({sup 3}H)yohimbine and ({sup 3}H)rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using ({sup 125}I)({minus})-cyanopindolol indicate that a 5HT{sub 1B} receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH{sub 1B} receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol.

  4. Mutational analysis of the DTDST gene in a fetus with achondrogenesis type 1B.

    PubMed

    Cai, G; Nakayama, M; Hiraki, Y; Ozono, K

    1998-06-16

    We describe a diastrophic dysplasia (DTDST) gene mutation in a Japanese male fetus with achondrogenesis type 1B and his relatives. Diagnosis in the fetus was based on roentgenographic data and pathological findings of bones and cartilage. Nucleotide sequencing of the DTDST gene demonstrated that the fetus was homozygous for both delVal340 and Thr689Ser and his parents and a healthy brother were heterozygous for the mutations. The former mutation was reported previously in patients with achondrogenesis type 1B, and the latter was detected in 5 alleles of 26 healthy Japanese individuals. These data suggest that delVal340 is associated with achondrogenesis type 1B in the Japanese, whereas a serine to threonine substitution is most likely polymorphic. PMID:9637425

  5. Stimulation of 5-HT(1B) receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Acosta, Jazmin I; Browning, Jenny R; Hamilton, Elizabeth C; Neisewander, Janet L

    2009-09-01

    Paradoxically, stimulation of 5-HT(1B) receptors (5-HT(1B)Rs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT(1B)R agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253 would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3-10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0-1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT(1B)Rs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT(1B)Rs may be a novel target for developing medications for cocaine dependence. PMID:19650818

  6. Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation

    PubMed Central

    Sato, Yasufumi; Iketani, Masumi; Kurihara, Yuji; Yamaguchi, Megumi; Yamashita, Naoya; Nakamura, Fumio; Arie, Yuko; Kawasaki, Takahiko; Hirata, Tatsumi; Abe, Takaya; Kiyonari, Hiroshi; Strittmatter, Stephen M.; Goshima, Yoshio; Takei, Kohtaro

    2011-01-01

    Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein–1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor–1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation. PMID:21817055

  7. L12 enhances gonococcal transcytosis of polarized Hec1B cells via the lutropin receptor.

    PubMed

    Spence, Janice M; Tyler, Ryan E; Domaoal, Robert A; Clark, Virginia L

    2002-03-01

    We previously reported that gonococci convert to a more invasive phenotype (Inv(+)GC) following contact with cells expressing the lutropin receptor (LHr) and that Inv(+)GC express a novel adhesin that interacts with LHr. We propose that this adhesion allows Inv(+)GC to activate LHr and induce gonococcal transcytosis, usurping normal LHr function in fallopian and endometrial epithelium, which is to transport fetal chorionic gonadotropin (hCG) into the mother. Infected polarized Hec1B monolayers, grown on collagen-coated transwells, showed that the passage of GC across the monolayer occurred rapidly, within 30 min, and proceeded at a constant rate with Inv(+)GC passage three-fold faster than GC grown in tissue culture media alone (Inv(-)GC). Electron microscopy found that Inv(+)GC triggered pseudopod formation around the bacterium, with GC found throughout the Hec1B targets within 30 min, while Inv(-)GC did neither. Pre-treatment of Inv(-)GC with recombinant ribosomal protein L12, a gonococcal "hCG-like" protein previously shown to increase invasion, also increased Inv(-)GC transcytosis to the rate of Inv(+)GC. This enhancement was completely abolished by addition of luteinizing hormone, a cognate ligand of LHr. This is convincing evidence that surface expressed L12 mediates gonococcal invasion and transcytosis via LHr, a mechanism that could be important in the development of invasive gonococcal disease in women. PMID:11855942

  8. Pharmacological analysis of G-protein activation mediated by guinea-pig recombinant 5-HT1B receptors in C6-glial cells: similarities with the human 5-HT1B receptor.

    PubMed

    Pauwels, P J; Wurch, T; Palmier, C; Colpaert, F C

    1998-01-01

    1. The guinea-pig recombinant 5-hydroxytryptamine1B (gp 5-HT1B) receptor stably transfected in rat C6-glial cells was characterized by monitoring G-protein activation in a membrane preparation with agonist-stimulated [35S]-GTPgammaS binding. The intrinsic activity of 5-HT receptor ligands was compared with that determined previously at the human recombinant 5-HT1B (h 5-HT1B) receptor under similar experimental conditions. 2. Membrane preparations of C6-glial/gp 5-HT1B cells exhibited [3H]-5-carboxamidotryptamine (5-CT) and [3H]-N-[4-methoxy-3,4-methylpiperazin-1-yl) phenyl]-3-methyl-4-(4-pyridinyl)benzamide (GR 125743) binding sites with a pKd of 9.62 to 9.85 and a Bmax between 2.1 to 6.4 fmol mg(-1) protein. The binding affinities of a series of 5-HT receptor ligands determined with [3H]-5-CT and [3H]-GR 125743 were similar. Ligand affinities were comparable to and correlated (r2: 0.74, P<0.001) with those determined at the recombinant h 5-HT1B receptor. 3. [35S]-GTPgammaS binding to membrane preparations of C6-glial/gp 5-HT1B cells was stimulated by the 5-HT receptor agonists that were being investigated. The maximal responses of naratriptan, zolmitriptan, sumatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulphonamide (CP 122638), rizatriptan and dihydroergotamine were between 0.76 and 0.85 compared to 5-HT. The potency of these agonists showed a positive correlation (r2: 0.72, P=0.015) with their potency at the recombinant h 5-HT1B receptor. 1-naphthylpiperazine, (+/-)-cyanopindolol and (2'-methyl-4'-(5-methyl[1,2,4] oxadiazole-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR 127935) elicited an even smaller response (Emax: 0.32 to 0.63). 4. The ligands 1'-methyl-5-(2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-carbonyl)-2,3,6,7tetrahydrospiro [furo[2,3-f]indole-3-spiro-4'-piperidine] (SB224289), methiothepin and ritanserin displayed inhibition of basal [35S]-GTPgammaS binding at concentrations

  9. PPARGC1B gene is associated with Kashin-Beck disease in Han Chinese.

    PubMed

    Wen, Yan; Hao, Jingcan; Xiao, Xiao; Wang, Wenyu; Guo, Xiong; Lin, Weimin; Yang, Tielin; Liu, Xiaogang; Shen, Hui; Tan, Lijun; Chen, Xiangding; Tian, Qing; Deng, Hong-Wen; Zhang, Feng

    2016-07-01

    Kashin-Beck disease (KBD) is a chronic osteochondropathy. The genetic basis of KBD remains elusive now. To investigate the relationship between PPARGC1B gene polymorphism and KBD, we conducted a two-stage association study using 2743 unrelated Han Chinese subjects. In the first stage, three SNPs rs1078324, rs4705372, and rs11743128 of PPARGC1B gene were genotyped in 559 KBD patients and 467 health controls using Sequenom MassARRAY platform. In the second stage, the association analysis results of PPARGC1B with KBD were replicated using an independent sample of 1717 subjects. SNP association analysis was conducted by PLINK software. Genotype imputation was conducted by IMPUTE 2.0 against the reference panel of the 1000 genome project. Bonferroni multiple testing correction was performed. We observed a significant association signal at rs4705372 (P = 0.0160) and a suggestive association signal at rs11743128 (P = 0.0290). Further replication study confirmed the association signals of rs4705372 (P = 0.0026) and rs11743128 (P = 0.0387) in the independent validation sample. Our study results suggest that PPARGC1B is a novel susceptibility gene of KBD. PMID:27108113

  10. Behavioural evidence of agonist-like effect of isoteoline at 5-HT1B serotonergic receptors in mice.

    PubMed

    Zhelyazkova-Savova, Maria D; Zhelyazkov, Delcho K

    2003-01-01

    Isoteoline is a compound of aporphine structure derived from the alkaloid glaucine. Previous studies with isoteoline have shown antagonistic activity at 5-HT(2C) serotonergic receptors. We have investigated whether isoteoline interacts with 5-HT(1B) receptors. An isolation-induced social behavioural deficit test in mice was used as a model of stimulation of these receptors. The deficit in the behaviour of isolated mice in this experimental procedure was reported to be sensitive to 5-HT(1B)-receptor stimulation, since agonists at these receptors are capable of reversing it. In our study, we used N-(3-trifluoromethylphenyl)piperazine (TFMPP) (2 mg kg(-1)) as a reference agonist at these receptor sites. TFMPP completely restored the normal behaviour of the isolated mice. Its effect was prevented by propranolol (4 mg kg(-1)), a beta-adrenergic receptor antagonist with a high affinity for 5-HT(1B) receptors, which was inactive by itself. When isoteoline was given before TFMPP, it did not prevent the effect of the latter. Given alone at doses of 0.25, 1, 4 or 8 mg kg(-1), isoteoline showed an effect of its own to normalize the behaviour of isolated mice. The effect of isoteoline (1 mg kg(-1), i.p.) was antagonized by pretreatment with propranolol, indicating that it was mediated through stimulation of 5-HT(1B) receptors. Repeated treatment with isoteoline (1 mg kg(-1), 2 x 3 days, i.p.) produced tolerance to its effect and significantly attenuated the effect of TFMPP, when animals were tested 16 h after the last injection. In conclusion, the results provided functional evidence of agonist-like activity of isoteoline at the 5-HT(1B) receptors. PMID:12625876

  11. The kinesin KIF16B mediates apical transcytosis of transferrin receptor in AP-1B-deficient epithelia

    PubMed Central

    Perez Bay, Andres E; Schreiner, Ryan; Mazzoni, Francesca; Carvajal-Gonzalez, Jose M; Gravotta, Diego; Perret, Emilie; Lehmann Mantaras, Gullermo; Zhu, Yuan-Shan; Rodriguez-Boulan, Enrique J

    2013-01-01

    Polarized epithelial cells take up nutrients from the blood through receptors that are endocytosed and recycle back to the basolateral plasma membrane (PM) utilizing the epithelial-specific clathrin adaptor AP-1B. Some native epithelia lack AP-1B and therefore recycle cognate basolateral receptors to the apical PM, where they carry out important functions for the host organ. Here, we report a novel transcytotic pathway employed by AP-1B-deficient epithelia to relocate AP-1B cargo, such as transferrin receptor (TfR), to the apical PM. Lack of AP-1B inhibited basolateral recycling of TfR from common recycling endosomes (CRE), the site of function of AP-1B, and promoted its transfer to apical recycling endosomes (ARE) mediated by the plus-end kinesin KIF16B and non-centrosomal microtubules, and its delivery to the apical membrane mediated by the small GTPase rab11a. Hence, our experiments suggest that the apical recycling pathway of epithelial cells is functionally equivalent to the rab11a-dependent TfR recycling pathway of non-polarized cells. They define a transcytotic pathway important for the physiology of native AP-1B-deficient epithelia and report the first microtubule motor involved in transcytosis. PMID:23749212

  12. Aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) polymorphisms exacerbate bladder cancer risk associated with alcohol drinking: gene-environment interaction.

    PubMed

    Masaoka, Hiroyuki; Ito, Hidemi; Soga, Norihito; Hosono, Satoyo; Oze, Isao; Watanabe, Miki; Tanaka, Hideo; Yokomizo, Akira; Hayashi, Norio; Eto, Masatoshi; Matsuo, Keitaro

    2016-06-01

    Although a range of chemical exposures (cigarette smoking and occupational exposure) are recognized risk factors for the development of bladder cancer (BCa), many epidemiological studies have demonstrated that alcohol drinking is not associated with BCa risk. Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms impact the accumulation of acetaldehyde, resulting in an increased risk of various cancers. To date, however, no studies evaluating the association between BCa risk and alcohol drinking have considered these polymorphisms. Here, we conducted a matched case-control study to investigate whether ALDH2 and ADH1B polymorphisms influence BCa risk associated with alcohol drinking. Cases were 74 BCa patients and controls were 740 first-visit outpatients without cancer at Aichi Cancer Center Hospital between January 2001 and December 2005. Odds ratio (OR), 95% confidence interval (CI) and gene-environment interaction were assessed by conditional logistic regression analysis with adjustment for potential confounders. Results showed that ALDH2 Glu/Lys was associated with a significantly increased risk of BCa compared with Glu/Glu (OR 2.03, 95% CI 1.14-3.62, P = 0.017). In contrast, ALDH2 Glu/Lys showed no increase in risk among the stratum of never drinkers compared with Glu/Glu, indicating a gene-environment interaction. ADH1B His/Arg had an OR of 1.98 (1.20-3.24, P = 0.007) compared with His/His. ADH1B Arg+ showed a similar OR and 95% CI. Individuals with ALDH2 Glu/Lys and ADH1B Arg+ had the highest risk of BCa compared with ALDH2 Glu/Glu and ADH1B His/His [OR 4.00 (1.81-8.87), P = 0.001]. PMID:26992901

  13. Interstitial 6q25 microdeletion syndrome: ARID1B is the key gene.

    PubMed

    Ronzoni, Luisa; Tagliaferri, Francesco; Tucci, Arianna; Baccarin, Marco; Esposito, Susanna; Milani, Donatella

    2016-05-01

    Interstitial deletions of the long arm of chromosome 6 are rare. Clinically, these deletions are considered to be part of a unique microdeletion syndrome associated with intellectual disability and speech impairment, typical dysmorphic features, structural anomalies of the brain, microcephaly, and non-specific multiple organ anomalies. The critical region for the interstitial 6q microdeletion phenotype was mapped to 6q24-6q25, particularly the 6q25.3 region containing the genes ARID1B and ZDHHC14. It has been hypothesized that haploinsufficiency of these genes impairs normal development of the brain and is responsible for the phenotype. This case report describes a girl presenting with typical features of 6q microdeletion syndrome, including global developmental delay, speech impairment, distinct dysmorphic features, dysgenesis of the corpus callosum, common limb anomalies, and hearing loss. Chromosome analysis by array-CGH revealed a small interstitial 6q deletion spanning approximately 1.1 Mb of DNA and containing only one coding gene, ARID1B. We suggest that ARID1B is the key gene behind 6q microdeletion syndrome, and we discuss its possible role in the phenotypic manifestations. © 2016 Wiley Periodicals, Inc. PMID:26754677

  14. Polymorphisms in Alcohol Metabolism Genes ADH1B and ALDH2, Alcohol Consumption and Colorectal Cancer

    PubMed Central

    Crous-Bou, Marta; Rennert, Gad; Cuadras, Daniel; Salazar, Ramon; Cordero, David; Saltz Rennert, Hedy; Lejbkowicz, Flavio; Kopelovich, Levy; Monroe Lipkin, Steven; Bernard Gruber, Stephen; Moreno, Victor

    2013-01-01

    Background Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. Methodology/Principal Findings SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. Conclusions/Significance Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants. PMID:24282520

  15. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  16. Localization of two potassium channel {beta} subunit genes, KCNA1B and KCNA2B

    SciTech Connect

    Schultz, D.; Smith, L.; Thayer, M.

    1996-02-01

    The gating properties and current amplitudes of mammalian voltage-activated Shaker potassium channels are modulated by at least two associated {beta} subunits (Kv{beta}1.1 and Kv{beta}1.2). The human Kv{beta}1.1 gene (KCNA1B) resides on chromosome 3, as indicated by somatic cell hybrid mapping. More precise localization of KCNA1B to 3q26.1 was obtained with fluorescence in situ hybridization (FISH) and was corroborated by PCR screening of the CEPH YAC library. The human Kv{beta}1.2 gene (KCNA2B) resides on chromosome 1, as indicated by somatic cell hybrid mapping, and has been localized by FISH to 1p36.3. 20 refs., 2 figs.

  17. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist. PMID:23659057

  18. Design, synthesis and pharmacological characterization of fluorescent peptides for imaging human V1b vasopressin or oxytocin receptors

    PubMed Central

    Corbani, Maithé; Trueba, Miguel; Stoev, Stoytcho; Murat, Brigitte; Mion, Julie; Boulay, Véra; Guillon, Gilles; Manning, Maurice

    2011-01-01

    Among the four known vasopressin and oxytocin receptors, the specific localization of the V1b isoform is poorly described due to the lack of selective pharmacological tools. In an attempt to address this need, we decided to design, synthesize and characterize fluorescent selective V1b analogues. Starting with the selective V1b agonist, [deamino-Cys1, Leu4, Lys8]vasopressin (d[Leu4,Lys8]VP) synthesized earlier, we added blue, green or red fluorophores to the lysine residue at position 8, either directly or by the use of linkers of different lengths. Among the nine analogues synthesized, two exhibited very promising properties. These are d[Leu4, Lys (Alexa 647)8]VP (3) and d[Leu4, Lys (11-aminoundecanoyl-Alexa 647)8]VP (9). They remained full V1b agonists with nanomolar affinity and specifically decorated the plasma membrane of CHO cells stably transfected with the human V1b receptor. These new selective fluorescent peptides will allow the cellular localisation of V1b or OT receptor isoforms in native tissues. PMID:21428295

  19. High diversity and no significant selection signal of human ADH1B gene in Tibet

    PubMed Central

    2012-01-01

    Background ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on. Methods In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. Multiple statistics were estimated to examine the gene diversities and positive selection signals among the Tibetans and other populations in East Asia. Results The larger Tibetan populations (Qamdo, Lhasa, Nagqu, Nyingchi, Shannan, and Shigatse) comprised mostly farmers, have around 12% of H7, and 2% of H6. The smaller populations, living on hunting or recently switched to farming, have lower H7 frequencies (Tingri 9%, Gongbo 8%, Monba and Sherpa 6%). Luoba (2%) and Deng (0%) have even lower frequencies. Long-range haplotype analyses revealed very weak signals of positive selection for H7 among Tibetans. Interestingly, the haplotype diversity of H7 is higher in Tibetans than in any other populations studied, indicating a longer diversification history for that haplogroup in Tibetans. Network analysis on the long-range haplotypes revealed

  20. The function of DrPax1b gene in the embryonic development of zebrafish.

    PubMed

    Liu, Xin; Wang, Hua; Li, Guang; Huang, Hui-Zhe; Wang, Yi-Quan

    2013-01-01

    Vertebrate Pax1 gene is a member of Pax gene family and encodes a transcription factor associated with crucial roles in the development of pharyngeal pouch, scletrotome and limb bud. In zebrafish, the genome contains two Pax1 paralogs, DrPax1a and DrPax1b, which share high sequence similarity with other Pax1 genes. To elucidate the function of zebrafish DrPax1b gene, we first examined the gene expression pattern and found that it was mainly expressed in the endodermal pharyngeal pouch, caudal somites, notochord, and fin bud. Then, we performed knockdown experiments using antisense morpholino oligonucleotides, which lead to the defects in the vertebral column, tail, pharyngeal skeleton, and pectoral fin. Additionally, we also found that the mouse MmPax1 mRNA, but not the amphioxus AmphiPax1/9 mRNA, could rescue the MO-induced defects. Furthermore, sequence alignment revealed that the N-terminal region of vertebrate Pax1 and amphioxus Pax1/9 were highly conserved, whereas their C-terminal regions were relatively divergent. However, the chimeric Am(N)Dr(C)Pax1, Mm(N)Dr(C)Pax1 and Dr(N)Mm(C)Pax1 mRNA could partially rescue the defects, while the Dr(N)Am(C)Pax1 mRNA could not. In conclusion, our data demonstrate a conserved function of DrPax1b in the development of the vertebral column, pectoral fin and pharyngeal skeleton formation in zebrafish and also provide critical insight into the functional evolution of Pax1 gene by changing its C-terminal sequence. PMID:24463529

  1. Induction of a Unique Isoform of the NCOA7 Oxidation Resistance Gene by Interferon β-1b

    PubMed Central

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D.; Tran, Tiffany; Reder, Anthony T.; Litvak, Vladimir

    2015-01-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress. PMID:25330068

  2. Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon β-1b.

    PubMed

    Yu, Lijian; Croze, Ed; Yamaguchi, Ken D; Tran, Tiffany; Reder, Anthony T; Litvak, Vladimir; Volkert, Michael R

    2015-03-01

    We demonstrate that interferon (IFN)-β-1b induces an alternative-start transcript containing the C-terminal TLDc domain of nuclear receptor coactivator protein 7 (NCOA7), a member of the OXR family of oxidation resistance proteins. IFN-β-1b induces NCOA7-AS (alternative start) expression in peripheral blood mononuclear cells (PBMCs) obtained from healthy individuals and multiple sclerosis patients and human fetal brain cells, astrocytoma, neuroblastoma, and fibrosarcoma cells. NCOA7-AS is a previously undocumented IFN-β-inducible gene that contains only the last 5 exons of full-length NCOA7 plus a unique first exon (exon 10a) that is not found in longer forms of NCOA7. This exon encodes a domain closely related to an important class of bacterial aldo-keto oxido-reductase proteins that play a critical role in regulating redox activity. We demonstrate that NCOA7-AS is induced by IFN and LPS, but not by oxidative stress and exhibits, independently, oxidation resistance activity. We further demonstrate that induction of NCOA7-AS by IFN is dependent on IFN-receptor activation, the Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway, and a canonical IFN-stimulated response element regulatory sequence upstream of exon 10a. We describe a new role for IFN-βs involving a mechanism of action that leads to an increase in resistance to inflammation-mediated oxidative stress. PMID:25330068

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    SciTech Connect

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  4. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  5. A Significant Role of the Truncated Ghrelin Receptor GHS-R1b in Ghrelin-induced Signaling in Neurons.

    PubMed

    Navarro, Gemma; Aguinaga, David; Angelats, Edgar; Medrano, Mireia; Moreno, Estefanía; Mallol, Josefa; Cortés, Antonio; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Lluís, Carme; Ferré, Sergi

    2016-06-17

    The truncated non-signaling ghrelin receptor growth hormone secretagogue R1b (GHS-R1b) has been suggested to simply exert a dominant negative role in the trafficking and signaling of the full and functional ghrelin receptor GHS-R1a. Here we reveal a more complex modulatory role of GHS-R1b. Differential co-expression of GHS-R1a and GHS-R1b, both in HEK-293T cells and in striatal and hippocampal neurons in culture, demonstrates that GHS-R1b acts as a dual modulator of GHS-R1a function: low relative GHS-R1b expression potentiates and high relative GHS-R1b expression inhibits GHS-R1a function by facilitating GHS-R1a trafficking to the plasma membrane and by exerting a negative allosteric effect on GHS-R1a signaling, respectively. We found a preferential Gi/o coupling of the GHS-R1a-GHS-R1b complex in HEK-293T cells and, unexpectedly, a preferential Gs/olf coupling in both striatal and hippocampal neurons in culture. A dopamine D1 receptor (D1R) antagonist blocked ghrelin-induced cAMP accumulation in striatal but not hippocampal neurons, indicating the involvement of D1R in the striatal GHS-R1a-Gs/olf coupling. Experiments in HEK-293T cells demonstrated that D1R co-expression promotes a switch in GHS-R1a-G protein coupling from Gi/o to Gs/olf, but only upon co-expression of GHS-R1b. Furthermore, resonance energy transfer experiments showed that D1R interacts with GHS-R1a, but only in the presence of GHS-R1b. Therefore, GHS-R1b not only determines the efficacy of ghrelin-induced GHS-R1a-mediated signaling but also determines the ability of GHS-R1a to form oligomeric complexes with other receptors, promoting profound qualitative changes in ghrelin-induced signaling. PMID:27129257

  6. Central V1b receptor antagonism in lactating rats: impairment of maternal care but not of maternal aggression.

    PubMed

    Bayerl, D S; Klampfl, S M; Bosch, O J

    2014-12-01

    Maternal behaviour in rodents is mediated by the central oxytocin and vasopressin systems, amongst others. The role of vasopressin, acting via the V1a receptor (V1aR), on maternal care and maternal aggression has recently been described. However, a potential involvement of the V1b receptor (V1bR) in maternal behaviour has only been demonstrated in knockout mice. The present study aimed to examine the effects of central pharmacological manipulation of the V1bR on maternal behaviour in lactating Wistar rats. On pregnancy day 18, female rats were implanted with a guide cannula targeting the lateral ventricle. After parturition, dams received an acute central infusion of a specific V1bR agonist (d[Leu4,Lys8]VP) or V1bR antagonist (SSR149415) once daily, followed by observations of maternal care [lactation day (LD) 1], maternal motivation in the pup retrieval test (LD 2), anxiety-related behaviour on the elevated plus-maze (LD 3) and maternal aggression in the maternal defence test followed by maternal care monitoring (LD 4). Our data demonstrate that, under nonstress conditions, the V1bR antagonist decreased the occurrence of both nursing and mother-pup interaction, whereas the V1bR agonist did not affect either parameter. Under stress conditions (i.e. after the maternal defence test), mother-pup interaction was decreased by infusion of the V1bR antagonist. During the maternal defence test, neither treatment affected aggressive or non-aggressive behaviour. Finally, neither treatment altered maternal motivation or anxiety. In conclusion, central V1bR antagonism modulates aspects of maternal care but not of maternal aggression or maternal motivation in lactating rats. These findings further extend our knowledge on the vasopressin system as a vital mediator of maternal behaviour. PMID:25283607

  7. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.

    PubMed

    Eden, Emily R; White, Ian J; Tsapara, Anna; Futter, Clare E

    2010-03-01

    The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles. PMID:20118922

  8. Evidence for involvement of central vasopressin V1b and V2 receptors in stress-induced baroreflex desensitization

    PubMed Central

    Milutinović-Smiljanić, Sanja; Šarenac, Olivera; Lozić-Djurić, Maja; Murphy, David; Japundžić-Žigon, Nina

    2013-01-01

    Background and Purpose It is well recognized that vasopressin modulates the neurogenic control of the circulation. Here, we report the central mechanisms by which vasopressin modulates cardiovascular response to stress induced by immobilization. Experimental Approach Experiments were performed in conscious male Wistar rats equipped with radiotelemetric device for continuous measurement of haemodynamic parameters: systolic and diastolic BP and heart rate (HR). The functioning of the spontaneous baro-receptor reflex (BRR) was evaluated using the sequence method and the following parameters were evaluated: BRR sensitivity (BRS) and BRR effectiveness index (BEI). Key Results Under baseline physiological conditions intracerebroventricular injection of 100 and 500 ng of selective non-peptide V1a or V1b or V2 receptor antagonist did not modify BP, HR and BRR. Rats exposed to 15 min long stress by immobilization exhibited increase of BP, HR, reduction of BRS and no change in BEI. Pretreatment of rats with V1a receptor antagonist did not modulate the BP, HR, BRS and BEI response to stress. Pretreatment of rats with V1b receptor and V2 receptor antagonist, at both doses, prevented BRR desensitization and tachycardia, but failed to modulate stress-induced hypertension. Conclusions and Implications Vasopressin by the stimulation of central V1b- and V2-like receptors mediates stress-induced tachycardia and BRR desensitization. If these mechanisms are involved, BRR desensitization in heart failure and hypertension associated with poor outcome, they could be considered as novel targets for cardiovascular drug development. PMID:23488898

  9. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus.

