Science.gov

Sample records for 1balpha guanine nucleotides

  1. Signal transduction by guanine nucleotide binding proteins.

    PubMed

    Spiegel, A M

    1987-01-01

    High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Subsets of this family include cytosolic initiation and elongation factors involved in protein synthesis, and cytoskeletal proteins such as tubulin (Hughes, S.M. (1983) FEBS Lett. 164, 1-8). A distinct subset of guanine nucleotide binding proteins is membrane-associated; members of this subset include the ras gene products (Ellis, R.W. et al. (1981) Nature 292, 506-511) and the heterotrimeric G-proteins (also termed N-proteins) (Gilman, A.G. (1984) Cell 36, 577-579). Substantial evidence indicates that G-proteins act as signal transducers by coupling receptors (R) to effectors (E). A similar function has been suggested but not proven for the ras gene products. Known G-proteins include Gs and Gi, the G-proteins associated with stimulation and inhibition, respectively, of adenylate cyclase; transducin (TD), the G-protein coupling rhodopsin to cGMP phosphodiesterase in rod photoreceptors (Bitensky, M.W. et al. (1981) Curr. Top. Membr. Transp. 15, 237-271; Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87-119), and Go, a G-protein of unknown function that is highly abundant in brain (Sternweis, P.C. and Robishaw, J.D. (1984) J. Biol. Chem. 259, 13806-13813; Neer, E.J. et al. (1984) J. Biol. Chem. 259, 14222-14229). G-proteins also participate in other signal transduction pathways, notably that involving phosphoinositide breakdown. In this review, I highlight recent progress in our understanding of the structure, function, and diversity of G-proteins. PMID:2435586

  2. Scambio, a novel guanine nucleotide exchange factor for Rho

    PubMed Central

    Curtis, Christina; Hemmeryckx, Bianca; Haataja, Leena; Senadheera, Dinithi; Groffen, John; Heisterkamp, Nora

    2004-01-01

    Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho. PMID:15107133

  3. Regulation of adenylyl cyclase from Blastocladiella emersonii by guanine nucleotides.

    PubMed

    Terenzi, H; Maia, J C

    1993-11-01

    GTP gamma S stimulates adenylyl cyclase in particulate fractions of Blastocladiella emersonii zoospores. Cholera toxin catalyses the ADP-ribosylation of a membrane protein of a molecular weight (46,000) similar to that of the alpha subunit of Gs found in vertebrate cells. A membrane protein of 46 kDa can also be recognized in Western blots by an antipeptide antiserum (RM/1) raised against the C-terminus of G alpha 2-subunits. These results suggest that a G-protein mediates the regulation of Blastocladiella adenylyl cyclase by guanine nucleotides. PMID:8224237

  4. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator.

    PubMed Central

    Hofer, F; Fields, S; Schneider, C; Martin, G S

    1994-01-01

    The yeast two-hybrid system was used to identify proteins that interact with Ras. The H-Ras protein was found to interact with a guanine nucleotide dissociation stimulator (GDS) that has been previously shown to regulate guanine nucleotide exchange on another member of the Ras protein family, Ral. The interaction is mediated by the C-terminal, noncatalytic segment of the RalGDS and can be detected both in vivo, using the two-hybrid system, and in vitro, with purified recombinant proteins. The interaction of the RalGDS C-terminal segment with Ras is specific, dependent on activation of Ras by GTP, and blocked by a mutation that affects Ras effector function. These characteristics are similar to those previously demonstrated for the interaction between Ras and its putative effector, Raf, suggesting that the RalGDS may also be a Ras effector. Consistent with this idea, the RalGDS was found to inhibit the binding of Raf to Ras. Images PMID:7972015

  5. Use of HeLa cell guanine nucleotides by Chlamydia psittaci.

    PubMed Central

    Ceballos, M M; Hatch, T P

    1979-01-01

    Exogenous guanine was found to be incorporated into the nucleic acids of Chlamydia psittaci when the parasite was grown in HeLa cells containing hypoxanthine guanine phosphoribosyltransferase (EC 2.4.2.8) activity but not when the parasite was grown in transferase-deficient HeLa cells. No evidence for a chlamydia-specific transferase activity was found in either transferase-containing or transferase-deficient infected HeLa cells. It is concluded that C. psittaci is incapable of metabolizing guanine, but that the parasite can use host-generated guanine nucleotides as precursors for nucleic acid synthesis. Images PMID:478649

  6. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  7. Transcription profiling of guanine nucleotide binding proteins during developmental regulation, and pesticide response in Solenopsis invicta (Hymenoptera: Formicidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guanine nucleotide binding proteins (GNBP or G-protein) are glycoproteins anchored on the cytoplasmic cell membrane, and are mediators for many cellular processes. Complete cDNA of guanine nucleotide-binding protein gene ß-subunit (SiGNBP) was cloned and sequenced from S. invicta workers. To detect ...

  8. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    SciTech Connect

    Sakamoto, C.; Matozaki, T.; Nagao, M.; Baba, S.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated with 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.

  9. Human Sos1: A guanine nucleotide exchange factor for ras that binds to GRB2

    SciTech Connect

    Chardin, P. ); Camonis, J.; Gale, N.W.; Aelst, L. Van; Wigler, M.H.; Bar-Sagi, D. ); Schlessinger, J. )

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1. 42 refs., 5 figs.

  10. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases.

    PubMed

    Buey, Rubén M; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M; Revuelta, José L

    2015-01-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  11. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  12. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  13. Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption.

    PubMed

    Huang, Min; Ji, Yanshan; Itahana, Koji; Zhang, Yanping; Mitchell, Beverly

    2008-01-01

    Inosine monophosphate dehydrogenase (IMPDH) is a pivotal enzyme in the de novo pathway of guanine nucleotide biosynthesis. Inhibitors of this enzyme decrease intracellular guanine nucleotide levels by 50-80% and have potential as anti-neoplastic agents. Both mycophenolic acid (MPA) and AVN-944 are highly specific inhibitors of IMPDH that cause cell cycle arrest or apoptosis in lymphocytes and leukemic cell lines. We have examined the mechanisms by which these two agents cause cytotoxicity. Both MPA and AVN-944 inhibit the growth of K562 cells, and induce apoptosis in Raji B and CCRF-CEM T cells. Both compounds strikingly inhibit RNA synthesis within 2 h of exposure. Depletion of guanine nucleotides by MPA and AVN-944 also causes an early and near-complete reduction in levels of the 45S precursor rRNA synthesis and the concomitant translocation of nucleolar proteins including nucleolin, nucleophosmin, and nucleostemin from the nucleolus to the nucleoplasm. This efflux correlates temporally with the sustained induction of p53 in cell lines with wild-type p53. We conclude that inhibition of IMPDH causes a primary reduction in rRNA synthesis and secondary nucleolar disruption and efflux of nucleolar proteins that most likely mediate cell cycle arrest or apoptosis. The ability of AVN-944 to induce apoptosis in a number of leukemic cell lines supports its potential utility in the treatment of hematologic malignancies. PMID:17462731

  14. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity

    PubMed Central

    Stanley, Rob J.; Thomas, Geraint M. H.

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an ‘activation/inactivation cycle’. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity—emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a ‘balance/imbalance’ mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  15. Mg2+ dependence of guanine nucleotide binding to tubulin.

    PubMed

    Correia, J J; Baty, L T; Williams, R C

    1987-12-25

    The relationship between the concentration of Mg2+ and the binding of GDP and GTP to tubulin dimers was investigated by measuring the displacement of the nucleotide bound at the exchangeable site (E-site) by radiolabeled GDP and GTP. A wide range of concentrations of GTP, GDP, and Mg2+ was explored. In the near absence of Mg2+, the affinity of tubulin for GDP was found to be much greater than its affinity for GTP. In the presence of 1.0 mM Mg2+, however, its affinity for GDP was slightly less than for GTP. The results could be quantitatively described in terms of a small number of reversible equilibria. Equilibrium constants, pertaining to measurements at 0 degrees C, in 0.1 M piperazine-N,N'-bis(2-ethanesulfonic acid), 0.2 mM dithioerythritol, 2 mM EGTA, pH 6.9, were obtained by nonlinear least squares fitting of the data. When the association constant of tubulin for GDP uncomplexed with Mg2+ was taken to be 1.6 X 10(7) M-1, that for uncomplexed GTP was found to be no larger than 1.4 x 10(4) M-1, at least 1100-fold smaller. The association constant of tubulin for the GDP.Mg2+ complex was found to be 2.5-2.7 x 10(7) M-1, while that for the GTP.Mg2+ complex is 6.4-9.0 x 10(7) M-1. PMID:2826416

  16. Adenine and guanine nucleotide metabolism during platelet storage at 22 degree C

    SciTech Connect

    Edenbrandt, C.M.; Murphy, S. )

    1990-11-01

    Adenine and guanine nucleotide metabolism of platelet concentrates (PCs) was studied during storage for transfusion at 22 +/- 2 degrees C over a 7-day period using high-pressure liquid chromatography. There was a steady decrease in platelet adenosine triphosphate (ATP) and adenosine diphosphate (ADP), which was balanced quantitatively by an increase in plasma hypoxanthine. As expected, ammonia accumulated along with hypoxanthine but at a far greater rate. A fall in platelet guanosine triphosphate (GTP) and guanosine diphosphate (GDP) paralleled the fall in ATP + ADP. When adenine was present in the primary anticoagulant, it was carried over into the PC and metabolized. ATP, GTP, total adenine nucleotides, and total guanine nucleotides declined more slowly in the presence of adenine than in its absence. With adenine, the increase in hypoxanthine concentration was more rapid and quantitatively balanced the decrease in adenine and platelet ATP + ADP. Plasma xanthine rose during storage but at a rate that exceeded the decline in GTP + GDP. When platelet ATP + ADP was labeled with 14C-adenine at the initiation of storage, half of the radioactivity was transferred to hypoxanthine (45%) and GTP + GDP + xanthine (5%) by the time storage was completed. The isotopic data were consistent with the presence of a radioactive (metabolic) and a nonradioactive (storage) pool of ATP + ADP at the initiation of storage with each pool contributing approximately equally to the decline in ATP + ADP during storage. The results suggested a continuing synthesis of GTP + GDP from ATP + ADP, explaining the slower rate of fall of GTP + GDP relative to the rate of rise of plasma xanthine. Throughout storage, platelets were able to incorporate 14C-hypoxanthine into both adenine and guanine nucleotides but at a rate that was only one fourth the rate of hypoxanthine accumulation.

  17. Interactions of. beta. -adrenergic receptors with guanine nucleotide-binding proteins

    SciTech Connect

    Abramson, S.N.

    1985-01-01

    The properties of ..beta..-adrenergic receptors were investigated with radioligand binding assays using the agonists (/sup 3/H)hydroxybenzyl-isoproterenol (/sup 3/H-HBI) and (/sup 3/H)epinephrine (/sup 3/H-EPI), and the antagonist (/sup 125/I)iodopindolol (/sup 125/I-IPIN). Membranes prepared from L6 myoblasts bound (/sup 3/H)HBI, (/sup 3/H)EPI, and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 222 +/- 23, 111 +/- 7, and 325 +/- 37 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI and (/sup 3/H)EPI was inhibited allosterically by guanine nucleotides. Membranes prepared from wild-type S49 lymphoma cells bound (/sup 3/H)HBI and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 48.9 +/- 7.1 and 196 +/- 29 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI was inhibited allosterically by GTP. Similar results were obtained with membranes prepared from the adenylate cyclase deficient variant of S49 lymphoma cells (cyc-), which does not contain a functional stimulatory guanine nucleotide-binding protein (N/sub s/), but does contain a functional inhibitory guanine nucleotide-binding protein (N/sub i/). Binding of (/sup 3/H)HBI to membranes prepared from cyc- S49 cells was inhibited by pretreatment of cells with pertussis toxin. These results suggest that ..beta..-adrenergic receptors on membranes prepared from cyc- S49 cells interact with N/sub i/ to form a ternary complex composed of agonist, receptor, and N/sub i/.

  18. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases

    PubMed Central

    Droppelmann, Cristian A.; Campos-Melo, Danae; Volkening, Kathryn; Strong, Michael J.

    2014-01-01

    Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss. PMID:25309324

  19. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  20. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    PubMed

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  1. Guanine-centric self-assembly of nucleotides in water: an important consideration in prebiotic chemistry.

    PubMed

    Cassidy, Lauren M; Burcar, Bradley T; Stevens, Wyatt; Moriarty, Elizabeth M; McGown, Linda B

    2014-10-01

    Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline "gel" phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5'-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K(+). This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur. PMID:25285982

  2. Guanine-Centric Self-Assembly of Nucleotides in Water: An Important Consideration in Prebiotic Chemistry

    PubMed Central

    Cassidy, Lauren M.; Burcar, Bradley T.; Stevens, Wyatt; Moriarty, Elizabeth M.

    2014-01-01

    Abstract Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline “gel” phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5′-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K+. This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur. Key Words: RNA world—Prebiotic chemistry—RNA polymerization

  3. Solubilization and characterization of guanine nucleotide-sensitive muscarinic agonist binding sites from rat myocardium.

    PubMed Central

    Berrie, C. P.; Birdsall, N. J.; Hulme, E. C.; Keen, M.; Stockton, J. M.

    1984-01-01

    Muscarinic receptors from rat myocardial membranes may be solubilized by digitonin in good yield at low temperatures in the presence of Mg2+. Under these conditions, up to 60% of the soluble receptors show high affinity binding for the potent agonist [3H]-oxotremorine-M (KA = 10(9)M-1), which is inhibited by 5'-guanylylimidodiphosphate. The muscarinic binding site labelled with [3H]-oxotremorine-M has a higher sedimentation coefficient (13.4 s) than sites labelled with a 3H antagonist in the presence of guanylylimidodiphosphate (11.6 s) and probably represents a complex between the ligand binding subunit of the receptor and a guanine nucleotide binding protein. PMID:6478115

  4. Zizimin and Dock guanine nucleotide exchange factors in cell function and disease.

    PubMed

    Pakes, Nicholl K; Veltman, Douwe M; Williams, Robin S B

    2013-01-01

    Zizimin proteins belong to the Dock (Dedicator of Cytokinesis) superfamily of Guanine nucleotide Exchange Factor (GEF) proteins. This family of proteins plays a role in the regulation of Rho family small GTPases. Together the Rho family of small GTPases and the Dock/Zizimin proteins play a vital role in a number of cell processes including cell migration, apoptosis, cell division and cell adhesion. Our recent studies of Zizimin proteins, using a simple biomedical model, the eukaryotic social amoeba Dictyostelium discoideum, have helped to elucidate the cellular role of these proteins. In this article, we discuss the domain structure of Zizimin proteins from an evolutionary viewpoint. We also compare what is currently known about the mammalian Zizimin proteins to that of related Dock proteins. Understanding the cellular functions of these proteins will provide a better insight into their role in cell signaling, and may help in treating disease pathology associated with mutations in Dock/Zizimin proteins. PMID:23247359

  5. Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice.

    PubMed Central

    Michiels, F M; Caillou, B; Talbot, M; Dessarps-Freichey, F; Maunoury, M T; Schlumberger, M; Mercken, L; Monier, R; Feunteun, J

    1994-01-01

    Transgenic mice have been used to address the issue of the oncogenic potential of mutant guanine nucleotide stimulatory factor (Gs) alpha subunit in the thyroid gland. The expression of the mutant Arg-201-->His Gs alpha subunit transgene has been directed to murine thyroid epithelial cells by bovine thyroglobulin promoter. The transgenic animals develop hyperfunctioning thyroid adenomas with increased intracellular cAMP levels and high uptake of [125I]iodine and produced elevated levels of circulating triiodothyronine and thyroxine. These animals demonstrate that the mutant form of Gs alpha subunit carries an oncogenic activity, thus supporting the model that deregulation of cAMP level alters growth control in thyroid epithelium. These animals represent models for humans with autonomously functioning thyroid nodules. Images PMID:7937980

  6. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  7. Activation of immobilized, biotinylated choleragen AI protein by a 19-kilodalton guanine nucleotide-binding protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Bobak, D A; Moss, J; Vaughan, M

    1989-09-19

    Cholera toxin catalyzes the ADP-ribosylation that results in activation of the stimulatory guanine nucleotide-binding protein of the adenylyl cyclase system, known as Gs. The toxin also ADP-ribosylates other proteins and simple guanidino compounds and auto-ADP-ribosylates its AI protein (CTA1). All of the ADP-ribosyltransferase activities of CTAI are enhanced by 19-21-kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors, or ARFs. CTAI contains a single cysteine located near the carboxy terminus. CTAI was immobilized through this cysteine by reaction with iodoacetyl-N-biotinyl-hexylenediamine and binding of the resulting biotinylated protein to avidin-agarose. Immobilized CTAI catalyzed the ARF-stimulated ADP-ribosylation of agmatine. The reaction was enhanced by detergents and phospholipid, but the fold stimulation by purified sARF-II from bovine brain was considerably less than that observed with free CTA. ADP-ribosylation of Gsa by immobilized CTAI, which was somewhat enhanced by sARF-II, was much less than predicted on the basis of the NAD:agmatine ADP-ribosyltransferase activity. Immobilized CTAI catalyzed its own auto-ADP-ribosylation as well as the ADP-ribosylation of the immobilized avidin and CTA2, with relatively little stimulation by sARF-II. ADP-ribosylation of CTA2 by free CTAI is minimal. These observations are consistent with the conclusion that the cysteine near the carboxy terminus of the toxin is not critical for ADP-ribosyltransferase activity or for its regulation by sARF-II. Biotinylation and immobilization of the toxin through this cysteine may, however, limit accessibility to Gsa or SARF-II, or perhaps otherwise reduce interaction with these proteins whether as substrates or activator. PMID:2514798

  8. Depletion of guanine nucleotides leads to the Mdm2-dependent proteasomal degradation of nucleostemin.

    PubMed

    Huang, Min; Itahana, Koji; Zhang, Yanping; Mitchell, Beverly S

    2009-04-01

    Nucleostemin is a positive regulator of cell proliferation and is highly expressed in a variety of stem cells, tumors, and tumor cell lines. The protein shuttles between the nucleolus and the nucleus in a GTP-dependent fashion. Selective depletion of intracellular guanine nucleotides by AVN-944, an inhibitor of the de novo purine synthetic enzyme, IMP dehydrogenase, leads to the rapid disappearance of nucleostemin protein in tumor cell lines, an effect that does not occur with two other nucleolar proteins, nucleophosmin or nucleolin. Endogenous nucleostemin protein is completely stabilized by MG132, an inhibitor of the 26S proteasome, as are the levels of expressed enhanced green fluorescent protein-tagged nucleostemin, both wild-type protein and protein containing mutations at the G(1) GTP binding site. Nutlin-3a, a small molecule that disrupts the binding of the E3 ubiquitin ligase, Mdm2, to p53, stabilizes nucleostemin protein in the face of guanine nucleotide depletion, as does siRNA-mediated knockdown of Mdm2 expression and overexpression of a dominant-negative form of Mdm2. Neither Doxorubicin nor Actinomycin D, which cause the release of nucleostemin from the nucleolus, results in nucleostemin degradation. We conclude that nucleostemin is a target for Mdm2-mediated ubiquitination and degradation when not bound to GTP. Because this effect does not occur with other chemotherapeutic agents, the induction of nucleostemin protein degradation in tumor cells by IMP dehydrogenase inhibition or by other small molecules that disrupt GTP binding may offer a new approach to the treatment of certain neoplastic diseases. PMID:19318567

  9. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    SciTech Connect

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..S binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.

  10. Guanine nucleotide exchange factor H1 can be a new biomarker of melanoma

    PubMed Central

    Shi, Jie; Guo, Bingyu; Zhang, Yu; Hui, Qiang; Chang, Peng; Tao, Kai

    2016-01-01

    Guanine nucleotide exchange factor H1 (GEF-H1), which couples microtubule dynamics to RhoA activation, is a microtubule-regulated exchange factor. Studies have shown that GEF-H1 can be involved in various cancer pathways; however, the clinical significance of GEF-H1 expression and functions in melanoma has not been established. In this study, we investigated the relationship between clinical outcomes and GEF-H1 functions in melanoma. A total of 60 cases of different grades of melanoma samples were used to detect the expression of GEF-H1. Results showed that both messenger RNA and protein levels of GEF-H1 were significantly higher in high-grade melanomas. Furthermore, patients with high GEF-H1 expression had a shorter overall survival (22 months) than patients with low level of GEF-H1 expression (33.38 months). We also found that GEF-H1 can promote the proliferation and metastasis of melanoma cells. In summary, these results suggested that GEF-H1 may be a valuable biomarker for assessing the degree and prognosis of melanoma following surgery. PMID:27462139

  11. Guanine and inosine nucleotides, nucleosides and oxypurines in snail muscles as potential biomarkers of fluoride toxicity.

    PubMed

    Rać, Monika E; Safranow, Krzysztof; Dołegowska, Barbara; Machoy, Zygmunt

    2007-01-01

    The aim of the present study was to determine the toxicity of fluorides on energy metabolism in muscles of the Helix aspersa maxima snail. Qualitative and quantitative analysis of purine compounds was performed in slices of foot from mature snails with high-performance liquid chromatography. Fluoride concentrations were measured using an ion-selective electrode and gas chromatography. The results show that exposure to fluoride pollution was accompanied by a statistically significant increase in fluoride concentrations in soft tissues. This effect was already noticeable with the smallest fluoride dose. Accumulation was greatest in the shell. There is a significant and positive correlation between fluoride concentrations in foot muscles and guanine and inosine nucleotides or uridine content. The content of low-energy guanylate, inosylate and oxypurine in foot muscles significantly increased with rising dose of fluoride. The difference as compared with controls was significant only for the highest dose of fluoride. Interestingly, uric acid, the final product of purine catabolism, dominated quantitatively in the foot muscles of snails. In conclusion, increased low-energy guanylate and inosylate as well as decreased xanthine concentrations in snail muscle can be indicators of the toxic influence of fluoride on the organism. The measuring of fluoride accumulation in the shell is the most suitable bioindicator of fluoride pollution in the environment. PMID:18274260

  12. Structural basis for auto-inhibition of the guanine nucleotide exchange factor FARP2

    PubMed Central

    He, Xiaojing; Kuo, Yi-Chun; Rosche, Tyler J.; Zhang, Xuewu

    2013-01-01

    Summary FARP2 is a Dbl-family guanine nucleotide exchange factor (GEF) that contains a 4.1, ezrin, radixin and moesin (FERM) domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. FARP2 activates Rac1 or Cdc42 in response to upstream signals, thereby regulating processes such as neuronal axon guidance and bone homeostasis. How the GEF activity of FARP2 is regulated remained poorly understood. We have determined the crystal structures of the catalytic DH domain and the DH-PH-PH domains of FARP2. The structures reveal an auto-inhibited conformation in which the GEF substrate-binding site is blocked collectively by the last helix in the DH domain and the two PH domains. This conformation is stabilized by multiple interactions among the domains and two well-structured inter-domain linkers. Our cell-based activity assays confirm the suppression of the FARP2 GEF activity by these auto-inhibitory elements. PMID:23375260

  13. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors.

    PubMed

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-08-01

    The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects. PMID:27152953

  14. Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes

    PubMed Central

    Bean, Bjorn D. M.; Davey, Michael; Snider, Jamie; Jessulat, Matthew; Deineko, Viktor; Tinney, Matthew; Stagljar, Igor; Babu, Mohan; Conibear, Elizabeth

    2015-01-01

    The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function. PMID:25609093

  15. Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves.

    PubMed

    Torii, Tomohiro; Ohno, Nobuhiko; Miyamoto, Yuki; Kawahara, Kazuko; Saitoh, Yurika; Nakamura, Kazuaki; Takashima, Shou; Sakagami, Hiroyuki; Tanoue, Akito; Yamauchi, Junji

    2015-05-01

    In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination. PMID:25824033

  16. Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein.

