Science.gov

Sample records for 1c involving 5-lipoxygenase

  1. 5-lipoxygenase activation is involved in the mechanisms of chronic hepatic injury in a rat model of chronic aluminum overload exposure.

    PubMed

    Mai, Shaoshan; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Yang, Yang; Kuang, Shengnan; Tian, Xiaoyan; Ma, Jie; Yang, Junqing

    2016-08-15

    We previously confirmed that rats overloaded with aluminum exhibited hepatic function damage and increased susceptibility to hepatic inflammation. However, the mechanism of liver toxicity by chronic aluminum overload is poorly understood. In this study, we investigated changes in the 5-lipoxygenase (5-LO) signaling pathway and its effect on liver injury in aluminum-overloaded rats. A rat hepatic injury model of chronic aluminum injury was established via the intragastric administration of aluminum gluconate (Al(3+) 200mg/kg per day, 5days a week for 20weeks). The 5-LO inhibitor, caffeic acid (10 and 30mg/kg), was intragastrically administered 1h after aluminum administration. Hematoxylin and eosin staining was used to visualize pathological changes in rat liver tissue. A series of biochemical indicators were measured with biochemistry assay or ELISAs. Immunochemistry and RT-PCR methods were used to detect 5-LO protein and mRNA expression in the liver, respectively. Caffeic acid administration protected livers against histopathological injury, decreased plasma ALT, AST, and ALP levels, decreased TNF-α, IL-6, IL-1β and LTs levels, increased the reactive oxygen species content, and down-regulated the mRNA and protein expressions of 5-LO in aluminum overloaded rats. Our results indicate that 5-lipoxygenase activation is mechanistically involved in chronic hepatic injury in a rat model of chronic aluminum overload exposure and that the 5-LO signaling pathway, which associated with inflammation and oxidative stress, is a potential therapeutic target for chronic non-infection liver diseases. PMID:27368151

  2. Inhibition of 5-lipoxygenase by vitamin E.

    PubMed

    Reddanna, P; Rao, M K; Reddy, C C

    1985-11-25

    Purified 5-lipoxygenase from potato tubers was inhibited strongly by vitamin E and its analogs. The inhibition by d-alpha-tocopherol was found to be irreversible and non-competitive with respect to arachidonic acid. An IC50 of 5 microM was calculated for d-alpha-tocopherol. The inhibition appears to be unrelated to its antioxidant function. Binding studies with 14C-labelled d-alpha-tocopherol revealed that there is a strong interaction between vitamin E and 5-lipoxygenase. Tryptic digestion and peptide mapping of 5-lipoxygenase-vitamin E complex indicate that vitamin E binds strongly to a single peptide. These studies suggest that cellular vitamin E levels may have profound influence on the formation of leukotrienes. PMID:3934003

  3. Characterization of the human 5-lipoxygenase gene promoter

    SciTech Connect

    Hoshiko, S.; Radmark, O.; Samuelsson, B. )

    1990-12-01

    Nucleotide sequences that direct transcription of the human 5-lipoxygenase gene have been examined by ligation to the chloramphenicol acetyltransferase activity in transfected HeLa and HL-60 cells. Various lengths of 5{prime}-flanking sequences up to 5.9 kilobase pairs 5{prime} of the transcriptional initiation sites were tested. Two positive and two negative apparent regulatory regions were seen. Part of the promoter sequence ({minus}179 to {minus}56 from ATG), which includes five repeated GC boxes (the putative Spl binding sequence) was essential for transcription in both HeLa and HL-60 cells. Gel-shift assays (using the DNA fragment {minus}212 to {minus}88) revealed that the transcriptional factor Spl could bind to this region of the 5-lipoxygenase promoter. Furthermore, HL-60 nuclear extracts contained specific nuclear factor(s) binding to 5-lipoxygenase promoter DNA, which could not be detected in HeLa cell nuclear extracts.

  4. Kinetic investigation of human 5-lipoxygenase with arachidonic acid.

    PubMed

    Mittal, Monica; Kumar, Ramakrishnan B; Balagunaseelan, Navisraj; Hamberg, Mats; Jegerschöld, Caroline; Rådmark, Olof; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2016-08-01

    Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity. PMID:27363940

  5. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  6. 5-Lipoxygenase Deficiency Reduces Acetaminophen-Induced Hepatotoxicity and Lethality

    PubMed Central

    Hohmann, Miriam S. N.; Cardoso, Renato D. R.; Pinho-Ribeiro, Felipe A.; Crespigio, Jefferson; Cunha, Thiago M.; Alves-Filho, José C.; da Silva, Rosiane V.; Pinge-Filho, Phileno; Ferreira, Sergio H.; Cunha, Fernando Q.; Casagrande, Rubia; Verri, Waldiceu A.

    2013-01-01

    5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO−/−) mice and background wild type mice were challenged with APAP (0.3–6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO−/− mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α, IFN-γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91phox mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO−/− mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage. PMID:24288682

  7. Alveolar lining fluid regulates mononuclear phagocyte 5-lipoxygenase metabolism.

    PubMed

    Phare, S M; Peters-Golden, M; Coffey, M J

    1998-11-01

    The enzyme 5-lipoxygenase (5-LO) catalyses the synthesis of leukotrienes (LT), which are important in phagocytosis and killing of microorganisms. The alveolar macrophage (AM), the primary resident defender of the alveolar space, has a greater capacity for LT synthesis than its precursor, the peripheral blood monocyte (PBM). This study investigated whether the alveolar lining fluid (ALF) upregulates LT synthetic capacity in mononuclear phagocytes. Rat AM, peritoneal macrophages (PM) and ALF were obtained by lavage from pathogen-free animals. Human PBM were isolated from normal subjects. 5-LO metabolism and expression were measured with and without ALF. Rat ALF increased 5-LO metabolism (136.4+/-15.1% of control) in cultured PBM. This was associated with increased 5-LO activating protein (FLAP) (357+/-29.5 %), and 5-LO expression (188+/-31.3%). Culture of AM for 3 days resulted in a greater decrement in LTB4 synthesis (LTB4 15.4+/-6.9% of day 1) than in PM (54.7+/-8.3% of day 1), suggesting a greater dependence of AM 5-LO metabolism on ALF. 5-LO and FLAP expression decreased to a greater degree in AM than PM in culture. Furthermore, AM cultured with ALF maintained their LT synthetic capacity, FLAP and 5-LO expression compared with control cells cultured in medium alone. In conclusion, alveolar lining fluid increased 5-lipoxygenase metabolism in peripheral blood monocytes and maintained it in cultured alveolar macrophages, by a mechanism of increased 5-lipoxygenase and 5-lipoxygenase activating protein expression. This may boost host defence capabilities. PMID:9864011

  8. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation.

    PubMed

    Gerstmeier, Jana; Newcomer, Marcia E; Dennhardt, Sophie; Romp, Erik; Fischer, Jana; Werz, Oliver; Garscha, Ulrike

    2016-05-01

    Leukotrienes (LTs) are proinflammatory lipid mediators formed from arachidonic acid in a 2-step reaction catalyzed by 5-lipoxygenase (5-LOX) requiring the formation of 5-HPETE [5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid] and its subsequent transformation to LTA4 5-LOX is thought to receive arachidonic acid from the nuclear membrane-embedded 5-LOX-activating protein (FLAP). The crystal structure of 5-LOX revealed an active site concealed by F177 and Y181 (FY cork). We examined the influence of the FY cork on 5-LOX activity and membrane binding in HEK293 cells in the absence and presence of FLAP. Uncapping the 5-LOX active site by mutation of F177 and/or Y181 to alanine (5-LOX-F177A, 5-LOX-Y181A, 5-LOX-F177/Y181A) resulted in delayed and diminished 5-LOX membrane association in A23187-stimulated cells. For 5-LOX-F177A and 5-LOX-F177/Y181A, formation of 5-LOX products was dramatically reduced relative to 5-LOX-wild type (wt). Strikingly, coexpression of FLAP in A23187-activated HEK293 cells effectively restored formation of 5-H(p)ETE (5-hydroxy- and 5-peroxy-6-trans-8,11,14-cis-eicosatetraenoic acid) by these same 5-LOX mutants (≈60-70% 5-LOX-wt levels) but not of LTA4 hydrolysis products. Yet 5-LOX-Y181A generated 5-H(p)ETE at levels comparable to 5-LOX-wt but reduced LTA4 hydrolysis products. Coexpression of FLAP partially restored LTA4 hydrolysis product formation by 5-LOX-Y181A. Together, the data suggest that the concealed FY cork impacts membrane association and that FLAP may help shield an uncapped active site.-Gerstmeier, J., Newcomer, M. E., Dennhardt, S., Romp, E., Fischer, J., Werz, O., Garscha, U. 5-Lipoxygenase-activating protein rescues activity of 5-lipoxygenase mutations that delay nuclear membrane association and disrupt product formation. PMID:26842853

  9. Involvement of glomerular SREBP-1c in diabetic nephropathy

    SciTech Connect

    Ishigaki, Naomi; Yamamoto, Takashi; Shimizu, Yoshio; Kobayashi, Kazuto; Yatoh, Shigeru; Sone, Hirohito; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamagata, Kunihiro; Yamada, Nobuhiro; Shimano, Hitoshi

    2007-12-21

    The role of glomerular SREBP-1c in diabetic nephropathy was investigated. PEPCK-promoter transgenic mice overexpressing nuclear SREBP-1c exhibited enhancement of proteinuria with mesangial proliferation and matrix accumulation, mimicking diabetic nephropathy, despite the absence of hyperglycemia or hyperlipidemia. Isolated transgenic glomeruli had higher expression of TGF{beta}-1, fibronectin, and SPARC in the absence of marked lipid accumulation. Gene expression of P47phox, p67phox, and PU.1 were also activated, accompanying increased 8-OHdG in urine and kidney, demonstrating that glomerular SREBP-1c could directly cause oxidative stress through induced NADPH oxidase. Similar changes were observed in STZ-treated diabetic mice with activation of endogenous SREBP-1c. Finally, diabetic proteinuria and oxidative stress were ameliorated in SREBP-1-null mice. Adenoviral overexpression of active and dominant-negative SREBP-1c caused consistent reciprocal changes in expression of both profibrotic and oxidative stress genes in MES13 mesangial cells. These data suggest that activation of glomerular SREBP-1c could contribute to emergence and/or progression of diabetic nephropathy.

  10. 5-Lipoxygenase Activity Increases Susceptibility to Experimental Paracoccidioides brasiliensis Infection

    PubMed Central

    Tristão, Fabrine Sales Massafera; Rocha, Fernanda Agostini; Moreira, Ana Paula; Cunha, Fernando Queiroz; Rossi, Marcos Antonio

    2013-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the thermodimorphic fungus Paracoccidioides brasiliensis. Leukotrienes and lipoxins are lipid mediators produced after 5-lipoxygenase (5-LO) activation that exhibit pro- and anti-inflammatory roles, respectively. Here, we have investigated the contribution of 5-LO enzymatic activity in PCM using an experimental model of P. brasiliensis infection. B6.129 wild-type (B6.129) and 5-LO-deficient (5-LO−/−) mice were intravenously inoculated with a virulent strain of P. brasiliensis (Pb18), and the survival rate of the infected mice was investigated on different days after yeast infection. 5-LO−/− mice exhibited an increased survival rate associated with a decreased number of CFU. The resistance of 5-LO−/− during PCM was associated with augmented nitric oxide (NO) production and the formation of compact granulomas. In addition, the absence of 5-LO was associated with a diminished number of CD4+ CD25+ regulatory T cells, higher levels of gamma interferon and interleukin-12, and increased T-bet (a T-box transcription factor that directs Th1 lineage commitment) mRNA levels in the lungs. Taken together, our results show for the first time that 5-LO enzymatic activity increases susceptibility to P. brasiliensis, suggesting that this pathway may be a potential target for therapeutic intervention during PCM. PMID:23381993

  11. Identification of the substrate access portal of 5-Lipoxygenase

    PubMed Central

    Mitra, Sunayana; Bartlett, Sue G.

    2016-01-01

    The overproduction of inflammatory lipid mediators derived from arachidonic acid contributes to asthma and cardiovascular diseases, among other pathologies. Consequently, the enzyme that initiates the synthesis of pro-inflammatory leukotrienes, 5-lipoxygenase (5-LOX), is a target for drug design. The crystal structure of 5-LOX revealed a fully encapsulated active site, thus the point of substrate entry is not known. We asked whether a structural motif, a “cork” present in 5-LOX but absent in other mammalian lipoxygenases, might be ejected to allow substrate access. Our results indicate that reduction of cork volume facilitates access to the active site. However, if cork entry into the site is obstructed, enzyme activity is significantly compromised. The results support a model in which the “cork” that shields the active site in the absence of substrate serves as the active site portal, but the “corking” amino acid Phe-177 plays a critical role in providing a fully functional active site. Thus the more appropriate metaphor for this structural motif is a “twist-and-pour” cap. Additional mutagenesis data are consistent with a role for His-600, deep in the elongated cavity, in positioning the substrate for catalysis. PMID:26427761

  12. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  13. Ablation of 5-lipoxygenase mitigates pancreatic lesion development

    PubMed Central

    Knab, Lawrence M.; Schultz, Michelle; Principe, Daniel R.; Mascarinas, Windel E.; Gounaris, Elias; Munshi, Hidayatullah G.; Grippo, Paul J.; Bentrem, David J.

    2016-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC), which continues to have a dismal prognosis, is associated with a pronounced fibro-inflammatory response. Inflammation in vivo can be mediated by 5-lipoxygenase (5LO), an enzyme that converts omega-6 fatty acids to eicosanoids, including leukotriene B4 (LTB4). We have previously shown that diets rich in omega-6 fatty acids (FA) increase pancreatic lesions and mast cell infiltration in EL-Kras mice. In this study, we evaluated the role of 5LO in generating higher levels of LTB4 from human cells and in mediating lesion development and mast cell infiltration in EL-Kras mice. Materials and Methods Human pancreatic ductal epithelial (HPDE) and cancer cells were treated with omega-6 FA in vitro. EL-Kras mice lacking 5LO (EL-Kras/5LO−/−) mice were generated and fed standard chow or omega-6 FA diets. Pancreatic lesion frequency and mast cell infiltration were compared to EL-Kras/5LO+/+ mice. Human PDAC tumors were evaluated for 5LO expression and mast cells. Results HPDE and cancer cells treated with omega-6 FA generated increased LTB4 levels in vitro. EL-Kras/5LO−/− developed fewer pancreatic lesions and had decreased mast cell infiltration when compared to EL-Kras/5LO+/+ mice. Human PDAC tumors with increased 5LO expression demonstrate increased mast cell infiltration. Additionally, diets rich in omega-6 FA failed to increase pancreatic lesion development and mast cell infiltration in EL-Kras/5LO−/− mice. Conclusions The expansion of mutant Kras-induced lesions via omega-6 FA is dependent on 5LO, and 5LO functions downstream of mutant Kras to mediate inflammation, suggesting that 5LO may be a potential chemo-preventive and therapeutic target in pancreatic cancer. PMID:25454978

  14. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of... projects in which human subjects' involvement will depend upon completion of instruments, prior...

  15. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of... projects in which human subjects' involvement will depend upon completion of instruments, prior...

  16. Exogenous action of 5-lipoxygenase by its metabolites on luteinizing hormone release in rat pituitary cells.

    PubMed

    Przylipiak, A; Kiesel, L; Habenicht, A J; Przylipiak, M; Runnebaum, B

    1990-02-12

    The stimulatory effect of exogenously administered potato 5-lipoxygenase (0.1-0.3 U/2 ml) on luteinizing hormone (LH) release was demonstrated in rat anterior pituitary cells in a superfusion system. Nordihydroguaiaretic acid (NDGA), an inhibitor of 5-lipoxygenase, abolished the effect of the enzyme on LH secretion. The secretory effect on LH after 5-lipoxygenase administration was biphasic and dependent on Ca2+ indicating that 5-lipoxygenase affects LH release through its oxygenation reaction. Another series of experiments demonstrated that activation of 5-lipoxygenase, expressed as production of leukotriene (LT) B4 and C4 (728 +/- 127 pg/10(6) cells and 178 +/- 23 pg/10(6) cells, respectively) occurs in rat pituitary cells after addition of Ca2+ ionophore A23187. However, LTB4 and LTC4 were not formed by pituitary cells that had previously been desensitized by gonadotropin-releasing hormone (GnRH), the physiological ligand of LH release. These results are consistent with a role of 5-lipoxygenase metabolites in the mechanism of GnRH-induced LH secretion. PMID:2157615

  17. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of human subjects. Certain types of applications for grants, cooperative agreements, or contracts...

  18. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of human subjects. Certain types of applications for grants, cooperative agreements, or contracts...

  19. 7 CFR 1c.118 - Applications and proposals lacking definite plans for involvement of human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... involvement of human subjects. 1c.118 Section 1c.118 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.118 Applications and proposals lacking definite plans for involvement of human subjects. Certain types of applications for grants, cooperative agreements, or contracts...

  20. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In the event research is undertaken without the intention of involving human subjects, but it is later...

  1. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to involve human subjects in the research, the research shall first be reviewed and approved by an... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In...

  2. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to involve human subjects in the research, the research shall first be reviewed and approved by an... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In...

  3. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to involve human subjects in the research, the research shall first be reviewed and approved by an... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In...

  4. 7 CFR 1c.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... human subjects. 1c.119 Section 1c.119 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.119 Research undertaken without the intention of involving human subjects. In the event research is undertaken without the intention of involving human subjects, but it is later...

  5. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype

    PubMed Central

    Joshi, Yash B.; Praticò, Domenico

    2015-01-01

    Alzheimer’s disease (AD) is the most common, and, arguably, one of the most-well studied, neurodegenerative conditions. Several decades of investigation have revealed that amyloid-β and tau proteins are critical pathological players in this condition. Genetic analyses have revealed specific mutations in the cellular machinery that produces amyloid-β, but these mutations are found in only a small fraction of patients with the early-onset variant of AD. In addition to development of amyloid-β and tau pathology, oxidative damage and inflammation are consistently found in the brains of these patients. The 5-lipoxygenase protein enzyme (5LO) and its downstream leukotriene metabolites have long been known to be important modulators of oxidation and inflammation in other disease states. Recent in vivo evidence using murine knock-out models has implicated the 5LO pathway, which also requires the 5LO activating protein (FLAP), in the molecular pathology of AD, including the metabolism of amyloid-β and tau. In this manuscript, we will provide an overview of 5LO and FLAP, discussing their involvement in biochemical pathways relevant to AD pathogenesis. We will also discuss how the 5LO pathway contributes to the molecular and behavioral insults seen in AD and provide an assessment of how targeting these proteins could lead to therapeutics relevant not only for AD, but also other related neurodegenerative conditions. PMID:25642165

  6. Synthesis and Evaluation of 5-Lipoxygenase Translocation Inhibitors from Acylnitroso Hetero-Diels-Alder Cycloadducts†

    PubMed Central

    Bolger, Joshua K.; Tian, Wen; Wolter, William R.; Cho, Wonhwa; Suckow, Mark A.

    2012-01-01

    Acylnitroso cycloadducts have proven to be valuable intermediates in the syntheses of a plethora of biologically active molecules. Recently, organometallic reagents were shown to open bicyclic acylnitroso cycloadducts and, more interestingly, the prospect of highly regioselective openings was raised. This transformation was employed in the synthesis of a compound with excellent inhibitory activity against 5-lipoxygenase ((±)-4a, IC50 51 nM), an important mediator of inflammation intimately involved in a number of disease states including asthma and cancer. Optimization of the copper-mediated organometallic ring opening reaction was accomplished allowing the further exploration of the biological activity. Synthesis of a number of derivatives with varying affinity for metal binding as well as pendant groups in a range of sizes was accomplished. Analogues were tested in a whole cell assay which revealed a subset of the compounds to be inhibitors of enzyme translocation, a mode of action not previously known and, potentially, extremely important for better understanding of the enzyme and inhibitor development. Additionally, the lead compound was tested in vivo in an established colon cancer model and showed very encouraging anti-tumorogenic properties. PMID:21365098

  7. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    PubMed Central

    Temml, Veronika; Maghradze, David; Vanek, Tomas

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682

  8. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  9. 5-Lipoxygenase/cyclooxygenase-2 cross-talk through cysteinyl leukotriene receptor 2 in endothelial cells.

    PubMed

    Lötzer, Katharina; Jahn, Steffen; Kramer, Cornelia; Hildner, Markus; Nüsing, Rolf; Funk, Colin D; Habenicht, Andreas J R

    2007-11-01

    The 5-lipoxygenase (5-LO) pathway generates lipid mediators, i.e. the cysteinyl leukotrienes (cysLTs) LTC(4)/LTD(4) and LTB(4). CysLT receptors are expressed in endothelial cells (EC) and EC cysLT(2)-R activation induces diverse pro-inflammatory genes in vitro. We now report that LTD(4) promotes formation of an atherosclerosis-protective and anti-thrombotic eicosanoid by markedly up-regulating EC cyclooxygenase-2 (COX-2). CysLT-induced COX-2 transcripts were transiently up-regulated as determined by microarray and QRT-PCR analyses though COX-2 protein remained elevated for several hours. Prostacyclin formation, measured as its stable metabolite 6-keto-PGF(1alpha), was increased several fold in LTD(4)-stimulated ECs, and was inhibited by the COX-2-specific inhibitor, NS-398. COX-2 up-regulation was Ca(2+)-dependent and was partially blocked by cyclosporin A indicating that the 5-LO/COX-2 cross-talk involved signaling through a nuclear factor of activated T cells (NFAT) dependent pathway. Since prostacyclin is a major blood vessel-protective and anti-thrombotic eicosanoid, the EC cysLT(2)-R may limit its otherwise pro-inflammatory actions through a protective Ca(2+)/calcineurin/NFAT-dependent COX-2 feedback loop. PMID:17991613

  10. In vitro inhibition of 5-lipoxygenase by protolichesterinic acid from Cetraria islandica.

    PubMed

    Ingolfsdottir, K; Breu, W; Huneck, S; Gudjonsdottir, G A; Müller-Jakic, B; Wagner, H

    1994-12-01

    The aliphatic α-methylene-γ-lactone (+)-protolichesterinic acid (1), isolated from Cetraria islandica, has been shown to exhibit inhibitory effects on the enzyme 5-lipoxygenase in an in vitro assay in which porcine leucocytes are used as a source of the enzyme system. The isomeric compounds (+)-lichesterinic acid (2) and (-)-lichesterinic acid (4), prepared from (+)-protolichesterinic- and (-)-allo-protolichesterinic acids, respectively, exhibited anti-5-lipoxygenase activity of the same order of magnitude. (+)-Methyl lichesterinate (3) was, however, inactive. It was shown that despite its lipophilic nature, protolichesterinic acid is extractable into an aqueous medium, the concentration being dependent on the length of extraction. PMID:23195937

  11. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?

    PubMed

    Roos, Jessica; Grösch, Sabine; Werz, Oliver; Schröder, Peter; Ziegler, Slava; Fulda, Simone; Paulus, Patrick; Urbschat, Anja; Kühn, Benjamin; Maucher, Isabelle; Fettel, Jasmin; Vorup-Jensen, Thomas; Piesche, Matthias; Matrone, Carmela; Steinhilber, Dieter; Parnham, Michael J; Maier, Thorsten J

    2016-01-01

    Canonical Wnt signaling is a highly conserved pathway with a prominent role in embryogenic development, adult tissue homeostasis, cell polarization, stem cell biology, cell differentiation, and proliferation. Furthermore, canonical Wnt signaling is of pivotal importance in the pathogenesis of a number of cancer types and crucially affects tumor initiation, cancer cell proliferation, cancer cell apoptosis, and metastasis. Reports over the last decade have provided strong evidence for a pathophysiological role of Wnt signaling in non-malignant classical inflammatory and neurodegenerative diseases. Although, several agents suppressing the Wnt pathway at different levels have been identified, the development of clinically relevant Wnt-inhibiting agents remains challenging due to selectivity and toxicity issues. Several studies have shown that long-term administration of non-steroidal anti-inflammatory drugs protects against colon cancer and potentially other tumor types by interfering both with the COX and the Wnt pathway. Our own studies have shown that non-steroidal anti-inflammatory drugs suppress Wnt signaling by targeting the pro-inflammatory enzyme 5-lipoxygenase which is the key enzyme pathophysiologically involved in the synthesis of leukotrienes. Furthermore, we found a direct link between the 5-lipoxygenase and Wnt signaling pathways, which is essential for the maintenance of leukemic stem cells. Accordingly, genetic and pharmacological inhibition of 5-lipoxygenase led to an impairment of Wnt-dependent acute and chronic myeloid leukemic stem cells. We believe that 5-lipoxygenase inhibitors might represent a novel type of Wnt inhibitor activating a potentially naturally occurring novel mechanism of suppression of Wnt signaling that is non-toxic, at least in mice, and is potentially well tolerated in patients. PMID:26549540

  12. THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK

    PubMed Central

    Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.

    2012-01-01

    The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149

  13. Arachidonate 5-lipoxygenase gene variants affect response to fish oil supplementation by healthy African Americans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To determine the effects of arachidonate 5-lipoxygenase gene (ALOX5) variants on plasma lipid and lipoprotein concentrations and changes in response to fish oil supplementation. We hypothesized that Sp1 variants in the ALOX5 promoter, which have previously been associated with cardiovascu...

  14. 5-Lipoxygenase Negatively Regulates Th1 Response during Brucella abortus Infection in Mice

    PubMed Central

    Fahel, Júlia Silveira; de Souza, Mariana Bueno; Gomes, Marco Túlio Ribeiro; Corsetti, Patricia P.; Carvalho, Natalia B.; Marinho, Fabio A. V.; de Almeida, Leonardo A.; Caliari, Marcelo V.; Machado, Fabiana Simão

    2015-01-01

    Brucella abortus is a Gram-negative bacterium that infects humans and cattle, causing a chronic inflammatory disease known as brucellosis. A Th1-mediated immune response plays a critical role in host control of this pathogen. Recent findings indicate contrasting roles for lipid mediators in host responses against infections. 5-Lipoxygenase (5-LO) is an enzyme required for the production of the lipid mediators leukotrienes and lipoxins. To determine the involvement of 5-LO in host responses to B. abortus infection, we intraperitoneally infected wild-type and 5-LO-deficient mice and evaluated the progression of infection and concomitant expression of immune mediators. Here, we demonstrate that B. abortus induced the upregulation of 5-LO mRNA in wild-type mice. Moreover, this pathogen upregulated the production of the lipid mediators leukotriene B4 and lipoxin A4 in a 5-LO-dependent manner. 5-LO-deficient mice displayed lower bacterial burdens in the spleen and liver and less severe liver pathology, demonstrating an enhanced resistance to infection. Host resistance paralleled an increased expression of the proinflammatory mediators interleukin-12 (IL-12), gamma interferon (IFN-γ), and inducible nitric oxide synthase (iNOS) during the course of infection. Moreover, we demonstrated that 5-LO downregulated the expression of IL-12 in macrophages during B. abortus infection. Our results suggest that 5-LO has a major involvement in B. abortus infection, by functioning as a negative regulator of the protective Th1 immune responses against this pathogen. PMID:25583526

  15. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma.

    PubMed Central

    Nasser, S. M.; Bell, G. S.; Foster, S.; Spruce, K. E.; MacMillan, R.; Williams, A. J.; Lee, T. H.; Arm, J. P.

    1994-01-01

    BACKGROUND--The cysteinyl leukotrienes may play a central part in the mechanisms of aspirin-sensitive asthma. Previous work has shown that individuals with aspirin-sensitive asthma have high basal urinary LTE4 levels which increase further upon aspirin ingestion, and that sulphidopeptide leukotriene receptor antagonists attenuate aspirin-induced airflow obstruction. If the cysteinyl leukotrienes cause aspirin-induced asthmatic reactions, inhibition of the 5-lipoxygenase pathway should prevent aspirin-induced bronchospasm. This hypothesis has been tested with ZD2138, a specific non-redox 5-lipoxygenase inhibitor. METHODS--Seven subjects (four men) with aspirin-sensitive asthma with baseline FEV1 values > 67% were studied. ZD2138 (350 mg) or placebo was given on two separate occasions two weeks apart in a randomised double blind fashion. A single dose of aspirin was administered four hours after dosing and FEV1 was measured for six hours. Inhibition of the 5-lipoxygenase pathway by ZD2138 was assessed by measurements of urinary LTE4 levels and ex vivo calcium ionophore stimulated LTB4 generation in whole blood, before administration of drug or placebo and at regular time intervals after dosing and aspirin administration. RESULTS--ZD2138 protected against the aspirin-induced reduction in FEV1 with a 20.3 (4.9)% fall in FEV1 following placebo compared with 4.9 (2.9)% following ZD2138. This was associated with 72% inhibition of ex vivo LTB4 generation in whole blood at 12 hours and a 74% inhibition of the rise in urinary LTE4 excretion at six hours after aspirin ingestion. CONCLUSIONS--In aspirin-sensitive asthma the 5-lipoxygenase inhibitor ZD2138 inhibits the fall in FEV1 induced by aspirin and this is associated with substantial inhibition of 5-lipoxygenase. PMID:8091318

  16. 5-lipoxygenase pathway is essential for the control of granuloma extension induced by Schistosoma mansoni eggs in lung.

    PubMed

    Toffoli da Silva, Gabriel; Espíndola, Milena Sobral; Fontanari, Caroline; Rosada, Rogerio Silva; Faccioli, Lúcia Helena; Ramos, Simone Gusmão; Rodrigues, Vanderlei; Frantz, Fabiani Gai

    2016-08-01

    According to WHO, it is estimated that approximately 2 billion people are infected with intestinal helminths worldwide and the number of people who are cured of these diseases is relatively low, resulting in a large percentage of chronically infected individuals. Schistosomiasis is one of the most important parasitic diseases present in developing countries configuring it as a serious public health problem, directly related to poverty and social disadvantage. Once the parasite infection is established, Schistosoma mansoni eggs fall into the bloodstream and are trapped in the liver microcirculation where a strong granulomatous response and fibrosis formation occurs. In the experimental model, granulomas develop in the mouse lung after intravenous injection of purified eggs. Here we aim to understand how leukotrienes are involved in the granuloma formation. Leukotrienes are lipid mediators derived from arachidonic acid metabolites via 5-lipoxygenase (5LO) enzyme. They are potent proinflammatory agents and induce recruitment, cell activation, regulation of microbicidal activity of polymorphonuclear and mononuclear cells. In this study, 5LO deficient mice (5LO(-/-)) were inoculated with S. mansoni eggs for evaluation of immunopathological parameters involved in the induction of type 2 granulomas. We showed that in the absence of leukotrienes, the size of granulomas were decreased comparing to the wild type mice and the inflammatory compromised areas had a lower extension. In 5LO(-/-) mice granulomas presented extensive areas of fibrosis, detected by α-SMA expression along the lesions, indicating remodeling in attempt to reestablish the normal tissue. Also, comparing to WT mice we detected decrease of IL-4 and IL-13 and increase of TGF-β in the lung of 5LO(-/-), but these mice failed to produce protective IFN-γ and IL-12. These results evidenced 5-Lipoxygenase as an important pathway during lung injury due to Schistosoma-eggs injection. PMID:27262746

  17. Blockade of TRPM7 Channel Activity and Cell Death by Inhibitors of 5-Lipoxygenase

    PubMed Central

    Chen, Hsiang-Chin; Xie, Jia; Zhang, Zheng; Su, Li-Ting; Yue, Lixia; Runnels, Loren W.

    2010-01-01

    TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE), the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of the TRPM7 channel

  18. Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors

    SciTech Connect

    Xu, Shihua; McKeever, Brian M.; Wisniewski, Douglas; Miller, Douglas K.; Spencer, Robert H.; Chu, Lin; Ujjainwalla, Feroze; Yamin, Ting-Ting; Evans, Jilly F.; Becker, Joseph W.; Ferguson, Andrew D.

    2007-12-01

    The expression, purification and crystallization of human 5-lipoxygenase-activating protein in complex with two leukotriene-biosynthesis inhibitors is decribed. The processes that were used to generate diffraction quality crystals are presented in detail. The nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) plays an essential role in leukotriene synthesis. Recombinant full-length human FLAP with a C-terminal hexahistidine tag has been expressed and purified from the cytoplasmic membrane of Escherichia coli. Diffraction-quality crystals of FLAP in complex with leukotriene-synthesis inhibitor MK-591 and with an iodinated analogue of MK-591 have been grown using the sitting-drop vapor-diffusion method. The crystals exhibit tetragonal symmetry (P42{sub 1}2) and diffracted to a resolution limit of 4 Å.

  19. Impact of myeloperoxidase-derived oxidants on the product profile of human 5-lipoxygenase.

    PubMed

    Zschaler, Josefin; Dorow, Juliane; Schöpe, Louisa; Ceglarek, Uta; Arnhold, Jürgen

    2015-08-01

    Human 5-lipoxygenase (5-LOX) oxidizes arachidonic acid to 5S-hydroperoxy-6 E,8 Z,11 Z,14 Z-eicosatetraenoic acid (5-HpETE) and leukotriene (LT) A4. In neutrophils, LTA4 is further converted to the potent chemoattractant LTB4. These cells also contain the heme enzyme myeloperoxidase (MPO), which produces several potent oxidants such as hypochlorous acid (HOCl), which are involved in pathogen defense and immune regulation. Here, we addressed the question whether MPO-derived oxidants are able to affect the activity of 5-LOX and the product profile of this enzyme. Human 5-LOX was incubated with increasing amounts of HOCl or HOBr. Afterward, arachidonic acid metabolites of 5-LOX were analyzed by reverse-phase high-performance liquid chromatography as well as by liquid chromatography-electrospray ionization-tandem mass spectrometry. The incubation of 5-LOX with the MPO-derived oxidants significantly changed the product profile of 5-LOX. Thereby, HOCl and HOBr increased the ratio of 5-H(p)ETE to 6-trans-LTB4 in a concentration-dependent manner. At low oxidant concentrations, there was a strong decrease in the yield of 6-trans-LTB4, whereas 5-HpETE did not change or increased. Additionally, the formation of 8-HpETE and 12-HpETE by 5-LOX rose slightly with increasing HOCl and HOBr. Comparable results were obtained with the MPO-H2O2-Cl(-) system when glucose oxidase and glucose were applied as a source of H2O2. This was necessary because of a strong impairment of 5-LOX activity by H2O2. In summary, MPO-derived oxidants showed a considerable impact on 5-LOX, impairing the epoxidation of 5-HpETE, whereas the hydroperoxidation of arachidonic acid was unaffected. Apparently, this was caused by an oxidative modification of critical amino acid residues of 5-LOX. Further work is necessary to assess the specific type and position of oxidation in the substrate-binding cavity of 5-LOX and to specify whether this interaction between 5-LOX and MPO-derived oxidants also takes place in

  20. Mutations in JMJD1C are involved in Rett syndrome and intellectual disability

    PubMed Central

    Sáez, Mauricio A.; Fernández-Rodríguez, Juana; Moutinho, Catia; Sanchez-Mut, Jose V.; Gomez, Antonio; Vidal, Enrique; Petazzi, Paolo; Szczesna, Karolina; Lopez-Serra, Paula; Lucariello, Mario; Lorden, Patricia; Delgado-Morales, Raul; de la Caridad, Olga J.; Huertas, Dori; Gelpí, Josep L.; Orozco, Modesto; López-Doriga, Adriana; Milà, Montserrat; Perez-Jurado, Luís A.; Pineda, Mercedes; Armstrong, Judith; Lázaro, Conxi; Esteller, Manel

    2016-01-01

    Purpose: Autism spectrum disorders are associated with defects in social response and communication that often occur in the context of intellectual disability. Rett syndrome is one example in which epilepsy, motor impairment, and motor disturbance may co-occur. Mutations in histone demethylases are known to occur in several of these syndromes. Herein, we aimed to identify whether mutations in the candidate histone demethylase JMJD1C (jumonji domain containing 1C) are implicated in these disorders. Genet Med 18 1, 378–385. Methods: We performed the mutational and functional analysis of JMJD1C in 215 cases of autism spectrum disorders, intellectual disability, and Rett syndrome without a known genetic defect. Genet Med 18 1, 378–385. Results: We found seven JMJD1C variants that were not present in any control sample (~ 6,000) and caused an amino acid change involving a different functional group. From these, two de novo JMJD1C germline mutations were identified in a case of Rett syndrome and in a patient with intellectual disability. The functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. We confirmed that JMJD1C protein is widely expressed in brain regions and that its depletion compromises dendritic activity. Genet Med 18 1, 378–385. Conclusions: Our findings indicate that mutations in JMJD1C contribute to the development of Rett syndrome and intellectual disability. Genet Med 18 1, 378–385. PMID:26181491

  1. Increased activity of 5-lipoxygenase in polymorphonuclear leukocytes from asthmatic patients

    SciTech Connect

    Mita, H.; Yui, Y.; Taniguchi, N.; Yasueda, H.; Shida, T.

    1985-09-09

    The formation of 5-lipoxygenase products of arachidonic acid, 5-HETE and 5,12-diHETE, was determined in 100,000 x g supernatant of polymorphonuclear leukocytes from 17 healthy subjects, 17 patients with extrinsic asthma and 15 patients with intrinsic asthma. After the supernatant was incubated with /sup 14/C-arachidonic acid in the presence of calcium and indomethacin, the lipoxygenase products of arachidonic acid were separated by thin layer chromatography. The results were expressed as the percentage conversion of /sup 14/C-arachidonic acid into the product per 10/sup 7/ cells. The formation of 5,12-diHETE, but not of the 5-HETE, was significantly increased in the cells from the group of patients with extrinsic asthma (4.38 +/- 0.78%, mean +/- S.E.; p < 0.01) and intrinsic asthma (6.09 +/- 1.11%; p < 0.01), when compared to normal subjects (1.74 +/- 0.30%). Both extrinsic and intrinsic asthmatics had significantly enhanced 5-lipoxygenase activity, which was expressed as the sum of percentage conversion of /sup 14/C-arachidonic acid into 5-HETE and 5,12-diHETE. The percentage conversion in normal subjects was 4.19 +/- 0.39%, 6.24 +/- 0.84% for 17 patients with extrinsic asthma (p < 0.05), and 8.59 +/- 1.29% for 15 patients with intrinsic asthma (p < 0.01). There was no significant difference between these asthmatic groups. These results indicate that 5-lipoxygenase activity is increased in patients with bronchial asthma. 22 references, 3 figures.

  2. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea.

    PubMed

    Resch, M; Steigel, A; Chen, Z L; Bauer, R

    1998-03-01

    Lipophilic extracts of Atractylodes lancea rhizomes exhibited potent inhibitory activities in 5-lipoxygenase [IC50 (5-LOX) = 2.9 micrograms/mL (n-hexane extract)] and cyclooxygenase-1 [IC50 (COX-1) = 30.5 micrograms/mL (n-hexane extract)] enzymatic assays. Bioactivity-guided fractionation of the n-hexane extract led to the isolation of a new compound atractylochromene (1), a potent inhibitor in both test systems [IC50 (5-LOX) = 0.6 microM, IC50 (COX-1) = 3.3 microM]. Also obtained was 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1 ,4-dione (2), which showed a selective inhibitory activity against 5-LOX [IC50 (5-LOX) 0.2 microM, IC50 (COX-1) 64.3 microM]. The sesquiterpene atractylon (3) and the coumarin osthol (4) turned out to be moderate but selective 5-lipoxygenase inhibitors. Atractylenolides I (5), II (6), and III (7) showed no significant inhibitory effects for either enzyme. Structures were established by spectral data interpretation. PMID:9544564

  3. 7 CFR 1c.110 - Expedited review procedures for certain kinds of research involving no more than minimal risk...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Expedited review procedures for certain kinds of research involving no more than minimal risk, and for minor changes in approved research. 1c.110 Section 1c.110 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.110 Expedited review procedures for certain kinds...

  4. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice.

    PubMed

    Uz, Tolga; Dimitrijevic, Nikola; Imbesi, Marta; Manev, Hari; Manev, Radmila

    2008-05-01

    A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX, 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, six daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 micro/(100 mg(body-weight)day), required 3 weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings. PMID:18403121

  5. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index.

    PubMed

    Šerý, Omar; Hlinecká, Lýdia; Povová, Jana; Bonczek, Ondřej; Zeman, Tomáš; Janout, Vladimír; Ambroz, Petr; Khan, Naim A; Balcar, Vladimir J

    2016-03-15

    Dementias of old age, in particular Alzheimer's disease (AD), pose a growing threat to the longevity and quality of life of individuals as well as whole societies world-wide. The risk factors are both genetic and environmental (life-style) and there is an overlap with similar factors predisposing to cardiovascular diseases (CVD). Using a case-control genetic approach, we have identified a SNP (rs10507391) in ALOX5 gene, previously associated with an increased risk of stroke, as a novel genetic risk factor for AD. ALOX5 gene encodes a 5'-lipoxygenase (5'-LO) activating protein (FLAP), a crucial component of the arachidonic acid/leukotriene inflammatory cascade. A-allele of rs4769874 polymorphism increases the risk of AD 1.41-fold (p<0.0001), while AA genotype does so 1.79-fold (p<0.0001). In addition, GG genotype of rs4769874 polymorphism is associated with a modest increase in body mass index (BMI). We discuss potential biochemical mechanisms linking the SNP to AD and suggest possible preventive pharmacotherapies some of which are based on commonly available natural products. Finally, we set the newly identified AD risk factors into a broader context of similar CVD risk factors to generate a more comprehensive picture of interacting genetics and life-style habits potentially leading to the deteriorating mental health in the old age. PMID:26944113

  6. Penta- and hexadienoic acid derivatives: a novel series of 5-lipoxygenase inhibitors.

    PubMed

    Malleron, J L; Roussel, G; Gueremy, G; Ponsinet, G; Robin, J L; Terlain, B; Tissieres, J M

    1990-10-01

    The synthesis of a series of pentadienoic and hexadienoic acid derivatives is reported. These compounds were tested as inhibitors of 5-lipoxygenase (5 LO) and cyclooxygenase (CO) in vitro and as inhibitors of arachidonic acid (AA) induced ear edema in mice in vivo. Their potency is compared with that of the standard inhibitors nafazatrom, BW 755C, NDGA, KME4, quercetine, and L 652,243. The most potent compound in vivo, diethyl 2-hydroxy-5-(ethylthio)-2(Z),4(Z)-hexadienedioate (20) inhibited AA-induced ear edema when administered topically or orally, with an ED50 value of 0.01 mg/ear and 20 mg/kg, respectively. Among the standard compounds tested, L 652,243 was the most active compound in this test with an ED50 value of 0.01 mg/ear and 1 mg/kg po, but unlike this compound, 20 is a selective inhibitor of 5-LO (IC50 = 2 microM) without any significant activity against CO (IC50 greater than 50 microM). Most of the other compounds in this series are also selective 5-LO inhibitors. PMID:2213827

  7. Myeloid Cell 5-Lipoxygenase Activating Protein Modulates the Response to Vascular Injury

    PubMed Central

    Yu, Zhou; Ricciotti, Emanuela; Miwa, Takashi; Liu, Shulin; Ihida-Stansbury, Kaori; Landersberg, Gavin; Jones, Peter L.; Scalia, Rosario; Song, Wenchao; Assoian, Richard K.; FitzGerald, Garret A.

    2013-01-01

    Rationale Human genetics have implicated the 5- lipoxygenase (5-LO) enzyme in the pathogenesis of cardiovascular disease and an inhibitor of the 5-LO activating protein (FLAP) is in clinical development for asthma. Objective Here we determined whether FLAP deletion modifies the response to vascular injury. Methods and Results Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout (FLAP KO) mice and wild type (WT) controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP KOs while endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine (BrdU) incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP KO macrophages was depressed and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B4 (LTB4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C (TNC), which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin and upregulation of vascular cell adhesion molecule (VCAM) -1 was also suppressed in FLAP KO mice. Transplantation of FLAP replete myeloid cells rescued the proliferative response to vascular injury. Conclusion Expression of lesional FLAP in myeloid cells promotes LTB4 dependent VSMC phenotypic modulation, intimal migration and proliferation. PMID:23250985

  8. Inhibitory effects of Angelica pubescens f. biserrata on 5-lipoxygenase and cyclooxygenase.

    PubMed

    Liu, J H; Zschocke, S; Reininger, E; Bauer, R

    1998-08-01

    Linoleic acid, osthol, osthenol and two polyacetylenes, falcarindiol and 11(S),16(R)-dihydroxyoctadeca-9Z,17-diene-12,14-diyn-1 -yl acetate were found to be the most active compounds responsible for the inhibitory activity of the dichloromethane extract of the roots of Angelica pubescens f. biserrata on 5-lipoxygenase (5-LO) and cyclooxygenase (COX-1) in vitro. They showed prominent inhibitory effect on 5-LO with IC50 values of 27.9 microM, 36.2 microM, 43.1 microM, 9.4 microM and 24.0 microM, respectively. Linoleic acid, osthenol, falcarindiol and 11(S), 16(R)-dihydroxyoctadeca-9Z,17-diene-12,14-diyn-1-yl acetate exhibited inhibitory activity on COX-1 with IC50 values of 13.3 microM, 64.3 microM, 66.0 microM and 73.3 microM. PMID:9741298

  9. Arachidonate 5 Lipoxygenase Expression in Papillary Thyroid Carcinoma Promotes Invasion via MMP-9 Induction

    PubMed Central

    Kummer, Nicolas T.; Nowicki, Theodore S; Azzi, Jean Paul; Reyes, Ismael; Iacob, Codrin; Xie, Suqing; Swati, Ismatun; Suslina, Nina; Schantz, Stimson; Tiwari, Raj K.; Geliebter, Jan

    2012-01-01

    Arachidonate 5-lipoxygenase (ALOX5) expression and activity has been implicated in tumor pathogenesis, yet its role in papillary thyroid carcinoma (PTC) has not been characterized. ALOX5 protein and mRNA were upregulated in PTC compared to matched, normal thyroid tissue, and ALOX5 expression correlated with invasive tumor histopathology. Evidence suggests that PTC invasion is mediated through the induction of matrix metalloproteinases (MMPs) that can degrade and remodel the extracellular matrix (ECM). A correlation between MMP-9 and ALOX5 protein expression was established by immunohistochemical analysis of PTC and normal thyroid tissues using a tissue array. Transfection of ALOX5 into a PTC cell line (BCPAP) increased MMP-9 secretion and cell invasion across an ECM barrier. The ALOX5 product, 5(S)-hydroxyeicosatetraenoic acid also increased MMP-9 protein expression by BCPAP in a dose-dependent manner. Inhibitors of MMP-9 and ALOX5 reversed ALOX5-enhanced invasion. Here we describe a new role for ALOX5 as a mediator of invasion via MMP-9 induction; this ALOX5/MMP9 pathway represents a new avenue in the search for functional biomarkers and/or potential therapeutic targets for aggressive PTC. PMID:22253131

  10. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs

    PubMed Central

    Kumar, Ramakrishnan B.; Zhu, Lin; Idborg, Helena; Rådmark, Olof; Jakobsson, Per-Johan; Rinaldo-Matthis, Agnes; Hebert, Hans; Jegerschöld, Caroline

    2016-01-01

    An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane. PMID:27010627

  11. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents.