    PubMed

    Sun, Huihui; Zhang, Yuehua; Liang, Jianmin; Liu, Xiaoyan; Ma, Xiuwei; Wu, Husheng; Xu, Keming; Qin, Jiong; Qi, Yu; Wu, Xiru

    2008-01-01

    Generalized epilepsy with febrile seizures plus (GEFS+; MIM#604233) is a familial epilepsy syndrome characterized by phenotypic and genetic heterogeneity. It was associated with mutations in the neuronal voltage-gated sodium channel subunit gene (SCN1A, SCN2A, SCN1B) and ligand-gated gamma aminobutyric acid receptors genes (GABRG2, GABRD). We investigated the roles of SCN1A, SCN1B, and GABRG2 mutations in the etiology of Chinese GEFS+ families. Genomic deoxyribonucleic acid (DNA) was extracted from peripheral blood lymphocytes of 23 probands and their family members. The sequences of SCN1A, SCN1B, and GABRG2 genes were analyzed by polymerase chain reaction (PCR) and direct sequencing. The major phenotypes of affected members in the 23 GEFS+ families exhibited FS and FS+, whereas rare phenotypes afebrile generalized tonic-clonic seizures (AGTCS), myoclonic-astatic epilepsy (MAE), and partial seizures were also observed. A novel SCN1A mutation, p.N935H, was identified in one family and another novel mutation in GABRG2, p.W390X, in another family. However, no SCN1B mutation was identified. The combined frequency of SCN1A, SCN1B, and GABRG2 mutations was 8.7% (2/23), extending the distribution of SCN1A and GABRG2 mutations to Chinese GEFS+ families. There were still unidentified genes contributing to the pathogenesis of GEFS+. PMID:18566737

  10. Involvement of 5-HT1B receptors in triptan-induced contractile responses in guinea-pig isolated iliac artery.

    PubMed

    Jähnichen, S; Radtke, O A; Pertz, H H

    2004-07-01

    Using a series of triptans we characterized in vitro the 5-hydroxytryptamine (5-HT) receptor that mediates the contraction in guinea-pig iliac arteries moderately precontracted by prostaglandin F2alpha (PGF2alpha). Additionally, we investigated by reverse-transcriptase polymerase chain reaction (RT-PCR) which triptan-sensitive receptor is present in this tissue. Frovatriptan, zolmitriptan, rizatriptan, naratriptan, sumatriptan, and almotriptan contracted guinea-pig iliac arteries with pD2 values of 7.52+/-0.04, 6.72+/-0.03, 6.38+/-0.06, 6.22+/-0.05, 5.86+/-0.05 and 5.26+/-0.04 respectively. For comparison, the pD2 values for 5-HT and 5-carboxamidotryptamine (5-CT) were 7.52+/-0.02 and 7.55+/-0.03 respectively. In contrast to all other triptans tested, the concentration-response curve for eletriptan was biphasic (first phase: 0.01-3 microM, pD2 approximately 6.6; second phase: > or = 10 microM). Contractions to 5-HT, 5-CT, frovatriptan, zolmitriptan, rizatriptan, naratriptan, sumatriptan, almotriptan, and eletriptan (first phase) were antagonized by the 5-HT1B/1D receptor antagonist GR127935 (10 nM) and the 5-HT1B receptor antagonist SB216641 (10 nM). RT-PCR studies in guinea-pig iliac arteries showed a strong signal for the 5-HT1B receptor while expression of 5-HT1D and 5-HT1F receptors was not detected in any sample. The present results demonstrate that triptan-induced contraction in guinea-pig iliac arteries is mediated by the 5-HT1B receptor. The guinea-pig iliac artery may be used as a convenient in vitro model to study the (cardio)vascular side-effect potential of anti-migraine drugs of the triptan family. PMID:15185063

  11. The NDST gene family in zebrafish: role of NDST1B in pharyngeal arch formation.

    PubMed

    Filipek-Górniok, Beata; Carlsson, Pernilla; Haitina, Tatjana; Habicher, Judith; Ledin, Johan; Kjellén, Lena

    2015-01-01

    Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout. PMID:25767878

  12. The Ndst Gene Family in Zebrafish: Role of Ndst1b in Pharyngeal Arch Formation

    PubMed Central

    Haitina, Tatjana; Habicher, Judith; Ledin, Johan; Kjellén, Lena

    2015-01-01

    Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout. PMID:25767878

  13. Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect.

    PubMed

    Edvinsson, Lars; Uddman, Erik; Wackenfors, Angelica; Davenport, Anthony; Longmore, Jenny; Malmsjö, Malin

    2005-09-01

    Triptans are agonists at 5-HT1B and 5-HT1D (where 5-HT is 5-hydroxytryptamine; serotonin) receptors and cause vasoconstriction of isolated blood vessels. The aim of the present study was to determine vasoconstrictor potency (EC50) of triptans in human coronary and cerebral arteries and to examine whether there was any relationship with the maximal plasma concentrations (Cmax; nM) of the drugs achieved following oral administration of clinically relevant doses to man using values reported in the literature. We also examined the expression of 5-HT1B receptors in atherosclerotic and normal coronary arteries. The vasocontractile responses to sumatriptan, rizatriptan or eletriptan were characterized by in vitro pharmacology. The ratio of Cmax/EC50 was calculated. 5-HT1B and 5-HT1D receptors were visualized by immunohistochemical techniques in coronary arteries. Sumatriptan, rizatriptan and eletriptan were powerful vasoconstrictors in cerebral artery. The rank order of agonist potency was eletriptan=rizatriptan=sumatriptan. In the coronary artery, the triptans were weaker vasoconstrictors. The rank order of potency was similar. In cerebral artery the ratio of Cmax/EC50 was not significantly different from unity, indicating a relationship between these two parameters. In general for the coronary artery, the ratios were significantly less than unity, indicating no direct relationship. Immunohistochemistry showed expression of 5-HT1B receptors in the medial layer, but did not reveal any obvious difference in 5-HT1B receptor expression between normal and atherosclerotic coronary arteries. The results support the notion that triptans are selective vasoconstrictors of cerebral arteries over coronary arteries and that there is a relationship between vasoconstrictor potency in cerebral arteries and clinically relevant plasma levels. PMID:15853772

  14. Severe Prenatal Renal Anomalies Associated with Mutations in HNF1B or PAX2 Genes

    PubMed Central

    Madariaga, Leire; Morinière, Vincent; Jeanpierre, Cécile; Bouvier, Raymonde; Loget, Philippe; Martinovic, Jelena; Dechelotte, Pierre; Leporrier, Nathalie; Thauvin-Robinet, Christel; Jensen, Uffe Birk; Gaillard, Dominique; Mathieu, Michele; Turlin, Bruno; Attie-Bitach, Tania; Salomon, Rémi; Gübler, Marie-Claire; Antignac, Corinne

    2013-01-01

    Summary Background and objectives Congenital anomalies of the kidney and urinary tract (CAKUT) are a frequent cause of renal failure in children, and their detection in utero is now common with fetal screening ultrasonography. The clinical course of CAKUT detected before birth is very heterogeneous and depends on the level of nephron reduction. The most severe forms cause life-threatening renal failure, leading to perinatal death or the need for very early renal replacement therapy. Design, setting, participants, & measurements This study reports the screening of two genes (HNF1B and PAX2) involved in monogenic syndromic CAKUT in a cohort of 103 fetuses from 91 families with very severe CAKUT that appeared isolated by fetal ultrasound examination and led to termination of pregnancy. Results This study identified a disease-causing mutation in HNF1B in 12 cases from 11 families and a mutation in PAX2 in 4 unrelated cases. Various renal phenotypes were observed, but no case of bilateral agenesis was associated with HNF1B or PAX2 mutations. Autopsy identified extrarenal abnormalities not detected by ultrasonography in eight cases but confirmed the absence of extrarenal defects in eight other cases. A positive family history of renal disease was not significantly more frequent in cases with an identified mutation. Moreover, in cases with an inherited mutation, there was a great phenotypic variability regarding the severity of the renal disease within a single family. Conclusions Our results suggest that mutations in genes involved in syndromic CAKUT with Mendelian inheritance are not rare in fetal cases with severe CAKUT appearing isolated at prenatal ultrasound, a finding of clinical importance because of genetic counseling. PMID:23539225

  15. Stimulation of 5-HT1B receptors enhances cocaine reinforcement yet reduces cocaine-seeking behavior

    PubMed Central

    Pentkowski, Nathan S.; Acosta, Jazmin I.; Browning, Jenny R.; Hamilton, Elizabeth C.; Neisewander, Janet L.

    2010-01-01

    Paradoxically, stimulation of 5-HT1B receptors (5-HT1BRs) enhances sensitivity to the reinforcing effects of cocaine but attenuates incentive motivation for cocaine as measured using the extinction/reinstatement model. We revisited this issue by examining the effects of a 5-HT1BR agonist, CP94253, on cocaine reinforcement and cocaine-primed reinstatement, predicting that CP94253would enhance cocaine-seeking behavior reinstated by a low priming dose, similar to its effect on cocaine reinforcement. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. For reinstatement experiments, they then underwent daily extinction training to reduce cocaine-seeking behavior (operant responses without cocaine reinforcement). Next, they were pre-treated with CP94253 (3–10 mg/kg, s.c.) and either tested for cocaine-primed (10 or 2.5 mg/kg, i.p.) or cue-elicited reinstatement of extinguished cocaine-seeking behavior. For reinforcement, effects of CP94253 (5.6 mg/kg) across a range of self-administered cocaine doses (0–1.5 mg/kg, i.v.) were examined. Cocaine dose-dependently reinstated cocaine-seeking behavior, but contrary to our prediction, CP94253 reduced reinstatement with both priming doses. Similarly, CP94253 reduced cue-elicited reinstatement. In contrast, CP94253 shifted the self-administration dose-effect curve leftward, consistent with enhanced cocaine reinforcement. When saline was substituted for cocaine, CP94253 reduced response rates (i.e. cocaine-seeking behavior). In subsequent control experiments, CP94253 decreased open-arm exploration in an elevated plus-maze suggesting an anxiogenic effect, but had no effect on locomotion or sucrose reinforcement. These results provide strong evidence that stimulation of 5-HT1BRs produces opposite effects on cocaine reinforcement and cocaine-seeking behavior, and further suggest that 5-HT1BRs may be a novel target for developing medications for cocaine dependence. PMID:19650818

  16. The Hypothalamic-Pituitary-Adrenal Axis Response to Stress in Mice Lacking Functional Vasopressin V1b Receptors

    PubMed Central

    Lolait, Stephen J.; Stewart, Lesley Q.; Jessop, David S.; Young, W. Scott; O'Carroll, Anne-Marie

    2007-01-01

    The role of arginine vasopressin (Avp) as an adrenocorticotropin (ACTH) secretagogue is mediated by the Avp 1b receptor (Avpr1b) found on anterior pituitary corticotropes. Avp also potentiates the actions of corticotropin-releasing hormone (Crh) and appears to be an important mediator of the hypothalamic-pituitary-adrenal (HPA) axis response to chronic stress. To investigate the role of Avp in the HPA axis response to stress, we measured plasma ACTH and corticosterone (CORT) levels in Avpr1b knockout (KO) mice and wild-type controls in response to two acute (restraint and insulin administration) and one form of chronic (daily restraint for 14 days) stress. No significant difference was found in the basal plasma levels of ACTH and CORT between the two genotypes. Acute restraint (30 min) increased plasma ACTH and CORT to a similar level in both the Avpr1b mutant and wild-type mice. In contrast, plasma ACTH and CORT levels induced by hypoglycemia were significantly decreased in the Avpr1b KO mice when compared to wild-type littermates. There was no difference in the ACTH response to acute and chronic restraint in wild-type mice. In the Avpr1b KO group subjected to 14 sessions of daily restraint, plasma ACTH was decreased when compared to wild-type mice. On the other hand, the CORT elevations induced by restraint did not adapt in the Avpr1b KO or wild-type mice. The data suggests that the Avpr1b is required for the normal pituitary and adrenal response to some acute stressful stimuli, and is necessary only for a normal ACTH response during chronic stress. PMID:17122081

  17. Gi-protein-coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-08-01

    We have recently described a novel form of hyperalgesic priming (type II) induced by agonists at two clinically important Gi-protein-coupled receptors (Gi-GPCRs), mu-opioid and A1-adenosine. Like mu-opioids, the antimigraine triptans, which act at 5-HT1B/D Gi-GPCRs, have been implicated in pain chronification. We determined whether sumatriptan, a prototypical 5-HT1B/D agonist, produces type II priming. Characteristic of hyperalgesic priming, intradermal injection of sumatriptan (10 ng) induced a change in nociceptor function such that a subsequent injection of prostaglandin-E2 (PGE2) induces prolonged mechanical hyperalgesia. However, onset to priming was delayed 3 days, characteristic of type I priming. Also characteristic of type I priming, a protein kinase Cε, but not a protein kinase A inhibitor attenuated the prolongation phase of PGE2 hyperalgesia. The prolongation of PGE2 hyperalgesia was also permanently reversed by intradermal injection of cordycepin, a protein translation inhibitor. Also, hyperalgesic priming did not occur in animals pretreated with pertussis toxin or isolectin B4-positive nociceptor toxin, IB4-saporin. Finally, as observed for other agonists that induce type I priming, sumatriptan did not induce priming in female rats. The prolongation of PGE2 hyperalgesia induced by sumatriptan was partially prevented by coinjection of antagonists for the 5-HT1B and 5-HT1D, but not 5-HT7, serotonin receptors and completely prevented by coadministration of a combination of the 5-HT1B and 5-HT1D antagonists. Moreover, the injection of selective agonists, for 5-HT1B and 5-HT1D receptors, also induced hyperalgesic priming. Our results suggest that sumatriptan, which signals through Gi-GPCRs, induces type I hyperalgesic priming, unlike agonists at other Gi-GPCRs, which induce type II priming. PMID:27075428

  18. Pseudohypoaldosteronism type 1 due to novel variants of SCNN1B gene

    PubMed Central

    Nobel, Yael R; Lodish, Maya B; Raygada, Margarita; Del Rivero, Jaydira; Faucz, Fabio R; Abraham, Smita B; Lyssikatos, Charalampos; Belyavskaya, Elena; Stratakis, Constantine A

    2016-01-01

    Summary Autosomal recessive pseudohypoaldosteronism type 1 (PHA1) is a rare disorder characterized by sodium wasting, failure to thrive, hyperkalemia, hypovolemia and metabolic acidosis. It is due to mutations in the amiloride-sensitive epithelial sodium channel (ENaC) and is characterized by diminished response to aldosterone. Patients may present with life-threatening hyperkalemia, which must be recognized and appropriately treated. A 32-year-old female was referred to the National Institutes of Health (NIH) for evaluation of hyperkalemia and muscle pain. Her condition started in the second week of life, when she was brought to an outside hospital lethargic and unresponsive. At that time, she was hypovolemic, hyperkalemic and acidotic, and was eventually treated with sodium bicarbonate and potassium chelation. At the time of the presentation to the NIH, her laboratory evaluation revealed serum potassium 5.1 mmol/l (reference range: 3.4–5.1 mmol/l), aldosterone 2800 ng/dl (reference range: ≤21 ng/dl) and plasma renin activity 90 ng/ml/h (reference range: 0.6–4.3 ng/ml per h). Diagnosis of PHA1 was suspected. Sequencing of the SCNN1B gene, which codes for ENaC, revealed that the patient is a compound heterozygote for two novel variants (c.1288delC and c.1466+1 G>A), confirming the suspected diagnosis of PHA1. In conclusion, we report a patient with novel variants of the SCNN1B gene causing PHA1 with persistent, symptomatic hyperkalemia. Learning points PHA1 is a rare genetic condition, causing functional abnormalities of the amiloride-sensitive ENaC.PHA1 was caused by previously unreported SCNN1B gene mutations (c.1288delC and c.1466+1 G>A).Early recognition of this condition and adherence to symptomatic therapy is important, as the electrolyte abnormalities found may lead to severe dehydration, cardiac arrhythmias and even death.High doses of sodium polystyrene sulfonate, sodium chloride and sodium bicarbonate are required for symptomatic

  19. A tandem segmental duplication (TSD) in the green revolution gene Rht-D1b region underlies plant height variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semi-dwarfing genes Rht-B1b (Rht1) and Rht-D1b (Rht2), known as the “Green revolution” genes, have made a significant contribution to wheat production worldwide. Rht-D1c (Rht10) carried by Chinese wheat line Aibian 1 is an allele at the Rht-D1 locus. It has the strongest effect among all dwarfing...

  20. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385

  1. Basal and 3,3',4,4',5-pentachlorobiphenyl-induced expression of cytochrome P450 1A, 1B and 1C genes in zebrafish

    SciTech Connect

    Joensson, Maria E. . E-mail: mjonsson@whoi.edu; Orrego, Rodrigo; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2007-05-15

    The cytochrome P4501C (CYP1C) gene subfamily was recently discovered in fish, and zebrafish (Danio rerio) CYP1C1 transcript has been cloned. Here we cloned the paralogous CYP1C2, showing that the amino acid sequence is 78% identical to CYP1C1, and examined gene structure and expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2. Xenobiotic response elements were observed upstream of the coding regions in all four genes. Zebrafish adults and embryos were exposed (24 h) to 100 nM 3,3',4,4',5-polychlorinated biphenyl (PCB126) or 20 ppm acetone and subsequently held in clean water for 24 h (adults) or 48 h (embryos). All adult organs examined (eye, gill, heart, liver, kidney, brain, gut, and gonads) and embryos showed basal expression of the four genes. CYP1A was most strongly expressed in liver, whereas CYP1B1, CYP1C1, and CYP1C2 were most strongly expressed in heart and eye. CYP1B1 and the CYP1C genes showed an expression pattern similar to one another and to mammalian CYP1B1. In embryos CYP1C1 and CYP1C2 tended to have a higher basal expression than CYP1A and CYP1B1. PCB126 induced CYP1A in all organs, and CYP1B1 and CYP1C1 in all organs except gonads, or gonads and brain, respectively. CYP1C2 induction was significant only in the liver. However, in embryos all four genes were induced strongly by PCB126. The results are consistent with CYP1C1 and CYP1C2, as well as CYP1A and CYP1B1, being regulated by the aryl hydrocarbon receptor. While CYP1A may have a protective role against AHR agonists in liver and gut, CYP1B1, CYP1C1, and CYP1C2 may also play endogenous roles in eye and heart and possibly other organs, as well as during development.

  2. The tumor necrosis factor receptor superfamily member 1B polymorphisms predict response to anti-TNF therapy in patients with autoimmune disease: A meta-analysis.

    PubMed

    Chen, Wenjuan; Xu, Hui; Wang, Xiuxiu; Gu, Junying; Xiong, Huizi; Shi, Yuling

    2015-09-01

    Numerous published data on the tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) gene polymorphisms are shown to be associated with response or non-response to anti-TNF therapy in autoimmune diseases such as rheumatoid arthritis (RA), psoriasis and Crohn's Disease (CD). The aim of this study is to investigate whether the TNFRSF1B rs1061622 T/G or TNFRSF1A A/G rs767455 polymorphisms can predict the response to anti-TNF-based therapy in patients with autoimmune diseases. We conducted a meta-analysis of studies on the association between TNFRSF1B rs1061622 T/G polymorphism or TNFRSF1A A/G rs767455 polymorphism and non-responsiveness to anti-TNF therapy in autoimmune diseases. A total of 8 studies involving 929 subjects for TNFRSF1B rs1061622 and 564 subjects for TNFRSF1A rs767455 were finally considered. These studies consisted of seven studies on the TNFRSF1B polymorphism and four studies on the TNFRSF1A polymorphism. Meta-analysis showed significant association between the TNFRSF1B rs1061622 allele and non-responders to anti-TNF therapy [T/G odds ratio (OR) 0.72, 95% confidence interval (CI) 0.57-0.93, p=0.01]. Stratification by disease type indicated an association between the TNFRSF1B rs1061622 allele and non-responders to TNF antagonist in RA (T/G OR 0.69, 95% CI 0.48-0.99, p<0.05) and psoriasis (T/G OR 0.39, 95% CI 0.23-0.67, p<0.001), but not in CD (T/G OR 1.14, 95% CI 0.57-0.93, p=0.57). And there was no association between TNFRSF1A rs767455 genotype and non-responders to the anti-TNF therapy (A/G OR 0.93, 95% CI 0.70-1.23, p=0.59). This meta-analysis demonstrates that TNFRSF1B T allele carriers show a better response to anti-TNF therapy, and individuals carrying TNFRSF1A A allele have no relationship with the response to anti-TNF therapy for autoimmune diseases. The genotyping of this polymorphism could help to optimize the treatment by identifying patients with a likely poor response to biological drugs. PMID:26071216

  3. Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD

    PubMed Central

    Zhang, L; Li, H; Hu, X; Benedek, D M; Fullerton, C S; Forsten, R D; Naifeh, J A; Li, X; Wu, H; Benevides, K N; Le, T; Smerin, S; Russell, D W; Ursano, R J

    2015-01-01

    Posttraumatic stress disorder (PTSD), a trauma-related mental disorder, is associated with mitochondrial dysfunction in the brain. However, the biologic approach to identifying the mitochondria-focused genes underlying the pathogenesis of PTSD is still in its infancy. Previous research, using a human mitochondria-focused cDNA microarray (hMitChip3) found dysregulated mitochondria-focused genes present in postmortem brains of PTSD patients, indicating that those genes might be PTSD-related biomarkers. To further test this idea, this research examines profiles of mitochondria-focused gene expression in the stressed-rodent model (inescapable tail shock in rats), which shows characteristics of PTSD-like behaviors and also in the blood of subjects with PTSD. This study found that 34 mitochondria-focused genes being upregulated in stressed-rat amygdala. Ten common pathways, including fatty acid metabolism and peroxisome proliferator-activated receptors (PPAR) pathways were dysregulated in the amygdala of the stressed rats. Carnitine palmitoyltransferase 1B (CPT1B), an enzyme in the fatty acid metabolism and PPAR pathways, was significantly over-expressed in the amygdala (P<0.007) and in the blood (P<0.01) of stressed rats compared with non-stressed controls. In human subjects with (n=28) or without PTSD (n=31), significant over-expression of CPT1B in PTSD was also observed in the two common dysregulated pathways: fatty acid metabolism (P=0.0027, false discovery rate (FDR)=0.043) and PPAR (P=0.006, FDR=0.08). Quantitative real-time polymerase chain reaction validated the microarray findings and the CPT1B result. These findings indicate that blood can be used as a specimen in the search for PTSD biomarkers in fatty acid metabolism and PPAR pathways, and, in addition, that CPT1B may contribute to the pathology of PTSD. PMID:26080315

  4. The ghrelin receptors (GHS-R1a and GHS-R1b).

    PubMed

    Albarrán-Zeckler, Rosie G; Smith, Roy G

    2013-01-01

    The growth hormone (GH) secretagogue receptor (GHS-R1a) is a G protein-coupled receptor (GPCR) expressed in the brain as well as other areas of the body. In the early 1990s, this receptor was expression cloned in MERCK laboratories by using a group of synthesized small molecules known to increase GH release in humans and other animals. Since its discovery, hundreds of studies have shown the importance of this receptor and its endogenous ligand, ghrelin, in metabolism, neurotransmission, and behavior. Even more relevant are the prospective benefits that will result from pharmacologic manipulation of GHS-R1a. Multiple GHS-R1a agonists and antagonists are available for experimentation, and some have been used in patients with promising results. Studies in rodents have revealed intriguing potential roles for GHS-R1a modulation. Our goal in this chapter is to connect these studies with the inherent advantages of targeting this receptor pharmacologically. PMID:23652387

  5. The Vasopressin 1b Receptor Antagonist A-988315 Blocks Stress Effects on the Retrieval of Object-Recognition Memory.

    PubMed

    Barsegyan, Areg; Atsak, Piray; Hornberger, Wilfried B; Jacobson, Peer B; van Gaalen, Marcel M; Roozendaal, Benno

    2015-07-01

    Stress-induced activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory. PMID:25669604

  6. Basal and 3-methylcholanthrene-induced expression of cytochrome P450 1A, 1B and 1C genes in the Brazilian guppy, Poecilia vivipara

    PubMed Central

    Dorrington, Tarquin; Zanette, Juliano; Zacchi, Flávia L.; Stegeman, John J.; Bainy, Afonso C.D.

    2015-01-01

    In fish there are four cytochrome P450 (CYP1) subfamilies: CYP1A, CYP1B, CYP1C, and CYP1D. Here we cloned Poecilia vivipara CYP1A, with an inferred amino acid sequence 91% identical to CYP1A from the killifish Fundulus heteroclitus, another member of the Cypriniformes, and an important model in ecotoxicology. In addition, we examined the expression of CYP1A, CYP1B1, and CYP1C1 by qPCR in liver, gill, and intestine of adult P. vivipara injected with 3-methylcholanthrene (3-MC) or held in clean water (control group) for 24 h. All three tissues examined showed basal expression of the three CYP1 genes. CYP1A was most strongly expressed in the liver, while CYP1B1, and CYP1C1 were most strongly expressed in the gill and intestine respectively. 3-MC induced CYP1A, CYP1B1, and CYP1C1 significantly (20–120-fold) in the three organs, consistent with the regulation of CYP1A, CYP1B1 and CYP1C1 via the aryl hydrocarbon receptor. Validation of CYP1 gene biomarkers in fish collected from a contaminated urban mangrove environment was confirmed with significant induction of CYP1A and CYP1C1 in gills (10–15-fold) and CYP1B1 in liver (23-fold), relative to fish from a control site. The responsiveness of these CYP1 genes indicates P. vivipara is suitable as a model for environmental toxicology studies and environmental assessment in Brazil. PMID:22940225

  7. Differential effect of viral overexpression of nucleus accumbens shell 5-HT1B receptors on stress- and cocaine priming-induced reinstatement of cocaine seeking

    PubMed Central

    Nair, Sunila G.; Furay, Amy R.; Liu, Yusha; Neumaier, John F.