    PubMed

    Noda, M; Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1990-05-16

    Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin. PMID:2112955

  17. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  18. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer

    PubMed Central

    Chen, Jing; Dong, Shuang; Hu, Jiangfeng; Duan, Bensong; Yao, Jian; Zhang, Ruiyun; Zhou, Hongmei; Sheng, Haihui; Gao, Hengjun; Li, Shunlong; Zhang, Xianwen

    2015-01-01

    Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients. PMID:26722529

  19. RESTRICTED EXPRESSION OF NEW GUANINE NUCLEOTIDE EXCHANGE FACTOR ZIZIMIN2 IN AGED ACQUIRED IMMUNE SYSTEM

    PubMed Central

    JIA, YANJUN; SAKABE, ISAMU; MATSUDA, TAKENORI; HAYAKAWA, TOMOKO; MARUYAMA, MITSUO

    2012-01-01

    ABSTRACT The activity of various biological functions, such as nervous, endocrine and immune systems including acquired immunity, is known to decline along with aging. To elucidate the molecular mechanism of this phenomenon, we here compared the number of thymocytes, splenocytes, and bone marrow lymphocytes in young and aged mice and found the age-related functional fragility of the immune system. However, the molecular mechanisms or even the key molecules remain elusive. Therefore, we further focused on a candidate for immunosenesence-related molecules, Zizimin2, which we have recently isolated and identified as a novel guanine nucleotide exchange factor that is highly expressed in murine splenic germinal center B cells after immunization with a T cell-dependent antigen. Here, we showed that endogenous Zizimin2 protein as well as mRNA expression levels in immune organs are strictly suppressed in aged mice. We further observed that the serum antigen specific antibody response is hampered in aged mice compared to that in young animals. Moreover, the Zizimin2 mRNA expression level was not activated after immunization in aged mice. Taken together, these data suggested that Zizimin2 is associated with the reduction of immune response in acquired immunity along with aging. PMID:23092103

  20. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-01-01

    ABSTRACT The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects. PMID:27152953

  1. Lpg0393 of Legionella pneumophila Is a Guanine-Nucleotide Exchange Factor for Rab5, Rab21 and Rab22

    PubMed Central

    Sohn, Young-Sik; Shin, Ho-Chul; Park, Wei Sun; Ge, Jianning; Kim, Chan-Hee; Lee, Bok Luel; Do Heo, Won; Jung, Jae U.; Rigden, Daniel John; Oh, Byung-Ha

    2015-01-01

    Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella. PMID:25821953

  2. The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells12

    PubMed Central

    Seol, Ho Jun; Smith, Christian A; Salhia, Bodour; Rutka, James T

    2009-01-01

    The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue. PMID:19956392

  3. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.

    PubMed Central

    Jones, S; Jedd, G; Kahn, R A; Franzusoff, A; Bartolini, F; Segev, N

    1999-01-01

    Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway. PMID:10430582

  4. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M. )

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increased the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.

  5. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors.

    PubMed

    Raimondi, Francesco; Felline, Angelo; Fanelli, Francesca

    2015-09-28

    Computational approaches such as Principal Component Analysis (PCA) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) are proving to be of great value in investigating relevant biological problems linked to slow motions with no demand in computer power. In this study, these approaches have been coupled to the graph theory-based Protein Structure Network (PSN) analysis to dissect functional dynamics and structural communication in the Dbl family of Rho Guanine Nucleotide Exchange Factors (RhoGEFs). They are multidomain proteins whose common structural feature is a DH-PH tandem domain deputed to the GEF activity that makes them play a central role in cell and cancer biology. While their common GEF action is accomplished by the DH domain, their regulatory mechanisms are highly variegate and depend on the PH and the additional domains as well as on interacting proteins. Major evolutionary-driven deformations as inferred from PCA concern the α6 helix of DH that dictates the orientation of the PH domain. Such deformations seem to depend on the mechanisms adopted by the GEF to prevent Rho binding, i.e. functional specialization linked to autoinhibition. In line with PCA, ENM-NMA indicates α6 and the linked PH domain as the portions of the tandem domain holding almost the totality of intrinsic and functional dynamics, with the α6/β1 junction acting as a hinge point for the collective motions of PH. In contrast, the DH domain holds a static scaffolding and hub behavior, with structural communication playing a central role in the regulatory actions by other domains/proteins. Possible allosteric communication pathways involving essentially DH were indeed found in those RhoGEFs acting as effectors of small or heterotrimeric RasGTPases. The employed methodology is suitable for deciphering structure/dynamics relationships in large sets of homologous or analogous proteins. PMID:26322553

  6. Myristoylated. cap alpha. subunits of guanine nucleotide-binding regulatory proteins

    SciTech Connect

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-11-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the ..cap alpha.. subunits of G/sub s/ (stimulatory) (..cap alpha../sub 45/ and ..cap alpha../sub 52/), a 41-kDa subunit of G/sub i/ (inhibitory) (..cap alpha../sub 41/), a 40-kDa protein (..cap alpha../sub 40/), and the 36-kDa ..beta.. subunit. No protein that comigrated with the ..cap alpha.. subunit of G/sup 0/ (unknown function) (..cap alpha../sub 39/) was detected. In cells grown in the presence of (/sup 3/H)myristic acid, ..cap alpha../sub 41/ and ..cap alpha../sub 40/ contained /sup 3/H label, while the ..beta.. subunit did not. Chemical analysis of lipids attached covalently to purified ..cap alpha../sub 41/ and ..cap alpha../sub 39/ from bovine brain also revealed myristic acid. Similar analysis of brain G protein ..beta.. and ..gamma.. subunits and of G/sub t/ (Transducin) subunits (..cap alpha.., ..beta.., and ..gamma..) failed to reveal fatty acids. The fatty acid associated with ..cap alpha../sub 41/ , ..cap alpha../sub 40/, and ..cap alpha../sub 39/ was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins.

  7. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  8. Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells.

    PubMed

    Abiko, Hiyori; Fujiwara, Sachiko; Ohashi, Kazumasa; Hiatari, Ryuichi; Mashiko, Toshiya; Sakamoto, Naoya; Sato, Masaaki; Mizuno, Kensaku

    2015-05-01

    Cyclic stretch is an artificial model of mechanical force loading, which induces the reorientation of vascular endothelial cells and their stress fibers in a direction perpendicular to the stretch axis. Rho family GTPases are crucial for cyclic-stretch-induced endothelial cell reorientation; however, the mechanism underlying stretch-induced activation of Rho family GTPases is unknown. A screen of short hairpin RNAs targeting 63 Rho guanine nucleotide exchange factors (Rho-GEFs) revealed that at least 11 Rho-GEFs – Abr, alsin, ARHGEF10, Bcr, GEF-H1 (also known as ARHGEF2), LARG (also known as ARHGEF12), p190RhoGEF (also known as ARHGEF28), PLEKHG1, P-REX2, Solo (also known as ARHGEF40) and α-PIX (also known as ARHGEF6) – which specifically or broadly target RhoA, Rac1 and/or Cdc42, are involved in cyclic-stretch-induced perpendicular reorientation of endothelial cells. Overexpression of Solo induced RhoA activation and F-actin accumulation at cell-cell and cell-substrate adhesion sites. Knockdown of Solo suppressed cyclic-stretch- or tensile-force-induced RhoA activation. Moreover, knockdown of Solo significantly reduced cyclic-stretch-induced perpendicular reorientation of endothelial cells when cells were cultured at high density, but not when they were cultured at low density or pretreated with EGTA or VE-cadherin-targeting small interfering RNAs. These results suggest that Solo is involved in cell-cell-adhesion-mediated mechanical signal transduction during cyclic-stretch-induced endothelial cell reorientation. PMID:25795300

  9. Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis

    PubMed Central

    Tõnissoo, Tambet; Meier, Riho; Kask, Keiu; Ruisu, Katrin; Karis, Alar; Salumets, Andres; Pooga, Margus

    2015-01-01

    Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility. PMID:26062014

  10. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    SciTech Connect

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.

  11. Solution structures of oligonucleotides containing either a guanine or a cytosine in front of a gap of one nucleotide

    NASA Astrophysics Data System (ADS)

    Boulard, Y.; Faibis, V.; Fazakerley, G. V.

    1999-10-01

    We report NMR and molecular modelling studies on two DNA duplexes containing a gap of one nucleotides. The difference between the two oligonucleotides lies in the central base face to the gap, a guanine or a cytosine. For the gapG, we observed in solution a B-form conformation where the guanine stacks in the helix. For the gapC, we reveal the existence of two species, one majority where the cytosine is inside the helix and a second for which the cytosine is extrahelical. Nous présentons une étude par RMN et modélisation moléculaire sur deux duplexes d'ADN contenant une lacune de un nucléotide. La différence entre les deux oligonucléotides réside dans la base centrale en face de la lacune, une guanine ou une cytosine. Pour le duplex appelé gapG, nous observons en solution une hélice de type B dans laquelle la guanine est empilée à l'intérieur de l'hélice. Dans le cas du duplex gapC, nous montrons l'existence de deux formes, l'une où la cytosine est à l'intérieur de l'hélice; la seconde où la cytosine est extra hélicale.

  12. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain.

    PubMed Central

    Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1994-01-01

    ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A. PMID:8159707

  13. The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial-mesenchymal transition.

    PubMed

    Komiya, Y; Onodera, Y; Kuroiwa, M; Nomimura, S; Kubo, Y; Nam, J-M; Kajiwara, K; Nada, S; Oneyama, C; Sabe, H; Okada, M

    2016-01-01

    Epithelial tumor cells often acquire malignant properties, such as invasion/metastasis and uncontrolled cell growth, by undergoing epithelial-mesenchymal transition (EMT). However, the mechanisms by which EMT contributes to malignant progression remain elusive. Here we show that the Rho guanine nucleotide exchange factor (GEF) ARHGEF5 promotes tumor malignancy in a manner dependent on EMT status. We previously identified ARHGEF5, a member of the Dbl family of GEFs, as a multifunctional mediator of Src-induced cell invasion and tumor growth. In the present study, ARHGEF5 was upregulated during tumor growth factor-β-induced EMT in human epithelial MCF10A cells, and promoted cell migration by activating the Rho-ROCK pathway. ARHGEF5 was necessary for the invasive and in vivo metastatic activity of human colorectal cancer HCT116 cells. These findings underscore the crucial role of ARHGEF5 in cell migration and invasion/metastasis. An in vivo tumorigenesis assay revealed that ARHGEF5 had the potential to promote tumor growth via the phosphatidylinositol 3-kinase (PI3K) pathway. However, ARHGEF5 was not required for tumor growth in epithelial-like human colorectal cancer HCT116 and HT29 cells, whereas the growth of mesenchymal-like SW480 and SW620 cells depended on ARHGEF5. Induction of EMT by tumor necrosis factor-α or Slug in HCT116 cells resulted in the dependence of tumor growth on ARHGEF5. In these mesenchymal-like cells, Akt was activated via ARHGEF5 and its activity was required for tumor growth. Analysis of a transcriptome data set revealed that the combination of ARHGEF5 upregulation and E-cadherin downregulation or Snail upregulation was significantly correlated with poor prognosis in patients with colorectal cancers. Taken together, our findings suggest that EMT-induced ARHGEF5 activation contributes to the progression of tumor malignancy. ARHGEF5 may serve as a potential therapeutic target in a subset of malignant tumors that have undergone EMT. PMID

  14. Guanine nucleotide-binding proteins that enhance choleragen ADP-ribosyltransferase activity: nucleotide and deduced amino acid sequence of an ADP-ribosylation factor cDNA.

    PubMed Central

    Price, S R; Nightingale, M; Tsai, S C; Williamson, K C; Adamik, R; Chen, H C; Moss, J; Vaughan, M

    1988-01-01

    Three (two soluble and one membrane) guanine nucleotide-binding proteins (G proteins) that enhance ADP-ribosylation of the Gs alpha stimulatory subunit of the adenylyl cyclase (EC 4.6.1.1) complex by choleragen have recently been purified from bovine brain. To further define the structure and function of these ADP-ribosylation factors (ARFs), we isolated a cDNA clone (lambda ARF2B) from a bovine retinal library by screening with a mixed heptadecanucleotide probe whose sequence was based on the partial amino acid sequence of one of the soluble ARFs from bovine brain. Comparison of the deduced amino acid sequence of lambda ARF2B with sequences of peptides from the ARF protein (total of 60 amino acids) revealed only two differences. Whether these are cloning artifacts or reflect the existence of more than one ARF protein remains to be determined. Deduced amino acid sequences of ARF, Go alpha (the alpha subunit of a G protein that may be involved in regulation of ion fluxes), and c-Ha-ras gene product p21 show similarities in regions believed to be involved in guanine nucleotide binding and GTP hydrolysis. ARF apparently lacks a site analogous to that ADP-ribosylated by choleragen in G-protein alpha subunits. Although both the ARF proteins and the alpha subunits bind guanine nucleotides and serve as choleragen substrates, they must interact with the toxin A1 peptide in different ways. In addition to serving as an ADP-ribose acceptor, ARF interacts with the toxin in a manner that modifies its catalytic properties. PMID:3135549

  15. Guanine nucleotide is essential and Ca2+ is a modulator in the exocytotic reaction of permeabilized rat mast cells.

    PubMed Central

    Lillie, T H; Gomperts, B D

    1992-01-01

    Exocytosis from metabolically depleted permeabilized rat mast cells was measured in response to provision of Ca2+ and guanine nucleotide [GTP or guanosine 5'-[gamma-thio]triphosphate (GTP[S])]. For cells permeabilized in simple salt solutions (NaCl), both of these effectors were required to induce secretion. Exclusion of Mg2+ caused an increase in both the sensitivity of the system to GTP and the extent of secretion elicited, while having no such effects on secretion induced by GTP[S]. The effect of Mg2+ depletion on the ability of GTP to stimulate secretion is probably due to the dependence on Mg2+ of the GTPase activity of GE (a postulated GTP-binding protein which mediates exocytosis). This argues that a persistent stimulus to the G-protein is required to support secretion. Affinity for both GTP[S] and GTP is enhanced when the cells are permeabilized in zwitterionic electrolytes (glutamate, gamma-aminobutyric acid, glycine) instead of NaCl. Under these conditions, secretion occurs in response to provision of either GTP[S] [in the effective absence of Ca2+ (pCa 9)] or Ca2+ (in the absence of guanine nucleotide). Secretion induced by GTP[S] is strongly promoted by the presence of Mg2+ at concentrations in the millimolar range; this promotion by Mg2+ declines as the concentration of Ca2+ is elevated towards pCa 7. At pCa 6, Mg2+ is without effect. Ca(2+)-induced secretion requires the provision of MgATP. Since this is further enhanced by low concentrations (< 100 microM) and then inhibited by high concentrations of GDP, the essential role of ATP is likely to be in the maintenance of GTP via transphosphorylation by a nucleoside diphosphate kinase reaction. Thus, under conditions of high affinity (glutamate environment), GTP[S] alone is capable of inducing exocytosis. Ca2+ acts in concert with guanine nucleotides: it enhances the rate and extent of secretion and increases the affinity for Mg2+ and guanine nucleotides in the activation of the GTP-binding protein (GE

  16. Role of guanine nucleotide binding protein(s) in vasopressin-induced responses of a vascular smooth muscle cell line

    SciTech Connect

    Nambi, P.; Aiyar, N.; Whitman, M.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Rat aortic smooth muscle cells (A-10) carry vascular V1 vasopressin receptors. In these cells, vasopressin inhibits isoproterenol-induced cAMP accumulation and stimulates phosphatidylinositol turnover and Ca/sup 2 +/ mobilization. Pretreatment of the cells with phorbol esters resulted in inhibition of the vasopressin-induced responses. The inactive phorbol ester aPDD was ineffective. These data suggested that phorbol ester might cause phosphorylation of the vasopressin receptor and/or coupling protein(s). Here, they studied the role of guanine nucleotide binding proteins by employing the novel radiolabeled vasopressin antagonist (/sup 3/H)-SKF 101926. In competition experiments with cell membranes, Gpp(NH)p shifted the vasopressin curve to the right indicating decreased agonist affinity. Phorbol ester pretreatment abolished the Gpp(NH)p effect. Pretreatment of the cells with N-ethylmaleimide (NEM) resulted in inhibition of vasopressin-induced phosphatidyinositol turnover. NEM also abolished the decrease in agonist affinity caused by Gpp(NH)p. These data showed that NEM and phorbol ester pretreatment of smooth muscle cells functionally uncoupled the vasopressin receptors and suggested that vasopressin V1 receptor responses are mediated through guanine nucleotide binding protein(s).

  17. Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery.

    PubMed Central

    Kobayashi, S; Somlyo, A P; Somlyo, A V

    1988-01-01

    1. The effects of activation of guanine nucleotide-binding protein (G protein) by guanine nucleotides or sodium fluoride on the release of intracellular Ca2+ and on tension development were determined in chemically skinned strips of rabbit main pulmonary arteries (MPA). Ca2+ movements were monitored with Fura-2, as the change in free Ca2+ concentration in the bath medium surrounding the skinned MPA. 2. Sodium fluoride or non-hydrolysable analogues of GTP, guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and guanosine 5'-[beta,gamma-imido]triphosphate (GMP-PNP), induced sustained and dose-dependent contraction of skinned MPA. GTP (100 microM) induced transient contraction of skinned MPA. GTP gamma S did not contract intact MPA. We also confirmed that inositol 1,4,5-trisphosphate (InsP3) released sufficient Ca2+ to induce contraction of skinned, but not intact, MPA. 3. Guanosine 5'-[beta-thio]diphosphate (GDP beta S), a non-hydrolysable analogue of GDP that competitively inhibits the binding of guanine nucleotides to G proteins, inhibited the contractions induced by GTP gamma S. Neomycin (1 mM) inhibited the GTP gamma S-induced contractions, but also, to a lesser extent, contractions induced by caffeine. 4. Depletion of Ca2+ from the sarcoplasmic reticulum (SR) or treatment with Triton X-100 inhibited the GTP gamma S-induced contractions. The effects of Ca2+ depletion was reversible, while that of Triton X-100 was irreversible. GTP gamma S (up to 100 microM) had no apparent effect on the pCa-tension curve of freeze-glycerinated MPA. 5. GTP gamma S- or InsP3-induced contractions occurred in the presence of 20 mM-procaine, while this agent completely blocked the contraction induced by caffeine. 6. Both GTP gamma S and InsP3 induced an increase in the Fura-2 fluorescence signal of the bath medium surrounding the skinned MPA, indicating that GTP gamma S releases intracellular Ca2+. The release of Ca2+ induced by GTP gamma S was inhibited by GDP beta S. 7. During the

  18. Enzymatic synthesis of guanine nucleotides labeled with 15N at the 2-amino group of the purine ring.

    PubMed

    Bouhss, A; Sakamoto, H; Palibroda, N; Chiriac, M; Sarfati, R; Smith, J M; Craescu, C T; Bârzu, O

    1995-02-10

    GMP and dGMP labeled with 15N at the 2-amino group of the purine ring was obtained enzymatically from NH4Cl (> 99 at.% 15N) and from IMP or dIMP, respectively, by several reactions involving IMP-dehydrogenase, GMP-synthetase, adenylate kinase, and creatine kinase. The first three enzymes were obtained by overexpression in Escherichia coli of the corresponding genes. The isotope content of the primary amino group of guanine determined by mass spectrometry after acid hydrolysis of nucleotides was found higher than 98 at.% 15N. The proton NMR spectrum of [15N]GMP in solution in the absence of nitrogen decoupling showed a doublet with a coupling constant of 92 Hz. When nitrogen decoupling was used during the acquisition time, the doublet was replaced by a single peak at 6.47 ppm, indicating that the corresponding proton is bound to 15N. PMID:7778777

  19. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  20. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice

    PubMed Central

    Akamatsu, Akira; Uno, Kazumi; Kato, Midori; Wong, Hann Ling; Shimamoto, Ko; Kawano, Yoji

    2015-01-01

    Molecular links between receptor-kinases and Rac/ROP family small GTPases mediated by activator guanine nucleotide exchange factors (GEFs) govern diverse biological processes. However, it is unclear how the Rac/ROP GTPases orchestrate such a wide variety of activities. Here, we show that rice OsRacGEF1 forms homodimers, and heterodimers with OsRacGEF2, at the plasma membrane (PM) and the endoplasmic reticulum (ER). OsRacGEF2 does not bind directly to the receptor-like kinase (RLK) OsCERK1, but forms a complex with OsCERK1 through OsRacGEF1 at the ER. This complex is transported from ER to the PM and there associates with OsRac1, resulting in the formation of a stable immune complex. Such RLK-GEF heterodimer complexes may explain the diversity of Rac/ROP family GTPase signalings. PMID:26251883

  1. Superoxide Inhibits Guanine Nucleotide Exchange Factor (GEF) Action on Ras, but not on Rho, through Desensitization of Ras to GEF

    PubMed Central

    2015-01-01

    Ras and Rho GTPases are molecular switches for various vital cellular signaling pathways. Overactivation of these GTPases often causes development of cancer. Guanine nucleotide exchange factors (GEFs) and oxidants function to upregulate these GTPases through facilitation of guanine nucleotide exchange (GNE) of these GTPases. However, the effect of oxidants on GEF functions, or vice versa, has not been known. We show that, via targeting Ras Cys51, an oxidant inhibits the catalytic action of Cdc25—the catalytic domain of RasGEFs—on Ras. However, the enhancement of Ras GNE by an oxidant continues regardless of the presence of Cdc25. Limiting RasGEF action by an oxidant may function to prevent the pathophysiological overactivation of Ras in the presence of both RasGEFs and oxidants. The continuous exposure of Ras to nitric oxide and its derivatives can form S-nitrosated Ras (Ras-SNO). This study also shows that an oxidant not only inhibits the catalytic action of Cdc25 on Ras-SNO but also fails to enhance Ras-SNO GNE. This lack of enhancement then populates the biologically inactive Ras-SNO in cells, which may function to prevent the continued redox signaling of the Ras pathophysiological response. Finally, this study also demonstrates that, unlike the case with RasGEFs, an oxidant does not inhibit the catalytic action of RhoGEF—Vav or Dbs—on Rho GTPases such as Rac1, RhoA, RhoC, and Cdc42. This result explains the results of the previous study in which, despite the presence of an oxidant, the catalytic action of Dbs in cells continued to enhance RhoC GNE. PMID:24422478

  2. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: two guanine nucleotide-dependent activators of cholera toxin.

    PubMed Central

    Bobak, D A; Nightingale, M S; Murtagh, J J; Price, S R; Moss, J; Vaughan, M

    1989-01-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A)+ RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A)+ RNA are consistent with the presence of at least two, and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFs also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs. Images PMID:2474826

  3. Di-Ras2 Protein Forms a Complex with SmgGDS Protein in Brain Cytosol in Order to Be in a Low Affinity State for Guanine Nucleotides.