    PubMed

    Rahmouni, Ameur; Souiei, Sawssen; Belkacem, Mohamed Amine; Romdhane, Anis; Bouajila, Jalloul; Ben Jannet, Hichem

    2016-06-01

    A novel series of 6-aryl-3-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones 3a-h were synthesized in a single step via condensation of carboxamide 2 with some aromatic aldehydes (presence of iodine). Treatment of aminopyrazole 1a with acetic anhydride afforded pyrazolopyrimidines 4 which on treatment with ethyl chloroacetate in refluxing dry DMF furnished a single product identified as ethyl 2-(3,6-dimethyl-4-oxo-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl) acetate 5. On the other hand, esterification of compound 6 with different alcohol, led to the formation of new esters linked pyrazolo[3,4-d]pyrimidinones hybrids 7a-f. The reaction of compound 2 with 3-propargyl bromide gave the compound 8 used as a dipolarophile to access to triazoles (4- and 5-regioisomers (9a-e) and (10a-e), respectively) via the 1,3-dipoar cycloaddition reaction. Finally, condensation reaction of aminopyrazole 1b with α-cyanocinnamonitiles gave the new pyrazolo[1,5-a]pyrimidine-3,6-dicarbonitriles 11a-e. Structures of compounds were established on the basis of (1)H/(13)C NMR and ESI-HRMS. Compounds were screened for their cytotoxic (HCT-116 and MCF-7) and 5-lipoxygenase inhibition activities. The structure-activity relationship (SAR) was discussed. PMID:27179178

  12. 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation.

    PubMed Central

    Woods, J W; Coffey, M J; Brock, T G; Singer, I I; Peters-Golden, M

    1995-01-01

    5-Lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) are two key proteins involved in the synthesis of leukotrienes (LT) from arachidonic acid. Although both alveolar macrophages (AM) and peripheral blood leukocytes (PBL) produce large amounts of LT after activation, 5-LO translocates from a soluble pool to a particulate fraction upon activation of PBL, but is contained in the particulate fraction in AM irrespective of activation. We have therefore examined the subcellular localization of 5-LO in autologous human AM and PBL collected from normal donors. While immunogold electron microscopy demonstrated little 5-LO in resting PBL, resting AM exhibited abundant 5-LO epitopes in the euchromatin region of the nucleus. The presence of substantial quantities of 5-LO in the nucleus of resting AM was verified by cell fractionation and immunoblot analysis and by indirect immunofluorescence microscopy. In both AM and PBL activated by A23187, all of the observable 5-LO immunogold labeling was found associated with the nuclear envelope. In resting cells of both types, FLAP was predominantly associated with the nuclear envelope, and its localization was not affected by activation with A23187. The effects of MK-886, which binds to FLAP, were examined in ionophore-stimulated AM and PBL. Although MK-886 inhibited LT synthesis in both cell types, it failed to prevent the translocation of 5-LO to the nuclear envelope. These results indicate that the nuclear envelope is the site at which 5-LO interacts with FLAP and arachidonic acid to catalyze LT synthesis in activated AM as well as PBL, and that in resting AM the euchromatin region of the nucleus is the predominant source of the translocated enzyme. In addition, LT synthesis is a two-step process consisting of FLAP-independent translocation of 5-LO to the nuclear envelope followed by the FLAP-dependent activation of the enzyme. Images PMID:7738170

  13. Pharmacophore modeling and virtual screening for designing potential 5-lipoxygenase inhibitors.

    PubMed

    Aparoy, P; Kumar Reddy, K; Kalangi, Suresh K; Chandramohan Reddy, T; Reddanna, P

    2010-02-01

    Inhibitors of the 5-Lipoxygenase (5-LOX) pathway have a therapeutic potential in a variety of inflammatory disorders such as asthma. In this study, chemical feature based pharmacophore models of inhibitors of 5-LOX have been developed with the aid of HipHop and HypoGen modules within Catalyst program package. The best quantitative pharmacophore model, Hypo1, which has the highest correlation coefficient (0.97), consists of two hydrogen-bond acceptors, one hydrophobic feature and one ring aromatic feature. Hypo1 was further validated by test set and cross validation method. The application of the model shows great success in predicting the activities of 65 known 5-LOX inhibitors in our test set with a correlation coefficient of 0.85 with a cross validation of 95% confidence level, proving that the model is reliable in identifying structurally diverse compounds for inhibitory activity against 5-LOX. Furthermore, Hypo1 was used as a 3D query for screening Maybridge and NCI databases within catalyst and also drug like compounds obtained from Enamine Ltd, which follow Lipinski's rule of five. The hit compounds were subsequently subjected to filtering by docking and visualization, to identify the potential lead molecules. Finally 5 potential lead compounds, identified in the above process, were evaluated for their inhibitory activities. These studies resulted in the identification of two compounds with potent inhibition of 5-LOX activity with IC(50) of 14 microM and 35 microM, respectively. These studies thus validate the pharmacophore model generated and suggest the usefulness of the model in screening of various small molecule libraries and identification of potential lead compounds for 5-LOX inhibition. PMID:20045317

  14. Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation.

    PubMed

    Song, Ying; Wei, Er-Qing; Zhang, Wei-Ping; Ge, Qiu-Fu; Liu, Jian-Ren; Wang, Meng-Ling; Huang, Xiao-Jia; Hu, Xin; Chen, Zhong

    2006-04-26

    Recently, we have reported that minocycline, a semi-synthetic tetracycline with neuroprotective effects, inhibits the in vitro ischemic-like injury and 5-lipoxygenase (5-LOX) activation in PC12 cells. In the present study, we further determined whether minocycline protects PC12 cells from excitotoxicity via inhibiting 5-LOX activation. We used N-methyl-d-aspartate (NMDA, 200 microM) to induce early (exposure for 6 h) and delayed (exposure for 6 h followed by 24 h recovery) injuries. We found that NMDA receptor antagonist ketamine, 5-LOX inhibitor caffeic acid and minocycline concentration dependently attenuated NMDA-induced early and delayed cell injuries (viability reduction and cell death). However, only ketamine (1 microM) inhibited NMDA-evoked elevation of intracellular calcium. In addition, immunohistochemical analysis showed that NMDA induced 5-LOX translocation to the nuclear membrane after 1- to 6-h exposure which was confirmed by Western blotting, indicating that 5-LOX was activated. Ketamine, caffeic acid and minocycline (each at 1 microM) inhibited 5-LOX translocation after early injury. After delayed injury, PC12 cells were shrunk, and 5-LOX was translocated to the nuclei and nuclear membrane; ketamine, caffeic acid and minocycline inhibited both cell shrinking and 5-LOX translocation. As a control, 12-LOX inhibitor baicalein showed a weak effect on cell viability and death, but no effect on 5-LOX translocation. Therefore, we conclude that the protective effect of minocycline on NMDA-induced injury is partly mediated by inhibiting 5-LOX activation. PMID:16574083

  15. Nutrigenetic association of the 5-lipoxygenase gene with myocardial infarction123

    PubMed Central

    Allayee, Hooman; Baylin, Ana; Hartiala, Jaana; Wijesuriya, Hemani; Mehrabian, Margarete; Lusis, Aldons J; Campos, Hannia

    2010-01-01

    Background 5-Lipoxygenase (5-LO) catalyzes the rate-limiting step of the biosynthesis of proinflammatory leukotrienes from arachidonic acid (AA) and has been associated with atherosclerosis in animal models and humans. We previously reported that variants of a 5-LO promoter repeat polymorphism were associated with carotid atherosclerosis in humans, an effect that was exacerbated by high dietary AA but mitigated by high dietary n–3 fatty acids. Objective We sought to confirm these initial observations with a more clinically relevant phenotype such as myocardial infarction (MI). Design The 5-LO polymorphism was genotyped in 1885 Costa Rican case-control pairs and tested for association with MI. Functional experiments were carried out to determine whether the associated alleles had differences in mRNA expression. Results The frequency of variant genotype groups did not differ significantly between cases and controls. However, a significant gene × diet interaction was observed, in which, relative to the common 5 repeat allele, the 3 and 4 alleles were associated with a higher MI risk in the high (≥0.25 g/d) dietary AA group (odds ratio: 1.31; 95% CI: 1.07, 1.61) and with a lower risk in the low (<0. 25 g/d)AA group (0.77; 0.63, 0.94) (P for interaction = 0.015). Using allele-specific quantitation, the short alleles had expression approximately twice that of the 5 allele (P < 0.0001). Conclusions The 3 and 4 variants lead to higher 5-LO expression and provide additional evidence that these alleles are associated with greater risks of atherosclerosis and MI in the context of a high-AA diet. PMID:18842779

  16. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity. PMID:25893744

  17. Impact of simultaneous stimulation of 5-lipoxygenase and myeloperoxidase in human neutrophils.

    PubMed

    Zschaler, Josefin; Arnhold, Jürgen

    2016-04-01

    Human neutrophil 5-lipoxygenase (5-LOX) oxidizes arachidonic acid (AA) to 5S-hydro(pero)xy-6E,8Z,11Z, 14Z-eicosatetraenoic acid (5-H(p)ETE) and leukotriene (LT)A4, which is further converted to the chemoattractant LTB4. These cells contain also the heme enzyme myeloperoxidase (MPO) producing several potent oxidants such as hypochlorous acid (HOCl). Previously, it was shown that MPO-metabolites influence 5-LOX product formation. Here, we addressed the question, whether a simultaneous activation of MPO and 5-LOX in neutrophils results in comparable changes of 5-LOX activity. Human neutrophils were stimulated with H2O2 or phorbol 12-myristate 13-acetate (PMA) for MPO activation and subsequently treated with calcium ionophore A23187 inducing 5-LOX product formation on endogenous AA. Special attention was drawn to neutrophil vitality, formation of MPO-derived metabolites and redox status. The pre-stimulation with H2O2 resulted in a concentration-dependent increase in the ratio of 5-HETE to the sum of LTB4+6-trans-LTB4 in consequence of MPO activation. Thereby no impairment of cell vitality and only a slightly reduction of total glutathione level was observed. An influence of MPO on 5-LOX product formation could be suggested using an MPO inhibitor. In contrast, the pre-stimulation with PMA resulted in different changes of 5-LOX product formation leading to a reduced amount of 5-HETE unaffected by MPO inhibition. Furthermore, impaired cell vitality and diminished redox status was detected after PMA stimulation. Nevertheless, a MPO-induced diminution of LTB4 was obvious. Further work is necessary to define the type of 5-LOX modification and investigate the effect of physiological MPO activators. PMID:27033421

  18. Effect of 5-lipoxygenase on the development of pulmonary hypertension in rats.

    PubMed

    Jones, John E; Walker, Jennifer L; Song, Yanli; Weiss, Norbert; Cardoso, Wellington V; Tuder, Rubin M; Loscalzo, Joseph; Zhang, Ying-Yi

    2004-05-01

    5-Lipoxygenase (5-LO) and its downstream leukotriene products have been implicated in the development of pulmonary hypertension. In this study, we examined the effects of 5-LO overexpression in rat lungs on pulmonary hypertension using a recombinant adenovirus expressing 5-LO (Ad5-LO). Transthoracic echocardiography and right heart catheterization data showed that 5-LO overexpression in the lung did not cause pulmonary hypertension in normal rats; however, it markedly accelerated the progression of pulmonary hypertension in rats treated with monocrotaline (MCT). An increase in pulmonary artery pressure occurred earlier in the rats treated with MCT + Ad5-LO (7-10 days) compared with those treated with control vector, MCT + adenovirus expressing green fluorescent protein (AdGFP), or MCT alone (15-18 days). The weight ratio of the right ventricle to left ventricle plus septum was higher in the MCT + Ad5-LO group than that of the MCT + AdGFP or MCT group (0.45 +/- 0.08 vs. 0.35 +/- 0.03 or 0.33 +/- 0.06). Lung tissue histological sections from MCT + Ad5-LO rats exhibited more severe inflammatory cell infiltration and pulmonary vascular muscularization than those from MCT + AdGFP- or MCT-treated rats. Administration of 5-LO inhibitors, zileuton or MK-886, to either MCT- or MCT + Ad5-LO-treated rats prevented the development of pulmonary hypertension. These data suggest that 5-LO plays a critical role in the progression of pulmonary hypertension in rats and that the detrimental effect of 5-LO is manifest only in the setting of pulmonary vascular endothelial cell dysfunction. PMID:14726295

  19. Mesenteric lymph diversion abrogates 5-lipoxygenase activation in the kidney following trauma and hemorrhagic shock

    PubMed Central

    Stringham, John R.; Moore, Ernest E.; Gamboni, Fabia; Harr, Jeffrey N.; Fragoso, Miguel; Chin, Theresa L.; Carr, Caitlin E.; Silliman, Christopher C.; Banerjee, Anirban

    2014-01-01

    BACKGROUND Early acute kidney injury (AKI) following trauma is associated with multiorgan failure and mortality. Leukotrienes have been implicated both in AKI and in acute lung injury. Activated 5-lipoxygenase (5-LO) colocalizes with 5-LO–activating protein (FLAP) in the first step of leukotriene production following trauma and hemorrhagic shock (T/HS). Diversion of postshock mesenteric lymph, which is rich in the 5-LO substrate of arachidonate, attenuates lung injury and decreases 5-LO/FLAP associations in the lung after T/HS. We hypothesized that mesenteric lymph diversion (MLD) will also attenuate postshock 5-LO–mediated AKI. METHODS Rats underwent T/HS (laparotomy, hemorrhagic shock to a mean arterial pressure of 30 mm Hg for 45 minutes, and resuscitation), and MLD was accomplished via cannulation of the mesenteric duct. Extent of kidney injury was determined via histology score and verified by urinary neutrophil gelatinase-associated lipocalin assay. Kidney sections were immunostained for 5-LO and FLAP, and colocalization was determined by fluorescence resonance energy transfer signal intensity. The end leukotriene products of 5-LO were determined in urine. RESULTS AKI was evident in the T/HS group by derangement in kidney tubule architecture and confirmed by neutrophil gelatinase-associated lipocalin assay, whereas MLD during T/HS preserved renal tubule morphology at a sham level. MLD during T/HS decreased the associations between 5-LO and FLAP demonstrated by fluorescence resonance energy transfer microscopy and decreased leukotriene production in urine. CONCLUSION 5-LO and FLAP colocalize in the interstitium of the renal medulla following T/HS. MLD attenuates this phenomenon, which coincides with pathologic changes seen in tubules during kidney injury and biochemical evidence of AKI. These data suggest that gut-derived leukotriene substrate predisposes the kidney and the lung to subsequent injury. PMID:24747451

  20. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1.

    PubMed

    Zhang, Xiao-Yan; Chen, Lu; Yang, Yi; Xu, Dong-Min; Zhang, Si-Ran; Li, Chen-Tan; Zheng, Wei; Yu, Shu-Ying; Wei, Er-Qing; Zhang, Li-Hui

    2014-07-14

    The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 μM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1β and TNF-α, whereas zileuton (0.1 μΜ) and montelukast (0.01 μΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation. PMID:24858057

  1. Methylation of KvDMR1 involved in regulating the imprinting of CDKN1C gene in cattle.

    PubMed

    Wang, Mengnan; Li, Dongjie; Zhang, Mingyue; Yang, Wenzhi; Cui, Yali; Li, Shijie

    2015-08-01

    The CDKN1C gene encodes a cyclin-dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith-Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele-specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (P < 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting. PMID:26059028

  2. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    PubMed

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins. PMID:24903815

  3. Association between arachidonate 5-lipoxygenase-activating protein (ALOX5AP) and lung function in a Korean population.

    PubMed

    Ro, M; Kim, S; Pyun, J-A; Shin, C; Cho, N H; Lee, J-Y; Koh, I; Kwack, K

    2012-08-01

    Arachidonate 5-lipoxygenase-activating protein (ALOX5AP) plays a role in the 5-lipoxygenase (LO) pathway, which includes the LTC(4), LTD(4), LTE(4) and LTB(4). These leukotrienes are known causative factors of asthma, allergy, atopy and cardiovascular diseases. ALOX5AP lacks enzyme activity and acts by helping 5-LO function. In this study, healthy and general subjects who live in rural and urban areas of Korea were tested for the association of ALOX5AP polymorphisms with lung function. Lung function was also estimated by calculating the predicted values for forced expiratory volume in one second (FEV(1) _%PRED) and the proportion of the forced vital capacity exhaled in the first second (FEV(1) /FVC_PRED). The linear regression was adjusted for residence area, gender, age, height and smoking status. The analysis revealed associations between FEV(1) and the single-nucleotide polymorphism (SNP) rs9506352 and the haplotype TCAC (permuted P-value < 0.05). The linkage disequilibrium block that included the significant SNPs overlapped with SNPs that were revealed previously to associate with myocardial infarction and asthma and to affect lung function. This study is the first to demonstrate the association between lung function and ALOX5AP polymorphisms in a healthy and general population. PMID:22537113

  4. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced Hamster Cheek Pouch Carcinogenesis by a 5-Lipoxygenase Inhibitor, Garcinol

    PubMed Central

    Shim, Joong-Youn; Sang, Shengmin; Sun, Zheng; Chen, Xiaoxin

    2013-01-01

    Our previous studies have shown that aberrant arachidonic acid metabolism, especially the 5-lipoxygenase (5-Lox) pathway, is involved in oral carcinogenesis, and can be targeted for cancer prevention. In order to develop potent topical agents for oral cancer chemoprevention, five known 5-Lox inhibitors from dietary and synthetic sources, Zileuton, ABT-761, Licofelone, Curcumin and Garcinol, were evaluated in silico for their potential efficacy. Garcinol, a polyisoprenylated benzophenone from the fruit rind of Garcinia spp., was found to be a promising agent based on the calculation of a theoretical activity index. Computer modeling showed that garcinol well fit the active site of 5-Lox, and potentially inhibited enzyme activity through interactions between the phenolic hydroxyl groups and the non-heme catalytic iron. In a short-term study on 7,12-dimethylbenz[a]anthracene (DMBA)-treated hamster cheek pouch, topical garcinol suppressed leukotriene B4 (LTB4) biosynthesis and inhibited inflammation and cell proliferation in the oral epithelium. In a long-term carcinogenesis study, topical garcinol significantly reduced the size of visible tumors, the number of cancer lesions, cell proliferation, and LTB4 biosynthesis. These results demonstrated that topical application of a 5-Lox inhibitor, garcinol, had chemopreventive effect on DMBA-induced hamster cheek pouch carcinogenesis. PMID:23137051

  5. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster cheek pouch carcinogenesis by a 5-lipoxygenase inhibitor, garcinol.

    PubMed

    Chen, Xin; Zhang, Xinyan; Lu, Ye; Shim, Joong-Youn; Sang, Shengmin; Sun, Zheng; Chen, Xiaoxin

    2012-01-01

    Our previous studies have shown that aberrant arachidonic acid metabolism, especially the 5-lipoxygenase (5-Lox) pathway, is involved in oral carcinogenesis and can be targeted for cancer prevention. To develop potent topical agents for oral cancer chemoprevention, 5 known 5-Lox inhibitors from dietary and synthetic sources (Zileuton, ABT-761, licofelone, curcumin, and garcinol) were evaluated in silico for their potential efficacy. Garcinol, a polyisoprenylated benzophenone from the fruit rind of Garcinia spp., was found to be a promising agent based on the calculation of a theoretical activity index. Computer modeling showed that garcinol well fit the active site of 5-Lox, and potentially inhibited enzyme activity through interactions between the phenolic hydroxyl groups and the non-heme catalytic iron. In a short-term study on 7,12-dimethylbenz[a]anthracene (DMBA)-treated hamster cheek pouch, topical garcinol suppressed leukotriene B4 (LTB4) biosynthesis and inhibited inflammation and cell proliferation in the oral epithelium. In a long-term carcinogenesis study, topical garcinol significantly reduced the size of visible tumors, the number of cancer lesions, cell proliferation, and LTB4 biosynthesis. These results demonstrated that topical application of a 5-Lox inhibitor, garcinol, had chemopreventive effect on DMBA-induced hamster cheek pouch carcinogenesis. PMID:23137051

  6. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives.

    PubMed

    Srivastava, Pavan; Vyas, Vivek K; Variya, Bhavesh; Patel, Palak; Qureshi, Gulamnizami; Ghate, Manjunath

    2016-08-01

    In the present study, 7-subsituted coumarin derivatives were synthesized using various aromatic and heterocyclic amines, and evaluated in vivo for anti-inflammatory and analgesic activity, and for ulcerogenic risk. The most active compounds were evaluated in vitro for 5-lipoxygenase (5-LOX) inhibition. Docking study was performed to predict the binding affinity, and orientation at the active site of the enzyme. In vivo anti-inflammatory and analgesic activity, and in vitro 5-LOX enzyme inhibition study revealed that compound 33 and 35 are the most potent compounds in all the screening methods. In vitro kinetic study of 35 showed mixed or non-competitive type of inhibition with 5-LOX enzyme. Presence of OCH3 group in 35 and Cl in 33 at C6-position of benzothiazole ring were found very important substitutions for potent activity. PMID:27376460

  7. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization. PMID:26197161

  8. Signalling pathways involved in 1-nitropyrene (1-NP)-induced and 3-nitrofluoranthene (3-NF)-induced cell death in Hepa1c1c7 cells.

    PubMed

    Asare, Nana; Tekpli, Xavier; Rissel, Mary; Solhaug, Anita; Landvik, Nina; Lecureur, Valerie; Podechard, Normand; Brunborg, Gunnar; Låg, Marit; Lagadic-Gossmann, Dominique; Holme, Jørn A

    2009-11-01

    We previously reported that 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) elicited apoptotic cell death as well as non-apoptotic programmed cell deaths (PCDs) with paraptotic and necroptotic characteristics, respectively. In the present study, we have further confirmed and extended these findings. Flow cytometric analyses of 1-NP-exposed/3NF-exposed Hepa1c1c7 cells revealed that caspase-3 was only activated in the subpopulation of cells corresponding to that with classic apoptotic morphology. Immunocytochemical analysis indicated that leucocyte elastase inhibitor-derived DNaseII (LEI/L-DNaseII), apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were more clearly translocated to the nucleus following 3-NF exposure than after 1-NP. These 3-NF-induced changes in AIF and EndoG translocation were reduced by necrostatin-1, an inhibitor of necroptotic cell death. Both compounds lead to accumulation of lipid droplets and induced DNA damage. Activation of checkpoint kinase (CHK) 1 and H2AX, but not ataxia telangiectasia mutated and CHK2, were observed. Furthermore, inhibition of p53 using pifithrin-alpha reduced the cell death induced by both compounds, suggesting a role of DNA damage/CHK1/p53 pathway in the death process. 1-NP-induced cell death was in addition characterized by increased oxidative damage and intracellular accumulation of Ca(2+). These findings further support the notion that 1-NP elicited apoptotic cell death and PCD with paraptotic characteristics, while 3-NF induced apoptosis and a PCD with necroptotic features. PMID:19703935

  9. Failure of the inhibition of rat gastric mucosal 5-lipoxygenase by novel acetohydroxamic acids to prevent ethanol-induced damage.

    PubMed

    Boughton-Smith, N K; Whittle, B J

    1988-09-01

    1. The role of leukotriene B4 (LTB4) and LTC4 as mediators of gastric mucosal damage following ethanol challenge in vivo has been investigated using two selective 5-lipoxygenase inhibitors, BW A4C and BW A137C. 2. Oral administration of ethanol to rats in vivo, induced macroscopic damage to the gastric mucosa and markedly increased the formation of the 5-lipoxygenase products, LTB4 and LTC4, from the mucosa ex vivo. 3. Pretreatment with the acetohydroxamic acids BW A4C and BW A137C (5-50 mg kg-1 p.o.) dose-dependently reduced ethanol-stimulated LTB4 and LTC4 formation by the gastric mucosa, with an ID50 of approximately 5 mg kg-1 p.o. 4. A single oral dose of BW A4C (20 mg kg-1) induced near-maximal inhibition of mucosal LTB4 formation within 30 min, which was well maintained for 5 h, whereas BW A137C (20 mg kg-1 p.o.) induced maximal inhibition between 30 and 60 min after administration, which then diminished over the subsequent 5 h. 5. The mucosal formation of the cyclo-oxygenase product, 6-keto-prostaglandin F1 alpha, which was unaltered following ethanol challenge, was not inhibited by the acetohydroxamic acids. Likewise, the small increase in mucosal thromboxane B2 formation following challenge was not inhibited by BW A4C. 6. Neither BW A4C nor BW A137C, at doses that almost completely inhibited the mucosal synthesis of LTB4 or LTC4, reduced the macroscopic gastric mucosal damage induced by ethanol. 7. Pretreatment with the lipoxygenase inhibitor BW 755C (5-50 mg kg-1 p.o.) did reduce mucosal damage, but there was a dissociation between the degree of protection and the inhibition of leukotriene biosynthesis. 8. Oral administration of high doses of either BW A4C or BW A137C (300mgkg-1) did not induce macroscopic gastric damage over a 3 h period. 9. These findings suggest that the leukotrienes, LTB4 and LTC4 are not the primary mediators of ethanol-induced acute mucosal damage, but do not exclude their role in more chronic gastric damage and inflammation. PMID

  10. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663

    SciTech Connect

    Gilbert, Nathaniel C.; Rui, Zhe; Neau, David B.; Waight, Maria T.; Bartlett, Sue G.; Boeglin, William E.; Brash, Alan R.; Newcomer, Marcia E.

    2012-08-31

    The enzyme 5-lipoxygenase (5-LOX) initiates biosynthesis of the proinflammatory leukotriene lipid mediators and, together with 15-LOX, is also required for synthesis of the anti-inflammatory lipoxins. The catalytic activity of 5-LOX is regulated through multiple mechanisms, including Ca{sup 2+}-targeted membrane binding and phosphorylation at specific serine residues. To investigate the consequences of phosphorylation at S663, we mutated the residue to the phosphorylation mimic Asp, providing a homogenous preparation suitable for catalytic and structural studies. The S663D enzyme exhibits robust 15-LOX activity, as determined by spectrophotometric and HPLC analyses, with only traces of 5-LOX activity remaining; synthesis of the anti-inflammatory lipoxin A4 from arachidonic acid is also detected. The crystal structure of the S663D mutant in the absence and presence of arachidonic acid (in the context of the previously reported Stable-5-LOX) reveals substantial remodeling of helices that define the active site so that the once fully encapsulated catalytic machinery is solvent accessible. Our results suggest that phosphorylation of 5-LOX at S663 could not only down-regulate leukotriene synthesis but also stimulate lipoxin production in inflammatory cells that do not express 15-LOX, thus redirecting lipid mediator biosynthesis to the production of proresolving mediators of inflammation.

  11. Discovery of a Novel Dual Fungal CYP51/Human 5-Lipoxygenase Inhibitor: Implications for Anti-Fungal Therapy

    PubMed Central

    Hoobler, Eric K.; Rai, Ganesha; Warrilow, Andrew G. S.; Perry, Steven C.; Smyrniotis, Christopher J.; Jadhav, Ajit; Simeonov, Anton; Parker, Josie E.; Kelly, Diane E.; Maloney, David J.; Kelly, S. L.; Holman, Theodore R.

    2013-01-01

    We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11) and human 5-lipoxygenase (5-LOX) with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM) and CYP51 (IC50 = 43 nM) in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component. PMID:23826084

  12. Effect of a 5-lipoxygenase (5-LO)/cyclooxygenase (CO) inhibitor, WY-47, 288, on cutaneous models of inflammation.

    PubMed

    Carlson, R P; O'Neill-Davis, L; Calhoun, W; Datko, L; Musser, J H; Kreft, A F; Chang, J Y

    1989-03-01

    WY-47,288 (2-[(1-naphthalenyloxy)methyl]quinoline) demonstrated topical antiinflammatory activity in several animal models of skin inflammation. Application of WY-47,288 to mouse ear surfaces inhibited arachidonic acid (ED50 = 0.3 mg/ear) and tetradecanoylphorbol acetate (TPA)-induced inflammation (40% at 1 mg/ear). Administration of WY-47,288 (1 mg/ear) at 30 min and 5 h after TPA reduced ear edema and epidermal proliferation by 50%. WY-47,288 also inhibited oxazolone-induced contact hypersensitivity in mouse ears (ED50 = 0.4 mg/ear) and UVB-induced guinea pig skin erythema (ED50 approximately 0.25 mg/spot). These antiinflammatory effects may be due to inhibition of 5-lipoxygenase (5-LO) and cyclooxygenase (CO) since the synthesis of 5-LO and CO products by rat neutrophils and mouse macrophages was dose-dependently reduced by WY-47,288. By contrast, WY-47,288 demonstrated no appreciable inhibition of 12-LO (rabbit platelet), 15-LO (soybean) or phospholipase A2 (human platelet). Furthermore, no systemic adverse effects were observed after topical, parenteral or oral administration of WY-47,288, suggesting that WY-47,288 is a safe topical 5-LO/CO inhibitor for treating skin inflammation. PMID:2500009

  13. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo.

    PubMed

    Schaible, Anja M; Filosa, Rosanna; Krauth, Verena; Temml, Veronika; Pace, Simona; Garscha, Ulrike; Liening, Stefanie; Weinigel, Christina; Rummler, Silke; Schieferdecker, Sebastian; Nett, Markus; Peduto, Antonella; Collarile, Selene; Scuotto, Maria; Roviezzo, Fioretina; Spaziano, Giuseppe; de Rosa, Mario; Stuppner, Hermann; Schuster, Daniela; D'Agostino, Bruno; Werz, Oliver

    2016-07-15

    5-Lipoxygenase (5-LO) catalyzes the first two steps in leukotriene (LT) biosynthesis. Because LTs play pivotal roles in allergy and inflammation, 5-LO represents a valuable target for anti-inflammatory drugs. Here, we investigated the molecular mechanism, the pharmacological profile, and the in vivo effectiveness of the novel 1,2-benzoquinone-featured 5-LO inhibitor RF-22c. Compound RF-22c potently inhibited 5-LO product synthesis in neutrophils and monocytes (IC50⩾22nM) and in cell-free assays (IC50⩾140nM) without affecting 12/15-LOs, cyclooxygenase (COX)-1/2, or arachidonic acid release, in a specific and reversible manner, supported by molecular docking data. Antioxidant or iron-chelating properties were not evident for RF-22c and 5-LO-regulatory cofactors like Ca(2+) mobilization, ERK-1/2 activation, and 5-LO nuclear membrane translocation and interaction with 5-LO-activating protein (FLAP) were unaffected. RF-22c (0.1mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. Taken together, RF-22c is a highly selective and potent 5-LO inhibitor in intact human leukocytes with pronounced effectiveness in different models of inflammation that warrants further preclinical analysis of this agent as anti-inflammatory drug. PMID:27157409

  14. Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells.

    PubMed

    Raghavenra, H; Diwakr, B T; Lokesh, B R; Naidu, K A

    2006-01-01

    Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells. PMID:16216483

  15. Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5-lipoxygenase pathways

    PubMed Central

    2012-01-01

    Background Allergen induced early phase airway response and airway plasma exudation are predominantly mediated by inflammatory mast cell mediators including histamine, cysteinyl leukotrienes (cysLTs) and thromboxane A2 (TXA2). The aim of the present study was to evaluate whether repeated allergen exposure affects early phase airway response to allergen challenge. Methods A trimellitic anhydride (TMA) sensitized guinea pig model was used to investigate the effects of low dose repeated allergen exposure on cholinergic airway responsiveness, early phase airway response and plasma exudation, as well as local airway production of mast cell derived cysteinyl leukotrienes and thromboxane B2 (TXB2) after allergen challenge. Results Repeated low dose allergen exposure increased cholinergic airway responsiveness. In contrast, early phase airway response and plasma exudation in response to a high-dose allergen challenge were strongly attenuated after repeated low dose allergen exposure. Inhibition of the airway response was unspecific to exposed allergen and independent of histamine receptor blocking. Furthermore, a significant reduction of cysteinyl leukotrienes and TXB2 was found in the airways of animals repeatedly exposed to a low dose allergen. However, in vitro stimulation of airway tissue from animals repeatedly exposed to a low dose allergen with arachidonic acid and calcium ionophore (A23187) induced production of cysteinyl leukotrienes and TXB2, suggesting enhanced activity of 5-lipoxygenase and cyclooxygenase pathways. Conclusions The inhibition of the early phase airway response, cysteinyl leukotriene and TXB2 production after repeated allergen exposure may result from unresponsive effector cells. PMID:22439792

  16. Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase

    PubMed Central

    Zhou, Yu; Liu, Jun; Zheng, Mingyue; Zheng, Shuli; Jiang, Chunyi; Zhou, Xiaomei; Zhang, Dong; Zhao, Jihui; Ye, Deju; Zheng, Mingfang; Jiang, Hualiang; Liu, Dongxiang; Cheng, Jian; Liu, Hong

    2016-01-01

    Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 µmol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused-ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. PMID:26904397

  17. Zileuton, 5-Lipoxygenase Inhibitor, Acts as a Chemopreventive Agent in Intestinal Polyposis, by Modulating Polyp and Systemic Inflammation

    PubMed Central

    Heiferman, Jeffrey R.; Shrivastav, Manisha; Vitello, Dominic; Blatner, Nichole R.; Knab, Lawrence M.; Phillips, Joseph D.; Cheon, Eric C.; Grippo, Paul J.; Khazaie, Khashayarsha; Munshi, Hidayatullah G.; Bentrem, David J.

    2015-01-01

    Purpose Leukotrienes and prostaglandins, products of arachidonic acid metabolism, sustain both systemic and lesion-localized inflammation. Tumor-associated Inflammation can also contribute to the pathogenesis of colon cancer. Patients with inflammatory bowel disease (IBD) have increased risk of developing colon cancer. The levels of 5-lipoxygenase (5-LO), the key enzyme for leukotrienes production, are increased in colon cancer specimens and colonic dysplastic lesions. Here we report that Zileuton, a specific 5-LO inhibitor, can prevent polyp formation by efficiently reducing the tumor-associated and systemic inflammation in APCΔ468 mice. Experimental Design In the current study, we inhibited 5-LO by dietary administration of Zileuton in the APCΔ468 mouse model of polyposis and analyzed the effect of in vivo 5-LO inhibition on tumor-associated and systemic inflammation. Results Zileuton-fed mice developed fewer polyps and displayed marked reduction in systemic and polyp-associated inflammation. Pro-inflammatory cytokines and pro-inflammatory innate and adaptive immunity cells were reduced both in the lesions and systemically. As part of tumor-associated inflammation Leukotriene B4 (LTB4), product of 5-LO activity, is increased focally in human dysplastic lesions. The 5-LO enzymatic activity was reduced in the serum of Zileuton treated polyposis mice. Conclusions This study demonstrates that dietary administration of 5-LO specific inhibitor in the polyposis mouse model decreases polyp burden, and suggests that Zileuton may be a potential chemo-preventive agent in patients that are high-risk of developing colon cancer. PMID:25747113

  18. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids.

    PubMed

    Sapieha, Przemyslaw; Stahl, Andreas; Chen, Jing; Seaward, Molly R; Willett, Keirnan L; Krah, Nathan M; Dennison, Roberta J; Connor, Kip M; Aderman, Christopher M; Liclican, Elvira; Carughi, Arianna; Perelman, Dalia; Kanaoka, Yoshihide; Sangiovanni, John Paul; Gronert, Karsten; Smith, Lois E H

    2011-02-01

    Lipid signaling is dysregulated in many diseases with vascular pathology, including cancer, diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. We have previously demonstrated that diets enriched in ω-3 polyunsaturated fatty acids (PUFAs) effectively reduce pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy, in part through metabolic products that suppress microglial-derived tumor necrosis factor-α. To better understand the protective effects of ω-3 PUFAs, we examined the relative importance of major lipid metabolic pathways and their products in contributing to this effect. ω-3 PUFA diets were fed to four lines of mice deficient in each key lipid-processing enzyme (cyclooxygenase 1 or 2, or lipoxygenase 5 or 12/15), retinopathy was induced by oxygen exposure; only loss of 5-lipoxygenase (5-LOX) abrogated the protection against retinopathy of dietary ω-3 PUFAs. This protective effect was due to 5-LOX oxidation of the ω-3 PUFA lipid docosahexaenoic acid to 4-hydroxy-docosahexaenoic acid (4-HDHA). 4-HDHA directly inhibited endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor γ (PPARγ), independent of 4-HDHA's anti-inflammatory effects. Our study suggests that ω-3 PUFAs may be profitably used as an alternative or supplement to current anti-vascular endothelial growth factor (VEGF) treatment for proliferative retinopathy and points to the therapeutic potential of ω-3 PUFAs and metabolites in other diseases of vasoproliferation. It also suggests that cyclooxygenase inhibitors such as aspirin and ibuprofen (but not lipoxygenase inhibitors such as zileuton) might be used without losing the beneficial effect of dietary ω-3 PUFA. PMID:21307302

  19. Suppression of Oxidative Stress and 5-Lipoxygenase Activation by Edaravone Improves Depressive-Like Behavior after Concussion

    PubMed Central

    Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-01-01

    Abstract Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of

  20. Pharmacological characterization of SB 202235, a potent and selective 5-lipoxygenase inhibitor: effects in models of allergic asthma.

    PubMed

    Chabot-Fletcher, M C; Underwood, D C; Breton, J J; Adams, J L; Kagey-Sobotka, A; Griswold, D E; Marshall, L A; Sarau, H M; Winkler, J D; Hay, D W

    1995-06-01

    The peptidoleukotrienes and leukotriene B4, formed from arachidonic acid through the action of 5-lipoxygenase (5-LO), exert a spectrum of biological effects. It has been proposed that potent and selective 5-LO inhibitors will be effective therapy in diseases in which the peptidoleukotrienes and leukotriene B4 have been implicated, such as asthma and arthritis. The novel compound (S)-N-hydroxy-N-(2,3-dihydro-6-phenylmethoxy-3-benzyofuranyl )urea (SB 202235) was evaluated as a selective inhibitor of 5-LO in a cell-free system as well as in various cellular assays. In addition, the potential therapeutic value of SB 202235 was assessed in preclinical models of allergic asthma. The activity of the 5-LO enzyme isolated from rat basophilic leukemia-1 cells was inhibited by SB 202235 in a concentration-dependent manner with an IC50 value of 1.9 microM. Consistent with its ability to inhibit 5-LO, SB 202235 inhibited the production of leukotriene B4 by human monocytes and in human whole blood (IC50 values of 1.5 microM and 1.1 microM, respectively). The selectivity of SB 202235 was confirmed by its lack of effect against several other enzymes and receptors. SB 202235 potently and effectively inhibited the contraction produced by a single concentration of ovalbumin in guinea pig trachea (IC50 = 20 microM) and of anti-IgE in human bronchus (IC50 = 2 microM). SB 202235 (3-30 microM) also inhibited the contraction of guinea pig trachea in response to increasing concentration of ovalbumin. When administered orally (30 mg/kg) to conscious guinea pigs, SB 202235 attenuated antigen-induced broncho-constriction and the subsequent eosinophil influx.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7791085

  1. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment.

    PubMed

    Poczobutt, Joanna M; Nguyen, Teresa T; Hanson, Dwight; Li, Howard; Sippel, Trisha R; Weiser-Evans, Mary C M; Gijon, Miguel; Murphy, Robert C; Nemenoff, Raphael A

    2016-01-15

    Eicosanoids, including PGs, produced by cyclooxygenases (COX), and leukotrienes, produced by 5-lipoxygenase (5-LO) have been implicated in cancer progression. These molecules are produced by both cancer cells and the tumor microenvironment (TME). We previously reported that both COX and 5-LO metabolites increase during progression in an orthotopic immunocompetent model of lung cancer. Although PGs in the TME have been well studied, less is known regarding 5-LO products produced by the TME. We examined the role of 5-LO in the TME using a model in which Lewis lung carcinoma cells are directly implanted into the lungs of syngeneic WT mice or mice globally deficient in 5-LO (5-LO-KO). Unexpectedly, primary tumor volume and liver metastases were increased in 5-LO-KO mice. This was associated with an ablation of leukotriene (LT) production, consistent with production mainly mediated by the microenvironment. Increased tumor progression was partially reproduced in global LTC4 synthase KO or mice transplanted with LTA4 hydrolase-deficient bone marrow. Tumor-bearing lungs of 5-LO-KO had decreased numbers of CD4 and CD8 T cells compared with WT controls, as well as fewer dendritic cells. This was associated with lower levels of CCL20 and CXL9, which have been implicated in dendritic and T cell recruitment. Depletion of CD8 cells increased tumor growth and eliminated the differences between WT and 5-LO mice. These data reveal an antitumorigenic role for 5-LO products in the microenvironment during lung cancer progression through regulation of T cells and suggest that caution should be used in targeting this pathway in lung cancer. PMID:26663781

  2. Active site characterization and structure based 3D-QSAR studies on non-redox type 5-lipoxygenase inhibitors.

    PubMed

    Ul-Haq, Zaheer; Khan, Naveed; Zafar, Syed Kashif; Moin, Syed Tarique

    2016-06-10

    Structure-based 3D-QSAR study was performed on a class of 5-benzylidene-2-phenylthiazolinones non-redox type 5-LOX inhibitors. In this study, binding pocket of 5-Lipoxygenase (pdb id 3o8y) was identified by manual docking using 15-LOX (pdb id 2p0m) as a reference structure. Additionally, most of the binding site residues were found conserved in both structures. These non-redox inhibitors were then docked into the binding site of 5-LOX. To generate reliable CoMFA and CoMSIA models, atom fit data base alignment method using docked conformation of the most active compound was employed. The q(2)cv and r(2)ncv values for CoMFA model were found to be 0.549 and 0.702, respectively. The q(2)cv and r(2)ncv values for the selected CoMSIA model comprised four descriptors steric, electrostatic, hydrophobic and hydrogen bond donor fields were found to be 0.535 and 0.951, respectively. Obtained results showed that our generated model was statistically reliable. Furthermore, an external test set validates the reliability of the predicted model by calculating r(2)pred i.e.0.787 and 0.571 for CoMFA and CoMSIA model, respectively. 3D contour maps generated from CoMFA and CoMSIA models were utilized to determine the key structural features of ligands responsible for biological activities. The applied protocol will be helpful to design more potent and selective inhibitors of 5-LOX. PMID:27044904

  3. Inhibition of 5-lipoxygenase triggers apoptosis in prostate cancer cells via down-regulation of protein kinase C-epsilon

    PubMed Central

    Sarveswaran, Sivalokanathan; Thamilselvan, Vijayalakshmi; Brodie, Chaya; Ghosh, Jagadananda

    2012-01-01

    Previous studies have shown that human prostate cancer cells constitutively generate 5-lipoxygenase (5-LOX) metabolites from arachidonic acid, and inhibition of 5-LOX blocks production of 5-LOX metabolites and triggers apoptosis in prostate cancer cells. This apoptosis is prevented by exogenous metabolites of 5-LOX, suggesting an essential role of 5-LOX metabolites in the survival of prostate cancer cells. However, downstream signaling mechanisms which mediate the survival-promoting effects of 5-LOX metabolites in prostate cancer cells are still unknown. Recently, we reported that MK591, a specific inhibitor of 5-LOX activity, induces apoptosis in prostate cancer cells without inhibition of Akt, or ERK, two well-characterized regulators of pro-survival mechanisms, suggesting the existence of an Akt and ERK-independent survival mechanism in prostate cancer cells regulated by 5-LOX. Here, we report that 5-LOX inhibition-induced apoptosis in prostate cancer cells occurs via rapid inactivation of protein kinase C-epsilon (PKCε), and that exogenous 5-LOX metabolites prevent both 5-LOX inhibition-induced down-regulation of PKCε and induction of apoptosis. Interestingly, pre-treatment of prostate cancer cells with diazoxide (a chemical activator of PKCε), or KAE1-1 (a cell-permeable, octa-peptide specific activator of PKCε) prevents 5-LOX inhibition-induced apoptosis, which indicates that inhibition of 5-LOX triggers apoptosis in prostate cancer cells via down-regulation of PKCε. Altogether, these findings suggest that metabolism of arachidonic acid by 5-LOX activity promotes survival of prostate cancer cells via signaling through PKCε, a pro-survival serine/threonine kinase. PMID:21824498

  4. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment

    PubMed Central

    Poczobutt, Joanna M.; Nguyen, Teresa T.; Hanson, Dwight; Li, Howard; Sippel, Trisha R.; Weiser-Evans, Mary C. M.; Gijon, Miguel; Murphy, Robert C.

    2016-01-01

    Eicosanoids, including PGs, produced by cyclooxygenases (COX), and leukotrienes, produced by 5-lipoxygenase (5-LO) have been implicated in cancer progression. These molecules are produced by both cancer cells and the tumor microenvironment (TME). We previously reported that both COX and 5-LO metabolites increase during progression in an orthotopic immunocompetent model of lung cancer. Although PGs in the TME have been well studied, less is known regarding 5-LO products produced by the TME. We examined the role of 5-LO in the TME using a model in which Lewis lung carcinoma cells are directly implanted into the lungs of syngeneic WT mice or mice globally deficient in 5-LO (5-LO-KO). Unexpectedly, primary tumor volume and liver metastases were increased in 5-LO-KO mice. This was associated with an ablation of leukotriene (LT) production, consistent with production mainly mediated by the microenvironment. Increased tumor progression was partially reproduced in global LTC4 synthase KO or mice transplanted with LTA4 hydrolase-deficient bone marrow. Tumor-bearing lungs of 5-LO-KO had decreased numbers of CD4 and CD8 T cells compared with WT controls, as well as fewer dendritic cells. This was associated with lower levels of CCL20 and CXL9, which have been implicated in dendritic and T cell recruitment. Depletion of CD8 cells increased tumor growth and eliminated the differences between WT and 5-LO mice. These data reveal an antitumorigenic role for 5-LO products in the microenvironment during lung cancer progression through regulation of T cells and suggest that caution should be used in targeting this pathway in lung cancer. PMID:26663781

  5. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  6. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  7. Silver-Russell syndrome without body asymmetry in three patients with duplications of maternally derived chromosome 11p15 involving CDKN1C.