    2013-01-01

    5-HT1B receptors are densely expressed on terminals of medium spiny neurons projecting from the nucleus accumbens shell (NAccSh) to the ventral tegmental area, where 5-HT1B receptors modulate GABA release directly, and firing of dopaminergic neurons indirectly. While interactions between NAccSh 5-HT1B receptors and stress have been reported in early stages of psychostimulant-induced neuroadaptations, specifically psychomotor sensitization, the effect of this interaction on later stages of drug seeking is currently unknown. Here, we examined the effect of herpes simplex virus (HSV)-mediated overexpression of NAccSh 5-HT1B receptors on reinstatement of cocaine seeking induced by exposure to stress or a cocaine prime. Rats were trained to self-administer cocaine (0.75 mg/kg/infusion) and the operant response was extinguished. Rats were then injected with viral vector expressing 5-HT1B and green fluorescent protein (GFP) or GFP alone into the NAccSh. The effect of 5-HT1B receptor overexpression was assessed on reinstatement induced by intermittent footshock (0.5 mA for 15 minutes) or a cocaine prime (10 mg/kg, ip). Results indicate that NAccSh 5-HT1B receptor overexpression had no effect on footshock reinstatement while significantly decreasing cocaine priming-induced reinstatement. We also found that NAccSh overexpression of 5-HT1B receptors had no effect on saccharin intake following social defeat stress. These results suggest that the efficacy of pharmacological agents targeting 5-HT1B receptors for the treatment of cocaine relapse will depend largely on the nature of the reinstating stimulus. Taken together with previous results it appears that NAccSh 5-HT1B receptors influence stress responses in early, but not in the later stages of psychostimulant-induced neuroadaptations. PMID:24075973

  8. Dopamine D2-Receptor Antagonists Down-Regulate CYP1A1/2 and CYP1B1 in the Rat Liver

    PubMed Central

    Harkitis, P.; Lang, M. A.; Marselos, M.; Fotopoulos, A.; Albucharali, G.; Konstandi, M.

    2015-01-01

    Dopaminergic systems regulate the release of several hormones including growth hormone (GH), thyroid hormones, insulin, glucocorticoids and prolactin (PRL) that play significant roles in the regulation of various Cytochrome P450 (CYP) enzymes. The present study investigated the role of dopamine D2-receptor-linked pathways in the regulation of CYP1A1, CYP1A2 and CYP1B1 that belong to a battery of genes controlled by the Aryl Hydrocarbon Receptor (AhR) and play a crucial role in the metabolism and toxicity of numerous environmental toxicants. Inhibition of dopamine D2-receptors with sulpiride (SULP) significantly repressed the constitutive and benzo[a]pyrene (B[a]P)-induced CYP1A1, CYP1A2 and CYP1B expression in the rat liver. The expression of AhR, heat shock protein 90 (HSP90) and AhR nuclear translocator (ARNT) was suppressed by SULP in B[a]P-treated livers, whereas the AhRR expression was increased by the drug suggesting that the SULP-mediated repression of the CYP1 inducibility is due to inactivation of the AhR regulatory system. At signal transduction level, the D2-mediated down-regulation of constitutive CYP1A1/2 and CYP1B1 expression appears to be mediated by activation of the insulin/PI3K/AKT pathway. PRL-linked pathways exerting a negative control on various CYPs, and inactivation of the glucocorticoid-linked pathways that positively control the AhR-regulated CYP1 genes, may also participate in the SULP-mediated repression of both, the constitutive and induced CYP1 expression. The present findings indicate that drugs acting as D2-dopamine receptor antagonists can modify several hormone systems that regulate the expression of CYP1A1, CYP1A2 and CYP1B1, and may affect the toxicity and carcinogenicity outcome of numerous toxicants and pre-carcinogenic substances. Therefore, these drugs could be considered as a part of the strategy to reduce the risk of exposure to environmental pollutants and pre-carcinogens. PMID:26466350

  9. Molecular evolution, characterization and expression profiling of uterine aldoketoreductase 1B5 gene in endometrium of goat (Capra hircus).

    PubMed

    Kumar, Rohit; Ramteke, P W; Sharma, Sanjeev Kumar; Mitra, Abhijit

    2015-01-01

    Aldoketoreductase 1B5 (AKR1B5), a member of the Aldoketoreductase family, is involved in the production of Prostaglandin F2α (PGF2α) as one of vital prostaglandin F synthase (PGFS). PGs (Prostaglandins) play a crucial role in female reproductive system. In the present study, we cloned and characterized the full-length open reading frame of AKR1B5 gene in Black Bengal (BB) goat. The complete coding sequence of AKR1B5 comprises an entire open reading frame of 951 bp, encoding 316 amino acid (AA) residues. BB AKR1B5 showed >82.9% identity with that of cattle, rabbit, human, and rat at nucleotide and amino acid levels, respectively. Further, a systematic study of AKR1B5 sequence evolution was also conducted using Phylogenetic Analysis by Maximum Likelihood (PAML), entropy plot, and Blossum 62 in a phylogenetic context. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (Ka/Ks) revealed that negative selection may have been operating on this gene during evolution in goat, cattle, rabbit, human, and rat, which showed its conservation across species. Further, expression of AKR1B5 was determined by quantitative real-time PCR in goat endometrial tissues at different stages of the estrous cycle and early pregnancy. Our results indicated its high expression at luteolytic phase (stage III; day 16-21) during the estrous cycle. However, during early (day ∼30-40) pregnancy the expression was highest as compared to estrous cycle. PMID:25153450

  10. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    PubMed Central

    Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.

    2013-01-01

    Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410

  11. SCN1B gene variants in Brugada Syndrome: a study of 145 SCN5A-negative patients.

    PubMed

    Ricci, Maria Teresa; Menegon, Silvia; Vatrano, Simona; Mandrile, Giorgia; Cerrato, Natascia; Carvalho, Paula; De Marchi, Mario; Gaita, Fiorenzo; Giustetto, Carla; Giachino, Daniela Francesca

    2014-01-01

    Brugada syndrome is characterised by a typical ECG with ST segment elevation in the right precordial leads. Individuals with this condition are susceptible to ventricular arrhythmias and sudden cardiac death. The principal gene responsible for this syndrome is SCN5A, which encodes the α-subunit of the Nav1.5 voltage-gated sodium channel. Mutations involving other genes have been increasingly reported, but their contribution to Brugada syndrome has been poorly investigated. Here we focused on the SCN1B gene, which encodes the β1-subunit of the voltage-gated sodium channel and its soluble β1b isoform. SCN1B mutations have been associated with Brugada syndrome as well as with other cardiac arrhythmias and familial epilepsy. In this study, we have analysed SCN1B exons (including the alternatively-spliced exon 3A) and 3'UTR in 145 unrelated SCN5A-negative patients from a single centre. We took special care to report all identified variants (including polymorphisms), following the current nomenclature guidelines and considering both isoforms. We found two known and two novel (and likely deleterious) SCN1B variants. We also found two novel changes with low evidence of pathogenicity. Our findings contribute more evidence regarding the occurrence of SCN1B variants in Brugada syndrome, albeit with a low prevalence, which is in agreement with previous reports. PMID:25253298

  12. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  13. ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization

    PubMed Central

    Tindi, Jaafar O.; Chávez, Andrés E.; Cvejic, Svetlana; Calvo-Ochoa, Erika; Castillo, Pablo E.

    2015-01-01

    NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca2+/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia. PMID:26085624

  14. Direct interaction and functional coupling between human 5-HT6 receptor and the light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1).

    PubMed

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer's disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  15. Direct Interaction and Functional Coupling between Human 5-HT6 Receptor and the Light Chain 1 Subunit of the Microtubule-Associated Protein 1B (MAP1B-LC1)

    PubMed Central

    Kim, Soon-Hee; Kim, Dong Hyuk; Lee, Kang Ho; Im, Sun-Kyoung; Hur, Eun-Mi; Chung, Kwang Chul; Rhim, Hyewhon

    2014-01-01

    Serotonin (5-HT) receptors of type 6 (5-HT6R) play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer’s disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1) subunit of MAP1B protein (MAP1B-LC1), a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain. PMID:24614691

  16. A missense mutation in the ZFHX1B gene associated with an atypical Mowat-Wilson syndrome phenotype.

    PubMed

    Heinritz, Wolfram; Zweier, Christiane; Froster, Ursula G; Strenge, Sibylle; Kujat, Annegret; Syrbe, Steffen; Rauch, Anita; Schuster, Volker

    2006-06-01

    Mowat-Wilson syndrome (MWS) is a rare mental retardation-multiple congenital anomalies syndrome associated with typical facial dysmorphism. Patients can show a variety of other anomalies like short stature, microcephaly, Hirschsprung disease, malformations of the brain, seizures, congenital heart defects and urogenital anomalies. Mutations leading to haploinsufficiency of the ZFHX1B gene have been described as the underlying cause of this condition. We report on the clinical findings in a 2(1/2)-year-old boy with some aspects out of the MWS-spectrum in addition to unusual anomalies and a novel missense mutation in the ZFHX1B gene. PMID:16688751

  17. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    SciTech Connect

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry the most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.

  18. RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells.

    PubMed

    Maury, Julien Jean Pierre; El Farran, Chadi A; Ng, Daniel; Loh, Yuin-Han; Bi, Xuezhi; Bardor, Muriel; Choo, Andre Boon-Hwa

    2015-07-01

    O-linked-N-acetylglucosamine (O-GlcNAc) post-translationally modifies and regulates thousands of proteins involved in various cellular mechanisms. Recently, O-GlcNAc has been linked to human embryonic stem cells (hESC) differentiation, however the identity and function of O-GlcNAc proteins regulating hESC remain unknown. Here, we firstly identified O-GlcNAc modified human stem cell regulators such as hnRNP K, HP1γ, and especially RING1B/RNF2. Thereafter, we focused our work on RING1B which is the catalytic subunit of the polycomb repressive complex 1 (PRC1) a major epigenetic repressor essential for pluripotency maintenance and differentiation. By point-mutation, we show that T(250)/S(251) and S(278) RING1B residues are bearing O-GlcNAc, and that T(250)/S(251) O-GlcNAcylation decreases during differentiation. O-GlcNAc seems to regulate RING1B-DNA binding as suggested by our ChIP-sequencing results. Non-O-GlcNAcylated RING1B is found to be enriched near cell cycle genes whereas O-GlcNAcylated RING1B seems preferentially enriched near neuronal genes. Our data suggest that during hESC differentiation, the decrease of RING1B O-GlcNAcylation might enable PRC1 to switch its target to induce neuron differentiation. Overall, we demonstrate that O-GlcNAc modifies and regulates an essential epigenetic tool, RING1B, which may contribute to hESC pluripotency maintenance and differentiation. PMID:26100231

  19. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    PubMed Central

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes—D1A, D1B(X), D1C(D), and D1E—which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  20. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  1. Polymorphisms in the kinesin-like factor 1 B gene and risk of epithelial ovarian cancer in Eastern Chinese women.

    PubMed

    Shi, Ting-Yan; Jiang, Zhi; Jiang, Rong; Yin, Sheng; Wang, Meng-Yun; Yu, Ke-Da; Shao, Zhi-Ming; Sun, Meng-Hong; Zang, Rongyu; Wei, Qingyi

    2015-09-01

    The kinesin-like factor 1 B (KIF1B) gene plays an important role in the process of apoptosis and the transformation and progression of malignant cells. Genetic variations in KIF1B may contribute to risk of epithelial ovarian cancer (EOC). In this study of 1,324 EOC patients and 1,386 cancer-free female controls, we investigated associations between two potentially functional single nucleotide polymorphisms in KIF1B and EOC risk by the conditional logistic regression analysis. General linear regression model was used to evaluate the correlation between the number of variant alleles and KIF1B mRNA expression levels. We found that the rs17401966 variant AG/GG genotypes were significantly associated with a decreased risk of EOC (adjusted odds ratio (OR) = 0.81, 95 % confidence interval (CI) = 0.68-0.97), compared with the AA genotype, but no associations were observed for rs1002076. Women who carried both rs17401966 AG/GG and rs1002076 AG/AA genotypes of KIF1B had a 0.82-fold decreased risk (adjusted 95 % CI = 0.69-0.97), compared with others. Additionally, there was no evidence of possible interactions between about-mentioned co-variants. Further genotype-phenotype correlation analysis indicated that the number of rs17401966 variant G allele was significantly associated with KIF1B mRNA expression levels (P for GLM = 0.003 and 0.001 in all and Chinese subjects, respectively), with GG carriers having the lowest level of KIF1B mRNA expression. Taken together, the rs17401966 polymorphism likely regulates KIF1B mRNA expression and thus may be associated with EOC risk in Eastern Chinese women. Larger, independent studies are warranted to validate our findings. PMID:25854172

  2. Endurance training effects on 5-HT(1B) receptors mRNA expression in cerebellum, striatum, frontal cortex and hippocampus of rats.

    PubMed

    Chennaoui, M; Drogou, C; Gomez-Merino, D; Grimaldi, B; Fillion, G; Guezennec, C Y

    2001-07-01

    The 5-HT(1B) receptors are the predominant auto- and heteroreceptors located on serotonergic and non-serotonergic terminals where they regulate the neuronal release of neurotransmitters. The present study investigated the effects of a 7 week period of physical training on the expression of cerebral 5-HT(1B) receptors by measuring corresponding mRNA levels in rat. Using RNase protection assay technique, we have observed no change in 5-HT(1B) receptor mRNA levels in the striatum and in the hippocampus after moderate as well as after intensive training. In contrast, a significant decrease in 5-HT(1B) receptor mRNA levels was observed in cerebellum of intensively trained rats. Moreover, in frontal cortex, a significant decrease in 5-HT(1B) receptors mRNA level occurred in both groups of trained rats. These data suggest the existence of regional differences in the effect of physical exercise on the expression of 5-HT(1B) receptors. PMID:11516568

  3. New family of pectinase genes PGU1b-PGU3b of the pectinolytic yeast Saccharomyces bayanus var. uvarum.

    PubMed

    Naumov, G I; Shalamitskiy, M Yu; Naumova, E S

    2016-03-01

    Using yeast genome databases and literature data, we have conducted a phylogenetic analysis of pectinase PGU genes from Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and hybrid taxon S. pastorianus (syn. S. carlsbergensis). Single PGU genes were observed in all Saccharomyces species, except S. bayanus. The superfamily of divergent PGU genes has been documented in S. bayanus var. uvarum for the first time. Chromosomal localization of new PGU1b, PGU2b, and PGU3b genes in the yeast S. bayanus var. uvarum has been determined by molecular karyotyping and Southern hybridization. PMID:27193705

  4. Identification, molecular characterization and gene expression analysis of sox1a and sox1b genes in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Gao, Jinning; Zhang, Wei; Li, Peizhen; Liu, Jinxiang; Song, Huayu; Wang, Xubo; Zhang, Quanqi

    2015-12-15

    The transcription factor, Sox1 has been implicated in neural determination and differentiation as well as in the maintenance of neural progenitor cell status in mammals. However, the molecular cloning and expression of sox1 gene in marine fish have not been reported yet. In this study, we first cloned and characterized the full-length cDNAs and the partial 5'-flanking regions of Paralichthys olivaceus sox1a (Posox1a) and sox1b (Posox1b). Phylogenetic, gene structure, and chromosome synteny analyses revealed that Posox1a and Posox1b were co-orthologs and homologous to mammalian Sox1. The promoter regions of Posox1a and Posox1b were also analyzed and several potential transcription factor (TF) binding sites were identified which might modulate gene expression. Quantitative real-time RT-PCR (qRT-PCR) results showed that Posox1a and Posox1b were consistently expressed during embryogenesis, with the highest level at the neurula stage. Tissue distribution analyses revealed that Posox1a and Posox1b were abundant in the adult brain. Moreover, Posox1a had a faster evolution rate and much higher expression levels than Posox1b. These results provide a foundation for further surveying the function of PoSox1 genes during Japanese flounder development and neurogenesis. PMID:26260017

  5. Extracellular surface residues of the α1B-adrenoceptor critical for G protein-coupled receptor function.

    PubMed

    Ragnarsson, Lotten; Andersson, Åsa; Thomas, Walter G; Lewis, Richard J

    2015-01-01

    Ligand binding and conformational changes that accompany signaling from G protein-coupled receptors (GPCRs) have mostly focused on the role of transmembrane helices and intracellular loop regions. However, recent studies, including several GPCRs cocrystallized with bound ligands, suggest that the extracellular surface (ECS) of GPCRs plays an important role in ligand recognition, selectivity, and binding, as well as potentially contributing to receptor activation and signaling. This study applied alanine-scanning mutagenesis to investigate the role of the complete ECS of the α1B-adrenoreceptor on norepinephrine (NE) potency, affinity, and efficacy. Half (24 of 48) of the ECS mutations significantly decreased NE potency in an inositol 1-phosphate assay. Most mutations reduced NE affinity (17) determined from [(3)H]prazosin displacement studies, whereas four mutations at the entrance to the NE binding pocket enhanced NE affinity. Removing the influence of NE affinity and receptor expression levels on NE potency gave a measure of NE efficacy, which was significantly decreased for 11 of 48 ECS mutants. These different effects tended to cluster to different regions of the ECS, which is consistent with different regions of the ECS playing discrete functional roles. Exposed ECS residues at the entrance to the NE binding pocket mostly affected NE affinity, whereas buried or structurally significant residues mostly affected NE efficacy. The broad potential for ECS mutations to affect GPCR function has relevance for the increasing number of nonsynonymous single nucleotide polymorphisms now being identified in GPCRs. PMID:25352041

  6. Association of Interleukin-1B and Interleukin-4 Gene Variants with Autoimmune Thyroid Diseases in Tunisian Population.

    PubMed

    Zaaber, Ines; Mestiri, Souhir; Hammedi, Hounayda; Marmouch, Hela; Mahjoub, Silvia; Tensaout, Besma Bel Hadj Jrad; Said, Khaled

    2016-05-01

    Autoimmune thyroid diseases (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT) are complex genetic diseases. Cytokines IL-1B and IL-4 play a role in the pathogenesis of AITD. This study was conducted on Tunisian patients with GD or HT to investigate the association of IL-1B and IL-4 gene polymorphisms with the risk and the prognosis of AITD. A total of 358 healthy controls and 341 patients with AITDs (249 HT and 92 GD) were genotyped for IL-1B+3953C/T and IL-4 intron 3 VNTR polymorphisms. A significant association was found between IL-1B+3953C/T polymorphism and GD or HT, both in the dominant and additive models. The IL-1B+3953T allele was associated with GD (p = 0.0003, OR = 1.93, CI = 1.34-2.78) and HT (p = 0.009, OR = 1.43, CI = 1.09-1.88). The IL-4 VNTR polymorphism was associated only with HT risk both in additive (p = 0.03, OR = 0.31, CI = 0.11-0.86) and recessive (p = 0.03, OR = 3.04, CI = 1.13-8.17) models. No significant association was found between IL-1B+3953C/T polymorphism and change in the serum concentrations of TSH and FT4 in GD and HT patients. In HT patients, the IL-1B+3953T allele (p = 0.009, OR = 0.42, CI = 0.22-0.83) and the IL-1B+3953T/T genotype (p = 0.03, OR = 0.21, CI = 0.04-1.07) were more frequent in the absence than in the presence of an anti-TPO antibody. The proportion of HT patients with the P1P2 genotype of the IL-4 gene was significantly higher in the absence than in the presence of the anti-TPO antibody (p = 0.04, OR = 0.39, CI = 0.17-0.89). These preliminary results suggest that IL-1B and IL-4 gene polymorphisms may be associated with GD and HT susceptibility and may represent prognostic factors for predicting the severity of HT. PMID:27100882

  7. Pharmacological analysis of the haemodynamic effects of 5-HT1B/D receptor agonists in the normotensive rat

    PubMed Central

    Pagniez, Fabrice; Valentin, Jean-Pierre; Vieu, Sylvie; Colpaert, Francis C; John, Gareth W

    1998-01-01

    The receptors involved in mediating the haemodynamic effects of three 5-HT1B/D receptor agonists were investigated in pentobarbitone anaesthetized rats (n=6–17 per group).Cumulative intravenous (i.v.) infusions of rizatriptan and sumatriptan (from 0.63 to 2500 μg kg−1; each dose over 5 min) induced dose-dependent and marked hypotension (−42±6 and −34±4 mmHg at the highest dose, respectively; both P<0.05 vs vehicle: +5±3 mmHg) and bradycardia (−85±16 and −44±12 beats min−1 at the highest dose, respectively; both P<0.05 vs vehicle: +16±6 beats min−1). Zolmitriptan evoked only moderate hypotension at the highest dose (−19±9 mmHg; P<0.05 vs vehicle).A high dose of the 5-HT1B/D receptor antagonist, GR 127935 (0.63 mg kg−1, i.v.), failed to antagonize the hypotension and bradycardia evoked by sumatriptan (−35±6 mmHg and −52±19 beats min−1, respectively; both not significant vs sumatriptan in untreated rats), but moderately reduced the hypotension and bradycardia evoked by rizatriptan (−20±5 mmHg and −30±17 beats min−1, respectively; both P<0.05 vs vehicle and vs rizatriptan in untreated rats).The selective 5-HT1A receptor antagonist, WAY 100635 (0.16 and 0.63 mg kg−1, i.v.), dose-dependently attenuated the haemodynamic responses evoked by rizatriptan and sumatriptan, which were almost abolished by the higher dose of WAY 100635 (−4±3 mmHg and −15±8 beats min−1; both not significant vs vehicle and P<0.05 vs rizatriptan in untreated rats). A slight but statistically significant reduction in mean arterial pressure (MAP) persisted at the highest dose of sumatriptan (−13±4 mmHg following the higher dose of WAY 100635; P<0.05 vs vehicle).In pithed rats with MAP normalized by angiotensin II, rizatriptan failed to induce hypotension or bradycardia (+5±4 mmHg and −6±16 beats min−1, respectively; both NS vs vehicle and P<0.05 vs rizatriptan in untreated rats). Similarly, sumatriptan failed

  8. A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype

    PubMed Central

    Occhi, Gianluca; Regazzo, Daniela; Trivellin, Giampaolo; Boaretto, Francesca; Ciato, Denis; Bobisse, Sara; Ferasin, Sergio; Cetani, Filomena; Pardi, Elena; Korbonits, Márta; Pellegata, Natalia S.; Sidarovich, Viktoryia; Quattrone, Alessandro; Opocher, Giuseppe; Mantero, Franco; Scaroni, Carla

    2013-01-01

    The CDKN1B gene encodes the cyclin-dependent kinase inhibitor p27KIP1, an atypical tumor suppressor playing a key role in cell cycle regulation, cell proliferation, and differentiation. Impaired p27KIP1 expression and/or localization are often observed in tumor cells, further confirming its central role in regulating the cell cycle. Recently, germline mutations in CDKN1B have been associated with the inherited multiple endocrine neoplasia syndrome type 4, an autosomal dominant syndrome characterized by varying combinations of tumors affecting at least two endocrine organs. In this study we identified a 4-bp deletion in a highly conserved regulatory upstream ORF (uORF) in the 5′UTR of the CDKN1B gene in a patient with a pituitary adenoma and a well-differentiated pancreatic neoplasm. This deletion causes the shift of the uORF termination codon with the consequent lengthening of the uORF–encoded peptide and the drastic shortening of the intercistronic space. Our data on the immunohistochemical analysis of the patient's pancreatic lesion, functional studies based on dual-luciferase assays, site-directed mutagenesis, and on polysome profiling show a negative influence of this deletion on the translation reinitiation at the CDKN1B starting site, with a consequent reduction in p27KIP1 expression. Our findings demonstrate that, in addition to the previously described mechanisms leading to reduced p27KIP1 activity, such as degradation via the ubiquitin/proteasome pathway or non-covalent sequestration, p27KIP1 activity can also be modulated by an uORF and mutations affecting uORF could change p27KIP1 expression. This study adds the CDKN1B gene to the short list of genes for which mutations that either create, delete, or severely modify their regulatory uORFs have been associated with human diseases. PMID:23555276

  9. SULT2B1b Sulfotransferase: Induction by Vitamin D Receptor and Reduced Expression in Prostate Cancer

    PubMed Central

    Seo, Young-Kyo; Mirkheshti, Nooshin; Song, Chung S.; Kim, Soyoung; Dodds, Sherry; Ahn, Soon C.; Christy, Barbara; Mendez-Meza, Rosario; Ittmann, Michael M.; Abboud-Werner, Sherry

    2013-01-01

    An elevated tumor tissue androgen level, which reactivates androgen receptor in recurrent prostate cancer, arises from the intratumor synthesis of 5α-dihydrotestosterone through use of the precursor steroid dehydroepiandrosterone (DHEA) and is fueled by the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD1), aldoketoreductase (AKR1C3), and steroid 5-alpha reductase, type 1 (SRD5A1) present in cancer tissue. Sulfotransferase 2B1b (SULT2B1b) (in short, SULT2B) is a prostate-expressed hydroxysteroid SULT that converts cholesterol, oxysterols, and DHEA to 3β-sulfates. DHEA metabolism involving sulfonation by SULT2B can potentially interfere with intraprostate androgen synthesis due to reduction of free DHEA pool and, thus, conversion of DHEA to androstenedione. Here we report that in prostatectomy specimens from treatment-naive patients, SULT2B expression is markedly reduced in malignant tissue (P < .001, Mann-Whitney U test) compared with robust expression in adjacent nonmalignant glands. SULT2B was detected in formalin-fixed specimens by immunohistochemistry on individual sections and tissue array. Immunoblotting of protein lysates of frozen cancer and matched benign tissue confirmed immunohistochemistry results. An in-house–developed rabbit polyclonal antibody against full-length human SULT2B was validated for specificity and used in the analyses. Ligand-activated vitamin D receptor induced the SULT2B1 promoter in vivo in mouse prostate and increased SULT2B mRNA and protein levels in vitro in prostate cancer cells. A vitamin D receptor/retinoid X receptor-α–bound DNA element (with a DR7 motif) mediated induction of the transfected SULT2B1 promoter in calcitriol-treated cells. SULT2B knockdown caused an increased proliferation rate of prostate cancer cells upon stimulation by DHEA. These results suggest that the tumor tissue SULT2B level may partly control prostate cancer growth, and its induction in a therapeutic setting may inhibit disease

  10. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    SciTech Connect

    Stenmark, P.; Dupuy, J.; Inamura, A.; Kiso, M.; Stevens, R.C.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  11. IL1B Gene Variation and Internalizing Symptoms in Maltreated Preschoolers

    PubMed Central

    Ridout, Kathryn K.; Parade, Stephanie H.; Seifer, Ronald; Price, Lawrence H.; Gelernter, Joel; Feliz, Paloma; Tyrka, Audrey R.