    PubMed

    Ogita, Yoshitaka; Egami, Sachiko; Ebihara, Arisa; Ueda, Nami; Katada, Toshiaki; Kontani, Kenji

    2015-08-14

    The Ras family of small GTPases function in a wide variety of biological processes as "molecular switches" by cycling between inactive GDP-bound and active GTP-bound forms. Di-Ras1 and Di-Ras2 were originally identified as small GTPases forming a distinct subgroup of the Ras family. Di-Ras1/Di-Ras2 mRNAs are detected predominantly in brain and heart tissues. Biochemical analysis of Di-Ras1/Di-Ras2 has revealed that they have little GTPase activity and that their intrinsic guanine-nucleotide exchange rates are much faster than that of H-Ras. Yet little is known about the biological role(s) of Di-Ras1/Di-Ras2 or of how their activities are regulated. In the present study we found that endogenous Di-Ras2 co-purifies with SmgGDS from rat brain cytosol. Size-exclusion chromatography of purified recombinant proteins showed that Di-Ras2 forms a high affinity complex with SmgGDS. SmgGDS is a guanine nucleotide exchange factor with multiple armadillo repeats and has recently been shown to specifically activate RhoA and RhoC. In contrast to the effect on RhoA, SmgGDS does not act as a guanine nucleotide exchange factor for Di-Ras2 but instead tightly associates with Di-Ras2 to reduce its binding affinity for guanine nucleotides. Finally, pulse-chase analysis revealed that Di-Ras2 binds, in a C-terminal CAAX motif-dependent manner, to SmgGDS immediately after its synthesis. This leads to increased Di-Ras2 stability. We thus propose that isoprenylated Di-Ras2 forms a tight complex with SmgGDS in cytosol immediately after its synthesis, which lowers its affinity for guanine nucleotides. PMID:26149690

  4. Different Effects of Guanine Nucleotides (GDP and GTP) on Protein-Mediated Mitochondrial Proton Leak

    PubMed Central

    Woyda-Ploszczyca, Andrzej M.; Jarmuszkiewicz, Wieslawa

    2014-01-01

    In this study, we compared the influence of GDP and GTP on isolated mitochondria respiring under conditions favoring oxidative phosphorylation (OXPHOS) and under conditions excluding this process, i.e., in the presence of carboxyatractyloside, an adenine nucleotide translocase inhibitor, and/or oligomycin, an FOF1-ATP synthase inhibitor. Using mitochondria isolated from rat kidney and human endothelial cells, we found that the action of GDP and GTP can differ diametrically depending on the conditions. Namely, under conditions favoring OXPHOS, both in the absence and presence of linoleic acid, an activator of uncoupling proteins (UCPs), the addition of 1 mM GDP resulted in the state 4 (non-phosphorylating respiration)-state 3 (phosphorylating respiration) transition, which is characteristic of ADP oxidative phosphorylation. In contrast, the addition of 1 mM GTP resulted in a decrease in the respiratory rate and an increase in the membrane potential, which is characteristic of UCP inhibition. The stimulatory effect of GDP, but not GTP, was also observed in inside-out submitochondrial particles prepared from rat kidney mitochondria. However, the effects of GDP and GTP were more similar in the presence of OXPHOS inhibitors. The importance of these observations in connection with the action of UCPs, adenine nucleotide translocase (or other carboxyatractyloside-sensitive carriers), carboxyatractyloside- and purine nucleotide-insensitive carriers, as well as nucleoside-diphosphate kinase (NDPK) are considered. Because the measurements favoring oxidative phosphorylation better reflect in vivo conditions, our study strongly supports the idea that GDP cannot be considered a significant physiological inhibitor of UCP. Moreover, it appears that, under native conditions, GTP functions as a more efficient UCP inhibitor than GDP and ATP. PMID:24904988

  5. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function.

    PubMed

    Hocker, Harrison J; Cho, Kwang-Jin; Chen, Chung-Ying K; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F; Gorfe, Alemayehu A

    2013-06-18

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)--a bicyclic diterpenoid lactone isolated from Andrographis paniculata--and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP-GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP-GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  6. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function

    PubMed Central

    Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.

    2013-01-01

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  7. Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis

    PubMed Central

    Okada, Risa; Yamauchi, Yohei; Hongu, Tsunaki; Funakoshi, Yuji; Ohbayashi, Norihiko; Hasegawa, Hiroshi; Kanaho, Yasunori

    2015-01-01

    The small G protein Arf6 and the GTPase dynamin2 (Dyn2) play key roles in clathrin-mediated endocytosis (CME). However, their functional relationship remains obscure. Here, we show that Arf6 functions as a downstream molecule of Dyn2 in CME. Wild type of Dyn2 overexpressed in HeLa cells markedly activates Arf6, while a GTPase-lacking Dyn2 mutant does not. Of the Arf6-specific guanine nucleotide exchange factors, EFA6A, EFA6B, and EFA6D specifically interact with Dyn2. Furthermore, overexpression of dominant negative mutants or knockdown of EFA6B and EFA6D significantly inhibit Dyn2-induced Arf6 activation. Finally, overexpression of the binding region peptide of EFA6B for Dyn2 or knockdown of EFA6B and EFA6D significantly suppresses clathrin-mediated transferrin uptake. These results provide evidence for a novel Arf6 activation mechanism by Dyn2 through EFA6B and EFA6D in CME in a manner dependent upon the GTPase activity of Dyn2. PMID:26503427

  8. RINL, Guanine Nucleotide Exchange Factor Rab5-Subfamily, Is Involved in the EphA8-Degradation Pathway with Odin

    PubMed Central

    Kontani, Kenji; Katada, Toshiaki

    2012-01-01

    The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like (RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks) protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin. PMID:22291991

  9. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    PubMed

    Kajiho, Hiroaki; Fukushima, Shinichi; Kontani, Kenji; Katada, Toshiaki

    2012-01-01

    The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like (RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks) protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin. PMID:22291991

  10. The role of guanine nucleotides in the interaction between aminoacyl-tRNA and elongation factor 1 of Artemia salina.

    PubMed

    Roobol, K; Möller, W

    1978-10-16

    The low-molecular-weight form of elongation factor 1 (EF-1L) of the cysts of the brine shrimp Artemia salina and [3H]phenylalanyl-tRNA are able to form a stable complex which can be isolated on a Sephacryl S200 column. The formation of this complex is inhibited by increasing concentrations of magnesium acetate and KCl. Furthermore, the formation of this complex is independent of the presence of guanine nucleotides. Complex formation between EF-1L and phenylalanyl-tRNA appears to be specific, since acylation of the tRNA is a necessity for this interaction. Although EF-1L alone binds GDP somewhat more strongly than GTP, the complex between EF-1L and phenylalanyl-tRNA binds GTP exclusively. Our results support the idea that complex formation between EF-1L and aminoacyl-tRNA precedes the enzymatic binding of aminoacyl-tRNA to the 80-S ribosome. Subsequently to this binding, release of EF-1L from the ribosome occurs. PMID:251131

  11. Guanine Nucleotide Exchange Factor OSG-1 Confers Functional Aging via Dysregulated Rho Signaling in Caenorhabditis elegans Neurons

    PubMed Central

    Duan, Zhibing; Sesti, Federico

    2015-01-01

    Rho signaling regulates a variety of biological processes, but whether it is implicated in aging remains an open question. Here we show that a guanine nucleotide exchange factor of the Dbl family, OSG-1, confers functional aging by dysregulating Rho GTPases activities in C. elegans. Thus, gene reporter analysis revealed widespread OSG-1 expression in muscle and neurons. Loss of OSG-1 gene function was not associated with developmental defects. In contrast, suppression of OSG-1 lessened loss of function (chemotaxis) in ASE sensory neurons subjected to conditions of oxidative stress generated during natural aging, by oxidative challenges, or by genetic mutations. RNAi analysis showed that OSG-1 was specific toward activation of RHO-1 GTPase signaling. RNAi further implicated actin-binding proteins ARX-3 and ARX-5, thus the actin cytoskeleton, as one of the targets of OSG-1/RHO-1 signaling. Taken together these data suggest that OSG-1 is recruited under conditions of oxidative stress, a hallmark of aging, and contributes to promote loss of neuronal function by affecting the actin cytoskeleton via altered RHO-1 activity. PMID:25527286

  12. Critical function of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in mouse spermatogenesis.

    PubMed

    Okada, Keisuke; Miyake, Hideaki; Yamaguchi, Kohei; Chiba, Koji; Maeta, Kazuhiro; Bilasy, Shymaa E; Edamatsu, Hironori; Kataoka, Tohru; Fujisawa, Masato

    2014-02-28

    Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2(-)(/)(-) and wild-type mice. However, the testes of RA-GEF-2(-)(/)(-) male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2(-)(/)(-) males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2(-)(/)(-) mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2(-)(/)(-) testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice. PMID:24491570

  13. Cocaine increases Ras-guanine nucleotide-releasing factor 1 protein expression in the rat striatum in vivo.

    PubMed

    Zhang, Guo-Chi; Hoffmann, Jason; Parelkar, Nikhil K; Liu, Xian-Yu; Mao, Li-Min; Fibuch, Eugene E; Wang, John Q

    2007-11-01

    Psychostimulants activate the Ras-mitogen-activated protein kinase (Ras-MAPK) cascade in the limbic reward circuit and thereby trigger a transcription-dependent mechanism underlying enduring synaptic plasticity related to addictive properties of drugs of abuse. The Ras-specific activator, Ras-guanine nucleotide-releasing factor (Ras-GRF), is predominantly expressed at synapses and is thought to actively regulate Ras-MAPK responses to changing synaptic signals. In this study, a possible influence of cocaine on Ras-GRF gene expression at the protein level in the rat striatum was investigated in vivo. A single systemic injection of cocaine induced an increase in Ras-GRF1 protein levels in both the dorsal (caudoputamen) and ventral (nucleus accumbens) striatum. The increase in Ras-GRF1 proteins was dose-dependent and was a delayed and transient event. In contrast to Ras-GRF1, a closely related Ras-GRF2 showed no change in its protein abundance following cocaine administration. These data identify the Ras activator, Ras-GRF1, although not Ras-GRF2, as a susceptible target to cocaine stimulation in striatal neurons. PMID:17931779

  14. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes.

    PubMed

    Zhou, Wu; Li, Xiaobo; Premont, Richard T

    2016-05-15

    The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease. PMID:27182061

  15. Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling

    PubMed Central

    Wang, Juanfei; Ren, Jinqi; Wu, Bin; Feng, Shanshan; Cai, Guoping; Tuluc, Florin; Peränen, Johan; Guo, Wei

    2015-01-01

    Exocytosis is tightly regulated in many cellular processes, from neurite expansion to tumor proliferation. Rab8, a member of the Rab family of small GTPases, plays an important role in membrane trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rabin8 is a guanine nucleotide exchange factor (GEF) and major activator of Rab8. Investigating how Rabin8 is activated in cells is thus pivotal to the understanding of the regulation of exocytosis. Here we show that phosphorylation serves as an important mechanism for Rabin8 activation. We identified Rabin8 as a direct phospho-substrate of ERK1/2 in response to EGF signaling. At the molecular level, ERK phosphorylation relieves the autoinhibition of Rabin8, thus promoting its GEF activity. We further demonstrate that blocking ERK1/2-mediated phosphorylation of Rabin8 inhibits transferrin recycling to the plasma membrane. Together, our results suggest that ERK1/2 activate Rabin8 to regulate vesicular trafficking to the plasma membrane in response to extracellular signaling. PMID:25535387

  16. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion.

    PubMed

    Jarzynka, Michael J; Hu, Bo; Hui, Kwok-Min; Bar-Joseph, Ifat; Gu, Weisong; Hirose, Takanori; Haney, Lisa B; Ravichandran, Kodi S; Nishikawa, Ryo; Cheng, Shi-Yuan

    2007-08-01

    A distinct feature of malignant gliomas is the intrinsic ability of single tumor cells to disperse throughout the brain, contributing to the failure of existing therapies to alter the progression and recurrence of these deadly brain tumors. Regrettably, the mechanisms underlying the inherent invasiveness of glioma cells are poorly understood. Here, we report for the first time that engulfment and cell motility 1 (ELMO1) and dedicator of cytokinesis 1 (Dock180), a bipartite Rac1 guanine nucleotide exchange factor (GEF), are evidently linked to the invasive phenotype of glioma cells. Immunohistochemical analysis of primary human glioma specimens showed high expression levels of ELMO1 and Dock180 in actively invading tumor cells in the invasive areas, but not in the central regions of these tumors. Elevated expression of ELMO1 and Dock180 was also found in various human glioma cell lines compared with normal human astrocytes. Inhibition of endogenous ELMO1 and Dock180 expression significantly impeded glioma cell invasion in vitro and in brain tissue slices with a concomitant reduction in Rac1 activation. Conversely, exogenous expression of ELMO1 and Dock180 in glioma cells with low level endogenous expression increased their migratory and invasive capacity in vitro and in brain tissue. These data suggest that the bipartite GEF, ELMO1 and Dock180, play an important role in promoting cancer cell invasion and could be potential therapeutic targets for the treatment of diffuse malignant gliomas. PMID:17671188

  17. Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation.

    PubMed

    Bobak, D A; Bliziotes, M M; Noda, M; Tsai, S C; Adamik, R; Moss, J

    1990-01-30

    Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF. PMID:2111167

  18. Tubulin exchanges divalent cations at both guanine nucleotide-binding sites.

    PubMed

    Correia, J J; Beth, A H; Williams, R C

    1988-08-01

    The tubulin heterodimer binds a molecule of GTP at the nonexchangeable nucleotide-binding site (N-site) and either GDP or GTP at the exchangeable nucleotide-binding site (E-site). Mg2+ is known to be tightly linked to the binding of GTP at the E-site (Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) J. Biol. Chem. 262, 17278-17284). Measurements of the exchange of Mn2+ for bound Mg2+ (as monitored by atomic absorption and EPR) demonstrate that tubulin which has GDP at the E-site possesses one high affinity metal-binding site and that tubulin which has GTP at the E-site possesses two such sites. The apparent association constants are 0.7-1.1 x 10(6) M-1 for Mg2+ and approximately 4.1-4.9 x 10(7) M-1 for Mn2+. Divalent cations do bind to GDP at the E-site, but with much lower affinity (2.0-2.3 x 10(3) M-1 for Mg2+ and 3.9-6.6 x 10(3) M-1 for Mn2+). These data suggest that divalent cations are involved in GTP binding to both the N- and E-sites of tubulin. The N-site metal exchanges slowly (kapp = 0.020 min-1), suggesting a mechanism involving protein "breathing" or heterodimer dissociation. The N-site metal exchange rate is independent of the concentration of protein and metal, an observation consistent with the possibility that a dynamic breathing process is the rate-limiting step. The exchange of Mn2+ for Mg2+ has no effect on the secondary structure of tubulin at 4 degrees C or on the ability of tubulin to form microtubules. These results have important consequences for the interpretation of distance measurements within the tubulin dimer using paramagnetic ions. They are also relevant to the detailed mechanism of divalent cation release from microtubules after GTP hydrolysis. PMID:3392036

  19. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  20. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein

    SciTech Connect

    Du, Yue; Meng, Jinyi; Huang, Yuhong; Wu, Jun; Wang, Bo; Ibrahim, Mohammed M.; Tang, Jianwu

    2014-02-28

    Highlights: • RACK1 formed a complex with Annexin A7. • Depletion of RACK1 inhibited the proliferation, migration and invasion. • RACK1 RNAi abolished RACK1-Annexin A7 interaction. • RACK1-Annexin A7 may play a role in regulating the metastatic potentials. - Abstract: We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymph node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro.

  1. The Guanine Nucleotide Exchange Factor (GEF) Asef2 Promotes Dendritic Spine Formation via Rac Activation and Spinophilin-dependent Targeting*

    PubMed Central

    Evans, J. Corey; Robinson, Cristina M.; Shi, Mingjian; Webb, Donna J.

    2015-01-01

    Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses. PMID:25750125

  2. Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation

    PubMed Central

    Wright, John; Kahn, Richard A.; Sztul, Elizabeth

    2016-01-01

    Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein “cargos” destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at “budding ready” membrane sites to generate highly localized activated ARFs. PMID:24728583

  3. The Ect2 Rho Guanine Nucleotide Exchange Factor Is Essential for Early Mouse Development and Normal Cell Cytokinesis and Migration

    PubMed Central

    Cook, Danielle R.; Solski, Patricia A.; Bultman, Scott J.; Kauselmann, Gunther; Schoor, Michael; Kuehn, Ralf; Friedman, Lori S.; Cowley, Dale O.; Van Dyke, Terry; Yeh, Jen Jen; Johnson, Leisa

    2011-01-01

    Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2 +/– mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2 –/– embryos were not found at birth or postimplantation stages. Ect2 –/– blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2 fl/fl embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation. PMID:22701760

  4. Norbin Stimulates the Catalytic Activity and Plasma Membrane Localization of the Guanine-Nucleotide Exchange Factor P-Rex1*

    PubMed Central

    Pan, Dingxin; Barber, Mark A.; Hornigold, Kirsti; Baker, Martin J.; Toth, Judit M.; Oxley, David; Welch, Heidi C. E.

    2016-01-01

    P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gβγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1. PMID:26792863

  5. Mutation Analysis of Inhibitory Guanine Nucleotide Binding Protein Alpha (GNAI) Loci in Young and Familial Pituitary Adenomas

    PubMed Central

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1, GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas. PMID:25291362

  6. Rho Guanine Nucleotide Exchange Factor 5 Increases Lung Cancer Cell Tumorigenesis via MMP-2 and Cyclin D1 Upregulation.

    PubMed

    He, Ping; Wu, Wei; Yang, Kang; Tan, Deli; Tang, Meng; Liu, Hongxiang; Wu, Tao; Zhang, Shixin; Wang, Haidong

    2015-07-01

    We sought to elucidate the role of Rho guanine nucleotide exchange factor 5 (ARHGEF5) in tumorigenesis of lung adenocarcinoma cells. ARHGEF5 protein levels were assessed in 91 human lung adenocarcinoma specimens, and A549 and NCI-H1650 cells, by IHC and Western blotting. In addition, ARHGEF5 mRNA expression was evaluated by quantitative reverse transcriptase-PCR. Furthermore, ARHGEF5 long and short isoform coexpression was detected by immunofluorescence. Finally, flow cytometry; CCK8 and wound-healing assays; cell invasion, migration and adhesion; and xenografts were used to evaluate the biologic significance of ARHGEF5. ARHGEF5 was significantly increased in lung adenocarcinoma tissues and cell lines. Interestingly, ARHGEF5 levels were significantly associated with tumor grade and pathologic stage, but not age, gender, T stage, or lymph node metastasis status. ARHGEF5 knockdown by RNAi resulted in dramatically reduced proliferation, adhesion, invasion, and migratory capability of A549 and NCI-H1650 cells. Likewise, protein levels of p-Src, p-Akt, and NF-κB were significantly decreased after ARHGEF5 knockdown. In parallel, increased S-phase population and MMP-2/cyclin D1 expression were observed in the cancer cells, which were not apoptotic. In addition, ARHGEF5 knockdown A549 and NCI-H1650 cells injected s.c. and i.v. into nude mice exhibited decreased xenograft volume and overtly reduced metastasis. Conversely, ARHGEF5 overexpression in A549 and NCI-H1650 cells increased their tumorigenicity in vitro. ARHGEF5 acts as a proto-oncogene in human lung adenocarcinoma cell tumorigenesis. PMID:25777963

  7. Guanine nucleotide regulation of muscarinic receptor-mediated inositol phosphate formation in permeabilized 1321N1 cells

    SciTech Connect

    Orellana, S.A.; Trilivas, I.; Brown, J.H.

    1986-03-05

    Carbachol and guanine nucleotides stimulate formation of the (/sup 3/H)inositol phosphates IP, IP2, and IP3 in saponin-permeabilized monolayers labelled with (/sup 3/H) inositol. Carbachol alone has little effect on formation of the (/sup 3/H) inositol phosphates (IPs), but GTP..gamma..S causes synergistic accumulation of (/sup 3/H)IPs to levels similar to those seen in intact cells. GTP, GppNHp, and GTP..gamma..S all support formation of the (/sup 3/H)IPs, with or without hormone, but GTP..gamma..S is the most effective. In the presence of GTP..gamma..S, the effect of carbachol is dose-dependent. Half-maximal and maximal accumulation of the (/sup 3/H)IPs occur at approx. 5 ..mu..M and approx. 100 ..mu..M carbachol, respectively; values close to those seen in intact cells. GTP..gamma..S alone stimulates formation of the (/sup 3/H)IPs after a brief lag time. The combination of GTP..gamma..S and carbachol both increases the rate of, and decreases the lag in, formation of the (/sup 3/H)IPs. LiCl increases (/sup 3/H)IP and IP2, but not IP3, accumulation; while 2,3-diphosphoglycerate substantially increases that of (/sup 3/H)IP3. GTP..gamma..S and carbachol cause formation of (/sup 3/H)IPs in the absence of Ca/sup + +/, but formation induced by GTP..gamma..S with or without carbachol is Ca/sup + +/-sensitive over a range of physiological concentrations. Although carbachol, Ca/sup + +/, and GTP..gamma..S all have effects on formation of (/sup 3/H)IPs, GTP..gamma..S appears to be a primary and obligatory regulator of phosphoinositide hydrolysis in the permeabilized 1321N1 astrocytoma cell.

  8. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling

    PubMed Central

    Beveridge, Ryan D; Staples, Christopher J; Patil, Abhijit A; Myers, Katie N; Maslen, Sarah; Skehel, J Mark; Boulton, Simon J; Collis, Spencer J

    2014-01-01

    We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders. PMID:25485589

  9. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    SciTech Connect

    Feltner, D.E.; Marasco, W.A.

    1989-06-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of (3H)FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM (3H)FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. (3H)FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of (3H)FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM (3H)FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.

  10. Adenine-DNA adducts derived from the highly tumorigenic dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not

    PubMed Central

    Kropachev, Konstantin; Kolbanovskiy, Marina; Liu, Zhi; Cai, Yuqin; Zhang, Lu; Schwaid, Adam G.; Kolbanovskiy, Alexander; Ding, Shuang; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2013-01-01

    The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N2-dG) and adenine (N6-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N2-dG linkage site is ~ 35 times more susceptible to NER dual incisions than the stereochemically identical N6-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar, but somewhat smaller effect (factor of ~15) is observed. The striking resistance of the bulky N6-dA in contrast to the modest to good susceptibilities of the N2-dG adducts to NER are interpreted in terms of the balance between lesion-induced DNA-distorting and DNA-stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA. PMID:23570232

  11. Ric-8A catalyzes guanine nucleotide exchange on G alphai1 bound to the GPR/GoLoco exchange inhibitor AGS3.

    PubMed

    Thomas, Celestine J; Tall, Gregory G; Adhikari, Anirban; Sprang, Stephen R

    2008-08-22

    Microtubule pulling forces that govern mitotic spindle movement of chromosomes are tightly regulated by G-proteins. A host of proteins, including Galpha subunits, Ric-8, AGS3, regulators of G-protein signalings, and scaffolding proteins, coordinate this vital cellular process. Ric-8A, acting as a guanine nucleotide exchange factor, catalyzes the release of GDP from various Galpha.GDP subunits and forms a stable nucleotide-free Ric-8A:Galpha complex. AGS3, a guanine nucleotide dissociation inhibitor (GDI), binds and stabilizes Galpha subunits in their GDP-bound state. Because Ric-8A and AGS3 may recognize and compete for Galpha.GDP in this pathway, we probed the interactions of a truncated AGS3 (AGS3-C; containing only the residues responsible for GDI activity), with Ric-8A:Galpha(il) and that of Ric-8A with the AGS3-C:Galpha(il).GDP complex. Pulldown assays, gel filtration, isothermal titration calorimetry, and rapid mixing stopped-flow fluorescence spectroscopy indicate that Ric-8A catalyzes the rapid release of GDP from AGS3-C:Galpha(i1).GDP. Thus, Ric-8A forms a transient ternary complex with AGS3-C:Galpha(i1).GDP. Subsequent dissociation of AGS3-C and GDP from Galpha(i1) yields a stable nucleotide free Ric-8A.Galpha(i1) complex that, in the presence of GTP, dissociates to yield Ric-8A and Galpha(i1).GTP. AGS3-C does not induce dissociation of the Ric-8A.Galpha(i1) complex, even when present at very high concentrations. The action of Ric-8A on AGS3:Galpha(i1).GDP ensures unidirectional activation of Galpha subunits that cannot be reversed by AGS3. PMID:18541531

  12. Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex

    PubMed Central

    Le, Kang; Li, Chun-Chun; Ye, Guan; Moss, Joel; Vaughan, Martha

    2013-01-01

    Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1δ, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells. PMID:23918382

  13. Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.