    PubMed

    Nakashima, Shinichi; Kato, Fumiko; Kosho, Tomoki; Nagasaki, Keisuke; Kikuchi, Toru; Kagami, Masayo; Fukami, Maki; Ogata, Tsutomu

    2015-02-01

    We report duplications of maternally derived chromosome 11p15 involving CDKN1C encoding a negative regulator for cell proliferation in three Japanese patients (cases 1 and 2 from family A and case 3 from family B) with Silver-Russell syndrome (SRS) phenotype lacking hemihypotrophy. Chromosome analysis showed 46,XX,der(16)t(11;16)(p15.3;q24.3)mat in case 1, 46,XY,der(16)t(11;16)(p15.3;q24.3)mat in case 2 and a de novo 46,XX,der(17)t(11;17)(p15.4;q25.3) in case 3. Genomewide oligonucleotide-based array comparative genomic hybridization, microsatellite analysis, pyrosequencing-based methylation analysis and direct sequence analysis revealed the presence of maternally derived extra copies of the distal chromosome 11p involving the wild-type CDKN1C (a ~7.98 Mb region in cases 1 and 2 and a ~4.43 Mb region in case 3). The results, in conjunction with the previous findings in patients with similar duplications encompassing CDKN1C and in those with intragenic mutations of CDKN1C, imply that duplications of CDKN1C, as well as relatively mild gain-of-function mutations of CDKN1C lead to SRS subtype that usually lack hemihypotrophy. PMID:25427884

  8. Point-of-Care HbA1c Testing with the A1cNow Test Kit in General Practice Dental Clinics: A Pilot Study Involving Its Accuracy and Practical Issues in Its Use

    PubMed Central

    Strauss, Shiela M.; Rosedale, Mary; Pesce, Michael A.; Juterbock, Caroline; Kaur, Navjot; DePaola, Joe; Goetz, Deborah; Wolff, Mark S.; Malaspina, Dolores; Danoff, Ann

    2014-01-01

    With millions of at-risk people undiagnosed with pre-diabetes and diabetes, there is a need to identify alternate screening sites for out-of-range glucose values. We examined practical issues and accuracy (relative to High Performance Liquid Chromatography testing in a laboratory) in the use of the A1cNow point of care device for this screening in general practice dental clinics at a large University-based Dental College. Health care professionals obtained evaluable readings for only 70% of the subjects, even after two attempts, and its use according to manufacturer's instructions was often challenging in the busy environment of the dental clinic. At thresholds for pre-diabetes and diabetes established by the American Diabetes Association, sensitivities of the A1cNow kit relative to the HPLC method were 91.9% and 100%, respectively. However, specificities for pre-diabetes and diabetes were 66.7% and 82.4%, respectively, indicating many false positive results. A better strategy for diabetes screening may involve a laboratory-based analysis approach that is patient- and provider-friendly, with minimal burden to the dental team. PMID:25593546

  9. Polycystin-1C terminus cleavage and its relation with polycystin-2, two proteins involved in polycystic kidney disease.

    PubMed

    Bertuccio, Claudia A; Caplan, Michael J

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a most common genetic cause of chronic renal failure, is characterized by the progressive development and enlargement of cysts in kidneys and other organs. The cystogenic process is highly complex and involves a high proliferative rate, increased apoptosis, altered protein sorting, changed secretory characteristics, and disorganization of the extracellular matrix. ADPKD is caused by mutations in the genes encoding polycystin-1 (PC-1) or polycystin-2 (PC-2). PC-1 undergoes multiple cleavages that intervene in several signaling pathways involved in cellular proliferation and differentiation mechanisms. One of these cleavages releases the cytoplasmic C-terminal tail of PC-1. In addition, the C-terminal cytoplasmic tails of PC-1 and PC-2 interact in vitro and in vivo. The purpose of this review is to summarize recent literature that suggests that PC-1 and PC-2 may function through a common signaling pathway necessary for normal tubulogenesis. We hope that a better understanding of PC-1 and PC-2 protein function will lead to progress in diagnosis and treatment for ADPKD. PMID:23570767

  10. SNF1-Related Protein Kinases Type 2 Are Involved in Plant Responses to Cadmium Stress1[C][W

    PubMed Central

    Kulik, Anna; Anielska-Mazur, Anna; Bucholc, Maria; Koen, Emmanuel; Szymańska, Katarzyna; Żmieńko, Agnieszka; Krzywińska, Ewa; Wawer, Izabela; McLoughlin, Fionn; Ruszkowski, Dariusz; Figlerowicz, Marek; Testerink, Christa; Skłodowska, Aleksandra; Wendehenne, David; Dobrowolska, Grażyna

    2012-01-01

    Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd2+ showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd2+ treatment. Our data show significantly lower Cd2+-induced ROS accumulation in the mutants’ roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions. PMID:22885934

  11. Involvement of the Pepper Antimicrobial Protein CaAMP1 Gene in Broad Spectrum Disease Resistance1[C][OA

    PubMed Central

    Lee, Sung Chul; Hwang, In Sun; Choi, Hyong Woo; Hwang, Byung Kook

    2008-01-01

    Pathogen-inducible antimicrobial defense-related proteins have emerged as key antibiotic peptides and enzymes involved in disease resistance in plants. A novel antimicrobial protein gene, CaAMP1 (for Capsicum annuum ANTIMICROBIAL PROTEIN1), was isolated from pepper (C. annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Expression of the CaAMP1 gene was strongly induced in pepper leaves not only during pathogen infection but also after exposure to abiotic elicitors. The purified recombinant CaAMP1 protein possessed broad-spectrum antimicrobial activity against phytopathogenic bacteria and fungi. CaAMP1:smGFP fusion protein was localized mainly in the external and intercellular regions of onion (Allium cepa) epidermal cells. The virus-induced gene silencing technique and gain-of-function transgenic plants were used to determine the CaAMP1 gene function in plant defense. Silencing of CaAMP1 led to enhanced susceptibility to X. campestris pv vesicatoria and Colletotrichum coccodes infection, accompanied by reduced PATHOGENESIS-RELATED (PR) gene expression. In contrast, overexpression of CaAMP1 in Arabidopsis (Arabidopsis thaliana) conferred broad-spectrum resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora parasitica, and the fungal necrotrophic pathogens Fusarium oxysporum f. sp. matthiolae and Alternaria brassicicola. CaAMP1 overexpression induced the salicylic acid pathway-dependent genes PR1 and PR5 but not the jasmonic acid-dependent defense gene PDF1.2 during P. syringae pv tomato infection. Together, these results suggest that the antimicrobial CaAMP1 protein is involved in broad-spectrum resistance to bacterial and fungal pathogen infection. PMID:18676663

  12. Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes.

    PubMed

    Ogmundsdóttir, H M; Zoëga, G M; Gissurarson, S R; Ingólfsdóttir, K

    1998-01-01

    Several lichen species have been used traditionally as medicinal plants. It has previously been shown that two low-molecular-weight lichen metabolites, lobaric acid isolated from Stereocaulon alpinum Laur. and protolichesterinic acid isolated from Cetraria islandica L. (Ach.), have in-vitro inhibitory effects on arachidonate 5-lipoxygenase. We have studied the effects of these compounds on cultured cells from man, including three malignant cell-lines (T-47D and ZR-75-1 from breast carcinomas and K-562 from erythro-leukaemia), as well as normal skin fibroblasts and peripheral blood lymphocytes. Both test substances caused a significant reduction in DNA synthesis, as measured by thymidine uptake, in all three malignant cell-lines; the dose inducing 50% of maximum inhibition (ED50) was between 1.1 and 24.6 microg mL(-1) for protolichesterinic acid and between 14.5 and 44.7 microg mL(-1) for lobaric acid. The breast-cancer cell-lines were more sensitive than K-562. The proliferative response of mitogen-stimulated lymphocytes was inhibited with a mean ED50 of 8.4 microg mL(-1) and 24.5 microg mL(-1) for protolichesterinic acid and lobaric acid, respectively. These concentrations are of the same order of magnitude as the IC50 values in the 5-lipoxygenase assay. Significant cell death (assessed by the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-( 4-sulfophenyl)-2H-tetrazolium) assay and trypan blue exclusion) occurred in the three malignant cell-lines at protolichesterinic acid and lobaric acid concentrations above 20 and 30 microg mL(-1), respectively. In K-562 morphological changes consistent with apoptosis were detected. Up to 38% cell death was observed at 20 microg mL(-1) for protolichesterinic acid and 15 microg mL(-1) for lobaric acid in mitogen-stimulated lymphocytes but unstimulated lymphocytes were clearly less sensitive. In contrast, the DNA synthesis, proliferation and survival of normal skin fibroblasts were not affected at doses up to 20

  13. Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses1[C][W][OPEN

    PubMed Central

    Atkinson, Nicky J.; Lilley, Catherine J.; Urwin, Peter E.

    2013-01-01

    In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination. PMID:23800991

  14. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP).

    PubMed

    Banoglu, Erden; Çelikoğlu, Erşan; Völker, Susanna; Olgaç, Abdurrahman; Gerstmeier, Jana; Garscha, Ulrike; Çalışkan, Burcu; Schubert, Ulrich S; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver

    2016-05-01

    In this article, we report novel leukotriene (LT) biosynthesis inhibitors that may target 5-lipoxygenase-activating protein (FLAP) based on the previously identified isoxazole derivative (8). The design and synthesis was directed towards a subset of 4,5-diaryl-isoxazole-3-carboxylic acid derivatives as LT biosynthesis inhibitors. Biological evaluation disclosed a new skeleton of potential anti-inflammatory agents, exemplified by 39 and 40, which potently inhibit cellular 5-LO product synthesis (IC50 = 0.24 μM, each) seemingly by targeting FLAP with weak inhibition on 5-LO (IC50 ≥ 8 μM). Docking studies and molecular dynamic simulations with 5-LO and FLAP provide valuable insights into potential binding modes of the inhibitors. Together, these diaryl-isoxazol-3-carboxylic acids may possess potential as leads for development of effective anti-inflammatory drugs through inhibition of LT biosynthesis. PMID:26922224

  15. The regulation of human MMP-13 by licofelone, an inhibitor of cyclo-oxygenases and 5-lipoxygenase, in human osteoarthritic chondrocytes is mediated by the inhibition of the p38 MAP kinase signalling pathway

    PubMed Central

    Boileau, C; Pelletier, J; Tardif, G; Fahmi, H; Laufer, S; Lavigne, M; Martel-Pelletier, J

    2005-01-01

    Background: MMP-13 is one of the most important metalloproteases (MMP) involved in osteoarthritis. Licofelone, a novel dual inhibitor of cyclo-oxygenases (COX) and 5-lipoxygenase (5-LOX), can modulate MMP-13 production in human osteoarthritis chondrocytes. Objective: To evaluate the impact of licofelone on MMP-13 expression/production, promoter, and major MAP kinase signalling pathways and transcription factors. Methods: Human osteoarthritis chondrocytes were stimulated by interleukin 1ß (IL1ß) and treated with or without: licofelone (0.3, 1, or 3 µg/ml); NS-398 (10 µM; a specific COX-2 inhibitor); or BayX-1005 (10 µM; a specific 5-LOX inhibitor). MMP-13 synthesis was determined by specific enzyme linked immunosorbent assay, and expression by real time polymerase chain reaction. The effect of licofelone on the MMP-13 promoter was studied through transient transfection; dexamethasone (10–7 M) was used as comparison. The effect on IL1ß induced MMP-13 signalling pathways was determined using specific ELISA for phosphorylated MAP kinases and transcription factors. Results: Licofelone dose dependently inhibited the IL1ß stimulated production and expression of MMP-13. NS-398 and BayX-1005 had very little effect. Licofelone also inhibited MMP-13 transcription on each of the promoter constructs used. The licofelone inhibition was comparable to that obtained with dexamethasone. Licofelone had no effect on phosphorylated p44/42 or JNK1/2; however, it decreased phosphorylated c-jun and inhibited phosphorylated p38, CREB, and AP-1 activity. Conclusions: Licofelone inhibited MMP-13 production under proinflammatory conditions on human osteoarthritis chondrocytes, through inhibition of the p38/AP-1 pathway and the transcription factor CREB. This may explain some of the mechanisms whereby licofelone exerts its positive effect on osteoarthritic changes. PMID:15498796

  16. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: consequences for the positional specificity of oxygenation.

    PubMed

    Saura, Patricia; Maréchal, Jean-Didier; Masgrau, Laura; Lluch, José M; González-Lafont, Àngels

    2016-08-17

    In the present work we have combined homology modeling, protein-ligand dockings, quantum mechanics/molecular mechanics calculations and molecular dynamics simulations to generate human 5-lipoxygenase (5-LOX):arachidonic acid (AA) complexes consistent with the 5-lipoxygenating activity (which implies hydrogen abstraction at the C7 position). Our results suggest that both the holo and the apo forms of human Stable 5-LOX could accommodate AA in a productive form for 5-lipoxygenation. The former, in a tail-first orientation, with the AA carboxylate end interacting with Lys409, gives the desired structures with C7 close to the Fe-OH(-) cofactor and suitable barrier heights for H7 abstraction. Only when using the apo form structure, a head-first orientation with the AA carboxylate close to His600 (a residue recently proposed as essential for AA positioning) is obtained in the docking calculations. However, the calculated barrier heights for this head-first orientation are in principle consistent with 5-LOX specificity, but also with 12/8 regioselectivity. Finally, long MD simulations give support to the recent hypothesis that the Phe177 + Tyr181 pair needs to close the active site access during the chemical reaction, and suggest that in the case of a head-first orientation Phe177 may be the residue interacting with the AA carboxylate. PMID:27489112

  17. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds. PMID:27129215

  18. ATP Allosterically Activates the Human 5-Lipoxygenase Molecular Mechanism of Arachidonic Acid and 5(S)-Hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic Acid

    PubMed Central

    2015-01-01

    5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation and epoxidation indicate that a specific step in its molecular mechanism is changed, possibly because of a lowering of the dependence of the rate-limiting step on hydrogen atom abstraction and an increase in the dependency on hydrogen bond rearrangement. Therefore, changes in ATP concentration in the cell could affect the production of 5-LOX products, such as leukotrienes and lipoxins, and thus have wide implications for the regulation of cellular inflammation. PMID:24893149

  19. Modulation of LPS-induced memory insult, γ-secretase and neuroinflammation in 3xTg mice by 5-Lipoxygenase

    PubMed Central

    Joshi, Yash B.; Giannopoulos, Phillip F.; Chu, Jin; Praticò, Domenico

    2014-01-01

    Besides amyloid and tau pathology, a constant feature of Alzheimer’s disease (AD) is an intense inflammatory response, which is considered an active player in its pathogenesis. The 5-Lipoxygenase (5LO) is a proinflammatory enzyme and an endogenous modulator of AD-like phenotype in mouse models of the disease. To further understand the role of 5LO in AD pathogenesis, we exposed the 3xTg and 3xTg/5LO knockout mice to lipopolysaccharide (LPS), a known inducer of neuroinflammation, and evaluated its effect on their AD-like phenotype. 3xTg mice treated with LPS manifested a worsening of behavior, γ-secretase up-regulation, and increased neuroinflammatory responses. These effects were completely prevented in 3xTg mice genetically deficient for 5LO. By contrast, the absence of 5LO did not protect against increase in tau phosphorylation at specific epitopes that were mediated by the activation of the cyclin-dependent kinase 5. Our data demonstrate that the 5LO pathway affects key neuropathological features of the AD-like phenotype (behavior, Abeta, microgliosis, astrocytosis) but not others (tau pathology) in the LPS-dependent neuroinflammation model. The opposite ways whereby 5LO influences the LPS-dependent effects in vivo supports the complex nature of the neuroinflammatory response in AD and its differential role in modulating amyloid and tau neuropathology. PMID:24332986

  20. Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase.

    PubMed

    Peduto, Antonella; Bruno, Ferdinando; Dehm, Friedrike; Krauth, Verena; de Caprariis, Paolo; Weinigel, Christina; Barz, Dagmar; Massa, Antonio; De Rosa, Mario; Werz, Oliver; Filosa, Rosanna

    2014-06-23

    5-Lipoxygenase (5-LO), an enzyme that catalyzes the initial steps in the biosynthesis of pro-inflammatory leukotrienes, is an attractive drug target for the pharmacotherapy of inflammatory and allergic diseases. Here, we present the design, synthesis and biological evaluation of novel series of ethyl 5-hydroxyindole-3-carboxylate derivatives that efficiently inhibit human 5-LO. SAR analysis revealed that the potency of compounds is closely related to the positioning of the substituents at the phenylthiomethyl ring. The introduction of methyl or chlorine groups in ortho- and ortho/para-position of thiophenol represent the most favorable modifications. Among all tested compounds, ethyl 5-hydroxy-2-(mesitylthiomethyl)-1-methyl-1H-indole-3-carboxylate (19) is the most potent derivative which blocks 5-LO activity in cell-free assays with IC50 = 0.7 μM, and suppressed 5-LO product synthesis in polymorphonuclear leukocytes with IC50 = 0.23 μM. PMID:24871899

  1. The Medicinal Timber Canarium patentinervium Miq. (Burseraceae Kunth.) Is an Anti-Inflammatory Bioresource of Dual Inhibitors of Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX)

    PubMed Central

    Mogana, R.; Teng-Jin, K.; Wiart, C.

    2013-01-01

    The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases. PMID:25937987

  2. Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model.

    PubMed

    Liu, Jun-Yan; Yang, Jun; Inceoglu, Bora; Qiu, Hong; Ulu, Arzu; Hwang, Sung-Hee; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2010-03-15

    Inflammation is a multi-staged process whose expansive phase is thought to be driven by acutely released arachidonic acid (AA) and its metabolites. Inhibition of cyclooxygenase (COX), lipoxygenase (LOX), or soluble epoxide hydrolase (sEH) is known to be anti-inflammatory. Inhibition of sEH stabilizes the cytochrome P450 (CYP450) products epoxyeicosatrienoic acids (EETs). Here we used a non-selective COX inhibitor aspirin, a 5-lipoxygenase activation protein (FLAP) inhibitor MK886, and a sEH inhibitor t-AUCB to selectively modulate the branches of AA metabolism in a lipopolysaccharide (LPS)-challenged murine model. We used metabolomic profiling to simultaneously monitor representative AA metabolites of each branch. In addition to the significant crosstalk among branches of the AA cascade during selective modulation of COX, LOX, or sEH, we demonstrated that co-administration of t-AUCB enhanced the anti-inflammatory effects of aspirin or MK886, which was evidenced by the observations that co-administration resulted in favorable eicosanoid profiles and better control of LPS-mediated hypotension as well as hepatic protein expression of COX-2 and 5-LOX. Targeted disruption of the sEH gene displayed a parallel profile to that produced by t-AUCB. These observations demonstrate a significant level of crosstalk among the three major branches of the AA cascade and that they are not simply parallel pathways. These data illustrate that inhibition of sEH by both pharmacological intervention and gene knockout enhances the anti-inflammatory effects of aspirin and MK886, suggesting the possibility of modulating multiple branches to achieve better therapeutic effects. PMID:19896470

  3. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    SciTech Connect

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-15

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901 as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  4. Elucidation of the molecular mechanism and the efficacy in vivo of a novel 1,4-benzoquinone that inhibits 5-lipoxygenase

    PubMed Central

    Schaible, A M; Filosa, R; Temml, V; Krauth, V; Matteis, M; Peduto, A; Bruno, F; Luderer, S; Roviezzo, F; Di Mola, A; Rosa, M; D'Agostino, B; Weinigel, C; Barz, D; Koeberle, A; Pergola, C; Schuster, D; Werz, O

    2014-01-01

    Background and Purpose 1,4-Benzoquinones are well-known inhibitors of 5-lipoxygenase (5-LOX, the key enzyme in leukotriene biosynthesis), but the molecular mechanisms of 5-LOX inhibition are not completely understood. Here we investigated the molecular mode of action and the pharmacological profile of the novel 1,4-benzoquinone derivative 3-((decahydronaphthalen-6-yl)methyl)-2,5-dihydroxycyclohexa-2,5-diene-1,4-dione (RF-Id) in vitro and its effectiveness in vivo. Experimental Approach Mechanistic investigations in cell-free assays using 5-LOX and other enzymes associated with eicosanoid biosynthesis were conducted, along with cell-based studies in human leukocytes and whole blood. Molecular docking of RF-Id into the 5-LOX structure was performed to illustrate molecular interference with 5-LOX. The effectiveness of RF-Id in vivo was also evaluated in two murine models of inflammation. Key Results RF-Id consistently suppressed 5-LOX product synthesis in human leukocytes and human whole blood. RF-Id also blocked COX-2 activity but did not significantly inhibit COX-1, microsomal PGE2 synthase-1, cytosolic PLA2 or 12- and 15-LOX. Although RF-Id lacked radical scavenging activity, reducing conditions facilitated its inhibitory effect on 5-LOX whereas cell stress impaired its efficacy. The reduced hydroquinone form of RF-Id (RED-RF-Id) was a more potent inhibitor of 5-LOX as it had more bidirectional hydrogen bonds within the 5-LOX substrate binding site. Finally, RF-Id had marked anti-inflammatory effects in mice in vivo. Conclusions and Implications RF-Id represents a novel anti-inflammatory 1,4-benzoquinone that potently suppresses LT biosynthesis by direct inhibition of 5-LOX with effectiveness in vivo. Mechanistically, RF-Id inhibits 5-LOX in a non-redox manner by forming discrete molecular interactions within the active site of 5-LOX. PMID:24467325

  5. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP)

    PubMed Central

    Pergola, C; Gerstmeier, J; Mönch, B; Çalışkan, B; Luderer, S; Weinigel, C; Barz, D; Maczewsky, J; Pace, S; Rossi, A; Sautebin, L; Banoglu, E; Werz, O

    2014-01-01

    BACKGROUND AND PURPOSE Leukotrienes (LTs) are inflammatory mediators produced via the 5-lipoxygenase (5-LOX) pathway and are linked to diverse disorders, including asthma, allergic rhinitis and cardiovascular diseases. We recently identified the benzimidazole derivative BRP-7 as chemotype for anti-LT agents by virtual screening targeting 5-LOX-activating protein (FLAP). Here, we aimed to reveal the in vitro and in vivo pharmacology of BRP-7 as an inhibitor of LT biosynthesis. EXPERIMENTAL APPROACH We analysed LT formation and performed mechanistic studies in human neutrophils and monocytes, in human whole blood (HWB) and in cell-free assays. The effectiveness of BRP-7 in vivo was evaluated in rat carrageenan-induced pleurisy and mouse zymosan-induced peritonitis. KEY RESULTS BRP-7 potently suppressed LT formation in neutrophils and monocytes and this was accompanied by impaired 5-LOX co-localization with FLAP. Neither the cellular viability nor the activity of 5-LOX in cell-free assays was affected by BRP-7, indicating that a functional FLAP is needed for BRP-7 to inhibit LTs, and FLAP bound to BRP-7 linked to a solid matrix. Compared with the FLAP inhibitor MK-886, BRP-7 did not significantly inhibit COX-1 or microsomal prostaglandin E2 synthase-1, implying the selectivity of BRP-7 for FLAP. Finally, BRP-7 was effective in HWB and impaired inflammation in vivo, in rat pleurisy and mouse peritonitis, along with reducing LT levels. CONCLUSIONS AND IMPLICATIONS BRP-7 potently suppresses LT biosynthesis by interacting with FLAP and exhibits anti-inflammatory effectiveness in vivo, with promising potential for further development. PMID:24641614

  6. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities.

    PubMed

    Ghatak, Shibnath; Vyas, Alok; Misra, Suniti; O'Brien, Paul; Zambre, Ajit; Fresco, Victor M; Markwald, Roger R; Swamy, K Venkateshwara; Afrasiabi, Zahra; Choudhury, Amitava; Khetmalas, Madhukar; Padhye, Subhash

    2014-01-01

    Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells. PMID:24295787

  7. The shunt from the cyclooxygenase to lipoxygenase pathway in human osteoarthritic subchondral osteoblasts is linked with a variable expression of the 5-lipoxygenase-activating protein.

    PubMed

    Maxis, Kelitha; Delalandre, Aline; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Duval, Nicolas; Lajeunesse, Daniel

    2006-01-01

    Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone changes with osteophyte formation and abnormal bone remodeling. Two groups of OA patients were identified via the production of variable and opposite levels of prostaglandin E2 (PGE2) or leukotriene B4 (LTB4) by subchondral osteoblasts, PGE2 levels discriminating between low and high subgroups. We studied whether the expression of 5-lipoxygenase (5-LO) or 5-LO-activating protein (FLAP) is responsible for the shunt from prostaglandins to leukotrienes. FLAP mRNA levels varied in low and high OA groups compared with normal, whereas mRNA levels of 5-LO were similar in all osteoblasts. Selective inhibition of cyclooxygenase-2 (COX-2) with NS-398-stimulated FLAP expression in the high OA osteoblasts subgroup, whereas it was without effect in the low OA osteoblasts subgroup. The addition of PGE2 to the low OA osteoblasts subgroup decreased FLAP expression but failed to affect it in the high OA osteoblasts subgroup. LTB4 levels in OA osteoblasts were stimulated about twofold by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plus transforming growth factor-beta (TGF-beta), a situation corresponding to their effect on FLAP mRNA levels. Treatments with 1,25(OH)2D3 and TGF-beta also modulated PGE2 production. TGF-beta stimulated PGE2 production in both OA osteoblast groups, whereas 1,25(OH)2D3 alone had a limited effect but decreased the effect of TGF-beta in the low OA osteoblasts subgroup. This modulation of PGE2 production was mirrored by the synthesis of COX-2. IL-18 levels were only slightly increased in a subgroup of OA osteoblasts compared with normal; however, no relationship was observed overall between IL-18 and PGE2 levels in normal and OA osteoblasts. These results suggest that the shunt from the production of PGE2 to LTB4 is through regulation of the expression of FLAP, not 5-LO, in OA osteoblasts. The expression of FLAP in OA osteoblasts is also modulated differently by 1,25(OH

  8. Efficacy, safety and tolerability of GSK2190915, a 5-lipoxygenase activating protein inhibitor, in adults and adolescents with persistent asthma: a randomised dose-ranging study

    PubMed Central

    2013-01-01

    Background GSK2190915 is a high affinity 5-lipoxygenase-activating protein inhibitor being developed for the treatment of asthma. The objective of this study was to evaluate GSK2190915 efficacy, dose–response and safety in subjects with persistent asthma treated with short-acting beta2-agonists (SABAs) only. Methods Eight-week multicentre, randomised, double-blind, double-dummy, stratified (by age and smoking status), parallel-group, placebo-controlled study in subjects aged ≥12 years with a forced expiratory volume in 1 second (FEV1) of 50–85% predicted. Subjects (n = 700) were randomised to receive once-daily (QD) oral GSK2190915 (10–300 mg), twice-daily inhaled fluticasone propionate 100 μg, oral montelukast 10 mg QD or placebo. The primary endpoint was mean change from baseline (randomisation) in trough (morning pre-dose and pre-rescue bronchodilator) FEV1 at the end of the 8-week treatment period. Secondary endpoints included morning and evening peak expiratory flow, symptom-free days and nights, rescue-free days and nights, day and night-time symptom scores, day and night-time rescue medication use, withdrawals due to lack of efficacy, Asthma Control Questionnaire and Asthma Quality of Life Questionnaire scores. Results For the primary endpoint, there was no statistically significant difference between any dose of GSK2190915 QD and placebo. However, repeated measures sensitivity analysis demonstrated nominal statistical significance for GSK2190915 30 mg QD compared with placebo (mean difference: 0.115 L [95% confidence interval: 0.00, 0.23], p = 0.044); no nominally statistically significant differences were observed with any of the other doses. For the secondary endpoints, decreases were observed in day-time symptom scores and day-time SABA use for GSK2190915 30 mg QD versus placebo (p ≤ 0.05). No dose–response relationship was observed for the primary and secondary endpoints across the GSK2190915 dose range studied; the 10

  9. Ethanol Extract of Peanut Sprout Lowers Blood Triglyceride Levels, Possibly Through a Pathway Involving SREBP-1c in Rats Fed a High-Fat Diet.

    PubMed

    Ha, Ae Wha; Kang, Nam E; Kim, Woo Kyoung

    2015-08-01

    The hypothesis of this study was that peanut sprout extracts (PSE) could reduce fat accumulation through activating the transcription of SREBP-1c genes. Sprague-Dawley (SD) were randomly assigned into two groups and fed the following diet for 4 weeks; 10 normal fat (NF, 7 g of fat/100 g diet) and 30 high fat (HF, 20 g of fat/100 g diet). After 4 weeks, the HF group was divided into three groups; HF, HF with 15 mg of PSE/kg diet (HF+low PSE, 0.025% resveratrol), and HF with 30 mg of PSE/kg diet (HF+high PSE, 0.05% resveratrol) and fed for an additional 5 weeks. The HF+high PSE group had significantly lower weight gain than the HF group. Plasma triglyceride (TG) level and the hepatic total lipid level were significantly lower in the HF+high PSE group compared to the HF group. Fecal excretions of total lipids, cholesterol, and TG in the HF+high PSE group tended to be higher than in the HF group, but these differences were not significant. The mRNA expressions of fatty acid synthase, glucose-6-phosphate dehydrogenase, and sterol regulatory element binding protein-c (SREBP-1c) were significantly lower in the HF+high PSE group than in the HF group. The mRNA expressions of hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA cholesterol acyltransferase were significantly lower in the HF+high PSE groups compared to the HF group. The mRNA expression of cholesterol 7α-hydroxylase1 was significantly higher than the HF group in both the HF+low PSE and HF+high PSE groups, with much greater increase observed in the HF+high PSE group. In conclusion, consumption of PSE was effective for improving blood lipid levels, possibly by suppressing the expression of SREBP-1c, in rats fed a high-fat diet. PMID:25946626

  10. A1C test

    MedlinePlus

    HbA1C test; Glycated hemoglobin test; Glycosylated hemoglobin test; Hemoglobin glycosylated test; Glycohemoglobin test ... have recently eaten does not affect the A1C test, so you do not need to fast to ...

  11. OsPHR2 Is Involved in Phosphate-Starvation Signaling and Excessive Phosphate Accumulation in Shoots of Plants1[C][W][OA

    PubMed Central

    Zhou, Jie; Jiao, FangChang; Wu, Zhongchang; Li, Yiyi; Wang, Xuming; He, Xiaowei; Zhong, Weiqi; Wu, Ping

    2008-01-01

    Previous research has demonstrated that AtPHR1 plays a central role in phosphate (Pi)-starvation signaling in Arabidopsis thaliana. In this work, two OsPHR genes from rice (Oryza sativa) were isolated and designated as OsPHR1 and OsPHR2 based on amino acid sequence homology to AtPHR1. Their functions in Pi signaling in rice were investigated using transgenic plants. Our results showed that both OsPHR1 and OsPHR2 are involved in Pi-starvation signaling pathway by regulation of the expression of Pi-starvation-induced genes, whereas only OsPHR2 overexpression results in the excessive accumulation of Pi in shoots under Pi-sufficient conditions. Under Pi-sufficient conditions, overexpression of OsPHR2 mimics Pi-starvation stress in rice with enhanced root elongation and proliferated root hair growth, suggesting the involvement of OsPHR2 in Pi-dependent root architecture alteration by both systematic and local pathways. In OsPHR2-overexpression plants, some Pi transporters were up-regulated under Pi-sufficient conditions, which correlates with the strongly increased content of Pi. The mechanism behind the OsPHR2 regulated Pi accumulation will provide useful approaches to develop smart plants with high Pi efficiency. PMID:18263782

  12. SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation1[C][W][OA

    PubMed Central

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.

    2011-01-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857

  13. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Yang, Yinong; Vera Cruz, Casiana; Höfte, Monica

    2010-01-01

    The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner. PMID:20130100

  14. Distinct Cell-Specific Expression of Homospermidine Synthase Involved in Pyrrolizidine Alkaloid Biosynthesis in Three Species of the Boraginales1[C][W][OA

    PubMed Central

    Niemüller, Daniel; Reimann, Andreas; Ober, Dietrich

    2012-01-01

    Homospermidine synthase (HSS) is the first specific enzyme in pyrrolizidine alkaloid (PA) biosynthesis, a pathway involved in the plant’s chemical defense. HSS has been shown to be recruited repeatedly by duplication of a gene involved in primary metabolism. Within the lineage of the Boraginales, only one gene duplication event gave rise to HSS. Here, we demonstrate that the tissue-specific expression of HSS in three boraginaceous species, Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale, is unique with respect to plant organ, tissue, and cell type. Within H. indicum, HSS is expressed exclusively in nonspecialized cells of the lower epidermis of young leaves and shoots. In S. officinale, HSS expression has been detected in the cells of the root endodermis and in leaves directly underneath developing inflorescences. In young roots of C. officinale, HSS is detected only in cells of the endodermis, but in a later developmental stage, additionally in the pericycle. The individual expression patterns are compared with those within the Senecioneae lineage (Asteraceae), where HSS expression is reproducibly found in specific cells of the endodermis and the adjacent cortex parenchyma of the roots. The individual expression patterns within the Boraginales species are discussed as being a requirement for the successful recruitment of HSS after gene duplication. The diversity of HSS expression within this lineage adds a further facet to the already diverse patterns of expression that have been observed for HSS in other PA-producing plant lineages, making this PA-specific enzyme one of the most diverse expressed proteins described in the literature. PMID:22566491

  15. RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals1[C][W][OA

    PubMed Central

    Dai, Fanwei; Zhang, Changqing; Jiang, Xinqiang; Kang, Mei; Yin, Xia; Lü, Peitao; Zhang, Xiao; Zheng, Yi; Gao, Junping

    2012-01-01

    Dehydration inhibits petal expansion resulting in abnormal flower opening and results in quality loss during the marketing of cut flowers. We constructed a suppression subtractive hybridization library from rose (Rosa hybrida) flowers containing 3,513 unique expressed sequence tags and analyzed their expression profiles during cycles of dehydration. We found that 54 genes were up-regulated by the first dehydration, restored or even down-regulated by rehydration, and once again up-regulated by the second dehydration. Among them, we identified a putative NAC family transcription factor (RhNAC2). With transactivation activity of its carboxyl-terminal domain in yeast (Saccharomyces cerevisiae) cell and Arabidopsis (Arabidopsis thaliana) protoplast, RhNAC2 belongs to the NAC transcription factor clade related to plant development in Arabidopsis. A putative expansin gene named RhEXPA4 was also dramatically up-regulated by dehydration. Silencing RhNAC2 or RhEXPA4 in rose petals by virus-induced gene silencing significantly decreased the recovery of intact petals and petal discs during rehydration. Overexpression of RhNAC2 or RhEXPA4 in Arabidopsis conferred strong drought tolerance in the transgenic plants. RhEXPA4 expression was repressed in RhNAC2-silenced rose petals, and the amino-terminal binding domain of RhNAC2 bound to the RhEXPA4 promoter. Twenty cell wall-related genes, including seven expansin family members, were up-regulated in Arabidopsis plants overexpressing RhNAC2. These data indicate that RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals and that RhEXPA4 expression may be regulated by RhNAC2. PMID:23093360

  16. CELLULOSE SYNTHASE-LIKE A2, a Glucomannan Synthase, Is Involved in Maintaining Adherent Mucilage Structure in Arabidopsis Seed1[C][W

    PubMed Central

    Yu, Li; Shi, Dachuan; Li, Junling; Kong, Yingzhen; Yu, Yanchong; Chai, Guohua; Hu, Ruibo; Wang, Juan; Hahn, Michael G.; Zhou, Gongke

    2014-01-01

    Mannans are hemicellulosic polysaccharides that are considered to have both structural and storage functions in the plant cell wall. However, it is not yet known how mannans function in Arabidopsis (Arabidopsis thaliana) seed mucilage. In this study, CELLULOSE SYNTHASE-LIKE A2 (CSLA2; At5g22740) expression was observed in several seed tissues, including the epidermal cells of developing seed coats. Disruption of CSLA2 resulted in thinner adherent mucilage halos, although the total amount of the adherent mucilage did not change compared with the wild type. This suggested that the adherent mucilage in the mutant was more compact compared with that of the wild type. In accordance with the role of CSLA2 in glucomannan synthesis, csla2-1 mucilage contained 30% less mannosyl and glucosyl content than did the wild type. No appreciable changes in the composition, structure, or macromolecular properties were observed for nonmannan polysaccharides in mutant mucilage. Biochemical analysis revealed that cellulose crystallinity was substantially reduced in csla2-1 mucilage; this was supported by the removal of most mucilage cellulose through treatment of csla2-1 seeds with endo-β-glucanase. Mutation in CSLA2 also resulted in altered spatial distribution of cellulose and an absence of birefringent cellulose microfibrils within the adherent mucilage. As with the observed changes in crystalline cellulose, the spatial distribution of pectin was also modified in csla2-1 mucilage. Taken together, our results demonstrate that glucomannans synthesized by CSLA2 are involved in modulating the structure of adherent mucilage, potentially through altering cellulose organization and crystallization. PMID:24569843

  17. Characterization of a Glucosyltransferase Enzyme Involved in the Formation of Kaempferol and Quercetin Sophorosides in Crocus sativus1[C][W

    PubMed Central

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-01-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside and quercetin-3-O-β-d-glucopyranosyl-(1-2)-β-d-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme. PMID:22649274

  18. PARAQUAT RESISTANT1, a Golgi-Localized Putative Transporter Protein, Is Involved in Intracellular Transport of Paraquat1[C][W

    PubMed Central

    Li, Jianyong; Mu, Jinye; Bai, Jiaoteng; Fu, Fuyou; Zou, Tingting; An, Fengying; Zhang, Jian; Jing, Hongwei; Wang, Qing; Li, Zhen; Yang, Shuhua; Zuo, Jianru

    2013-01-01

    Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. The herbicide resistance in Arabidopsis is partly attributed to a reduced uptake of paraquat through plasma membrane-localized transporters. However, the biochemical mechanism of paraquat resistance remains poorly understood. Here, we report the identification and characterization of an Arabidopsis paraquat resistant1 (par1) mutant that shows strong resistance to the herbicide without detectable developmental abnormalities. PAR1 encodes a putative l-type amino acid transporter protein localized to the Golgi apparatus. Compared with the wild-type plants, the par1 mutant plants show similar efficiency of paraquat uptake, suggesting that PAR1 is not directly responsible for the intercellular uptake of paraquat. However, the par1 mutation caused a reduction in the accumulation of paraquat in the chloroplast, suggesting that PAR1 is involved in the intracellular transport of paraquat into the chloroplast. We identified a PAR1-like gene, OsPAR1, in rice (Oryza sativa). Whereas the overexpression of OsPAR1 resulted in hypersensitivity to paraquat, the knockdown of its expression using RNA interference conferred paraquat resistance on the transgenic rice plants. These findings reveal a unique mechanism by which paraquat is actively transported into the chloroplast and also provide a practical approach for genetic manipulations of paraquat resistance in crops. PMID:23471133

  19. A1C

    MedlinePlus

    A1C is a blood test for type 2 diabetes and prediabetes. It measures your average blood glucose, or blood sugar, level over the past 3 ... A1C alone or in combination with other diabetes tests to make a diagnosis. They also use the ...

  20. A1C Test

    MedlinePlus

    ... to minimize the complications caused by chronically elevated glucose levels, such as progressive damage to body organs like the kidneys, eyes, cardiovascular system, and nerves. The A1c test result ...

  1. Western blot expression of 5-lipoxygenase in the brain from striped dolphins (stenella coeruleoalba) and bottlenose dolphins (tursiops truncatus) with or without encephalitis/meningo-encephalitis of infectious nature.

    PubMed

    Di Guardo, G; Falconi, A; Di Francesco, A; Mazzariol, S; Centelleghe, C; Casalone, C; Pautasso, A; Cocumelli, C; Eleni, C; Petrella, A; Di Francesco, C E; Sabatucci, A; Leonardi, L; Serroni, A; Marsili, L; Storelli, M M; Giacominelli-Stuffler, R

    2015-01-01

    Dolphin Morbillivirus (DMV), Toxoplasma gondii and Brucella ceti are pathogens of major concern for wild cetaceans. Although a more or less severe encephalitis/meningo-encephalitis may occur in striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) infected by the aforementioned agents, almost no information is available on the neuropathogenesis of brain lesions, including the neuronal and non-neuronal cells targeted during infection, along with the mechanisms underlying neurodegeneration. We analyzed 5-lipoxygenase (5-LOX) expression in the brain of 11 striped dolphins and 5 bottlenose dolphins, affected or not by encephalitic lesions of various degrees associated with DMV, T. gondii and B. ceti. All the 8 striped dolphins with encephalitis showed a more consistent 5-LOX expression than that observed in the 3 striped dolphins showing no morphologic evidence of brain lesions, with the most prominent band intensity being detected in a B. ceti-infected animal. Similar results were not obtained in T. gondii-infected vs T. gondii-uninfected bottlenose dolphins. Overall, the higher 5-LOX expression found in the brain of the 8 striped dolphins with infectious neuroinflammation is of interest, given that 5-LOX is a putative marker for neurodegeneration in human patients and in experimental animal models. Therefore, further investigation on this challenging issue is also needed in stranded cetaceans affected by central neuropathies. PMID:25864766

  2. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity.

    PubMed

    Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Yu, Gang; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2009-12-15

    A novel class of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-4 or C-5 position was designed for evaluation as anti-inflammatory (AI) agents. Replacement of the 2,4-difluorophenyl ring in diflunisal by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory activities. AI structure-activity studies showed that the C-4 (14a) and C-5 (14b) salicylate regioisomers were 1.4- and 1.6-fold more potent than aspirin, and the C-5 N-acetyl-2-carboxybenzenesulfonamide regioisomer (22b) was 1.3- and 2.8-fold more potent than ibuprofen and aspirin, respectively. In vivo ulcer index (UI) studies showed that the 4- and 5-(N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl)salicylic acids (14a and 14b) were completely non-ulcerogenic since no gastric lesions were present (UI=0) relative to aspirin (UI=57) at an equivalent mumol/kg oral dose. The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of dual COX-2/5-LOX inhibitory AI drugs. PMID:19884005

  3. Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats.

    PubMed

    Härtig, Wolfgang; Michalski, Dominik; Seeger, Gudrun; Voigt, Cornelia; Donat, Cornelius K; Dulin, Julia; Kacza, Johannes; Meixensberger, Jürgen; Arendt, Thomas; Schuhmann, Martin U

    2013-03-01

    The inflammatory response following traumatic brain injury (TBI) contributes to neuronal death with poor outcome. Although anti-inflammatory strategies were beneficial in the experimental TBI, clinical translations mostly failed, probably caused by the complexity of involved cells and mediators. We recently showed in a rat model of controlled cortical impact (CCI) that leukotriene inhibitors (LIs) attenuate contusion growth and improve neuronal survival. This study focuses on spatiotemporal characteristics of macrophages and granulocytes, typically involved in inflammatory processes, and neuronal COX-2 expression. Effects of treatment with LIs (Boscari/MK-886), started prior trauma, were evaluated by quantifying CD68(+), CD43(+) and COX-2(+) cells 24h and 72 h post-CCI in the parietal cortex (PC), CA3 region, dentate gyrus (DG) and visual/auditory cortex (v/aC). Correlations were applied to identify intercellular relationships. At 24h, untreated animals showed granulocyte invasion in all regions, decreasing towards 72 h. Macrophages increased from 24h to 72 h post-CCI in PC and v/aC. COX-2(+) neurones showed no temporal changes, except of an increase in the CA3 region at 72 h. Treatment reduced granulocytes at 24h in the pericontusional zone and hippocampus, and macrophages at 72 h in the PC and v/aC. COX-2 expression remained unaffected by LIs, except of time-specific changes in the DG (increase/decrease at 24/72 h). Interrelations confirmed concomitant cellular reactions beyond the initial trauma site. In conclusion, LIs attenuated the cellular inflammatory response following CCI. Future studies have to clarify region-specific effects and explore the potential of a clinically more relevant therapeutic approach applying LIs after CCI. PMID:23268351

  4. Natural Forms of Vitamin E and 13′-Carboxychromanol, a Long-Chain Vitamin E Metabolite, Inhibit Leukotriene Generation from Stimulated Neutrophils by Blocking Calcium Influx and Suppressing 5-Lipoxygenase Activity, Respectively

    PubMed Central

    Jiang, Ziying; Yin, Xinmin; Jiang, Qing

    2014-01-01

    Leukotrienes generated by 5-lipoxygenase (5-LOX)–catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1–2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B4 (LTB4) with an IC50 of 5–20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC50 for α-tocopherol. 13′-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB4 with an IC50 of 4–7 μM and potently inhibited human recombinant 5-LOX activity with an IC50 of 0.5–1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca2+ increase and/or LTB4 formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13′-carboxychromanol decreased cellular production of LTB4 regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo. PMID:21169551

  5. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method.

    PubMed

    Kushida, Ikuo; Gotoda, Masaharu

    2013-10-01

    ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system. PMID:22519663

  6. The effects of oral Cardax (disodium disuccinate astaxanthin) on multiple independent oxidative stress markers in a mouse peritoneal inflammation model: influence on 5-lipoxygenase in vitro and in vivo.

    PubMed

    Lockwood, Samuel F; Penn, Marc S; Hazen, Stanley L; Bikádi, Zsolt; Zsila, Ferenc

    2006-06-01

    observed at time points two and five. When normalized to the concentration of the oxidative substrates, statistically significant reductions of 8-isoprostane-F(2alpha) (8-iso-F(2alpha)) at time point three (maximal neutrophil recruitment/activation), and 5-HETE, 5-oxo-EET, 11-HETE, 9-HODE, and PGF(2alpha) at time point five (maximal monocyte/macrophage recruitment/activation) were observed. Subsequently, the direct interaction of the optically inactive stereoisomer of Cardax (meso-dAST) with human 5-lipoxygenase (5-LOX) was evaluated in vitro with circular dichroism (CD) and electronic absorption (UV/Vis) spectroscopy, and subsequent molecular docking calculations were made using mammalian 15-LOX as a surrogate (for which XRC data has been reported). The results suggested that the meso-compound was capable of interaction with, and binding to, the solvent-exposed surface of the enzyme. These preliminary studies provide the foundation for more detailed evaluation of the therapeutic effects of this compound on the 5-LOX enzyme, important in chronic diseases such as atherosclerosis, asthma, and prostate cancer in humans. PMID:16466747

  7. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each institution is responsible for safeguarding... 7 Agriculture 1 2013-01-01 2013-01-01 false Cooperative research. 1c.114 Section...

  8. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each institution is responsible for safeguarding... 7 Agriculture 1 2014-01-01 2014-01-01 false Cooperative research. 1c.114 Section...

  9. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each institution is responsible for safeguarding... 7 Agriculture 1 2010-01-01 2010-01-01 false Cooperative research. 1c.114 Section...

  10. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each institution is responsible for safeguarding... 7 Agriculture 1 2011-01-01 2011-01-01 false Cooperative research. 1c.114 Section...

  11. 7 CFR 1c.114 - Cooperative research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each institution is responsible for safeguarding... 7 Agriculture 1 2012-01-01 2012-01-01 false Cooperative research. 1c.114 Section...

  12. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.102 Definitions. (a) Department or..., Wage and Hour requirements administered by the Department of Labor). (f) Human subject means a living...) in order for obtaining the information to constitute research involving human subjects. (g) IRB...

  13. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false General requirements for informed consent. 1c.116 Section 1c.116 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.116 General requirements for informed consent. Except as provided elsewhere in this policy, no investigator may involve a human being as a subject...

  14. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false General requirements for informed consent. 1c.116 Section 1c.116 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.116 General requirements for informed consent. Except as provided elsewhere in this policy, no investigator may involve a human being as a subject...

  15. Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]oxadiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915).