    2015-01-01

    Evidence now implicates inflammatory proteins in the neurobiology of internalizing disorders. Genetic factors may influence individual responses to maltreatment; however, little work has examined inflammatory genetic variants in adults and none in children. The present study examined the role of an IL1B variant in preschoolers exposed to maltreatment and other forms of adversity in internalizing symptom development. One hundred ninety-eight families were enrolled, with one child (age 3-5 years) from each family. Adversity measures included child protective service documentation of moderate-severe maltreatment in the last 6 months and interview-assessed contextual stressors. Internalizing symptoms were measured using the Child Behavior Checklist (CBCL) and the Diagnostic Infant and Preschool Assessment (DIPA). Maltreated children had higher MDD and PTSD symptoms and marginally higher internalizing symptoms on the CBCL. Controlling for age, sex and race, IL1B genotype was associated with MDD symptoms (p = .002). Contextual stressors were significantly associated with MDD and PTSD and marginally with internalizing symptoms. The IL1B genotype interacted with contextual stress such that children homozygous for the minor allele had more MDD symptoms (p = .045). These results suggest that genetic variants of IL1B may modulate the development of internalizing symptoms in the face of childhood adversity. PMID:25422961

  12. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer.

    PubMed

    Shen, Hui; Fridley, Brooke L; Song, Honglin; Lawrenson, Kate; Cunningham, Julie M; Ramus, Susan J; Cicek, Mine S; Tyrer, Jonathan; Stram, Douglas; Larson, Melissa C; Köbel, Martin; Ziogas, Argyrios; Zheng, Wei; Yang, Hannah P; Wu, Anna H; Wozniak, Eva L; Woo, Yin Ling; Winterhoff, Boris; Wik, Elisabeth; Whittemore, Alice S; Wentzensen, Nicolas; Weber, Rachel Palmieri; Vitonis, Allison F; Vincent, Daniel; Vierkant, Robert A; Vergote, Ignace; Van Den Berg, David; Van Altena, Anne M; Tworoger, Shelley S; Thompson, Pamela J; Tessier, Daniel C; Terry, Kathryn L; Teo, Soo-Hwang; Templeman, Claire; Stram, Daniel O; Southey, Melissa C; Sieh, Weiva; Siddiqui, Nadeem; Shvetsov, Yurii B; Shu, Xiao-Ou; Shridhar, Viji; Wang-Gohrke, Shan; Severi, Gianluca; Schwaab, Ira; Salvesen, Helga B; Rzepecka, Iwona K; Runnebaum, Ingo B; Rossing, Mary Anne; Rodriguez-Rodriguez, Lorna; Risch, Harvey A; Renner, Stefan P; Poole, Elizabeth M; Pike, Malcolm C; Phelan, Catherine M; Pelttari, Liisa M; Pejovic, Tanja; Paul, James; Orlow, Irene; Omar, Siti Zawiah; Olson, Sara H; Odunsi, Kunle; Nickels, Stefan; Nevanlinna, Heli; Ness, Roberta B; Narod, Steven A; Nakanishi, Toru; Moysich, Kirsten B; Monteiro, Alvaro N A; Moes-Sosnowska, Joanna; Modugno, Francesmary; Menon, Usha; McLaughlin, John R; McGuire, Valerie; Matsuo, Keitaro; Adenan, Noor Azmi Mat; Massuger, Leon F A G; Lurie, Galina; Lundvall, Lene; Lubiński, Jan; Lissowska, Jolanta; Levine, Douglas A; Leminen, Arto; Lee, Alice W; Le, Nhu D; Lambrechts, Sandrina; Lambrechts, Diether; Kupryjanczyk, Jolanta; Krakstad, Camilla; Konecny, Gottfried E; Kjaer, Susanne Krüger; Kiemeney, Lambertus A; Kelemen, Linda E; Keeney, Gary L; Karlan, Beth Y; Karevan, Rod; Kalli, Kimberly R; Kajiyama, Hiroaki; Ji, Bu-Tian; Jensen, Allan; Jakubowska, Anna; Iversen, Edwin; Hosono, Satoyo; Høgdall, Claus K; Høgdall, Estrid; Hoatlin, Maureen; Hillemanns, Peter; Heitz, Florian; Hein, Rebecca; Harter, Philipp; Halle, Mari K; Hall, Per; Gronwald, Jacek; Gore, Martin; Goodman, Marc T; Giles, Graham G; Gentry-Maharaj, Aleksandra; Garcia-Closas, Montserrat; Flanagan, James M; Fasching, Peter A; Ekici, Arif B; Edwards, Robert; Eccles, Diana; Easton, Douglas F; Dürst, Matthias; du Bois, Andreas; Dörk, Thilo; Doherty, Jennifer A; Despierre, Evelyn; Dansonka-Mieszkowska, Agnieszka; Cybulski, Cezary; Cramer, Daniel W; Cook, Linda S; Chen, Xiaoqing; Charbonneau, Bridget; Chang-Claude, Jenny; Campbell, Ian; Butzow, Ralf; Bunker, Clareann H; Brueggmann, Doerthe; Brown, Robert; Brooks-Wilson, Angela; Brinton, Louise A; Bogdanova, Natalia; Block, Matthew S; Benjamin, Elizabeth; Beesley, Jonathan; Beckmann, Matthias W; Bandera, Elisa V; Baglietto, Laura; Bacot, François; Armasu, Sebastian M; Antonenkova, Natalia; Anton-Culver, Hoda; Aben, Katja K; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A T; Schildkraut, Joellen M; Sellers, Thomas A; Huntsman, David; Berchuck, Andrew; Chenevix-Trench, Georgia; Gayther, Simon A; Pharoah, Paul D P; Laird, Peter W; Goode, Ellen L; Pearce, Celeste Leigh

    2013-01-01

    HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR)=1.13, P=3.1 × 10(-10)) and clear cell (rs11651755 OR=0.77, P=1.6 × 10(-8)) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes. PMID:23535649

  13. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer

    PubMed Central

    Shen, Hui; Fridley, Brooke L.; Song, Honglin; Lawrenson, Kate; Cunningham, Julie M.; Ramus, Susan J.; Cicek, Mine S.; Tyrer, Jonathan; Stram, Douglas; Larson, Melissa C.; Köbel, Martin; Ziogas, Argyrios; Zheng, Wei; Yang, Hannah P.; Wu, Anna H.; Wozniak, Eva L.; Woo, Yin Ling; Winterhoff, Boris; Wik, Elisabeth; Whittemore, Alice S.; Wentzensen, Nicolas; Weber, Rachel Palmieri; Vitonis, Allison F.; Vincent, Daniel; Vierkant, Robert A.; Vergote, Ignace; Van Den Berg, David; Van Altena, Anne M.; Tworoger, Shelley S.; Thompson, Pamela J.; Tessier, Daniel C.; Terry, Kathryn L.; Teo, Soo-Hwang; Templeman, Claire; Stram, Daniel O.; Southey, Melissa C.; Sieh, Weiva; Siddiqui, Nadeem; Shvetsov, Yurii B.; Shu, Xiao-Ou; Shridhar, Viji; Wang-Gohrke, Shan; Severi, Gianluca; Schwaab, Ira; Salvesen, Helga B.; Rzepecka, Iwona K.; Runnebaum, Ingo B.; Rossing, Mary Anne; Rodriguez-Rodriguez, Lorna; Risch, Harvey A.; Renner, Stefan P.; Poole, Elizabeth M.; Pike, Malcolm C.; Phelan, Catherine M.; Pelttari, Liisa M.; Pejovic, Tanja; Paul, James; Orlow, Irene; Omar, Siti Zawiah; Olson, Sara H.; Odunsi, Kunle; Nickels, Stefan; Nevanlinna, Heli; Ness, Roberta B.; Narod, Steven A.; Nakanishi, Toru; Moysich, Kirsten B.; Monteiro, Alvaro N.A.; Moes-Sosnowska, Joanna; Modugno, Francesmary; Menon, Usha; McLaughlin, John R.; McGuire, Valerie; Matsuo, Keitaro; Adenan, Noor Azmi Mat; Massuger, Leon F.A. G.; Lurie, Galina; Lundvall, Lene; Lubiński, Jan; Lissowska, Jolanta; Levine, Douglas A.; Leminen, Arto; Lee, Alice W.; Le, Nhu D.; Lambrechts, Sandrina; Lambrechts, Diether; Kupryjanczyk, Jolanta; Krakstad, Camilla; Konecny, Gottfried E.; Kjaer, Susanne Krüger; Kiemeney, Lambertus A.; Kelemen, Linda E.; Keeney, Gary L.; Karlan, Beth Y.; Karevan, Rod; Kalli, Kimberly R.; Kajiyama, Hiroaki; Ji, Bu-Tian; Jensen, Allan; Jakubowska, Anna; Iversen, Edwin; Hosono, Satoyo; Høgdall, Claus K.; Høgdall, Estrid; Hoatlin, Maureen; Hillemanns, Peter; Heitz, Florian; Hein, Rebecca; Harter, Philipp; Halle, Mari K.; Hall, Per; Gronwald, Jacek; Gore, Martin; Goodman, Marc T.; Giles, Graham G.; Gentry-Maharaj, Aleksandra; Garcia-Closas, Montserrat; Flanagan, James M.; Fasching, Peter A.; Ekici, Arif B.; Edwards, Robert; Eccles, Diana; Easton, Douglas F.; Dürst, Matthias; du Bois, Andreas; Dörk, Thilo; Doherty, Jennifer A.; Despierre, Evelyn; Dansonka-Mieszkowska, Agnieszka; Cybulski, Cezary; Cramer, Daniel W.; Cook, Linda S.; Chen, Xiaoqing; Charbonneau, Bridget; Chang-Claude, Jenny; Campbell, Ian; Butzow, Ralf; Bunker, Clareann H.; Brueggmann, Doerthe; Brown, Robert; Brooks-Wilson, Angela; Brinton, Louise A.; Bogdanova, Natalia; Block, Matthew S.; Benjamin, Elizabeth; Beesley, Jonathan; Beckmann, Matthias W.; Bandera, Elisa V.; Baglietto, Laura; Bacot, François; Armasu, Sebastian M.; Antonenkova, Natalia; Anton-Culver, Hoda; Aben, Katja K.; Liang, Dong; Wu, Xifeng; Lu, Karen; Hildebrandt, Michelle A.T.; Schildkraut, Joellen M.; Sellers, Thomas A.; Huntsman, David; Berchuck, Andrew; Chenevix-Trench, Georgia; Gayther, Simon A.; Pharoah, Paul D.P.; Laird, Peter W.; Goode, Ellen L.; Pearce, Celeste Leigh

    2013-01-01

    HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR) = 1.13, P = 3.1 × 10−10) and clear cell (rs11651755 OR = 0.77, P = 1.6 × 10−8) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes. PMID:23535649

  14. A Novel Mutation of the HNF1B Gene Associated With Hypoplastic Glomerulocystic Kidney Disease and Neonatal Renal Failure

    PubMed Central

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-01-01

    Abstract Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  15. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  16. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors.

    PubMed

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  17. Molecular cloning and activity analysis of a seed-specific FAD2-1B gene promoter from Glycine max.

    PubMed

    Zhao, Y; Sha, W; Wang, Q Y; Zhai, Y; Zhao, Y; Shao, S L

    2015-01-01

    Microsomal omega-6 fatty acid desaturase (FAD2-1B) is an enzyme that regulates the polyunsaturated fatty acid content in soybeans (Glycine max). In this study, the FAD2-1B gene was determined to be highly expressed in soybean seeds using quantitative real-time PCR(qRT-PCR). To investigate the expression pattern and activity of the FAD2-1B promoter, a 1929 bp 5'-upstream genomic DNA fragment, named PF, was isolated according to the soybean genomic sequence. Sequence analysis revealed the presence of many motifs related to seed-specific promoters in the PF fragment, such as E-box, SEF4, Skn-1 motif, AACACA, AATAAA and so on. Tobacco transgenics carrying the gus reporter gene driven by the PF and/or 35S promoters were confirmed by PCR and RT-PCR. qRT-PCR and histochemical GUS assays showed that the PF promoter could regulate gus gene accumulation in seeds and the expression level was higher than in other organs. In the meantime, it exhibited similar activity to the 35S promoter in seeds, which could be associated with seed-related cis-elements found in the 1-248 bp, 451-932 bp, and 1627-1803 bp regions of the promoter. PMID:26386665

  18. How efficacious are 5-HT1B/D receptor ligands: an answer from GTP gamma S binding studies with stably transfected C6-glial cell lines.

    PubMed

    Pauwels, P J; Tardif, S; Palmier, C; Wurch, T; Colpaert, F C

    1997-01-01

    The intrinsic activity of a series of 5-hydroxytryptamine (serotonin, 5-HT) receptor ligands was analysed at recombinant h5-HT1B and h5-HT1D receptor sites using a [35S]GTP gamma S binding assay and membrane preparations of stably transfected C6-glial cell lines. Compounds either stimulated or inhibited [35S]GTP gamma S binding to a membrane preparation containing either h5-HT1B or h5-HT1D receptors. The potencies observed for most of the compounds at the h5-HT1B receptor subtype correlated with their potencies measured by inhibition of stimulated cAMP formation on intact cells. Apparent agonist potencies in the [35S]GTP gamma S binding assay to C6-glial/h5-HT1D membranes were, with the exception of 2-[5-[3-(4-methylsulphonylamino)benzyl-1 2,4-oxadiazol-5-yl]-1H-indol-3-yl] ethanamine (L694247), 5- to 13-times lower than in the cAMP assay on intact cells. This suggests that receptor coupling in the h5-HT1D membrane preparation is less efficient than that in the intact cell. It further appeared that 6-times more h5-HT1D than h5-HT1B binding sites were required to attain a similar, maximal (73%), 5-HT-stimulated [35S]GTP gamma S binding response: Hence, the h5-HT1B receptor in C6-glial cell membranes could be more efficiently coupled, even though some compounds more readily displayed intrinsic activity at h5-HT1D receptor sites [e.g. dihydroergotamine and (2'-methyl-4'-(5-methyl[1,2,4]oxadiazol-3-yl)biphenyl-4-carboxylic acid [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]amide (GR127935)]. Efficacy differences were apparent for most of the compounds (sumatriptan, zolmitriptan, rizatriptan, N-methyl-3-[pyrrolidin-2(R)-ylmethyl]-1H-indol-5-ylmethyl sulfonamide (CP122638), dihydroergotamine, naratriptan and GR127935) that stimulated [35S]GTP gamma S binding compared to the native agonist 5-HT. The observed maximal responses were different for the h5-HT1B and h5-HT1D receptor subtypes. Few compounds behaved as full agonists: L694247, zolmitriptan and sumatriptan did so at

  19. Vasopressin V1a, but not V1b, receptors within the PVN of lactating rats mediate maternal care and anxiety-related behaviour.

    PubMed

    Bayerl, Doris S; Hönig, Jennifer N; Bosch, Oliver J

    2016-05-15

    The brain neuropeptide arginine-vasopressin (AVP) mediates a wide range of social behaviours via its V1a (V1aR) but also its V1b receptor (V1bR). With respect to maternal behaviour, V1bR are still less investigated, whereas V1aR have been shown repeatedly to trigger maternal behaviour, depending on the brain region. Here, we aimed to study the role of both V1aR and V1bR within the hypothalamic paraventricular nucleus (PVN), a major source of AVP, in maternal care (lactation day (LD) 1), maternal motivation in the pup retrieval test (LD 3) and anxiety-related behaviour on the elevated plus maze (EPM; LD 5) by acute local infusion of receptor subtype-specific antagonists for V1aR (d(CH2)5Tyr(Me)(2)AVP) or V1bR (SSR149415). Furthermore, we compared V1bR expression in the PVN of virgin versus lactating rats (LD 4). Our results demonstrate that within the PVN neither V1bR mRNA (qPCR) nor protein (Western Blot) content differed between virgin and lactating rats. Regarding behaviour, acute antagonism of V1aR, but not of V1bR, decreased the occurrence of nursing as well as anxiety-related behaviour as reflected by higher percentage of time spent on and of entries into the open arms of the EPM. Maternal motivation was not affected by any treatment. In summary, we demonstrate subtype-specific involvement of V1 receptors within the PVN in mediating various maternal behaviours. The lack of effects after V1bR blockade reveals that AVP acts mainly via V1aR in the PVN, at least in lactating rats, to mediate maternal care and anxiety. PMID:26909846

  20. Expansion and Protection by a Virus-Specific NK Cell Subset Lacking Expression of the Inhibitory NKR-P1B Receptor during Murine Cytomegalovirus Infection.

    PubMed

    Rahim, Mir Munir A; Wight, Andrew; Mahmoud, Ahmad Bakur; Aguilar, Oscar A; Lee, Seung-Hwan; Vidal, Silvia M; Carlyle, James R; Makrigiannis, Andrew P

    2016-09-15

    NK cells play a major role in immune defense against human and murine CMV (MCMV) infection. Although the MCMV genome encodes for MHC class I-homologous decoy ligands for inhibitory NK cell receptors to evade detection, some mouse strains have evolved activating receptors, such as Ly49H, to recognize these ligands and initiate an immune response. In this study, we demonstrate that approximately half of the Ly49H-expressing (Ly49H(+)) NK cells in the spleen and liver of C57BL/6 mice also express the inhibitory NKR-P1B receptor. During MCMV infection, the NKR-P1B(-)Ly49H(+) NK cell subset proliferates to constitute the bulk of the NK cell population. This NK cell subset also confers better protection against MCMV infection compared with the NKR-P1B(+)Ly49H(+) subset. The two populations are composed of cells that differ in their surface expression of receptors such as Ly49C/I and NKG2A/C/E, as well as developmental markers, CD27 and CD11b, and the high-affinity IL-2R (CD25) following infection. Although the NKR-P1B(+) NK cells can produce effector molecules such as IFNs and granzymes, their proliferation is inhibited during infection. A similar phenotype in MCMV-infected Clr-b-deficient mice, which lack the ligand for NKR-P1B, suggests the involvement of ligands other than the host Clr-b. Most interestingly, genetic deficiency of the NKR-P1B, but not Clr-b, results in accelerated virus clearance and recovery from MCMV infection. This study is particularly significant because the mouse NKR-P1B:Clr-b receptor:ligand system represents the closest homolog of the human NKR-P1A:LLT1 system and may have a direct relevance to human CMV infection. PMID:27511735

  1. Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures.

    PubMed Central

    Hirsch-Ernst, K I; Kietzmann, T; Ziemann, C; Jungermann, K; Kahl, G F

    2000-01-01

    P-Glycoprotein transporters encoded by mdr1 (multidrug resistance) genes mediate extrusion of an array of lipophilic xenobiotics from the cell. In rat liver, mdr transcripts have been shown to be expressed mainly in hepatocytes of the periportal region. Since gradients in oxygen tension (pO(2)) may contribute towards zonated gene expression, the influence of arterial and venous pO(2) on mRNA expression of the mdr1b isoform was examined in primary rat hepatocytes cultured for up to 3 days. Maximal mdr1b mRNA levels (100%) were observed under arterial pO(2) after 72 h, whereas less than half-maximal mRNA levels (40%) were attained under venous pO(2). Accordingly, expression of mdr protein and extrusion of the mdr1 substrate rhodamine 123 were maximal under arterial pO(2) and reduced under venous pO(2). Oxygen-dependent modulation of mdr1b mRNA expression was prevented by actinomycin D, indicating transcriptional regulation. Inhibition of haem synthesis by 25 microM CoCl(2) blocked mdr1b mRNA expression under both oxygen tensions, whereas 80 microM desferrioxamine abolished modulation by O(2). Haem (10 microM) increased mdr1b mRNA levels under arterial and venous pO(2). In hepatocytes treated with 50 microM H(2)O(2), mdr1b mRNA expression was elevated by about 1.6-fold at venous pO(2) and 1.5-fold at arterial pO(2). These results support the conclusion that haem proteins are crucial for modulation of mdr1b mRNA expression by O(2) in hepatocyte cultures and that reactive oxygen species may participate in O(2)-dependent signal transduction. Furthermore, the present study suggests that oxygen might be a critical modulator for zonated secretion of mdr1 substrates into the bile. PMID:10947958

  2. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  3. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival

    PubMed Central

    Schlueter, Peter J.; Sang, Xianpeng; Duan, Cunming; Wood, Antony W.

    2007-01-01

    Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways. PMID:17362906

  4. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. PMID:27269199

  5. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    PubMed

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure. PMID:25858487

  6. Cloning and Characterization of 5′ Flanking Regulatory Sequences of AhLEC1B Gene from Arachis Hypogaea L.

    PubMed Central

    Tang, Guiying; Xu, Pingli; Liu, Wei; Liu, Zhanji; Shan, Lei

    2015-01-01

    LEAFY COTYLEDON1 (LEC1) is a B subunit of Nuclear Factor Y (NF-YB) transcription factor that mainly accumulates during embryo development. We cloned the 5′ flanking regulatory sequence of AhLEC1B gene, a homolog of Arabidopsis LEC1, and analyzed its regulatory elements using online software. To identify the crucial regulatory region, we generated a series of GUS expression frameworks driven by different length promoters with 5′ terminal and/or 3′ terminal deletion. We further characterized the GUS expression patterns in the transgenic Arabidopsis lines. Our results show that both the 65bp proximal promoter region and the 52bp 5′ UTR of AhLEC1B contain the key motifs required for the essential promoting activity. Moreover, AhLEC1B is preferentially expressed in the embryo and is co-regulated by binding of its upstream genes with both positive and negative corresponding cis-regulatory elements. PMID:26426444

  7. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    PubMed Central

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  8. MAP1B and NOS1 genes are associated with working memory in youths with attention-deficit/hyperactivity disorder.

    PubMed

    Salatino-Oliveira, Angélica; Wagner, Flávia; Akutagava-Martins, Glaucia C; Bruxel, Estela M; Genro, Júlia P; Zeni, Cristian; Kieling, Christian; Polanczyk, Guilherme V; Rohde, Luis A; Hutz, Mara H

    2016-06-01

    Diverse efforts have been done to improve the etiologic understanding of mental disorders, such as attention-deficit/hyperactivity disorder (ADHD). It becomes clear that research in mental disorders needs to move beyond descriptive syndromes. Several studies support recent theoretical models implicating working memory (WM) deficits in ADHD complex neuropsychology. The aim of this study was to examine the association between rs2199161 and rs478597 polymorphisms at MAP1B and NOS1 genes with verbal working memory in children and adolescents with ADHD. A total of 253 unrelated ADHD children/adolescents were included. The sample was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders-4th edition criteria. Digit Span from the Wechsler Intelligence Scale for Children-Third Edition was used to assess verbal WM. The raw scores from both forward and backward conditions of Digit Span were summed and converted into scaled scores according to age. The means of scaled Digit Span were compared according to genotypes by ANOVA. Significant differences in Digit Span scores between MAP1B genotype groups (rs2199161: F = 5.676; p = 0.018) and NOS1 (rs478597: F = 6.833; p = 0.009) genes were detected. For both polymorphisms, the CC genotype carriers showed a worse performance in WM task. Our findings suggest possible roles of NOS1 and MAP1B genes in WM performance in ADHD patients, replicating previous results with NOS1 gene in this cognitive domain in ADHD children. PMID:26233433

  9. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression.

    PubMed

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. PMID:25110054

  10. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  11. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    PubMed Central

    2011-01-01

    Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP) enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP) or Δ9-tetrahydrocannabinol (Δ9-THC). Results After ex vivo exposure to TCDD (a highly potent AhR ligand) for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold) and Cyp1b1 protein (2-fold) in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo) strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation. PMID:21867498

  12. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring.