    PubMed

    Padilla, Philip Ian; Pacheco-Rodriguez, Gustavo; Moss, Joel; Vaughan, Martha

    2004-03-01

    Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) is an approximately 200-kDa brefeldin A-inhibited guanine nucleotide-exchange protein that preferentially activates ADP-ribosylation factor 1 (ARF1) and ARF3. BIG1 was found in cytosol in a multiprotein complex with a similar ARF-activating protein, BIG2, which is also an A kinase-anchoring protein. In HepG2 cells growing with serum, BIG1 was primarily cytosolic and Golgi-associated. After incubation overnight without serum, a large fraction of endogenous BIG1 was in the nuclei. By confocal immunofluorescence microscopy, BIG1 was localized with nucleoporin p62 at the nuclear envelope (probably during nucleocytoplasmic transport) and also in nucleoli, clearly visible against the less concentrated overall matrix staining. BIG1 was also identified by Western blot analyses in purified subnuclear fractions (e.g., nucleoli and nuclear matrix). Antibodies against BIG1, nucleoporin, or nucleolin coimmunoprecipitated the other two proteins from purified nuclei. In contrast, BIG2 was not associated with nuclear BIG1. Also of note, ARF was never detected among proteins precipitated from purified nuclei by anti-BIG1 antibodies, although microscopically the two proteins do appear sometimes to be colocalized in the nucleus. These data are consistent with independent intracellular movements and actions of BIG1 and BIG2, and they are also evidence of the participation of BIG1 in both Golgi and nuclear functions. PMID:14973189

  14. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    SciTech Connect

    Amor,J.; Swails, J.; Zhu, X.; Roy, C.; Nagai, H.; Ingmundson, A.; Cheng, X.; Kahn, R.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.

  15. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.

    PubMed

    Ren, Y; Li, R; Zheng, Y; Busch, H

    1998-12-25

    The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules. PMID:9857026

  16. Guanine nucleotide-dependent, pertussis toxin-insensitive, stimulation of inositol phosphate formation by carbachol in a membrane preparation from astrocytoma cells

    SciTech Connect

    Hepler, J.R.; Harden, T.K.

    1986-03-05

    Formation of the inositol phosphates (InsP), InsP/sub 3/, InsP/sub 2/, and InsP/sub 1/ was increased in a concentration dependent manner (K/sub 0.5/ approx. 5 ..mu..M) by GTP..sigma..S in washed membranes prepared from /sup 3/H-inositol-prelabelled 1321N1 human astrocytoma cells. Both GTP..gamma..S and GppNHp stimulated InsP formation by 2-3 fold over control; GTP and GDP were much less efficacious and GMP had no effect. Although the muscarinic cholinergic receptor agonist carbachol had no effect in the absence of guanine nucleotide, in the presence of 10 ..mu..M GTP..gamma..S, carbachol stimulated (K/sub 0.5/ approx. 10 ..mu.. M) the formation of InsP above the level achieved with GTP..gamma..S alone. The effect of carbachol was completely blocked by atropine. The order of potency for a series of nucleotides for stimulation of InsP formation in the presence of 500 ..mu..M carbachol was GTP..gamma..S > GppNHp > GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate G/sub i/, had no effect on InsP formation in the presence of GTP..gamma..S or GTP..gamma..S plus carbachol. Histamine and bradykinin also stimulated InsP formation in the presence of GTP..gamma..S in washed membranes from 1321N1 cells. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not G/sub i/ is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells.

  17. Differential expression during development of ADP-ribosylation factors, 20-kDa guanine nucleotide-binding protein activators of cholera toxin.

    PubMed

    Tsai, S C; Adamik, R; Tsuchiya, M; Chang, P P; Moss, J; Vaughan, M

    1991-05-01

    Cholera toxin exerts its effects on cells in large part through the ADP-ribosylation of guanine nucleotide-binding proteins. Toxin-catalyzed ADP-ribosylation is enhanced by approximately 20-kDa guanine nucleotide-binding proteins termed ADP-ribosylation factors (ARFs), which are allosteric activators of the toxin catalytic unit. Rabbit antiserum against a purified bovine brain ARF (sARF II) reacted on immunoblots with two approximately 20-kDa ARF-like proteins (sARF I and II) in tissue extracts from bovine, rat, frog, and chicken. Levels of ARF were higher in brain than in non-neural tissues. In rat brain, on the second postnatal day, amounts of sARF I and II were similar. By the 10th postnatal day and thereafter, sARF II predominated. Relative levels of ARF determined by immunoreactivity were in agreement with levels assessed in functional assays of cholera toxin-catalyzed ADP-ribosylation. Based on nucleotide and deduced amino acid sequences of human and bovine cDNAs, there appear to be at least six different ARF-like genes. Northern blots of rat brain poly(A)+ RNA were hybridized with cDNA and oligonucleotide probes specific for each of the human and bovine ARF genes. From the second to the 27th postnatal day, ARF 3 mRNA increased, whereas mRNAs for ARFs 2 and 4 decreased; and those for ARFs 1, 5, and 6 were apparently unchanged. Partial amino acid sequence of sARF II is consistent with it being either the ARF 1 or 3 gene product. The developmental changes in rat brain ARF parallel neuronal maturation and synapse formation. PMID:1902473

  18. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  19. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    SciTech Connect

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.; Lima, J.E. )

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubated under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.

  20. Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms.

    PubMed

    Hanawa-Suetsugu, Kyoko; Kukimoto-Niino, Mutsuko; Mishima-Tsumagari, Chiemi; Akasaka, Ryogo; Ohsawa, Noboru; Sekine, Shun-ichi; Ito, Takuhiro; Tochio, Naoya; Koshiba, Seizo; Kigawa, Takanori; Terada, Takaho; Shirouzu, Mikako; Nishikimi, Akihiko; Uruno, Takehito; Katakai, Tomoya; Kinashi, Tatsuo; Kohda, Daisuke; Fukui, Yoshinori; Yokoyama, Shigeyuki

    2012-02-28

    DOCK2, a hematopoietic cell-specific, atypical guanine nucleotide exchange factor, controls lymphocyte migration through ras-related C3 botulinum toxin substrate (Rac) activation. Dedicator of cytokinesis 2-engulfment and cell motility protein 1 (DOCK2•ELMO1) complex formation is required for DOCK2-mediated Rac signaling. In this study, we identified the N-terminal 177-residue fragment and the C-terminal 196-residue fragment of human DOCK2 and ELMO1, respectively, as the mutual binding regions, and solved the crystal structure of their complex at 2.1-Å resolution. The C-terminal Pro-rich tail of ELMO1 winds around the Src-homology 3 domain of DOCK2, and an intermolecular five-helix bundle is formed. Overall, the entire regions of both DOCK2 and ELMO1 assemble to create a rigid structure, which is required for the DOCK2•ELMO1 binding, as revealed by mutagenesis. Intriguingly, the DOCK2•ELMO1 interface hydrophobically buries a residue which, when mutated, reportedly relieves DOCK180 from autoinhibition. We demonstrated that the ELMO-interacting region and the DOCK-homology region 2 guanine nucleotide exchange factor domain of DOCK2 associate with each other for the autoinhibition, and that the assembly with ELMO1 weakens the interaction, relieving DOCK2 from the autoinhibition. The interactions between the N- and C-terminal regions of ELMO1 reportedly cause its autoinhibition, and binding with a DOCK protein relieves the autoinhibition for ras homolog gene family, member G binding and membrane localization. In fact, the DOCK2•ELMO1 interface also buries the ELMO1 residues required for the autoinhibition within the hydrophobic core of the helix bundle. Therefore, the present complex structure reveals the structural basis by which DOCK2 and ELMO1 mutually relieve their autoinhibition for the activation of Rac1 for lymphocyte chemotaxis. PMID:22331897

  1. Structure of Gαi1 bound to a GDP-selective peptide provides insight into guanine nucleotide exchange

    PubMed Central

    Johnston, Christopher A.; Willard, Francis S.; Jezyk, Mark R.; Fredericks, Zoey; Bodor, Erik T.; Jones, Miller B.; Blaesius, Rainer; Watts, Val J.; Harden, T. Kendall; Sondek, John; Ramer, J. Kevin; Siderovski, David P.

    2005-01-01

    Heterotrimeric G-proteins are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive, GDP-bound and an active, GTP-bound state. Under basal conditions G-proteins exist in the inactive GDP-bound state, thus nucleotide exchange is crucial to the onset of signaling. Despite our understanding of G-protein signaling pathways, the mechanism of nucleotide exchange remains elusive. We employed phage display technology to identify nucleotide-state-dependent Gα binding peptides. Herein, we report a GDP-selective Gα-binding peptide, KB-752, that enhances spontaneous nucleotide exchange of Gαi subunits. Structural determination of the Gαi1/peptide complex reveals unique changes in the Gα switch regions predicted to enhance nucleotide exchange by creating a GDP dissociation route. Our results cast light onto a potential mechanism by which Gα subunits adopt a conformation suitable for nucleotide exchange. PMID:16004878

  2. Flow Cytometry for Real-Time Measurement of Guanine Nucleotide Binding and Exchange by Ras-like GTPases

    PubMed Central

    Schwartz, Samantha L.; Tessema, Mathewos; Buranda, Tione; Phlypenko, Olena; Rak, Alexey; Simons, Peter C.; Surviladze, Zurab; Sklar, Larry A.; Wandinger-Ness, Angela

    2008-01-01

    Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here, we report a bead-based, flow cytometric assay that quantitatively measures the nucleotide binding properties of GST-chimeras for prototypical Ras-family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg2+, with magnesium cations principally increasing affinity and slowing nucleotide dissociation rate 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for GDP relative to GTP that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used γ-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP-binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real-time and quantitatively assess differences between GTPases. PMID:18638444

  3. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING.

    PubMed

    Chávez-Vargas, Lydia; Adame-García, Sendi Rafael; Cervantes-Villagrana, Rodolfo Daniel; Castillo-Kauil, Alejandro; Bruystens, Jessica G H; Fukuhara, Shigetomo; Taylor, Susan S; Mochizuki, Naoki; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2016-03-18

    Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA. PMID:26797121

  4. GBF1, a Guanine Nucleotide Exchange Factor for Arf, Is Crucial for Coxsackievirus B3 RNA Replication▿

    PubMed Central

    Lanke, Kjerstin H. W.; van der Schaar, Hilde M.; Belov, George A.; Feng, Qian; Duijsings, Daniël; Jackson, Catherine L.; Ehrenfeld, Ellie; van Kuppeveld, Frank J. M.

    2009-01-01

    The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study. PMID:19740986

  5. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration–proliferation dichotomy

    PubMed Central

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L.; Garcia-Marcos, Mikel; Farquhar, Marilyn G.; Ghosh, Pradipta

    2015-01-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously—a phenomenon called “migration–proliferation dichotomy.” We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration–proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  6. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    PubMed

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  7. Distinct subcellular localization of alternative splicing variants of EFA6D, a guanine nucleotide exchange factor for Arf6, in the mouse brain.

    PubMed

    Fukaya, Masahiro; Ohta, Shingo; Hara, Yoshinobu; Tamaki, Hideaki; Sakagami, Hiroyuki

    2016-09-01

    EFA6D (guanine nucleotide exchange factor for ADP-ribosylation factor 6 [Arf6]D) is also known as EFA6R, Psd3, and HCA67. It is the fourth member of the EFA6 family with guanine nucleotide exchange activity for Arf6, a small guanosine triphosphatase (GTPase) that regulates endosomal trafficking and actin cytoskeleton remodeling. We propose a classification and nomenclature of 10 EFA6D variants deposited in the GenBank database as EFA6D1a, 1b, 1c, 1d, 1s, 2a, 2b, 2c, 2d, and 2s based on the combination of N-terminal and C-terminal insertions. Polymerase chain reaction analysis showed the expression of all EFA6D variants except for variants a and d in the adult mouse brain. Immunoblotting analysis with novel variant-specific antibodies showed the endogenous expression of EFA6D1b, EFA6D1c, and EFA6D1s at the protein level, with the highest expression being EFA6D1s, in the brain. Immunoblotting analysis of forebrain subcellular fractions showed the distinct subcellular distribution of EFA6D1b/c and EFA6D1s. The immunohistochemical analysis revealed distinct but overlapping immunoreactive patterns between EFA6D1b/c and EFA6D1s in the mouse brain. In immunoelectron microscopic analyses of the hippocampal CA3 region, EFA6D1b/c was present predominantly in the mossy fiber axons of dentate granule cells, whereas EFA6D1s was present abundantly in the cell bodies, dendritic shafts, and spines of hippocampal pyramidal cells. These results provide the first anatomical evidence suggesting the functional diversity of EFA6D variants, particularly EFA6D1b/c and EFA6D1s, in neurons. J. Comp. Neurol. 524:2531-2552, 2016. © 2016 Wiley Periodicals, Inc. PMID:27241101

  8. Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin.

    PubMed

    Padilla, Philip Ian; Uhart, Marina; Pacheco-Rodriguez, Gustavo; Peculis, Brenda A; Moss, Joel; Vaughan, Martha

    2008-03-01

    BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, activates class I ADP-ribosylation factors (ARF1-3) by catalyzing the replacement of bound GDP by GTP, an action critical for the regulation of protein transport in eukaryotic cells. Our earlier report [Padilla PI, Pancheco-Rodriguez G, Moss J, Vaughan M (2004) Proc Natl Acad Sci USA 101:2752-2757] that BIG1 concentrated in nucleoli of serum-starved HepG2 cells prompted us to identify molecules associated with BIG1 in dynamic nucleolar structures. Antibodies against BIG1 or nucleolin coprecipitated both proteins from nuclei, which was abolished by the incubation of nuclei with RNase A or DNase, indicating that the interaction depended on nucleic acids. (32)P labeling of RNAs immunoprecipitated with BIG1 or nucleolin from nuclei revealed bands of approximately 210 bases that also hybridized with U3 small nucleolar (sno)RNA-specific oligonucleotides. Clones of U3 snoRNA cDNAs from the material precipitated by antibodies against BIG1 or nucleolin yielded identical nucleotide sequences that also were found in genomic DNA. Later analyses revealed the presence of fibrillarin, nucleoporin p62, and La in BIG1 and nucleolin immunoprecipitates. Our data demonstrate that BIG1, nucleolin, U3, the U3-binding protein fibrillarin, and the RNA-binding protein La may exist together in nuclear complexes, consistent with a potential role for BIG1 in nucleolar processes. Evidence that BIG1 and nucleolin, but not fibrillarin, can be present with p62 at the nuclear envelope confirms the presence of BIG1 and nucleolin in dynamic molecular complexes that change in composition while moving through nuclei. Nuclear functions of BIG1 remain to be determined. PMID:18292223

  9. Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1

    PubMed Central

    Philip, Bevin; Levin, David E.

    2001-01-01

    Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2. PMID:11113201

  10. Rapid-mix flow cytometry measurements of subsecond regulation of G protein-coupled receptor ternary complex dynamics by guanine nucleotides.

    PubMed

    Wu, Yang; Buranda, Tione; Simons, Peter C; Lopez, Gabriel P; McIntire, William E; Garrison, James C; Prossnitz, Eric R; Sklar, Larry A

    2007-12-01

    We have used rapid-mix flow cytometry to analyze the early subsecond dynamics of the disassembly of ternary complexes of G protein-coupled receptors (GPCRs) immobilized on beads to examine individual steps associated with guanine nucleotide activation. Our earlier studies suggested that the slow dissociation of Galpha and Gbetagamma subunits was unlikely to be an essential component of cell activation. However, these studies did not have adequate time resolution to define precisely the disassembly kinetics. Ternary complexes were assembled using three formyl peptide receptor constructs (wild type, formyl peptide receptor-Galpha(i2) fusion, and formyl peptide receptor-green fluorescent protein fusion) and two isotypes of the alpha subunit (alpha(i2) and alpha(i3)) and betagamma dimer (beta(1)gamma(2) and beta(4)gamma(2)). At saturating nucleotide levels, the disassembly of a significant fraction of ternary complexes occurred on a subsecond time frame for alpha(i2) complexes and tau(1/2)< or =4s for alpha(i3) complexes, time scales that are compatible with cell activation. beta(1)gamma(2) isotype complexes were generally more stable than beta(4)gamma(2)-associated complexes. The comparison of the three constructs, however, proved that the fast step was associated with the separation of receptor and G protein and that the dissociation of the ligand or of the alpha and betagamma subunits was slower. These results are compatible with a cell activation model involving G protein conformational changes rather than disassembly of Galphabetagamma heterotrimer. PMID:17904091

  11. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function

    PubMed Central

    Franco, Michel; Boretto, Joëlle; Robineau, Sylviane; Monier, Solange; Goud, Bruno; Chardin, Pierre; Chavrier, Philippe

    1998-01-01

    Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component β-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells. PMID:9707577

  12. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila.

    PubMed

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  13. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge

    PubMed Central

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R.

    2015-01-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock–ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis. PMID:25908317

  14. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

    PubMed Central

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI: http://dx.doi.org/10.7554/eLife.06011.001 PMID:26512886

  15. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes.

    PubMed

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. PMID:26512886

  16. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum.

    PubMed

    Li, Ying; Li, Bing; Liu, Luping; Chen, Huaigu; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2015-01-01

    The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum. PMID:26657788

  17. Expression and Distribution of the Guanine Nucleotide-binding Protein Subunit Alpha-s in Mice Skin Tissues and Its Association with White and Black Coat Colors.

    PubMed

    Yin, Zhihong; Zhao, Xin; Wang, Zhun; Li, Zhen; Bai, Rui; Yang, Shanshan; Zhao, Min; Pang, Quanhai

    2016-10-01

    Guanine nucleotide-binding protein subunit alpha-s (Gnαs) is a small subunit of the G protein-couple signaling pathway, which is involved in the formation of coat color. The expression level and distribution of Gnαs were detected by quantitative real-time-polymerase chain reaction (qPCR), western blot, and immunohistochemistry to investigate the underlying mechanisms of coat color in white and black skin tissues of mice. qPCR and western blot results suggested that Gnαs was expressed at significantly higher levels in black mice compared with that of white mice, and transcripts and protein possessed the same expression in both colors. Immunohistochemistry demonstrated Gnαs staining in the root sheath and dermal papilla in hair follicle of mice skins. The results indicated that the Gnαs gene was expressed in both white and black skin tissues, and the expression level of Gnαs in the two types of color was different. Therefore, Gnαs may be involved in the coat color formation in mice. PMID:26954226

  18. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila

    PubMed Central

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it’s functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  19. Reconstitution of rate brain /mu/ opioid receptors with purified guanine nucleotide-binding regulatory proteins, G/sub i/ and G/sub o/

    SciTech Connect

    Ueda, Hiroshi; Harada, Hitoshi; Nozaki, Masakatsu; Katada, Toshiaki; Ui, Michio; Satoh, Masamichi; Takagi, Hiroshi

    1988-09-01

    Reconstitution of purified /mu/ opioid receptors with purified guanine nucleotide-binding regulatory proteins (G proteins) was investigated. The purified /mu/ opioid receptor (pI 5.6) migrated as a single M/sub r/ 58,000 polypeptide by NaDodSO/sub 4//PAGE, a value identical to that obtained by affinity cross-linking purified /mu/ receptors. When purified /mu/ receptors were reconstituted with purified G/sub i/, the G protein that mediates the inhibition of adenylate cyclase, the displacement of (/sup 3/H)naloxone binding by (D-Ala/sup 2/,MePhe/sup 4/,Gly-ol/sup 5/)enkephalin was increased 215-fold; this increase was abolished by adding 100 /mu/M guanosine 5'-(/gamma/-thio)triphosphate. Similar increases in agonist displacement of (/sup 3/H)naloxone binding (33-fold) and its abolition by guanosine 5'-(/gamma/-thio)triphosphate were observed with G/sub o/, the G protein of unknown function, but not with the v-Ki-ras protein p.21. The stoichiometry was such that the stimulation of 1 mol of /mu/ receptor led to the binding of (/sup 3/H)guanosine 5'-(/beta/,/gamma/-imido)triphosphate to 2.5 mol of G/sub i/ or to 1.37 mol of G/sub o/. These results suggest that the purified /mu/ opioid receptor is functionally coupled to G/sub i/ and G/sub o/ in the reconstituted phospholipid vesicles.

  20. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum

    PubMed Central

    Li, Ying; Li, Bing; Liu, Luping; Chen, Huaigu; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2015-01-01

    The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum. PMID:26657788

  1. In vivo expression of the Arf6 Guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Onami, Naoko; Tsumura, Hideki; Nemoto, Noriko; Kawahara, Katsumasa; Kato, Minoru; Kotera, Jun; Nakamura, Kazuaki; Tanoue, Akito; Yamauchi, Junji

    2013-10-01

    The myelin sheath consists of a unique multiple layer structure that acts as an insulator between neuronal axons to enhance the propagation of the action potential. In neuropathies such as demyelinating or dismyelinating diseases, chronic demyelination and defective remyelination occur repeatedly, leading to more severe neuropathy. As yet, little is known about the possibility of drug target-specific medicine for such diseases. In the developing peripheral nervous system (PNS), myelin sheaths form as Schwann cells wrap individual axons. It is thought that the development of a drug promoting myelination by Schwann cells would provide effective therapy against peripheral nerve disorders: to test such treatment, genetically modified mice overexpressing the drug target molecules are needed. We previously identified an Arf6 activator, the guanine-nucleotide exchange factor cytohesin-1, as the signaling molecule controlling myelination of peripheral axons by Schwann cells; yet, the important issue of whether cytohesin-1 itself promotes myelin thickness in vivo has remained unclear. Herein, we show that, in mouse PNS nerves, Schwann cell-specific expression of wild-type cytohesin-1 exhibits enhanced myelin thickness. Downstream activation of Arf6 is also seen in these transgenic mice, revealing the involvement of the cytohesin-1 and Arf6 signaling unit in promoting myelination. These results suggest that cytohesin-1 may be a candidate for the basis of a therapy for peripheral neuropathies through its enhancement of myelin thickness. PMID:23636892

  2. Bisphenol A binds to Ras proteins and competes with guanine nucleotide exchange: implications for GTPase-selective antagonists.

    PubMed

    Schöpel, Miriam; Jockers, Katharina F G; Düppe, Peter M; Autzen, Jasmin; Potheraveedu, Veena N; Ince, Semra; Yip, King Tuo; Heumann, Rolf; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2013-12-12

    We show for the first time that bisphenol A (10) has the capacity to interact directly with K-Ras and that Rheb weakly binds to bisphenol A (10) and 4,4'-biphenol derivatives. We have characterized these interactions at atomic resolution suggesting that these compounds sterically interfere with the Sos-mediated nucleotide exchange in H- and K-Ras. We show that 4,4'-biphenol (5) selectively inhibits Rheb signaling and induces cell death suggesting that this compound might be a novel candidate for treatment of tuberous sclerosis-mediated tumor growth. Our results propose a new mode of action for bisphenol A (10) that advocates a reduced exposure to this compound in our environment. Our data may lay the foundation for the future design of GTPase-selective antagonists with higher affinity to benefit of the treatment of cancer because K-Ras inhibition is regarded to be a promising strategy with a potential therapeutic window for targeting Sos in Ras-driven tumors. PMID:24266771

  3. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    SciTech Connect

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation of unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.