    PubMed

    Takahashi, Hidenori; Riether, Doris; Bartolozzi, Alessandra; Bosanac, Todd; Berger, Valentina; Binetti, Ralph; Broadwater, John; Chen, Zhidong; Crux, Rebecca; De Lombaert, Stéphane; Dave, Rajvee; Dines, Jonathon A; Fadra-Khan, Tazmeen; Flegg, Adam; Garrigou, Michael; Hao, Ming-Hong; Huber, John; Hutzler, J Matthew; Kerr, Steven; Kotey, Adrian; Liu, Weimin; Lo, Ho Yin; Loke, Pui Leng; Mahaney, Paige E; Morwick, Tina M; Napier, Spencer; Olague, Alan; Pack, Edward; Padyana, Anil K; Thomson, David S; Tye, Heather; Wu, Lifen; Zindell, Renee M; Abeywardane, Asitha; Simpson, Thomas

    2015-02-26

    The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production. PMID:25671290

  16. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  17. A1C Test and Diabetes

    MedlinePlus

    ... laboratory tests. How does the A1C relate to estimated average glucose? Estimated average glucose (eAG) is calculated from the A1C. ... levels have the A1C test twice a year. Estimated average glucose (eAG) is calculated from the A1C ...

  18. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Definitions. 1c.102 Section 1c.102 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.102 Definitions. (a) Department or agency head means the head of any federal department or agency and any other officer or employee of any department or agency to whom authority...

  19. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Definitions. 1c.102 Section 1c.102 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.102 Definitions. (a) Department or agency head means the head of any federal department or agency and any other officer or employee of any department or agency to whom authority...

  20. 7 CFR 1c.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Definitions. 1c.102 Section 1c.102 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.102 Definitions. (a) Department or agency head means the head of any federal department or agency and any other officer or employee of any department or agency to whom authority...

  1. 7 CFR 1c.124 - Conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Conditions. 1c.124 Section 1c.124 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.124 Conditions. With respect to any research project or any class of research projects the department or agency head may impose...

  2. 7 CFR 1c.124 - Conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Conditions. 1c.124 Section 1c.124 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.124 Conditions. With respect to any research project or any class of research projects the department or agency head may impose...

  3. 7 CFR 1c.124 - Conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Conditions. 1c.124 Section 1c.124 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.124 Conditions. With respect to any research project or any class of research projects the department or agency head may impose...

  4. 7 CFR 1c.124 - Conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Conditions. 1c.124 Section 1c.124 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.124 Conditions. With respect to any research project or any class of research projects the department or agency head may impose...

  5. 7 CFR 1c.124 - Conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Conditions. 1c.124 Section 1c.124 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.124 Conditions. With respect to any research project or any class of research projects the department or agency head may impose...

  6. 7 CFR 1c.115 - IRB records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false IRB records. 1c.115 Section 1c.115 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.115 IRB records. (a) An institution, or when appropriate an IRB, shall prepare and maintain adequate documentation of IRB activities, including the following: (1) Copies of...

  7. Led Astray by Hemoglobin A1c

    PubMed Central

    Chen, Jean; Diesburg-Stanwood, Amy; Bodor, Geza; Rasouli, Neda

    2016-01-01

    Hemoglobin A1c (A1c) is used frequently to diagnose and treat diabetes mellitus. Therefore, it is important be aware of factors that may interfere with the accuracy of A1c measurements. This is a case of a rare hemoglobin variant that falsely elevated a nondiabetic patient’s A1c level and led to a misdiagnosis of diabetes. A 67-year-old male presented to endocrine clinic for further management after he was diagnosed with diabetes based on an elevated A1c of 10.7%, which is approximately equivalent to an average blood glucose of 260 mg/dL. Multiple repeat A1c levels remained >10%, but his home fasting and random glucose monitoring ranged from 92 to 130 mg/dL. Hemoglobin electrophoresis and subsequent genetic analysis diagnosed the patient with hemoglobin Wayne, a rare hemoglobin variant. This variant falsely elevates A1c levels when A1c is measured using cation-exchange high-performance liquid chromatography. When the boronate affinity method was applied instead, the patient’s A1c level was actually 4.7%. Though hemoglobin Wayne is clinically silent, this patient was erroneously diagnosed with diabetes and started on an antiglycemic medication. Due to this misdiagnosis, the patient was at risk of escalation in his “diabetes management” and hypoglycemia. Therefore, it is important that providers are aware of factors that may result in hemoglobin A1c inaccuracy including hemoglobin variants. PMID:26848480

  8. Carnitine palmitoyltransferase 1C deficiency causes motor impairment and hypoactivity.

    PubMed

    Carrasco, Patricia; Jacas, Jordi; Sahún, Ignasi; Muley, Helena; Ramírez, Sara; Puisac, Beatriz; Mezquita, Pau; Pié, Juan; Dierssen, Mara; Casals, Núria

    2013-11-01

    Carnitine palmitoyltransferase 1c (CPT1C), a brain-specific protein localized in the endoplasmic reticulum of neurons, is expressed in almost all brain regions, but its only known functions to date are involved in the hypothalamic control of energy homeostasis and in hippocampus-dependent spatial learning. To identify other physiological and behavioral functions of this protein, we performed a battery of neurological tests on Cpt1c-deficient mice. The animals showed intact autonomic and sensory systems, but some motor disturbances were observed. A more detailed study of motor function revealed impaired coordination and gait, severe muscle weakness, and reduced daily locomotor activity. Analysis of motor function in these mice at ages of 6-24 weeks showed that motor disorders were already present in young animals and that impairment increased progressively with age. Analysis of CPT1C expression in different motor brain areas during development revealed that CPT1C levels were low from birth to postnatal day 10 and then rapidly increased peaking at postnatal day 21, which suggests that CPT1C plays a relevant role in motor function during and after weaning. As CPT1C is known to regulate ceramide levels, we measured these biolipids in different motor areas in adult mice. Cerebellar, striatum, and motor cortex extracts from Cpt1c knockout mice showed reduced levels of ceramide and its derivative sphingosine when compared to wild-type animals. Our results indicate that altered ceramide metabolism in motor brain areas induced by Cpt1c deficiency causes progressive motor dysfunction from a young age. PMID:23973755

  9. Cyclic nucleotide phosphodiesterase-1C (PDE1C) drives cell proliferation, migration and invasion in glioblastoma multiforme cells in vitro.

    PubMed

    Rowther, Farjana B; Wei, Weinbin; Dawson, Timothy P; Ashton, Katherine; Singh, Anushree; Madiesse-Timchou, Mylene P; Thomas, D G T; Darling, John L; Warr, Tracy

    2016-03-01

    Cyclic nucleotides (cAMP & cGMP) are critical intracellular second messengers involved in the transduction of a diverse array of stimuli and their catabolism is mediated by phosphodiesterases (PDEs). We previously detected focal genomic amplification of PDE1C in >90 glioblastoma multiforme (GBM) cells suggesting a potential as a novel therapeutic target in these cells. In this report, we show that genomic gain of PDE1C was associated with increased expression in low passage GBM-derived cell cultures. We demonstrate that PDE1C is essential in driving cell proliferation, migration and invasion in GBM cultures since silencing of this gene significantly mitigates these functions. We also define the mechanistic basis of this functional effect through whole genome expression analysis by identifying down-stream gene effectors of PDE1C which are involved in cell cycle and cell adhesion regulation. In addition, we also demonstrate that Vinpocetine, a general PDE1 inhibitor, can also attenuate proliferation with no effect on invasion/migration. Up-regulation of at least one of this gene set (IL8, CXCL2, FOSB, NFE2L3, SUB1, SORBS2, WNT5A, and MMP1) in TCGA GBM cohorts is associated with worse outcome and PDE1C silencing down-regulated their expression, thus also indicating potential to influence patient survival. Therefore we conclude that proliferation, migration, and invasion of GBM cells could also be regulated downstream of PDE1C. PMID:25620587

  10. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE §...

  11. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE §...

  12. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE §...

  13. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE §...

  14. 9 CFR 73.1c - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Definitions. 73.1c Section 73.1c Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE §...

  15. A1C Test and Diabetes

    MedlinePlus

    ... of Diabetes Educators American Diabetes Association JDRF MedlinePlus Diabetes Disease Organizations ​There are many organizations who provide ... KB). Alternate Language URL The A1C Test and Diabetes Page Content On this page: What is the ...

  16. Blood Test: Hemoglobin A1C

    MedlinePlus

    ... the person's average blood sugar levels over that time. Why It's Done Doctors use the hemoglobin A1c test to determine if your child's diabetes management plan needs to be adjusted. Typically the test ...

  17. Minimum variance and variance of outgoing quality limit MDS-1(c1, c2) plans

    NASA Astrophysics Data System (ADS)

    Raju, C.; Vidya, R.

    2016-06-01

    In this article, the outgoing quality (OQ) and total inspection (TI) of multiple deferred state sampling plans MDS-1(c1,c2) are studied. It is assumed that the inspection is rejection rectification. Procedures for designing MDS-1(c1,c2) sampling plans with minimum variance of OQ and TI are developed. A procedure for obtaining a plan for a designated upper limit for the variance of the OQ (VOQL) is outlined.

  18. Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation.

    PubMed

    Dong, Qingming; Giorgianni, Francesco; Beranova-Giorgianni, Sarka; Deng, Xiong; O'Meally, Robert N; Bridges, Dave; Park, Edwards A; Cole, Robert N; Elam, Marshall B; Raghow, Rajendra

    2016-01-01

    Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c-SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCF(Fbw7) ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver. PMID:26589965

  19. The roles of AKR1C1 and AKR1C2 in ethyl-3,4-dihydroxybenzoate induced esophageal squamous cell carcinoma cell death

    PubMed Central

    Zhou, Dianrong; Lou, Xiaomin; Xu, Yang; Liu, Siqi; Zhao, Xiaohang

    2016-01-01

    The aldo-keto reductase (AKR) superfamily of enzymes is critical for the detoxification of drugs and toxins in the human body; these enzymes are involved not only in the development of drug resistance in cancer cells but also in the metabolism of polycyclic aromatic hydrocarbons. Here, we demonstrated that AKR1C1/C2 increased the metabolism of ethyl-3,4-dihydroxybenzoate (EDHB) in esophageal squamous cell carcinoma (ESCC) cells. Previous studies have shown that EDHB can effectively induce esophageal cancer cell autophagy and apoptosis, and the AKR1C family represents one set of highly expressed genes after EDHB treatment. To explore the cytotoxic effects of EDHB, esophageal cancer cells with higher (KYSE180) or lower (KYSE510) AKR1C expression levels were evaluated in this study. The proliferation of KYSE180 cells was inhibited more effectively than that of KYSE510 cells by EDHB treatment. Furthermore, the effective subunits of the AKR superfamily, AKR1C1/C2, were quantitatively identified using multiple reaction monitoring (MRM) assays. The sensitivity of esophageal cancer cells to EDHB was significantly attenuated by the siRNA knockdown of AKR1C1/C2. Moreover, the expression of autophagy inducers (Beclin, LC3II and BNIP3) and NDRG1 was significantly elevated in KYSE180 cells, but not in KYSE510 cells, after EDHB treatment. When autophagy was inhibited by 3-methyladenine, KYSE180 cells exhibited an increased sensitivity to EDHB, which may be a metabolic substrate of AKR1C1/C2. These results indicated that ESCC patients with high AKR1C1/C2 expression may be more sensitive to EDHB, and AKR1C1/C2 may facilitate EDHB-induced autophagy and apoptosis, thus providing potential guidance for the chemoprevention of ESCC. PMID:26934124

  20. CACNA1C hypermethylation is associated with bipolar disorder.

    PubMed

    Starnawska, A; Demontis, D; Pen, A; Hedemand, A; Nielsen, A L; Staunstrup, N H; Grove, J; Als, T D; Jarram, A; O'Brien, N L; Mors, O; McQuillin, A; Børglum, A D; Nyegaard, M

    2016-01-01

    The CACNA1C gene, encoding a subunit of the L-type voltage-gated calcium channel is one of the best-supported susceptibility genes for bipolar disorder (BD). Genome-wide association studies have identified a cluster of non-coding single-nucleotide polymorphisms (SNPs) in intron 3 to be highly associated with BD and schizophrenia. The mechanism by which these SNPs confer risk of BD appears to be through an altered regulation of CACNA1C expression. The role of CACNA1C DNA methylation in BD has not yet been addressed. The aim of this study was to investigate if CACNA1C DNA methylation is altered in BD. First, the methylation status of five CpG islands (CGIs) across CACNA1C in blood from BD subjects (n=40) and healthy controls (n=38) was determined. Four islands were almost completely methylated or completely unmethylated, while one island (CGI 3) in intron 3 displayed intermediate methylation levels. In the main analysis, the methylation status of CGI 3 was analyzed in a larger sample of BD subjects (n=582) and control individuals (n=319). Out of six CpG sites that were investigated, five sites showed significant hypermethylation in cases (lowest P=1.16 × 10(-7) for CpG35). Nearby SNPs were found to influence the methylation level, and we identified rs2238056 in intron 3 as the strongest methylation quantitative trait locus (P=2.6 × 10(-7)) for CpG35. In addition, we found an increased methylation in females, and no difference between bipolar I and II. In conclusion, we find that CACNA1C methylation is associated with BD and suggest that the regulatory effect of the non-coding risk variants involves a shift in DNA methylation. PMID:27271857

  1. CACNA1C hypermethylation is associated with bipolar disorder

    PubMed Central

    Starnawska, A; Demontis, D; Pen, A; Hedemand, A; Nielsen, A L; Staunstrup, N H; Grove, J; Als, T D; Jarram, A; O'Brien, N L; Mors, O; McQuillin, A; Børglum, A D; Nyegaard, M

    2016-01-01

    The CACNA1C gene, encoding a subunit of the L-type voltage-gated calcium channel is one of the best-supported susceptibility genes for bipolar disorder (BD). Genome-wide association studies have identified a cluster of non-coding single-nucleotide polymorphisms (SNPs) in intron 3 to be highly associated with BD and schizophrenia. The mechanism by which these SNPs confer risk of BD appears to be through an altered regulation of CACNA1C expression. The role of CACNA1C DNA methylation in BD has not yet been addressed. The aim of this study was to investigate if CACNA1C DNA methylation is altered in BD. First, the methylation status of five CpG islands (CGIs) across CACNA1C in blood from BD subjects (n=40) and healthy controls (n=38) was determined. Four islands were almost completely methylated or completely unmethylated, while one island (CGI 3) in intron 3 displayed intermediate methylation levels. In the main analysis, the methylation status of CGI 3 was analyzed in a larger sample of BD subjects (n=582) and control individuals (n=319). Out of six CpG sites that were investigated, five sites showed significant hypermethylation in cases (lowest P=1.16 × 10−7 for CpG35). Nearby SNPs were found to influence the methylation level, and we identified rs2238056 in intron 3 as the strongest methylation quantitative trait locus (P=2.6 × 10−7) for CpG35. In addition, we found an increased methylation in females, and no difference between bipolar I and II. In conclusion, we find that CACNA1C methylation is associated with BD and suggest that the regulatory effect of the non-coding risk variants involves a shift in DNA methylation. PMID:27271857

  2. Glycogen synthase kinase-3-mediated phosphorylation of serine 73 targets sterol response element binding protein-1c (SREBP-1c) for proteasomal degradation

    PubMed Central

    Dong, Qingming; Giorgianni, Francesco; Beranova-Giorgianni, Sarka; Deng, Xiong; O'Meally, Robert N.; Bridges, Dave; Park, Edwards A.; Cole, Robert N.; Elam, Marshall B.; Raghow, Rajendra

    2015-01-01

    Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that regulates genes involved in the de novo lipid synthesis and glycolysis pathways. The structure, turnover and transactivation potential of SREBP-1c are regulated by macronutrients and hormones via a cascade of signalling kinases. Using MS, we have identified serine 73 as a novel glycogen synthase kinase-3 (GSK-3) phosphorylation site in the rat SREBP-1c purified from McA-RH7777 hepatoma cells. Our site-specific mutagenesis strategy revealed that the turnover of SREBP-1c, containing wild type, phospho-null (serine to alanine) or phospho-mimetic (serine to aspartic acid) substitutions, was differentially regulated. We show that the S73D mutant of pSREBP-1c, that mimicked a state of constitutive phosphorylation, dissociated from the SREBP-1c–SCAP complex more readily and underwent GSK-3-dependent proteasomal degradation via SCFFbw7 ubiquitin ligase pathway. Pharmacologic inhibition of GSK-3 or knockdown of GSK-3 by siRNA prevented accelerated degradation of SREBP-1c. As demonstrated by MS, SREBP-1c was phosphorylated in vitro by GSK-3β at serine 73. Phosphorylation of serine 73 also occurs in the intact liver. We propose that GSK-3-mediated phosphorylation of serine 73 in the rat SREBP-1c and its concomitant destabilization represents a novel mechanism involved in the inhibition of de novo lipid synthesis in the liver. PMID:26589965

  3. 7 CFR 1c.115 - IRB records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.115 IRB records. (a) An institution..., including the following: (1) Copies of all research proposals reviewed, scientific evaluations, if any, that... members voting for, against, and abstaining; the basis for requiring changes in or disapproving...

  4. 7 CFR 1c.115 - IRB records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.115 IRB records. (a) An institution..., including the following: (1) Copies of all research proposals reviewed, scientific evaluations, if any, that... members voting for, against, and abstaining; the basis for requiring changes in or disapproving...

  5. 7 CFR 1c.101 - To what does this policy apply?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false To what does this policy apply? 1c.101 Section 1c.101 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.101 To what does this policy apply? (a) Except as provided in paragraph (b) of this section, this policy applies to all research involving human subjects...

  6. Admissible ŝl (2|1; C) k characters and parafermions

    NASA Astrophysics Data System (ADS)

    Hayes, M.; Taormina, A.

    1998-10-01

    The branching functions of a particular subclass of characters of the affine superalgebra ŝl(2|1;( C) k into characters of the subalgebra ŝl(2|1;( C) k are calculated for fractional levels k = /1 u - 1, u ɛ N. They involve rational torus A u(u-1)andZu-1 parafermion characters.

  7. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase.

    PubMed

    Deng, Xiong; Dong, Qingming; Bridges, Dave; Raghow, Rajendra; Park, Edwards A; Elam, Marshall B

    2015-12-01

    In hyperinsulinemic states including obesity and T2DM, overproduction of fatty acid and triglyceride contributes to steatosis of the liver, hyperlipidemia and hepatic insulin resistance. This effect is mediated in part by the transcriptional regulator sterol responsive element binding protein-1c (SREBP-1c), which stimulates the expression of genes involved in hepatic fatty acid and triglyceride synthesis. SREBP-1c is up regulated by insulin both via increased transcription of nascent full-length SREBP-1c and by enhanced proteolytic processing of the endoplasmic reticulum (ER)-bound precursor to yield the transcriptionally active n-terminal form, nSREBP-1c. Polyunsaturated fatty acids of marine origin (n-3 PUFA) prevent induction of SREBP-1c by insulin thereby reducing plasma and hepatic triglycerides. Despite widespread use of n-3 PUFA supplements to reduce triglycerides in clinical practice, the exact mechanisms underlying their hypotriglyceridemic effect remain elusive. Here we demonstrate that the n-3 PUFA docosahexaenoic acid (DHA; 22:5 n-3) reduces nSREBP-1c by inhibiting regulated intramembrane proteolysis (RIP) of the nascent SREBP-1c. We further show that this effect of DHA is mediated both via activation of AMP-activated protein kinase (AMPK) and by inhibition of mechanistic target of rapamycin complex 1 (mTORC1). The inhibitory effect of AMPK on SREBP-1c processing is linked to phosphorylation of serine 365 of SREBP-1c in the rat. We have defined a novel regulatory mechanism by which n-3 PUFA inhibit induction of SREBP-1c by insulin. These findings identify AMPK as an important negative regulator of hepatic lipid synthesis and as a potential therapeutic target for hyperlipidemia in obesity and T2DM. PMID:26327595

  8. Grumman OV-1C in hangar

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Grumman OV-1C in the hangar used at the time by the Army at Edwards Air Force Base. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and electronic reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.

  9. Grumman OV-1C in flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Grumman OV-1C in flight. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.

  10. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress.

    PubMed

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L; Hill, Richard P; Jones, Russell G; Tsao, Ming; Robinson, Murray O; Thompson, Craig B; Pan, Guohua; Mak, Tak W

    2011-05-15

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  11. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  12. Aldo-keto Reductase 1C3 (AKR1C3) is overexpressed in skin squamous cell carcinoma (SCC) and affects SCC growth via prostaglandin metabolism

    PubMed Central

    Mantel, Alon; Carpenter-Mendini, Amanda; VanBuskirk, JoAnne; Pentland, Alice P.

    2014-01-01

    Aldo-keto reductase 1C3 (AKR1C3) is an enzyme involved in metabolizing prostaglandins (PGs) and sex hormones. It metabolizes PGD2 to 9α11β-PGF2, diverting the spontaneous conversion of PGD2 to the PPARγ agonist, 15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2). AKR1C3 is overexpressed in various malignancies, suggesting a tumor promoting function. This work investigates AKR1C3 expression in human non-melanoma skin cancers, revealing overexpression in squamous cell carcinoma (SCC). Effects of AKR1C3 overexpression were then evaluated using 3 SCC cell lines. AKR1C3 was detected in all SCC cell lines and its expression was upregulated in response to its substrate, PGD2. Although attenuating AKR1C3 expression in SCC cells by siRNA did not affect growth, treatment with PGD2 and its dehydration metabolite, 15d-PGJ2, decreased SCC proliferation in a PPARγ-dependent manner. In addition, treatment with the PPARγ agonist pioglitazone profoundly inhibited SCC proliferation. Finally, we generated an SCC cell line that stably overexpressed AKR1C3 (SCC-AKR1C3). SCC-AKR1C3 metabolized PGD2 to 9α11β-PGF2 12 fold faster than the parent cell line and was protected from the anti-proliferative effect mediated by PGD2. This work suggests that PGD2 and its metabolite 15d-PGJ2 attenuate SCC proliferation in a PPARγ-dependent manner, therefore activation of PPARγ by agonists such as Pioglitazone may benefit those at high risk of SCC. PMID:24917395

  13. AMPAR interacting protein CPT1C enhances surface expression of GluA1-containing receptors

    PubMed Central

    Gratacòs-Batlle, Esther; Yefimenko, Natalia; Cascos-García, Helena; Soto, David

    2015-01-01

    AMPARs mediate the vast majority of fast excitatory synaptic transmission in the brain and their biophysical and trafficking properties depend on their subunit composition and on several posttranscriptional and posttranslational modifications. Additionally, in the brain AMPARs associate with auxiliary subunits, which modify the properties of the receptors. Despite the abundance of AMPAR partners, recent proteomic studies have revealed even more interacting proteins that could potentially be involved in AMPAR regulation. Amongst these, carnitine palmitoyltransferase 1C (CPT1C) has been demonstrated to form an integral part of native AMPAR complexes in brain tissue extracts. Thus, we aimed to investigate whether CPT1C might be able to modulate AMPAR function. Firstly, we confirmed that CPT1C is an interacting protein of AMPARs in heterologous expression systems. Secondly, CPT1C enhanced whole-cell currents of GluA1 homomeric and GluA1/GluA2 heteromeric receptors. However, CPT1C does not alter the biophysical properties of AMPARs and co-localization experiments revealed that AMPARs and CPT1C are not associated at the plasma membrane despite a strong level of co-localization at the intracellular level. We established that increased surface GluA1 receptor number was responsible for the enhanced AMPAR mediated currents in the presence of CPT1C. Additionally, we revealed that the palmitoylable residue C585 of GluA1 is important in the enhancement of AMPAR trafficking to the cell surface by CPT1C. Nevertheless, despite its potential as a depalmitoylating enzyme, CPT1C does not affect the palmitoylation state of GluA1. To sum up, this work suggests that CPT1C plays a role as a novel regulator of AMPAR surface expression in neurons. Fine modulation of AMPAR membrane trafficking is fundamental in normal synaptic activity and in plasticity processes and CPT1C is therefore a putative candidate to regulate neuronal AMPAR physiology. PMID:25698923

  14. RASSF1C modulates the expression of a stem cell renewal gene, PIWIL1

    PubMed Central

    2012-01-01

    Background RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1) gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer. In this article, we report on the identification of novel RASSF1C target genes in non small cell lung cancer (NSCLC). Methods Over-expression and siRNA techniques were used to alter RASSF1C expression in human lung cancer cells, and Affymetrix-microarray study was conducted using NCI-H1299 cells over-expressing RASSF1C to identify RASSF1C target genes. Results The microarray study intriguingly shows that RASSF1C modulates the expression of a number of genes that are involved in cancer development, cell growth and proliferation, cell death, and cell cycle. We have validated the expression of some target genes using qRT-PCR. We demonstrate that RASSF1C over-expression increases, and silencing of RASSF1C decreases, the expression of PIWIL1 gene in NSCLC cells using qRT-PCR, immunostaining, and Western blot analysis. We also show that RASSF1C over-expression induces phosphorylation of ERK1/2 in lung cancer cells, and inhibition of the MEK-ERK1/2 pathway suppresses the expression of PIWIL1 gene expression, suggesting that RASSF1C may exert its activities on some target genes such as PIWIL1 through the activation of the MEK-ERK1/2 pathway. Also, PIWIL1 expression is elevated in lung cancer cell lines compared to normal lung epithelial cells. Conclusions Taken together, our findings provide significant data to propose a model for investigating the role of RASSF1C/PIWIL1 proteins in initiation and progression of lung cancer. PMID:22591718

  15. AKR1C3 as a target in castrate resistant prostate cancer.

    PubMed

    Adeniji, Adegoke O; Chen, Mo; Penning, Trevor M

    2013-09-01

    Aberrant androgen receptor (AR) activation is the major driver of castrate resistant prostate cancer (CRPC). CRPC is ultimately fatal and more therapeutic agents are needed to treat this disease. Compounds that target the androgen axis by inhibiting androgen biosynthesis and or AR signaling are potential candidates for use in CRPC treatment and are currently being pursued aggressively. Aldo-keto reductase 1C3 (AKR1C3) plays a pivotal role in androgen biosynthesis within the prostate. It catalyzes the 17-ketoreduction of weak androgen precursors to give testosterone and 5α-dihydrotestosterone. AKR1C3 expression and activity has been implicated in the development of CRPC, making it a rational target. Selective inhibition of AKR1C3 will be important, however, due to the presence of closely related isoforms, AKR1C1 and AKR1C2 that are also involved in androgen inactivation. We examine the evidence that supports the vital role of AKR1C3 in CRPC and recent developments in the discovery of potent and selective AKR1C3 inhibitors. This article is part of a Special Issue entitled 'CSR 2013'. PMID:23748150

  16. Comparative microarray analysis of basal gene expression in mouse Hepa-1c1c7 wild-type and mutant cell lines.

    PubMed

    Fong, C J; Burgoon, L D; Zacharewski, T R

    2005-08-01

    Hepa-1c1c7 wild-type and benzo[a]pyrene-resistant derived mutant cell lines have been used to elucidate pathways and mechanisms involving the aryl hydrocarbon receptor (AhR). However, there has been little focus on other biological processes which may differ between the isolated lines. In this study, mouse cDNA microarrays representing 4858 genes were used to examine differences in basal gene expression between mouse Hepa-1c1c7 wild-type and c1 (truncated Cyp1a1 protein), c4 (AhR nuclear translocator, ARNT, deficient), and c12 (low AhR levels) mutant cell lines. Surprisingly, c1 mutants exhibited the greatest number of gene expression changes compared to wild-type cells, followed by c4 and c12 lines, respectively. Differences in basal gene expression were consistent with cell line specific variations in morphology, mitochondrial activity, and proliferation rate. MTT and direct cell count assays indicate both c4 and c12 mutants exhibit increased proliferative activity when compared to wild-type cells, while the c1 mutants exhibited decreased activity. This study further characterizes Hepa-1c1c7 wild-type and mutant cells and identifies significant differences in biological processes that should be considered when conducting comparative mechanistic studies with these lines. PMID:15888666

  17. 7 CFR 1c.112 - Review by institution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Review by institution. 1c.112 Section 1c.112 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.112 Review by institution... review and approval or disapproval by officials of the institution. However, those officials may...

  18. 7 CFR 1c.108 - IRB functions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false IRB functions and operations. 1c.108 Section 1c.108 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.108 IRB functions and operations. In order to fulfill the requirements of this policy each IRB shall: (a) Follow written...

  19. 7 CFR 1c.108 - IRB functions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false IRB functions and operations. 1c.108 Section 1c.108 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.108 IRB functions and operations. In order to fulfill the requirements of this policy each IRB shall: (a) Follow written...

  20. 7 CFR 1c.108 - IRB functions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false IRB functions and operations. 1c.108 Section 1c.108 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.108 IRB functions and operations. In order to fulfill the requirements of this policy each IRB shall: (a) Follow written...

  1. 7 CFR 1c.108 - IRB functions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false IRB functions and operations. 1c.108 Section 1c.108 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.108 IRB functions and operations. In order to fulfill the requirements of this policy each IRB shall: (a) Follow written...

  2. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus.

    PubMed

    Fadó, Rut; Soto, David; Miñano-Molina, Alfredo J; Pozo, Macarena; Carrasco, Patricia; Yefimenko, Natalia; Rodríguez-Álvarez, José; Casals, Núria

    2015-10-16

    The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus. PMID:26338711

  3. Apoptotic and autophagic responses to photodynamic therapy in 1c1c7 murine hepatoma cells

    PubMed Central

    Andrzejak, Michelle; Price, Michael

    2011-01-01

    Photodynamic therapy (PDT) is a process that can induce apoptosis, autophagy or both depending on the cell phenotype. Apoptosis is a pathway to cell death while autophagy can protect from photokilling or act as a death pathway. In a previous study, we reported a cytoprotective effect of autophagy in murine leukemia cell lines where both autophagy and apoptosis occur within minutes after irradiation of photosensitized cells. In this study, we examined the effects of mitochondrial photodamage catalyzed by low (≤1 µM) concentrations of the photosensitizing agent termed benzoporphyrin derivative (BPD, Verteporfin) on murine hepatoma 1c1c7 cells. Apoptosis was not observed until several hours after irradiation of photosensitized cells. Autophagy was clearly cytoprotective since PDT efficacy was significantly enhanced in a knockdown sub-line (KD) in which the level of a critical autophagy protein (Atg7) was markedly reduced. This result indicates that autophagy can protect from phototoxicity even when apoptosis is substantially delayed. Much higher concentrations (≥10 µM) of BPD had previously been shown to inhibit autophagosome formation. Phototoxicity studies performed with 10 µM BPD and a proportionally reduced light dose were consistent with the absence of an autophagic process in wild-type (WT) cells under these conditions. PMID:21555918

  4. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles

    PubMed Central

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P.; Osorio-Fuentealba, Cesar; Antonescu, Costin N.; Bayer, K. Ulrich; Bilan, Philip J.; Klip, Amira

    2012-01-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding–deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  5. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles.

    PubMed

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P; Osorio-Fuentealba, Cesar; Antonescu, Costin N; Bayer, K Ulrich; Bilan, Philip J; Klip, Amira

    2012-10-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  6. The Role of Homer1c in Metabotropic Glutamate Receptor-dependent Long-Term Potentiation

    PubMed Central

    O’Riordan, Kenneth; Gerstein, Hilary; Hullinger, Rikki; Burger, Corinna

    2016-01-01

    Group I metabotropic glutamate receptors (mGluR1/5) play a role in synaptic plasticity and they demonstrate direct interactions with the neuronal Homer1c protein. We have previously shown that Homer1c can restore the plasticity deficits in Homer1 knockout mice (H1-KO). Here, we investigated the role of Homer1c in mGluR-dependent synaptic plasticity in wild-type mice, H1-KO, and H1-KO mice overexpressing Homer1c (KO+H1c). We used a form of plasticity induced by activation of mGluR1/5 that transforms short-term potentiaion (STP) induced by a subthreshold theta burst stimulation into long-term potentiation (LTP). We have shown that although acute hippocampal slices from wild-type animals can induce LTP using this stimulation protocol, H1-KO only show STP. Gene delivery of Homer1c into the hippocampus of H1-KO mice rescued LTP to wild-type levels. This form of synaptic plasticity was dependent on mGluR5 but not mGluR1 activation both in wild-type mice and in KO+H1c. mGluR1/5-dependent LTP was blocked with inhibitors of the MEK-ERK and PI3K-mTOR pathways in KO+H1c mice. Moreover, blocking Homer1c–mGluR5 interactions prevented the maintenance of LTP in acute hippocampal slices from KO+H1c. These data indicate that Homer1c–mGluR5 interactions are necessary for mGluR-dependent LTP, and that mGluR1/5-dependent LTP involves PI3K and ERK activation. PMID:24167026

  7. Apoptosis in murine hepatoma hepa 1c1c7 wild-type, C12, and C4 cells mediated by bilirubin.

    PubMed

    Seubert, John M; Darmon, Alison J; El-Kadi, Ayman O S; D'Souza, Sudhir J A; Bend, John R

    2002-08-01

    Elevated serum and tissue bilirubin concentrations that occur in pathological conditions such as cholestasis, jaundice, and other liver diseases are known to stimulate cytotoxic responses. In preliminary studies, we noted that bilirubin seemed to cause apoptosis in murine hepatoma Hepa 1c1c7 wild-type (WT) cells. Consequently, we investigated apoptosis caused by bilirubin in WT, mutant C12 [aryl hydrocarbon receptor (AHR)-deficient], and C4 (AHR nuclear translocator-deficient) Hepa 1c1c7 cells. Three independent measures of apoptosis were used to quantify the effects of exogenous bilirubin (0, 1, 10, 25, 50, or 100 microM). Caspase-3 activity and cytochrome c release from mitochondria increased at 3 h post-treatment, before increased caspase-8 activity at 6 h, and nuclear condensation by 24 h after treatment with bilirubin. No differences in whole-cell lipid peroxidation were observed between the cell types; however, intracellular reactive oxygen species (ROS) production was greater in WT cells than C12 or C4 cells 3 h after bilirubin exposure. Pretreatment of cells for 1 h with 1 or 10 microM alpha-naphthoflavone, an AHR antagonist, before bilirubin exposure resulted in decreased caspase-3 activity at 6 h and nuclear condensation at 24 h in WT cells. These results indicate that bilirubin, a potential AHR ligand, causes apoptosis in murine Hepa 1c1c7 WT cells by a mechanism(s) partially involving the AHR, disruption of membrane integrity, and increased intracellular ROS production. PMID:12130676

  8. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells.

    PubMed

    Roy, Sobhan; Ly, Dalam; Li, Nan-Sheng; Altman, John D; Piccirilli, Joseph A; Moody, D Branch; Adams, Erin J

    2014-10-28

    CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens. PMID:25298532

  9. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells

    PubMed Central

    Roy, Sobhan; Ly, Dalam; Li, Nan-Sheng; Altman, John D.; Piccirilli, Joseph A.; Moody, D. Branch; Adams, Erin J.

    2014-01-01

    CD1c is a member of the group 1 CD1 family of proteins that are specialized for lipid antigen presentation. Despite high cell surface expression of CD1c on key antigen-presenting cells and the discovery of its mycobacterial lipid antigen presentation capability, the molecular basis of CD1c recognition by T cells is unknown. Here we present a comprehensive functional and molecular analysis of αβ T-cell receptor (TCR) recognition of CD1c presenting mycobacterial phosphomycoketide antigens. Our structure of CD1c with the mycobacterial phosphomycoketide (PM) shows similarities to that of CD1c-mannosyl-β1-phosphomycoketide in that the A' pocket accommodates the mycoketide alkyl chain; however, the phosphate head-group of PM is shifted ∼6 Å in relation to that of mannosyl-β1-PM. We also demonstrate a bona fide interaction between six human TCRs and CD1c-mycoketide complexes, measuring high to moderate affinities. The crystal structure of the DN6 TCR and mutagenic studies reveal a requirement of five complementarity determining region (CDR) loops for CD1c recognition. Furthermore, mutagenesis of CD1c reveals residues in both the α1 and α2 helices involved in TCR recognition, yet not entirely overlapping among the examined TCRs. Unlike patterns for MHC I, no archetypical binding footprint is predicted to be shared by CD1c-reactive TCRs, even when recognizing the same or similar antigens. PMID:25298532

  10. Structural Analysis of the Myo1c and Neph1 Complex Provides Insight into the Intracellular Movement of Neph1.

    PubMed

    Arif, Ehtesham; Sharma, Pankaj; Solanki, Ashish; Mallik, Leena; Rathore, Yogendra S; Twal, Waleed O; Nath, Samir K; Gandhi, Darpan; Holzman, Lawrence B; Ostap, E Michael; Ashish; Nihalani, Deepak

    2016-06-01

    The Myo1c motor functions as a cargo transporter supporting various cellular events, including vesicular trafficking, cell migration, and stereociliary movements of hair cells. Although its partial crystal structures were recently described, the structural details of its interaction with cargo proteins remain unknown. This study presents the first structural demonstration of a cargo protein, Neph1, attached to Myo1c, providing novel insights into the role of Myo1c in intracellular movements of this critical slit diaphragm protein. Using small angle X-ray scattering studies, models of predominant solution conformation of unliganded full-length Myo1c and Myo1c bound to Neph1 were constructed. The resulting structures show an extended S-shaped Myo1c with Neph1 attached to its C-terminal tail. Importantly, binding of Neph1 did not induce a significant shape change in Myo1c, indicating this as a spontaneous process or event. Analysis of interaction surfaces led to the identification of a critical residue in Neph1 involved in binding to Myo1c. Indeed, a point mutant from this site abolished interaction between Neph1 and Myo1c when tested in the in vitro and in live-cell binding assays. Live-cell imaging, including fluorescence recovery after photobleaching, provided further support for the role of Myo1c in intracellular vesicular movement of Neph1 and its turnover at the membrane. PMID:27044863

  11. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false IRB review of research. 1c.109 Section 1c.109... research. (a) An IRB shall review and have authority to approve, require modifications in (to secure approval), or disapprove all research activities covered by this policy. (b) An IRB shall require...

  12. 7 CFR 1c.117 - Documentation of informed consent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Documentation of informed consent. 1c.117 Section 1c... Documentation of informed consent. (a) Except as provided in paragraph (c) of this section, informed consent... following: (1) A written consent document that embodies the elements of informed consent required by §...

  13. 7 CFR 1c.117 - Documentation of informed consent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Documentation of informed consent. 1c.117 Section 1c... Documentation of informed consent. (a) Except as provided in paragraph (c) of this section, informed consent... following: (1) A written consent document that embodies the elements of informed consent required by §...

  14. 7 CFR 1c.117 - Documentation of informed consent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Documentation of informed consent. 1c.117 Section 1c... Documentation of informed consent. (a) Except as provided in paragraph (c) of this section, informed consent... following: (1) A written consent document that embodies the elements of informed consent required by §...

  15. 7 CFR 1c.117 - Documentation of informed consent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Documentation of informed consent. 1c.117 Section 1c... Documentation of informed consent. (a) Except as provided in paragraph (c) of this section, informed consent... following: (1) A written consent document that embodies the elements of informed consent required by §...

  16. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction.

    PubMed

    López-Abad, Miriam; Iglesias-Platas, Isabel; Monk, David

    2016-01-01

    The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith-Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver-Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression. PMID:27200075

  17. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction

    PubMed Central

    López-Abad, Miriam; Iglesias-Platas, Isabel; Monk, David

    2016-01-01

    The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith–Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver–Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression. PMID:27200075

  18. Novel mutations in the USH1C gene in Usher syndrome patients

    PubMed Central

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Millán, José María

    2010-01-01

    Purpose Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Methods Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Results Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. Conclusions In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population. PMID:21203349

  19. Multiple MONOPTEROS-Dependent Pathways Are Involved in Leaf Initiation1[C][W][OA

    PubMed Central

    Schuetz, Mathias; Berleth, Thomas; Mattsson, Jim

    2008-01-01

    Initiation of leaves at the flanks of the shoot apical meristem occurs at sites of auxin accumulation and pronounced expression of auxin-inducible PIN-FORMED1 (PIN) genes, suggesting a feedback loop to progressively focus auxin in concrete spots. Because PIN expression is regulated by auxin response factor activity, including MONOPTEROS (MP), it appeared possible that MP affects leaf formation as a positive regulator of PIN genes and auxin transport. Here, we analyze a novel, completely leafless phenotype arising from simultaneous interference with both auxin signaling and auxin transport. We show that mp pin1 double mutants, as well as mp mutants treated with auxin-efflux inhibitors, display synergistic abnormalities not seen in wild type regardless of how strongly auxin transport was reduced. The synergism of abnormalities indicates that the role of MP in shoot meristem organization is not limited to auxin transport regulation. In the mp mutant background, auxin transport inhibition completely abolishes leaf formation. Instead of forming leaves, the abnormal shoot meristems dramatically increase in size, harboring correspondingly enlarged expression domains of CLAVATA3 and SHOOTMERISTEMLESS, molecular markers for the central stem cell zone and the complete meristem, respectively. The observed synergism under conditions of auxin efflux inhibition was further supported by an unrestricted PIN1 expression in mp meristems, as compared to a partial restriction in wild-type meristems. Auxin transport-inhibited mp meristems also lacked detectable auxin maxima. We conclude that MP promotes the focusing of auxin and leaf initiation in part through pathways not affected by auxin efflux inhibitors. PMID:18685044

  20. Poplar Wood Rays Are Involved in Seasonal Remodeling of Tree Physiology1[C][W

    PubMed Central

    Larisch, Christina; Dittrich, Marcus; Wildhagen, Henning; Lautner, Silke; Fromm, Jörg; Polle, Andrea; Hedrich, Rainer; Rennenberg, Heinz; Müller, Tobias; Ache, Peter

    2012-01-01

    Understanding seasonality and longevity is a major challenge in tree biology. In woody species, growth phases and dormancy follow one another consecutively. In the oldest living individuals, the annual cycle may run for more than 1,000 years. So far, however, not much is known about the processes triggering reactivation from dormancy. In this study, we focused on wood rays, which are known to play an important role in tree development. The transition phase from dormancy to flowering in early spring was compared with the phase of active growth in summer. Rays from wood samples of poplar (Populus × canescens) were enriched by laser microdissection, and transcripts were monitored by poplar whole-genome microarrays. The resulting seasonally varying complex expression and metabolite patterns were subjected to pathway analyses. In February, the metabolic pathways related to flower induction were high, indicating that reactivation from dormancy was already taking place at this time of the year. In July, the pathways related to active growth, like lignin biosynthesis, nitrogen assimilation, and defense, were enriched. Based on “marker” genes identified in our pathway analyses, we were able to validate periodical changes in wood samples by quantitative polymerase chain reaction. These studies, and the resulting ray database, provide new insights into the steps underlying the seasonality of poplar trees. PMID:22992511

  1. CDKN1C mutations: two sides of the same coin.

    PubMed

    Eggermann, Thomas; Binder, Gerhard; Brioude, Frédéric; Maher, Eamonn R; Lapunzina, Pablo; Cubellis, Maria Vittoria; Bergadá, Ignacio; Prawitt, Dirk; Begemann, Matthias

    2014-11-01

    Cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) negatively regulates cellular proliferation and it has been shown that loss-of-function mutations in the imprinted CDKN1C gene (11p15.5) are associated with the overgrowth disorder Beckwith-Wiedemann syndrome (BWS). With recent reports of gain-of-function mutations of the PCNA domain of CDKN1C in growth-retarded patients with IMAGe syndrome or Silver-Russell syndrome (SRS), its key role for growth has been confirmed. Thereby, the last gap in the spectrum of molecular alterations in 11p15.5 in growth-retardation and overgrowth syndromes could be closed. Recent functional studies explain the strict association of CDKN1C mutations with clinically opposite phenotypes and thereby contribute to our understanding of the function and regulation of the gene in particular and epigenetic regulation in general. PMID:25262539

  2. Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells

    PubMed Central

    2011-01-01

    Background 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that elicits a broad spectrum of toxic effects in a species-specific manner. Current risk assessment practices routinely extrapolate results from in vivo and in vitro rodent models to assess human risk. In order to further investigate the species-specific responses elicited by TCDD, temporal gene expression responses in human HepG2, mouse Hepa1c1c7 and rat H4IIE cells were compared. Results Microarray analysis identified a core set of conserved gene expression responses across species consistent with the role of AhR in mediating adaptive metabolic responses. However, significant species-specific as well as species-divergent responses were identified. Computational analysis of the regulatory regions of species-specific and -divergent responses suggests that dioxin response elements (DREs) are involved. These results are consistent with in vivo rat vs. mouse species-specific differential gene expression, and more comprehensive comparative DRE searches. Conclusions Comparative analysis of human HepG2, mouse Hepa1c1c7 and rat H4IIE TCDD-elicited gene expression responses is consistent with in vivo rat-mouse comparative gene expression studies, and more comprehensive comparative DRE searches, suggesting that AhR-mediated gene expression is species-specific. PMID:21496263

  3. The CCAAT-box binding transcription factor, Nuclear Factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene

    PubMed Central

    Pallai, Rajash; Simpkins, Henry; Chen, Jianli; Parekh, Hemant K.