    PubMed

    Champagne, Frances A; Weaver, Ian C G; Diorio, Josie; Dymov, Sergiy; Szyf, Moshe; Meaney, Michael J

    2006-06-01

    Variations in maternal behavior are associated with differences in estrogen receptor (ER)-alpha expression in the medial preoptic area (MPOA) and are transmitted across generations such that, as adults, the female offspring of mothers that exhibit increased pup licking/grooming (LG) over the first week postpartum (i.e. high LG mothers) show increased ERalpha expression in the MPOA and are themselves high LG mothers. In the present studies, cross-fostering confirmed an association between maternal care and ERalpha expression in the MPOA; the biological offspring of low LG mothers fostered at birth to high LG dams show increased ERalpha expression in the MPOA. Cross-fostering the biological offspring of high LG mothers to low LG dams produces the opposite effect. We examined whether the maternal programing of ERalpha expression is associated with differences in methylation of the relevant ERalpha promoter. Levels of cytosine methylation across the ERalpha1b promoter were significantly elevated in the adult offspring of low, compared with high, LG mothers. Differentially methylated regions included a signal transducer and activator of transcription (Stat)5 binding site and the results of chromatin immunoprecipitation assays revealed decreased Stat5b binding to the ERalpha1b promoter in the adult offspring of low, compared with high, LG mothers. Finally, we found increased Stat5b levels in the MPOA of neonates reared by high, compared with low, LG mothers. These findings suggest that maternal care is associated with cytosine methylation of the ERalpha1b promoter, providing a potential mechanism for the programming of individual differences in ERalpha expression and maternal behavior in the female offspring. PMID:16513834

  13. The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity.

    PubMed

    Vinuela-Fernandez, Ignacio; Sun, Liting; Jerina, Helen; Curtis, John; Allchorne, Andrew; Gooding, Hayley; Rosie, Roberta; Holland, Pamela; Tas, Basak; Mitchell, Rory; Fleetwood-Walker, Sue

    2014-04-01

    Effective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions. We report 5-HT(1B)R expression in many TRPM8-containing afferents and direct interaction of these proteins in a novel multi-protein signalling complex, which includes phospholipase D1 (PLD1). We provide evidence that the 5-HT(1B)R activates PLD1 to subsequently activate PIP 5-kinase and generate PIP2, an allosteric enhancer of TRPM8, achieving a several-fold increase in potency of TRPM8 activation. The enhanced activation responses of synaptoneurosomes prepared from spinal cord and cortical regions of animals with a chronic inflammatory pain state are inhibited by TRPM8 activators that were applied in vivo topically to the skin, an effect potentiated by co-administered 5-HT(1B)R agonists and attenuated by 5-HT(1B)R antagonists, while 5-HT(1B)R agents alone had no detectable effect. Corresponding results are seen when assessing reflex behaviours in inflammatory and neuropathic pain models. Control experiments with alternative receptor/TRP channel combinations reveal no such synergy. Identification of this novel receptor/effector/channel complex and its impact on nociceptive processing give new insights into possible strategies for enhanced analgesia in chronic pain. PMID:24269608

  14. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  15. Protracted withdrawal from cocaine self-administration flips the switch on 5-HT1B receptor modulation of cocaine-abuse related behaviors

    PubMed Central

    Pentkowski, Nathan S.; Cheung, Tim H.C.; Toy, William A.; Adams, Matthew D.; Neumaier, John F.; Neisewander, Janet L.

    2014-01-01

    Background The role of serotonin-1B receptors (5-HT1BRs) in modulating cocaine abuse-related behaviors has been controversial due to discrepancies between pharmacological and gene knockout approaches, and opposite influences on cocaine selfadministration versus cocaine-seeking behavior. We hypothesized that modulation of these behaviors via 5-HT1BRs in the mesolimbic pathway may vary depending on the stage of the addiction cycle. Methods To test this hypothesis, we examined the effects of increasing 5-HT1BR production by microinfusing a viral vector expressing either green fluorescent protein (GFP) and 5-HT1BR or GFP alone into the medial nucleus accumbens shell of rats either during maintenance of cocaine self-administration (i.e. active drug use) or during protracted withdrawal. Results 5-HT1BR-gene transfer during maintenance shifted the dose–response curve for cocaine self-administration upward and to the left and increased break points and cocaine intake on a progressive ratio (PR) schedule, consistent with enhanced reinforcing effects of cocaine. In contrast, following 21 days of forced abstinence 5-HT1BR-gene transfer attenuated break points and cocaine intake on a PR schedule of reinforcement, as well as cue- and cocaine-primed reinstatement of cocaineseeking behavior. Conclusions This unique pattern of effects suggests that mesolimbic 5-HT1BRs differentially modulate cocaine abuse-related behaviors, with a facilitative influence during periods of active drug use in striking contrast to an inhibitory influence during protracted withdrawal. These findings suggest that targeting 5-HT1BRs may lead to a novel treatment for cocaine dependence and that the therapeutic efficacy of these treatments may vary depending on the stage of the addiction cycle. PMID:22541946

  16. Interaction of 5-HT1B/D ligands with recombinant h 5-HT1A receptors: intrinsic activity and modulation by G-protein activation state.

    PubMed

    Pauwels, P J; Palmier, C; Dupuis, D S; Colpaert, F C

    1998-05-01

    Many 5-HT1B/D receptor ligands have affinity for 5-HT1A receptors. In the present study, the intrinsic activity of a series of 5-HT1B/D ligands was investigated at human 5-HT1A (h 5-HT1A) receptors by measuring G-protein activation in recombinant C6-glial and HeLa membranes, using agonist-stimulated [35S]GTPgammaS binding. In these two membrane preparations, the density of h 5-HT1A receptors (i.e., 246 to 320 fmol mg(-1) protein) and of their G-proteins, and the receptor: G-protein density ratio (0.08 to 0.18) appeared to be similar. It was found that: (i) the maximal [35S]GTPgammaS binding responses induced by the 5-HT1B/D receptor ligands in the HeLa preparation at 30 microM GDP were comparable to that of the native agonist 5-HT; (ii) as compared to 5-HT (1.00), similar potencies but lower maximal responses were observed in the C6-glial preparation at 0.3 microM GDP for zolmitriptan (0.89), dihydroergotamine (0.81), rizatriptan (0.71), CP122638 (0.69), naratriptan (0.60) and sumatriptan (0.53); and that (iii) maximal [35S]GTPgammaS binding responses induced by 5-HT1B/D ligands in the C6-glial preparation were either unaffected or significantly enhanced by increasing the GDP concentration from 0.3 to 30 microM and higher concentrations. These features differ from those observed with 5-HT1A receptor agonists; the latter display the same rank order of potency and efficacy in both membrane preparations, and increasing the amount of GDP with C6-glial membranes results in an attenuation of both the agonist's maximal effect and the apparent potency of partial agonists. The differential regulation of 5-HT1A and 5-HT1B/D agonist responses by GDP suggests that different G-protein subtypes are involved upon 5-HT1A receptor activation by 5-HT1A and 5-HT1B/D agonists. PMID:9650800

  17. Down-regulation of Homer1b/c attenuates group I metabotropic glutamate receptors dependent Ca²⁺ signaling through regulating endoplasmic reticulum Ca²⁺ release in PC12 cells.

    PubMed

    Lv, Miao-Miao; Cheng, Yong-Chun; Xiao, Zhi-Bin; Sun, Mei-Yan; Ren, Peng-Cheng; Sun, Xu-De

    2014-08-01

    The molecular basis for group I metabotropic glutamate receptors (mGluR1 and 5) coupling to membrane ion channels and intracellular calcium pools is not fully understood. Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. In the present study, we demonstrate that Homer1b/c is constitutively expressed in PC12 cells, whereas Homer1a, the immediate early gene product, can be up-regulated by brain derived neurotrophic factor (BDNF) and glutamate. Knockdown of Homer1b/c using specific target small interfering RNA (siRNA) did not interfere the expression of mGluR1, mGluR5 and their downstream effectors, including inositol-1,4,5-trisphosphate receptors (IP3R), phospholipase C (PLC) and Gq proteins. By analyzing Ca(2+) imaging in PC12 cells, we demonstrated that Homer1b/c is an essential regulator of the Ca(2+) release from the endoplasmic reticulum (ER) induced by the activation of group I mGluRs, IP3R and ryanodine receptors (RyR). Furthermore, the group I mGluRs activation-dependent refilling of the Ca(2+) stores in both resting and depolarizing conditions were strongly attenuated in the absence of Homer1b/c. Together, our results demonstrate that in PC12 cells Homer1b/c is a regulator of group I mGluRs related Ca(2+) homeostasis that is essential for the maintenance of normal Ca(2+) levels in the ER. PMID:25026550

  18. Dwarfing Genes Rht-B1b and Rht-D1b Are Associated with Both Type I FHB Susceptibility and Low Anther Extrusion in Two Bread Wheat Populations.

    PubMed

    He, Xinyao; Singh, Pawan K; Dreisigacker, Susanne; Singh, Sukhwinder; Lillemo, Morten; Duveiller, Etienne

    2016-01-01

    It has been well documented that dwarfing genes Rht-B1b and Rht-D1b are associated with Type I susceptibility to Fusarium head blight (FHB) in wheat; but the underlying mechanism has not been well delineated. Anther extrusion (AE) has also been related to Type I resistance for initial FHB infection, where high AE renders FHB resistance. In this study, two doubled haploid populations were used to investigate the impact of the two dwarfing genes on FHB resistance and AE, and to elucidate the role of AE in Rht-mediated FHB susceptibility. Both populations were derived by crossing the FHB susceptible cultivar 'Ocoroni F86' (Rht-B1a/Rht-D1b) with an FHB resistant variety (Rht-B1b/Rht-D1a), which was 'TRAP#1/BOW//Taigu derivative' in one population (the TO population) and 'Ivan/Soru#2' in the other (the IO population). Field experiments were carried out from 2010 to 2012 in El Batán, Mexico, where spray inoculation was adopted and FHB index, plant height (PH), and AE were evaluated, with the latter two traits showing always significantly negative correlations with FHB severity. The populations were genotyped with the DArTseq GBS platform, the two dwarfing genes and a few SSRs for QTL analysis, and the results indicated that Rht-B1b and Rht-D1b collectively accounted for 0-41% of FHB susceptibility and 13-23% of reduced AE. It was also observed that three out of the four AE QTL in the TO population and four out of the five AE QTL in the IO population were associated with FHB resistance. Collectively, our results demonstrated the effects of Rht-B1b and Rht-D1b on Type I FHB susceptibility and reducing AE, and proposed that their impacts on Type I FHB susceptibility may partly be explained by their effects on reducing AE. The implication of the relationship between the two dwarfing genes and AE for hybrid wheat breeding was also discussed. PMID:27606928

  19. Inhibitors of Growth 1b Suppresses Peroxisome Proliferator-Activated Receptor-β/δ Expression Through Downregulation of Hypoxia-Inducible Factor 1α in Osteoblast Differentiation.

    PubMed

    Qu, Bo; Hong, Zhen; Gong, Kai; Sheng, Jun; Wu, Hong-Hua; Deng, Shao-Lin; Huang, Gang; Ma, Ze-Hui; Pan, Xian-Ming

    2016-04-01

    Bone formation, a highly regulated developmental process, involves osteoblast differentiation, which is controlled by different important transcription factors. Recent evidence has suggested possible negative regulation of inhibitors of growth (ING) 1b on the osteoblast marker expression. The aim of this study is to examine the detailed mechanism by which the activity of ING1b inhibits osteoblast differentiation. In the current study, we investigated the function and mechanism by which ING1b inhibits osteoblast differentiation using C3H10T1/2 mesenchymal stem cells and MC3T3-E1 preosteoblasts. Real-time polymerase chain reaction and Western blotting showed that ING1b was decreased during osteoblast differentiation and ING1b overexpression markedly decreased alkaline phosphatase (ALP) activity, runt-related transcription factor 2 (Runx2) expression, and collagen type 1 synthesis, whereas ING1b silencing significantly upregulated ALP activity, Runx2 expression, and collagen type 1 synthesis. Further studies indicated that ING1b suppressed the expression of peroxisome proliferator-activated receptor (PPAR)-β/δ in a hypoxia-inducible factor (HIF) 1α-dependent manner, while ING1b silencing significantly increased the expression of PPAR-β/δ and HIF1α. Moreover, PPAR-β/δ or HIF1α silencing significantly inhibited ALP activity, Runx2 expression, and collagen type 1 synthesis. These results demonstrated that ING1b is an important regulator of osteoblast differentiation and suppresses PPAR-β/δ. Our study may provide additional insight into osteoblast differentiation and offer a potential new molecular target for osteoporosis. PMID:26849833

  20. A model for the transcriptional regulation of the CYP2B1/B2 gene in rat liver.

    PubMed Central

    Prabhu, L; Upadhya, P; Ram, N; Nirodi, C S; Sultana, S; Vatsala, P G; Mani, S A; Rangarajan, P N; Surolia, A; Padmanaban, G

    1995-01-01

    The phenobarbitone-responsive minimal promoter has been shown to lie between nt -179 and nt + 1 in the 5' (upstream) region of the CYP2B1/B2 gene in rat liver, on the basis of the drug responsiveness of the sequence linked to human growth hormone gene as reporter and targeted to liver as an asialoglycoprotein-DNA complex in vivo. Competition analyses of the nuclear protein-DNA complexes formed in gel shift assays with the positive (nt -69 to -98) and negative (nt -126 to -160) cis elements (PE and NE, respectively) identified within this region earlier indicate that the same protein may be binding to both the elements. The protein species purified on PE and NE affinity columns appear to be identical based on SDS/PAGE analysis, where it migrates as a protein of 26-28 kDa. Traces of a high molecular weight protein (94-100 kDa) are also seen in the preparation obtained after one round of affinity chromatography. The purified protein stimulates transcription of a minigene construct containing the 179 nt on the 5' side of the CYP2B1/B2 gene linked to the I exon in a cell-free system from liver nuclei. The purified protein can give rise to all the three complexes (I, II, and III) with the PE, just as the crude nuclear extract, under appropriate conditions. Manipulations in vitro indicate that the NE has a significantly higher affinity for the dephosphorylated form than for the phosphorylated form of the protein. The PE binds both forms. Phenobarbitone treatment of the animal leads to a significant increase in the phosphorylation of the 26- to 28-kDa and 94-kDa proteins in nuclear labeling experiments followed by isolation on a PE affinity column. We propose that the protein binding predominantly to the NE in the dephosphorylated state characterizes the basal level of transcription of the CYP2B1/B2 gene. Phenobarbitone treatment leads to phosphorylation of the protein, shifting the equilibrium toward binding to the PE. This can promote interaction with an upstream

  1. A model for the transcriptional regulation of the CYP2B1/B2 gene in rat liver.

    PubMed

    Prabhu, L; Upadhya, P; Ram, N; Nirodi, C S; Sultana, S; Vatsala, P G; Mani, S A; Rangarajan, P N; Surolia, A; Padmanaban, G

    1995-10-10

    The phenobarbitone-responsive minimal promoter has been shown to lie between nt -179 and nt + 1 in the 5' (upstream) region of the CYP2B1/B2 gene in rat liver, on the basis of the drug responsiveness of the sequence linked to human growth hormone gene as reporter and targeted to liver as an asialoglycoprotein-DNA complex in vivo. Competition analyses of the nuclear protein-DNA complexes formed in gel shift assays with the positive (nt -69 to -98) and negative (nt -126 to -160) cis elements (PE and NE, respectively) identified within this region earlier indicate that the same protein may be binding to both the elements. The protein species purified on PE and NE affinity columns appear to be identical based on SDS/PAGE analysis, where it migrates as a protein of 26-28 kDa. Traces of a high molecular weight protein (94-100 kDa) are also seen in the preparation obtained after one round of affinity chromatography. The purified protein stimulates transcription of a minigene construct containing the 179 nt on the 5' side of the CYP2B1/B2 gene linked to the I exon in a cell-free system from liver nuclei. The purified protein can give rise to all the three complexes (I, II, and III) with the PE, just as the crude nuclear extract, under appropriate conditions. Manipulations in vitro indicate that the NE has a significantly higher affinity for the dephosphorylated form than for the phosphorylated form of the protein. The PE binds both forms. Phenobarbitone treatment of the animal leads to a significant increase in the phosphorylation of the 26- to 28-kDa and 94-kDa proteins in nuclear labeling experiments followed by isolation on a PE affinity column. We propose that the protein binding predominantly to the NE in the dephosphorylated state characterizes the basal level of transcription of the CYP2B1/B2 gene. Phenobarbitone treatment leads to phosphorylation of the protein, shifting the equilibrium toward binding to the PE. This can promote interaction with an upstream

  2. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    SciTech Connect

    Siddens, Lisbeth K.; Bunde, Kristi L.; Harper, Tod A.; McQuistan, Tammie J.; Löhr, Christiane V.; Bramer, Lisa M.; Waters, Katrina M.; Tilton, Susan C.; Krueger, Sharon K.; and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  3. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  4. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    PubMed

    Gurbuz, Nilgun; Ashour, Ahmed A; Alpay, S Neslihan; Ozpolat, Bulent

    2014-01-01

    Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa) patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT) contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA), induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT), concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification, and valuable new

  5. Role of 5-HT5A and 5-HT1B/1D receptors in the antinociception produced by ergotamine and valerenic acid in the rat formalin test.

    PubMed

    Vidal-Cantú, Guadalupe C; Jiménez-Hernández, Mildred; Rocha-González, Héctor I; Villalón, Carlos M; Granados-Soto, Vinicio; Muñoz-Islas, Enriqueta

    2016-06-15

    Sumatriptan, dihydroergotamine and methysergide inhibit 1% formalin-induced nociception by activation of peripheral 5-HT1B/1D receptors. This study set out to investigate the pharmacological profile of the antinociception produced by intrathecal and intraplantar administration of ergotamine (a 5-HT1B/1D and 5-HT5A/5B receptor agonist) and valerenic acid (a partial agonist at 5-HT5A receptors). Intraplantar injection of 1% formalin in the right hind paw resulted in spontaneous flinching behavior of the injected hindpaw of female Wistar rats. Intrathecal ergotamine (15nmol) or valerenic acid (1 nmol) blocked in a dose dependent manner formalin-induced nociception. The antinociception by intrathecal ergotamine (15nmol) or valerenic acid (1nmol) was partly or completely blocked by intrathecal administration of the antagonists: (i) methiothepin (non-selective 5-HT5A/5B; 0.01-0.1nmol); (ii) SB-699551 (selective 5-HT5A; up to 10nmol); (iii) anti-5-HT5A antibody; (iv) SB-224289 (selective 5-HT1B; 0.1-1nmol); or (v) BRL-15572 (selective 5-HT1D; 0.1-1nmol). Likewise, antinociception by intraplantar ergotamine (15nmol) and valerenic acid (10nmol) was: (i) partially blocked by methiothepin (1nmol), SB-699551 (10nmol) or SB-224289 (1nmol); and (ii) abolished by BRL-15572 (1nmol). The above doses of antagonists (which did not affect per se the formalin-induced nociception) were high enough to completely block their respective receptors. Our results suggest that ergotamine and valerenic acid produce antinociception via 5-HT5A and 5-HT1B/1D receptors located at both spinal and peripheral sites. This provides new evidence for understanding the modulation of nociceptive pathways in inflammatory pain. PMID:27068146

  6. Dictyostelium ribosomal protein genes and the elongation factor 1B gene show coordinate developmental regulation which is under post-transcriptional control.

    PubMed

    Agarwal, A K; Blumberg, D D

    1999-06-01

    Starvation for amino acids initiates the developmental program in the cellular slime mold, Dictyostelium discoideum [19, 20]. One of the earliest developmental events is the decline in ribosomal protein synthesis [2, 17, 29, 30]. The ribosomal protein mRNAs are excluded from polysomes with 20 min to 1 h following the removal of nutrients, and their mRNA levels decline sharply at about 9 h into the 24-h developmental cycle [28, 31, 35, 36]. It has been generally assumed that the decline in r-protein mRNA levels during late development reflected a decline in the transcription rate [12, 32, 43]. Here we demonstrate that this is not the case. The transcription rates of three ribosomal protein genes, rpL11, rpL23 and rpS9 as well as an elongation factor 1B gene have been determined during growth and development in Dictyostelium. Throughout growth and development the transcription rate of the ribosomal protein genes remains relatively constant at 0.2%-0.5% of the rate of rRNA transcription while the elongation factor 1B gene is transcribed at 0.4%-0.6% of the rRNA rate. This low but constant transcription rate is in contrast to a spore coat protein gene Psp D, which is transcribed at 6% of the rRNA rate in late developing cells. The elongation factor 1B gene appears to be co-regulated with the ribosomal protein genes both in terms of its transcription rate and mRNA accumulation. Dictyostelium has been a popular model for understanding signal transduction and the growth to differentiation transition, thus it is of significance that the regulation of ribosome biosynthesis in Dictyostelium resembles that of higher eukaryotes in being regulated largely at the post-transcriptional level in response to starvation as opposed to yeasts where the regulation is largely transcriptional [27]. PMID:10374261

  7. 9q33.3q34.11 microdeletion: new contiguous gene syndrome encompassing STXBP1, LMX1B and ENG genes assessed using reverse phenotyping.

    PubMed

    Nambot, Sophie; Masurel, Alice; El Chehadeh, Salima; Mosca-Boidron, Anne-Laure; Thauvin-Robinet, Christel; Lefebvre, Mathilde; Marle, Nathalie; Thevenon, Julien; Perez-Martin, Stéphanie; Dulieu, Véronique; Huet, Frédéric; Plessis, Ghislaine; Andrieux, Joris; Jouk, Pierre-Simon; Billy-Lopez, Gipsy; Coutton, Charles; Morice-Picard, Fanny; Delrue, Marie-Ange; Heron, Delphine; Rooryck, Caroline; Goldenberg, Alice; Saugier-Veber, Pascale; Joly-Hélas, Géraldine; Calenda, Patricia; Kuentz, Paul; Manouvrier-Hanu, Sylvie; Dupuis-Girod, Sophie; Callier, Patrick; Faivre, Laurence

    2016-06-01

    The increasing use of array-CGH in malformation syndromes with intellectual disability could lead to the description of new contiguous gene syndrome by the analysis of the gene content of the microdeletion and reverse phenotyping. Thanks to a national and international call for collaboration by Achropuce and Decipher, we recruited four patients carrying de novo overlapping deletions of chromosome 9q33.3q34.11, including the STXBP1, the LMX1B and the ENG genes. We restrained the selection to these three genes because the effects of their haploinsufficency are well described in the literature and easily recognizable clinically. All deletions were detected by array-CGH and confirmed by FISH. The patients display common clinical features, including intellectual disability with epilepsy, owing to the presence of STXBP1 within the deletion, nail dysplasia and bone malformations, in particular patellar abnormalities attributed to LMX1B deletion, epistaxis and cutaneous-mucous telangiectasias explained by ENG haploinsufficiency and common facial dysmorphism. This systematic analysis of the genes comprised in the deletion allowed us to identify genes whose haploinsufficiency is expected to lead to disease manifestations and complications that require personalized follow-up, in particular for renal, eye, ear, vascular and neurological manifestations. PMID:26395556

  8. Mutations in the Alpha 1,2-Mannosidase Gene, MAN1B1, Cause Autosomal-Recessive Intellectual Disability

    PubMed Central

    Rafiq, Muhammad Arshad; Kuss, Andreas W.; Puettmann, Lucia; Noor, Abdul; Ramiah, Annapoorani; Ali, Ghazanfar; Hu, Hao; Kerio, Nadir Ali; Xiang, Yong; Garshasbi, Masoud; Khan, Muzammil Ahmad; Ishak, Gisele E.; Weksberg, Rosanna; Ullmann, Reinhard; Tzschach, Andreas; Kahrizi, Kimia; Mahmood, Khalid; Naeem, Farooq; Ayub, Muhammad; Moremen, Kelley W.; Vincent, John B.; Ropers, Hans Hilger; Ansar, Muhammad; Najmabadi, Hossein

    2011-01-01

    We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number NM_016219.3: c.1418G>A [p.Trp473∗]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce kcat by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations. PMID:21763484

  9. Serotonin 5-HT1B receptor-mediated calcium influx-independent presynaptic inhibition of GABA release onto rat basal forebrain cholinergic neurons.

    PubMed

    Nishijo, Takuma; Momiyama, Toshihiko

    2016-07-01

    Modulatory roles of serotonin (5-HT) in GABAergic transmission onto basal forebrain cholinergic neurons were investigated, using whole-cell patch-clamp technique in the rat brain slices. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of 5-HT (0.1-300 μm) reversibly suppressed the amplitude of evoked IPSCs in a concentration-dependent manner. Application of a 5-HT1B receptor agonist, CP93129, also suppressed the evoked IPSCs, whereas a 5-HT1A receptor agonist, 8-OH-DPAT had little effect on the evoked IPSCs amplitude. In the presence of NAS-181, a 5-HT1B receptor antagonist, 5-HT-induced suppression of evoked IPSCs was antagonised, whereas NAN-190, a 5-HT1A receptor antagonist did not antagonise the 5-HT-induced suppression of evoked IPSCs. Bath application of 5-HT reduced the frequency of spontaneous miniature IPSCs without changing their amplitude distribution. The effect of 5-HT on miniature IPSCs remained unchanged when extracellular Ca(2+) was replaced by Mg(2+) . The paired-pulse ratio was increased by CP93129. In the presence of ω-CgTX, the N-type Ca(2+) channel blocker, ω-Aga-TK, the P/Q-type Ca(2+) channel blocker, or SNX-482, the R-type Ca(2+) channel blocker, 5-HT could still inhibit the evoked IPSCs. 4-AP, a K(+) channel blocker, enhanced the evoked IPSCs, and CP93129 had no longer inhibitory effect in the presence of 4-AP. CP93129 increased the number of action potentials elicited by depolarising current pulses. These results suggest that activation of presynaptic 5-HT1B receptors on the terminals of GABAergic afferents to basal forebrain cholinergic neurons inhibits GABA release in Ca(2+) influx-independent manner by modulation of K(+) channels, leading to enhancement of neuronal activities. PMID:27177433

  10. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk

    PubMed Central

    Hou, Qingtao; Li, Sheyu; Li, Ling; Li, Yun; Sun, Xin; Tian, Haoming

    2015-01-01

    Abstract Statin-related myopathy is an important adverse effect of statin which is classically unpredictable. The evidence of association between solute carrier organic anion transporter 1B1 (SLCO1B1) gene T521C polymorphism and statin-related myopathy risk remained controversial. This study aimed to investigate this genetic association. Databases of PubMed, EMBASE, Chinese Biomedical Literature Database (CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database, and Wanfang Data were searched till June 17, 2015. Case-control studies investigating the association between SLCO1B1 gene T521C polymorphism and statin-related myopathy risk were included. The Newcastle–Ottawa Scale (NOS) was used for assessing the quality of included studies. Data were pooled by odds ratios (ORs) and their 95% confidence intervals (CIs). Nine studies with 1360 cases and 3082 controls were included. Cases of statin-related myopathy were found to be significantly associated with the variant C allele (TC + CC vs TT: OR = 2.09, 95% CI = 1.27–3.43, P = 0.003; C vs T: OR = 2.10, 95% CI = 1.43–3.09, P < 0.001), especially when statin-related myopathy was defined as an elevation of creatine kinase (CK) >10 times the upper limit of normal (ULN) or rhabdomyolysis (TC + CC vs TT: OR = 3.83, 95% CI = 1.41–10.39, P = 0.008; C vs T: OR = 2.94, 95% CI = 1.47–5.89, P = 0.002). When stratified by statin type, the association was significant in individuals receiving simvastatin (TC + CC vs TT: OR = 3.09, 95% CI = 1.64–5.85, P = 0.001; C vs T: OR = 3.00, 95% CI = 1.38–6.49, P = 0.005), but not in those receiving atorvastatin (TC + CC vs TT: OR = 1.31, 95% CI = 0.74–2.30, P = 0.35; C vs T: OR = 1.33, 95% CI = 0.57–3.12, P = 0.52). The available evidence suggests that SLCO1B1 gene T521C polymorphism is associated with an increased risk of

  11. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells

    PubMed Central

    ZHAO, XIAO-DAN; DONG, NI; MAN, HONG-TAO; FU, ZHONG-LIN; ZHANG, MEI-HONG; KOU, SHUANG; MA, SHI-LIANG

    2013-01-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway. PMID:24649031

  12. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse.