  4. Guanine Nucleotides in the Meiotic Maturation of Starfish Oocytes: Regulation of the Actin Cytoskeleton and of Ca2+ Signaling

    PubMed Central

    Kyozuka, Keiichiro; Chun, Jong T.; Puppo, Agostina; Gragnaniello, Gianni; Garante, Ezio; Santella, Luigia

    2009-01-01

    Background Starfish oocytes are arrested at the first prophase of meiosis until they are stimulated by 1-methyladenine (1-MA). The two most immediate responses to the maturation-inducing hormone are the quick release of intracellular Ca2+ and the accelerated changes of the actin cytoskeleton in the cortex. Compared with the later events of oocyte maturation such as germinal vesicle breakdown, the molecular mechanisms underlying the early events involving Ca2+ signaling and actin changes are poorly understood. Herein, we have studied the roles of G-proteins in the early stage of meiotic maturation. Methodology/Principal Findings By microinjecting starfish oocytes with nonhydrolyzable nucleotides that stabilize either active (GTPγS) or inactive (GDPβS) forms of G-proteins, we have demonstrated that: i) GTPγS induces Ca2+ release that mimics the effect of 1-MA; ii) GDPβS completely blocks 1-MA-induced Ca2+; iii) GDPβS has little effect on the amplitude of the Ca2+ peak, but significantly expedites the initial Ca2+ waves induced by InsP3 photoactivation, iv) GDPβS induces unexpectedly striking modification of the cortical actin networks, suggesting a link between the cytoskeletal change and the modulation of the Ca2+ release kinetics; v) alteration of cortical actin networks with jasplakinolide, GDPβS, or actinase E, all led to significant changes of 1-MA-induced Ca2+ signaling. Conclusions/Significance Taken together, these results indicate that G-proteins are implicated in the early events of meiotic maturation and support our previous proposal that the dynamic change of the actin cytoskeleton may play a regulatory role in modulating intracellular Ca2+ release. PMID:19617909

  5. Insights into the Molecular Activation Mechanism of the RhoA-specific Guanine Nucleotide Exchange Factor, PDZRhoGEF

    SciTech Connect

    Bielnicki, Jakub A.; Shkumatov, Alexander V.; Derewenda, Urszula; Somlyo, Avril V.; Svergun, Dmitri I.; Derewenda, Zygmunt S.

    2012-10-09

    PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via G{alpha}{sub 12/13} and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory 'activation box' and the 'GEF switch,' which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.

  6. Guanine Nucleotide Exchange Factor αPIX Leads to Activation of the Rac 1 GTPase/Glycogen Phosphorylase Pathway in Interleukin (IL)-2-stimulated T Cells

    PubMed Central

    Llavero, Francisco; Urzelai, Bakarne; Osinalde, Nerea; Gálvez, Patricia; Lacerda, Hadriano M.; Parada, Luis A.; Zugaza, José L.

    2015-01-01

    Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation. PMID:25694429

  7. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.

    PubMed

    Czikora, Agnes; Lundberg, Daniel J; Abramovitz, Adelle; Lewin, Nancy E; Kedei, Noemi; Peach, Megan L; Zhou, Xiaoling; Merritt, Raymond C; Craft, Elizabeth A; Braun, Derek C; Blumberg, Peter M

    2016-05-20

    The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation. PMID:27022025

  8. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling.

    PubMed

    Lee, Hye-Kyung; Ji, Suk; Park, Su-Jin; Choung, Han-Wool; Choi, Youngnim; Lee, Hyo-Jung; Park, Shin-Young; Park, Joo-Cheol

    2015-06-01

    Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis. PMID:25911094

  9. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling*

    PubMed Central

    Lee, Hye-Kyung; Ji, Suk; Park, Su-Jin; Choung, Han-Wool; Choi, Youngnim; Lee, Hyo-Jung; Park, Shin-Young; Park, Joo-Cheol

    2015-01-01

    Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis. PMID:25911094

  10. Cdc42 and the Guanine Nucleotide Exchange Factors Ect2 and Trio Mediate Fn14-Induced Migration and Invasion of Glioblastoma Cells

    PubMed Central

    Fortin, Shannon P.; Ennis, Matthew J.; Schumacher, Cassie A.; Zylstra-Diegel, Cassandra R.; Williams, Bart O.; Ross, Julianna T.D.; Winkles, Jeffrey A.; Loftus, Joseph C.; Symons, Marc H.; Tran, Nhan L.

    2012-01-01

    Malignant glioblastomas are characterized by their ability to infiltrate into normal brain. We previously reported that binding of the multifunctional cytokine TNF-like weak inducer of apoptosis (TWEAK) to its receptor fibroblast growth factor–inducible 14 (Fn14) induces glioblastoma cell invasion via Rac1 activation. Here, we show that Cdc42 plays an essential role in Fn14-mediated activation of Rac1. TWEAK-treated glioma cells display an increased activation of Cdc42, and depletion of Cdc42 using siRNA abolishes TWEAK-induced Rac1 activation and abrogates glioma cell migration and invasion. In contrast, Rac1 depletion does not affect Cdc42 activation by Fn14, showing that Cdc42 mediates TWEAK-stimulated Rac1 activation. Furthermore, we identified two guanine nucleotide exchange factors (GEF), Ect2 and Trio, involved in TWEAK-induced activation of Cdc42 and Rac1, respectively. Depletion of Ect2 abrogates both TWEAK-induced Cdc42 and Rac1 activation, as well as subsequent TWEAK-Fn14–directed glioma cell migration and invasion. In contrast, Trio depletion inhibits TWEAK-induced Rac1 activation but not TWEAK-induced Cdc42 activation. Finally, inappropriate expression of Fn14 or Ect2 in mouse astrocytes in vivo using an RCAS vector system for glial-specific gene transfer in G-tva transgenic mice induces astrocyte migration within the brain, corroborating the in vitro importance of the TWEAK-Fn14 signaling cascade in glioblastoma invasion. Our results suggest that the TWEAK-Fn14 signaling axis stimulates glioma cell migration and invasion through two GEF-GTPase signaling units, Ect2-Cdc42 and Trio-Rac1. Components of the Fn14-Rho GEF-Rho GTPase signaling pathway present innovative drug targets for glioma therapy. PMID:22571869

  11. Oligomerization of the Sec7 domain Arf guanine nucleotide exchange factor GBF1 is dispensable for Golgi localization and function but regulates degradation.

    PubMed

    Bhatt, Jay M; Viktorova, Ekaterina G; Busby, Theodore; Wyrozumska, Paulina; Newman, Laura E; Lin, Helen; Lee, Eunjoo; Wright, John; Belov, George A; Kahn, Richard A; Sztul, Elizabeth

    2016-03-15

    Members of the large Sec7 domain-containing Arf guanine nucleotide exchange factor (GEF) family have been shown to dimerize through their NH2-terminal dimerization and cyclophilin binding (DCB) and homology upstream of Sec7 (HUS) domains. However, the importance of dimerization in GEF localization and function has not been assessed. We generated a GBF1 mutant (91/130) in which two residues required for oligomerization (K91 and E130 within the DCB domain) were replaced with A and assessed the effects of these mutations on GBF1 localization and cellular functions. We show that 91/130 is compromised in oligomerization but that it targets to the Golgi in a manner indistinguishable from wild-type GBF1 and that it rapidly exchanges between the cytosolic and membrane-bound pools. The 91/130 mutant appears active as it integrates within the functional network at the Golgi, supports Arf activation and COPI recruitment, and sustains Golgi homeostasis and cargo secretion when provided as a sole copy of functional GBF1 in cells. In addition, like wild-type GBF1, the 91/130 mutant supports poliovirus RNA replication, a process requiring GBF1 but believed to be independent of GBF1 catalytic activity. However, oligomerization appears to stabilize GBF1 in cells, and the 91/130 mutant is degraded faster than the wild-type GBF1. Our data support a model in which oligomerization is not a key regulator of GBF1 activity but impacts its function by regulating the cellular levels of GBF1. PMID:26718629

  12. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle

    PubMed Central

    Takenaka, Nobuyuki; Nihata, Yuma; Satoh, Takaya

    2016-01-01

    Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling. PMID:27163697

  13. Architecture of the eIF2B regulatory subcomplex and its implications for the regulation of guanine nucleotide exchange on eIF2

    PubMed Central

    Kuhle, Bernhard; Eulig, Nora K.; Ficner, Ralf

    2015-01-01

    Eukaryal translation initiation factor 2B (eIF2B) acts as guanine nucleotide exchange factor (GEF) for eIF2 and forms a central target for pathways regulating global protein synthesis. eIF2B consists of five non-identical subunits (α–ϵ), which assemble into a catalytic subcomplex (γ, ϵ) responsible for the GEF activity, and a regulatory subcomplex (α, β, δ) which regulates the GEF activity under stress conditions. Here, we provide new structural and functional insight into the regulatory subcomplex of eIF2B (eIF2BRSC). We report the crystal structures of eIF2Bβ and eIF2Bδ from Chaetomium thermophilum as well as the crystal structure of their tetrameric eIF2B(βδ)2 complex. Combined with mutational and biochemical data, we show that eIF2BRSC exists as a hexamer in solution, consisting of two eIF2Bβδ heterodimers and one eIF2Bα2 homodimer, which is homologous to homohexameric ribose 1,5-bisphosphate isomerases. This homology is further substantiated by the finding that eIF2Bα specifically binds AMP and GMP as ligands. Based on our data, we propose a model for eIF2BRSC and its interactions with eIF2 that is consistent with previous biochemical and genetic data and provides a framework to better understand eIF2B function, the molecular basis for Gcn−, Gcd− and VWM/CACH mutations and the evolutionary history of the eIF2B complex. PMID:26384431

  14. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  15. RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity.

    PubMed

    Kimple, R J; De Vries, L; Tronchère, H; Behe, C I; Morris, R A; Gist Farquhar, M; Siderovski, D P

    2001-08-01

    The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity. PMID:11387333

  16. TROY Interacts with Rho Guanine Nucleotide Dissociation Inhibitor α (RhoGDIα) to Mediate Nogo-induced Inhibition of Neurite Outgrowth*

    PubMed Central

    Lu, Yan; Liu, Xiujie; Zhou, Jianfeng; Huang, Aijun; Zhou, Jiazhen; He, Cheng

    2013-01-01

    TROY can functionally substitute p75 to comprise the Nogo receptor complex, which transduces the inhibitory signal of myelin-associated inhibitory factors on axon regeneration following CNS injury. The inhibition of neurite extension relies on TROY-dependent RhoA activation, but how TROY activates RhoA remains unclear. Here, we firstly identified Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) as a binding partner of TROY using GST pull-down combined with two-dimensional gel electrophoresis and mass spectra analysis. The interaction was further confirmed by coimmunoprecipitation in vitro and in vivo. Deletion mutagenesis revealed that two regions of the TROY intracellular domain (amino acids 234–256 and 321–350) were essential for the interaction with RhoGDIα. Secondly, TROY and RhoGDIα were coexpressed in postnatal dorsal root ganglion neurons, cortex neurons, and cerebellar granule neurons (CGNs). Thirdly, TROY/RhoGDIα association was potentiated by Nogo-66 and was independent of p75/RhoGDIα interaction. Fourthly, TROY/RhoGDIα interaction was still able to activate RhoA when p75 was deficient. Furthermore, RhoA activation was decreased dramatically when TROY was knocked down in p75-deficient CGNs cells. Finally, RhoGDIα overexpression abolished RhoA activation and following neurite outgrowth inhibition by Nogo-66 in both wild-type and p75-deficient CGNs. These results showed that the association of RhoGDIα with TROY contributed to TROY-dependent RhoA activation and neurite outgrowth inhibition after Nogo-66 stimulation. PMID:24129566

  17. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    SciTech Connect

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.

  18. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    SciTech Connect

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.

  19. Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements.

    PubMed Central

    Taylor, S J; Exton, J H

    1987-01-01

    proposed that GTP analogues and hormones, acting through a guanine nucleotide-binding protein, activate the enzyme mainly by lowering its Ca2+ requirement. PMID:2829842

  20. Delta-opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide-binding protein Gi2.

    PubMed Central

    McKenzie, F R; Milligan, G

    1990-01-01

    Mouse neuroblastoma x rat glioma hybrid cells (NG108-15) express an opioid receptor of the delta subclass which both stimulates high-affinity GTPase activity and inhibits adenylate cyclase by interacting with a pertussis-toxin-sensitive guanine-nucleotide-binding protein(s) (G-protein). Four such G-proteins have now been identified without photoreceptor-containing tissues. We have generated anti-peptide antisera against synthetic peptides which correspond to the C-terminal decapeptides of the alpha-subunit of each of these G-proteins and also to the stimulatory G-protein of the adenylate cyclase cascade (Gs). Using these antisera, we demonstrate the expression of three pertussis-toxin-sensitive G-proteins in these cells, which correspond to the products of the Gi2, Gi3 and Go genes, as well as Gs. Gi1, however, is not expressed in detectable amounts. IgG fractions from each of these antisera and from normal rabbit serum were used to attempt to interfere with the interaction of the opioid receptor with the G-protein system by assessing ligand stimulation of high-affinity GTPase activity, inhibition of adenylate cyclase activity and conversion of the receptor to a state which displays reduced affinity for agonists. The IgG fraction from the antiserum (AS7) which specifically identifies Gi2 in these cells attenuated the effects of the opioid receptor. This effect was complete and was not mimicked by any of the other antisera. We conclude that the delta-opioid receptor of these cells interacts directly and specifically with Gi2 to cause inhibition of adenylate cyclase, and that Gi2 represents the true Gi of the adenylate cyclase cascade. The ability to measure alterations in agonist affinity for receptors following the use of specific antisera against a range of G-proteins implies that such techniques should be applicable to investigations of the molecular identity of the G-protein(s) which interacts with any receptor. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID

  1. Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins.

    PubMed Central

    Lee, C M; Chang, P P; Tsai, S C; Adamik, R; Price, S R; Kunz, B C; Moss, J; Twiddy, E M; Holmes, R K

    1991-01-01

    Escherichia coli heat-labile enterotoxins (LT) are responsible in part for "traveler's diarrhea" and related diarrheal illnesses. The family of LTs comprises two serogroups termed LT-I and LT-II; each serogroup includes two or more antigenic variants. The effects of LTs result from ADP ribosylation of Gs alpha, a stimulatory component of adenylyl cyclase; the mechanism of action is identical to that of cholera toxin (CT). The ADP-ribosyltransferase activity of CT is enhanced by 20-kD guanine nucleotide-binding proteins, known as ADP-ribosylation factors or ARFs. These proteins directly activate the CTA1 catalytic unit and stimulate its ADP ribosylation of Gs alpha, other proteins, and simple guanidino compounds (e.g., agmatine). Because of the similarities between CT and LTs, we investigated the effects of purified bovine brain ARF and a recombinant form of bovine ARF synthesized in Escherichia coli on LT activity. ARF enhanced the LT-I-, LT-IIa-, and LT-IIb-catalyzed ADP ribosylation of agmatine, as well as the auto-ADP ribosylation of the toxin catalytic unit. Stimulation of ADP-ribosylagmatine formation by LTs and CT in the presence of ARF was GTP dependent and enhanced by sodium dodecyl sulfate. With agmatine as substrate, LT-IIa and LT-IIb exhibited less than 1% the activity of CT and LT-Ih. CT and LTs catalyzed ADP-ribosyl-Gs alpha formation in a reaction dependent on ARF, GTP, and dimyristoyl phosphatidylcholine/cholate. With Gs alpha as substrate, the ADP-ribosyltransferase activities of the toxins were similar, although CT and LT-Ih appeared to be slightly more active than LT-IIa and LT-IIb. Thus, LT-IIa and LT-IIb appear to differ somewhat from CT and LT-Ih in substrate specificity. Responsiveness to stimulation by ARF, GTP, and phospholipid/detergent as well as the specificity of ADP-ribosyltransferase activity are functions of LTs from serogroups LT-I and LT-II that are shared with CT. Images PMID:1902492

  2. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    PubMed Central

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following

  3. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  4. Lentivirus vector-mediated Rho guanine nucleotide dissociation inhibitor 2 induces beta-2 adrenergic receptor desensitization in β2AR desensitization mice model

    PubMed Central

    Ni, Songshi; Zhao, Jing; Fu, Zhenxue

    2014-01-01

    Background It is well-known that chronic administration of β2AR agonists can induce β2AR desensitization. Our previous study showed that Rho guanine nucleotide dissociation inhibitor 2 (RhoGDI2) overexpression induced beta-2 adrenergic receptor (β2AR) desensitization in airway smooth muscle cells. The purpose of this study was to further study the function of RhoGDI2 in β2AR desensitization by β2AR desensitization mouse model. Methods Studies were performed using a β2AR desensitization mice model induced by salbutamol. The mice were randomly divided into five groups (n=45): RhoGDI2 overexpression group (n=10); RhoGDI2 siRNA group (n=10); empty viral vector group (n=10); experimental control group (n=10); blank control group—without any drug treatment (n=5). The first four groups were used the same methods and the same dose to establish β2AR desensitization mice model by salbutamol. The first three groups that salbutamol-treated were used for intratracheal delivery of lentiviral vectors. Airway hyperreactivity was measured through a whole-body plethysmograph system. RhoGDI2, β2AR, GRK2 mRNA and protein expression levels were then detected by RT-PCR and western blot analyses in fresh lung tissues. As well as the activity of GRK was assessed by light-dependent phosphorylation of rhodopsin. Results We successfully constructed β2AR desensitization mouse model. As expected, airway responsiveness after inhaling acetylcholine chloride (Ach) was markedly increased in the RhoGDI2 overexpression group compared to experimental control group and blank control group when concentrations of Ach was 45 mg/mL (all P<0.05), while, it was markedly decreased in the RhoGDI2 siRNA group compared to experimental control group (P<0.05). RhoGDI2, GRK2 expressions and GRK enzymatic activity were significantly increased in RhoGDI2 overexpression group compared to experimental control group and blank control group (all P<0.05). RhoGDI2, GRK2 expressions and GRK enzymatic activity

  5. Evidence for Natural Selection in Nucleotide Content Relationships Based on Complete Mitochondrial Genomes: Strong Effect of Guanine Content on Separation between Terrestrial and Aquatic Vertebrates

    PubMed Central

    Sorimachi, Kenji; Okayasu, Teiji

    2015-01-01

    The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins. PMID:25853054

  6. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  7. Guanine nucleotide dissociation inhibitor activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif.

    PubMed

    Kimple, Randall J; Willard, Francis S; Hains, Melinda D; Jones, Miller B; Nweke, Gift K; Siderovski, David P

    2004-03-15

    GoLoco ('Galpha(i/o)-Loco' interaction) motif proteins have recently been identified as novel GDIs (guanine nucleotide dissociation inhibitors) for heterotrimeric G-protein alpha subunits. G18 is a member of the mammalian GoLoco-motif gene family and was uncovered by analyses of human and mouse genomes for anonymous open-reading frames. The encoded G18 polypeptide is predicted to contain three 19-amino-acid GoLoco motifs, which have been shown in other proteins to bind Galpha subunits and inhibit spontaneous nucleotide release. However, the G18 protein has thus far not been characterized biochemically. Here, we have cloned and expressed the G18 protein and assessed its ability to act as a GDI. G18 is capable of simultaneously binding more than one Galpha(i1) subunit. In binding assays with the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, G18 exhibits GDI activity, slowing the exchange of GDP for GTP by Galpha(i1). Only the first and third GoLoco motifs within G18 are capable of interacting with Galpha subunits, and these bind with low micromolar affinity only to Galpha(i1) in the GDP-bound form, and not to Galpha(o), Galpha(q), Galpha(s) or Galpha12. Mutation of Ala-121 to aspartate in the inactive second GoLoco motif of G18, to restore the signature acidic-glutamine-arginine tripeptide that forms critical contacts with Galpha and its bound nucleotide [Kimple, Kimple, Betts, Sondek and Siderovski (2002) Nature (London) 416, 878-881], results in gain-of-function with respect to Galpha binding and GDI activity. PMID:14656218

  8. The Interplay between the Escherichia coli Rho Guanine Nucleotide Exchange Factor Effectors and the Mammalian RhoGEF Inhibitor EspH

    PubMed Central

    Wong, Alexander R. C.; Clements, Abigail; Raymond, Benoit; Crepin, Valerie F.; Frankel, Gad

    2012-01-01

    ABSTRACT Rho GTPases are important regulators of many cellular processes. Subversion of Rho GTPases is a common infection strategy employed by many important human pathogens. Enteropathogenic Escherichia coli and enterohemorrhagic Escherichia coli (EPEC and EHEC) translocate the effector EspH, which inactivates mammalian Rho guanine exchange factors (GEFs), as well as Map, EspT, and EspM2, which, by mimicking mammalian RhoGEFs, activate Rho GTPases. In this study we found that EspH induces focal adhesion disassembly, triggers cell detachment, activates caspase-3, and induces cytotoxicity. EspH-induced cell detachment and caspase-3 activation can be offset by EspT, EspM2, and the Salmonella Cdc42/Rac1 GEF effector SopE, which remain active in the presence of EspH. EPEC and EHEC therefore use a novel strategy of controlling Rho GTPase activity by translocating one effector to inactivate mammalian RhoGEFs, replacing them with bacterial RhoGEFs. This study also expands the functional range of bacterial RhoGEFs to include cell adhesion and survival. IMPORTANCE Many human pathogens use a type III secretion system to translocate effectors that can functionally be divided into signaling, disabling, and countervirulence effectors. Among the signaling effectors are those that activate Rho GTPases, which play a central role in coordinating actin dynamics. However, many pathogens also translocate effectors with antagonistic or counteractive functions. For example, Salmonella translocates SopE and SptP, which sequentially turn Rac1 and Cdc42 on and off. In this paper, we show that enteropathogenic E. coli translocates EspH, which inactivates mammalian RhoGEFs and triggers cytotoxicity and at the same time translocates the bacterial RhoGEFs EspM2 and EspT, which are insensitive to EspH, and so neutralizes EspH-induced focal adhesion disassembly, cell detachment, and caspase-3 activation. Our data point to an intriguing infection strategy in which EPEC and EHEC override cellular

  9. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development.

    PubMed

    Schäker, Kathrin; Bartsch, Susanne; Patry, Christian; Stoll, Sandra J; Hillebrands, Jan-Luuk; Wieland, Thomas; Kroll, Jens

    2015-03-01

    Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis. PMID:25586182

  10. The Bipartite Rac1 Guanine Nucleotide Exchange Factor Engulfment and Cell Motility 1/Dedicator of Cytokinesis 180 (Elmo1/Dock180) Protects Endothelial Cells from Apoptosis in Blood Vessel Development*

    PubMed Central

    Schäker, Kathrin; Bartsch, Susanne; Patry, Christian; Stoll, Sandra J.; Hillebrands, Jan-Luuk; Wieland, Thomas; Kroll, Jens

    2015-01-01

    Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis. PMID:25586182

  11. An Adenine-DNA Adduct Derived from Nitroreduction of 6-Nitrochrysene is more Resistant to Nucleotide Excision Repair than Guanine-DNA Adducts

    PubMed Central

    Krzeminski, Jacek; Kropachev, Konstantin; Reeves, Dara; Kolbanovskiy, Aleksandr; Kolbanovskiy, Marina; Chen, Kun-Ming; Sharma, Arun K.; Geacintov, Nicholas; Amin, Shantu; El-Bayoumy, Karam

    2013-01-01

    Previous studies in rats, mice and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: 1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts: N-(dG-8-yl)-6-AC, 5-(dG-N2-yl)-6-AC and N-(dA-8-yl)-6-AC, and 2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield: N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N2-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ~2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ~ 8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N2-yl)-6-AC ~ N-(dG-8-yl)-6-AC ~ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N2-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue, could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland. PMID:24112095

  12. Subunit-selective N-Methyl-d-aspartate (NMDA) Receptor Signaling through Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factors BRAG1 and BRAG2 during Synapse Maturation.