    2010-01-01

    Dihydrodiol dehydrogenases are a family of aldo-keto reductases (AKR1Cs) involved in the metabolism of steroid hormones and xenobiotics. Herein, we have cloned and characterized the proximal promoter region of the human AKR1C1 gene. The 5’ flanking proximal promoter region of the AKR1C1 gene consists of a TATA box and an inverted CCAAT binding site. Deletion analysis of the 5’-flanking, ~3.0 kb region of the human AKR1C1 gene identified the region between −128 to −88 as the minimal proximal promoter essential for basal transcription of AKR1C1 in human ovarian (2008 & 2008/C13*), lung (H23 & A549) and liver carcinoma (HepG2) cells. Site-directed mutagenesis studies indicated that the transcription factor binding sites for NF-Y/CEBP were involved in controlling the basal transcription of AKR1C1 in all the cancer cells studied. Electrophoretic mobility shift (EMSAs) and gel supershift assays demonstrated that the transcription factor NF-Y preferentially binds to the inverted CCAAT box at −109ATTGG−105 of the AKR1C1 gene. Chromatin immunoprecipitation (ChIP) analysis confirmed the in vivo association between NF-Y and human AKR1C1 gene promoter in human ovarian, lung and liver carcinoma cells. Ectopic expression of NF-Y’s increased the AKR1C1 gene transcription, whereas expression of a dominant-negative NF-YA or suppression of NF-YA decreased the AKR1C1 gene transcription. A 2-fold increase in AKR1C1 transcription was observed specifically in cisplatin-treated 2008 cells that was CCAAT box-dependent. These results indicate that the NF-Y regulates the basal transcription of AKR1C1 in human ovarian, lung and liver carcinoma cells and the cisplatin-induced transcription in human ovarian carcinoma cells. PMID:20338228

  4. MUC1-C drives MYC in multiple myeloma.

    PubMed

    Tagde, Ashujit; Rajabi, Hasan; Bouillez, Audrey; Alam, Maroof; Gali, Reddy; Bailey, Shannon; Tai, Yu-Tzu; Hideshima, Teru; Anderson, Kenneth; Avigan, David; Kufe, Donald

    2016-05-26

    Multiple myeloma (MM) cell lines and primary tumor cells are addicted to the MYC oncoprotein for survival. Little is known, however, about how MYC expression is upregulated in MM cells. The mucin 1 C-terminal subunit (MUC1-C) is an oncogenic transmembrane protein that is aberrantly expressed in MM cell lines and primary tumor samples. The present studies demonstrate that targeting MUC1-C with silencing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 editing or with the GO-203 inhibitor is associated with downregulation of MYC messenger RNA and protein. The results show that MUC1-C occupies the MYC promoter and thereby activates the MYC gene by a β-catenin/transcription factor 4 (TCF4)-mediated mechanism. In this way, MUC1-C (1) increases β-catenin occupancy on the MYC promoter, (2) forms a complex with β-catenin and TCF4, and, in turn, (3) drives MYC transcription. Analysis of MM cells using quantitative real-time reverse transcription polymerase chain reaction arrays further demonstrated that silencing MUC1-C is associated with downregulation of MYC target genes, including CCND2, hTERT, and GCLC Analysis of microarray data sets further demonstrated that MUC1 levels positively correlate with MYC expression in MM progression and in primary cells from over 800 MM patients. These findings collectively provide convincing evidence that MUC1-C drives MYC expression in MM. PMID:26907633

  5. The Correlation of Hemoglobin A1c to Blood Glucose

    PubMed Central

    Sikaris, Ken

    2009-01-01

    The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of “average blood glucose” as though “blood glucose” were itself a simple idea. When we consider all the blood glucose forms—arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting—we can start to see that this is not a simple issue. Nevertheless, it seems as though HbA1c correlates to any single glucose measurement. Having more than one measurement and taking those measurements in the preceding month improves the correlation further. In particular, by having glucose measurements that reflect both the relatively lower overnight glucose levels and measurements that reflect the postprandial peaks improves not only our ability to manage diabetes patients, but also our understanding of how HbA1c levels are determined. Modern continuous glucose monitoring (CGM) devices may take thousands of glucose results over a week. Several studies have shown that CGM glucose averages account for the vast proportion of the variation of HbA1c. The ability to relate HbA1c to average glucose may become a popular method for reporting HbA1c, eliminating current concerns regarding differences in HbA1c standardization. Hemoglobin A1c expressed as an average glucose may be more understandable to patients and improve not only their understanding, but also their ability to improve their diabetes management. PMID:20144279

  6. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in accordance with § 1c.117. (d) An IRB shall notify investigators and the institution in writing of... investigator an opportunity to respond in person or in writing. (e) An IRB shall conduct continuing review...

  7. 7 CFR 1c.108 - IRB functions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Except when an expedited review procedure is used (see § 1c.110), review proposed research at convened... primary concerns are in nonscientific areas. In order for the research to be approved, it shall...

  8. Screening Baccharin Analogs as Selective Inhibitors Against Type 5 17β-Hydroxysteroid Dehydrogenase (AKR1C3)

    PubMed Central

    Zang, Tianzhu; Verma, Kshitij; Chen, Mo; Jin, Yi; Trippier, Paul C.; Penning, Trevor M.

    2015-01-01

    Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase, is a downstream steroidogenic enzyme and converts androgen precursors to the potent androgen receptor ligands: testosterone and 5α-dihydrotestosterone. Studies have shown that AKR1C3 is involved in the development of castration resistant prostate cancer (CRPC) and that it is a rational drug target for the treatment of CRPC. Baccharin, a component of Brazilian propolis, has been observed to exhibit a high inhibitory potency and selectivity for AKR1C3 over other AKR1C isoforms and is a promising lead compound for developing more potent and selective inhibitors. Here, we report the screening of fifteen baccharin analogs as selective inhibitors against AKR1C3 versus AKR1C2 (type 3 3α-hydroxysteroid dehydrogenase). Among these analogs, the inhibitory activity and selectivity of thirteen compounds were evaluated for the first time. The substitution of the 4-dihydrocinnamoyloxy group of baccharin by an acetate group displayed nanomolar inhibitory potency (IC50: 440 nM) and a 102-fold selectivity over AKR1C2. By contrast, when the cinnamic acid group of baccharin was esterified, there was a dramatic decrease in potency and selectivity for AKR1C3 in comparison to baccharin. Low or sub- micromolar inhibition was observed when the 3-prenyl group of baccharin was removed, and the selectivity over AKR1C2 was low. Although unsubstituted baccharin was still the most potent (IC50: 100 nM) and selective inhibitor for AKR1C3, these data provide structure-activity relationships required for the optimization of new baccharin analogs. They suggest that the carboxylate group on cinnamic acid, the prenyl group, and either retention of 4′-dihydrocinnamoyloxy group or acetate substituent on cinnamic acid are important to maintain the high potency and selectivity for AKR1C3. PMID:25555457

  9. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    SciTech Connect

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-02-22

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity.

  10. Carnitine palmitoyltransferase 1C: From cognition to cancer.

    PubMed

    Casals, Núria; Zammit, Victor; Herrero, Laura; Fadó, Rut; Rodríguez-Rodríguez, Rosalía; Serra, Dolors

    2016-01-01

    Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer. PMID:26708865

  11. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells.

    PubMed

    Miranda, C L; Aponso, G L; Stevens, J F; Deinzer, M L; Buhler, D R

    2000-02-28

    The objective of this study was to determine if prenylchalcones (open C-ring flavonoids) and prenylflavanones from hops and beer are inducers of quinone reductase (QR) in the mouse hepatoma Hepa 1c1c7 cell line. All the prenylchalcones and prenylflavanones tested were found to induce QR but not CYP1A1 in this cell line. In contrast, the synthetic chalcone, chalconaringenin, and the flavanone, naringenin, with no prenyl or geranyl groups, were ineffective in inducing QR. The hop chalcones, xanthohumol and dehydrocycloxanthohumol hydrate, also induced QR in the Ah-receptor-defective mutant cell line, Hepa 1c1c7 bp(r)c1. Thus, the prenylflavonoids represent a new class of monofunctional inducers of QR. PMID:10737704

  12. The Association Between A1C and Subclinical Cardiovascular Disease

    PubMed Central

    McNeely, Marguerite J.; McClelland, Robyn L.; Bild, Diane E.; Jacobs, David R.; Tracy, Russell P.; Cushman, Mary; Goff, David C.; Astor, Brad C.; Shea, Steven; Siscovick, David S.

    2009-01-01

    OBJECTIVE To test the hypothesis that A1C is associated with subclinical cardiovascular disease (CVD) in a population without evident diabetes, after adjusting for traditional CVD risk factors and BMI. RESEARCH DESIGN AND METHODS This was a cross-sectional study of 5,121 participants without clinically evident CVD or diabetes (fasting glucose ≥7.0 mmol/l or use of diabetes medication), aged 47–86 years, enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA). Measurements included carotid intimal-medial wall thickness (CIMT) and coronary artery calcification (CAC). Results were adjusted for age, sex, ethnicity, smoking, systolic blood pressure, LDL cholesterol, HDL cholesterol, antihypertensive medication use, lipid-lowering medication use, and BMI. RESULTS Compared with those in the lowest quartile for A1C ([mean ± SD] 5.0 ± 0.2%), participants in the highest quartile (6.0 ± 0.3%) had higher adjusted mean values for common CIMT (0.85 vs. 0.87 mm, P = 0.003) and internal CIMT (1.01 vs. 1.08 mm, P = 0.003). A1C quartile was not associated with prevalence of CAC in the entire cohort (P = 0.27); however, the association was statistically significant in women (adjusted prevalence of CAC in lowest and highest A1C quartiles 37.5 vs. 43.0%, P = 0.01). Among those with some CAC, higher A1C quartile tended to be associated with higher CAC score, but the results were not statistically significant (adjusted P = 0.11). CONCLUSIONS In this multiethnic cohort, there were small, positive associations between A1C, common CIMT, and internal CIMT in the absence of clinically evident diabetes. An association between higher A1C and CAC prevalence was evident only in women. PMID:19549732

  13. Human SREBP1c Expression in Liver Is Directly Regulated by Peroxisome Proliferator-activated Receptor α (PPARα)*

    PubMed Central

    Fernández-Alvarez, Ana; Alvarez, María Soledad; Gonzalez, Raúl; Cucarella, Carme; Muntané, Jordi; Casado, Marta

    2011-01-01

    Sterol regulatory element binding proteins (SREBPs) regulate the expression of a number of enzymes, which catalyze the synthesis of fatty acids, cholesterol, triglycerides, and phospholipids. SREBP1c is the most relevant isoform in the adult liver, and its expression is controlled by the nutritional state. Transcriptional regulation studies into the SREBP1c gene, performed in the last few years, have improved our knowledge of the variability of signals that converge on its promoter region. Insulin, cholesterol derivatives, T3 and other endogenous molecules have been demonstrated to regulate the SREBP1c expression, particularly in rodents. The present study aimed to perform a detailed analysis of the human SREBP1c gene promoter structure in liver cells by focusing on responses to diverse metabolic signals. Serial deletion and mutation assays reveal that both SREBP (SRE) and LXR (LXRE) response elements are involved in SREBP1c transcription regulation mediated by insulin and cholesterol derivatives. We discovered that peroxisome proliferation-activated receptor alpha (PPARα) agonists enhance the activity of the SREBP1c promoter; a DR1 element, at −453 in the human promoter was involved in this activation. Moreover, PPARα agonists act in cooperation with LXR or insulin to induce lipogenesis. Collectively, our results identify PPARα as a novel regulatory factor in SREBP1c regulation which plays a relevant role in the interplay between lipids and insulin metabolic regulation. PMID:21540177

  14. Identification of Shigella flexneri Subserotype 1c in Rural Egypt

    PubMed Central

    El-Gendy, Atef; El-Ghorab, Nemat; Lane, Edward M.; Elyazeed, Remon Abu; Carlin, Nils I. A.; Mitry, Mary M.; Kay, Bradford A.; Savarino, Stephen J.; Peruski, Leonard F.

    1999-01-01

    In a population-based study of diarrhea in rural, northern Egypt, 60 Shigella flexneri strains were identified, of which 10 could not be definitively serotyped. Serological analysis with commercial reagents suggested that they were serotype 1, but the strains failed to react with subserotype 1a- or 1b-specific antibodies. All 10 strains reacted with MASF 1c, a monoclonal antibody specific for a provisional S. flexneri subserotype, 1c, first identified in Bangladesh and not previously detected outside of that region. Our results show that S. flexneri subserotype 1c is not unique to Bangladesh and that the inability to detect it may reflect both the limited use of suitable screening methods and the rarity of this subserotype. PMID:9986881

  15. Selecting an A1C Point-of-Care Instrument

    PubMed Central

    Yong, Ee Vonn; Rasinen, Casey

    2015-01-01

    A1C point-of-care (POC) instruments benefit patients with diabetes by facilitating clinician decision making that results in significant glycemic improvements. Three National Glycohemoglobin Standardization Program (NGSP)–certified POC products are available in the United States: the handheld A1CNow (formerly manufactured by Bayer Diabetes Care but now made by Chek Diagnostics) and two bench-top models called the Axis-Shield Afinion Analyzer and the Siemens DCA Vantage. This article compares the three available NGSP-certified POC products in terms of accuracy, precision, ease of use, cost, and additional features. Its goal is to aid health care facilities in conveniently identifying the A1C POC product that best meets their needs. It additionally reviews evidence that supports the continued use of A1C POC instruments in the clinical arena. PMID:26300614

  16. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation

    PubMed Central

    Lee, Jae Ho; Lee, Gha Young; Jang, Hagoon; Choe, Sung Sik; Koo, Seung-Hoi; Kim, Jae Bum

    2014-01-01

    Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c-interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c-interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20-dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20-induced SREBP1c ubiquitination down-regulates hepatic lipogenic activity upon PKA activation. Conclusion: RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation

  17. Tracking Diabetes: New York City's A1C Registry

    PubMed Central

    Chamany, Shadi; Silver, Lynn D; Bassett, Mary T; Driver, Cynthia R; Berger, Diana K; Neuhaus, Charlotte E; Kumar, Namrata; Frieden, Thomas R

    2009-01-01

    Context: In December 2005, in characterizing diabetes as an epidemic, the New York City Board of Health mandated the laboratory reporting of hemoglobin A1C laboratory test results. This mandate established the United States’ first population-based registry to track the level of blood sugar control in people with diabetes. But mandatory A1C reporting has provoked debate regarding the role of public health agencies in the control of noncommunicable diseases and, more specifically, both privacy and the doctor-patient relationship. Methods: This article reviews the rationale for adopting the rule requiring the reporting of A1C test results, experience with its implementation, and criticisms raised in the context of the history of public health practice. Findings: For many decades, public health agencies have used identifiable information collected through mandatory laboratory reporting to monitor the population's health and develop programs for the control of communicable and noncommunicable diseases. The registry program sends quarterly patient rosters stratified by A1C level to more than one thousand medical providers, and it also sends letters, on the provider's letterhead whenever possible, to patients at risk of diabetes complications (A1C level >9 percent), advising medical follow-up. The activities of the registry program are similar to those of programs for other reportable conditions and constitute a joint effort between a governmental public health agency and medical providers to improve patients’ health outcomes. Conclusions: Mandatory reporting has proven successful in helping combat other major epidemics. New York City's A1C Registry activities combine both traditional and novel public health approaches to reduce the burden of an epidemic chronic disease, diabetes. Despite criticism that mandatory reporting compromises individuals’ right to privacy without clear benefit, the early feedback has been positive and suggests that the benefits will

  18. Cacna1c (Cav1.2) Modulates Electroencephalographic Rhythm and Rapid Eye Movement Sleep Recovery

    PubMed Central

    Kumar, Deependra; Dedic, Nina; Flachskamm, Cornelia; Voulé, Stephanie; Deussing, Jan M.; Kimura, Mayumi

    2015-01-01

    Study Objectives: The CACNA1C gene encodes the alpha 1C1C) subunit of the Cav1.2 voltage-dependent L-type calcium channel (LTCC). Some of the other voltage-dependent calcium channels, e.g., P-/Q-type, Cav2.1; N-type, Cav2.2; E-/R-type, Cav2.3; and T-type, Cav3.3 have been implicated in sleep modulation. However, the contribution of LTCCs to sleep remains largely unknown. Based on recent genome-wide association studies, CACNA1C emerged as one of potential candidate genes associated with both sleep and psychiatric disorders. Indeed, most patients with mental illnesses have sleep problems and vice versa. Design: To investigate an impact of Cav1.2 on sleep-wake behavior and electroencephalogram (EEG) activity, polysomnography was performed in heterozygous Cacna1c (HET) knockout mice and their wild-type (WT) littermates under baseline and challenging conditions (acute sleep deprivation and restraint stress). Measurements and Results: HET mice displayed significantly lower EEG spectral power than WT mice across high frequency ranges (beta to gamma) during wake and rapid eye movement (REM) sleep. Although HET mice spent slightly more time asleep in the dark period, daily amounts of sleep did not differ between the two genotypes. However, recovery sleep after exposure to both types of challenging stress conditions differed markedly; HET mice exhibited reduced REM sleep recovery responses compared to WT mice. Conclusions: These results suggest the involvement of Cacna1c (Cav1.2) in fast electroencephalogram oscillations and REM sleep regulatory processes. Lower spectral gamma activity, slightly increased sleep demands, and altered REM sleep responses found in heterozygous Cacna1c knockout mice may rather resemble a sleep phenotype observed in schizophrenia patients. Citation: Kumar D, Dedic N, FLachskamm C, Voulé S, Deussing JM, Kimura M. Cacna1c (Cav1.2) modulates electroencephalographic rhythm and rapid eye movement sleep recovery. SLEEP 2015;38(9):1371–1380. PMID

  19. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false General requirements for informed consent. 1c.116... General requirements for informed consent. Except as provided elsewhere in this policy, no investigator... obtained the legally effective informed consent of the subject or the subject's legally...

  20. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... information given to subjects as part of informed consent is in accordance with § 1c.116. The IRB may require... welfare of subjects. (c) An IRB shall require documentation of informed consent or may waive documentation... year, and shall have authority to observe or have a third party observe the consent process and...

  1. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false General requirements for informed consent. 1c.116... General requirements for informed consent. Except as provided elsewhere in this policy, no investigator... obtained the legally effective informed consent of the subject or the subject's legally...

  2. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... information given to subjects as part of informed consent is in accordance with § 1c.116. The IRB may require... welfare of subjects. (c) An IRB shall require documentation of informed consent or may waive documentation... year, and shall have authority to observe or have a third party observe the consent process and...

  3. 7 CFR 1c.116 - General requirements for informed consent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false General requirements for informed consent. 1c.116... General requirements for informed consent. Except as provided elsewhere in this policy, no investigator... obtained the legally effective informed consent of the subject or the subject's legally...

  4. 7 CFR 1c.109 - IRB review of research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... information given to subjects as part of informed consent is in accordance with § 1c.116. The IRB may require... welfare of subjects. (c) An IRB shall require documentation of informed consent or may waive documentation... year, and shall have authority to observe or have a third party observe the consent process and...

  5. Protective effect of Porphyra yezoensis glycoprotein on D-galactosamine‑induced cytotoxicity in Hepa 1c1c7 cells.

    PubMed

    Choi, Jeong-Wook; Kim, Young-Min; Park, Su-Jin; Kim, In-Hye; Nam, Taek-Jeong

    2015-05-01

    The present study aimed to examine the signaling pathways and enzyme activity associated with the protective effect of Porphyra yezoensis glycoprotein (PYGP) on D‑galactosamine (D‑GaIN)‑induced cytotoxicity in Hepa 1c1c7 cells. D‑GaIN is commonly used to induce hepatic injury models in vivo as well as in vitro. PYGP was extracted from Porphyra yezoensis, a red algae distributed along the coasts of Republic of Korea, China and Japan. In the present study, Hepa 1c1c7 cells were pre‑treated with PYGP (20 and 40 µg/ml) for 24 h and then the media was replaced with D‑GaIN (20 mM) and PYGP (20 and 40 µg/ml). The results demonstrated that D‑GaIN induced Hepa 1c1c7 cell death and pretreatment with PYGP was found to attenuate D‑GaIN toxicity. In addition, D‑GaIN decreased the antioxidant activity and increased lipid peroxidation processes; however, pre‑treatment with PYGP reduced the generation of lipid peroxidation products, such as thiobarbituric acid reactive substances, as well as increased the activity of antioxidant enzymes, including superoxide dismutase, catalase and glutathione‑s‑transferase (GST). PYGP was shown to suppress the overexpression of extracellular signal‑regulated kinase, c‑jun N‑terminal kinase and p38 mitogen‑activated protein kinase (MAPK) phosphorylation induced by D‑GaIN. Furthermore, PYGP increased the protein expression of nuclear factor erythroid 2‑related factor 2 (Nrf2), quinine oxidoreductase 1, GST and heme oxygenase 1 protein expression. These results suggested that PYGP had cytoprotective effects against D‑GaIN‑induced cell damage, which may be associated with MAPKs and the Nrf2 signaling pathway. PMID:25626067

  6. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin.

    PubMed Central

    Ma, Q; Whitlock, J P

    1996-01-01

    The aromatic hydrocarbon receptor (AhR) has been defined and characterized according to its ability to mediate biological responses to exogenous ligands, such as the synthetic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The natural ligand(s) for AhR is unknown, and we know relatively little about AhR function in the absence of TCDD. Here, we have exploited the availability of AhR-defective (AhR-D) mouse hepatoma (Hepa 1c1c7) cells to analyze AhR's effects under conditions in which TCDD is not present. Our results reveal that AhR-D cells exhibit a different morphology, decreased albumin synthesis, and a prolonged doubling time compared with wild-type cells. Introduction of AhR cDNA into AhR-D cells by stable transfection alters these characteristics such that the cells resemble wild-type cells. Conversely, introduction of antisense AhR cDNA into wild-type cells changes their phenotype such that they resemble AhR-D cells. Fluorescence microscopy reveals that AhR-D cells do not exhibit an increased rate of death. Flow cytometric and biochemical analyses imply that the slowed growth rate of AhR-D cells reflects prolongation of G1. Our findings reveal a potential link between AhR and the G1 phase of the Hepa 1c1c7 cell cycle. These effects of AhR occur in the absence of TCDD. We speculate that they represent responses to an endogenous AhR ligand in Hepa 1c1c7 cells. PMID:8628281

  7. To the occiput or not? C1-c2 ligamentous laxity in children with down syndrome.

    PubMed

    Siemionow, Kris; Chou, Dean

    2014-10-01

    Study Design Retrospective case review. Objective Atlantoaxial instability with and without basilar invagination poses a considerable challenge in management regarding reduction, surgical approach, decompression, instrumentation choice, and extent of fusion. A variety of strategies have been described to reduce and stabilize cranial settling with basilar invagination. Modern instrumentation options included extension to the occiput, C1-C2 transarticular fixation, and C1 lateral mass-C2 pars among others. Since not all cases of cranial settling are the same, their treatment strategies also differ. Factors such as local vascular anatomy, amount of subluxation, need for distraction, and shape of occipital condyles will dictate level and type of instrumentation. The objective of this study was to outline treatment options and provide a rationale for the surgical plan. Methods Two cases of C1-C2 instability in patients with Down syndrome are described. Case 2 underwent C1-C2 instrumented fusion, whereas case 1 involved posterior instrumented fusion to the occiput. Results Both patients tolerated the procedures well. There were no complications. Minimum follow-up was 1 year. There was no loss of reduction. Solid arthrodesis was achieved in both cases. Conclusion Successful reduction can be achieved with both C1-C2 instrumented fusion as well as O-C instrument fusion. Factors such as local vascular anatomy, amount of subluxation, need for distraction, and shape of occipital condyles will dictate level and type of instrumentation. PMID:25364324

  8. Residual Endotoxin Contaminations in Recombinant Proteins Are Sufficient to Activate Human CD1c+ Dendritic Cells

    PubMed Central

    Schwarz, Harald; Schmittner, Maria; Duschl, Albert; Horejs-Hoeck, Jutta

    2014-01-01

    Many commercially available recombinant proteins are produced in Escherichia coli, and most suppliers guarantee contamination levels of less than 1 endotoxin unit (EU). When we analysed commercially available proteins for their endotoxin content, we found contamination levels in the same range as generally stated in the data sheets, but also some that were higher. To analyse whether these low levels of contamination have an effect on immune cells, we stimulated the monocytic cell line THP-1, primary human monocytes, in vitro differentiated human monocyte-derived dendritic cells, and primary human CD1c+ dendritic cells (DCs) with very low concentrations of lipopolysaccharide (LPS; ranging from 0.002–2 ng/ml). We show that CD1c+ DCs especially can be activated by minimal amounts of LPS, equivalent to the levels of endotoxin contamination we detected in some commercially available proteins. Notably, the enhanced endotoxin sensitivity of CD1c+ DCs was closely correlated with high CD14 expression levels observed in CD1c+ DCs that had been maintained in cell culture medium for 24 hours. When working with cells that are particularly sensitive to LPS, even low endotoxin contamination may generate erroneous data. We therefore recommend that recombinant proteins be thoroughly screened for endotoxin contamination using the limulus amebocyte lysate test, fluorescence-based assays, or a luciferase based NF-κB reporter assay involving highly LPS-sensitive cells overexpressing TLR4, MD-2 and CD14. PMID:25478795

  9. Suppression of CYP1A1 expression by naringenin in murine Hepa-1c1c7 cells.

    PubMed

    Kim, Ji Young; Han, Eun Hee; Shin, Dong Weon; Jeong, Tae Cheon; Lee, Eung Seok; Woo, Eun-Rhan; Jeong, Hye Gwang

    2004-08-01

    Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1A1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringenin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specifically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR. PMID:15460448

  10. Suppression of CYP1A1 expression by 4-nonylphenol in murine Hepa-1c1c7 cells.

    PubMed

    Jeong, H G; Kim, J Y; Choi, C Y; You, H J; Hahm, K

    2001-04-10

    This study investigated the effects that 4-nonylphenol (NP) has on CYP1A1 expression in Hepa-1c1c7 cell cultures. NP alone did not affect CYP1A1-specific 7-ethoxyresorufin-O-deethylase (EROD) activity. In contrast, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and NP in a dose-dependent manner. Treatment with tamoxifen, an anti-estrogen that acts through the estrogen receptor, did not affect the suppressive effects that NP has on TCDD-inducible EROD activity. The TCDD-inducible CYP1A1 mRNA levels were markedly suppressed upon concomitant treatment with TCDD and NP that is consistent with their effects on EROD activity. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and an electrophoretic mobility shift assay revealed that NP reduced the transformation of the aryl hydrocarbon (Ah) receptor to a form capable of binding specifically to the DRE sequence of the CYP1A1 gene promoter. These results suggest that the down-regulation of CYP1A1 gene expression by NP in Hepa-1c1c7 cells might be an antagonism of the DRE-binding potential of the nuclear Ah receptor, but is not mediated through the estradiol receptor. PMID:11248424

  11. Cytokine-mediated induction of metallothionein in Hepa-1c1c7 cells by oleanolic acid.

    PubMed

    Kim, Ji Young; Lee, Kyung Jin; Kim, Dong Hee; Jeong, Tae Cheon; Lee, Eung Seok; Choi, Young Muk; Jeong, Hye Gwang

    2004-12-17

    Oleanolic acid (OA), a pentacyclic triterpene acid, has been reported to possess inducing activity of hepatic metallothionein (MT). However, the mechanism underlying its effects is unknown. This study investigated the effects of OA on the regulation of MT expression in an in vitro model. OA that was added directly to Hepa-1c1c7 cells had no effect on MT induction. However, MT and its mRNA levels increased markedly when the Hepa-1c1c7 cells were cultured with the OA-treated conditioned media from the RAW 264.7 cells. Co-treating the RAW 264.7 cells with OA and pentoxifylline, a TNF-alpha synthesis inhibitor, resulted in a decrease in the effects of OA on the MT induction. In the OA-exposed RAW 264.7 cell cultures, production and mRNA levels of TNF-alpha and IL-6 were increased. However, the MT induction activity was inhibited when antibodies to TNF-alpha and/or IL-6 were added to the OA-treated conditioned media from the RAW 264.7 cells. These results suggest that the up-regulation of MT expression by OA was mediated by the TNF-alpha and IL-6 released from UA-activated macrophages. PMID:15541359

  12. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding.

    PubMed

    Jang, Hagoon; Lee, Gha Young; Selby, Christopher P; Lee, Gung; Jeon, Yong Geun; Lee, Jae Ho; Cheng, Kenneth King Yip; Titchenell, Paul; Birnbaum, Morris J; Xu, Aimin; Sancar, Aziz; Kim, Jae Bum

    2016-01-01

    SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time points. SREBP1c(-/-) and CRY1(-/-) mice show higher blood glucose than wild-type (WT) mice in pyruvate tolerance tests, accompanied with enhanced expression of PEPCK and G6Pase genes. CRY1 promotes degradation of nuclear FOXO1 by promoting its binding to the ubiquitin E3 ligase MDM2. Although SREBP1c fails to upregulate CRY1 expression in db/db mice, overexpression of CRY1 attenuates hyperglycaemia through reduction of hepatic FOXO1 protein and gluconeogenic gene expression. These data suggest that insulin-activated SREBP1c downregulates gluconeogenesis through CRY1-mediated FOXO1 degradation and that dysregulation of hepatic SREBP1c-CRY1 signalling may contribute to hyperglycaemia in diabetic animals. PMID:27412556

  13. Alcohol dehydrogenase 1C (ADH1C) gene polymorphism and alcoholic liver cirrhosis risk: a meta analysis

    PubMed Central

    He, Lei; Deng, Tao; Luo, He-Sheng

    2015-01-01

    The association between alcohol dehydrogenase 1C (ADH1C) gene polymorphism and alcoholic liver cirrhosis (ALC) has been analyzed in several studies, but results have been conflicting. In this study, a meta-analysis was performed to assess the associations between the ADH1C polymorphism and risk of ALC. Relevant studies were identified using PubMed, Web of Science, CNKI and Wanfang databases up to January 10, 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association using the fixed or random effect model. A total of 16 case-control studies, including 1375 cases and 1802 controls, were included. Overall, no significant association between the ADH1C polymorphism and ALC risk was found (dominant model: OR=0.87, 95% CI: 0.62-1.23; recessive model: OR=1.30, 95% CI: 0.84-1.99; *1/*2 vs. *1/*1: OR=0.87, 95% CI: 0.63-1.21; *2/*2 vs. *1/*1: OR=1.10, 95% CI: 0.71-1.70). In the subgroup analysis by ethnicity, we observed a significant association in Asian descent (*1/*2 vs. *1/*1: OR=1.63, 95% CI: 1.07-2.49), while a decreased risk was found among Caucasians (dominant model: OR=0.81, 95% CI: 0.66-0.99; *1/*2 vs. *1/*1: OR=0.76, 95% CI: 0.61-0.95). This meta-analysis demonstrated that the ADH1C polymorphism might increase the risk of ALC in Asians, while it may be a protective factor for ALC among Caucasians. PMID:26379912

  14. Structural insights into human 5-lipoxygenase inhibition: combined ligand-based and target-based approach.

    PubMed

    Charlier, Caroline; Hénichart, Jean-Pierre; Durant, François; Wouters, Johan

    2006-01-12

    The human 5-LOX enzyme and its interaction with competitive inhibitors were investigated by means of a combined ligand-based and target-based approach. First, a pharmacophore model was generated for 16 non redox 5-LOX inhibitors with Catalyst (HipHop module). It includes two hydrophobic groups, an aromatic ring, and two hydrogen bond acceptors. The 3D structure of human 5-LOX was then modeled based on the crystal structure of rabbit 15-LOX, and the binding modes of representative ligands were studied by molecular docking. Confrontation of the docking results with the pharmacophore model allowed the weighting of the pharmacophoric features and the integration of structural information. This led to the proposal of an interaction model inside the 5-LOX active site, consisting of four major and two secondary interaction points: on one hand, two hydrophobic groups, an aromatic ring, and a hydrogen bond acceptor, and, on the other hand, an acidic moiety and an additional hydrogen bond acceptor. PMID:16392803

  15. Rapid Stimulation of 5-Lipoxygenase Activity in Potato by the Fungal Elicitor Arachidonic Acid 1

    PubMed Central

    Bostock, Richard M.; Yamamoto, Hiroyuki; Choi, Doil; Ricker, Karin E.; Ward, Bernard L.

    1992-01-01

    The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched β-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response. Images Figure 4 Figure 7 PMID:16653144

  16. Cloning, expression, and preliminary structural characterization of RTN-1C

    SciTech Connect

    Fazi, Barbara; Melino, Sonia; Sano, Federica Di; Cicero, Daniel O.; Piacentini, Mauro . E-mail: mauro.piacentini@uniroma2.it; Paci, Maurizio

    2006-04-14

    Reticulons (RTNs) are endoplasmic reticulum-associated proteins widely distributed in plants, yeast, and animals. They are characterized by unique N-terminal parts and a common 200 amino acid C-terminal domain containing two long hydrophobic sequences. Despite their implication in many cellular processes, their molecular structure and function are still largely unknown. In this study, the reticulon family member RTN-1C has been expressed and purified in Escherichia coli and its molecular structure has been analysed by fluorescence and CD spectroscopy in different detergents in order to obtain a good solubility and a relative stability. The isotopically enriched protein has been also produced to perform structural studies by NMR spectroscopy. The preliminary results obtained showed that RTN-1C protein possesses helical transmembrane segments when a membrane-like environment is produced by detergents. Moreover, fluorescence experiments indicated the exposure of tryptophan side chains as predicted by structure prediction programs. We also produced the isotopically labelled protein and the procedure adopted allowed us to plan future NMR studies to investigate the biochemical behaviour of reticulon-1C and of its peptides spanning out from the membrane.

  17. Analysis of glycosylated hemoglobin (HbA1c) level on maxillofacial fascial space infection in diabetic patients

    PubMed Central

    Jang, Jong-Won; Kim, Moon-Young

    2015-01-01

    Objectives This study was performed to evaluate the impact of glycosylated hemoglobin (HbA1c) level on characteristics and prognosis of maxillofacial fascial infection in diabetic patients. Materials and Methods We reviewed the medical records of 72 patients (35 patients with HbA1c lower than 7.0% and 37 patients with HbA1c higher than 7.0%) diagnosed with maxillofacial fascial space infection and hospitalized for treatment at the Department of Oral and Maxillofacial Surgery in Dankook University Hospital (Cheonan, Korea) from January 2005 to February 2014. We compared demographics, parameters of glucoregulation (HbA1c), laboratory parameters of inflammation (white blood cell [WBC], C-reactive protein [CRP] count), type and number of involved spaces, type and number of antibiotics, period of hospitalization, number of surgical operations, need for tracheostomy, complications, computed tomography (CT), and microorganisms between the two groups. Results Compared with the well-controlled diabetes mellitus (DM) group (HbA1c <7.0%), patients in the poorly-controlled (HbA1c ≥7.0%) DM group had the following characteristics: longer hospitalization periods, higher values of laboratory parameters of inflammation (WBC, CRP count) at the time of admission, higher number of antibiotics prescribed, more frequent complications, frequent deep neck space involvement, and distinctive main causative microorganisms. As the HbA1c level increases, hospitalization periods and incidence of complications increase gradually. Conclusion This retrospective study suggests that regulation of DM significantly impacts maxillofacial fascial infection. Poorly controlled DM with high HbA1c level negatively influences the prognosis of infection. PMID:26568927

  18. Differential regulation of polysome mRNA levels in mouse Hepa-1C1C7 cells exposed to dioxin.

    PubMed

    Thornley, Jessica A; Trask, Heidi W; Ridley, Christian J A; Korc, Murray; Gui, Jiang; Ringelberg, Carol S; Wang, Sinny; Tomlinson, Craig R

    2011-10-01

    The environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) causes a multitude of human illnesses. In order to more fully understand the underlying biology of TCDD toxicity, we tested the hypothesis that new candidate genes could be identified using polysome RNA from TCDD-treated mouse Hepa-1c1c7 cells. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for the remaining polysome RNAs, levels are regulated via several different mechanisms, including a "tagging" of mRNAs in the nucleus for immediate polysome entry; and (iv) most importantly, a gene list derived from differentially expressed polysome RNA generated new genes and cell pathways potentially related to TCDD biology. PMID:21570461

  19. Effects of rutaecarpine on hydrogen peroxide-induced apoptosis in murine hepa-1c1c7 cells.

    PubMed

    Lee, Sung-Jin; Ahn, Hyunjin; Nam, Kung-Woo; Kim, Kyeong Ho; Mar, Woongchon

    2012-09-01

    The aim of this study was to investigate the inhibitory effects of rutaecarpine on DNA strand breaks and apoptosis induced by hydrogen peroxide (H2O2) in murine Hepa-1c1c7 cells. Oxidative DNA damage was estimated by nuclear condensation assessment, fluorescence-activated cell sorting analysis, and Comet assay. Rutaecarpine inhibited cell death induced by 500 μM H2O2, as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Treatment with rutaecarpine reduced the number of DNA strand breaks induced by H2O2, as assessed by DAPI staining and Comet assay, and increased quinone reductase, phosphatidylinositol 3-kinase, and pAkt protein levels, as assessed by western blotting. PMID:24009839

  20. Induction of quinone reductase activity by stilbene analogs in mouse Hepa 1c1c7 cells.

    PubMed

    Heo, Y H; Kim, S; Park, J E; Jeong, L S; Lee, S K

    2001-12-01

    Based on the potential cancer chemopreventive activity of resveratrol, a trihydroxystilbene with the induction of quinone reductase activity, this study was designed to determine if stilbene-related compounds were inducers of phase II detoxifying metabolic enzyme quinone reductase (QR) in the mouse hepatoma Hepa 1c1c7 cells. Among the thirteen compounds tested, several compounds including 3,4,5,3',5'-pentamethoxy-trans-stilbene were found to potentially induce QR activity in this cell line. In addition, substitution with 3-thiofurane ring instead of phenyl ring in the stilbene skeleton also exhibited potential induction of QR activity. This result will give primary information to design the potential inducers of QR activity in the stilbene analogs. PMID:11794542

  1. Effects of Rutaecarpine on Hydrogen Peroxide-Induced Apoptosis in Murine Hepa-1c1c7 Cells

    PubMed Central

    Lee, Sung-Jin; Ahn, Hyunjin; Nam, Kung-Woo; Kim, Kyeong Ho; Mar, Woongchon

    2012-01-01

    The aim of this study was to investigate the inhibitory effects of rutaecarpine on DNA strand breaks and apoptosis induced by hydrogen peroxide (H2O2) in murine Hepa-1c1c7 cells. Oxidative DNA damage was estimated by nuclear condensation assessment, fluorescence-activated cell sorting analysis, and Comet assay. Rutaecarpine inhibited cell death induced by 500 μM H2O2, as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining. Treatment with rutaecarpine reduced the number of DNA strand breaks induced by H2O2, as assessed by DAPI staining and Comet assay, and increased quinone reductase, phosphatidylinositol 3-kinase, and pAkt protein levels, as assessed by western blotting. PMID:24009839

  2. DIFFERENTIAL REGULATION OF POLYSOME mRNA LEVELS IN MOUSE HEPA-1C1C7 CELLS EXPOSED TO DIOXIN

    PubMed Central

    Thornley, Jessica A.; Trask, Heidi W.; Ridley, Christian J. A.; Korc, Murray; Gui, Jiang; Ringelberg, Carol S.; Wang, Sinny; Tomlinson, Craig R.

    2011-01-01

    The environmental agent 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) causes a multitude of human illnesses. In order to more fully understand the underlying biology of TCDD toxicity, we tested the hypothesis that new candidate genes could be identified using polysome RNA from TCDD-treated mouse Hepa-1c1c7 cells. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for the remaining polysome RNAs, levels are regulated via several different mechanisms, including a “tagging” of mRNAs in the nucleus for immediate polysome entry; and (iv) most importantly, a gene list derived from differentially expressed polysome RNA generated new genes and cell pathways potentially related to TCDD biology. PMID:21570461

  3. Induction of quinone reductase activity by psoralidin isolated from Psoralea corylifolia in mouse hepa 1c1c7 cells.

    PubMed

    Lee, Sung-Jin; Nam, Kung-Woo; Mar, Woongchon

    2009-07-01

    Quinone reductase (QR) is a protective phase II enzyme against mutagens and carcinogens which is inducible by a number of chemical compounds in plants. This study was carried out to investigate effects of the fractions from the seeds of Psoralea corylifolia on the induction of QR with Hepa 1c1c7 murine hepatoma cell line. The ethyl acetate-soluble fraction of the methanolic extract from the seeds was found to induce QR and the concentration of 1.5 fold QR induction (1.5 FIC) was 1.2 mug/mL. We obtained as an active compound, psoralidin, isolated from the ethyl acetate-soluble fraction after further sequential fractionation with column chromatography and 1.5 FIC of psoralidin was 0.5 mug/mL. The seeds of Psoralea corylifolia and psoralidin might be a candidate for developing QR inducers. PMID:19641888

  4. The effect of aromatic hydrocarbon receptor on the phenotype of the Hepa 1c1c7 murine hepatoma cells in the absence of dioxin.

    PubMed

    Wang, Feng; Zhang, Ruixue; Shi, Shengli; Hankinson, Oliver

    2007-01-01

    The aromatic hydrocarbon receptor (AhR) mediates biological responses to certain exogenous ligands, such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and has also been demonstrated to modulate the cell cycle and differentiated state of several cell lines independently of exogenous ligands. In this study, we used DNA microarray analysis to elucidate the profile of genes responsive to the expression of unliganded AhR by re-introducing AhR into an AhR-deficient mouse derivative (c19) of the mouse hepatoma cell line Hepa 1c1c7. 22 gene products were up-regulated and 8 were down-regulated two-fold or more in c19 cells infected with a retroviral vector expressing mouse AhR. Surprisingly, expression of genes involved in cell proliferation or differentiation were not affected by introduction of AhR. AhR also did not restore expression of the albumin gene in c19 cells. Introduction of AhR into c12, a similar AhR-defective mouse hepatoma cell line, also did not restore albumin expression, and furthermore, did not lead to changes in cellular morphology or cell cycle parameters. These observations fail to support the notion that unliganded AhR regulates proliferation and differentiation of liver-derived cells. PMID:19936078

  5. The Effect of Aromatic Hydrocarbon Receptor on the Phenotype of the Hepa 1c1c7 Murine Hepatoma Cells in the Absence of Dioxin

    PubMed Central

    Wang, Feng; Zhang, Ruixue; Shi, Shengli; Hankinson, Oliver

    2007-01-01

    The aromatic hydrocarbon receptor (AhR) mediates biological responses to certain exogenous ligands, such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and has also been demonstrated to modulate the cell cycle and differentiated state of several cell lines independently of exogenous ligands. In this study, we used DNA micorarray analysis to elucidate the profile of genes responsive to the expression of unliganded AhR by re-introducing AhR into an AhR-deficient mouse derivative (c19) of the mouse hepatoma cell line Hepa1c1c7. 22 gene products were up-regulated and 8 were down-regulated two-fold or more in c19 cells infected with a retroviral vector expressing mouse AhR. Surprisingly, expression of genes involved in cell proliferation or differentiation were not affected by introduction of AhR. AhR also did not restore expression of the albumin gene in c19 cells. Introduction of AhR into c12, a similar AhR-defective mouse hepatoma cell line, also did not restore albumin expression, and furthermore, did not lead to changes in cellular morphology or cell cycle parameters. These observations fail to support the notion that unliganded AhR regulates proliferation and differentiation of liver-derived cells. PMID:19936078

  6. Catechol-O-methyltransferase association with hemoglobin A1c

    PubMed Central

    Hall, Kathryn T.; Jablonski, Kathleen A.; Chen, Ling; Harden, Maegan; Tolkin, Benjamin R.; Kaptchuk, Ted J.; Bray, George A.; Ridker, Paul M.; Florez, Jose C.; Chasman, Daniel I.

    2016-01-01

    Aims Catecholamines have metabolic effects on blood pressure, insulin sensitivity and blood glucose. Genetic variation in catechol-O-methyltransferase (COMT), an enzyme that degrades catecholamines, is associated with cardiometabolic risk factors and incident cardiovascular disease (CVD). Here we examined COMT effects on glycemic function and type 2 diabetes. Methods We tested whether COMT polymorphisms were associated with baseline HbA1c in the Women’s Genome Health Study (WGHS), and Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), and with susceptibility to type 2 diabetes in WGHS, DIAbetes Genetics Replication And Meta-analysis consortium (DIAGRAM), and the Diabetes Prevention Program (DPP). Given evidence that COMT modifies some drug responses, we examined association with type 2 diabetes and randomized metformin and aspirin treatment. Results COMT rs4680 high-activity G-allele was associated with lower HbA1c in WGHS (β = −0.032% [0.012], p = 0.008) and borderline significant in MAGIC (β = −0.006% [0.003], p = 0.07). Combined COMT per val allele effects on type 2 diabetes were significant (OR = 0.98 [0.96–0.998], p = 0.03) in fixed-effects analyses across WGHS, DIAGRAM, and DPP. Similar results were obtained for 2 other COMT SNPs rs4818 and rs4633. In the DPP, the rs4680 val allele was borderline associated with lower diabetes incidence among participants randomized to metformin (HR = 0.81 [0.65–1.00], p = 0.05). Conclusions COMT rs4680 high-activity G-allele was associated with lower HbA1c and modest protection from type 2 diabetes. The directionality of COMT associations was concordant with those previously observed for cardiometabolic risk factors and CVD. PMID:27282867

  7. Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C.

    PubMed

    Barr, C L; Wigg, K; Zai, G; Roberts, W; Malone, M; Schachar, R; Tannock, R; Kennedy, J L

    2001-05-01

    The adrenergic system has been hypothesized to be involved in the etiology of attention-deficit hyperactivity disorder (ADHD) based on pharmacological interventions and animal models. Noradrenergic neurons are implicated in the modulation of vigilance, improvement of visual attention, initiation of adaptive response, learning and memory. In this study we tested the genes for two adrenergic receptors, alpha 1C (ADRA1C) located on chromosome 8p11.2, and alpha 2C (ADRA2C) located on chromosome 4p16, as genetic susceptibility factors in ADHD. For the adrenergic receptor alpha 1C we used a C to T polymorphism that results in a change of Cys to Arg at codon 492 for the linkage study. For the adrenergic receptor alpha 2C gene we examined a dinucleotide repeat polymorphism located approximately 6 kb from the gene. We examined these polymorphisms in a sample of 103 families ascertained through an ADHD proband. Using the transmission disequilibrium test, we did not observe biased transmission of any of the alleles of these polymorphisms. We conclude that the alleles at the polymorphisms tested in these two genes are not linked to the ADHD phenotype in this sample of families. PMID:11326305

  8. BRAIN-SPECIFIC CARNITINE PALMITOYLTRANSFERASE-1C: ROLE IN CNS FATTY ACID METABOLISM, FOOD INTAKE AND BODY WEIGHT

    PubMed Central

    Wolfgang, Michael J.; Cha, Seung Hun; Millington, David S.; Cline, Gary; Shulman, Gerald I; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M. Daniel

    2014-01-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of CPT1, a mitochondrial outer membrane enzyme that initiates translocation of fatty acids into mitochondria for oxidation. The mammalian brain expresses a unique homologous CPT1, CPT1c, that binds malonyl-CoA tightly but does not support fatty acid oxidation in vivo, in hypothalamic explants or in heterologous cell culture systems. CPT1c KO mice under fasted or refed conditions do not exhibit an altered CNS transcriptome of genes known to be involved in fatty acid metabolism. CPT1c KO mice exhibit normal levels of metabolites and of hypothalamic malonyl-CoA and fatty acyl-CoA levels either in the fasted or refed states. However, CPT1c KO mice exhibit decreased food intake and lower body weight than WT littermates. In contrast, CPT1c KO mice gain excessive body weight and body fat when fed a high-fat diet while maintaining lower or equivalent food intake. Heterozygous mice display an intermediate phenotype. These findings provide further evidence that CPT1c plays a role in maintaining energy homeostasis, but not through altered fatty acid oxidation. PMID:18248603

  9. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    PubMed Central

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C.; Dinger, Katharina; Wempe, Frank; Wohl, Alexander P.; Imhof, Thomas; Wunderlich, F. Thomas; Bunck, Alexander C.; Nakamura, Tomoyuki; Koli, Katri; Bloch, Wilhelm; Ghanem, Alexander; Heinz, Andrea; von Melchner, Harald; Sengle, Gerhard; Sterner-Kock, Anja

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C. PMID:25713297

  10. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding

    PubMed Central

    Jang, Hagoon; Lee, Gha Young; Selby, Christopher P.; Lee, Gung; Jeon, Yong Geun; Lee, Jae Ho; Cheng, Kenneth King Yip; Titchenell, Paul; Birnbaum, Morris J.; Xu, Aimin; Sancar, Aziz; Kim, Jae Bum

    2016-01-01

    SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time points. SREBP1c−/− and CRY1−/− mice show higher blood glucose than wild-type (WT) mice in pyruvate tolerance tests, accompanied with enhanced expression of PEPCK and G6Pase genes. CRY1 promotes degradation of nuclear FOXO1 by promoting its binding to the ubiquitin E3 ligase MDM2. Although SREBP1c fails to upregulate CRY1 expression in db/db mice, overexpression of CRY1 attenuates hyperglycaemia through reduction of hepatic FOXO1 protein and gluconeogenic gene expression. These data suggest that insulin-activated SREBP1c downregulates gluconeogenesis through CRY1-mediated FOXO1 degradation and that dysregulation of hepatic SREBP1c-CRY1 signalling may contribute to hyperglycaemia in diabetic animals. PMID:27412556

  11. SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana.

    PubMed

    Castro, Pedro Humberto; Couto, Daniel; Freitas, Sara; Verde, Nuno; Macho, Alberto P; Huguet, Stéphanie; Botella, Miguel Angel; Ruiz-Albert, Javier; Tavares, Rui Manuel; Bejarano, Eduardo Rodríguez; Azevedo, Herlânder

    2016-09-01

    Sumoylation is an essential post-translational regulator of plant development and the response to environmental stimuli. SUMO conjugation occurs via an E1-E2-E3 cascade, and can be removed by SUMO proteases (ULPs). ULPs are numerous and likely to function as sources of specificity within the pathway, yet most ULPs remain functionally unresolved. In this report we used loss-of-function reverse genetics and transcriptomics to functionally characterize Arabidopsis thaliana ULP1c and ULP1d SUMO proteases. GUS reporter assays implicated ULP1c/d in various developmental stages, and subsequent defects in growth and germination were uncovered using loss-of-function mutants. Microarray analysis evidenced not only a deregulation of genes involved in development, but also in genes controlled by various drought-associated transcriptional regulators. We demonstrated that ulp1c ulp1d displayed diminished in vitro root growth under low water potential and higher stomatal aperture, yet leaf transpirational water loss and whole drought tolerance were not significantly altered. Generation of a triple siz1 ulp1c ulp1d mutant suggests that ULP1c/d and the SUMO E3 ligase SIZ1 may display separate functions in development yet operate epistatically in response to water deficit. We provide experimental evidence that Arabidopsis ULP1c and ULP1d proteases act redundantly as positive regulators of growth, and operate mainly as isopeptidases downstream of SIZ1 in the control of water deficit responses. PMID:27325215

  12. Coronin 1C-free primary mouse fibroblasts exhibit robust rearrangements in the orientation of actin filaments, microtubules and intermediate filaments.