    PubMed

    Siddens, Lisbeth K; Bunde, Kristi L; Harper, Tod A; McQuistan, Tammie J; Löhr, Christiane V; Bramer, Lisa M; Waters, Katrina M; Tilton, Susan C; Krueger, Sharon K; Williams, David E; Baird, William M

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. PMID:26049101

  13. Activation of cyclic AMP-dependent protein kinase inhibits the desensitization and internalization of metabotropic glutamate receptors 1a and 1b.

    PubMed

    Mundell, Stuart J; Pula, Giordano; More, Julia C A; Jane, David E; Roberts, Peter J; Kelly, Eamonn

    2004-06-01

    In this study, we characterized the effects of activation of cyclic AMP-dependent protein kinase (PKA) on the internalization and functional coupling of the metabotropic glutamate receptor (mGluR1) splice variants mGluR1a and mGluR1b. Using an enzyme-linked immunosorbent assay technique to assess receptor internalization, we found that the glutamate-induced internalization of mGluR1a or mGluR1b transiently expressed in human embryonic kidney (HEK) 293 cells was inhibited by coactivation of endogenous beta2-adrenoceptors with isoprenaline or by direct activation of adenylyl cyclase with forskolin. The PKA inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89) blocked the effects of both isoprenaline and forskolin. The heterologous internalization of the mGluR1 splice variants triggered by carbachol was also inhibited by isoprenaline and forskolin in a PKA-sensitive fashion, whereas the constitutive (agonist-independent) internalization of mGluR1a was inhibited only modestly by PKA activation. Using inositol phosphate (IP) accumulation in cells prelabeled with [3H]inositol to assess receptor coupling, PKA activation increased basal IP accumulation in mGluR1a receptor-expressing cells and also increased glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells, but only at short times of glutamate addition. Furthermore, PKA activation completely blocked the carbachol-induced heterologous desensitization of glutamate-stimulated IP accumulation in both mGluR1a- and mGluR1b-expressing cells. In coimmunoprecipitation experiments, the ability of glutamate to increase association of GRK2 and arrestin-2 with mGluR1a and mGluR1b was inhibited by PKA activation with forskolin. Together, these results indicate that PKA activation inhibits the agonist-induced internalization and desensitization of mGluR1a and mGluR1b, probably by reducing their interaction with GRK2 and nonvisual arrestins. PMID:15155843

  14. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow.

    PubMed

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm. PMID:26296090

  15. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow

    PubMed Central

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm. PMID:26296090

  16. Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma

    PubMed Central

    Chen, Xueli; Chen, Yuhong; Fan, Bao Jian; Xia, Mingying; Wang, Li

    2016-01-01

    Purpose To identify deleterious mutations in the latent transforming growth factor-β–binding protein 2 (LTBP2) gene in sporadic patients with primary congenital glaucoma (PCG) from a Han Chinese population, which had been excluded for mutations in the CYP1B1 gene. Methods In this retrospective case–control study, 36 coding exons and adjacent exon–intron boundaries of LTBP2 were amplified with PCR and screened for mutations with Sanger sequencing in DNA samples of 214 sporadic patients with PCG. Sequence variants identified in the patients with PCG were subsequently screened in 100 unaffected control subjects and the unaffected parents of the patients with PCG who had sequence changes in LTBP2. Results Eight heterozygous single nucleotide polymorphisms (SNPs) in coding regions of LTBP2 were identified in the patients with PCG. Four of these SNPs were missense changes that resulted in the replacement of amino acids (rs2304707, rs116914994, rs45468895, and rs763035721), two of which (rs2304707 and rs116914994) were also present in the control subjects. No significant differences in the frequencies of the missense SNPs were found between the patients with PCG and the controls. The two missense SNPs, rs45468895 and rs763035721, which were each found in one patient also existed in their unaffected parents, suggesting that these two SNPs were not segregated in these families and are unlikely to be a disease-causative variant. In addition, four synonymous SNPs were detected in the patients with PCG (rs61738025, rs862031, rs199805158, and rs12586758). Conclusions The results showed that no deleterious mutations were found in coding regions of LTBP2 in patients with PCG, suggesting that it is not a causal gene for PCG in the Han Chinese population. PMID:27293371

  17. The genes encoding for D4Z4 binding proteins HMGB2, YY1, NCL, and MYOD1 are excluded as candidate genes for FSHD1B.

    PubMed

    Bastress, K L; Stajich, J M; Speer, M C; Gilbert, J R

    2005-04-01

    Facioscapulohumeral muscular dystrophy is a disease of skeletal muscle, with symptoms including both facial and shoulder girdle weakness and progression to involve the pelvic girdle and extremities in the majority of cases. For most cases of FSHD, the molecular basis of the disease can be identified as a partial deletion of the D4Z4 repeat array on the end of the long arm of chromosome 4. However, in up to 5% of FSHD families there is no linkage to 4q35. These cases are designated as FSHD1B. Proteins have been identified that bind to the D4Z4 repeats of chromosome 4q35. The genes encoding D4Z4 binding proteins YY1, HMGB2, NCL, and MYOD1 were investigated as candidate genes for FSHD1B. Coding sequences and promoter region were analyzed for HMBG2 and no sequence variations were detected. For YY1, all five exons were analyzed and a polymorphism was detected in both the unaffected and affected populations. In nucleolin (NCL), several SNPs were identified, including a SNP causing the non-synonymous change P515H; however, all polymorphisms either occurred in control samples or were previously reported. A novel polymorphism was also detected in MYOD1, but did not represent a disease-specific variation. These results suggest that HMBG2, YY1, NCL, and MYOD1 are unlikely to represent the genes responsible for FSHD in these families. PMID:15792872

  18. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression

    PubMed Central

    Xia, Zhen-Biao; Popovic, Relja; Chen, Jing; Theisler, Catherine; Stuart, Tara; Santillan, Donna A.; Erfurth, Frank; Diaz, Manuel O.; Zeleznik-Le, Nancy J.

    2005-01-01

    MLL, involved in many chromosomal translocations associated with acute myeloid and lymphoid leukemia, has >50 known partner genes with which it is able to form in-frame fusions. Characterizing important downstream target genes of MLL and of MLL fusion proteins may provide rational therapeutic strategies for the treatment of MLL-associated leukemia. We explored downstream target genes of the most prevalent MLL fusion protein, MLL-AF4. To this end, we developed inducible MLL-AF4 fusion cell lines in different backgrounds. Overexpression of MLL-AF4 does not lead to increased proliferation in either cell line, but rather, cell growth was slowed compared with similar cell lines inducibly expressing truncated MLL. We found that in the MLL-AF4-induced cell lines, the expression of the cyclin-dependent kinase inhibitor gene CDKN1B was dramatically changed at both the RNA and protein (p27kip1) levels. In contrast, the expression levels of CDKN1A (p21) and CDKN2A (p16) were unchanged. To explore whether CDKN1B might be a direct target of MLL and of MLL-AF4, we used chromatin immunoprecipitation (ChIP) assays and luciferase reporter gene assays. MLL-AF4 binds to the CDKN1B promoter in vivo and regulates CDKN1B promoter activity. Further, we confirmed CDKN1B promoter binding by ChIP in MLL-AF4 as well as in MLL-AF9 leukemia cell lines. Our results suggest that CDKN1B is a downstream target of MLL and of MLL-AF4, and that, depending on the background cell type, MLL-AF4 inhibits or activates CDKN1B expression. This finding may have implications in terms of leukemia stem cell resistance to chemotherapy in MLL-AF4 leukemias. PMID:16169901

  19. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT1B/1D) receptors

    PubMed Central

    Goadsby, Peter J; Knight, Yolande

    1997-01-01

    The observation that 5-hydroxytryptamine (5-HT) is effective in treating acute attacks of migraine when administered intravenously resulted in a research effort that led to the discovery of the 5-HT1B/1D receptor agonist sumatriptan. Clinical experience has shown sumatriptan to be an effective treatment with some limitations, such as relatively poor bioavailability, which naratriptan was developed to address. Increasing bioavailability has been achieved with greater lipophilicity and thus the potential for greater activity in the central nervous system. In this study the increased access to central sites has been exploited in an attempt to characterize the pharmacology of those central receptors with the newer tools available. Trigeminovascular activation was examined in the model of superior sagittal sinus stimulation. Cats were anaesthetized with α-chloralose (60 mg kg−1, intraperitoneal), paralyzed (gallamine 6 mg kg−1, intravenously) and ventilated. The superior sagittal sinus was accessed and isolated for electrical stimulation (250 μs pulses, 0.3 Hz, 100 V) by a mid-line circular craniotomy. The region of the dorsal surface of C2 spinal cord was exposed by a laminectomy and an electrode placed for recording evoked activity from sinus stimulation. Stimulation of the superior sagittal sinus resulted in activation of cells in the dorsal horn of C2. Cells fired with a probability of 0.69±0.1 at a latency of 9.2±0.2 ms. Intravenous (i.v.) administration of naratriptan at clinically relevant doses (30 and 100 μg kg−1), inhibited neuronal activity in trigeminal neurones of the C2 dorsal horn, reducing probability of firing without affecting latency. The effect of naratriptan could be reversed by administration of the selective 5-HT1B/1D receptor antagonist GR127935 (100 μg kg−1, i.v.). These data establish that naratriptan acts on central trigeminal neurones since sagittal sinus stimulation activates axons within the tentorial

  20. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  1. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies.

    PubMed

    Kayman-Kurekci, Gulsum; Talim, Beril; Korkusuz, Petek; Sayar, Nilufer; Sarioglu, Turkan; Oncel, Ibrahim; Sharafi, Parisa; Gundesli, Hulya; Balci-Hayta, Burcu; Purali, Nuhan; Serdaroglu-Oflazer, Piraye; Topaloglu, Haluk; Dincer, Pervin

    2014-07-01

    We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. PMID:24856141

  2. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    PubMed

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  3. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: role of 5-HT-moduline.

    PubMed

    Chennaoui, M; Grimaldi, B; Fillion, M P; Bonnin, A; Drogou, C; Fillion, G; Guezennec, C Y

    2000-06-01

    The effect of physical exercise was examined on the sensitivity of 5-HT1B receptors and on 5-HT-moduline tissue concentration in the central nervous system of rats. Rats were trained for 7 consecutive weeks to run on a treadmill. Three groups of animals were selected: group 1, sedentary rats (controls); group 2, animals running for 1 h at 18 m/min for 5 days per week (moderate training) and group 3, animals running for 2 h, at 30 m/min on a 7% grade for 5 days per week (intensive training). The animals were sacrificed 24 h after the last running. Rat brains were dissected out to obtain hippocampus and substantia nigra and kept at -80 degrees C until use. 5-HT1B receptor activity was determined by studying [35S]GTPgammaS binding in a substantia nigra membrane preparation from individual animals, after stimulation by a selective 5-HT1B receptor agonist (CP 93,129). 5-HT-moduline tissue content in hippocampus from individual animals was determined by ELISA using a polyclonal anti-5-HT-moduline antibody. In moderately trained animals (n=5), the CP 93,129-stimulated [35S]GTPgammaS binding curve was shifted to the right compared with controls (n=6), whereas the binding was totally suppressed in intensely trained animals (n=5). In parallel, 5-HT-moduline tissue concentration in the hippocampus was slightly increased in moderately trained animals (117.3 +/- 8.9%) (n=5), whereas it was significantly increased in intensely trained animals (182.6 +/- 29.5%) (n=5) compared to controls (100 +/- 6.11%) (n=6). These results show that 5-HT1B receptors are slightly desensitized in moderately trained animals and totally desensitized in intensely trained animals; moreover, they suggest that the observed desensitization is related to an increase of 5-HT-moduline tissue content; this mechanism may play a role in various pathophysiological conditions. PMID:10882034

  4. Frequencies of two functionally significant SNPs and their haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in six ethnic groups of Pakistani population

    PubMed Central

    Rajput, Tausif Ahmed; Naveed, Abdul Khaliq; Khan, Shakir; Farooqi, Zia-Ur-Rehman

    2014-01-01

    Objective(s): Organic anion transporter polypeptide 1B1 (OATP1B1) encoded by solute carrier organic transporter 1B1 (SLCO1B1) gene; a transporter involved in the uptake of drugs and endogenous compounds is present in hepatocyte sinusoidal membrane. Aim of this study was to investigate the frequencies of functionally significant SNPs (388A>G and 521T>C) and their haplotypes in 6 ethnic groups of Pakistani population through the development of rapid and efficient Tetra amplification refractory mutation system (T. ARMS) genotyping assay. Materials and Methods: Frequencies of alleles, genotype, and haplotypes of two functionally significant Single nucleotide polymorphism in 180 healthy Pakistani subjects and distributions in six ethnic groups by using a single step T. ARMS genotyping assay. Results: The allelic frequency for 388A>G SNP was 50% in total Pakistani population with Single nucleotide polymorphism distributions of 9.7%, 15.1%, 19.4%, 16.1%, 18.3%, and 21.5% in Punjabi, Sindhi, Balouchi, Pathan, Kashmiri and Hazara/Baltistan groups respectively; and for 521T>C SNP it was 23.9% in total Pakistani population with distributions of 11.1%, 8.9%, 15.6%, 11.1%, 31.1% and 22.2% in Punjabi, Sindhi, Balouchi, Pathan, Kashmiri, and Hazara/Baltistan groups. Both functionally significant SNPs occurred in four major haplotypes with a frequency of 35.5% for 388A/521T (*1A), 40.5% for 388G/521T (*1B), 14.4% for 388A/521C (*5), and 9.4% for 388G/521C (*15) with varying distributions among six ethnic groups. Conclusion: The 388A>G and 521T>C genotypes and corresponding haplotypes are present at varying frequencies in various ethnic groups of Pakistani population. Pharmacokinetic and pharmacodynamic profiling is needed to assess and characterize the effects of these haplotypes in our population. PMID:25140206

  5. Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1b on CD8+ T Cells and TNF Receptor Superfamily Member 1a on Non-CD8+ T Cells Contribute Significantly to Upper Genital Tract Pathology Following Chlamydial Infection

    PubMed Central

    Manam, Srikanth; Thomas, Joshua D.; Li, Weidang; Maladore, Allison; Schripsema, Justin H.; Ramsey, Kyle H.; Murthy, Ashlesh K.

    2015-01-01

    Background. We demonstrated previously that tumor necrosis factor α (TNF-α)–producing Chlamydia-specific CD8+ T cells cause oviduct pathological sequelae. Methods. In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8+ T cells to study chlamydial pathogenesis. Results. TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8+ T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8+ T cells but not with TNFR2 KO CD8+ T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8+ T cells restored oviduct pathology to WT levels in both KO groups. Conclusions. Collectively, these results demonstrate that TNFR2-bearing CD8+ T cells and TNFR1-bearing non-CD8+ T cells contribute significantly to oviduct pathology following genital chlamydial infection. PMID:25552370

  6. A Microdeletion of Chromosome 9q33.3 Encompasses the Entire LMX1B Gene in a Chinese Family with Nail Patella Syndrome

    PubMed Central

    Jiang, Shujuan; Zhang, Jiubin; Huang, Dan; Zhang, Yuanyuan; Liu, Xiaoliang; Wang, Yinzhao; He, Rong; Zhao, Yanyan

    2014-01-01

    Nail patella syndrome (NPS) is an autosomal dominant disorder characterized by nail malformations, patellar apoplasia, or patellar hypoplasia. Mutations within the LMX1B gene are found in 85% of families with NPS; thus, this gene has been characterized as the causative gene of NPS. In this study, we identified a heterozygous microdeletion of the entire LMX1B gene using multiplex ligation-dependent probe amplification (MLPA) in a Chinese family with NPS. The determination of the deletion breakpoints by Illumina genome-wide DNA analysis beadchip showed that the deletion was located in chromosome 9q33.3 and spanned about 0.66 Mb in size. This heterozygous deletion provides strong evidence for haploinsufficiency as the pathogenic mechanism of NPS. PMID:25380522

  7. Prophylactic effects of asiaticoside-based standardized extract of Centella asiatica (L.) Urban leaves on experimental migraine: Involvement of 5HT1A/1B receptors.

    PubMed

    Bobade, Vijeta; Bodhankar, Subhash L; Aswar, Urmila; Vishwaraman, Mohan; Thakurdesai, Prasad

    2015-04-01

    The present study aimed at evaluation of prophylactic efficacy and possible mechanisms of asiaticoside (AS) based standardized extract of Centella asiatica (L.) Urban leaves (INDCA) in animal models of migraine. The effects of oral and intranasal (i.n.) pretreatment of INDCA (acute and 7-days subacute) were evaluated against nitroglycerine (NTG, 10 mg·kg(-1), i.p.) and bradykinin (BK, 10 μg, intra-arterial) induced hyperalgesia in rats. Tail flick latencies (from 0 to 240 min) post-NTG treatment and the number of vocalizations post-BK treatment were recorded as a measure of hyperalgesia. Separate groups of rats for negative (Normal) and positive (sumatriptan, 42 mg·kg(-1), s.c.) controls were included. The interaction of INDCA with selective 5-HT1A, 5-HT1B, and 5-HT1D receptor antagonists (NAN-190, Isamoltane hemifumarate, and BRL-15572 respectively) against NTG-induced hyperalgesia was also evaluated. Acute and sub-acute pre-treatment of INDCA [10 and 30 mg·kg(-1) (oral) and 100 μg/rat (i.n.) showed significant anti-nociception activity, and reversal of the NTG-induced hyperalgesia and brain 5-HT concentration decline. Oral pre-treatment with INDCA (30 mg·kg(-1), 7 d) showed significant reduction in the number of vocalization. The anti-nociceptive effects of INDCA were blocked by 5-HT1A and 5-HT1B but not 5-HT1D receptor antagonists. In conclusion, INDCA demonstrated promising anti-nociceptive effects in animal models of migraine, probably through 5-HT1A/1B medicated action. PMID:25908624

  8. The opposite effect of a 5-HT1B receptor agonist on 5-HT synthesis, as well as its resistant counterpart, in an animal model of depression

    PubMed Central

    Skelin, Ivan; Kovačević, Tomislav; Sato, Hiroki; Diksic, Mirko

    2013-01-01

    Flinders Sensitive Line (FSL) rat is as an animal model of depression with altered parameters of the serotonergic (5-HT) system function (5-HT synthesis rates, tissue concentrations, release, receptor density and affinity), as well as an altered sensitivity of these parameters to different 5-HT based antidepressants. The effects of acute and chronic treatments with the 5-HT1B agonist, CP-94253 on 5-HT synthesis, in the FSL rats and the Flinders Resistant Line (FRL) controls were measured using α-[14C]methyl-L-tryptophan (α-MTrp) autoradiography. CP-94253 (5 mg/kg), or an adequate volume of saline, was injected i.p. as a single dose in the acute experiment or delivered via the subcutaneously implanted osmotic minipump (5 mg/kg/day for 14 days) in the chronic experiment. The acute treatment with CP-94253 significantly decreased the 5-HT synthesis in both the FRL and FSL rats, with a more widespread effect in the FRL rats. Chronic treatment with CP-94253 significantly decreased 5-HT synthesis in the FRL rats, while 5-HT synthesis in the FSL rats was significantly increased throughout the brain. In both the acute and chronic experiment, the FRL rats had higher brain 5-HT synthesis rates, relative to the FSL rats. The shift in the direction of the treatment effect from acute to chronic, using the 5-HT1B agonist, CP-94253, on 5-HT synthesis in the FSL model of depression, with an opposite effect on the control FRL rats, suggests the differential adaptation of the 5-HT system in the FSL and FRL rats to chronic stimulation of 5-HT1B receptors. PMID:22542420

  9. Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5HT1B mRNA receptor expression in male mice from early weaning.

    PubMed

    Nakamura, Kayo; Kikusui, Takefumi; Takeuchi, Yukari; Mori, Yuji

    2008-03-01

    The time of weaning has numerous effects on neurobehavioral development. Previous findings suggest that the early weaning influences development of aggressive behaviors. Behavioral and neuroendocrine responsiveness to stressors in the adulthood are also influenced by maternal care received early in life, and early-weaned male mice and rats show higher responsiveness to acute stresses than do normally weaned males. Therefore, it is conceivable that early weaning influences stress-related aggressive behaviors. We investigated the effects of early weaning on aggressive behaviors under two stress conditions: social stress (social instigation) and ecological stress (food restriction), both of which augment aggression. Male ICR mice were divided into two groups based on weaning period. Normally weaned mice (weaned PD21) showed twice the baseline level of attack bites after 5 min of social instigation, whereas early-weaned animals (weaned PD14) were not more aggressive following social instigation. However, the early-weaned mice were more aggressive after food restriction stress than were the normally weaned mice, suggesting lower threshold for aggressive behavior after food shortage. We also measured 5HT1A and 5HT1B receptor mRNA expression in the hippocampus which involved in aggression using real-time PCR. Early-weaned mice had lower 5HT1B expression levels than did normally weaned mice; no effect was found for 5HT1A expression. These results suggest that manipulation of weaning time modulates adult aggressive behavior depending on the stressors imposed and that this change may involve the 5HT1B receptor system in the hippocampus. PMID:18022705

  10. Characterisation of the 5-HT receptor binding profile of eletriptan and kinetics of [3H]eletriptan binding at human 5-HT1B and 5-HT1D receptors.

    PubMed

    Napier, C; Stewart, M; Melrose, H; Hopkins, B; McHarg, A; Wallis, R

    1999-03-01

    The affinity of eletriptan ((R)-3-(1-methyl-2-pyrrolidinylmethyl)-5-[2-(phenylsulphonyl )ethyl]-1H-indole) for a range of 5-HT receptors was compared to values obtained for other 5-HT1B/1D receptor agonists known to be effective in the treatment of migraine. Eletriptan, like sumatriptan, zolmitriptan, naratriptan and rizatriptan had highest affinity for the human 5-HT1B, 5-HT1D and putative 5-ht1f receptor. Kinetic studies comparing the binding of [3H]eletriptan and [3H]sumatriptan to the human recombinant 5-HT1B and 5-HT1D receptors expressed in HeLa cells revealed that both radioligands bound with high specificity (>90%) and reached equilibrium within 10-15 min. However, [3H]eletriptan had over 6-fold higher affinity than [3H]sumatriptan at the 5-HT1D receptor (K(D)): 0.92 and 6.58 nM, respectively) and over 3-fold higher affinity than [3H]sumatriptan at the 5-HT1B receptor (K(D): 3.14 and 11.07 nM, respectively). Association and dissociation rates for both radioligands could only be accurately determined at the 5-HT1D receptor and then only at 4 degrees C. At this temperature, [3H]eletriptan had a significantly (P<0.05) faster association rate (K(on) 0.249 min(-1) nM(-1)) than [3H]sumatriptan (K(on) 0.024 min(-1) nM(-1)) and a significantly (P<0.05) slower off-rate (K(off) 0.027 min(-1) compared to 0.037 min(-1) for [3H]sumatriptan). These data indicate that eletriptan is a potent ligand at the human 5-HT1B, 5-HT1D, and 5-ht1f receptors and are consistent with its potent vasoconstrictor activity and use as a drug for the acute treatment of migraine headache. PMID:10193663

  11. A homozygous mutation of voltage-gated sodium channel β(I) gene SCN1B in a patient with Dravet syndrome.

    PubMed

    Ogiwara, Ikuo; Nakayama, Tojo; Yamagata, Tetsushi; Ohtani, Hideyuki; Mazaki, Emi; Tsuchiya, Shigeru; Inoue, Yushi; Yamakawa, Kazuhiro

    2012-12-01

    Dravet syndrome is a severe form of epileptic encephalopathy characterized by early onset epileptic seizures followed by ataxia and cognitive decline. Approximately 80% of patients with Dravet syndrome have been associated with heterozygous mutations in SCN1A gene encoding voltage-gated sodium channel (VGSC) α(I) subunit, whereas a homozygous mutation (p.Arg125Cys) of SCN1B gene encoding VGSC β(I) subunit was recently described in a patient with Dravet syndrome. To further examine the involvement of homozygous SCN1B mutations in the etiology of Dravet syndrome, we performed mutational analyses on SCN1B in 286 patients with epileptic disorders, including 67 patients with Dravet syndrome who have been negative for SCN1A and SCN2A mutations. In the cohort, we found one additional homozygous mutation (p.Ile106Phe) in a patient with Dravet syndrome. The identified homozygous SCN1B mutations indicate that SCN1B is an etiologic candidate underlying Dravet syndrome. PMID:23148524

  12. Dephosphorylation of Tyrosine 393 in Argonaute 2 by Protein Tyrosine Phosphatase 1B Regulates Gene Silencing in Oncogenic RAS-Induced Senescence

    PubMed Central

    Yang, Ming; Haase, Astrid D.; Huang, Fang-Ke; Coulis, Gérald; Rivera, Keith D.; Dickinson, Bryan C.; Chang, Christopher J.; Pappin, Darryl J.; Neubert, Thomas A.; Hannon, Gregory J.; Boivin, Benoit; Tonks, Nicholas K.