    PubMed

    Elagabani, Mohammad Nael; Briševac, Dušica; Kintscher, Michael; Pohle, Jörg; Köhr, Georg; Schmitz, Dietmar; Kornau, Hans-Christian

    2016-04-22

    The maturation of glutamatergic synapses in the CNS is regulated by NMDA receptors (NMDARs) that gradually change from a GluN2B- to a GluN2A-dominated subunit composition during postnatal development. Here we show that NMDARs control the activity of the small GTPase ADP-ribosylation factor 6 (Arf6) by consecutively recruiting two related brefeldin A-resistant Arf guanine nucleotide exchange factors, BRAG1 and BRAG2, in a GluN2 subunit-dependent manner. In young cortical cultures, GluN2B and BRAG1 tonically activated Arf6. In mature cultures, Arf6 was activated through GluN2A and BRAG2 upon NMDA treatment, whereas the tonic Arf6 activation was not detectable any longer. This shift in Arf6 regulation and the associated drop in Arf6 activity were reversed by a knockdown of BRAG2. Given their sequential recruitment during development, we examined whether BRAG1 and BRAG2 influence synaptic currents in hippocampal CA1 pyramidal neurons using patch clamp recordings in acute slices from mice at different ages. The number of AMPA receptor (AMPAR) miniature events was reduced by depletion of BRAG1 but not by depletion of BRAG2 during the first 2 weeks after birth. In contrast, depletion of BRAG2 during postnatal weeks 4 and 5 reduced the number of AMPAR miniature events and compromised the quantal sizes of both AMPAR and NMDAR currents evoked at Schaffer collateral synapses. We conclude that both Arf6 activation through GluN2B-BRAG1 during early development and the transition from BRAG1- to BRAG2-dependent Arf6 signaling induced by the GluN2 subunit switch are critical for the development of mature glutamatergic synapses. PMID:26884337

  13. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex123

    PubMed Central

    Maeta, Kazuhiro; Edamatsu, Hironori; Nishihara, Kaori; Ikutomo, Junji; Bilasy, Shymaa E.

    2016-01-01

    Abstract Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells. PMID:27390776

  14. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    SciTech Connect

    Grasso, P.; Reichert, L.E. Jr. )

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.

  15. Tight Binding of the Phosphorylated α Subunit of Initiation Factor 2 (eIF2α) to the Regulatory Subunits of Guanine Nucleotide Exchange Factor eIF2B Is Required for Inhibition of Translation Initiation

    PubMed Central

    Krishnamoorthy, Thanuja; Pavitt, Graham D.; Zhang, Fan; Dever, Thomas E.; Hinnebusch, Alan G.

    2001-01-01

    Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNAMet to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its α subunit [eIF2(αP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the α subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2α (glutathione S-transferase [GST]–SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(αP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(αP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(αP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the β and γ subunits of eIF2 in the manner required for GDP-GTP exchange. PMID:11438658

  16. Activation of superoxide formation and lysozyme release in human neutrophils by the synthetic lipopeptide Pam3Cys-Ser-(Lys)4. Involvement of guanine-nucleotide-binding proteins and synergism with chemotactic peptides.

    PubMed Central

    Seifert, R; Schultz, G; Richter-Freund, M; Metzger, J; Wiesmüller, K H; Jung, G; Bessler, W G; Hauschildt, S

    1990-01-01

    Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity. PMID:2160237

  17. Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF-2B overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation.

    PubMed Central

    Vazquez de Aldana, C R; Hinnebusch, A G

    1994-01-01

    Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) impairs translation initiation by inhibiting the guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In Saccharomyces cerevisiae, phosphorylation of eIF-2 alpha by the protein kinase GCN2 specifically stimulates translation of GCN4 mRNA in addition to reducing general protein synthesis. We isolated mutations in several unlinked genes that suppress the growth-inhibitory effect of eIF-2 alpha phosphorylation catalyzed by mutationally activated forms of GCN2. These suppressor mutations, affecting eIF-2 alpha and the essential subunits of eIF-2B encoded by GCD7 and GCD2, do not reduce the level of eIF-2 alpha phosphorylation in cells expressing the activated GCN2c kinase. Four GCD7 suppressors were shown to reduce the derepression of GCN4 translation in cells containing wild-type GCN2 under starvation conditions or in GCN2c strains. A fifth GCD7 allele, constructed in vitro by combining two of the GCD7 suppressors mutations, completely impaired the derepression of GCN4 translation, a phenotype characteristic of deletions in GCN1, GCN2, or GCN3. This double GCD7 mutation also completely suppressed the lethal effect of expressing the mammalian eIF-2 alpha kinase dsRNA-PK in yeast cells, showing that the translational machinery had been rendered completely insensitive to phosphorylated eIF-2. None of the GCD7 mutations had any detrimental effect on cell growth under nonstarvation conditions, suggesting that recycling of eIF-2 occurs efficiently in the suppressor strains. We propose that GCD7 and GCD2 play important roles in the regulatory interaction between eIF-2 and eIF-2B and that the suppressor mutations we isolated in these genes decrease the susceptibility of eIF-2B to the inhibitory effects of phosphorylated eIF-2 without impairing the essential catalytic function of eIF-2B in translation initiation. Images PMID:8164676

  18. Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. A cause of impaired synthesis of 3',5'-cyclic AMP by intact and broken cells

    PubMed Central

    Levine, Michael A.; Eil, Charles; Downs, Robert W.; Spiegel, Allen M.

    1983-01-01

    Deficient activity of the guanine nucleotide regulatory protein (G unit), an integral component of the membrane-bound adenylate cyclase complex, has been implicated as the biochemical lesion in many patients with pseudohypoparathyroidism (PHP) type I. In addition to renal resistance to parathyroid hormone in this disorder, there is decreased responsiveness of diverse tissues to hormones that act via 3',5'-cyclic AMP (cAMP). To assess whether a deficiency of G units could account for impaired adenylate cyclase activity, we studied cAMP production in intact cultured fibroblasts and fibroblast plasma membranes from five patients with PHP in response to several activators of adenylate cyclase. The number of G units in PHP fibroblast membranes, measured by cholera toxin-dependent [32P]ADP ribosylation of G-unit peptides, as well as the G-unit activity, determined by the ability of detergent extracts to reconstitute adenylate cyclase activity in G-unit-deficient S49 CYC- membranes, were found to be markedly reduced compared with control membranes (43 and 40%, respectively), The activation of fibroblast membrane adenylate cyclase by effectors that act directly through the G unit (guanosine triphosphate, guanosine 5'-0-[3-thiotriphosphate] [GTP-γ-S], NaF) was significantly greater in control membranes than in membranes from patients with PHP. Moreover, we found that hormone (prostaglandin E1) stimulated adenylate cyclase activity was also greater in control membranes than in PHP membranes. Neither the apparent affinity of membrane adenylate cyclase for GTP-γ-S (apparent Km =5 X 10-8 M) nor the rate of enzyme activation by GTP-γ-S was significantly different in fibroblast membranes from control subjects and patients with PHP. In contrast to the notable differences in hormone and G-unit-activated adenylate cyclase shown in fibroblast membranes from PHP patients and control subjects, the intrinsic catalytic activity of membranes, as determined by forskolin

  19. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  20. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  1. PtdIns(3,4,5)P3-dependent Rac Exchanger 1 (PREX1) Rac-Guanine Nucleotide Exchange Factor (GEF) Activity Promotes Breast Cancer Cell Proliferation and Tumor Growth via Activation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Signaling.

    PubMed

    Liu, Heng-Jia; Ooms, Lisa M; Srijakotre, Nuthasuda; Man, Joey; Vieusseux, Jessica; Waters, JoAnne E; Feng, Yue; Bailey, Charles G; Rasko, John E J; Price, John T; Mitchell, Christina A

    2016-08-12

    PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) is a Rac-guanine nucleotide exchange factor (GEF) overexpressed in a significant proportion of human breast cancers that integrates signals from upstream ErbB2/3 and CXCR4 membrane surface receptors. However, the PREX1 domains that facilitate its oncogenic activity and downstream signaling are not completely understood. We identify that ERK1/2 MAPK acts downstream of PREX1 and contributes to PREX1-mediated anchorage-independent cell growth. PREX1 overexpression increased but its shRNA knockdown decreased ERK1/2 phosphorylation in response to EGF/IGF-1 stimulation, resulting in induction of the cell cycle regulators cyclin D1 and p21(WAF1/CIP1) PREX1-mediated ERK1/2 phosphorylation, anchorage-independent cell growth, and cell migration were suppressed by inhibition of MEK1/2/ERK1/2 signaling. PREX1 overexpression reduced staurosporine-induced apoptosis whereas its shRNA knockdown promoted apoptosis in response to staurosporine or the anti-estrogen drug tamoxifen. Expression of wild-type but not GEF-inactive PREX1 increased anchorage-independent cell growth. In addition, mouse xenograft studies revealed that expression of wild-type but not GEF-dead PREX1 resulted in the formation of larger tumors that displayed increased phosphorylation of ERK1/2 but not AKT. The impaired anchorage-independent cell growth, apoptosis, and ERK1/2 signaling observed in stable PREX1 knockdown cells was restored by expression of wild-type but not GEF-dead-PREX1. Therefore, PREX1-Rac-GEF activity is critical for PREX1-dependent anchorage-independent cell growth and xenograft tumor growth and may represent a possible therapeutic target for breast cancers that exhibit PREX1 overexpression. PMID:27358402

  2. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... eye, in amounts consistent with good manufacturing practice. (d) Labeling. The color additive and any... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is... derived. (2) Color additive mixtures for drug use made with guanine may contain only those diluents...

  3. Rho-guanine nucleotide exchange factors during development

    PubMed Central

    Mulinari, Shai

    2010-01-01

    The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems. PMID:21686118

  4. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2′-deoxyguanosine

    PubMed Central

    Kim, Jane N.; Roth, Adam; Breaker, Ronald R.

    2007-01-01

    Several mRNA aptamers have been identified in Mesoplasma florum that have sequence and structural features resembling those of guanine and adenine riboswitches. Two features distinguish these RNAs from established purine-sensing riboswitches. All possess shortened hairpin-loop sequences expected to alter tertiary contacts known to be critical for aptamer folding. The RNAs also carry nucleotide changes in the core of each aptamer that otherwise is strictly conserved in guanine and adenine riboswitches. Some aptamers retain the ability to selectively bind guanine or adenine despite these mutations. However, one variant type exhibits selective and high-affinity binding of 2′-deoxyguanosine, which is consistent with its occurrence in the 5′ untranslated region of an operon containing ribonucleotide reductase genes. The identification of riboswitch variants that bind nucleosides and reject nucleobases reveals that natural metabolite-sensing RNA motifs can accrue mutations that expand the diversity of ligand detection in bacteria. PMID:17911257

  5. Pathways of Nucleotide Biosynthesis in Mycoplasma mycoides subsp. mycoides

    PubMed Central

    Mitchell, Alana; Finch, Lloyd R.

    1977-01-01

    By measuring the specific activity of nucleotides isolated from ribonucleic acid after the incorporation of 14C-labeled precursors under various conditions of growth, we have defined the major pathways of ribonucleotide synthesis in Mycoplasma mycoides subsp. mycoides. M. mycoides did not possess pathways for the de novo synthesis of nucleotides but was capable of interconversion of nucleotides. Thus, uracil provided the requirement for both pyrimidine ribonucleotides. Thymine is also required, suggesting that the methylation step is unavailable. No use was made of cytosine. Uridine was rapidly degraded to uracil. Cytidine competed effectively with uracil to provide most of the cytidine nucleotide and also provided an appreciable proportion of uridine nucleotide. In keeping with these results, there was a slow deamination of cytidine to uridine with further degradation to uracil in cultures of M. mycoides. Guanine was capable of meeting the full requirement of the organism for purine nucleotide, presumably by conversion of guanosine 5′-monophosphate to adenosine 5′-monophosphate via the intermediate inosine 5′-monophosphate. When available with guanine, adenine effectively gave a complete provision of adenine nucleotide, whereas hypoxanthine gave a partial provision. Neither adenine nor hypoxanthine was able to act as a precursor for the synthesis of guanine nucleotide. Exogenous guanosine, inosine, and adenosine underwent rapid cleavage to the corresponding bases and so show a pattern of utilization similar to that of the latter. PMID:324972

  6. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  7. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  8. Formation of guanine ribonucleotidyl-(3'-5')-adenosine in a flavinogenic strain of Eremothecium ashbyii.

    PubMed

    Mitsuda, H; Nishikawa, Y; Nakajima, K

    1976-01-01

    The addition of caffeine caused the accumulation of a new nucleotide compound simultaneously with the rigid inhibition of ribofalvin production in non-growing cells of Eremothecium ashbyii. In the present study we tried to identify the structure of the nucleotide compound using non-growing cells of the mold. 1) It became possible to obtain a large amount of mycelia by masscultivation in a reagent tank. 2) A new nucleotide compound, referred to as compound A in the paper, was extracted with perchloric acid solution and purified by the following subsequent procedures: 1) Dowex 1 x 2 (HCOO-) column, 2) charcoal treatment, 3) DEAE-Sephadex A25 (CI-) column, 4) Dowex 1 x 2 (C1-) column, and 5) DEAE-Sephadex A25 (HCO3-) column. 3) The structure of the new nucleotide compound was proved to be guanine ribonucleotidyl-(3'-5')-adenosine (GpA) from the results of the following analyses: 1) alkaline degradation, 2) UV-spectra, IR-spectra and NMR-spectra, and 3) enzymatic treatments with RNase T2 and phosphodiesterase. 4) The roles of caffeine and guanine ribonucleotidyl-(3'-5')-adenosine in connection with flavinogenesis of this mold were discussed. PMID:182940

  9. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  10. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  11. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  12. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  13. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose....

  14. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the crystalline material obtained from fish scales and consists principally of the two purines... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are... total purines. Mercury (as Hg), not more than 1 part per million. (c) Uses and restrictions. Guanine...

  15. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the crystalline material obtained from fish scales and consists principally of the two purines... vary from 3 to 25 percent, depending on the particular fish and tissue from which the crystals are... total purines. Mercury (as Hg), not more than 1 part per million. (c) Uses and restrictions. Guanine...

  16. Guanine tetraplex formation by short DNA fragments containing runs of guanine and cytosine.

    PubMed Central

    Penázová, H; Vorlicková, M

    1997-01-01

    Using CD spectroscopy, guanine tetraplex formation was studied with short DNA fragments in which cytosine residues were systematically added to runs of guanine either at the 5' or 3' ends. Potassium cations induced the G-tetraplex more easily with fragments having the guanine run at the 5' end, which is just an opposite tendency to what was reported for (G+T) oligonucleotides. However, the present (G+C) fragments simultaneously adopted other conformers that complicated the analysis. We demonstrate that repeated freezing/thawing, performed at low ionic strength, is a suitable method to exclusively stabilize the tetraplex in the (G+C) DNA fragments. In contrast to KCl, the repeated freeze/thaw cycles better stabilized the tetraplex with fragments having the guanine run on the 3' end. The tendency of guanine blocks to generate the tetraplex destabilized the d(G5).d(C5) duplex whose strands dissociated, giving rise to a stable tetraplex of (dG5) and single-stranded (dC5). In contrast to d(G3C3) and d(G5C5), repeated freezing/thawing induced the tetraplex even with the self-complementary d(C3G3) or d(C5G5); hence the latter oligonucleotides preferred the tetraplex to the apparently very stable duplex. The tetraplexes only included guanine blocks while the 5' end cytosines interfered neither with the tetraplex formation nor the tetraplex structure. PMID:9336200

  17. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    PubMed Central

    Fasullo, Michael; Endres, Lauren

    2015-01-01

    Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases. PMID:25923076

  18. Identification of small molecule compounds with higher binding affinity to guanine deaminase (cypin) than guanine.

    PubMed

    Fernández, José R; Sweet, Eric S; Welsh, William J; Firestein, Bonnie L

    2010-09-15

    Guanine deaminase (GDA; cypin) is an important metalloenzyme that processes the first step in purine catabolism, converting guanine to xanthine by hydrolytic deamination. In higher eukaryotes, GDA also plays an important role in the development of neuronal morphology by regulating dendritic arborization. In addition to its role in the maturing brain, GDA is thought to be involved in proper liver function since increased levels of GDA activity have been correlated with liver disease and transplant rejection. Although mammalian GDA is an attractive and potential drug target for treatment of both liver diseases and cognitive disorders, prospective novel inhibitors and/or activators of this enzyme have not been actively pursued. In this study, we employed the combination of protein structure analysis and experimental kinetic studies to seek novel potential ligands for human guanine deaminase. Using virtual screening and biochemical analysis, we identified common small molecule compounds that demonstrate a higher binding affinity to GDA than does guanine. In vitro analysis demonstrates that these compounds inhibit guanine deamination, and more surprisingly, affect GDA (cypin)-mediated microtubule assembly. The results in this study provide evidence that an in silico drug discovery strategy coupled with in vitro validation assays can be successfully implemented to discover compounds that may possess therapeutic value for the treatment of diseases and disorders where GDA activity is abnormal. PMID:20716488

  19. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    SciTech Connect

    Yeh, Hsin-chih; Sharma, Jaswinder; Yoo, Hyojong; Martinez, Jennifer S

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  20. IR spectra of guanine and hypoxanthine isolated molecules

    NASA Astrophysics Data System (ADS)

    Sheina, G. G.; Stepanian, S. G.; Radchenko, E. D.; Blagoi, Yu. P.

    1987-05-01

    High resolution spectra of guanine, hypoxanthine, isocytosine, 2-aminopyrimidine and their deutero- and methyl derivatives obtained in Ar matrices by the low temperature IR spectroscopy method are reported. Normal modes of enol tautomers of guanine, 9-CH 3-guanine, hypoxanthine and 2-aminopurine are calculated. Force fields are the same as for purine. Results calculated are used to interpret the experimental spectra. Keto—enol tautomerism is shown to exist in guanine and hypoxanthine, the proportions of enol tautomer being 50 and 5%, respectively. Possible biological applications of the results obtained are discussed.

  1. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    SciTech Connect

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.; Clinch, Keith; Crump, Douglas R.; Rosario Jr., Irving; Merino, Emilio F.; Almo, Steve C.; Tyler, Peter C.; Schramm, Vern L.

    2012-06-22

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.

  2. Guanine-vacancy–bearing G-quadruplexes responsive to guanine derivatives

    PubMed Central

    Li, Xin-min; Zheng, Ke-wei; Zhang, Jia-yu; Liu, Hong-he; He, Yi-de; Yuan, Bi-feng; Hao, Yu-hua; Tan, Zheng

    2015-01-01

    G-quadruplex structures formed by guanine-rich nucleic acids are implicated in essential physiological and pathological processes and nanodevices. G-quadruplexes are normally composed of four Gn (n ≥ 3) tracts assembled into a core of multiple stacked G-quartet layers. By dimethyl sulfate footprinting, circular dichroism spectroscopy, thermal melting, and photo-cross-linking, here we describe a unique type of intramolecular G-quadruplex that forms with one G2 and three G3 tracts and bears a guanine vacancy (G-vacancy) in one of the G-quartet layers. The G-vacancy can be filled up by a guanine base from GTP or GMP to complete an intact G-quartet by Hoogsteen hydrogen bonding, resulting in significant G-quadruplex stabilization that can effectively alter DNA replication in vitro at physiological concentration of GTP and Mg2+. A bioinformatic survey shows motifs of such G-quadruplexes are evolutionally selected in genes with unique distribution pattern in both eukaryotic and prokaryotic organisms, implying such G-vacancy–bearing G-quadruplexes are present and play a role in gene regulation. Because guanine derivatives are natural metabolites in cells, the formation of such G-quadruplexes and guanine fill-in (G-fill-in) may grant an environment-responsive regulation in cellular processes. Our findings thus not only expand the sequence definition of G-quadruplex formation, but more importantly, reveal a structural and functional property not seen in the standard canonical G-quadruplexes. PMID:26553979

  3. N-phosphonocarbonylpyrrolidine derivatives of guanine: a new class of bi-substrate inhibitors of human purine nucleoside phosphorylase.

    PubMed

    Rejman, Dominik; Panova, Natalya; Klener, Pavel; Maswabi, Bokang; Pohl, Radek; Rosenberg, Ivan

    2012-02-23

    A complete series of pyrrolidine nucleotides, (3R)- and (3S)-3-(guanin-9-yl)pyrrolidin-1-N-ylcarbonylphosphonic acids and (3S,4R)-, (3R,4S)-, (3S,4S)-, and (3R,4R)-4-(guanin-9-yl)-3-hydroxypyrrolidin-1-N-ylcarbonylphosphonic acids, were synthesized and evaluated as potential inhibitors of purine nucleoside phosphorylase (PNP) isolated from peripheral blood mononuclear cells (PBMCs) and cell lines of myeloid and lymphoid origin. Two compounds, (S)-3-(guanin-9-yl)pyrrolidin-1-N-ylcarbonylphosphonic acid (2a) and (3S,4R)-4-(guanin-9-yl)-3-hydroxypyrrolidin-1-N-ylcarbonylphosphonic acid (6a), were recognized as nanomolar competitive inhibitors of PNP isolated from cell lines with K(i) values within the ranges of 16-100 and 10-24 nM, respectively. The low (MESG)K(i) and (Pi)K(i) values of both compounds for PNP isolated from PBMCs suggest that these compounds could be bisubstrate inhibitors that occupy both the phosphate and nucleoside binding sites of the enzyme. PMID:22264015

  4. Chlorophyll fluorescence control in microalgae by biogenic guanine crystals

    NASA Astrophysics Data System (ADS)

    Miyashita, Yuito; Iwasaka, Masakazu; Endo, Hirotoshi

    2015-05-01

    Magnetic fields were applied to water suspensions of guanine crystals to induce changes in light scattering as a possible way to control photosynthesis in microalgae. The effect of guanine microcrystals with and without an applied magnetic field on the photosynthesis of a unicellular microalgae (plant), Pleurochrysis. carterae (P. carterae), was investigated by examining chlorophyll fluorescence. The fluorescence intensity at 600-700 nm of the photosynthetic cells increased remarkably when the concentration ratio of guanine microcrystals was 10 times larger than that of the cells. This increase in fluorescence occurred reproducibly and was proportional to the amount of guanine microcrystals added. It is speculated that the guanine microcrystals enhance the intensity of the excitation light on the cells by concentrating the excitation light or prolonging the time of light exposure to the cells. Moreover, applying a 500-mT magnetic field allowed modulation of the fluorescence intensity, depending on the direction of the fluorescence light.

  5. Guanine quadruplex structures localize to heterochromatin.

    PubMed

    Hoffmann, Roland F; Moshkin, Yuri M; Mouton, Stijn; Grzeschik, Nicola A; Kalicharan, Ruby D; Kuipers, Jeroen; Wolters, Anouk H G; Nishida, Kazuki; Romashchenko, Aleksander V; Postberg, Jan; Lipps, Hans; Berezikov, Eugene; Sibon, Ody C M; Giepmans, Ben N G; Lansdorp, Peter M

    2016-01-01

    Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation. PMID:26384414

  6. Guanine quadruplex structures localize to heterochromatin

    PubMed Central

    Hoffmann, Roland F.; Moshkin, Yuri M.; Mouton, Stijn; Grzeschik, Nicola A.; Kalicharan, Ruby D.; Kuipers, Jeroen; Wolters, Anouk H.G.; Nishida, Kazuki; Romashchenko, Aleksander V.; Postberg, Jan; Lipps, Hans; Berezikov, Eugene; Sibon, Ody C.M.; Giepmans, Ben N.G.; Lansdorp, Peter M.