    PubMed

    Behrens, Juliane; Solga, Roxana; Ziemann, Anja; Rastetter, Raphael H; Berwanger, Carolin; Herrmann, Harald; Noegel, Angelika A; Clemen, Christoph S

    2016-08-01

    Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments. PMID:27178841

  13. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  14. Colon cancer cell invasion is promoted by protein kinase CK2 through increase of endothelin-converting enzyme-1c protein stability

    PubMed Central

    Niechi, Ignacio; Silva, Eduardo; Cabello, Pablo; Huerta, Hernan; Carrasco, Valentina; Villar, Paulina; Cataldo, Luis Rodrigo; Marcelain, Katherine; Armisen, Ricardo; Varas-Godoy, Manuel; Fernandez, Cristina; Tapia, Julio C.

    2015-01-01

    Endothelin-converting enzyme-1c (ECE-1c) is a membrane metalloprotease involved in endothelin-1 synthesis, which has been shown in vitro to have a role in breast, ovary and prostate cancer cell invasion. N-terminal end of ECE-1c displays three putative phosphorylation sites for the protein kinase CK2. We studied whether CK2 phosphorylates N-terminal end of ECE-1c as well as whether this has a role in migration and invasion of colon cancer cells. CK2 phosphorylated the N-terminal end of ECE-1c and this was precluded upon inhibition of CK2. Inhibition also led to diminished protein levels of both endogen ECE-1 or GFP-fused N-terminal end of ECE-1c in 293T embryonic and DLD-1 colon cancer cells, which highlighted the importance of this motif on UPS-dependent ECE-1c degradation. Full-length ECE-1c mutants designed either to mimic or abrogate CK2-phosphorylation displayed increased or decreased migration/invasion of colon cancer cells, respectively. Moreover, ECE-1c overexpression or its silencing with a siRNA led to increased or diminished cell migration/invasion, respectively. Altogether, these data show that CK2-increased ECE-1c protein stability is related to augmented migration and invasion of colon cancer cells, shedding light on a novel mechanism by which CK2 may promote malignant progression of this disease. PMID:26543229

  15. Differential expression of type 2 3α/type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) in tumors of the central nervous system

    PubMed Central

    Park, Aubrey L; Lin, Hsueh-Kung; Yang, Qing; Sing, Chor Wing; Fan, Michael; Mapstone, Timothy B; Gross, Naina L; Gumerlock, Mary K; Martin, Michael D; Rabb, Craig H; Fung, Kar-Ming

    2010-01-01

    Human aldo-keto reductase (AKR) 1C3, type 2 3α-hydroxysteroid dehydrogenase (HSC)/ type 5 17β-HSD, is known to be involved in steroids, prostaglandins, and lipid aldehydes metabolism. The expression of AKR1C3 has been demonstrated in hormone-dependent normal tissues such as breast, endometrium, prostate, and testis; and de -regulated AKR1C3 expression has been shown in breast carcinoma, endometrial hyperplasia, endometrial carcinoma, and prostate carcinoma. AKR1C3 expression has also been demonstrated in hormone-independent normal tissues (renal tubules and urothelium) and neoplastic tissues (renal cell carcinoma, Wilm's tumor, and urothelial cell carcinoma). Extensive expression of AKR1C3 in normal and neoplastic as well as hormone-dependent and hormone-independent tissues indicates that AKR1C3 may have functions beyond steroid hormone metabolism. In this report, we describe a widespread expression of AKR1C3 in glial neoplasms and meningiomas, with limited expression in medulloblastoma and no expression in Schwannoma. These tumors, except meningioma, are not classically considered to be sex hormone-dependent or related brain tumors. The current results corroborate our earlier observations that AKR1C3 is expressed in both sex hormone-dependent and hormone-independent malignancies. Similar to AKR1C3 distribution in Wilm’s tumor, we also demonstrate that expression of AKR1C3 is reduced in tumors with embryonic phenotypes. PMID:21151387

  16. Molecular motor KIF1C is not essential for mouse survival and motor-dependent retrograde Golgi apparatus-to-endoplasmic reticulum transport.

    PubMed

    Nakajima, Kazuo; Takei, Yosuke; Tanaka, Yosuke; Nakagawa, Terunaga; Nakata, Takao; Noda, Yasuko; Setou, Mitsutoshi; Hirokawa, Nobutaka

    2002-02-01

    KIF1C is a new member of the kinesin superfamily of proteins (KIFs), which act as microtubule-based molecular motors involved in intracellular transport. We cloned full-length mouse kif1C cDNA, which turned out to have a high homology to a mitochondrial motor KIF1Balpha and to be expressed ubiquitously. To investigate the in vivo significance of KIF1C, we generated kif1C(-/-) mice by knocking in the beta-galactosidase gene into the motor domain of kif1C gene. On staining of LacZ, we detected its expression in the heart, liver, hippocampus, and cerebellum. Unexpectedly, kif1C(-/-) mice were viable and showed no obvious abnormalities. Because immunocytochemistry showed partial colocalization of KIF1C with the Golgi marker protein, we compared the organelle distribution in primary lung fibroblasts from kif1C(+/+) and kif1C(-/-) mice. We found that there was no significant difference in the distribution of the Golgi apparatus or in the transport from the Golgi apparatus to the endoplasmic reticulum (ER) facilitated by brefeldin A between the two cells. This retrograde membrane transport was further confirmed to be normal by time-lapse analysis. Consequently, KIF1C is dispensable for the motor-dependent retrograde transport from the Golgi apparatus to the ER. PMID:11784862

  17. CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia.

    PubMed

    Wolf, Claudia; Mohr, Holger; Schneider-Axmann, Thomas; Reif, Andreas; Wobrock, Thomas; Scherk, Harald; Kraft, Susanne; Schmitt, Andrea; Falkai, Peter; Gruber, Oliver

    2014-03-01

    Affective deficits are one common denominator of schizophrenia (SZ), bipolar disorder (BD) and obsessive compulsive disorder (OCD) with the amygdala indicated as one of the major structures involved in emotion regulation. Previous findings of differences in amygdala volume between healthy controls and patients with SZ, BD or OCD diverge with respect to the affected hemisphere, size and direction of the effect. Variability in the CACNA1C gene has been linked to BD, SZ as well as structural and functional variation in the amygdala in healthy people and patients with BD. We were interested to investigate whether amygdala volumes differ between hemispheres, diagnostic or genotype groups, and whether any interactive effects exist. We combined genotyping of SNP rs1006737 in CACNA1C with structural MRI measurements of relative gray matter (GM) amygdala volume in patients with SZ, BD or OCD as well as healthy controls (N Total = 72). The CACNA1C genotype showed a significant effect on relative GM amygdala volume in patients with SZ. There was a significant left versus right relative GM amygdala volume decrease in patients with SZ or BD. The effects of hemisphere and diagnosis (controls vs. patients with SZ) on relative GM amygdala volume were genotype specific. Our data suggest that the CACNA1C genotype may account for some heterogeneity in the effects of hemisphere and diagnosis on amygdala volume when comparing patients with SZ and controls and point to disturbed Ca(2+)-signaling as a plausible mechanism contributing to the pathology in patients with SZ. PMID:23880959

  18. A1c Variability Can Predict Coronary Artery Disease in Patients with Type 2 Diabetes with Mean A1c Levels Greater than 7

    PubMed Central

    Lee, Eun Ju; Kim, You Jeong; Kim, Tae Nyun; Kim, Tae Ik; Lee, Won Kee; Park, Jeong Hyun; Rhee, Byoung Doo

    2013-01-01

    Background Recent studies suggested that the association of acute glucose variability and diabetic complications was not consistent, and that A1c variability representing long term glucose fluctuation may be related to coronary atherosclerosis in patients with type 1 diabetes. In this study, we attempt to determine whether or not A1c variability can predict coronary artery disease (CAD) in patients with type 2 diabetes. Methods We reviewed data of patients with type 2 diabetes who had undergone coronary angiography (CAG) and had been followed up with for 5 years. The intrapersonal standard deviation (SD) of serially-measured A1c levels adjusted by the different number of assessments among patients (adj-A1c-SD) was considered to be a measure of the variability of A1c. Results Among the 269 patients, 121 of them had type 2 diabetes with CAD. In patients with A1c ≥7%, the mean A1c levels and A1c levels at the time of CAG among the three groups were significantly different. The ratio of patients with CAD was the highest in the high adj-A1c-SD group and the lowest in the low adj-A1c-SD group (P=0.017). In multiple regression analysis, adj-A1c-SD was an independent predictor for CAD in subjects with A1c ≥7% (odds ratio, 2.140; P=0.036). Conclusion Patients with higher A1c variability for several years showed higher mean A1c levels. A1c variability can be an independent predictor for CAD as seen in angiographs of patients with type 2 diabetes with mean A1c levels over 7%. PMID:24396666

  19. Step 1: C3 Flight Demo Data Analysis Plan

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Data Analysis Plan (DAP) describes the data analysis that the C3 Work Package (WP) will perform in support of the Access 5 Step 1 C3 flight demonstration objectives as well as the processes that will be used by the Flight IPT to gather and distribute the data collected to satisfy those objectives. In addition to C3 requirements, this document will encompass some Human Systems Interface (HSI) requirements in performing the C3 flight demonstrations. The C3 DAP will be used as the primary interface requirements document between the C3 Work Package and Flight Test organizations (Flight IPT and Non-Access 5 Flight Programs). In addition to providing data requirements for Access 5 flight test (piggyback technology demonstration flights, dedicated C3 technology demonstration flights, and Airspace Operations Demonstration flights), the C3 DAP will be used to request flight data from Non- Access 5 flight programs for C3 related data products

  20. 32 CFR 651.47 - Public involvement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... encouraged for all Army actions, including EAs. The requirement (40 CFR 1506.6) for public involvement... prepared, public involvement is a requisite element of the scoping process (40 CFR 1501.7(a)(1)). (c) Proponents will invite public involvement in the review and comment of EAs and draft FNSIs (40 CFR...

  1. 32 CFR 651.47 - Public involvement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... encouraged for all Army actions, including EAs. The requirement (40 CFR 1506.6) for public involvement... prepared, public involvement is a requisite element of the scoping process (40 CFR 1501.7(a)(1)). (c) Proponents will invite public involvement in the review and comment of EAs and draft FNSIs (40 CFR...

  2. 32 CFR 651.47 - Public involvement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... encouraged for all Army actions, including EAs. The requirement (40 CFR 1506.6) for public involvement... prepared, public involvement is a requisite element of the scoping process (40 CFR 1501.7(a)(1)). (c) Proponents will invite public involvement in the review and comment of EAs and draft FNSIs (40 CFR...

  3. 32 CFR 651.47 - Public involvement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... encouraged for all Army actions, including EAs. The requirement (40 CFR 1506.6) for public involvement... prepared, public involvement is a requisite element of the scoping process (40 CFR 1501.7(a)(1)). (c) Proponents will invite public involvement in the review and comment of EAs and draft FNSIs (40 CFR...

  4. Characterization of inhibitors of phosphodiesterase 1C on a human cellular system.

    PubMed

    Dunkern, Torsten R; Hatzelmann, Armin

    2007-09-01

    Different inhibitors of the Ca(2+)/calmodulin-stimulated phosphodiesterase 1 family have been described and used for the examination of phosphodiesterase 1 in cellular, organ or animal models. However, the inhibitors described differ in potency and selectivity for the different phosphodiesterase family enzymes, and in part exhibit additional pharmacodynamic actions. In this study, we demonstrate that phosphodiesterase 1C is expressed in the human glioblastoma cell line A172 with regard to mRNA, protein and activity level, and that lower activities of phosphodiesterase 2, phosphodiesterase 3, phosphodiesterase 4 and phosphodiesterase 5 are also present. The identity of the phosphodiesterase 1C activity detected was verified by downregulation of the mRNA and protein through human phosphodiesterase 1C specific small interfering RNA. In addition, the measured K(m) values (cAMP, 1.7 microm; cGMP, 1.3 microm) are characteristic of phosphodiesterase 1C. We demonstrate that treatment with the Ca(2+) ionophore ionomycin increases intracellular Ca(2+) in a concentration-dependent way without affecting cell viability. Under conditions of enhanced intracellular Ca(2+) concentration, a rapid increase in cAMP levels caused by the adenylyl cyclase activator forskolin was abolished, indicating the involvement of Ca(2+)-activated phosphodiesterase 1C. The reduction of forskolin-stimulated cAMP levels was reversed by phosphodiesterase 1 inhibitors in a concentration-dependent way. Using this cellular system, we compared the cellular potency of published phosphodiesterase 1 inhibitors, including 8-methoxymethyl-3-isobutyl-1-methylxanthine, vinpocetine, SCH51866, and two established phosphodiesterase 1 inhibitors developed by Schering-Plough (named compounds 31 and 30). We demonstrate that up to 10 microm 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine had no effect on the reduction of forskolin-stimulated cAMP levels by ionomycin, whereas the more selective and up to 10

  5. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 1c Table 1c to Part 679—Product...

  6. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    SciTech Connect

    Asare, Nana Landvik, Nina E.; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Lag, Marit; Holme, Jorn A.

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.

  7. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells.

    PubMed

    Asare, Nana; Landvik, Nina E; Lagadic-Gossmann, Dominique; Rissel, Mary; Tekpli, Xavier; Ask, Kjetil; Låg, Marit; Holme, Jørn A

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent. PMID:18417179

  8. Benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone induce oxidative stress in hepatoma hepa 1c1c7 Cells by an AHR-dependent pathway.

    PubMed

    Elbekai, Reem H; Korashy, Hesham M; Wills, Kelly; Gharavi, Negar; El-Kadi, Ayman O S

    2004-11-01

    Polycyclic aromatic hydrocarbons have been shown to cause oxidative stress in vitro and in vivo in various animal models but the mechanisms by which these compounds produce oxidative stress are unknown. In the current study we have investigated the role of the aryl hydrocarbon receptor (AHR) in the production of reactive oxygen species (ROS) by its cognate ligands and the consequent effect on cyp1a1 activity, mRNA and protein expressions. For this purpose, Hepa 1c1c7 cells wild-type (WT) and C12 mutant cells, which are AHR-deficient, were incubated with increasing concentrations of the AHR-ligands, benzo[a]pyrene (B[a]P, 0.25-25 microM), 3-methylcholanthrene (3MC, 0.1-10 microM) and beta-naphthoflavone (betaNF, 1-50 microM). The studied AHR-ligands dose-dependently increased lipid peroxidation in WT but not in C12 cells. However, only B[a]P and betaNF, at the highest concentrations tested, significantly increased H2O2 production in WT but not C12 cells. The increase in lipid peroxidation and H2O2 production by AHR-ligands were accompanied by a decrease in the cyp1a1 catalytic activity but not mRNA or protein expressions, which were significantly induced in a dose-dependent manner by all AHR-ligands, suggesting a post-translational mechanism is involved in the decrease of cyp1a1 activity. The AHR-ligand-mediated decrease in cyp1a1 activity was reversed by the antioxidant N-acetylcysteine. Our results show that the AHR-ligands induce oxidative stress by an AHR-dependent pathway. PMID:15621696

  9. Down-regulation of aryl hydrocarbon receptor-regulated genes by tumor necrosis factor-alpha and lipopolysaccharide in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Gharavi, Negar; El-Kadi, Ayman O S

    2005-03-01

    Although much is known concerning the effects of inflammation and oxidative stress on the cytochrome P450 1A1 (CYP1A1), little is known about the modulation of other aryl hydrocarbon receptor (AHR)-regulated genes such as glutathione-S-transferase Ya (GST Ya) and NAD(P)H:quinone oxidoreductase (QOR) by inflammation. In the present study, the effect of tumor necrosis factor (TNF)-alpha and lipopolysaccharides (LPS) on the constitutive and inducible expression of the AHR-regulated genes cyp1a1, GST Ya, and QOR was determined in murine hepatoma Hepa 1c1c7 (WT), AHR-deficient (C12), and AHR nuclear translocator protein (ARNT)-deficient (C4) cells. We found that both TNF-alpha and LPS strongly repressed the constitutive expression and the beta-naphthoflavone-mediated induction of cyp1a1, GST Ya, and QOR in WT but not in C12 and C4 cells. The induction of GST Ya and QOR activities and mRNA levels by phenolic antioxidant, tert-butylhydroquinone, through the antioxidant response element was not significantly affected by TNF-alpha or LPS. In addition, a significant increase in reactive oxygen species was observed in WT, C12, and C4 cells treated with TNF-alpha or LPS which was completely prevented by tert-butylhydroquinone. These results show that the down-regulation of AHR-regulated genes by TNF-alpha and LPS is dependent on the presence of both heterodimeric transcription factors, AHR and ARNT. Furthermore, reactive oxygen species may be involved in the down-regulation of AHR-regulated genes. PMID:15627257

  10. Induction of cytochrome P450 1A1 gene expression by a vitamin K3 analog in mouse hepatoma Hepa-1c1c7 cells.

    PubMed

    Chun, Y J; Lee, B Y; Yang, S A; Ryu, C K; Kim, M Y

    2001-10-31

    Nine vitamin K3 analogs were compared with respect to the induction of the cytochrome P450 1A1 (CYP1A1) expression in mouse hepatoma Hepa-1c1c7 cells. 6-(4-Diethylamino)phenyl-7-chloro-5,8-quinolinedione (EA4) caused a significant induction of the CYP1A1-mediated ethoxyresorufin O-deethylase activity in a time- and concentration-dependent manner. The induction was accompanied by an increase of the Cyp1a1 mRNA transcription. The transient expression of the mouse Cyp1a1-CAT gene into cells showed that EA4 induced CAT activity. However, the aryl hydrocarbon receptor and its nuclear partner, aryl hydrocarbon receptor nuclear translocator mRNA transcription, were unaffected by the EA4 treatment. When the cells were incubated with EA4 in the presence of 1 nM TCDD, the ethoxyresorufin O-deethylase activity that was induced by TCDD was significantly suppressed by EA4. Inhibition of protein synthesis by cycloheximide strongly enhanced the EA4-dependent Cyp1a1 mRNA expression. Up-regulation of protein kinase C by a 2 h preincubation with phorbol 12-myristate 13-acetate increased the EA4-dependent expression of the Cyp1a1 gene. In human cells, such as HepG2 (human hepatocarcinoma), MCF-7 (human breast adenocarcinoma cell line), and HL-60 (human promyelocytic cell line), the expression of CYP1A1 mRNA was also induced by EA4 treatment. Moreover, CYP1B1 mRNA was increased by EA4 in MCF-7 cells. These results indicate that EA4 modulates CYP1A1 and CYP1B1 expressions by transcriptional activation. Also, protein kinase C may be involved in the induction mechanism of CYP1A1 by EA4. PMID:11710520

  11. Selective AKR1C3 inhibitors do not recapitulate the anti-leukaemic activities of the pan-AKR1C inhibitor medroxyprogesterone acetate

    PubMed Central

    Khanim, F; Davies, N; Veliça, P; Hayden, R; Ride, J; Pararasa, C; Chong, M G; Gunther, U; Veerapen, N; Winn, P; Farmer, R; Trivier, E; Rigoreau, L; Drayson, M; Bunce, C

    2014-01-01

    Background: We and others have identified the aldo-keto reductase AKR1C3 as a potential drug target in prostate cancer, breast cancer and leukaemia. As a consequence, significant effort is being invested in the development of AKR1C3-selective inhibitors. Methods: We report the screening of an in-house drug library to identify known drugs that selectively inhibit AKR1C3 over the closely related isoforms AKR1C1, 1C2 and 1C4. This screen initially identified tetracycline as a potential AKR1C3-selective inhibitor. However, mass spectrometry and nuclear magnetic resonance studies identified that the active agent was a novel breakdown product (4-methyl(de-dimethylamine)-tetracycline (4-MDDT)). Results: We demonstrate that, although 4-MDDT enters AML cells and inhibits their AKR1C3 activity, it does not recapitulate the anti-leukaemic actions of the pan-AKR1C inhibitor medroxyprogesterone acetate (MPA). Screens of the NCI diversity set and an independently curated small-molecule library identified several additional AKR1C3-selective inhibitors, none of which had the expected anti-leukaemic activity. However, a pan AKR1C, also identified in the NCI diversity set faithfully recapitulated the actions of MPA. Conclusions: In summary, we have identified a novel tetracycline-derived product that provides an excellent lead structure with proven drug-like qualities for the development of AKR1C3 inhibitors. However, our findings suggest that, at least in leukaemia, selective inhibition of AKR1C3 is insufficient to elicit an anticancer effect and that multiple AKR1C inhibition may be required. PMID:24569460

  12. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  13. SMOS L1C and L2 Validation in Australia

    NASA Technical Reports Server (NTRS)

    Rudiger, Christoph; Walker, Jeffrey P.; Kerr, Yann H.; Mialon, Arnaud; Merlin, Olivier; Kim, Edward J.

    2012-01-01

    Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.

  14. Black hole collapse in the 1 /c expansion

    NASA Astrophysics Data System (ADS)

    Anous, Tarek; Hartman, Thomas; Rovai, Antonin; Sonner, Julian

    2016-07-01

    We present a first-principles CFT calculation corresponding to the spherical collapse of a shell of matter in three dimensional quantum gravity. In field theory terms, we describe the equilibration process, from early times to thermalization, of a CFT following a sudden injection of energy at time t = 0. By formulating a continuum version of Zamolodchikov's monodromy method to calculate conformal blocks at large central charge c, we give a framework to compute a general class of probe observables in the collapse state, incorporating the full backreaction of matter fields on the dual geometry. This is illustrated by calculating a scalar field two-point function at time-like separation and the time-dependent entanglement entropy of an interval, both showing thermalization at late times. The results are in perfect agreement with previous gravity calculations in the AdS3-Vaidya geometry. Information loss appears in the CFT as an explicit violation of unitarity in the 1 /c expansion, restored by nonperturbative corrections.

  15. CD1c-Expression by Monocytes – Implications for the Use of Commercial CD1c+ Dendritic Cell Isolation Kits

    PubMed Central

    Schrøder, Martine; Melum, Guro Reinholt; Landsverk, Ole J. B.; Bujko, Anna; Yaqub, Sheraz; Gran, Einar; Aamodt, Henrik; Bækkevold, Espen S.; Jahnsen, Frode L.

    2016-01-01

    Conventional dendritic cells (cDCs) comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14− cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs. PMID:27311059

  16. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  17. Cardiac phenotype induced by a dysfunctional α1C transgene

    PubMed Central

    Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C

    2011-01-01

    Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human Cav1.2 α1C cDNA deprived of 3′-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading “transgenic artifact” compatible with the expected function of the incorporated “correct” transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of “incidental incorporation” leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains. PMID:21224729

  18. Identification of primary HIV-1C infection in Botswana.

    PubMed

    Novitsky, V; Woldegabriel, E; Wester, C; McDonald, E; Rossenkhan, R; Ketunuti, M; Makhema, J; Seage, G R; Essex, M

    2008-08-01

    Methods for identification of primary HIV infections seem increasingly important to understand pathogenesis, and to prevent transmission, which is particularly efficient during acute infection. Most current algorithms for HIV testing are based on detection of HIV antibodies and are unable to identify early infections before seroconversion. The efficiency of prospective cohorts, which is a standard approach for identifying primary HIV-1 infection, depends on a variety of epidemiological and cultural factors including HIV incidence and stigma and, not surprisingly, varies significantly in different geographical areas. We report a voluntary counseling and testing (VCT)-based approach to identifying primary HIV-1C infection that was developed as part of a primary HIV-1 subtype C infection study in Botswana. The referral strategy was based on: (1) collaboration with VCT centers at city clinics operated by the Ministry of Health; (2) partnering with the busiest non-government VCT center; (3) educating healthcare workers and the community about primary HIV infection; and (4) pairing with diverse VCT providers, including NGOs and private-sector organizations. Acute HIV-1 infections were defined by a negative HIV-1 serology combined with a positive HIV-1 RT-PCR test. Recent HIV-1 infections were identified by detuned EIA testing according to the classic STARTH algorithm. The VCT-based referral strategy resulted in the successful identification of 57 cases of acute and early HIV infection. A referral strategy of expanded VCT with viral RNA (Ribonucleic acid) testing to a national program in Botswana may be a promising approach for identification of primary HIV infections on a countrywide level. The program should offer VCT with viral RNA testing to the general public, facilitate proper counseling and risk reduction, and allow initiation of early HAART, and may reduce new viral transmissions. PMID:18608056

  19. Regulation of Human Cytosolic Sulfotransferases 1C2 and 1C3 by Nuclear Signaling Pathways in LS180 Colorectal Adenocarcinoma Cells

    PubMed Central

    Rondini, Elizabeth A.; Fang, Hailin; Runge-Morris, Melissa

    2014-01-01

    Cytosolic sulfotransferases (SULTs) catalyze the sulfate conjugation of a myriad of endogenous and xenobiotic substrates. Among the 13 human SULTs, little is known regarding regulation of the SULT1C subfamily. We evaluated the effects of a panel of transcription factor activators on levels of SULT1C mRNA (1C2 and 1C3) and protein (1C2) in LS180 colorectal adenocarcinoma cells. Treatment with 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy]phenylacetic acid hydrochloride [GW3965, liver X receptor (LXR) activator], 3-(2,6-dichlorophenyl)-4-(3′-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole [GW4064, farnesoid X receptor (FXR)], or rifampicin [pregnane X receptor (PXR)] moderately (≤2-fold) increased both SULT1C2 and SULT1C3 mRNA levels. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3, vitamin D receptor (VDR)] selectively upregulated SULT1C2, whereas ciprofibrate [peroxisome proliferator-activated receptor α (PPARα)], rosiglitazone (PPARγ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin [aryl hydrocarbon receptor (AhR)] selectively increased SULT1C3 mRNA levels. SULT1C2 protein content was strongly increased by 1,25(OH)2D3 treatment and moderately increased by GW3965, GW4064, and rifampicin. To evaluate SULT1C2 transcriptional regulation, treatment effects were determined on reporter activity from transfected constructs containing ∼10 kb of the SULT1C2 gene. Treatment with GW3965, GW4064, or 1,25(OH)2D3 increased reporter activity ∼2-, 5-, and 5.5-fold, respectively, from a construct containing mostly intron 1 of the SULT1C2 gene. Expression of AhR, LXRα, LXRβ, PPARα, PPARγ, PXR, and VDR was confirmed in LS180 cells using quantitative reverse-transcription polymerase chain reaction; however, FXR expression was negligible, suggesting that GW4064 increased SULT1C expression through an FXR-independent mechanism. Collectively, our findings are the first to characterize the regulation of human SULT1C2 and SULT1C3 expression by

  20. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases

    SciTech Connect

    Dolci, Susanna; Belmonte, Alessia; Santone, Rocco; Giorgi, Mauro; Pellegrini, Manuela; Carosa, Eleonora; Piccione, Emilio; Lenzi, Andrea; Jannini, Emmanuele A. . E-mail: jannini@univaq.it

    2006-03-17

    We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for First time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype.

  1. The correlation between the Glycated hemoglobin (HbA1c) in non-diabetics and cardiovascular risk factors.

    PubMed

    Wu, Xinling; Zhao, Youmin; Chai, Jianwen; Hao, Dongqin

    2016-01-01

    This study aimed to discuss the relativity between the glycated hemoglobin (HbA1c) in non-diabetics and cardiovascular risk factors and definite the significance of predicting the cardiovascular risk factors through cross-sectional research method. There were 2007 cases volunteers (including 650 cases of male, 1357 cases of female) from city community with complete information involved in the research of diabetes. The value of HbA1c 6.5% was set as the diagnose boundary of the diabetes. Differences were considered to be statistically significant at P<0.05. Hypertension, dyslipidemi, being overweight or obesity, age (male was over 45 years old and female was over 55 years old.), HbA1c 6.0% and fasting blood glucose (FBG) 6.1mmol/L were regarded as cardiovascular risk factors. Then we analyzed the number of risk factors for individuals in different HbA1c groups. Meanwhile, patients were grouped into zero, one, two, three, four or more groups with reference to the number of risk factors they had in order to compare the values of risk factors in different groups through Logistic regression. The results showed that (1) For those people who had no less than three risk factors, the frequency of risk factors was on the rise with the increase of HbA1c levels. (2) The value of HbA1c in different groups of risk factors rose with the increasing number of risk factors. There was a significant difference (P<0.001) between groups. (3) The Regression analysis showed that there was a stronger correlation between HbA1c levels and impaired glucose tolerance (IGT), fasting blood glucose (FBG) rather than age. So Non-diabetics whose HbA1c levels ranged from 6.0% to 6.5% were at high risk of cardiovascular risk factors. HbA1c levels, which can be a prediction index for cardiovascular risk factors dependent from other cardiovascular risk factors for non-diabetics, and it were highly relevant with impaired glucose tolerance (IGT) and impaired fasting blood glucose (FBG). PMID:27005508

  2. The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population.

    PubMed

    Huang, Liang; Mo, Yin; Sun, Xuejin; Yu, Hualin; Li, Hao; Wu, Lichuan; Li, Ming

    2016-04-01

    The SNP rs1006737 in CACNA1C gene has been significantly associated with psychiatric disorders (e.g., schizophrenia and bipolar disorder) in European populations. In Han Chinese, rs1006737 is also strongly associated with schizophrenia, although the effects of the psychosis risk SNP on related brain functions and structures in this population remain unclear. Here, we examined the association of rs1006737 with gray matter volume in a sample of 278 healthy Han Chinese. A whole-brain voxel-based morphometry (VBM) analysis revealed a significant association in the region around right superior occipital gyrus (family-wise error corrected, P = 0.023). Our data provides initial evidence for the involvement of this psychosis genetic risk locus in brain structure variations in Chinese population, and calls for further investigations. PMID:26756527

  3. Basal Cancer Cell Survival Involves JNK2 Suppression of a Novel JNK1/c-Jun/Bcl-3 Apoptotic Network

    PubMed Central

    Ahmed, Shafiq Uddin; Milner, Jo

    2009-01-01

    Background The regulation of apoptosis under basal (non-stress) conditions is crucial for normal mammalian development and also for normal cellular turnover in different tissues throughout life. Deficient regulation of basal apoptosis, or its perturbation, can result in impaired development and/or disease states including cancer. In contrast to stress-induced apoptosis the regulation of apoptosis under basal conditions is poorly understood. To address this issue we have compared basal- and stress-induced apoptosis in human epithelial cells of normal and cancerous origins. For this purpose we focussed our study on the opposing pro-apoptotic JNK/anti-apoptotic NFκB pathways. Methodology/Principal Findings Combinatorial RNAi plus gene knockout were employed to access and map basal regulatory pathways of apoptosis. Follow-on, in-depth analyses included exogenous expression of phosphorylation mutants and chromatin immunoprecipitation. We demonstrate that basal apoptosis is constitutively suppressed by JNK2 in a range of human cancer cell lines. This effect was not observed in non-cancer cells. Silencing JNK2 by RNAi resulted in JNK1-dependent apoptosis of cancer cells via up-regulation of the AP-1 factor c-Jun. Unexpectedly we discovered that JNK1 and c-Jun promote basal apoptosis in the absence of “activating phosphorylations” typically induced by stress. Hypo-phosphorylated c-Jun accumulated to high levels following JNK2 silencing, auto-regulated its own expression and suppressed expression of Bcl-3, an unusual IκB protein and regulator of NFκB. Basal apoptosis was mediated by components of the TNFα response pathway but was mechanistically distinct from TNFα-induced apoptosis. Conclusions/Significance Our results demonstrate that mechanistically distinct pathways operate to regulate apoptosis in mammalian cells under basal (physiological) versus stress-induced conditions. We also describe a novel apoptotic network which governs the basal survival of cancer cells. Such information is crucial for understanding normal cellular turnover during mammalian development and subsequently throughout life. This information also opens new avenues for therapeutic intervention in human proliferative disease states including cancer. PMID:19806201

  4. Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures1[C][W

    PubMed Central

    De Michele, Roberto; Vurro, Emanuela; Rigo, Chiara; Costa, Alex; Elviri, Lisa; Di Valentin, Marilena; Careri, Maria; Zottini, Michela; Sanità di Toppi, Luigi; Lo Schiavo, Fiorella

    2009-01-01

    Exposure to cadmium (Cd2+) can result in cell death, but the molecular mechanisms of Cd2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 μm CdCl2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by NG-monomethyl-arginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd2+-induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd2+ cytotoxicity in plants. PMID:19261736

  5. Parent Involvement.

    ERIC Educational Resources Information Center

    LaCrosse, Ed

    The paper discusses the rationale and guidelines for parent involvement in HCEEP (Handicapped Children's Early Education Program) projects. Ways of assessing parents' needs are reviewed, as are four types of services to meet the identified needs: parent education, direct participation, parent counseling, and parent provided programs. Materials and…

  6. Knowledge of A1c Predicts Diabetes Self-Management and A1c Level among Chinese Patients with Type 2 Diabetes.

    PubMed

    Yang, Shengnan; Kong, Weimin; Hsue, Cunyi; Fish, Anne F; Chen, Yufeng; Guo, Xiaohui; Lou, Qingqing; Anderson, Robert

    2016-01-01

    This study was to identify current A1c understanding status among Chinese patients with type 2 diabetes, assess if knowledge of A1c affects their diabetes self-management and their glycemic control and recognize the factors influencing knowledge of A1c among patients with type 2 diabetes. A multi-center, cross-sectional survey was conducted between April and July 2010 in 50 medical centers in the Mainland China. Participants were recruited from inpatients and outpatients who were admitted to or visited those medical centers. The survey included core questions about their demographic characteristics, diabetes self-management behavior, and A1c knowledge. Overall, of 5957 patients, the percentage of patients with good understanding was 25.3%. In the multivariable logistic regression model, the variables related to the knowledge of A1c status are presented. We discovered that patients with longer diabetes duration (OR = 1.05; 95%CI = 1.04-1.06) and having received diabetes education (OR = 1.80; 95%CI = 1.49-2.17) were overrepresented in the good understanding of A1c group. In addition, compared to no education level, higher education level was statistically associated with good understanding of A1c (P<0.001). The percentage of patients with good understanding varied from region to region (P<0.001), with Eastern being highest (OR = 1.54; 95%CI = 1.32-1.80), followed by Central (OR = 1.25; 95%CI = 1.02-1.53), when referring to Western. Only a minority of patients with type 2 diabetes in China understood their A1c value. The patients who had a good understanding of their A1c demonstrated significantly better diabetes self-management behavior and had lower A1c levels than those who did not. PMID:26959422

  7. Cholesteryl esters stabilize human CD1c conformations for recognition by self-reactive T cells

    PubMed Central

    Mansour, Salah; Tocheva, Anna S.; Cave-Ayland, Chris; Machelett, Moritz M.; Sander, Barbara; Lissin, Nikolai M.; Molloy, Peter E.; Baird, Mark S.; Stübs, Gunthard; Schröder, Nicolas W. J.; Schumann, Ralf R.; Rademann, Jörg; Postle, Anthony D.; Jakobsen, Bent K.; Marshall, Ben G.; Gosain, Rajendra; Elkington, Paul T.; Elliott, Tim; Skylaris, Chris-Kriton; Essex, Jonathan W.; Tews, Ivo; Gadola, Stephan D.

    2016-01-01

    Cluster of differentiation 1c (CD1c)-dependent self-reactive T cells are abundant in human blood, but self-antigens presented by CD1c to the T-cell receptors of these cells are poorly understood. Here we present a crystal structure of CD1c determined at 2.4 Å revealing an extended ligand binding potential of the antigen groove and a substantially different conformation compared with known CD1c structures. Computational simulations exploring different occupancy states of the groove reenacted these different CD1c conformations and suggested cholesteryl esters (CE) and acylated steryl glycosides (ASG) as new ligand classes for CD1c. Confirming this, we show that binding of CE and ASG to CD1c enables the binding of human CD1c self-reactive T-cell receptors. Hence, human CD1c adopts different conformations dependent on ligand occupancy of its groove, with CE and ASG stabilizing CD1c conformations that provide a footprint for binding of CD1c self-reactive T-cell receptors. PMID:26884207

  8. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2 Prohibition of electric energy market manipulation. (a) It shall be unlawful for any entity, directly...

  9. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2 Prohibition of electric energy market manipulation. (a) It shall be unlawful for any entity, directly...

  10. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION § 1c.2 Prohibition of electric energy market manipulation. (a) It shall be unlawful for any entity, directly...

  11. 50 CFR Table 1c to Part 679 - Product Tyoe Codes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Tyoe Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Table 1c to Part 679—Product Tyoe Codes Description Code Ancillary product.A product, such as...

  12. 7 CFR 1c.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Early termination of research support: Evaluation of applications and proposals. 1c.123 Section 1c.123 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.123 Early termination of research support: Evaluation of applications...

  13. MicroRNA-674-5p/5-LO axis involved in autoimmune reaction of Concanavalin A-induced acute mouse liver injury.

    PubMed

    Su, Kunkai; Wang, Qi; Qi, Luoyang; Hua, Dasong; Tao, Jingjing; Mangan, Connor J; Lou, Yijia; Li, Lanjuan

    2016-09-01

    Autoimmune hepatitis is characterized, in part, by the pathways involving cysteinyl-leukotriene metabolites of arachidonic acid, the dynamics of which remain unclear. Here, we explored post-transcriptional regulation in the 5-lipoxygenase (5-LO) pathway of arachidonic acid in a Concanavalin A (Con A) induced mouse model. We found that Con A administration lead to 5-LO overexpression and cysteinyl-leukotriene release in early hepatic injury, which was attenuated by cyclosporin A pretreatment. Subsequent microarray and qRT-PCR analysis further showed that microRNA-674-5p (miR-674-5p) displayed a significant decrease in expression in Con A-damaged liver. Noting that miR-674-5p harbors a potential binding region for 5-LO, we further transfected hepatic cell lines with overexpressing miR-674-5p mimic and discovered a negative regulating effect of miR-674-5p on 5-LO expression in the presence of IL-6 or TNF-α. These findings suggest that miR-674-5p might be a negative regulator in 5-LO mediated autoimmune liver injury, representing a compelling avenue towards future therapeutic interventions. PMID:27313091

  14. Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value

    PubMed Central

    Brunel, Valéry; Lahary, Agnčs; Chagraoui, Abdeslam; Thuillez, Christian

    2016-01-01

    Glycated haemoglobin (HbA1c) is considered the gold standard for assessing diabetes compensation and treatment. In addition, fortuitous detection of haemoglobin variants during HbA1c measurement is not rare. Recently, two publications reported different conclusions on accuracy of HbA1c value using capillary electrophoresis method in presence of haemoglobin J-Baltimore (HbJ).
Here we describe the fortuitous detection of unknown HbJ using capillary electrophoresis for measurement of HbA1c. A patient followed for gestational diabetes in our laboratory presented unknown haemoglobin on Capillarys 2 Flex Piercing analyser which was identified as HbJ. HbJ is not associated with haematological abnormalities. High Performance Liquid Chromatography methods are known to possibly underestimate HbA1c value in the presence of this variant. This variant and its glycated form are clearly distinguished on electropherogram but HbJ was responsible for underestimating the true area of HbA1c.
Capillary electrophoresis is a good method for detecting HbJ but does not seem suitable for evaluation of HbA1C value in patients in presence of HbJ variant. PMID:27346969

  15. Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population.

    PubMed

    Kowalski, Andrzej; Pa Yga, Jan; Górnicka-Michalska, Ewa; Bernacki, Zenon; Adamski, Marek

    2010-07-01

    Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043). PMID:21637419

  16. Remarkable beta-selectivity in the synthesis of beta-1-C-arylglucosides: stereoselective reduction of acetyl-protected methyl 1-C-arylglucosides without acetoxy-group participation.

    PubMed

    Deshpande, Prashant P; Ellsworth, Bruce A; Buono, Frederic G; Pullockaran, Annie; Singh, Janak; Kissick, Thomas P; Huang, Ming-H; Lobinger, Hildegard; Denzel, Theodor; Mueller, Richard H

    2007-12-01

    An efficient and practical process to generate beta-C-arylglucoside derivatives was achieved. The process described involves Lewis acid mediated ionic reduction of a peracetylated 1-C-aryl methyl glucoside derived from the addition of an aryl-Li to selectively protected delta-D-gluconolactone. The reduction of the 2-acetoxy-1-C-oxacarbenium ion intermediates proceeds with a high degree of selectivity to give beta-C-arylglucosides without 2-acetoxy group participation. Furthermore, during the reduction process we also identified an unprecedented critical role of water. By changing from the usual benzyl ether protecting groups because of cost and chemical compatibility concerns, the new process is made additionally efficient and highly selective. PMID:17997568

  17. Effects of benzyl isothiocyanate and its N-acetylcysteine conjugate on induction of detoxification enzymes in hepa1c1c7 mouse hepatoma cells.