    2014-01-01

    SUMMARY Oncogenic RAS (H-RASV12) induces premature senescence in primary cells by triggering production of reactive oxygen species (ROS), but the molecular role of ROS in senescence remains elusive. We investigated whether inhibition of protein tyrosine phosphatases by ROS contributed to H-RASV12-induced senescence. We identified protein tyrosine phosphatase 1B (PTP1B) as a major target of H-RASV12-induced ROS. Inactivation of PTP1B was necessary and sufficient to induce premature senescence in H-RASV12-expressing IMR90 fibroblasts. We identified phospho-Tyr 393 of argonaute 2 (AGO2) as a direct substrate of PTP1B. Phosphorylation of AGO2 at Tyr 393 inhibited loading with microRNAs (miRNA) and thus miRNA-mediated gene silencing, which counteracted the function of H-RASV12-induced oncogenic miRNAs. Overall, our data illustrate that premature senescence in H-RASV12-transformed primary cells is a consequence of oxidative inactivation of PTP1B and inhibition of miRNA-mediated gene silencing. PMID:25175024

  13. The involvement of intracellular Ca2+ in 5-HT1B/1D receptor-mediated contraction of the rabbit isolated renal artery

    PubMed Central

    Hill, P B; Dora, K A; Hughes, A D; Garland, C J

    2000-01-01

    5-Hydroxytryptamine1B/1D (5-HT1B/1D) receptor coupling to contraction was investigated in endothelium-denuded rabbit isolated renal arteries, by simultaneously measuring tension and intracellular [Ca2+], and tension in permeabilized smooth muscle cells.In intact arterial segments, 1 nM–10 μM 5-HT failed to induce contraction or increase the fura-2 fluorescence ratio (in the presence of 1 μM ketanserin and prazosin to block 5-HT2 and α1-adrenergic receptors, respectively). However, in vessels pre-exposed to either 20 mM K+ or 30 nM U46619, 5-HT stimulated concentration-dependent increases in both tension and intracellular [Ca2+].1 nM–10 μM U46619 induced concentration-dependent contractions. In the presence of nifedipine (0.3 and 1 μM) the maximal contraction to U46619 (10 μM) was reduced by around 70%. The residual contraction was abolished by the putative receptor operated channel inhibitor, SKF 96365 (2 μM).With 0.3 μM nifedipine present, 100 nM U46619 evoked similar contraction to 30 nM U46619 in the absence of nifedipine, but contraction to 5-HT (1 nM–10 μM) was abolished.In permeabilized arterial segments, 10 mM caffeine, 1 μM IP3 or 100 μM phenylephrine, each evoked transient contractions by releasing Ca2+ from intracellular stores, whereas 5-HT had no effect. In intact arterial segments pre-stimulated with 20 mM K+, 5-HT-evoked contractions were unaffected by 1 μM thapsigargin, which inhibits sarco- and endoplasmic reticulum calcium-ATPases.In vessels permeabilized with α-toxin and then pre-contracted with Ca2+ and GTP, 5-HT evoked further contraction, reflecting increased myofilament Ca2+-sensitivity.Contraction linked to 5-HT1B/1D receptor stimulation in the rabbit renal artery can be explained by an influx of external Ca2+ through voltage-dependent Ca2+ channels and sensitization of the contractile myofilaments to existing levels of Ca2+, with no release of Ca2+ from intracellular stores. PMID

  14. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  15. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation

    PubMed Central

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-01-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  16. Coffin-Siris Syndrome with obesity, macrocephaly, hepatomegaly and hyperinsulinism caused by a mutation in the ARID1B gene.

    PubMed

    Vals, Mari-Anne; Õiglane-Shlik, Eve; Nõukas, Margit; Shor, Riina; Peet, Aleksandr; Kals, Mart; Kivistik, Paula Ann; Metspalu, Andres; Õunap, Katrin

    2014-11-01

    Coffin-Siris Syndrome (CSS, MIM 135900) is a rare genetic disorder, and mutations in ARID1B were recently shown to cause CSS. In this study, we report a novel ARID1B mutation identified by whole-exome sequencing in a patient with clinical features of CSS. We identified a novel heterozygous frameshift mutation c.1584delG in exon 2 of ARID1B (NM_020732.3) predicting a premature stop codon p.(Leu528Phefs*65). Sanger sequencing confirmed the c.1584delG mutation as a de novo in the proband and that it was not present either in her parents, half-sister or half-brother. Clinically, the patient presented with extreme obesity, macrocephaly, hepatomegaly, hyperinsulinism and polycystic ovarian syndrome (PCOS), which have previously not been described in CSS patients. We suggest that obesity, macrocephaly, hepatomegaly and/or PCOS may be added to the list of clinical features of ARID1B mutations, but further clinical reports are required to make a definite conclusion. PMID:24569609

  17. A novel mutation of the HNF1B gene associated with hypoplastic glomerulocystic kidney disease and neonatal renal failure: a case report and mutation update.

    PubMed

    Alvelos, Maria Inês; Rodrigues, Magda; Lobo, Luísa; Medeira, Ana; Sousa, Ana Berta; Simão, Carla; Lemos, Manuel Carlos

    2015-02-01

    Hepatocyte nuclear factor 1 beta (HNF1B) plays an important role in embryonic development, namely in the kidney, pancreas, liver, genital tract, and gut. Heterozygous germline mutations of HNF1B are associated with the renal cysts and diabetes syndrome (RCAD). Affected individuals may present a variety of renal developmental abnormalities and/or maturity-onset diabetes of the young (MODY). A Portuguese 19-month-old male infant was evaluated due to hypoplastic glomerulocystic kidney disease and renal dysfunction diagnosed in the neonatal period that progressed to stage 5 chronic renal disease during the first year of life. His mother was diagnosed with a solitary hypoplastic microcystic left kidney at age 20, with stage 2 chronic renal disease established at age 35, and presented bicornuate uterus, pancreatic atrophy, and gestational diabetes. DNA sequence analysis of HNF1B revealed a novel germline frameshift insertion (c.110_111insC or c.110dupC) in both the child and the mother. A review of the literature revealed a total of 106 different HNF1B mutations, in 236 mutation-positive families, comprising gross deletions (34%), missense mutations (31%), frameshift deletions or insertions (15%), nonsense mutations (11%), and splice-site mutations (8%). The study of this family with an unusual presentation of hypoplastic glomerulocystic kidney disease with neonatal renal dysfunction identified a previously unreported mutation of the HNF1B gene, thereby expanding the spectrum of known mutations associated with renal developmental disorders. PMID:25700310

  18. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  19. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol.

    PubMed

    Bubier, Jason A; Wilcox, Troy D; Jay, Jeremy J; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  20. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol

    PubMed Central

    Bubier, Jason A.; Wilcox, Troy D.; Jay, Jeremy J.; Langston, Michael A.; Baker, Erich J.; Chesler, Elissa J.

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  1. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    PubMed

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  2. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion

    PubMed Central

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-01-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis. Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. PMID:27034328

  3. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice

    PubMed Central

    Jennings, Brett L.; Moore, Joseph A.; Pingili, Ajeeth K.; Estes, Anne M.; Fang, Xiao R.; Kanu, Alie; Gonzalez, Frank J.

    2015-01-01

    Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg−1·min−1) infused by miniosmotic pumps for 2 wk in female Cyp1b1+/+ mice did not alter water consumption, urine output, Na+ excretion, osmolality, or protein excretion. However, in Cyp1b1−/− mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na+ excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-β in Cyp1b1−/− but not Cyp1b1+/+ mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17β-estradiol metabolite 2-methoxyestradiol in Cyp1b1−/− but not Cyp1b1+/+ mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17β-estradiol. PMID:25694484

  4. Genotyping of Novel SNPs in BMPR1B, BMP15, and GDF9 Genes for Association with Prolificacy in Seven Indian Goat Breeds.

    PubMed

    Ahlawat, Sonika; Sharma, Rekha; Roy, Manoranjan; Mandakmale, Sanjay; Prakash, Ved; Tantia, M S

    2016-07-01

    Goats form the backbone of rural livelihood and financial security systems in India but their population is showing decreasing trend. Improvement of reproductive traits such as prolificacy offers a solution to stabilize the decreasing goat population and to meet the nutritional needs of growing human population. In the present study, six novel SNPs in three candidate genes for prolificacy (BMPR1B, BMP15, and GDF9) were genotyped in seven breeds of Indian goats to evaluate their association with litter size. Tetra primer ARMS-PCR and PCR-RFLP based protocols were developed for genotyping six novel SNPs, namely, T(-242)C in BMPR1B; G735A and C808G in BMP15; and C818T, A959C, and G1189A in GDF9 gene. The effect of breed was highly significant (p ≤ 0.01) on litter size but the effect of genotype was nonsignificant. The effect of parity on litter size was also significant in the prolific Black Bengal breed. The litter size differences observed between breeds are attributed to breed differences. Novel mutations observed at different loci in GDF9, BMP15, and BMPR1B genes do not contribute to the reproductive capability of the investigated breeds. Further studies with more number of breeds and animals exploring association of these novel SNPs with reproductive traits may be fruitful. PMID:27135147

  5. Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes Cdkn1a and Cdkn1b

    PubMed Central

    Lüdtke, Timo H-W.; Farin, Henner F.; Rudat, Carsten; Schuster-Gossler, Karin; Petry, Marianne; Barnett, Phil; Christoffels, Vincent M.; Kispert, Andreas

    2013-01-01

    Vertebrate organ development relies on the precise spatiotemporal orchestration of proliferation rates and differentiation patterns in adjacent tissue compartments. The underlying integration of patterning and cell cycle control during organogenesis is insufficiently understood. Here, we have investigated the function of the patterning T-box transcription factor gene Tbx2 in lung development. We show that lungs of Tbx2-deficient mice are markedly hypoplastic and exhibit reduced branching morphogenesis. Mesenchymal proliferation was severely decreased, while mesenchymal differentiation into fibrocytes was prematurely induced. In the epithelial compartment, proliferation was reduced and differentiation of alveolar epithelial cells type 1 was compromised. Prior to the observed cellular changes, canonical Wnt signaling was downregulated, and Cdkn1a (p21) and Cdkn1b (p27) (two members of the Cip/Kip family of cell cycle inhibitors) were strongly induced in the Tbx2-deficient lung mesenchyme. Deletion of both Cdkn1a and Cdkn1b rescued, to a large degree, the growth deficits of Tbx2-deficient lungs. Prolongation of Tbx2 expression into adulthood led to hyperproliferation and maintenance of mesenchymal progenitor cells, with branching morphogenesis remaining unaffected. Expression of Cdkn1a and Cdkn1b was ablated from the lung mesenchyme in this gain-of-function setting. We further show by ChIP experiments that Tbx2 directly binds to Cdkn1a and Cdkn1b loci in vivo, defining these two genes as direct targets of Tbx2 repressive activity in the lung mesenchyme. We conclude that Tbx2-mediated regulation of Cdkn1a and Cdkn1b represents a crucial node in the network integrating patterning information and cell cycle regulation that underlies growth, differentiation, and branching morphogenesis of this organ. PMID:23341776

  6. Forage preservation (grazing vs. hay) fed to ewes affects the fatty acid profile of milk and CPT1B gene expression in the sheep mammary gland

    PubMed Central

    2012-01-01

    Background Alterations in lipid metabolism occur when animals are exposed to different feeding systems. In the last few decades, the characterisation of genes involved in fat metabolism and technological advances have enabled the study of the effect of diet on the milk fatty acid (FA) profile in the mammary gland and aided in the elucidation of the mechanisms of the response to diet. The aim of this study was to evaluate the effect of different forage diets (grazing vs. hay) near the time of ewe parturition on the relationship between the fatty acid profile and gene expression in the mammary gland of the Churra Tensina sheep breed. Results In this study, the forage type affected the C18:2 cis-9 trans-11 (CLA) and long-chain saturated fatty acid (LCFA) content, with higher percentages during grazing than during hay feeding. This may suggest that these FAs act as regulatory factors for the transcriptional control of the carnitine palmitoyltransferase 1B (CPT1B) gene, which was more highly expressed in the grazing group (GRE). The most highly expressed gene in the mammary gland at the fifth week of lactation is CAAT/ enhancer- binding protein beta (CEBPB), possibly due to its role in milk fat synthesis in the mammary gland. More stable housekeeping genes in the ovine mammary gland that would be appropriate for use in gene expression studies were ribosomal protein L19 (RPL19) and glyceraldehyde- 3- phosphate dehydrogenase (GAPDH). Conclusions Small changes in diet, such as the forage preservation (grazing vs. hay), can affect the milk fatty acid profile and the expression of the CPT1B gene, which is associated with the oxidation of fatty acids. When compared to hay fed indoors, grazing fresh low mountain pastures stimulates the milk content of CLA and LCFA via mammary uptake. In this sense, LCFA in milk may be acting as a regulatory factor for transcriptional control of the CPT1B gene, which was more highly expressed in the grazing group. PMID:22776723

  7. Frequencies of single-nucleotide polymorphisms and haplotypes of the SLCO1B1 gene in selected populations of the western balkans.

    PubMed

    Grapci, A Daka; Dimovski, A J; Kapedanovska, A; Vavlukis, M; Eftimov, A; Geshkovska, N Matevska; Labachevski, N; Jakjovski, K; Gorani, D; Kedev, S; Mladenovska, K

    2015-06-01

    As a membrane influx transporter, organic anion-transporting polypeptide 1B1 (OATP1B1) regulates the cellular uptake of a number of endogenous compounds and drugs. The aim of this study was to characterize the diversity of the solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene encoding this transporter in two ethnic groups populating the Western Balkans. The distribution of SCLO1B1 alleles was determined at seven variant sites (c.388A>G, c.521T>C, c.571T>C, c.597C>T, c.1086C>T, c.1463G>C and c.*439T>G) in 266 Macedonians and 94 Albanians using the TaqMan allelic discrimination assay. No significant difference in the frequencies of the single nucleotide polymorphisms (SNPs) was observed between these populations. The frequency of the c.521T>C SNP was the lowest (<13.7 and 12.2%, respectively), while the frequencies of all other SNP alleles were above 40.0%. Variant alleles of c.1463G>C and c.1086 C>T SNPs were not identified in either ethnic group. The haplotype analysis revealed 20 and 21 different haplotypes in the Macedonian and Albanian population, respectively. The most common haplotype in both ethnic groups, *1J/*1K/*1L, had a frequency of 39.0% and 26.6%, respectively. In both populations, the variant alleles of the functionally significant c.521T>C and c.388A>G SNPs existed in one major haplotype (*15/*16/*17), with a frequency of 8.6 and 2.4% in the Macedonian and Albanian subjects, respectively. In conclusion, sequence variations of the SLCO1B1 gene in the studied populations occur at high frequencies, which are similar to that of the Caucasian population. Further studies are needed to evaluate the clinical significance of these SNPs and/ or the major SLCO1B1 haplotypes they form for a large number of substrates and for susceptibility to certain diseases. PMID:26929901

  8. Frequencies of single-nucleotide polymorphisms and haplotypes of the SLCO1B1 gene in selected populations of the western balkans

    PubMed Central

    Grapci, A Daka; Dimovski, AJ; Kapedanovska, A; Vavlukis, M; Eftimov, A; Geshkovska, N Matevska; Labachevski, N; Jakjovski, K; Gorani, D; Kedev, S; Mladenovska, K

    2015-01-01

    As a membrane influx transporter, organic anion-transporting polypeptide 1B1 (OATP1B1) regulates the cellular uptake of a number of endogenous compounds and drugs. The aim of this study was to characterize the diversity of the solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene encoding this transporter in two ethnic groups populating the Western Balkans. The distribution of SCLO1B1 alleles was determined at seven variant sites (c.388A>G, c.521T>C, c.571T>C, c.597C>T, c.1086C>T, c.1463G>C and c.*439T>G) in 266 Macedonians and 94 Albanians using the TaqMan allelic discrimination assay. No significant difference in the frequencies of the single nucleotide polymorphisms (SNPs) was observed between these populations. The frequency of the c.521T>C SNP was the lowest (<13.7 and 12.2%, respectively), while the frequencies of all other SNP alleles were above 40.0%. Variant alleles of c.1463G>C and c.1086 C>T SNPs were not identified in either ethnic group. The haplotype analysis revealed 20 and 21 different haplotypes in the Macedonian and Albanian population, respectively. The most common haplotype in both ethnic groups, *1J/*1K/*1L, had a frequency of 39.0% and 26.6%, respectively. In both populations, the variant alleles of the functionally significant c.521T>C and c.388A>G SNPs existed in one major haplotype (*15/*16/*17), with a frequency of 8.6 and 2.4% in the Macedonian and Albanian subjects, respectively. In conclusion, sequence variations of the SLCO1B1 gene in the studied populations occur at high frequencies, which are similar to that of the Caucasian population. Further studies are needed to evaluate the clinical significance of these SNPs and/ or the major SLCO1B1 haplotypes they form for a large number of substrates and for susceptibility to certain diseases. PMID:26929901

  9. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity. PMID:25559846

  10. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. PMID:27262111

  11. Linkage of Usher syndrome type I gene (USH1B) to the long arm of chromosome 11

    SciTech Connect

    Kimberling, W.; Kenyon, J.B.; Grunkemeyers, J.A. ); Moeller, C.G. ); Davenport, S. ); Priluck, I.A. ); Beighton, H.; Greenberg, J. ); Reardon, W. ); Weston, M.D.

    1992-12-01

    Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization established the existence of a new and independent locus for Usher syndrome. 31 refs., 2 figs., 3 tabs.

  12. Transcriptional control of spliced and unspliced human T-cell leukemia virus type 1 bZIP factor (HBZ) gene.

    PubMed

    Yoshida, Mika; Satou, Yorifumi; Yasunaga, Jun-Ichirou; Fujisawa, Jun-Ichi; Matsuoka, Masao

    2008-10-01

    The human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ) gene is encoded by the minus strand of the HTLV-1 provirus and transcribed from the 3' long terminal repeat (LTR). HBZ gene expression not only inhibits the Tax-mediated activation of viral gene transcription through the 5' LTR but also promotes the proliferation of infected cells. However, the HBZ promoter region and the transcriptional regulation of the gene have not been studied. In this study, we characterize the promoters of the spliced version of the HBZ gene (sHBZ) and the unspliced version of the HBZ gene (usHBZ) by luciferase assay. Both promoters were TATA-less and contained initiators and downstream promoter elements. Detailed studies of the promoter for the sHBZ gene showed that Sp1 sites were critical for its activity. The activities of the sHBZ and usHBZ gene promoters were upregulated by Tax through Tax-responsible elements in the 3' LTR. We compared the functions of the proteins derived from the sHBZ and usHBZ transcripts. sHBZ showed a stronger suppression of Tax-mediated transcriptional activation through the 5' LTR than did usHBZ; the level of suppression correlated with the level of protein produced. The expression of sHBZ had a growth-promoting function in a T-cell line, while usHBZ expression did not. This study demonstrates that Sp1 is critical for sHBZ transcription, which accounts for the constitutive expression of the sHBZ gene. Functional differences between sHBZ and usHBZ suggest that the sHBZ gene plays a significant role in the proliferation of infected cells. PMID:18653454

  13. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  14. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b

    PubMed Central

    Liang, Jie-Liang; JiangYang, Jing-Hong

    2015-01-01

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the −10 and −35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria. PMID:26567302

  15. Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis.

    PubMed Central

    Babiss, L E; Ginsberg, H S

    1984-01-01

    To determine the role adenovirus 5 early region 1b-encoded 21- and 55-kilodalton proteins play in adenovirus productive infection, mutants have been isolated which were engineered to contain small deletions or insertions at 5.8, 7.9, or 9.6 map units. By using an overlap recombination procedure involving H5dl314 (delta 3.7 to 4.6 map units) DNA cleaved at 2.6 map units with ClaI and the adenovirus 5 XhoI-C (0 to 15.5 map units) fragment containing the desired mutation, viral mutants were isolated by their ability to produce plaques on KB cell line 18, which constitutively expresses only viral early region 1b functions (Babiss et al., J. Virol. 46:454-465, 1983). DNA sequence analysis of the viral mutants isolated (H5dl118, H5dl110, H5in127, and H5dl163) indicates that all of the viruses contain mutations which affect the 55-kilodalton protein, whereas dl118 should also produce a truncated form of the 21-kilodalton protein. When analyzed for their replication characteristics in HeLa cells, all of the mutant viruses exhibited extended eclipse periods and effected yields that were reduced to 10% or less of that produced by H5sub309 (parent virus of the mutants which is phenotypically identical to wild-type adenovirus 5). When compared with characteristics of sub309, the early and late transcription and DNA replication of the mutants were similar, but synthesis of late polypeptides and late cytoplasmic mRNAs was greatly reduced. Quantitation of mutant virus-specific late mRNAs associated with polysomes revealed a threefold reduction when compared with that of sub309. Analysis of infected cell extracts further revealed that these mutants were incapable of efficiently shutting off host cell protein synthesis, suggesting that the 55-kilodalton protein plays a role in this process. These data suggest that early region 1b products may function by interacting with additional viral or host cell macromolecules to modulate host cell shutoff or that some late viral mRNA or

  16. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  17. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development

    PubMed Central

    Neisewander, Janet L.; Cheung, Timothy H. C.; Pentkowski, Nathan S.

    2014-01-01

    Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during abstinence versus relapse, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists likely have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine’s reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of

  18. Confirmation of fenfluramine effect on 5-HT1B receptor binding of [11C]AZ10419369 using an equilibrium approach

    PubMed Central

    Finnema, Sjoerd J; Varrone, Andrea; Hwang, Tzung-Jeng; Halldin, Christer; Farde, Lars

    2012-01-01

    Assessment of serotonin release in the living brain with positron emission tomography (PET) may have been hampered by the lack of suitable radioligands. We previously reported that fenfluramine caused a dose-dependent reduction in specific binding in monkeys using a classical displacement paradigm with bolus administration of [11C]AZ10419369. The aim of this study was to confirm our previous findings using an equilibrium approach in monkey. A total of 24 PET measurements were conducted using a bolus infusion protocol of [11C]AZ10419369 in three cynomolgus monkeys. Initial PET measurements were performed to assess suitable Kbol values. The fenfluramine effect on [11C]AZ10419369 binding was evaluated in a displacement and pretreatment paradigm. The effect of fenfluramine on [11C]AZ10419369 binding potential (BPND) was dose-dependent in the displacement paradigm and confirmed in the pretreatment paradigm. After pretreatment administration of fenfluramine (5.0 mg/kg), the mean BPND of the occipital cortex decreased by 39%, from 1.38±0.04 to 0.84±0.09. This study confirms that the new 5-HT1B receptor radioligand [11C]AZ10419369 is sensitive to fenfluramine-induced changes in endogenous serotonin levels in vivo. The more advanced methodology is suitable for exploring the sensitivity limit to serotonin release as measured using [11C]AZ10419369 and PET. PMID:22167236

  19. The 5-HT1D/1B receptor agonist sumatriptan enhances fear of simulated speaking and reduces plasma levels of prolactin.

    PubMed

    de Rezende, Marcos Gonçalves; Garcia-Leal, Cybele; Graeff, Frederico Guilherme; Del-Ben, Cristina Marta

    2013-12-01

    This study measured the effects of the preferential 5-HT1D/1B receptor agonist sumatriptan in healthy volunteers who performed the Simulated Public Speaking Test (SPST), which recruits the neural network involved in panic disorder and social anxiety disorder. In a double-blind, randomised experiment, 36 males received placebo (12), 50 mg (12) or 100 mg (12) of sumatriptan 2 h before the SPST. Subjective, physiological and hormonal measures were taken before, during and after the test. The dose of 100 mg of sumatriptan increased speech-induced fear more than either a 50mg dose of the drug or placebo. The largest dose of sumatriptan also enhanced vigilance more than placebo, without any change in blood pressure, heart rate or electrical skin conductance. Sumatriptan decreased plasma levels of prolactin. A significant but moderate increase in plasma cortisol after SPST occurred, independent of treatment. Because sumatriptan decreases 5-HT release into the extracellular space, the potentiation of SPST-induced fear caused by the drug supports the hypothesis that 5-HT attenuates this emotional state. As acute administration of antidepressants has also been shown to enhance speaking fear and increase plasma prolactin, in contrast to sumatriptan, the 5-HT regulation of stress-hormone release is likely to be different from that of emotion. PMID:23325368

  20. SCN1A and SCN1B gene polymorphisms and their association with plasma concentrations of carbamazepine and carbamazepine 10, 11 epoxide in Iranian epileptic patients

    PubMed Central

    Namazi, Soha; Azarpira, Negar; Javidnia, Katayoon; Emami, Mehrdad; Rahjoo, Rahimeh; Berahmand, Razieh; Borhani-Haghighi, Afshin

    2015-01-01

    Objective (s): From a genetic point of view, epilepsy is a polygenic multifactorial syndrome. The SCN1A and B genes belong to a family of genes that provide instructions for making sodium channels. Understanding the relevance of SCN1A and SCN1B gene polymorphisms to plasma concentration of carbamazepine (CBZ) and ’its active metabolite carbamazepine 10, 11 epoxide (CBZE), may shed more light on inter-individual variations in response to CBZ. Materials and Methods: In this cross-sectional study, genotype distribution and allele frequency of six non-synonymous exonic single nucleotide polymorphisms (SNPs) of the SCN1A and B genes were selected and determined using PCR-RFLP in 70 epileptic patients treated with CBZ for at least 6 months. The patients had no hepatic or renal diseases and received no medications known to have a major interaction with CBZ. Serum concentrations of CBZ and CBZE were measured using High-Performance Liquid Chromatography (HPLC). Results: The AA, AG and GG alleles of SCN1A were found in 23, 37 and 10 patients, respectively. There were no statistically significant differences in the mean (± standard deviation) of plasma concentrations of CBZ (P=0.8) and CBZE (P=0.1) among these 3 groups. Likewise, there was no statistically significant relationship between SCN1A polymorphisms and CBZ concentration/dose ratio (P=0.7). A significant association was found between CBZ plasma level and CBZ concentration/dose with CBZ daily dose. All patients had the same genotype of SCN1B gene(CC). and no statistical analysis was performed. Conclusion: No significant association between SCN1A gene polymorphisms and plasma levels of CBZ and CBZE were found[u1]. PMID:26877851

  1. Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes.