    2016-01-01

    Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation. PMID:26384414

  7. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs.

    PubMed

    Peters, Gretchen Marie; Davis, Jeffery T

    2016-06-01

    Supramolecular or molecular gels are attractive for various applications, including diagnostics, tissue scaffolding and targeted drug release. Gelators derived from natural products are of particular interest for biomedical purposes, as they are generally biocompatible and stimuli-responsive. The building blocks of nucleic acids (i.e. nucleobases, nucleosides, and nucleotides) are desirable candidates for supramolecular gelation as they readily engage in reversible, noncovalent interactions. In this review, we describe a number of organo- and hydrogels formed through the assembly of nucleosides, nucleotides, and their derivatives. While natural nucleosides and nucleotides generally require derivatization to induce gelation, guanosine and its corresponding nucleotides are well known gelators. This unique gelating ability is due to propensity of the guanine nucleobase to self-associate into stable higher-order assemblies, such as G-ribbons, G4-quartets, and G-quadruplexes. PMID:27146863

  8. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  9. Nucleotide-metabolizing enzymes in Chlamydomonas flagella.

    PubMed

    Watanabe, T; Flavin, M

    1976-01-10

    Nucleotides have at least two functions in eukaryotic cilia and flagella. ATP, originating in the cells, is utilized for motility by energy-transducing protein(s) called dynein, and the binding of guanine nucleotides to tubulin, and probably certain transformations of the bound nucleotides, are prerequisites for the assembly of microtubules. Besides dynein, which can be solubulized from Chlamydomonas flagella as a heterogeneous, Mg2+ or Ca2+-activated ATPase, we have purified and characterized five other flagellar enzymes involved in nucleotide transformations. A homogeneous, low molecular weight, Ca2+-specific adenosine triphosphatase was isolated, which was inhibited by Mg2+ and was not specific for ATP. This enzyme was not formed by treating purified dynein with proteases. It was absent from extracts of Tetrahymena cilia. Its function might be an auxiliary energy transducer, or in steering or tactic responses. Two species of adenylate kinase were isolated, one of which was much elevated in regenerating flagella; the latter was also present in cell bodies. A large part of flagellar nucleoside diphosphokinase activity could not be solubilized. Two soluble enzyme species were identified, one of which was also present in cell bodies. Since these enzymes are of interest because they might function in microtubule assembly, we studied the extent to which brain nucleoside diphosphokinase co-polymerizes with tubulin purified by repeated cycles of polymerization. Arginine kinase was not detected in Chlamydomonas flagellar extracts. PMID:397

  10. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine.

    PubMed

    Solivio, Morwena J; Nemera, Dessalegn B; Sallans, Larry; Merino, Edward J

    2012-02-20

    Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein. PMID:22216745

  11. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  12. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.

    PubMed

    Lu, Wenchao; Liu, Jianbo

    2016-02-24

    The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. PMID:26813583

  13. Exploring the characterization tools of Guanine-Quadruplexes.

    PubMed

    Kaushik, Mahima; Kaushik, Shikha; Kukreti, Shrikant

    2016-01-01

    Occurrence of guanine-rich sequences throughout the genome at specific locations like chromosomal ends (telomeres), promoters and Untranslated regions (UTR's) is very well documented. Quite recently, visualization of guanine-quadruplex in human and mammalian cells have also provided a very significant evidence for the in vivo existence of guanine-quadruplex, reconfirming their biological relevance in cellular processes like replication, transcription, recombination, etc. Guanine quadruplexes have enormous potential of exhibiting various topologies which differ, by number/ orientation of strands or loop orientations etc. Some relatively new polymorphic structures like 3+1 quadruplex, G-triplex, and Tri-G-quadruplex have also been proposed for the guanine-rich sequences. Various biochemical and biophysical techniques have been used to characterize these multistranded DNA structures. An extensive review of the mechanistic models of the already existing and newly emerging techniques is actually required, which may further facilitate our understanding about these structures. This review aims to summarize some of these techniques along with their requirements and limitations, which might further give some insights for the fine tuning of the solution and environmental conditions needed for facilitating guanine-quadruplex formation. PMID:26709787

  14. PolyGuanine methacrylate cryogels for ribonucleic acid purification.

    PubMed

    Köse, Kazım; Uzun, Lokman

    2016-05-01

    The isolation and purification of ribonucleic acid have attracted attention recently for the understanding of the functions in detail because of the necessity for the treatment of genetic diseases. In this study, guanine-incorporated polymeric cryogels were developed to obtain highly purified ribonucleic acid. The satisfactory purification performance was achieved with the guanine-incorporated poly (2-hydroxyethyl methacrylate-guanine methacrylate) cryogels. The most crucial advantages to use guanine as a functional monomer are to obtain a real natural interaction between guanine on the polymeric material and cytosine on the ribonucleic acid. Moreover, using cryogel with a highly porous structure and high swelling ratio provide advantages of getting more water within the structure to get more analyte to interact. The characterization of cryogels has proved the success of the synthesis and the perfect natural interaction to be taken place between the ligand (guanine methacrylate) and the cytosine in the ribonucleic acid molecules. Although the pores within the structure of cryogels are small, they provide efficient and fast adsorption. The chromatographic separation performance was investigated for different conditions (pH, temperature etc.). The desorption ratio and reusability were also analyzed at the end of the five adsorption-desorption cycles with no significant changes. PMID:27004613

  15. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar. PMID:15161365

  16. Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    PubMed Central

    Bacolla, Albino; Temiz, Nuri A.; Yi, Ming; Ivanic, Joseph; Cer, Regina Z.; Donohue, Duncan E.; Ball, Edward V.; Mudunuri, Uma S.; Wang, Guliang; Jain, Aklank; Volfovsky, Natalia; Luke, Brian T.; Stephens, Robert M.; Cooper, David N.; Collins, Jack R.; Vasquez, Karen M.

    2013-01-01

    Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease. PMID:24086153

  17. Guanine nucleotide binding proteins in zucchini seedlings: Characterization and interactions with the NPA receptor

    SciTech Connect

    Lindeberg, M.; Jacobs, M. )

    1989-04-01

    A microsomal membrane preparation from hypocotyls of dark-grown Cucurbita pepo L. seedlings contains specific high-affinity binding sites for the non-hydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio) triphosphate (GTP-{gamma}-S). Both the binding affinity and the pattern of binding specificity for GTP and GTP analogs are similar to animal G-proteins, and two zucchini membrane proteins are recognized in western blots by antiserum specific for the {sigma} subunit of platelet G{sub s} protein. GTP-{gamma}-S can increase specific naphthylphthalamic acid (NPA) binding in zucchini microsomal membrane preparations, with its stimulation increasing with large tissue age. Al{sup +3} and F{sup {minus}} agents known to activate G-proteins - decreased NPA specific binding by ca. 15%. In tests of in vitro auxin transport employing zucchini plasma membrane vesicles, AlF{sup {minus}}{sub 4} strongly inhibited {sup 3}H-indoleacetic acid nor accumulation; GTP-{gamma}-S effects on this system will be discussed.

  18. Mobilization of late-endosomal cholesterol is inhibited by Rab guanine nucleotide dissociation inhibitor.

    PubMed

    Hölttä-Vuori, M; Määttä, J; Ullrich, O; Kuismanen, E; Ikonen, E

    2000-01-27

    Cholesterol entering cells in low-density lipoproteins (LDL) via receptor-mediated endocytosis is transported to organelles of the late endocytic pathway for degradation of the lipoprotein particles. The fate of the free cholesterol released remains poorly understood, however. Recent observations suggest that late-endosomal cholesterol sequestration is regulated by the dynamics of lysobisphosphatidic acid (LBPA)-rich membranes [1]. Genetic studies have pinpointed a protein, Niemann-Pick C-1 (NPC-1), that is required for the mobilization of late-endosomal/lysosomal cholesterol by an unknown mechanism [2]. Here, we report the removal of accumulated cholesterol by overexpression of the NPC-1 protein in NPC-1-deficient fibroblasts from patients with Niemann-Pick disease, and in normal fibroblasts upon release of a progesterone-induced block of cholesterol transport. We show that late-endosomal/lysosomal cholesterol mobilization is specifically inhibited by microinjection of Rab GDP-dissociation inhibitor (Rab-GDI). Moreover, clearance of the cholesterol deposits by NPC-1 in patients' fibroblasts is accompanied by the redistribution of LBPA and of a lysosomal hydrolase that utilizes the mannose-6-phosphate receptor. Our results reveal, for the first time, the involvement of a specific molecular component of the membrane-trafficking machinery in cholesterol transport and the coupling of late-endosomal cholesterol egress to the trafficking of other lipid and protein cargo. PMID:10662671

  19. Regulation of membrane associated protein kinase C activity by guanine nucleotide in rabbit peritoneal neutrophils

    SciTech Connect

    Huang, C.K.; Devanney, J.F.

    1986-03-05

    Addition of phorbol myristate acetate (PMA) (0.1 ..mu..g/ml) or guanosine-5'-0-(3-thiotriphosphate) (GTP..gamma..S) (10..mu..M) to the membrane fraction from rabbit peritoneal neutrophils results in an increase of phosphorylation of several membrane proteins. To test whether membrane associated protein kinase C is involved in the activation, histone is added to the membrane as a substrate for protein kinase C. Phosphorylation of histone is determined by counting the gel pieces containing histone IIIS after separation from other membrane components by SDS-gel electrophoresis. In the presence of CaC12 (20 ..mu..M), GTP..gamma..S (10 ..mu..M) or PMA (0.1 ..mu..g/ml) stimulates the phosphorylation of histone IIIS (40% to 70% increase). To achieve this effect calcium is required for GTP..gamma..S but not for PMA. The effect of GTP..gamma..S but not PMA is inhibited in membranes obtained from cells pretreated with pertussis toxin. Membrane protein kinase C is solubilized with Triton X-100 (1%) and then applied to a DEAE-52 cellulose column chromatography. Two peaks of protein kinase C activity are observed. Peak one is eluted at 40 mM NaCl, peak two is eluted at 140 mM NaCl. The activity of peak one is stimulated with phosphatidylserine (PS) and PMA but not with PS and calcium. The activity of peak two is stimulated with either PS and PMA or PS and calcium. The results suggest that GTP binding protein is involved in the activation of membrane associated protein kinase C and the kinase may exist in two forms, calcium sensitive and calcium insensitive.

  20. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    SciTech Connect

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W. ); Pandey, S. )

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha} protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.

  1. Functional reconstitution of prostaglandin E receptor from bovine adrenal medulla with guanine nucleotide binding proteins

    SciTech Connect

    Negishi, M.; Ito, S.; Yokohama, H.; Hayashi, H.; Katada, T.; Ui, M.; Hayaishi, O.

    1988-05-15

    Prostaglandin E/sub 2/ (PEG/sub 2/) was found to bind specifically to a 100,000 x g pellet prepared from bovine adrenal medulla. The PGE receptor was associated with a GTP-binding protein (G-protein) and could be covalently cross-linked with this G-protein by dithiobis(succinimidyl propionate) in the 100,000 x g pellet. In order to characterize the G-protein associated with the PGE receptor and reconstitute these proteins in phospholipid vesicles, the authors purified the G-protein to apparent homogeneity from the 100,000 x g pellet. The G-protein served as a substrate of pertussis toxin but differed in its ..cap alpha.. subunit from two known pertussis toxin substrate G-proteins (G/sub i/ and G/sub 0/) purified from bovine brain. The molecular weight of the ..cap alpha.. subunit was 40,000, which is between those of G/sub i/ and G/sub 0/. The purified protein was also distinguished immunologically from G/sub i/ and G/sub 0/ and was referred to as G/sub am/. Reconstitution of the PGE receptor with pure C/sub am/, G/sub i/, or G/sub 0/ in phospholipid vesicles resulted in a remarkable restoration of (/sup 3/H)PGE/sub 2/ binding activity in a GTP-dependent manner. The efficiency of these three G-proteins in this capacity was roughly equal. When pertussis toxin- or N-ethylmaleimide-treated G-proteins, instead of the native ones, were reconstituted into vesicles, the restoration of binding activity was no longer observed. These results indicate that the PGE receptor can couple functionally with G/sub am/, G/sub i/, or G/sub 0/ in phospholipid vesicles and suggest that G/sub am/ may be involved in signal transduction of the PGE receptor in bovine adrenal medulla.

  2. Juvenile Hormone Regulation of Drosophila Epac - A Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we utilized a microchip array encompassing probes for 14,010 genes of Drosophila melanogaster to analyze the effect of (10R) juvenile hormone III (JH) on genome-wide gene expression in Drosophila S2 cells. Treatment with JH yielded a collection of 32 gene transcripts that demonstrated a ...

  3. A potential role for guanine nucleotide-binding protein in the regulation of endosomal proton transport.

    PubMed Central

    Gurich, R W; Codina, J; DuBose, T D

    1991-01-01

    The effects of guanosine 5'-triphosphate (GTP) and GTP-gamma-S, known activators of GTP binding proteins, on proton transport were investigated in endosome-enriched vesicles (endosomes). Endosomes were prepared from rabbit renal cortex following the intravenous injection of FITC-dextran. The rate of intravesicular acidification was determined by measuring changes in fluorescence of FITC-dextran. Both GTP and GTP-gamma-S stimulated significantly the initial rate of proton transport. In contrast, GDP-beta-S, which does not activate GTP binding proteins, inhibited proton transport. The rank order of stimulation was GTP-gamma-S greater than GTP greater than control greater than GDP-beta-S. GTP-gamma-S stimulation of proton transport was also observed under conditions in which chloride entry was eliminated, i.e., 0 mM external chloride concentration in the presence of potassium/valinomycin voltage clamping. GTP-gamma-S did not affect proton leak in endosomes as determined by collapse of H+ ATPase-generated pH gradients. ADP ribosylation by treatment of endosomal membranes with pertussis toxin revealed two substrates corresponding to the 39-41 kD region and comigrating with alpha i subunits. Pretreatment of the membranes with pertussis toxin had no effect on proton transport in the absence of GTP or GTP-gamma-S. However, pretreatment with pertussis toxin blocked the stimulation of proton transport by GTP. In contrast, as reported in other membranes by others previously, pertussis toxin did not prevent the stimulation of proton transport by GTP-gamma-S. These findings, taken together, indicate that GTP binding proteins are present in endosomal membranes derived from renal cortex and that activation of G protein by GTP and GTP-gamma-S stimulates proton transport in a rank order identical to that reported for other transport pathways modulated by Gi proteins. Therefore, these studies suggest that G proteins are capable of stimulating the vacuolar H ATPase of endosomes directly. Images PMID:1850757

  4. Updating Our View of Organelle Genome Nucleotide Landscape

    PubMed Central

    Smith, David Roy

    2012-01-01

    Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits. PMID:22973299

  5. Guanine base stacking in G-quadruplex nucleic acids.

    PubMed

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-02-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5'-5' manner based on different accessible tetrad stacking modes at the stacking interfaces of 5'-5' and 3'-3' stacked G-quadruplexes. PMID:23268444

  6. High-Throughput Screening for Small Molecule Inhibitors of LARG-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay

    PubMed Central

    Evelyn, Chris R.; Ferng, Timothy; Rojas, Rafael J.; Larsen, Martha J.; Sondek, John; Neubig, Richard R.

    2009-01-01

    Guanine nucleotide-exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytokskeletal changes, motility, growth, survival, and gene transcription. The RhoGEF Leukemia-Associated RhoGEF (LARG) is a member of the Regulators of G-protein Signaling Homology Domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide binding assay utilizing BODIPY-Texas Red-GTPγS (BODIPY-TR-GTPγS), we performed a ten-thousand compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a non-fluorescent radioactive guanine nucleotide binding assay measuring LARG-stimulated [35S] GTPγS binding to RhoA, thus ruling out non-specific fluorescent effects. All five compounds selectively inhibited LARG-stimulated RhoA [35S] GTPγS binding, but had little to no effect upon RhoA or Gαo [35S] GTPγS binding. Therefore, these five compounds should serve as promising starting points for the development of small molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications. PMID:19196702

  7. Camptothecins guanine interactions: mechanism of charge transfer reaction upon photoactivation

    NASA Astrophysics Data System (ADS)

    Steenkeste, K.; Guiot, E.; Tfibel, F.; Pernot, P.; Mérola, F.; Georges, P.; Fontaine-Aupart, M. P.

    2002-01-01

    The potent activity exhibited by the antitumoral camptothecin (CPT) and its analog irinotecan (CPT-11) is known to be related to a close contact between the drug and the nucleic acid base guanine. This specificity of interaction between these two chromophores was examined by following changes in the photophysical properties of the drug using steady-state as well as time-resolved absorption and fluorescence methods. The observed effects on absorption, fluorescence emission and singlet excited state lifetimes give evidence for the occurrence of a stacking complex formation restricted to the quinoline part of CPT or CPT-11 and the guanine base but also with the adenine base. The triplet excited state properties of the drugs have been also characterized in absence and in presence of guanosine monophosphate and reveal the occurrence of an electron transfer from the guanine base to the drug. Support for this conclusion was obtained from the studies of a set of biological targets of various oxido-reduction potentials, adenosine monophosphate, cytidine, cytosine, tryptophan, tyrosine and phenylalanine. This finding gives an interpretation of the CPT-induced guanine photolesions previously reported in the literature. These data taken together are discussed in connection with the drug activity. The stacking complex CPT/guanine is necessary but not sufficient to explain the role of the chirality and of the lactone structure in the function of the drug. A stereospecific interaction with the enzyme topoisomerase I seems necessary to stabilize the stacking complex. The first experiments using time-resolved fluorescence by two-photon excitation confirms that CPT does not bind to the isolated enzyme.

  8. Photochemistry of quinolylmethylisothioronium salts. Guanine selective DNA photocleavage reagents.

    PubMed

    Henriksen, U; Larsen, C; Karup, G; Jeppesen, C; Nielsen, P E; Buchardt, O

    1991-03-01

    Quinolylmethylisothioronium salts (1a and 4a) cleave DNA upon irradiation. The cleavage is more than 10-fold enhanced by piperidine treatment and subsequently shows a high preference for guanines. Photolysis of 1a, 2a and 4a in water at lambda greater than 300 nm resulted in photoheterolysis. Irradiation of 1a in 2-propanol gave only products from photohomolysis, irradiation of 1a in methanol and 2a and 4a in 2-propanol resulted in products from both photoheterolysis and photohomolysis. Quantum yields for the disappearance of 1a in water and 2-propanol were determined. The presence or absence of oxygen had no effect in water, whereas oxidation products were observed upon irradiation in methanol and 2-propanol in the presence of oxygen. The guanine specific DNA photoreaction is proposed to take place by alkylation at N7 via the quinolylmethyl carbocation and thus to represent a photoalkylation. PMID:2062877

  9. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    SciTech Connect

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-13

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (R{sub s}), charge transfer resistance (R{sub ct}), Warburg impedance (Z{sub W}) and double layer capacitance (C{sub dl})

  10. Radical-based alkylation of guanine derivatives in aqueous medium.

    PubMed

    Chatgilialoglu, Chryssostomos; Caminal, Clara; Mulazzani, Quinto G

    2011-05-01

    The radical-based alkylation of 8-bromoguanosine (1a) and 8-bromo-2'-deoxyguanosine (1b) at the C8 position has been investigated in aqueous solutions. Alkyl radicals were generated by scavenging of the primary species of γ-radiolysis by the alcohol substrate. These reactions result in the efficient formation of intermolecular C-C bonds in aqueous media, by using the reactivity of α-hydroxyalkyl radicals derived from alcohols with 1a and 1b. A mechanism for the formation of C8 guanine alkylated adducts has been proposed, based on the quantification of radiation chemical yields for the disappearance of starting material and the formation of all products. Two α-hydroxyalkyl radicals are needed to form an alkylated guanine, the first one adding to C8 followed by ejection of Br(-) with formation of guanyl adduct and the second one acting as reducing agent of the guanyl adduct. PMID:21431230

  11. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  12. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  13. Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules.

    PubMed

    Naber, Nariman; Minehardt, Todd J; Rice, Sarah; Chen, Xiaoru; Grammer, Jean; Matuska, Marija; Vale, Ronald D; Kollman, Peter A; Car, Roberto; Yount, Ralph G; Cooke, Roger; Pate, Edward

    2003-05-01

    We have used adenosine diphosphate analogs containing electron paramagnetic resonance (EPR) spin moieties and EPR spectroscopy to show that the nucleotide-binding site of kinesin-family motors closes when the motor.diphosphate complex binds to microtubules. Structural analyses demonstrate that a domain movement in the switch 1 region at the nucleotide site, homologous to domain movements in the switch 1 region in the G proteins [heterotrimeric guanine nucleotide-binding proteins], explains the EPR data. The switch movement primes the motor both for the free energy-yielding nucleotide hydrolysis reaction and for subsequent conformational changes that are crucial for the generation of force and directed motion along the microtubule. PMID:12730601

  14. `Guanigma': the revised structure of biogenic anhydrous guanine

    NASA Astrophysics Data System (ADS)

    Hirsch, Anna; Gur, Dvir; Polishchuk, Iryna; Levy, Davide; Pokroy, Boaz; Cruz-Cabeza, Aurora J.; Addadi, Lia; Kronik, Leeor; Leiserowitz, Leslie

    Living organisms display a spectrum of colors, produced by pigmentation, structural coloration, or both. A relatively well-studied system, which produces colors via an array of alternating anhydrous guanine crystals and cytoplasm, is responsible for the metallic luster of many fish. The structure of biogenic anhydrous guanine was believed to be the same as that of the synthetic one - a monoclinic polymorph. Here we re-examine the structure of biogenic guanine, using experimental X-ray and electron diffraction (ED) data exposing troublesome inconsistencies - namely, a 'guanigma'. To address this, we sought alternative candidate polymorphs using symmetry and packing considerations, then used first principles calculations to determine whether the selected candidates could be energetically stable. We identified theoretically a different monoclinic polymorph, were able to synthesize it, and to confirm using X-ray diffraction that it is this polymorph that occurs in biogenic samples. However, the ED data were still not consistent with this polymorph, but rather with a theoretically generated orthorhombic polymorph. This apparent inconsistency was resolved by showing how the ED pattern could be affected by crystal structural faults composed of offset molecular layers.

  15. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  16. Isolation and characterization of human liver guanine deaminase.

    PubMed

    Gupta, N K; Glantz, M D

    1985-01-01

    Guanine deaminase (EC 3.5.4.3, guanine aminohydrolase [GAH]) was purified 3248-fold from human liver to homogeneity with a specific activity of 21.5. A combination of ammonium sulfate fractionation, and DEAE-cellulose, hydroxylapatite, and affinity chromatography with guanine triphosphate ligand were used to purify the enzyme. The enzyme was a dimer protein of a molecular weight of 120,000 with each subunit of 59,000 as determined by gel filtration and sodium dodecyl sulfate-gel electrophoresis. Isoelectric focusing gave a pI of 4.76. It was found to be an acidic protein, as evidenced by the amino acid analysis, enriched with glutamate, aspartate, alanine and glycine. It showed a sharp pH optimum of 8.0. The apparent Km for guanine was determined to be 1.53 X 10(-5) M at pH 6.0 and 2 X 10(-4) M for 8-azaguanine as a substrate at pH 6.0. The enzyme was found to be sensitive to p-hydroxymercuribenzoate inhibition with a Ki of 1.53 X 10(-5) M and a Ki of 5 X 10(-5) M with 5-aminoimidazole-4-carboxamide as an inhibitor. The inhibition with iodoacetic acid showed only a 7% loss in the activity at 1 X 10(-4) M and a 24% loss at 1 X 10(-3) M after 30 min of incubation, whereas p-hydroxymercuribenzoate incubation for 30 min resulted in a 91% loss of activity at a concentration of 1 X 10(-4) M. Guanine was the substrate for all of the inhibition studies. The enzyme was observed to be stable up to 40 degrees C, with a loss of almost all activity at 65 degrees C with 30 min incubation. Two pKa values were obtained at 5.85 and 8.0. Analysis of the N-terminal amino acid proved to be valine while the C-terminal residue was identified as alanine. PMID:3966794

  17. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization.