    PubMed

    Hwang, Eun-Sun

    2014-12-01

    The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with 0.1~10 μM BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; 0.5 μM and 10 μM NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with 0.1~2.0 μM BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with 1 μM and 2 μM BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with 1 μM and 2 μM NAC-BITC caused 1.6- and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in 0.1~2 μM BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in 0.1 μM NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., 1~2 μM) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents. PMID:25580390

  18. Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

    PubMed Central

    Hwang, Eun-Sun

    2014-01-01

    The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with 0.1~10 μM BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; 0.5 μM and 10 μM NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with 0.1~2.0 μM BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with 1 μM and 2 μM BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with 1 μM and 2 μM NAC-BITC caused 1.6- and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in 0.1~2 μM BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in 0.1 μM NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., 1~2 μM) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents. PMID:25580390

  19. MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway.

    PubMed

    Bouillez, Audrey; Gnemmi, Viviane; Gaudelot, Kelly; Hémon, Brigitte; Ringot, Bélinda; Pottier, Nicolas; Glowacki, François; Butruille, Caroline; Cauffiez, Christelle; Hamdane, Malika; Sergeant, Nicolas; Van Seuningen, Isabelle; Leroy, Xavier; Aubert, Sébastien; Perrais, Michaël

    2014-02-15

    MUC1 is a membrane-anchored mucin and its cytoplasmic tail (CT) can interact with many signaling pathways and act as a co-transcription factor to activate genes involved in tumor progression and metastasis. MUC1 is overexpressed in renal cell carcinoma with correlation to prognosis and has been implicated in the hypoxic pathway, the main renal carcinogenetic pathway. In this context, we assessed the effects of MUC1 overexpression on renal cancer cells properties. Using shRNA strategy and/or different MUC1 constructs, we found that MUC1-extracellular domain and MUC1-CT are involved in increase of migration, cell viability, resistance to anoikis and in decrease of cell aggregation in cancer cells. Invasiveness depends only on MUC1-CT. Then, by using siRNA strategy and/or pharmacological inhibitors or peptides, we showed that sheddases ADAM10, ADAM17 and gamma-secretase are necessary for MUC1 C-terminal subunit (MUC1-C) nuclear location and in increase of invasion property. Finally, MUC1 overexpression increases ADAM10/17 protein expression suggesting a positive regulatory loop. In conclusion, we report that MUC1 acts in renal cancer progression and MUC1-C nuclear localization drives invasiveness of cancer cells through a sheddase/gamma secretase dependent pathway. MUC1 appears as a therapeutic target by blocking MUC1 cleavage or nuclear translocation by using pharmacological approach and peptide strategies. PMID:24504508

  20. MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway

    PubMed Central

    Gaudelot, Kelly; Hémon, Brigitte; Ringot, Bélinda; Pottier, Nicolas; Glowacki, François; Butruille, Caroline; Cauffiez, Christelle; Hamdane, Malika; Sergeant, Nicolas; Seuningen, Isabelle Van; Leroy, Xavier

    2014-01-01

    MUC1 is a membrane-anchored mucin and its cytoplasmic tail (CT) can interact with many signaling pathways and act as a co-transcription factor to activate genes involved in tumor progression and metastasis. MUC1 is overexpressed in renal cell carcinoma with correlation to prognosis and has been implicated in the hypoxic pathway, the main renal carcinogenetic pathway. In this context, we assessed the effects of MUC1 overexpression on renal cancer cells properties. Using shRNA strategy and/or different MUC1 constructs, we found that MUC1-extracellular domain and MUC1-CT are involved in increase of migration, cell viability, resistance to anoikis and in decrease of cell aggregation in cancer cells. Invasiveness depends only on MUC1-CT. Then, by using siRNA strategy and/or pharmacological inhibitors or peptides, we showed that sheddases ADAM10, ADAM17 and gamma-secretase are necessary for MUC1 C-terminal subunit (MUC1-C) nuclear location and in increase of invasion property. Finally, MUC1 overexpression increases ADAM10/17 protein expression suggesting a positive regulatory loop. In conclusion, we report that MUC1 acts in renal cancer progression and MUC1-C nuclear localization drives invasiveness of cancer cells through a sheddase/gamma secretase dependent pathway. MUC1 appears as a therapeutic target by blocking MUC1 cleavage or nuclear translocation by using pharmacological approach and peptide strategies. PMID:24504508

  1. Carnitine palmitoyltransferase-1c gain-of-function in the brain results in postnatal microencephaly.

    PubMed

    Reamy, Amanda A; Wolfgang, Michael J

    2011-08-01

    Carnitine palmitoyltransferase-1c (CPT1c) is a newly identified and poorly understood brain-specific CPT1 homologue. Here, we have generated a new animal model that allows the conditional expression of CPT1c in a tissue specific and/or temporal manner via Cre-lox mediated recombination. Brain-specific, exogenous expression of CPT1c was achieved by crossing transgenic CPT1c mice to Nestin-Cre mice. The resulting double transgenic mice (CPT1c-TgN) displayed severe growth retardation in the postnatal period with a stunted development at 2 weeks of age. CPT1c-TgN mice had a greater than 2.3-fold reduction in brain weight. Even with this degree of microencephaly, CPT1c-TgN mice were viable and fertile and exhibited normal post-weaning growth. When fed a high fat diet CPT1c-TgN mice were protected from weight gain and the difference in body weight between CPT1c-TgN and control mice was further exaggerated. Conversely, low fat, high carbohydrate feeding partially reversed the body weight defects in CPT1c-TgN mice. Analysis of total brain lipids of low fat fed mice revealed a depletion of total very long chain fatty acids in adult CPT1c-TgN mice which was not evident in high fat fed CPT1c-TgN mice. These data show that CPT1c can elicit profound effects on brain physiology and total fatty acid profiles, which can be modulated by the nutritional composition of the diet. PMID:21592121

  2. A meta-analysis of the association between NQO1 C609T variation and acute myeloid leukemia risk.

    PubMed

    Li, Cuiping; Liu, Yun; Wei, Shujiao; Zhou, Yang

    2014-05-01

    Quinone oxidoreductase (NQO1) C609T polymorphisms have been implicated in acute myeloblastic leukemia (AML) risk, but previously published studies are inconsistent and recent meta-analyses have not been adequate. To derive a more precise estimation of the relationship, a meta-analysis was performed. Medline, PubMed, Embase, and Web of Science were searched. The quality of studies was evaluated by using the Newcastle-Ottawa Scale (NOS). Crude ORs with 95% CIs were used to assess the strength of association between the NQO1 C609T polymorphisms and AML risk. A total of 14 studies including 2,245 cases and 3,310 controls were involved in this meta-analysis. Overall, significantly elevated AML risk was associated with NQO1 C609T variant genotypes when all studies were pooled into the meta-analysis (TT vs. CC: OR = 1.44, 95% CI = 1.15-1.81; dominant model: OR = 1.35, 95% CI = 1.09-1.68). In the subgroup analysis by ethnicity, significantly increased risks were found for Asians (OR = 1.47, 95% CI = 1.13-1.93, P = 0.005, I(2) = 48.4%, P = 0.071 for heterogeneity). When stratified by studies of adults or children, statistically significantly elevated risks were found among adults (OR = 1.37, 95% CI = 1.06-1.76, P = 0.017, I(2) = 42.2%, P = 0.097 for heterogeneity). The accumulated evidence indicates that NQO1 C609T seems to confer a risk factor for AML among Asians and adults. Significant between-study heterogeneity was observed, thus more studies based on larger case-control population are required to further evaluate the role of NQO1 C609T polymorphism in AML. PMID:24474393

  3. The synthetic retinoid AGN 193109 but not retinoic acid elevates CYP1A1 levels in mouse embryos and Hepa-1c1c7 cells.

    PubMed

    Soprano, D R; Gambone, C J; Sheikh, S N; Gabriel, J L; Chandraratna, R A; Soprano, K J; Kochhar, D M

    2001-07-15

    The synthetic retinoid AGN 193109 is a potent pan retinoic acid receptor (RAR) antagonist. Treatment of pregnant mice with a single oral 1 mg/kg dose of this antagonist on day 8 postcoitum results in severe craniofacial (median cleft face or frontonasal deficiency) and eye malformations in virtually all exposed fetuses. Using differential display analysis, we have determined that CYP1A1 mRNA levels are elevated in mouse embryos 6 h following treatment with AGN 193109. Similarly, an elevation in CYP1A1 mRNA levels, protein levels, and aryl hydrocarbon hydoxylase activity occurs in Hepa-1c1c7 cells, with the maximal elevation observed when the cells were treated with 10(-5) M AGN 193109 for 4 to 8 h. Elevation in CYP1A1 mRNA levels in mouse embryos and Hepa-1c1c7 cells does not occur upon treatment with the natural retinoid, all-trans-retinoic acid. Finally, elevation in CYP1A1 mRNA levels was not observed when mutant Hepa-1c1c7 cells, which are defective in either the aryl hydrocarbon receptor (AhR) or aryl hydrocarbon receptor nuclear translocator (ARNT), were treated with AGN 193109. This suggests that the AhR/ARNT pathway and not the RAR/RXR pathway is mediating the elevation of CYP1A1 mRNA levels by AGN 193109, at least in the Hepa-1c1c7 cells. This is the first example of a retinoid that displays the abililty to regulate both the RAR/RXR and AhR/ARNT transcriptional regulatory pathways. PMID:11446831

  4. Development of Potent and Selective Inhibitors of Aldo-Keto Reductase 1C3 (type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure Activity Relationships

    PubMed Central

    Adeniji, Adegoke O.; Twenter, Barry M.; Byrns, Michael C.; Jin, Yi; Chen, Mo; Winkler, Jeffrey D.; Penning, Trevor M.

    2012-01-01

    Aldo-keto reductase 1C3 (AKR1C3; type 5 17β-hydroxysteroid dehydrogenase) is overexpressed in castrate resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required since compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular are potent but non-selective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid as lead compound, five classes of structural analogs were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads towards new therapeutics for CRPC. PMID:22263837

  5. E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis.

    PubMed

    Tong, Xin; Li, Pei; Zhang, Deqiang; VanDommelen, Kyle; Gupta, Neil; Rui, Liangyou; Omary, M Bishr; Yin, Lei

    2016-07-01

    Upon food intake, insulin stimulates de novo lipogenesis (DNL) in hepatocytes via the AKT-mTORC1-sterol regulatory element-binding protein (SREBP)-1c pathway. How insulin maintains the maximal SREBP-1c activities during the entire feeding state remains elusive. We previously reported that insulin induced b-ZIP transcription factor, E4-binding protein 4 (E4BP4), in hepatocytes. In the current study, we show that insulin injection increases hepatic E4bp4 expression by activating the AKT-mTORC1-SREBP-1c pathway in hepatocytes. E4bp4-deficient hepatocytes not only fail to maintain robust DNL but also become resistant to SREBP-1c-induced lipogenesis. In vivo, acute depletion of E4bp4 in the liver by adenoviral shRNA reduces the expression of lipogenic enzymes and results in reduced levels of serum triglycerides and cholesterol during the postprandial phase. In hepatocytes, E4BP4 interacts with nuclear SREBP-1c to preserve its acetylation, and subsequently protects it from ubiquitination-dependent degradation. In conclusion, the current studies uncover a novel positive feedback pathway mediated by E4BP4 to augment SREBP-1c-mediated DNL in the liver during the fed state. PMID:27252523

  6. Cytokine-mediated suppression of cytochrome P450 1A1 in Hepa-1c1c7 cells by pokeweed mitogen.

    PubMed

    Jeong, H G

    2001-02-28

    This study investigated the effects of pokeweed mitogen (PWM) on the regulation of cytochrome P450 (P450) 1A1 expression in an in vitro model, using murine hepatoma cell line Hepa-1c1c7 and murine macrophage cell line RAW 264.7 cell cultures. PWM added directly to Hepa-1c1c7 cells had no effect on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced P450 1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. However, TCDD-induced EROD activity and P450 1A1 mRNA levels were markedly suppressed when Hepa-1c1c7 cells were cultured with PWM-treated conditioned media from RAW 264.7 in a dose-dependent manner. Concomitant treatment with PWM and pentoxifylline, a TNFalpha synthesis inhibitor, to RAW 264.7 cells decreased the suppressive effects of PWM on TCDD-induced EROD activity. In PWM-exposed RAW 264.7 cell cultures, TNFalpha and IL-6 levels increased in a dose-dependent fashion. When antibodies to TNFalpha or/and IL-6 were added to PWM-treated conditioned media from RAW 264.7, the suppression of EROD activity was inhibited. These results suggested the suppression of P450 1A1 by PWM was mediated exclusively by TNFalpha and IL-6, released from macrophages. PMID:11311574

  7. Ceramide levels regulated by carnitine palmitoyltransferase 1C control dendritic spine maturation and cognition.

    PubMed

    Carrasco, Patricia; Sahún, Ignasi; McDonald, Jerome; Ramírez, Sara; Jacas, Jordi; Gratacós, Esther; Sierra, Adriana Y; Serra, Dolors; Herrero, Laura; Acker-Palmer, Amparo; Hegardt, Fausto G; Dierssen, Mara; Casals, Núria

    2012-06-15

    The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning. PMID:22539351

  8. Ceramide Levels Regulated by Carnitine Palmitoyltransferase 1C Control Dendritic Spine Maturation and Cognition*

    PubMed Central

    Carrasco, Patricia; Sahún, Ignasi; McDonald, Jerome; Ramírez, Sara; Jacas, Jordi; Gratacós, Esther; Sierra, Adriana Y.; Serra, Dolors; Herrero, Laura; Acker-Palmer, Amparo; Hegardt, Fausto G.; Dierssen, Mara; Casals, Núria

    2012-01-01

    The brain-specific isoform carnitine palmitoyltransferase 1C (CPT1C) has been implicated in the hypothalamic regulation of food intake and energy homeostasis. Nevertheless, its molecular function is not completely understood, and its role in other brain areas is unknown. We demonstrate that CPT1C is expressed in pyramidal neurons of the hippocampus and is located in the endoplasmic reticulum throughout the neuron, even inside dendritic spines. We used molecular, cellular, and behavioral approaches to determine CPT1C function. First, we analyzed the implication of CPT1C in ceramide metabolism. CPT1C overexpression in primary hippocampal cultured neurons increased ceramide levels, whereas in CPT1C-deficient neurons, ceramide levels were diminished. Correspondingly, CPT1C knock-out (KO) mice showed reduced ceramide levels in the hippocampus. At the cellular level, CPT1C deficiency altered dendritic spine morphology by increasing immature filopodia and reducing mature mushroom and stubby spines. Total protrusion density and spine head area in mature spines were unaffected. Treatment of cultured neurons with exogenous ceramide reverted the KO phenotype, as did ectopic overexpression of CPT1C, indicating that CPT1C regulation of spine maturation is mediated by ceramide. To study the repercussions of the KO phenotype on cognition, we performed the hippocampus-dependent Morris water maze test on mice. Results show that CPT1C deficiency strongly impairs spatial learning. All of these results demonstrate that CPT1C regulates the levels of ceramide in the endoplasmic reticulum of hippocampal neurons, and this is a relevant mechanism for the correct maturation of dendritic spines and for proper spatial learning. PMID:22539351

  9. The Glucose Measurement Industry and Hemoglobin A1c: An Opportunity for Creative Destruction.

    PubMed

    Cembrowski, George

    2016-01-01

    The MyStar Extra self-monitoring blood glucose (SMBG) system provides moving estimates of the patient's hemoglobin A1c (HbA1c). There is a treasure trove of highly accurate glucose data available from highly accurate SMBG, CGM and FGM along with highly accurate HPLC HbA1c. If Nathan's criteria are used to select subjects whose glucoses can be correlated to the HbA1c, then algorithms can be developed for robustly transforming glucose into HbA1c. These algorithms can then be implemented in any SMBG or with the CGM and FGM software. This calculated HbA1c would even be accurate with Nathan's excluded population thus reducing the use of fructosamine and glycated protein. Finally, the developer of these new algorithms is advised to use a specific approach for testing her algorithm. PMID:26481643

  10. [Evaluation of D10 hemoglobin testing system for hemoglobin A1C assay].

    PubMed

    Marzullo, C; Minery, M

    2008-01-01

    Bio-Rad D10 hemoglobin testing system with rack loader for hemoglobinA1C assay was evaluated. Analytical qualities were satisfactory. Imprecision was good (within-run cv was 0,5% for 4,5% of HBA(1C), 0,63% for 7,4% of HBA1C, 0,46% for 11,1% of HBA1C, between-run cv was 1,16% for 4,7% of HBA1C, 1,01% for 7,6% of HBA1C, 1,04% for 11,2% of HBA1C). Results were very well correlated with those obtained on Bio-Rad Variant II (r = 0,998). Bland and Altman graph showed good agreement between the two methods for HbA1C under 15%. The measuring range was up to 18,3% of HBA1C. There was no specimen related carry over. Triglycerides under 5,5 mmol/L and bilirubin under 734 mumol/L did not interfere. Carbamylation of HBA1C did not interfere for urea concentration under 14 mmol/L. Practicability was very good. Detection of common hemoglobin variants (HbS, C, D, E, O) is available. Fast and easy switching between short and long program allows to perform HBA1C determination for patients with hemoglobin variants. So, D10 is an interesting and easy to use small HPLC automate witch offers accurate HBA1C quantification certified by NGSP. PMID:18227011

  11. Methods, units and quality requirements for the analysis of haemoglobin A1c in diabetes mellitus.

    PubMed

    Penttilä, Ilkka; Penttilä, Karri; Holm, Päivi; Laitinen, Harri; Ranta, Päivi; Törrönen, Jukka; Rauramaa, Rainer

    2016-06-26

    The formation of glycohemoglobin, especially the hemoglobin A1c (HbA1c) fraction, occurs when glucose becomes coupled with the amino acid valine in the β-chain of Hb; this reaction is dependent on the plasma concentration of glucose. Since the early 1970s it has been known that diabetics display higher values OF HbA1C because they have elevated blood glucose concentrations. Thus HbA1c has acquired a very important role in the treatment and diagnosis of diabetes mellitus. After the introduction of the first quantitative measurement OF HbA1C, numerous methods for glycohemoglobin have been introduced with different assay principles: From a simple mini-column technique to the very accurate automated high-pressure chromatography and lastly to many automated immunochemical or enzymatic assays. In early days, the results of the quality control reports for HbA1c varied extensively between laboratories, therefore in United States and Canada working groups (WG) of the Diabetes Controls and Complications Trial (DCCT) were set up to standardize the HbA1c assays against the DCCT/National Glycohemoglobin Standardization Program reference method based on liquid chromatography. In the 1990s, the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) appointed a new WG to plan a reference preparation and method for the HBA1c measurement. When the reference procedures were established, in 2004 IFCC recommended that all manufacturers for equipment used in HbA1c assays should calibrate their methods to their proposals. This led to an improvement in the coefficient of variation (CV%) associated with the assay. In this review, we describe the glycation of Hb, methods, standardization of the HbA1c assays, analytical problems, problems with the units in which HbA1c values are expressed, reference values, quality control aspects, target requirements for HbA1c, and the relationship of the plasma glucose values to HbA1c concentrations. We also note that the acceptance

  12. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis

    PubMed Central

    Wolfgang, Michael J.; Kurama, Takeshi; Dai, Yun; Suwa, Akira; Asaumi, Makoto; Matsumoto, Shun-ichiro; Cha, Seung Hun; Shimokawa, Teruhiko; Lane, M. Daniel

    2006-01-01

    Fatty acid synthesis in the central nervous system is implicated in the control of food intake and energy expenditure. An intermediate in this pathway, malonyl-CoA, mediates these effects. Malonyl-CoA is an established inhibitor of carnitine palmitoyltransferase-1 (CPT1), an outer mitochondrial membrane enzyme that controls entry of fatty acids into mitochondria and, thereby, fatty acid oxidation. CPT1c, a brain-specific enzyme with high sequence similarity to CPT1a (liver) and CPT1b (muscle) was recently discovered. All three CPTs bind malonyl-CoA, and CPT1a and CPT1b catalyze acyl transfer from various fatty acyl-CoAs to carnitine, whereas CPT1c does not. These findings suggest that CPT1c has a unique function or activation mechanism. We produced a targeted mouse knockout (KO) of CPT1c to investigate its role in energy homeostasis. CPT1c KO mice have lower body weight and food intake, which is consistent with a role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c KO mice fed a high-fat diet are more susceptible to obesity, suggesting that CPT1c is protective against the effects of fat feeding. CPT1c KO mice also exhibit decreased rates of fatty acid oxidation, which may contribute to their increased susceptibility to diet-induced obesity. These findings indicate that CPT1c is necessary for the regulation of energy homeostasis. PMID:16651524

  13. The Rab6-regulated KIF1C kinesin motor domain contributes to Golgi organization

    PubMed Central

    Lee, Peter L; Ohlson, Maikke B; Pfeffer, Suzanne R

    2015-01-01

    Most kinesins transport cargoes bound to their C-termini and use N-terminal motor domains to move along microtubules. We report here a novel function for KIF1C: it transports Rab6A-vesicles and can influence Golgi complex organization. These activities correlate with KIF1C's capacity to bind the Golgi protein Rab6A directly, both via its motor domain and C-terminus. Rab6A binding to the motor domain inhibits microtubule interaction in vitro and in cells, decreasing the amount of motile KIF1C. KIF1C depletion slows protein delivery to the cell surface, interferes with vesicle motility, and triggers Golgi fragmentation. KIF1C can protect Golgi membranes from fragmentation in cells lacking an intact microtubule network. Rescue of fragmentation requires sequences that enable KIF1C to bind Rab6A at both ends, but not KIF1C motor function. Rab6A binding to KIF1C's motor domain represents an entirely new mode of regulation for a kinesin motor, and likely has important consequences for KIF1C's cellular functions. DOI: http://dx.doi.org/10.7554/eLife.06029.001 PMID:25821985

  14. MUC1-C oncoprotein promotes FLT3 receptor activation in acute myeloid leukemia cells

    PubMed Central

    Liu, Suiyang; Yin, Li; Stroopinsky, Dina; Rajabi, Hasan; Puissant, Alexandre; Stegmaier, Kimberly; Avigan, David; Kharbanda, Surender; Kufe, Donald

    2014-01-01

    Blasts from approximately one-third of patients with acute myeloid leukemia (AML) harbor activating mutations in the FMS-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase that confer a poor prognosis. The Mucin 1-C-terminal subunit (MUC1-C) oncoprotein is aberrantly expressed in AML blasts and stem cells; however, there is no known interaction between MUC1-C and FLT3. The present studies demonstrate that MUC1-C associates with wild-type and mutant FLT3 in AML cells. Targeting MUC1-C with the cell-penetrating peptide inhibitor GO-203 disrupts MUC1-C/FLT3 complexes and downregulates FLT3 activation. GO-203 treatment of AML cells was also associated with inhibition of the FLT3 downstream effectors AKT, extracellular signal-regulated kinase, and STAT5. The results further show that AML cells with FLT3-activating mutations and resistant to the FLT3 inhibitor midostaurin/PKC412 are sensitive to GO-203–induced growth arrest and death. Moreover, GO-203 increases sensitivity of mutant FLT3 AML cells to FLT3 inhibitor treatment. These results indicate that MUC1-C contributes to FLT3 activation in AML cells and that targeting MUC1-C inhibits the FLT3 signaling pathway. Our findings support the development of MUC1-C inhibitors alone and in combination with agents that target FLT3 for the treatment of wild-type and mutant FLT3 AML. PMID:24282218

  15. Methods, units and quality requirements for the analysis of haemoglobin A1c in diabetes mellitus

    PubMed Central

    Penttilä, Ilkka; Penttilä, Karri; Holm, Päivi; Laitinen, Harri; Ranta, Päivi; Törrönen, Jukka; Rauramaa, Rainer

    2016-01-01

    The formation of glycohemoglobin, especially the hemoglobin A1c (HbA1c) fraction, occurs when glucose becomes coupled with the amino acid valine in the β-chain of Hb; this reaction is dependent on the plasma concentration of glucose. Since the early 1970s it has been known that diabetics display higher values OF HbA1C because they have elevated blood glucose concentrations. Thus HbA1c has acquired a very important role in the treatment and diagnosis of diabetes mellitus. After the introduction of the first quantitative measurement OF HbA1C, numerous methods for glycohemoglobin have been introduced with different assay principles: From a simple mini-column technique to the very accurate automated high-pressure chromatography and lastly to many automated immunochemical or enzymatic assays. In early days, the results of the quality control reports for HbA1c varied extensively between laboratories, therefore in United States and Canada working groups (WG) of the Diabetes Controls and Complications Trial (DCCT) were set up to standardize the HbA1c assays against the DCCT/National Glycohemoglobin Standardization Program reference method based on liquid chromatography. In the 1990s, the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) appointed a new WG to plan a reference preparation and method for the HBA1c measurement. When the reference procedures were established, in 2004 IFCC recommended that all manufacturers for equipment used in HbA1c assays should calibrate their methods to their proposals. This led to an improvement in the coefficient of variation (CV%) associated with the assay. In this review, we describe the glycation of Hb, methods, standardization of the HbA1c assays, analytical problems, problems with the units in which HbA1c values are expressed, reference values, quality control aspects, target requirements for HbA1c, and the relationship of the plasma glucose values to HbA1c concentrations. We also note that the acceptance

  16. Implementation of the HbA1c IFCC unit --from the laboratory to the consumer: The New Zealand experience.

    PubMed

    Florkowski, Christopher; Crooke, Michael; Reed, Maxine

    2014-05-15

    In 2007, an international consensus statement recommended that HbA1c results should be reported world-wide in IFCC units (mmol/mol) and also the more familiar derived percentage units using a master equation. In New Zealand, the HbA1c IFCC units have been successfully implemented and used exclusively since 3rd October 2011 (following a 2 year period of reporting both units) for both patient monitoring and the diagnosis of diabetes, with a diagnostic cut-off of ≥50 mmol/mol. The consultation process in New Zealand dates back to 2003, well before the international recommendations were made. It reflects the close cooperation between the clinical and laboratory communities in New Zealand, particularly through the agency of the New Zealand Society for the Study of Diabetes (NZSSD), a key organisation in New Zealand open to all those involved in the care of people with diabetes and the national advisory body on scientific and clinical diabetes care and standards. There was a phased process of consultation designed to increase familiarity and comfort with the new units and the final step was coupled with the adoption of HbA1c as a diagnostic test with some evidence-based pragmatism around using the rounded cut-off. Genuine clinical engagement is vital in such a process. PMID:24148360

  17. Conjugation between σ- and π-Aromaticity in 1-C-Arylated Monocarba-closo-dodecaborate Anions.

    PubMed

    Otsuka, Mai; Takita, Ryo; Kanazawa, Junichiro; Miyamoto, Kazunori; Muranaka, Atsuya; Uchiyama, Masanobu

    2015-12-01

    Conjugation between σ- and π-aromatic moieties in 1-C-arylated monocarba-closo-dodecaborate anion derivatives 2 has been identified by means of kinetic experimental studies combined with theoretical calculations. We found that the reaction rate of iodination at the 12-B vertex of the carborane anion cage was affected by distal substituents on the benzene ring connected at the antipodal carbon vertex. Hammett and Yukawa-Tsuno plots indicated that substantial resonance effects are involved. Density functional theory calculations enabled detailed interpretation of the electronic interaction. PMID:26584675

  18. Down-regulation of murine Cyp1a-1 in mouse hepatoma Hepa-1c1c7 cells by bisphenol A.

    PubMed

    Jeong, H G; Kimand, J Y; Choi, C Y

    2000-11-01

    Cultured mouse hepatoma Hepa-1c1c7 cells were treated with either bisphenol A or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or in combination to assess the role of bisphenol A in the process of Cyp1a-1 induction. Treatment of Hepa-1c1c7 cultures with 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induced Cyp1a-1, as determined by analysis of 7-ethoxyresorufin O-deethylase (EROD) activities. Bisphenol A alone did not affect the activity of Cyp1a-1-specific EROD; in contrast, TCDD-induced EROD activities were markedly reduced in the concomitant treatment of TCDD and bisphenol A in a dose-dependent manner. Treatment with tamoxifen, an antiestrogen that acts through the estrogen receptor, did not affect the suppressive effects of bisphenol A on TCDD-induced EROD activity. TCDD-induced Cyp1a-1 mRNA levels were markedly suppressed in the concomitant treatment of TCDD and bisphenol A consistent with their effects on EROD activity. Transient transfection assay using dioxin-response element (DRE)-linked luciferase revealed that bisphenol A reduced transformation of the aryl hydrocarbons (Ah) receptor to a form capable of specifically binding to the DRE sequence in the promoter of the Cyp1a-1 gene. These results suggest the down-regulation of the Cyp1a-1 gene expression by bisphenol A in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear Ah receptor but not mediated through estradiol receptor. PMID:11061999

  19. Linkage and association of haplotypes at the APOA1/C3/A4/A5 genecluster to familial combined hyperlipidemia

    SciTech Connect

    Eichenbaum-Voline, Sophie; Olivier, Michael; Jones, Emma L.; Naoumova, Rossitza P.; Jones, Bethan; Gau, Brian; Seed, Mary; Betteridge,D. John; Galton, David J.; Rubin, Edward M.; Scott, James; Shoulders,Carol C.; Pennacchio, Len A.

    2002-09-15

    Combined hyperlipidemia (CHL) is a common disorder of lipidmetabolism that leads to an increased risk of cardiovascular disease. Thelipid profile of CHL is characterised by high levels of atherogeniclipoproteins and low levels of high-density-lipoprotein-cholesterol.Apolipoprotein (APO) A5 is a newly discovered gene involved in lipidmetabolism located within 30kbp of the APOA1/C3/A4 gene cluster. Previousstudies have indicated that sequence variants in this cluster areassociated with increased plasma lipid levels. To establish whethervariation at the APOA5 gene contributes to the transmission of CHL, weperformed linkage and linkage disequilibrium (LD) tests on a large cohortof families (n=128) with familial CHL (FCHL). The linkage data producedevidence for linkage of the APOA1/C3/A4/A5 genomic interval to FCHL (NPL= 1.7, P = 0.042). The LD studies substantiated these data. Twoindependent rare alleles, APOA5c.56G and APOC3c.386G of this gene clusterwere over-transmitted in FCHL (P = 0.004 and 0.007, respectively), andthis was associated with a reduced transmission of the most commonAPOA1/C3/A4/A5 haplotype (frequency 0.4425) to affected subjects (P =0.013). The APOA5c.56G allele was associated with increased plasmatriglyceride levels in FCHL probands, whereas the second, andindependent, APOC3c.386G allele was associated with increased plasmatriglyceride levels in FCHL pedigree founders. Thus, this allele (or anallele in LD) may mark a quantitative trait associated with FCHL, as wellas representing a disease susceptibility locus for the condition. Thisstudy establishes that sequence variation in the APOA1/C3/A4/A5 genecluster contributes to the transmission of FCHL in a substantialproportion of affected families, and that these sequence variants mayalso contribute to the lipid abnormalities of the metabolic syndrome,which is present in up to 40 percent of persons with cardiovasculardisease.

  20. The role of aldo-keto reductase 1C3 (AKR1C3)-mediated prostaglandin D2 (PGD2) metabolism in keloids.

    PubMed

    Mantel, Alon; Newsome, Austin; Thekkudan, Theresa; Frazier, Robert; Katdare, Meena

    2016-01-01

    Keloids are progressively expanding scars, mostly prevalent in individuals of African descent. Previous data identified increased mast cell number and activation state in keloids suggesting a role in disease progression. The major eicosanoid secreted by mast cells is prostaglandin D2 (PGD2), a relatively unstable pro-inflammatory mediator which can be spontaneously converted to 15-deoxy-(Delta12,14)-prostaglandin J2(15d-PGJ2) or enzymatically metabolized to 9α,11β-PGF2 by aldo-keto reductase 1C3 (AKR1C3). In this work, we investigated the possible role of PGD2 and its metabolites in keloids using CRL1762 keloid fibroblasts (KF) and immunohistochemical staining. Our data suggested approximately 3-fold increase of tryptase-positive mast cell count in keloids compared with normal skin. Furthermore, AKR1C3 was overexpressed in the fibrotic area of keloids while relatively weak staining detected in normal skin. Metabolism of PGD2 to 9α,11β-PGF2 by both, KF and normal fibroblasts, was dependent on AKR1C3 as this reaction was attenuated in the presence of the AKR1C3 inhibitor, 2'-hydroxyflavanone, or in cells with decreased AKR1C3 expression. 15d-PGJ2, but not the other tested PGs, inhibited KF proliferation, attenuated KF-mediated collagen gel contraction and increased caspase-3 activation. In addition, treatment with 15d-PGJ2 activated P38-MAPK, induced reactive oxygen species and upregulated superoxide dismutase-1 (SOD-1). Finally, inhibition of P38-MAPK further augmented 15d-PGJ2-induced caspase-3 cleavage and attenuated its effect on SOD-1 transcription. This work suggests that localized dual inhibition of AKR1C3 and P38-MAPK may inhibit keloid progression. Inhibiting AKR1C3 activity may generate oxidative environment due to redirection of PGD2 metabolism towards 15d-PGJ2 while inhibition of P38-MAPK will sensitize keloid cells to ROS-induced apoptosis. PMID:26308156

  1. Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of single nucleotide polymorphisms (SNPs) in the apolipoprotein (Apo) A1/C3/A4/A5 gene cluster and serum lipid profiles is inconsistent. The present study was undertaken to detect the association between the ApoA1/C3/A5 gene polymorphisms and their haplotypes with serum lipid levels ...

  2. 18 CFR 2.1c - Policy statement on consultation with Indian tribes in Commission proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Policy statement on consultation with Indian tribes in Commission proceedings. 2.1c Section 2.1c Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  3. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  4. 50 CFR Table 1c to Part 679 - Product Type Codes

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Product Type Codes 1c Table 1c to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt....

  5. Characterization of the MUC1-C Cytoplasmic Domain as a Cancer Target

    PubMed Central

    Raina, Deepak; Agarwal, Praveen; Lee, James; Bharti, Ajit; McKnight, C. James; Sharma, Pankaj; Kharbanda, Surender; Kufe, Donald

    2015-01-01

    Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly expressed in diverse human carcinomas and certain hematologic malignancies. The oncogenic MUC1 transmembrane C-terminal subunit (MUC1-C) functions in part by transducing growth and survival signals from cell surface receptors. However, little is known about the structure of the MUC1-C cytoplasmic domain as a potential drug target. Using methods for structural predictions, our results indicate that a highly conserved CQCRRK sequence, which is adjacent to the cell membrane, forms a small pocket that exposes the two cysteine residues for forming disulfide bonds. By contrast, the remainder of the MUC1-C cytoplasmic domain has no apparent structure, consistent with an intrinsically disordered protein. Our studies thus focused on targeting the MUC1 CQCRRK region. The results show that L- and D-amino acid CQCRRK-containing peptides bind directly to the CQC motif. We further show that the D-amino acid peptide, designated GO-203, blocks homodimerization of the MUC1-C cytoplasmic domain in vitro and in transfected cells. Moreover, GO-203 binds directly to endogenous MUC1-C in breast and lung cancer cells. Colocalization studies further demonstrate that GO-203 predominantly binds to MUC1-C at the cell membrane. These findings support the further development of agents that target the MUC1-C cytoplasmic domain CQC motif and thereby MUC1-C function in cancer cells. PMID:26267657

  6. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens

    PubMed Central

    Ly, Dalam; Kasmar, Anne G.; Cheng, Tan-Yun; de Jong, Annemieke; Huang, Shouxiong; Roy, Sobhan; Bhatt, Apoorva; van Summeren, Ruben P.; Altman, John D.; Jacobs, William R.; Adams, Erin J.; Minnaard, Adriaan J.; Porcelli, Steven A.

    2013-01-01

    CD1c is expressed with high density on human dendritic cells (DCs) and B cells, yet its antigen presentation functions are the least well understood among CD1 family members. Using a CD1c-reactive T cell line (DN6) to complete an organism-wide survey of M. tuberculosis lipids, we identified C32 phosphomycoketide (PM) as a previously unknown molecule and a CD1c-presented antigen. CD1c binding and presentation of mycoketide antigens absolutely required the unusual, mycobacteria-specific lipid branching patterns introduced by polyketide synthase 12 (pks12). Unexpectedly, one TCR responded to diversely glycosylated and unglycosylated forms of mycoketide when presented by DCs and B cells. Yet cell-free systems showed that recognition was mediated only by the deglycosylated phosphoantigen. These studies identify antigen processing of a natural bacterial antigen in the human CD1c system, indicating that cells act on glycolipids to generate a highly simplified neoepitope composed of a sugar-free phosphate anion. Using knowledge of this processed antigen, we generated human CD1c tetramers, and demonstrate that CD1c–PM complexes stain T cell receptors (TCRs), providing direct evidence for a ternary interaction among CD1c-lipid-TCR. Furthermore, PM-loaded CD1c tetramers detect fresh human T cells from peripheral blood, demonstrating a polyclonal response to PM antigens in humans ex vivo. PMID:23530121

  7. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Prohibition of electric energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION §...

  8. 18 CFR 1c.2 - Prohibition of electric energy market manipulation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Prohibition of electric energy market manipulation. 1c.2 Section 1c.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES PROHIBITION OF ENERGY MARKET MANIPULATION §...

  9. Frequent Monitoring of A1C During Pregnancy as a Treatment Tool to Guide Therapy

    PubMed Central

    Jovanovič, Lois; Savas, Hatice; Mehta, Manish; Trujillo, Angelina; Pettitt, David J.

    2011-01-01

    OBJECTIVE No guidelines for A1C measurement exist for women with gestational diabetes mellitus (GDM). The aim of this study was to document the rate of A1C decline in women with GDM. RESEARCH DESIGN AND METHODS Women with GDM in the Santa Barbara County Endocrine Clinic are managed with a carbohydrate-restricted diet and self-monitored blood glucose before and 1-h postprandial. Insulin is started if the preprandial glucose concentration is ≥90 mg/dl and/or a 1-h postprandial glucose concentration is ≥120 mg/dl. Capillary A1C was tested weekly using the DCA2000+ analyzer. RESULTS Twenty-four women with GDM (aged 29.0 ± 7.3 years) with initial A1C ≥7.0% were recruited. Baseline A1C was 8.8 ± 1.8%. Mean A1C decline was 0.47% per week (range 0.10–1.15%); the maximum was 4.3% in 4 weeks. CONCLUSIONS This study documents rapid decline in A1C during pregnancy and the utility of weekly A1C to guide therapy. PMID:20921215

  10. Insulin induction of SREBP-1c in rodent liver requires LXRα-C/EBPβ complex

    PubMed Central

    Tian, Jing; Goldstein, Joseph L.; Brown, Michael S.

    2016-01-01

    Insulin increases lipid synthesis in liver by activating transcription of the gene encoding sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c activates the transcription of all genes necessary for fatty acid synthesis. Insulin induction of SREBP-1c requires LXRα, a nuclear receptor. Transcription of SREBP-1c also requires transcription factor C/EBPβ, but a connection between LXRα and C/EBPβ has not been made. Here we show that LXRα and C/EBPβ form a complex that can be immunoprecipitated from rat liver nuclei. Chromatin immunoprecipitation assays showed that the LXRα-C/EBPβ complex binds to the SREBP-1c promoter in a region that contains two binding sites for LXRα and is known to be required for insulin induction. Knockdown of C/EBPβ in fresh rat hepatocytes or mouse livers in vivo reduces the ability of insulin to increase SREBP-1c mRNA. The LXRα-C/EBPβ complex is bound to the SREBP-1c promoter in the absence or presence of insulin, indicating that insulin acts not by increasing the formation of this complex, but rather by activating it. PMID:27382175

  11. 18 CFR 2.1c - Policy statement on consultation with Indian tribes in Commission proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (3) Is filed with the Secretary of the Commission. See generally 18 CFR 2.19. Statements of General... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Policy statement on consultation with Indian tribes in Commission proceedings. 2.1c Section 2.1c Conservation of Power and...

  12. 18 CFR 2.1c - Policy statement on consultation with Indian tribes in Commission proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Policy statement on consultation with Indian tribes in Commission proceedings. 2.1c Section 2.1c Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  13. 18 CFR 2.1c - Policy statement on consultation with Indian tribes in Commission proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (3) Is filed with the Secretary of the Commission. See generally 18 CFR 2.19. Statements of General... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Policy statement on consultation with Indian tribes in Commission proceedings. 2.1c Section 2.1c Conservation of Power and...

  14. Diabetes mellitus, hemoglobin A1C, and the incidence of total joint arthroplasty infection.

    PubMed

    Iorio, Richard; Williams, Kelly M; Marcantonio, Andrew J; Specht, Lawrence M; Tilzey, John F; Healy, William L

    2012-05-01

    Patients with diabetes have a higher incidence of infection after total joint arthroplasty (TJA) than patients without diabetes. Hemoglobin A1c (HbA1c) levels are a marker for blood glucose control in diabetic patients. A total of 3468 patients underwent 4241 primary or revision total hip arthroplasty or total knee arthroplasty at one institution. Hemoglobin A1c levels were examined to evaluate if there was a correlation between the control of HbA1c and infection after TJA. There were a total of 46 infections (28 deep and 18 superficial [9 cellulitis and 9 operative abscesses]). Twelve (3.43%) occurred in diabetic patients (n = 350; 8.3%) and 34 (0.87%) in nondiabetic patients (n = 3891; 91.7%) (P < .001). There were 9 deep (2.6%) infections in diabetic patients and 19 (0.49%) in nondiabetic patients. In noninfected, diabetic patients, HbA1c level ranged from 4.7% to 15.1% (mean, 6.92%). In infected diabetic patients, HbA1c level ranged from 5.1% to 11.7% (mean, 7.2%) (P < .445). The average HbA1c level in patients with diabetes was 6.93%. Diabetic patients have a significantly higher risk for infection after TJA. Hemoglobin A1c levels are not reliable for predicting the risk of infection after TJA. PMID:22054905

  15. TARGETING THE ONCOGENIC MUC1-C PROTEIN INHIBITS MUTANT EGFR-MEDIATED SIGNALING AND SURVIVAL IN NON-SMALL CELL LUNG CANCER CELLS

    PubMed Central

    Kharbanda, Akriti; Rajabi, Hasan; Jin, Caining; Tchaicha, Jeremy; Kikuchi, Eiki; Wong, Kwok-Kin; Kufe, Donald

    2014-01-01

    Purpose Non-small cell lung cancers (NSCLC) that express the EGF receptor (EGFR) with activating mutations frequently develop resistance to EGFR kinase inhibitors. The mucin 1 (MUC1) heterodimeric protein is aberrantly overexpressed in NSCLC cells and confers a poor prognosis; however, the functional involvement of MUC1 in mutant EGFR signaling is not known. Experimental Design Targeting the oncogenic MUC1 C-terminal subunit (MUC1-C) in NSCLC cells harboring mutant EGFR was studied for effects on signaling, growth, clonogenic survival and tumorigenicity. Results Stable silencing of MUC1-C in H1975/EGFR(L858R/T790M) cells resulted in downregulation of AKT signaling and inhibition of growth, colony formation and tumorigenicity. Similar findings were obtained when MUC1-C was silenced in gefitinib-resistant PC9GR cells expressing EGFR(delE746_A750/T790M). The results further show that expression of a MUC1-C(CQC→AQA) mutant, which blocks MUC1-C homodimerization, suppresses EGFR(T790M), AKT and MEK→ERK activation, colony formation and tumorigenicity. In concert with these results, treatment of H1975 and PC9GR cells with GO-203, a cell-penetrating peptide that blocks MUC1-C homodimerization, resulted in inhibition of EGFR, AKT and MEK→ERK signaling and in loss of survival. Combination studies of GO-203 and afatinib, an irreversible inhibitor of EGFR, further demonstrate that these agents are synergistic in inhibiting growth of NSCLC cells harboring the activating EGFR(T790M) or EGFR(delE746-A750) mutants. Conclusions These findings indicate that targeting MUC1-C inhibits mutant EGFR signaling and survival, and thus represents a potential approach alone and in combination for the treatment of NSCLCs resistant to EGFR kinase inhibitors. PMID:25189483

  16. Geometric Correction of High Resolution Imagery from Indian Remote Sensing Satellite (IRS-1C/D)

    NASA Astrophysics Data System (ADS)

    Katiyar, S. K.; Dikshit, O.; Kumar, K.

    Precise and up-to-date mapping of earth features is required for various applications. The high-resolution remotely sensed images could prove an alternative data capture tool for quick updating of maps and other applications. A major concern in remote sensing information extraction and data handling is to ensure geometric integrity of the acquired image. For the reliable and precise information extraction from remotely sensed data, the geometric distortions introduced due to various factors must be removed with high degree of precision. In general there are two approaches for the correction of geometric distortions. The parametric approach is model-based while the non-parametric one makes use of ground control points (GCP). The parametric method involves modeling of satellite viewing geometry with the help of ephemeris data. Here, satellite attitude angles (roll, pitch and yaw) should be known with high degree of precision. A small error in attitude measurements is magnified considerably in terms of corresponding ground error. Some GCPs are necessary for the precise attitude angle estimation. The GCP- based method utilizes least square technique for the fitting of low order polynomial functions with the help of GCPs. In this method polynomials are not very appropriate for modeling the physical causes of geometric distortions and require a large number of well-distributed GCPs for avoiding degradation of image in the regions, where no GCPs are available. This paper presents results of geometric correction of LISS III and PAN sensor data of Indian Remote Sensing Satellite (IRS-1C/D), by using combination of above mentioned approaches of geometric correction. The present study makes use of IRS-1C/D satellite ephemeris information (position, velocity and attitude angles) available at one second interval. Position and velocity vector component variations with the time can be modeled with sub-pixel accuracy using 3rd and 4th order polynomial functions and acceptable at

  17. The role of hemoglobin A1c in the assessment of diabetes and cardiovascular risk.

    PubMed

    Sandler, Courtney Nagel; McDonnell, Marie E

    2016-05-01

    Hemoglobin A1c (HbA1c) is a widely used tool for diagnosing, screening, and managing patients with diabetes; however, proper application and interpretation of the HbA1c test is crucial to master for accurate assessment of patients. It also has become the standard test in population-based studies for evaluating the relationship between glycemic control and cardiovascular risk. Results from large clinical trials support the modern perspective that the HbA1c target should be personalized according to the risks and benefits of glycemic control. This likely is most important in patients with diabetes and elevated cardiovascular risk in whom achieving low HbA1c levels early in the natural history may be the most beneficial. PMID:27176682

  18. A novel self-lipid antigen targets human T cells against CD1c+ leukemias

    PubMed Central

    Lepore, Marco; de Lalla, Claudia; Gundimeda, S. Ramanjaneyulu; Gsellinger, Heiko; Consonni, Michela; Garavaglia, Claudio; Sansano, Sebastiano; Piccolo, Francesco; Scelfo, Andrea; Häussinger, Daniel; Montagna, Daniela; Locatelli, Franco; Bonini, Chiara; Bondanza, Attilio; Forcina, Alessandra; Li, Zhiyuan; Ni, Guanghui; Ciceri, Fabio; Jenö, Paul; Xia, Chengfeng

    2014-01-01

    T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c+ acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c+ human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy. PMID:24935257

  19. MUC1-C confers EMT and KRAS independence in mutant KRAS lung cancer cells

    PubMed Central

    Kharbanda, Akriti; Rajabi, Hasan; Jin, Caining; Alam, Maroof; Wong, Kwok-Kin; Kufe, Donald

    2014-01-01

    Non-small cell lung cancers (NSCLCs) that harbor an oncogenic KRAS mutation are often associated with resistance to targeted therapies. The MUC1-C transmembrane protein is aberrantly overexpressed in NSCLCs and confers a poor outcome; however, the functional role for MUC1-C in mutant KRAS NSCLC cells has remained unclear. The present studies demonstrate that silencing MUC1-C in A549/KRAS(G12S) and H460/KRAS(Q61H) NSCLC cells is associated with downregulation of AKT signaling and inhibition of growth. Overexpression of a MUC1-C(CQC→AQA) mutant, which inhibits MUC1-C homodimerization and function, suppressed both AKT and MEK activation. Moreover, treatment with GO-203, an inhibitor of MUC1-C homodimerization, blocked AKT and MEK signaling and decreased cell survival. The results further demonstrate that targeting MUC1-C suppresses expression of the ZEB1 transcriptional repressor by an AKT-mediated mechanism, and in turn induces miR-200c. In concert with these effects on the ZEB1/miR-200c regulatory loop, targeting MUC1-C was associated with reversal of the epithelial-mesenchymal transition (EMT) and inhibition of self-renewal capacity. Loss of MUC1-C function also attenuated KRAS independence and inhibited growth of KRAS mutant NSCLC cells as tumors in mice. These findings support a model in which targeting MUC1-C inhibits mutant KRAS signaling in NSCLC cells and thereby reverses the EMT phenotype and decreases self-renewal. PMID:25245423

  20. A 90-Day Dietary Toxicity Study of Genetically Modified Rice T1C-1 Expressing Cry1C Protein in Sprague Dawley Rats

    PubMed Central

    Tang, Xueming; Han, Fangting; Zhao, Kai; Xu, Yan; Wu, Xiao; Wang, Jinbin; Jiang, Lingxi; Shi, Wei

    2012-01-01

    In a 90-day study, Sprague Dawley rats were fed transgenic T1C-1 rice expressing Cry1C protein and were compared with rats fed non-transgenic parental rice Minghui 63 and rats fed a basal diet. No adverse effects on animal behavior or weight gain were observed during the study. Blood samples were collected and analyzed, and standard hematological and biochemical parameters were compared. A few of these parameters were found to be significantly different, but were within the normal reference intervals for rats of this breed and age, and were thus not considered to be treatment-related. Following sacrifice, a large number of organs were weighed, and macroscopic and histopathological examinations were performed with no changes reported. The aim of this study was to use a known animal model to determine the safety of the genetically modified (GM) rice T1C-1. The results showed no adverse or toxic effects due to T1C-1 rice when tested in this 90-day study. PMID:23300690

  1. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min. PMID:15250420

  2. Calculation of the phase diagrams of ferrimagnetic alloys A cB 1- c and application to transition metal-rare-earth Fe cGd 1- c and Fe cTb 1- c materials

    NASA Astrophysics Data System (ADS)

    Fresneau, M.; Virlouvet, A.; Khater, A.

    1999-07-01

    A theoretical model is presented for the calculation of the magnetic properties of generalised spin ferrimagnetic random substitutional alloys A cB 1- c with antiferromagnetic coupling between the A and B spin species. In particular, we study in an effective field method the phase diagrams of these systems as a function of the alloy concentration c, for given magnetic exchange constants. The model is applied with no adjustable parameters to the transition metal-rare-earth Fe cGd 1- c and Fe cTb 1- c alloys, using the appropriate spins for the Fe, Gd and Tb ions. We report a coherent and an overall qualitative agreement between theory and experiment in the complete range of concentrations 1⩾ c⩾0, for the first time to our knowledge, and determine consequently for these materials a set of ionic exchange constants that are invariant with respect to the alloy concentration. To our knowledge this is the first time that approximate but seemingly reliable exchange constants for the two alloys have been derived.