    PubMed

    Tan, Jeff S; Mohandas, Narla; Conboy, John G

    2005-12-01

    Recent studies have shown that transcription and alternative splicing can be mechanistically coupled. In the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes, we showed previously that promoter/alternative first exon choice is coupled to downstream splicing events in exon 2. Here we demonstrate that this coupling is conserved among several vertebrate classes from fish to mammals. The EPB41 and EPB41L3 genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5'-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a fragment designated as exon 2'. Conversely, alternative first exons 1B and 1C always splice to the stronger first acceptor site, retaining exon 2'. These correlations are independent of cell type or species of origin. Since exon 2' contains a translation initiation site, splice variants generate protein isoforms with distinct N-termini. We propose that these genes represent a physiologically relevant model system for mechanistic analysis of transcription-coupled alternative splicing. PMID:16242908

  2. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population

    PubMed Central

    Vasilyev, Filipp Filippovich; Danilova, Diana Aleksandrovna; Kaimonov, Vladimir Sergeevich; Chertovskih, Yana Valerievna; Maksimova, Nadezda Romanovna

    2016-01-01

    Allele frequencies of single nucleotide polymorphisms (SNPs) are variable among different populations; therefore the study of SNPs in ethnic groups is important for establishing the clinical significance of the screening of these polymorphisms. The main goal of the research is to study the polymorphisms of CYP2C9, CYP2C19, VKORC1, and SLCO1B1 in Yakuts. Genomic DNA from 229 Yakut subjects were analyzed by real-time polymerase chain reaction (PCR) (SLCO1B1 +521T > C, VKORC1 -1639G>A, CYP2C19 +681G>A, +636G>A, CYP2C9 +430С>T, +1075A>C). Genotype frequencies of polymorphisms in the population of the Yakuts were more characteristic of the Asian population. The results have been included in the software application “Lekgen” that we developed for the interpretation of pharmacogenetic testing. The data of our study obtained on frequency carriers of polymorphisms of genes SLCO1B1, CYP2C19, CYP2C9, VKORC1 among the Yakuts may be useful in developing recommendations for a personalized therapy.

  3. Androgen receptor gene polymorphism in zebra species

    PubMed Central

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-01-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  4. New Zealand Ginger mouse: novel model that associates the tyrp1b pigmentation gene locus with regulation of lean body mass.

    PubMed

    Duchesnes, Cécile E; Naggert, Jürgen K; Tatnell, Michele A; Beckman, Nikki; Marnane, Rebecca N; Rodrigues, Jessica A; Halim, Angela; Pontré, Beau; Stewart, Alistair W; Wolff, George L; Elliott, Robert; Mountjoy, Kathleen G

    2009-05-13

    The study of spontaneous mutations in mice over the last century has been fundamental to our understanding of normal physiology and mechanisms of disease. Here we studied the phenotype and genotype of a novel mouse model we have called the New Zealand Ginger (NZG/Kgm) mouse. NZG/Kgm mice are very large, rapidly growing, ginger-colored mice with pink eyes. Breeding NZG/Kgm mice with CAST/Ei or C57BL/6J mice showed that the ginger coat colour is a recessive trait, while the excessive body weight and large body size exhibit a semidominant pattern of inheritance. Backcrossing F1 (NZG/Kgm x CAST/Ei) to NZG/Kgm mice to produce the N2 generation determined that the NZG/Kgm mouse has two recessive pigmentation variant genes (oca2(p) and tyrp-1(b)) and that the tyrp-1(b) gene locus associates with large body size. Three coat colors appeared in the N2 generation; ginger, brown, and dark. Strikingly, N2 male coat colour associated with body weight; the brown-colored mice weighed the most followed by ginger and then dark. The male brown coat-colored offspring reached adult body weights indistinguishable from NZG/Kgm males. The large NZG/Kgm mouse body size is a result of excessive lean body mass since these mice are not obese or diabetic. NZG/Kgm mice exhibit an unusual pattern of fat distribution; compared with other mouse strains they have disproportionately higher amounts of subcutaneous and gonadal fat. These mice are susceptible to high-fat diet-induced obesity but are resistant to high-fat diet-induced diabetes. We propose NZG/Kgm mice as a novel model to delineate gene(s) that regulate 1) growth and metabolism, 2) resistance to Type 2 diabetes, and 3) preferential fat deposition in the subcutaneous and gonadal areas. PMID:19293329

  5. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: Implications for medications development.

    PubMed

    Neisewander, Janet L; Cheung, Timothy H C; Pentkowski, Nathan S

    2014-01-01

    Addiction to psychostimulants, including cocaine and amphetamine, is associated with dysregulation of dopamine and serotonin (5-HT) neurotransmitter systems. Neuroadaptations in these systems vary depending on the stage of the drug taking-abstinence-relapse cycle. Consequently, the effects of potential treatments that target these systems may vary depending on whether they are given during abstinence or relapse. In this review, we discuss evidence that dopamine D3 receptors (D3Rs) and 5-HT1B receptors (5-HT1BRs) are dysregulated in response to both chronic psychostimulant use and subsequent abstinence. We then review findings from preclinical self-administration models which support targeting D3Rs and 5-HT1BRs as potential medications for psychostimulant dependence. Potential side effects of the treatments are discussed and attention is given to studies reporting positive treatment outcomes that depend on: 1) whether testing occurs during self-administration versus abstinence, 2) whether escalation of drug self-administration has occurred, 3) whether the treatments are given repeatedly, and 4) whether social factors influence treatment outcomes. We conclude that D3/D2 agonists may decrease psychostimulant intake; however, side effects of D3/D2R full agonists may limit their therapeutic potential, whereas D3/D2R partial agonists have fewer undesirable side effects. D3-selective antagonists may not reduce psychostimulant intake during relapse, but nonetheless, may decrease motivation for seeking psychostimulants with relatively few side-effects. 5-HT1BR agonists provide a striking example of treatment outcomes that are dependent on the stage of the addiction cycle. Specifically, these agonists initially increase cocaine's reinforcing effects during maintenance of self-administration, but after a period of abstinence they reduce psychostimulant seeking and the resumption of self-administration. In conclusion, we suggest that factors contributing to dysregulation of

  6. Effects of 5-HT1B/1D receptor agonist rizatriptan on cerebral blood flow and blood volume in normal circulation.

    PubMed

    Okazawa, Hidehiko; Tsuchida, Tatsuro; Pagani, Marco; Mori, Tetsuya; Kobayashi, Masato; Tanaka, Fumiko; Yonekura, Yoshiharu

    2006-01-01

    To investigate the vasoconstrictor effect of 5-hydroxytryptamine (5-HT1B/1D) receptor agonists for migraine treatment, changes in cerebral blood flow (CBF) and blood volume induced by rizatriptan were assessed by positron emission tomography (PET). Eleven healthy volunteers underwent PET studies before and after rizatriptan administration. Dynamic PET data were acquired after bolus injection of H2(15)O to analyze CBF and arterial-to-capillary blood volume (V0) images using the three-weighted integral method. After a baseline scan, three further acquisitions were performed at 40 to 50, 60 and 70 to 80 mins after drug administration. Global and regional differences in CBF and V0 between conditions were compared using absolute values in the whole brain and cortical regions, as well as statistical parametric mapping (SPM) analysis. The global and regional values for CBF and V0 decreased significantly after rizatriptan administration compared with the baseline condition. However, both values recovered to baseline within 80 mins after treatment. The maximal reduction in global CBF and V0 was approximately 13% of baseline value. The greatest decrease in CBF was observed approximately 60 mins after drug administration, whereas the maximal reduction in V0 was observed approximately 5 mins earlier. Statistical parametric mapping did not highlight any regional differences between conditions. Thus, in brain circulation, rizatriptan caused significant CBF and V0 decreases, which are consistent with the vasoconstrictor effect of triptans on the large cerebral arteries. The gradual recovery in the late phase from the maximal CBF and V0 decrease suggests that rizatriptan does not affect the cerebral autoregulatory response in small arteries induced by CBF reduction. PMID:15944648

  7. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    PubMed

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction. PMID:23007952

  8. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    SciTech Connect

    Rousseau-Merck, M.F.; Derre, J.; Berger, R.

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene has been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.

  9. The emergence of the vasopressin and oxytocin hormone receptor gene family lineage: Clues from the characterization of vasotocin receptors in the sea lamprey (Petromyzon marinus).

    PubMed

    Mayasich, Sally A; Clarke, Benjamin L

    2016-01-15

    The sea lamprey (Petromyzon marinus) is a jawless vertebrate at an evolutionary nexus between invertebrates and jawed vertebrates. Lampreys are known to possess the arginine vasotocin (AVT) hormone utilized by all non-mammalian vertebrates. We postulated that the lamprey would possess AVT receptor orthologs of predecessors to the arginine vasopressin (AVP)/oxytocin (OXT) family of G protein-coupled receptors found in mammals, providing insights into the origins of the mammalian V1A, V1B, V2 and OXT receptors. Among the earliest animals to diverge from the vertebrate lineage in which these receptors are characterized is the jawed, cartilaginous elephant shark, which has genes orthologous to all four mammalian receptor types. Therefore, our work was aimed at helping resolve the critical gap concerning the outcomes of hypothesized large-scale (whole-genome) duplication events. We sequenced one partial and four full-length putative lamprey AVT receptor genes and determined their mRNA expression patterns in 15 distinct tissues. Phylogenetically, three of the full-coding genes possess structural characteristics of the V1 clade containing the V1A, V1B and OXT receptors. Another full-length coding gene and the partial sequence are part of the V2 clade and appear to be most closely related to the newly established V2B and V2C receptor subtypes. Our synteny analysis also utilizing the Japanese lamprey (Lethenteron japonicum) genome supports the recent proposal that jawless and jawed vertebrates shared one-round (1R) of WGD as the most likely scenario. PMID:26764211

  10. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance. PMID:23962444

  11. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism.

    PubMed

    Matsunaga, Toshiyuki; Suzuki, Ayaka; Kezuka, Chihiro; Okumura, Naoko; Iguchi, Kazuhiro; Inoue, Ikuo; Soda, Midori; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira; Ikari, Akira

    2016-08-25

    Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of

  12. A SNP in the 5′ flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar)

    PubMed Central

    2013-01-01

    Background Myostatin (MSTN) belongs to the transforming growth factor-β superfamily and is a potent negative regulator of skeletal muscle development and growth in mammals. Most teleost fish possess two MSTN paralogues. However, as a consequence of a recent whole genome-duplication event, salmonids have four: MSTN-1 (−1a and -1b) and MSTN-2 (−2a and -2b). Evidence suggests that teleost MSTN plays a role in the regulation of muscle growth. In the current study, the MSTN-1b gene was re-sequenced and screened for SNP markers in a commercial population of Atlantic salmon. After genotyping 4,800 progeny for the discovered SNPs, we investigated their association with eight harvest traits - four body-weight traits, two ratios of weight traits, flesh colour and fat percentage - using a mixed model association analysis. Results Three novel SNPs were discovered in the MSTN-1b gene of Atlantic salmon. One of the SNPs, located within the 5′ flanking region (g.1086C > T), had a significant association with harvest traits (p < 0.05), specifically for: Harvest Weight (kg), Gutted Weight (kg), Deheaded Weight (kg) and Fillet Weight (kg). The haplotype-based association analysis was consistent with this result because the two haplotypes that showed a significant association with body-weight traits, hap4 and hap5 (p < 0.05 and p < 0.01, respectively), differ by a single substitution at the g.1086C > T locus. The alleles at g.1086C > T act in an additive manner and explain a small percentage of the genetic variation of these phenotypes. Conclusions The association analysis revealed that g.1086C > T had a significant association with all body-weight traits under study. Although the SNP explains a small percentage of the variance, our results indicate that a variation in the 5′ flanking region of the myostatin gene is associated with the genetic regulation of growth in Atlantic salmon. PMID:24283985

  13. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  14. Neuropsychological assessment, quantitative MRI and ApoE gene polymorphisms in a series of MS patients treated with IFN beta-1b.

    PubMed

    Lanzillo, Roberta; Prinster, Anna; Scarano, Valentina; Liuzzi, Raffaele; Coppola, Giovanni; Florio, Ciro; Salvatore, Elena; Schiavone, Vittorio; Brunetti, Arturo; Muto, Mario; Orefice, Giuseppe; Alfano, Bruno; Bonavita, Vincenzo; Brescia Morra, Vincenzo

    2006-06-15

    Few trials issued the effect of disease-modifying medications on cognitive functions in multiple sclerosis. We designed an open-label longitudinal study to evaluate, during 2 years, cognitive performance and its relationship with MRI data and ApoE polymorphism findings in a group of relapsing-remitting (RR) multiple sclerosis (MS) Interferon (IFN) beta-1b-treated patients (median age 30 years, median disease duration 3.4 years). Complete neuropsychological battery was grouped into attention, information learning/memory, language and visuo-spatial functions. Fifty-two patients (33 females) were enrolled in the study. Six patients (11.5%) dropped out, mainly due to side effects. At baseline neuropsychological evaluation, we found 54% normal, 42% mildly impaired and 4% moderately impaired patients. At 2 years follow-up, cognitive status was stable in 65%, improved in 33% and worsened in 2% of patients. No significant relations were found between global cognitive outcome vs. EDSS change, clinical disease activity, MRI data or ApoE gene polymorphisms over the 2 years follow-up. EDSS and MRI fractional volumes were found to correlate with the performance at single tests. Twenty-one patients (45.6%) showed active MRI scans throughout the study, without any worsening at the corresponding neuropsychological examination. This ongoing trial suggests a possible beneficial effect of IFN beta-1b treatment on cognitive functions in RRMS patients. Extension of follow-up and further data analyses are needed to confirm and clarify these findings. PMID:16626758

  15. NEW EVIDENCE FOR MORPHOLOGICAL AND GENETIC VARIATION IN THE COSMOPOLITAN COCCOLITHOPHORE EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) FROM THE COX1b-ATP4 GENES(1).

    PubMed

    Hagino, Kyoko; Bendif, El Mahdi; Young, Jeremy R; Kogame, Kazuhiro; Probert, Ian; Takano, Yoshihito; Horiguchi, Takeo; de Vargas, Colomban; Okada, Hisatake

    2011-10-01

    Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler is a cosmopolitan coccolithophore occurring from tropical to subpolar waters and exhibiting variations in morphology of coccoliths possibly related to environmental conditions. We examined morphological characters of coccoliths and partial mitochondrial sequences of the cytochrome oxidase 1b (cox1b) through adenosine triphosphate synthase 4 (atp4) genes of 39 clonal E. huxleyi strains from the Atlantic and Pacific Oceans, Mediterranean Sea, and their adjacent seas. Based on the morphological study of culture strains by SEM, Type O, a new morphotype characterized by coccoliths with an open central area, was separated from existing morphotypes A, B, B/C, C, R, and var. corona, characterized by coccoliths with central area elements. Molecular phylogenetic studies revealed that E. huxleyi consists of at least two mitochondrial sequence groups with different temperature preferences/tolerances: a cool-water group occurring in subarctic North Atlantic and Pacific and a warm-water group occurring in the subtropical Atlantic and Pacific and in the Mediterranean Sea. PMID:27020197

  16. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain. PMID:10411472

  17. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  18. c.194 A>C (Q65P) mutation in the LMX1B gene in patients with nail-patella syndrome associated with glaucoma

    PubMed Central

    Romero, Pablo; Sanhueza, Felipe; Lopez, Pamela; Reyes, Loreto

    2011-01-01

    Purpose To report the clinical, ophthalmic, extraophthalmic, and genetic characteristics of nail-patella syndrome (NPS) in a Chilean family and to investigate the expressivity of open angle glaucoma (OAG) and ocular hypertension (OHT) in the family members. Methods Five family members affected with NPS and two unaffected members underwent a complete ophthalmologic examination, including computerized visual field, optical coherence tomography (OCT) of the optic disc and ultrasound pachymetry. Renal function was assessed by urinalysis and blood tests. Orthopedic evaluations were also performed, including radiological studies of the wrist, elbow and hip joints. Genomic DNA was extracted from peripheral leukocytes of the five affected and two unaffected family members. Exons 2–6 of the LIM homeobox transcription factor 1-beta (LMX1B) gene were screened for mutations by DNA sequencing of the proband. We also screened for mutations in exon 2 by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the other participants and 91 blood donors. Results Five living family members from three generations were positively diagnosed with NPS, three of them with varying degrees of OAG and one with OHT. Retinal nerve fiber layer (RNFL) thickness measured by spectral domain OCT was below normal values in three individuals. All subjects evaluated had normal nephrologic function. Orthopedic, clinical, and radiological alterations were compatible with NPS. Screening for mutations in exons 2- 6 of LMX1B showed a heterozygous missense mutation c.194 A>C changing glutamine to proline within exon 2 in codon 65 (Q65P) of the coding sequence. This mutation was present in all NPS subjects and absent in the unaffected family members and in 91 Chilean blood donors. Conclusions This is the first report of c.194 A>C mutation in LMX1B in a Chilean family with NPS and the second worldwide. The phenotype associated with this mutation is variable within the family

  19. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  20. Identification of chemosensory receptor genes from vertebrate genomes.

    PubMed

    Niimura, Yoshihito

    2013-01-01

    Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species' living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences. PMID:24014356

  1. Evolutionary diversification of the BetaM interactome acquired through co-option of the ATP1B4 gene in placental mammals

    PubMed Central

    Korneenko, Tatyana V.; Pestov, Nikolay B.; Ahmad, Nisar; Okkelman, Irina A.; Dmitriev, Ruslan I.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2016-01-01

    ATP1B4 genes represent a rare instance of orthologous vertebrate gene co-option that radically changed properties of the encoded BetaM proteins, which function as Na,K-ATPase subunits in lower vertebrates and birds. Eutherian BetaM has lost its ancestral function and became a muscle-specific resident of the inner nuclear membrane. Our earlier work implicated BetaM in regulation of gene expression through direct interaction with the transcriptional co-regulator SKIP. To gain insight into evolution of BetaM interactome we performed expanded screening of eutherian and avian cDNA libraries using yeast-two-hybrid and split-ubiquitin systems. The inventory of identified BetaM interactors includes lamina-associated protein LAP-1, myocyte nuclear envelope protein Syne1, BetaM itself, heme oxidases HMOX1 and HMOX2; transcription factor LZIP/CREB3, ERGIC3, PHF3, reticulocalbin-3, and β-sarcoglycan. No new interactions were found for chicken BetaM and human Na,K-ATPase β1, β2 and β3 isoforms, indicating the uniqueness of eutherian BetaM interactome. Analysis of truncated forms of BetaM indicates that residues 72-98 adjacent to the membrane in nucleoplasmic domain are important for the interaction with SKIP. These findings demonstrate that evolutionary alterations in structural and functional properties of eutherian BetaM proteins are associated with the increase in its interactome complexity. PMID:26939788

  2. Evolutionary diversification of the BetaM interactome acquired through co-option of the ATP1B4 gene in placental mammals.

    PubMed

    Korneenko, Tatyana V; Pestov, Nikolay B; Ahmad, Nisar; Okkelman, Irina A; Dmitriev, Ruslan I; Shakhparonov, Mikhail I; Modyanov, Nikolai N

    2016-01-01

    ATP1B4 genes represent a rare instance of orthologous vertebrate gene co-option that radically changed properties of the encoded BetaM proteins, which function as Na,K-ATPase subunits in lower vertebrates and birds. Eutherian BetaM has lost its ancestral function and became a muscle-specific resident of the inner nuclear membrane. Our earlier work implicated BetaM in regulation of gene expression through direct interaction with the transcriptional co-regulator SKIP. To gain insight into evolution of BetaM interactome we performed expanded screening of eutherian and avian cDNA libraries using yeast-two-hybrid and split-ubiquitin systems. The inventory of identified BetaM interactors includes lamina-associated protein LAP-1, myocyte nuclear envelope protein Syne1, BetaM itself, heme oxidases HMOX1 and HMOX2; transcription factor LZIP/CREB3, ERGIC3, PHF3, reticulocalbin-3, and β-sarcoglycan. No new interactions were found for chicken BetaM and human Na,K-ATPase β1, β2 and β3 isoforms, indicating the uniqueness of eutherian BetaM interactome. Analysis of truncated forms of BetaM indicates that residues 72-98 adjacent to the membrane in nucleoplasmic domain are important for the interaction with SKIP. These findings demonstrate that evolutionary alterations in structural and functional properties of eutherian BetaM proteins are associated with the increase in its interactome complexity. PMID:26939788

  3. A novel synonymous mutation in the MPZ gene causing an aberrant splicing pattern and Charcot-Marie-Tooth disease type 1b.

    PubMed

    Corrado, L; Magri, S; Bagarotti, A; Carecchio, M; Piscosquito, G; Pareyson, D; Varrasi, C; Vecchio, D; Zonta, A; Cantello, R; Taroni, F; D'Alfonso, S

    2016-08-01

    Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy with a heterogeneous genetic background. Here, we describe two CMT1B families with a mild sensory-motor neuropathy and a novel synonymous variant (c.309G > T, p.G103G) in exon 3 of the MPZ gene. Next generation sequencing analysis on a 94 CMT gene panel showed no mutations in other disease genes. In vitro splicing assay and mRNA expression analysis indicated that the c.309T variant enhances a cryptic donor splice site at position c.304 resulting in the markedly increased expression of the r.304_448del alternative transcript in patients' cells. This transcript is predicted to encode a truncated P0 protein (p.V102Cfs11*) lacking the transmembrane domain, thus suggesting a possible haploinsufficiency mechanism for this mutation. This is the third reported synonymous MPZ variant associated with CMT1 and affecting splicing. These data confirm the functional impact of synonymous variants on MPZ splicing and their possible role as disease-causing mutations rather than silent polymorphisms. PMID:27344971

  4. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  5. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  6. DNA damage induced in vivo by 7-methoxy-2-nitronaphtho[2,1-b]-furan (R7000) in the lacI gene of Escherichia coli.

    PubMed

    Quillardet, P; Boscus, D; Touati, E; Hofnung, M

    1998-12-01

    DNA adducts that block replication, induced in vivo by the 5-nitrofuran derivative R7000 (7-methoxy-2-nitronaphtho[2, 1-b]-furan) were mapped, at nucleotide resolution, in a region of the lacI gene of Escherichia coli, using a reiterative primer extension assay [D. Chandrasekhar, B. Van Houten, High resolution mapping of UV-induced photoproducts in the Escherichia coli lacI gene: inefficient repair of the non-transcribed strand correlates with high mutation frequency, J. Mol. Biol., 1994, Vol. 238, pp. 319-332]. It was found that R7000 induced a broad spectrum of low frequency replication blocks rather than particular hot spots in a limited number of particular targets. Most of these replication blocks were observed at G nucleotides, and most of G nucleotides present in the DNA sequence, if not all, constituted a possible target for the chemical attack of the compound. In addition, a large part of replication blocks observed at A, C or T could also reflect a replication block at the 3' or 5' nucleotide flanking a guanosine-DNA adduct. Only a very small number of replication blocks could be observed at A, C or T nucleotides non-adjacent to a G. These results show that, guanosine-DNA adducts are the main DNA lesions that block replication induced by R7000 in E. coli and suggests a strong reactivity of the genotoxic species generated in vivo by R7000 with the G nucleotidic targets. From 26 R7000-induced mutations previously mapped in this region [E. Touati, E. Krin, P. Quillardet, M. Hofnung, 7-methoxy-2-nitronaphto[2,1-b]furan (R7000)-induced mutation spectrum in the lacI gene of Escherichia coli: influence of SOS mutagenesis, Carcinogenesis, 1996, Vol. 17, pp. 2543-2550.], 22 (85%) occurred at GC base pairs at which termination products were observed. The other mutagenic events involved AT base pairs adjacent to a G nucleotide forming a replication block. Thus all mutagenic events occurred at, or adjacent to, a G nucleotide forming a replication block. Although it

  7. Distribution of KIR genes in the population of unrelated individuals homozygous for ancestral haplotype AH8.1 (HLA-A1B8DR3).

    PubMed

    Jindra, P; Venigová, P; Lysák, D; Steinerova, K; Koza, V

    2010-09-01

    Despite the independent segregation of genes encoding killer immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA), there is some evidence of some kind of co-evolution. Therefore, one could expect reduced KIR diversity within the HLA restricted population. A total of 41 unrelated individuals homozygous for ancestral HLA haplotype AH8.1 (HLA-A*0101-Cw*0701-B*0801-DRB1*0301-DQB1*0201) were genotyped for KIRs. Over all, 14 different genotypes were identified. The KIR genes and genotypes repertoire generally mirror the published frequencies in Caucasians. Except for KIR2DS4, all activating genes presented frequencies below 50%. KIR2DS5 was the least frequent among activating genes (17%), whereas KIR2DL5 (37%) among inhibitory ones. The most frequent (39%) was AA genotype. Twenty-two individuals (54%) had a copy of KIR haplotypes A and B (AB genotype), whereas three (7%) were homozygous for B (BB genotype). Nine of fourteen reported genotypes occurred only in one individual. Five genotypes were reported in less than twenty individuals worldwide and one genotype was reported so far only once. Conversely, the three most frequent genotypes account for 68% of all detected genotypes. The results show the unrestricted KIR diversity in this HLA uniform group and support the fact that the driving force for KIR evolution is not exclusively a major histocompatibility complex. PMID:20492596

  8. Multiple human D sub 5 dopamine receptor genes: A functional receptor and two pseudogenes

    SciTech Connect

    Grandy, D.K.; Yuan Zhang; Bouvier, C.; Qunyong Zhou; Johnson, R.A.; Allen, L.; Buck, K.; Bunzow, J.R.; Salon, J.; Civelli, O. )

    1991-10-15

    Three genes closely related to the D{sub 1} dopamine receptor were identified in the human genome. One of the genes lacks introns and encodes a functional human dopamine receptor, D{sub 5}, whose deduced amino acid sequence is 49% identical to that of the human D{sub 1} receptor. Compared with the human D{sub 1} dopamine receptor, the D{sub 5} receptor displayed a higher affinity for dopamine and was able to stimulate a biphasic rather than a monophasic intracellular accumulation of cAMP. Neither of the other two genes was able to direct the synthesis of a receptor. nucleotide sequence analysis revealed that these two genes are 98% identical to each other and 95% identical to the D{sub 5} sequence. Relative to the D{sub 5} sequence, both contain insertions and deletions that result in several in-frame termination codons. Premature termination of translation is the most likely explanation for the failure of these genes to produce receptors in COS-7 and 293 cells even though their messages are transcribed. The authors conclude that the two are pseudogenes. Blot hybridization experiments performed on rat genomic DNA suggest that there is one D{sub 5} gene in this species and that the pseudogenes may be the result of a relatively recent evolutionary event.

  9. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  10. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030