    PubMed

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-07-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  18. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    PubMed Central

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  19. Electronic excited states of guanine-cytosine hairpins and duplexes studied by fluorescence spectroscopy.

    PubMed

    Brazard, Johanna; Thazhathveetil, Arun K; Vayá, Ignacio; Lewis, Frederick D; Gustavsson, Thomas; Markovitsi, Dimitra

    2013-08-01

    Guanine-cytosine hairpins, containing a hexaethylene glycol bridge, are studied by steady-state fluorescence spectroscopy and time-correlated single photon counting; their properties are compared to those of duplexes with the same sequence. It is shown that, both in hairpins and in duplexes, base pairing induces quenching of the ππ* fluorescence, the quantum yield decreasing by at least two orders of magnitude. When the size of the systems increases from two to ten base pairs, a fluorescent component decaying on the nanosecond time-scale appears at energy higher than that stemming from the bright states of non-interacting mono-nucleotides (ca. 330 nm). For ten base pairs, this new fluorescence forms a well-defined band peaking at 305 nm. Its intensity is about 20% higher for the hairpin compared to the duplex. Its position (red-shifted by 1600 cm(-1)) and width (broader by 1800 cm(-1) FWHM) differ from those observed for large duplexes containing 1000 base pairs, suggesting the involvement of electronic coupling. Fluorescence anisotropy reveals that the excited states responsible for high energy emission are not populated directly upon photon absorption but are reached during a relaxation process. They are assigned to charge transfer states. According to the emerging picture, the amplitude of conformational motions determines whether instantaneous deactivation to the ground state or emission from charge transfer states will take place, while ππ* fluorescence is associated to imperfect base-pairing. PMID:23736116

  20. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    SciTech Connect

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  1. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  2. The Role of Gene Duplication in the Evolution of Purine Nucleotide Salvage Pathways

    NASA Astrophysics Data System (ADS)

    Becerra, Arturo; Lazcano, Antonio

    1998-10-01

    Purine nucleotides are formed de novo by a widespread biochemical route that may be of monophyletic origin, or are synthesized from preformed purine bases and nucleosides through different salvage pathways. Three monophyletic sets of purine salvage enzymes, each of which catalyzes mechanistically similar reactions, can be identified: (a) adenine-, xanthine-, hypoxanthine- and guanine-phosphoribosyltransferases, which are all homologous among themselves, as well as to nucleoside phosphorylases; (b) adenine deaminase, adenosine deaminase, and adenosine monophophate deaminase; and (c) guanine reductase and inosine monophosphate dehydrogenase. These homologies support the idea that substrate specificity is the outcome of gene duplication, and that the purine nucleotide salvage pathways were assembled by a patchwork process that probably took place before the divergence of the three cell domains (Bacteria, Archaea, and Eucarya). Based on the ability of adenine PRTase to catalyze the condensation of PRPP with 4-aminoimidazole-5-carboxamide (AICA), a simpler scheme of purine nucleotide biosynthesis is presented. This hypothetical route requires the prior evolution of PRPP biosynthesis. Since it has been argued that PRPP, nucleosides, and nucleotides are susceptible to hydrolysis, they are very unlikely prebiotic compounds. If this is the case, it implies that many purine salvage pathways appeared only after the evolution of phosphorylated sugar biosynthetic pathways made ribosides available.

  3. Prokaryotic nucleotide excision repair.

    PubMed

    Kisker, Caroline; Kuper, Jochen; Van Houten, Bennett

    2013-03-01

    Nucleotide excision repair (NER) has allowed bacteria to flourish in many different niches around the globe that inflict harsh environmental damage to their genetic material. NER is remarkable because of its diverse substrate repertoire, which differs greatly in chemical composition and structure. Recent advances in structural biology and single-molecule studies have given great insight into the structure and function of NER components. This ensemble of proteins orchestrates faithful removal of toxic DNA lesions through a multistep process. The damaged nucleotide is recognized by dynamic probing of the DNA structure that is then verified and marked for dual incisions followed by excision of the damage and surrounding nucleotides. The opposite DNA strand serves as a template for repair, which is completed after resynthesis and ligation. PMID:23457260

  4. Production of guanine from NH(4)CN polymerizations

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Oro, J.

    1999-01-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite.

  5. Production of guanine from NH(4)CN polymerizations.

    PubMed

    Levy, M; Miller, S L; Oró, J

    1999-08-01

    The synthesis of adenine from the polymerization of concentrated ammonium cyanide solutions is well known. We show here that guanine is also produced by this reaction but at yields ranging from 10 to 40 times less than that of adenine. This synthesis is effective at both +80 and -20 degrees C. Since high concentrations of NH(4)CN are obtainable only by freezing, this prebiotic synthesis would be applicable to frozen regions of the primitive Earth, the Jovian satellite Europa and other icy satellites, and the parent body of the Murchison meteorite. PMID:10441668

  6. Structural and Functional Studies on Nucleotide Excision Repair From Recognition to Incision.

    SciTech Connect

    Caroline Kisker

    2001-01-01

    Maintenance of the correct genetic information is crucial for all living organisms because mutations are the primary cause of hereditary diseases, as well as cancer and may also be involved in aging. The importance of genomic integrity is underscored by the fact that 80 to 90% of all human cancers are ultimately due to DNA damage. Among the different repair mechanisms that have evolved to protect the genome, nucleotide excision repair (NER) is a universal pathway found in all organisms. NER removes a wide variety of bulky DNA adducts including the carcinogenic cyclobutane pyrimidine dimers induced by UV radiation, benzo(a)pyrene-guanine adducts caused by smoking and the guanine-cisplatin adducts induced by chemotherapy. The importance of this repair mechanism is reflected by three severe inherited diseases in humans, which are due to defects in NER: xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy.

  7. Kinetic mechanism of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase.

    PubMed

    Roy, Sourav; Nagappa, Lakshmeesha K; Prahladarao, Vasudeva S; Balaram, Hemalatha

    2015-12-01

    Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT) exhibits a kinetic mechanism that differs from that of the human homolog. Human HGPRT follows a steady-state ordered mechanism, wherein PRPP binding precedes the binding of hypoxanthine/guanine and release of product IMP/GMP is the rate limiting step. In the current study, initial velocity kinetics with PfHGXPRT indicates a steady-state ordered mechanism, wherein xanthine binding is conditional to the binding of PRPP. The value of the rate constant for IMP dissociation is greater by 183-fold than the kcat for hypoxanthine phosphoribosylation and this results in the absence of burst in progress curves from pre-steady-state kinetics. Further, IMP binding is 1000 times faster (4s(-1) at 0.5μM IMP) when compared to the kcat (3.9±0.2×10(-3)s(-1)) for the reverse IMP pyrophosphorolysis reaction. These results lend support to the fact that in both forward and reverse reactions, the process of chemical conversion (formation of IMP/hypoxanthine) is slow and the events of ligand association and dissociation are faster. PMID:26902413

  8. Nucleotide diversity in gorillas.

    PubMed Central

    Yu, Ning; Jensen-Seaman, Michael I; Chemnick, Leona; Ryder, Oliver; Li, Wen-Hsiung

    2004-01-01

    Comparison of the levels of nucleotide diversity in humans and apes may provide valuable information for inferring the demographic history of these species, the effect of social structure on genetic diversity, patterns of past migration, and signatures of past selection events. Previous DNA sequence data from both the mitochondrial and the nuclear genomes suggested a much higher level of nucleotide diversity in the African apes than in humans. Noting that the nuclear DNA data from the apes were very limited, we previously conducted a DNA polymorphism study in humans and another in chimpanzees and bonobos, using 50 DNA segments randomly chosen from the noncoding, nonrepetitive parts of the human genome. The data revealed that the nucleotide diversity (pi) in bonobos (0.077%) is actually lower than that in humans (0.087%) and that pi in chimpanzees (0.134%) is only 50% higher than that in humans. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated pi to be 0.158%. This is the highest value among the African apes but is only about two times higher than that in humans. Interestingly, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans, but suggest a threefold higher nucleotide diversity in chimpanzees than in humans. The higher mtDNA diversity in chimpanzees might be due to the unique pattern in the evolution of chimpanzee mtDNA. From the nuclear DNA pi values, we estimated that the long-term effective population sizes of humans, bonobos, chimpanzees, and gorillas are, respectively, 10,400, 12,300, 21,300, and 25,200. PMID:15082556

  9. Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh

    SciTech Connect

    Ramirez, Ursula D.; Focia, Pamela J.; Freymann, Douglas M.

    2008-10-01

    Crystal structures of the Ffh NG GTPase domain at < 1.24 Å resolution reveal multiple overlapping nucleotide binding modes. Two structures of the nucleotide-bound NG domain of Ffh, the GTPase subunit of the bacterial signal recognition particle (SRP), have been determined at ultrahigh resolution in similar crystal forms. One is GDP-bound and one is GMPPCP-bound. The asymmetric unit of each structure contains two protein monomers, each of which exhibits differences in nucleotide-binding conformation and occupancy. The GDP-bound Ffh NG exhibits two binding conformations in one monomer but not the other and the GMPPCP-bound protein exhibits full occupancy of the nucleotide in one monomer but only partial occupancy in the other. Thus, under the same solution conditions, each crystal reveals multiple binding states that suggest that even when nucleotide is bound its position in the Ffh NG active site is dynamic. Some differences in the positioning of the bound nucleotide may arise from differences in the crystal-packing environment and specific factors that have been identified include the relative positions of the N and G domains, small conformational changes in the P-loop, the positions of waters buried within the active site and shifts in the closing loop that packs against the guanine base. However, ‘loose’ binding may have biological significance in promoting facile nucleotide exchange and providing a mechanism for priming the SRP GTPase prior to its activation in its complex with the SRP receptor.

  10. Distance measurements between paramagnetic ligands bound to parallel stranded guanine quadruplexes.

    PubMed

    Donohue, M P; Szalai, V A

    2016-06-01

    Aside from a double helix, deoxyribonucleic acid (DNA) folds into non-canonical structures, one of which is the guanine quadruplex. Cationic porphyrins bind guanine quadruplexes, but the effects of ligand binding on the structure of guanine quadruplexes with more than four contiguous guanine quartets remains to be fully elucidated. Double electron-electron resonance (DEER) spectroscopy conducted at 9.5 GHz (X-band) using broadband, shaped inversion pulses was used to measure the distances between cationic copper porphyrins bound to model parallel-stranded guanine quadruplexes with increasing numbers of guanine quartets. A single Gaussian component was found to best model the time domain datasets, characteristic of a 2 : 1 binding stoichiometry between the porphyrins and each quadruplex. The measured Cu(2+)-Cu(2+) distances were found to be linearly proportional with the number of guanines. Rather unexpectedly, the ligand end-stacking distance was found to monotonically decreases the overall quadruplex length was extended, suggesting a conformational change in the quadruplex secondary structure dependent upon the number of successive guanine quartets. PMID:27218217

  11. Guanine-based photonic crystals in fish scales form from an amorphous precursor.

    PubMed

    Gur, Dvir; Politi, Yael; Sivan, Berta; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2013-01-01

    Starting from disorder: anhydrous guanine crystals compose the photonic arrays responsible for the skin and scale iridescence found in Japanese Koi fish. These guanine crystals were found to form in intracellular vesicles through an amorphous precursor phase. A combined cryo-SEM and synchrotron radiation X-ray diffraction study showed the evolution of the crystals in great detail. PMID:22951999

  12. Cytochrome b nucleotide sequence variation among the Atlantic Alcidae.

    PubMed

    Friesen, V L; Montevecchi, W A; Davidson, W S

    1993-01-01

    Analysis of cytochrome b nucleotide sequences of the six extant species of Atlantic alcids and a gull revealed an excess of adenines and cytosines and a deficit of guanines at silent sites on the coding strand. Phylogenetic analyses grouped the sequences of the common (Uria aalge) and Brünnich's (U. lomvia) guillemots, followed by the razorbill (Alca torda) and little auk (Alle alle). The black guillemot (Cepphus grylle) sequence formed a sister taxon, and the puffin (Fratercula arctica) fell outside the other alcids. Phylogenetic comparisons of substitutions indicated that mutabilities of bases did not differ, but that C was much more likely to be incorporated than was G. Imbalances in base composition appear to result from a strand bias in replication errors, which may result from selection on secondary RNA structure and/or the energetics of codon-anticodon interactions. PMID:7916741

  13. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  14. Unraveling the complexity of the interactions of DNA nucleotides with gold by single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie

    2015-11-01

    Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct

  15. Ab initio study of guanine damage by hydroxyl radical.

    PubMed

    Chaban, Galina M; Wang, Dunyou; Huo, Winifred M

    2015-01-15

    Multiconfigurational ab initio methods are used in this study to examine two initial reactions that take place during the OH radical attack of the DNA base guanine: a ring opening reaction and a hydrogen transfer reaction. The same reactions are also studied in the presence of a single water molecule. The ring opening reaction has a moderate barrier height of ∼20-25 kcal/mol that is relatively insensitive to the presence of water. The barrier of the H-transfer reaction, on the other hand, is lowered from ∼50 to ∼22 kcal/mol when one water molecule is added, thus becoming comparable to the barrier height of the ring opening reaction. PMID:25517252

  16. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. PMID:21050729

  17. Guanine nucleotide metabolism in a mutant strain of Escherichia coli with a temperature sensitive lesion in rRNA synthesis.

    PubMed

    Harris, J S; Chaney, S G

    1978-12-21

    We have described a mutant of Escherichia coli (designated 2S142) which shows specific inhibition of rRNA synthesis at 42 degrees C. ppGpp levels increase at the restrictive temperature, as expected. However, when the cells are returned to 30 degrees C, rRNA synthesis resumes before ppGpp levels have returned to normal. Furthermore, when ppGpp levels are decreased by the addition of tetracycline or choramphenicol, rRNA synthesis does not resume at 42 degrees C. Also, a derivative of 2S142 with a temperature-sensitive G factor (which cannot synthesize either protein or ppGpp at 42 degrees C) shows identical kinetics of rRNA shut-off at 42 degrees C as 2S142. Thus, the elevated ppGpp levels in this mutant do not appear to be directly responsible for the cessation of rRNA synthesis at 42 degrees C. PMID:367439

  18. Juvenile Hormone Regulates the Expression of Drosophila Epac– a Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The juvenile hormones (JH) are a key group of insect hormones involved in regulating larval development and adult reproductive processes. Although well-studied from the physiological standpoint, the molecular actions of JH remain unclear. Using cDNA microchip array technology, we previously identifi...

  19. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rop/Rac small GTPases are central to diverse developmental and cellular activities in plants, playing an especially important role in polar growth of pollen tubes. Although it is established that a class of plant-specific RopGEFs promotes the activity of Rop/Rac through the catalytic PRONE (Plant sp...

  20. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  1. Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans.

    PubMed

    Bhat, Jaffar M; Hutter, Harald

    2016-07-01

    Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3 aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon. PMID:27116976

  2. Quantum molecular modeling of the interaction between guanine and alkylating agents--1--sulfur mustard.

    PubMed

    Broch, H; Hamza, A; Vasilescu, D

    1996-06-01

    Interaction between Guanine and the episulfonium form of Sulfur mustard (HD) was studied using the ab initio LCAO-MO method at the HF/6-31G level. The alkylation mechanism on guanine-N7 was analyzed by using a supermolecular modeling. Our stereostructural results associated with the molecular electrostatic potentials and HOMO-LUMO properties, show that in vacuum the alkylation of the N7 of guanine by HD in the aggressive episulfonium form is a direct process without transition state and of which the pathway is determined. PMID:8832373

  3. Guanosine nucleotide precursor for flavinogenesis of Eremothecium Ashbyii.

    PubMed

    Mitsuda, H; Nakajima, K

    1975-01-01

    The purine precursor in the riboflavin biosynthetic pathway in Eremothecium ashbyii was examined using a guanine analogue, 8-azaguanine, with non-growing cell systems. 1. Riboflavin formation in the culture filtrate was determined at 0, 5, 10 and 20 hr after start of the incubation of the non-growing cells in the presence of xanthine or 8-azaguanine (1 mM, respectively). At 20 hr of incubation, the addition of xanthine stimulated riboflavin formation by 36% and the addition of 8-azaguanine inhibited the formation by 57%. 2. Acid soluble nucleotide pools in the cells were followed at 0, 5, 10 and 20 hr of the incubation period in the presence of xanthine or 8-azaguanine by means of anion exchange column chromatography. The result showed that the GTP pool changed markedly despite the fact that the adenosine nucleotide pool was almost constant irrespective of the presence or absence of these purines till 10 hr of incubation. But, the decrease of the former was overcome in part by the addition of flavinogenic xanthine. Furthermore, the total amounts of GTP and guanosine accumulated in cells in the presence of 8-azaguanine reached the maximum already at 5 hr, attaining a level twice as much as the GTP contents of the control. 3. The role of guanosine nucleotide pool in riboflavin formation was further examined using 8-azaguanine. In this experiment the drug was added to the suspension of non-growing cells at 3 hr or 6 hr after the incubation was started and the reaction was continued till the 12th hr. A more clear-cut correlationship between riboflavin formation and guanosine nucleotide pool was oberved by this experiment. The guanosine nucleotide pool (consisting of GMP, GDP and GTP) increased simultaneously with the inhibition of riboflavin formation. Of the guanosine nucleotides pools, the GMP pool increased 2.7 times above normal upon the addition of 8-azaguanine during the incubation for 6 hr and 5.3 fold for 9 hr. While, the GTP pool increased 1.9 fold above

  4. Real-time NMR Study of Three Small GTPases Reveals That Fluorescent 2′(3′)-O-(N-Methylanthraniloyl)-tagged Nucleotides Alter Hydrolysis and Exchange Kinetics*

    PubMed Central

    Mazhab-Jafari, Mohammad T.; Marshall, Christopher B.; Smith, Matthew; Gasmi-Seabrook, Geneviève M. C.; Stambolic, Vuk; Rottapel, Robert; Neel, Benjamin G.; Ikura, Mitsuhiko

    2010-01-01

    The Ras family of small GTPases control diverse signaling pathways through a conserved “switch” mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2′(3′)-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho. Using a recently developed NMR method, we show that the kinetics of nucleotide hydrolysis and exchange by three small GTPases, alone and in the presence of their cognate GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, are affected by the presence of the fluorescent mant moiety. Intrinsic hydrolysis of mantGTP by Ras homolog enriched in brain (Rheb) is ∼10 times faster than that of GTP, whereas it is 3.4 times slower with RhoA. On the other hand, the mant tag inhibits TSC2GAP-catalyzed GTP hydrolysis by Rheb but promotes p120 RasGAP-catalyzed GTP hydrolysis by H-Ras. Guanine nucleotide exchange factor-catalyzed nucleotide exchange for both H-Ras and RhoA was inhibited by mant-substituted nucleotides, and the degree of inhibition depends highly on the GTPase and whether the assay measures association of mantGTP with, or dissociation of mantGDP from the GTPase. These results indicate that the mant moiety has significant and unpredictable effects on GTPase reaction kinetics and underscore the importance of validating its use in each assay. PMID:20018863

  5. Influence of GDP on interaction of transducin with cyclic nucleotide phosphodiesterase and rhodopsin from bovine retinal rods

    SciTech Connect

    Rybin, V.O.

    1986-12-20

    In the presence of guanine nucleotides and rhodopsin-containing membranes from bovine retinal rod outer segments transducin stimulates light-sensitive cyclic nucleotide phosphodiesterase 5.5- to 7-fold. The activation constant (K/sub act/) for GTP and Gpp(NH)p is equal to 0.25 ..mu..M, while that for GDP and GDP..beta..S is 14 and 110 ..mu..M, respectively. GDP free of admixtures of other nucleotides does not activate phosphodiesterase at concentrations up to 1 mM, but is bound to transducin and inhibits the Gpp(NH)p-dependent activation of phosphodiesterase. The nature of the interaction of transducin with depolarized rhodopsin also depends on the type of guanine nucleotide bound: in the presence of GDP rhodopsin-containing membranes bind 70-100% of the transducin, whereas in the presence of Gpp(NH)p only 13% of the protein is bound. The data obtained indicate that GDP and GTP convert transducin to two different functional states: the transducin-GTP complex is bound to phosphodiesterase and activates it, while the transducin-GDP complex is bound primarily to rhodopsin.

  6. Mechanisms involved in the antinociception induced by spinal administration of inosine or guanine in mice.

    PubMed

    de Oliveira, Enderson D; Schallenberger, Cristhine; Böhmer, Ana Elisa; Hansel, Gisele; Fagundes, Aécio C; Milman, Michael; Silva, Marcos D P; Oses, Jean P; Porciúncula, Lisiane O; Portela, Luís V; Elisabetsky, Elaine; Souza, Diogo O; Schmidt, André P

    2016-02-01

    It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors. PMID:26712379

  7. Horizontal gene transfer of a Chlamydial tRNA-guanine transglycosylase gene to eukaryotic microbes.

    PubMed

    Manna, Sam; Harman, Ashley

    2016-01-01

    tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes. PMID:26435002

  8. Fluorescence resonance energy transfer in the studies of guanine quadruplexes.

    PubMed

    Juskowiak, Bernard; Takenaka, Shigeori

    2006-01-01

    A guanine (G)-quadruplex DNA motif has recently emerged as a biologically important structure that is believed to interfere with telomere maintenance by telomerase. G-quadruplexes exhibit four-stranded structures containing one or more nucleic acid strands with central channel able to accommodate metal cations. Coordination of certain metal cations stabilizes G-quadruplex as with some promising small organic molecules that promote the formation and/or stabilization of G-quadruplex. Among many techniques employed to explore properties of G-quadruplexes, the fluorescence resonance energy transfer (FRET) technique has been recognized as a powerful tool to study G-quadruplex formation. This review summarizes the current developments in the uses of FRET technique for the fundamental structural investigations and its practical applications. Applications include FRET-based selection of efficient quadruplex-binding ligands, design of a nanomolecular machine, and a molecular aptamer beacon for protein recognition. We also describe a technique for detection of potassium ions in aqueous solution with the use of quadruplex-based sensor (potassium-sensing oligonucleotide). PMID:16785636

  9. Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment

    PubMed Central

    Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; Hershberg, Ruth

    2015-01-01

    The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated. PMID:25861819

  10. Nucleotide discrimination with DNA immobilized in the MspA nanopore.

    PubMed

    Manrao, Elizabeth A; Derrington, Ian M; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2011-01-01

    Nanopore sequencing has the potential to become a fast and low-cost DNA sequencing platform. An ionic current passing through a small pore would directly map the sequence of single stranded DNA (ssDNA) driven through the constriction. The pore protein, MspA, derived from Mycobacterium smegmatis, has a short and narrow channel constriction ideally suited for nanopore sequencing. To study MspA's ability to resolve nucleotides, we held ssDNA within the pore using a biotin-NeutrAvidin complex. We show that homopolymers of adenine, cytosine, thymine, and guanine in MspA exhibit much larger current differences than in α-hemolysin. Additionally, methylated cytosine is distinguishable from unmethylated cytosine. We establish that single nucleotide substitutions within homopolymer ssDNA can be detected when held in MspA's constriction. Using genomic single nucleotide polymorphisms, we demonstrate that single nucleotides within random DNA can be identified. Our results indicate that MspA has high signal-to-noise ratio and the single nucleotide sensitivity desired for nanopore sequencing devices. PMID:21991340