  3. AB085. Imprinting mutation of CDKN1C in Beckwith-Wiedemann Syndrome: inheritance, genetic counselling and surveillance

    PubMed Central

    Chew, Hui Bein; Ong, Winnie Peitee; Haniffa, Muzhirah Aisha Md; Leong, Huey Yin; Krishnan, Thurga; Poh, Rozaida Yuen Ying; Thong, Meow Keong; Ishak, Mohd Taufik; Keng, Wee Teik

    2015-01-01

    Background Beckwith-Wiedemann Syndrome (BWS), a genetic overgrowth disorder is typified by exomphalos, macroglossia and neonatal gigantism. The molecular basis is known in approximately 80% of patients and is heterogeneous involving epigenetic and genetic changes at chromosome 11p15.5. An uncommon cause is a point mutation at CDKN1C found in approximately 5% of cases. When found, 1/3 of CDKN1C mutation is familial. We describe the first Malaysian family with CDKN1C mutation c.232C > T (Q78X), their clinical features, issues related to genetic counselling and subsequent follow-up. Case presentation Fifteen children fulfilling the clinical criteria for the diagnosis of BWS were included in a research study to uncover their genotype. One patient was found to carry the CDKN1C mutation c.232C > T (Q78X). This patient was the first child born to unrelated parents at 30+6/40 gestation. He was large for gestational age with a birth weight of 2.21 kg. He had an exomphalos, bilateral dysplastic kidneys and facial dysmorphism consistent with BWS. After a stormy neonatal period, he succumbed on day 17 of life. Before his molecular analysis was completed, his mother gave birth to a girl at 37+1/40 gestation; birth weight was 3.4 kg. This child was antenatally diagnosed with exomphalos and amniocentesis revealed normal karyotype. At birth, she had facial features of BWS, cleft palate and normal kidneys. Her exomphalos was surgically corrected on day 3 of life, after which she progressed well albeit with mild developmental delay. Their mother is phenotypically normal and carries the said pathogenic CDKN1C mutation. She is currently pregnant with her third child. Genetic counselling was provided and she fully comprehends the recurrence risk of 50% in this pregnancy as well as the availability of prenatal diagnostic testing. Prenatal testing was declined. Discussion and conclusions The diagnosis of BWS can be confidently achieved with well-established clinical criteria. However

  4. Characterization of the aldo-keto reductase 1C gene cluster on pig chromosome 10: possible associations with reproductive traits

    PubMed Central

    Nonneman, Dan J; Wise, Tommy H; Ford, J Joe; Kuehn, Larry A; Rohrer, Gary A

    2006-01-01

    Background The rate of pubertal development and weaning to estrus interval are correlated and affect reproductive efficiency of swine. Quantitative trait loci (QTL) for age of puberty, nipple number and ovulation rate have been identified in Meishan crosses on pig chromosome 10q (SSC10) near the telomere, which is homologous to human chromosome 10p15 and contains an aldo-keto reductase (AKR) gene cluster with at least six family members. AKRs are tissue-specific hydroxysteroid dehydrogenases that interconvert weak steroid hormones to their more potent counterparts and regulate processes involved in development, homeostasis and reproduction. Because of their location in the swine genome and their implication in reproductive physiology, this gene cluster was characterized and evaluated for effects on reproductive traits in swine. Results Screening the porcine CHORI-242 BAC library with a full-length AKR1C4 cDNA identified 7 positive clones and sample sequencing of 5 BAC clones revealed 5 distinct AKR1C genes (AKR1CL2 and AKR1C1 through 4), which mapped to 126–128 cM on SSC10. Using the IMpRH7000rad and IMNpRH212000rad radiation hybrid panels, these 5 genes mapped between microsatellite markers SWR67 and SW2067. Comparison of sequence data with the porcine BAC fingerprint map show that the cluster of genes resides in a 300 kb region. Twelve SNPs were genotyped in gilts observed for age at first estrus and ovulation rate from the F8 and F10 generations of one-quarter Meishan descendants of the USMARC resource population. Age at puberty, nipple number and ovulation rate data were analyzed for association with genotypes by MTDFREML using an animal model. One SNP, a phenylalanine to isoleucine substitution in AKR1C2, was associated with age of puberty (p = 0.07) and possibly ovulation rate (p = 0.102). Two SNP in AKR1C4 were significantly associated with nipple number (p ≤ 0.03) and another possibly associated with age at puberty (p = 0.09). Conclusion AKR1C genotypes

  5. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer

    PubMed Central

    Rondinelli, Beatrice; Rosano, Dalia; Antonini, Elena; Frenquelli, Michela; Montanini, Laura; Huang, DaChuan; Segalla, Simona; Yoshihara, Kosuke; Amin, Samir B.; Lazarevic, Dejan; The, Bin Tean; Verhaak, Roel G.W.; Futreal, P. Andrew; Di Croce, Luciano; Chin, Lynda; Cittaro, Davide; Tonon, Giovanni

    2015-01-01

    Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers. PMID:26551685

  6. Interference of the Hope Hemoglobin With Hemoglobin A1c Results.

    PubMed

    Chakraborty, Sutirtha; Chanda, Dalia; Gain, Mithun; Krishnan, Prasad

    2015-01-01

    Hemoglobin A1c (HbA1c) is now considered to be the marker of choice in diagnosis and management of diabetes mellitus, based on the results of certain landmark clinical trials. Herein, we report the case of a 52-year-old ethnic Southeast Asian Indian man with impaired glucose tolerance whose glycated hemoglobin (ie, HbA1c) levels, as measured via Bio-Rad D10 high-performance liquid chromatography (HPLC) and Roche Tina-quant immunoassay were 47.8% and 44.0%, respectively. No variant hemoglobin (Hb) peak was observed via the D10 chromatogram. We assayed the patient specimen on the Sebia MINICAP capillary electrophoresis platform; the HbA1c level was 6.8%, with a large variant Hb peak of 42.0%. This finding suggested the possible presence of the heterozygous Hb Hope, which can result in spuriously elevated HbA1c results on HPLC and turbidimetric immunoassays. Although the capillary electrophoresis system was able to identify the variant, the A1c results should not be considered accurate due to overlapping of the variant and adult Hb peaks on the electrophoretogram reading. Hb Hope is usually clinically silent but can present such analytical challenges. Through this case study, we critically discuss the limitations of various HbA1c assay methods, highlighting the fact that laboratory professionals need to be aware of occurrences of Hb Hope, to help ensure patient safety. PMID:26199262

  7. The lipid kinase PIP5K1C regulates pain signaling and sensitization

    PubMed Central

    Wright, Brittany D.; Loo, Lipin; Street, Sarah E.; Ma, Anqi; Taylor-Blake, Bonnie; Stashko, Michael A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2014-01-01

    SUMMARY Numerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5- bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at higher levels than any other PIP5K and, based on experiments with Pip5k1c+/− mice, generates at least half of all PIP2 in DRG neurons. Additionally, Pip5k1c haploinsufficiency reduces pronociceptive receptor signaling and TRPV1 sensitization in DRG neurons as well as thermal and mechanical hypersensitivity in mouse models of chronic pain. We identified a novel small molecule inhibitor of PIP5K1C (UNC3230) in a high-throughput screen. UNC3230 lowered PIP2 levels in DRG neurons and attenuated hypersensitivity when administered intrathecally or into the hindpaw. Our studies reveal that PIP5K1C regulates PIP2- dependent nociceptive signaling and suggest that PIP5K1C is a novel therapeutic target for chronic pain. PMID:24853942

  8. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease.

    PubMed

    Boevink, Petra C; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M; Tian, Zhendong; Birch, Paul R J

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  9. Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes.

    PubMed

    Zhu, Hong; Guariglia, Sara; Yu, Raymond Y L; Li, Wenjing; Brancho, Deborah; Peinado, Hector; Lyden, David; Salzer, James; Bennett, Craig; Chow, Chi-Wing

    2013-06-01

    Charcot-Marie-Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis. PMID:23576546

  10. Evolutionary diversification of DYX1C1 transcripts via an HERV-H LTR integration event.

    PubMed

    Kim, Yun-Ji; Huh, Jae-Won; Kim, Dae-Soo; Han, Kyudong; Kim, Hwan-Mook; Kim, Heui-Soo

    2011-01-01

    DYX1C1 is a candidate gene for developmental dyslexia and has three alternative pre-mRNA spliced forms in the human genome. One of the transcripts contains an HERV-H LTR that could affect the expression level of DYX1C1. We speculate that the HERV-H LTR integrated into the DYX1C1 locus in the catarrhine lineage after its divergence from the platyrrhine lineage. Reverse transcription-PCR of the HERV-H LTR-related transcript produced four alternative forms from several human tissues. All of alternative forms were also identified in various rhesus macaque tissues. Through sequencing analysis of various primate DNA samples, we found that a part of the HERV-H LTR sequence was duplicated within the DYX1C1 exon 9 only in catarrhines. However, the duplication event did not cause frameshift mutation of the DYX1C1 transcript. Taken together, this HERV-H LTR insertion into DYX1C1 has contributed to transcript diversification of DYX1C1 during primate evolution. PMID:22214596

  11. Gene delivery of Homer1c rescues spatial learning in a rodent model of cognitive aging.

    PubMed

    Gerstein, Hilary; Lindstrom, Mary J; Burger, Corinna

    2013-08-01

    Homer1c has been shown to play a role in learning and memory. Overexpression of Homer1c in the hippocampus can improve memory in normal rats and can also rescue spatial learning deficits in Homer1 knockout mice. In a previous study, we found that Homer1c mRNA is upregulated after a spatial learning paradigm in aged rats that successfully learn the task, when compared to aged rats that are learning-impaired (AI). This study was designed to validate the role of Homer1c in successful cognitive aging. In this article, we report that gene delivery of Homer1c into the hippocampus of aged learning-impaired rats significantly improves individual performance on an object location memory task. The learning ability of these rats on the Morris Water Maze was also superior to that of AI control rats. In summary, using 2 independent spatial memory tasks, we demonstrate that Homer1c is sufficient to improve the spatial learning deficits in a rodent model of cognitive aging. These results point to Homer1c as a potential therapeutic target for improving age-related cognitive impairment. PMID:23523268

  12. Genotyping the GGGCGG Tandem Repeat Promoter Polymorphism in the 5-Lipoxygenase Enzyme Gene (ALOX5) by Pyrosequencing Assay

    PubMed Central

    Schentrup, Anzeela M.; Allayee, Hooman; Lima, John J.; Johnson, Julie A.

    2009-01-01

    Aims: Efficient genotyping methods for many biologically significant repeat genetic polymorphisms, particularly in GC-rich regions of the genome, are limited. In particular, a short tandem repeat polymorphism [GGCGGG] in the promoter region of ALOX5 has been implicated as an important marker for inflammatory diseases. We developed a pyrosequencing assay to genotype the ALOX5 short tandem repeat polymorphism using pyrosequencing technology that will make assessing this important genetic marker in large, diverse populations more accessible than using current methods. Materials and Methods: We used a nested polymerase chain reaction approach to amplify DNA for pyrosequencing. Population allele frequencies were assessed in two cohorts of previously collected human DNA samples with 188 and 1032 samples, respectively. Sixteen genetic samples with known genotypes were used to confirm the accuracy of the method. Results and Discussion: Genotypes were 100% concordant with samples of known genotype. Genotype frequencies in European American, Hispanic, and African American agreed with previously published results (wild-type homozygotes 66%, 64%, and 19%, respectively). The method presented here will facilitate both genetic association and pharmacogenomic research on this polymorphism in large samples that are ethnically and/or racially admixed. PMID:19473080

  13. The Dual Cyclooxygenase/5-Lipoxygenase Inhibitor Licofelone Attenuates P-Glycoprotein-Mediated Drug Resistance in the Injured Spinal Cord

    PubMed Central

    Dulin, Jennifer N.; Moore, Meredith L.

    2013-01-01

    Abstract There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood–spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague–Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord. PMID:22947335

  14. Optimal Hemoglobin A1c Levels for Screening of Diabetes and Prediabetes in the Japanese Population

    PubMed Central

    Shimodaira, Masanori; Okaniwa, Shinji; Hanyu, Norinao; Nakayama, Tomohiro

    2015-01-01

    The aim of this study was to evaluate the utility of hemoglobin A1c (HbA1c) to identify individuals with diabetes and prediabetes in the Japanese population. A total of 1372 individuals without known diabetes were selected for this study. A 75 g oral glucose tolerance test (OGTT) was used to diagnose diabetes and prediabetes. The ability of HbA1c to detect diabetes and prediabetes was investigated using receiver operating characteristic (ROC) analysis. The kappa (κ) coefficient was used to test the agreement between HbA1c categorization and OGTT-based diagnosis. ROC analysis demonstrated that HbA1c was a good test to identify diabetes and prediabetes, with areas under the curve of 0.918 and 0.714, respectively. Optimal HbA1c cutoffs for diagnosing diabetes and prediabetes were 6.0% (sensitivity 83.7%, specificity 87.6%) and 5.7% (sensitivity 60.6%, specificity 72.1%), respectively, although the cutoff for prediabetes showed low accuracy (67.6%) and a high false-negative rate (39.4%). Agreement between HbA1c categorization and OGTT-based diagnosis was low in diabetes (κ = 0.399) and prediabetes (κ = 0.324). In Japanese subjects, the HbA1c cutoff of 6.0% had appropriate sensitivity and specificity for diabetes screening, whereas the cutoff of 5.7% had modest sensitivity and specificity in identifying prediabetes. Thus, HbA1c may be inadequate as a screening tool for prediabetes. PMID:26114121

  15. Relationship Between A1C and Fasting Plasma Glucose in Dysglycemia or Type 2 Diabetes

    PubMed Central

    Ramachandran, Ambady; Riddle, Matthew C.; Kabali, Conrad; Gerstein, Hertzel C.

    2012-01-01

    OBJECTIVE A1C measurement has advantages over measures of plasma glucose. Few studies have evaluated the A1C–fasting plasma glucose (FPG) relationship and whether oral antidiabetes drugs (OADs) and ethnic or geographic variations affect the relationship. Baseline A1C and FPG data from the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial participants were analyzed to 1) elucidate the relationship between A1C and FPG in people with moderate dysglycemia (A1C 5.6–9.0% [38–75 mmol/mol]) and additional risk factors for cardiovascular disease, 2) determine whether this relationship is altered by use of an OAD, and 3) study whether geographic and ethnic differences exist. RESEARCH DESIGN AND METHODS Analysis was performed of 12,527 participants with dysglycemia or early type 2 diabetes recruited in North America, South America, Europe, Australia, and Asia who comprised white, Latin American, Asian, black, and other ethnicities. The A1C-FPG relationships were analyzed using cubic B spline curves in all participants and in subgroups not using an OAD or using an OAD and comprising persons of different ethnic or geographic origin. RESULTS A strong relationship between FPG in the range of 5.6–9.0 mmol/L and the corresponding A1C was seen across different geographic regions and ethnic groups. A smaller increase in A1C per unit increase in FPG occurred for persons taking an OAD versus those not taking an OAD. CONCLUSIONS The strong relationship between A1C and FPG in moderate dysglycemia is not significantly affected by ethnic or geographic differences. Use of an OAD alters the relationship and should be considered when interpreting A1C level. PMID:22323416

  16. Fasting blood glucose and HbA1c in children with ADHD.

    PubMed

    Lindblad, Frank; Eickhoff, Malin; Forslund, Anders H; Isaksson, Johan; Gustafsson, Jan

    2015-04-30

    Reports of hypocortisolism and overweight in pediatric ADHD motivate an investigation of blood glucose regulation in this group. Fasting blood glucose and HbA1c were investigated in 10 children (10-15 years) with ADHD and 22 comparisons. Fasting blood glucose was similar in both groups. HbA1c values were higher in the ADHD-group. BMI-SDS was also higher in the ADHD-group but did not predict HbA1c. The results suggest an association between ADHD and an altered blood glucose homeostasis. PMID:25747679

  17. Effect of Long-Term Periodontal Care on Hemoglobin A1c in Type 2 Diabetes.

    PubMed

    Merchant, A T; Georgantopoulos, P; Howe, C J; Virani, S S; Morales, D A; Haddock, K S

    2016-04-01

    This was a prospective cohort study evaluating 126,805 individuals with diabetes and periodontal disease receiving care at all Veterans Administration medical centers and clinics in the United States from 2005 through 2012. The exposures were periodontal treatment at baseline (PT0) and at follow-up (PT2). The outcomes were change in HbA1c following initial treatment (ΔHbA1c1) and follow-up treatment (ΔHbA1c2), and diabetes control was defined as HbA1c at <7% and <9% following initial and follow-up treatment, respectively. Marginal structural models were used to account for potential confounding and selection bias. The objective was to evaluate the impact of long-term treatment of periodontal disease on glycemic control among individuals with type 2 diabetes. Participants were 64 y old on average, 97% were men, and 71% were white. At baseline, the average diabetes duration was 4 y, 12% of participants were receiving insulin, and 60% had HbA1c <7%. After an average 1.7 y of follow-up, the mean HbA1c increased from 7.03% to 7.21%. About 29.4% of participants attended their periodontal maintenance visit following baseline. Periodontal treatment at baseline and follow-up reduced HbA1c by -0.02% and -0.074%, respectively. Treatment at follow-up increased the likelihood of individuals achieving diabetes control by 5% and 3% at the HbA1c <7% and HbA1c <9% thresholds, respectively, and was observed even among never smokers. HbA1c reduction after periodontal treatment at follow-up was greater (ΔHbA1c2 = -0.25%) among individuals with higher baseline HbA1c. Long-term periodontal care provided in a clinical setting improved long-term glycemic control among individuals with type 2 diabetes and periodontal disease. PMID:26701348

  18. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc

    PubMed Central

    Licchesi, JDF; Van Neste, L; Tiwari, VK; Cope, L; Lin, X; Baylin, SB; Herman, JG

    2011-01-01

    The Wnt signaling pathway is capable of self-regulation through positive and negative feedback mechanisms. For example, the oncoprotein c-Myc, which is upregulated by Wnt signaling activity, participates in a positive feedback loop of canonical Wnt signaling through repression of Wnt antagonists DKK1 and SFRP1. In this study, we investigated the mechanism of Wnt inhibitory factor-1 (WIF-1) silencing. Mapping of CpG island methylation of the WIF-1 promoter reveals regional methylation (–295 to –95 bp from the transcription start site) that correlates with transcriptional silencing. We identified Miz-1 as a direct activator of WIF-1 transcriptional activity, which is found at WIF-1 promoter. In addition, we show that c-Myc contributes to WIF-1 transcriptional repression in a Miz-1-dependent manner. Although the transient repression mediated by Miz-1/c-Myc is independent of de novo methylation, the stable repression by this complex is associated with CpG island methylation of the critical –295 to –95-bp region of the WIF-1 promoter. Importantly, Miz-1 and c-Myc are found at WIF-1 promoter in WIF-1 non-expressing cell lines DLD-1 and 209myc. Transient knockdown or somatic knockout of c-Myc in DLD-1 failed to restore WIF-1 expression suggesting that c-Myc is involved in initiating rather than maintaining WIF-1 epigenetic silencing. In a genome-wide screen, DNAJA4, TGFβ-induced and TRIM59 were repressed by c-Myc overexpression and DNA promoter hypermethylation. Our data reveal novel insights into c-Myc-mediated DNA methylation-dependent transcriptional silencing, a mechanism that might contribute to the dysregulation of Wnt signaling in cancer. PMID:20697356

  19. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model

    PubMed Central

    Hibender, Stijntje; Franken, Romy; van Roomen, Cindy; ter Braake, Anique; van der Made, Ingeborg; Schermer, Edith E.; Gunst, Quinn; van den Hoff, Maurice J.; Lutgens, Esther; Pinto, Yigal M.; Groenink, Maarten; Zwinderman, Aeilko H.; Mulder, Barbara J.M.; de Vries, Carlie J.M.

    2016-01-01

    Objective— Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 gene. Patients with MFS are at risk of aortic aneurysm formation and dissection. Usually, blood pressure–lowering drugs are used to reduce aortic events; however, this is not sufficient for most patients. In the aorta of smooth muscle cell–specific sirtuin-1–deficient mice, spontaneous aneurysm formation and senescence are observed. Resveratrol is known to enhance sirtuin-1 activity and to reduce senescence, which prompted us to investigate the effectiveness of resveratrol in inhibition of aortic dilatation in the Fbn1C1039G/+ MFS mouse model. Approach and Results— Aortic senescence strongly correlates with aortic root dilatation rate in MFS mice. However, although resveratrol inhibits aortic dilatation, it only shows a trend toward reduced aortic senescence. Resveratrol enhances nuclear localization of sirtuin-1 in the vessel wall and, in contrast to losartan, does not affect leukocyte infiltration nor activation of SMAD2 and extracellular signal–regulated kinases 1/2 (ERK1/2). Interestingly, specific sirtuin-1 activation (SRT1720) or inhibition (sirtinol) in MFS mice does not affect aortic root dilatation rate, although senescence is changed. Resveratrol reduces aortic elastin breaks and decreases micro-RNA-29b expression coinciding with enhanced antiapoptotic Bcl-2 expression and decreased number of terminal apoptotic cells. In cultured smooth muscle cells, the resveratrol effect on micro-RNA-29b downregulation is endothelial cell and nuclear factor κB-dependent. Conclusions— Resveratrol inhibits aortic root dilatation in MFS mice by promoting elastin integrity and smooth muscle cell survival, involving downregulation of the aneurysm-related micro-RNA-29b in the aorta. On the basis of these data, resveratrol holds promise as a novel intervention strategy for patients with MFS. PMID:27283746

  20. The 2.5 Å Structure of CD1c in Complex with a Mycobacterial Lipid Reveals an Open Groove Ideally Suited for Diverse Antigen Presentation

    SciTech Connect

    Scharf, Louise; Li, Nan-Sheng; Hawk, Andrew J.; Garzón, Diana; Zhang, Tejia; Fox, Lisa M.; Kazen, Allison R.; Shah, Sneha; Haddadian, Esmael J.; Gumperz, Jenny E.; Saghatelian, Alan; Faraldo-Gómez, José D.; Meredith, Stephen C.; Piccirilli, Joseph A.; Adams, Erin J.

    2011-08-24

    CD1 molecules function to present lipid-based antigens to T cells. Here we present the crystal structure of CD1c at 2.5 {angstrom} resolution, in complex with the pathogenic Mycobacterium tuberculosis antigen mannosyl-{beta}1-phosphomycoketide (MPM). CD1c accommodated MPM's methylated alkyl chain exclusively in the A pocket, aided by a unique exit portal underneath the {alpha}1 helix. Most striking was an open F pocket architecture lacking the closed cavity structure of other CD1 molecules, reminiscent of peptide binding grooves of classical major histocompatibility complex molecules. This feature, combined with tryptophan-fluorescence quenching during loading of a dodecameric lipopeptide antigen, provides a compelling model by which both the lipid and peptide moieties of the lipopeptide are involved in CD1c presentation of lipopeptides.

  1. MEF2 and NR2F2 cooperate to regulate Akr1c14 gene expression in mouse MA-10 Leydig cells.

    PubMed

    Di-Luoffo, M; Brousseau, C; Tremblay, J J

    2016-03-01

    Leydig cells are essential for male reproductive development and health throughout life. Production of androgens [testosterone, dihydrotestosterone (DHT)] as well as intermediate steroids [progesterone, dihydroprogesterone (DHP)] is tightly regulated. In the mouse, the 3α-hydroxysteroid dehydrogenase enzyme (3α-HSD, AKR1C14) catalyses the interconversion of DHP and DHT into less potent steroids. Despite its importance, nothing is currently known regarding the regulation of Akr1c14 expression in Leydig cells. Recently, the transcription factors MEF2 and NR2F2 were identified in the mouse testis including in Leydig cells where they were found to regulate expression of genes involved in steroidogenesis. Analyses of transcriptomic data from MEF2- or NR2F2-deficient MA-10 Leydig cells revealed a significant decrease in Akr1c14 mRNA levels. Using qPCR, we confirmed that Akr1c14 mRNA levels were decreased in MEF2- and in NR2F2-deficient conditions. Conversely, overexpression of MEF2A or/and NR2F2 in MA-10 Leydig cells led to an increase in endogenous Akr1c14 mRNA levels. Recruitment of MEF2 and NR2F2 to the Akr1c14 promoter was confirmed by ChIP while DNA precipitation assays revealed direct binding of MEF2 but not NR2F2 to this region. In functional promoter studies, NR2F2 was found to activate the Akr1c14 promoter while MEF2A on its own had no effect. Combination of both NR2F2 and MEF2A led to a cooperative activation of the Akr1c14 promoter and this required intact MEF2 and NR2F2 elements. Finally, co-immunoprecipitation experiments showed that MEF2 and NR2F2 are present in the same protein complex. In conclusion, our results identify a novel cooperation between MEF2 factors and NR2F2 in the expression of the Akr1c14 gene involved in the regulation of DHP/DHT levels. PMID:26748576

  2. CACNA1C risk variant affects reward responsiveness in healthy individuals.

    PubMed

    Lancaster, T M; Heerey, E A; Mantripragada, K; Linden, D E J

    2014-01-01

    The variant at rs1006737 in the L-type voltage-gated calcium channel (alpha 1c subunit) CACNA1C gene is reliably associated with both bipolar disorder and schizophrenia. We investigated whether this risk variant affects reward responsiveness because reward processing is one of the central cognitive-motivational domains implicated in both disorders. In a sample of 164 young, healthy individuals, we show a dose-dependent response, where the rs1006737 risk genotype was associated with blunted reward responsiveness, whereas discriminability did not significantly differ between genotype groups. This finding suggests that the CACNA1C risk locus may have a role in neural pathways that facilitate value representation for rewarding stimuli. Impaired reward processing may be a transdiagnostic phenotype of variation in CACNA1C that could contribute to anhedonia and other clinical features common to both affective and psychotic disorders. PMID:25290268

  3. 7 CFR 1c.111 - Criteria for IRB approval of research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (4) Informed consent will be sought from each prospective subject or the subject's legally authorized representative, in accordance with, and to the extent required by § 1c.116. (5) Informed consent will...

  4. 7 CFR 1c.111 - Criteria for IRB approval of research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (4) Informed consent will be sought from each prospective subject or the subject's legally authorized representative, in accordance with, and to the extent required by § 1c.116. (5) Informed consent will...

  5. 7 CFR 1c.111 - Criteria for IRB approval of research.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (4) Informed consent will be sought from each prospective subject or the subject's legally authorized representative, in accordance with, and to the extent required by § 1c.116. (5) Informed consent will...

  6. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  7. The Clinical Significance of HbA1c in Operable Chronic Thromboembolic Pulmonary Hypertension

    PubMed Central

    Richter, Manuel Jonas; Milger, Katrin; Haase, Sarah; Sommer, Natascha; Tello, Khodr; Seeger, Werner; Mayer, Eckhard; Wiedenroth, Christoph Benjamin; Grimminger, Friedrich; George, Wolfgang; Ghofrani, Hossein Ardeschir; Guth, Stefan; Gall, Henning

    2016-01-01

    Background Glycosylated hemoglobin A1c (HbA1c) has been proposed as an independent predictor of long-term prognosis in pulmonary arterial hypertension. However, the clinical relevance of HbA1c in patients with operable chronic thromboembolic pulmonary hypertension (CTEPH) remains unknown. The aim of the present study was to investigate the clinical significance of HbA1c as a biomarker in CTEPH. Methods Prospectively, 102 patients underwent pulmonary endarterectomy (PEA) in our national referral center between March 2013 and March 2014, of which after exclusion 45 patients were analyzed. HbA1c- levels, hemodynamic and exercise parameters were analyzed prior and one-year post-PEA. Results 45 patients (BMI: 27.3 ± 6.0 kg/m2; age: 62.7 ± 12.3 years) with a mean pulmonary arterial pressure (mPAP) of 43.6 ± 9.4 mmHg, a pulmonary vascular resistance (PVR) of 712.1 ± 520.4 dyn*s/cm5, a cardiac index (CI) of 2.4 ± 0.5 l/min/m2 and a mean HbA1c-level of 39.8 ± 5.6 mmol/mol were included. One-year post-PEA pulmonary hemodynamic and functional status significantly improved in our cohort. Baseline HbA1c-levels were significantly associated with CI, right atrial pressure, peak oxygen uptake and the change of 6-minute walking distance using linear regression analysis. However, using logistic regression analysis baseline HbA1c-levels were not significantly associated with residual post-PEA PH. Conclusions This is the first prospective study to describe an association of HbA1c-levels with pulmonary hemodynamics and exercise capacity in operable CTEPH patients. Our preliminary results indicate that in these patients impaired glucose metabolism as assessed by HbA1c is of clinical significance. However, HbA1c failed as a predictor of the hemodynamic outcome one-year post-PEA. PMID:27031508

  8. Characters of admissible representations of the affine superalgebra ŝl(2|1; C) k

    NASA Astrophysics Data System (ADS)

    Bowcock, P.; Hayes, M.; Taormina, A.

    1998-02-01

    We calculate characters and supercharacters for irreducible, admissible representations of the affine superalgebra ŝl(2|1; C) k in both the Ramond and Neveu-Schwarz sectors and discuss their modular properties in the special case of level k = - {1}/{2}. We also show that the non-degenerate integrable ŝl(2|1; C) k characters coincide with some N = 4 superconformal characters.

  9. Baicalin induces NAD(P)H:quinone reductase through the transactivation of AP-1 and NF-kappaB in Hepa 1c1c7 cells.

    PubMed

    Park, H J; Lee, Y W; Lee, S K

    2004-12-01

    Baicalin (5,6,7-trihydroxyflavone-7-O-D-glucuronic acid, BA) is a flavone isolated from Scutellariae radix. In our previous report BA was a major active principle of NAD(P)H:quinone reductase (QR) induction mediated by Scutellariae radix extract and the induction was related to the transcriptional activation of the QR gene in Hepa 1c1c7 cells. The primary aim of the present study was to determine the molecular mechanism of QR gene expression by baicalin. The antioxidant or electrophile response element (ARE/EpRE) found at the 5'-flanking region of phase II genes may play an important role in mediating their induction by xenobiotics, including chemopreventive agents. In accordance, to study the molecular mechanisms of QR gene expression by BA, electrophoretic mobility shift assay (EMSA), using nuclear extracts of treated and untreated cells against ARE, activator protein-1 (AP-1) or nuclear factor-kappaB (NF-kappaB) binding sites, showed that BA increased the binding levels of the parameters in a dose-dependent manner. Further, Hepa 1c1c7 cells were transiently transfected with a plasmid containing three copies of the AP-1- or NF-kappaB-binding site linked to a chloramphenicol acetyltransferase (CAT) reporter gene. Using the CAT reporter gene assay, a dose-dependent transactivation of AP-1- or NF-kappaB-mediated CAT expression was observed with the treatment of BA. These results clearly indicate that BA induces the QR gene expression and activity by transactivation of AP-1 and NF-kappaB, and thus BA may be considered as a potential cancer chemopreventive agent with the induction of phase II detoxification enzyme. PMID:15548947

  10. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients

    PubMed Central

    Sherwani, Shariq I.; Khan, Haseeb A.; Ekhzaimy, Aishah; Masood, Afshan; Sakharkar, Meena K.

    2016-01-01

    Diabetes is a global endemic with rapidly increasing prevalence in both developing and developed countries. The American Diabetes Association has recommended glycated hemoglobin (HbA1c) as a possible substitute to fasting blood glucose for diagnosis of diabetes. HbA1c is an important indicator of long-term glycemic control with the ability to reflect the cumulative glycemic history of the preceding two to three months. HbA1c not only provides a reliable measure of chronic hyperglycemia but also correlates well with the risk of long-term diabetes complications. Elevated HbA1c has also been regarded as an independent risk factor for coronary heart disease and stroke in subjects with or without diabetes. The valuable information provided by a single HbA1c test has rendered it as a reliable biomarker for the diagnosis and prognosis of diabetes. This review highlights the role of HbA1c in diagnosis and prognosis of diabetes patients. PMID:27398023

  11. What is the Role of HbA1c in Diabetic Hemodialysis Patients?

    PubMed

    Coelho, Silvia

    2016-01-01

    The definition of a good glycemic control in patients with diabetes mellitus on hemodialysis is far from settled. In the general population, hemoglobin A1c is highly correlated with the average glycemia of the last 8-12 weeks. However, in hemodialysis patients, the correlation of hbA1c with glycemia is weaker as it also reflects changes in hemoglobin characteristics and red blood cells half-life. As expected, studies show that the association between HbA1c and outcomes in these patients differ from the general population. Therefore, the value of HbA1c in the treatment of hemodialysis patients has been questioned. Guidelines are generally cautious in their recommendations about possible targets of HbA1c in this population. Indeed, the risk of not treating hyperglycemia should be weighed against the particularly high risk of precipitating hypoglycemia in dialysis patients. In this review, a critical analysis of the current role of HbA1c in the care of hemodialysis patients is presented. PMID:26138753

  12. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease

    PubMed Central

    Boevink, Petra C.; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R.; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M.; Tian, Zhendong; Birch, Paul R. J.

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c–1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  13. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients.

    PubMed

    Sherwani, Shariq I; Khan, Haseeb A; Ekhzaimy, Aishah; Masood, Afshan; Sakharkar, Meena K

    2016-01-01

    Diabetes is a global endemic with rapidly increasing prevalence in both developing and developed countries. The American Diabetes Association has recommended glycated hemoglobin (HbA1c) as a possible substitute to fasting blood glucose for diagnosis of diabetes. HbA1c is an important indicator of long-term glycemic control with the ability to reflect the cumulative glycemic history of the preceding two to three months. HbA1c not only provides a reliable measure of chronic hyperglycemia but also correlates well with the risk of long-term diabetes complications. Elevated HbA1c has also been regarded as an independent risk factor for coronary heart disease and stroke in subjects with or without diabetes. The valuable information provided by a single HbA1c test has rendered it as a reliable biomarker for the diagnosis and prognosis of diabetes. This review highlights the role of HbA1c in diagnosis and prognosis of diabetes patients. PMID:27398023

  14. Neue biosensorische Prinzipien für die Hämoglobin-A1c Bestimmung

    NASA Astrophysics Data System (ADS)

    Stöllner, Daniela

    2002-06-01

    Hämoglobin-A1c (HbA1c) ist ein Hämoglobin (Hb)-Subtypus, der durch nicht-enzymatische Glykierung des N-terminalen Valinrestes der Hämoglobin-beta-Kette entsteht. Das gemessene Verhältnis von HbA1c zum Gesamt-Hämoglobin (5-20 % bei Diabetikern) repräsentiert den Mittelwert der Blutglucosekonzentration über einen zweimonatigen Zeitraum und stellt zur Beurteilung der diabetischen Stoffwechsellage eine Ergänzung zur Akutkontrolle der Glukosekonzentration dar. Ziel der vorliegenden Arbeit war es, einen amperometrischen Biosensor für die Bestimmung des medizinisch relevanten Parameters HbA1c zu entwickeln. Durch Selektion geeigneter Bioerkennungselemente und deren Immobilisierung unter Erhalt der Bindungsfunktion für die Zielmoleküle Hämoglobin bzw. HbA1c wurden spezifische, hochaffine und regenerationsstabile Sensoroberflächen geschaffen. Für die Entwicklung des HbA1c-Biosensors wurden zwei Konzepte - Enzymsensor und Immunosensor - miteinander verglichen. Die enzymatische Umsetzung von HbA1c erfolgte mit der Fructosylamin Oxidase (FAO) aus Pichia pastoris N 1-1 unter Freisetzung von H2O2, welches sowohl optisch über eine Indikatorreaktion als auch elektrochemisch nach Einschluss der FAO in PVA-SbQ und Fixierung des Immobilisats vor einer H2O2-Elektrode nachgewiesen wurde. Die Kalibration des Enzymsensors mit der HbA1c-Modellsubstanz Fructosyl-Valin ergab Nachweisgrenzen, die ausserhalb des physiologisch relevanten HbA1c-Konzentrationsbereich lagen. Aus der Umsetzung von glykierten Peptiden mit einer nicht HbA1c analogen Aminosäurensequenz, z.B. Fructosyl-Valin-Glycin wurde zudem eine geringe HbA1c-Spezifität abgeleitet. Für den Immunosensor wurden zwei heterogene Immunoassay-Formate unter Verwendung von hochaffinen und spezifischen Antikörpern in Kombination mit Glucose Oxidase (GOD) als Markerenzym zum Nachweis von HbA1c untersucht. Beim indirekt-kompetitiven Immunoassay wurde anstelle des kompletten HbA1c-Moleküls das glykierte Pentapeptid

  15. Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2.

    PubMed

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-01-01

    Insulin resistance is a serious health condition worldwide; however, its exact mechanisms are still unclear. This study investigates agmatine (AGM; an endogenous metabolite of L-arginine) effects on insulin resistance induced by high fructose diet (HFD) in rats and the possible involved mechanisms. Sprague Dawley rats were fed 60% HFD for 12 weeks, and AGM (10 mg/kg/day, orally) was given from week 9 to 12. AGM significantly reduced HFD-induced elevation in fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) index and liver glycogen content from 3.44-, 3.62- and 2.07- to 2.59-, 2.78- and 1.3-fold, respectively, compared to the control group, while it increased HFD-induced reduction in glucose tolerance. Additionally, AGM significantly decreased HFD-induced elevation in serum triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol levels from 3.18-, 2.97- and 4.75- to 1.25-, 1.25- and 1.07-fold, respectively, compared to control group. Conversely, AGM had no significant effect on HFD-induced changes in fasting glucose, glycosylated hemoglobin, insulin tolerance and high density lipoprotein cholesterol. Furthermore, AGM significantly reduced HFD-induced elevation in mRNA expression of glucose transporter type-2 (GLUT-2), mammalian target of rapamycin (mTOR) and sterol regulatory element-binding protein-1c (SREBP-1c) without affecting that of peroxisome proliferator-activated receptor-alpha (PPAR-α) in the liver. Additionally, AGM enhanced ACh-induced aortic relaxation and attenuated liver steatosis induced by HFD. In conclusion, AGM may have a therapeutic potential in insulin resistance through suppressing SREBP-1c, mTOR and GLUT-2 in liver. PMID:26449613

  16. Challenges in HbA1c Analysis and Reporting in Patients with Variant Hemoglobins.

    PubMed

    Sultana, T A; Sheme, Z A; Sultana, G S; Sultana, B; Mishu, F A; Khan, N Z; Sarkar, B C; Muttalib, M A; Khan, S A; Choudhury, S; Mahtab, H

    2016-04-01

    Hemoglobin A1c (HbA(1)c) is a well-established indicator of mean glycemia. The presence of genetic variants of hemoglobin can profoundly affect the accuracy of HbA(1)c measurements. Variants of hemoglobin especially Hemoglobin E (HbE) is prevalent in South East Asia including Bangladesh. The objective of our study is to compare the HbA(1)c values measured on high performance liquid chromatography (HPLC) and Turbidimetric Inhibition Immunoassay (TINIA) in diabetic patients with variant hemoglobins including HbE. A total of 7595 diabetic patients receiving treatment at BIRDEM General Hospital were analyzed for HbA(1)c results within a period of two months from December 2013 to January 2014. Seventy two cases out of 7595 (0.95%) had either undetectable or below normal HbA(1)c levels (males-33 and females-39; ratio = 0.82:1) by HPLC method. In 34(0.45%) cases, HbA(1)c value was undetectable by HPLC method but was in the reportable range by TINIA method. In the other 38 (0.55%) cases, HbA(1)c levels were below the reportable range (<4%) by HPLC method but were in the normal or higher range by TINIA method. TINIA method did not agree with HPLC method on Bland Altman plot in the 38 cases with below normal HbA(1)c levels, [Mean bias -5.2(-9.3 to 1.0), 95% CI] but agreed very well [mean bias -0.21 (-0.84 to 0.42), y=1.1037+0.776X; r(2)=0.30, p<0.01] in controls. In control group mean MCV was 83.80±7.48 and in study group was 73.65±10.44. Alkaline electrophoresis confirmed the variant hemoglobin to be HbE. The fasting blood sugar levels of all the 72 cases correlated strongly with TINIA method (r(2) =0.75, p<0.0001) but not with HPLC (r = 0.24, p=0.13). In our regions where populations have a high prevalence of Hb variant, proper knowledge of hemoglobin variants which affect the measurements HbA(1)c level is essential. MCV of 80fl or below may serve as a rough guide to select samples that require analysis by TINIA method. Moreover, HPLC may be a convenient and inexpensive

  17. HbA1c Test as a Tool in the Diagnosis of Gestational Diabetes Mellitus

    PubMed Central

    Renz, Paula Breitenbach; Cavagnolli, Gabriela; Weinert, Letícia Schwerz; Silveiro, Sandra Pinho; Camargo, Joíza Lins

    2015-01-01

    Aims Gestational diabetes mellitus (GDM) is a prevalent and potentially serious condition which may put both mothers and neonates at risk. The current recommendation for diagnosis is the oral glucose tolerance test (OGTT). This study aimed to determine the usefulness of HbA1c test as a diagnostic tool for GDM as compared to the traditional criteria based on the OGTT. Methods This was a diagnostic test accuracy study. We performed OGTT and HbA1c test in women attending prenatal visits at a tertiary hospital. GDM was defined according to WHO1999 or ADA/WHO 2013 criteria. ROC curve was used to evaluate the diagnostic performance of HbA1c. Sensitivity, specificity and likelihood ratios for different HbA1c cut-off points were calculated. Results Of the 262 women in the third trimester of gestation enrolled in the study, 86 (33%) were diagnosed with GDM. Only five of these women presented HbA1c ≥48 mmol/mol (6.5%). This cut-off point presented 100% specificity but very low sensitivity (7%). Based on ROC curve, and considering OGTT as the reference criterion, HbA1c ≥40 mmol/mol (5.8%) showed adequate specificity in diagnosing GDM (94.9%) but low sensitivity (26.4%). Unlike, HbA1c values of 31 mmol/mol (5.0%) presented adequate sensitivity (89.7%) but low specificity (32.6%) to detect GDM. For women with HbA1c ≥40 mmol/mol (5.8%), the positive and negative likelihood ratios were 5.14 (95%CI 2.49–10.63) and 0.78 (0.68–0.88), respectively. The post-test probability of GDM was about 40%, representing a 4.0-fold increase in the mean pre-test probability. This cut-off point could eliminate the need for the unpleasant and laborious OGTT tests in almost one third of cases, as 38% of patients with GDM may be diagnosable by HbA1c test alone. Conclusions Our results show that combined HbA1c and OGTT measurements may be useful in diagnosing GDM. PMID:26292213

  18. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer

    PubMed Central

    Liu, Chengfei; Lou, Wei; Zhu, Yezi; Yang, Joy C.; Nadiminty, Nagalakshmi; Gaikwad, Nilesh W.; Evans, Christopher P.; Gao, Allen C.

    2015-01-01

    The introduction of enzalutamide and abiraterone has led to improvement in the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, acquired resistance to enzalutamide and abiraterone therapies frequently develops within a short period in many patients. In the present study, we developed enzalutamide resistant prostate cancer cells in an effort to understand the mechanisms of resistance. Global gene expression analysis showed that steroid biosynthesis pathway is activated in enzalutamide resistant prostate cancer cells. One of the crucial steroidogenic enzymes, AKR1C3, was significantly elevated in enzalutamide resistant cells. In addition, AKR1C3 is highly expressed in metastatic and recurrent prostate cancer and in enzalutamide resistant prostate xenograft tumors. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of the steroid metabolites revealed that androgen precursors such as cholesterol, DHEA and progesterone, as well as androgens are highly up regulated in enzalutamide resistant prostate cancer cells compared to the parental cells. Knock down of AKR1C3 expression by shRNA or inhibition of AKR1C3 enzymatic activity by indomethacin resensitized enzalutamide resistant prostate cancer cells to enzalutamide treatment both in vitro and in vivo. In contrast, overexpression of AKR1C3 confers resistance to enzalutamide. Furthermore, the combination of indomethacin and enzalutamide resulted in significant inhibition of enzalutamide-resistant tumor growth. These results suggest that AKR1C3 activation is a critical resistance mechanism associated with enzalutamide resistance, targeting intracrine androgens and AKR1C3 will overcome enzalutamide resistance and improve survival of advanced prostate cancer patients. PMID:25649766

  19. Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer.

    PubMed

    Liu, Chengfei; Lou, Wei; Zhu, Yezi; Yang, Joy C; Nadiminty, Nagalakshmi; Gaikwad, Nilesh W; Evans, Christopher P; Gao, Allen C

    2015-04-01

    The introduction of enzalutamide and abiraterone has led to improvement in the treatment of metastatic castration-resistant prostate cancer. However, acquired resistance to enzalutamide and abiraterone therapies frequently develops within a short period in many patients. In the present study, we developed enzalutamide-resistant prostate cancer cells in an effort to understand the mechanisms of resistance. Global gene-expression analysis showed that the steroid biosynthesis pathway is activated in enzalutamide-resistant prostate cancer cells. One of the crucial steroidogenic enzymes, AKR1C3, was significantly elevated in enzalutamide-resistant cells. In addition, AKR1C3 is highly expressed in metastatic and recurrent prostate cancer and in enzalutamide-resistant prostate xenograft tumors. LC/MS analysis of the steroid metabolites revealed that androgen precursors such as cholesterol, DHEA and progesterone, as well as androgens are highly upregulated in enzalutamide-resistant prostate cancer cells compared to the parental cells. Knockdown of AKR1C3 expression by shRNA or inhibition of AKR1C3 enzymatic activity by indomethacin resensitized enzalutamide-resistant prostate cancer cells to enzalutamide treatment both in vitro and in vivo. In contrast, overexpression of AKR1C3 confers resistance to enzalutamide. Furthermore, the combination of indomethacin and enzalutamide resulted in significant inhibition of enzalutamide-resistant tumor growth. These results suggest that AKR1C3 activation is a critical resistance mechanism associated with enzalutamide resistance; targeting intracrine androgens and AKR1C3 will overcome enzalutamide resistance and improve survival of advanced prostate cancer patients. PMID:25649766

  20. Characterization, solubilization and partial purification of serotonin 5-HT1C receptors

    SciTech Connect

    Yagaloff, K.A.

    1986-01-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to a unique serotonergic site on rat choroid plexus. These sites were localized to choroid plexus epithelial cells using a novel high resolution autoradiographic technique. In membrane preparations, the serotonergic site density was 3100 fmol/mg protein, which is 10 fold higher than the density of any other serotonergic site in brain homogenates. The pharmacology of this site, termed the 5-HT1c site, does not match that of 5-Ht1a, 5-HT1b or 5HT2 serotonergic sites. 5-Ht1c sites were solubilized from pig choroid plexus using the zwitterionic detergent, CHAPS. High affinity labelling of the solubilized site was obtained using the serotonergic radioligand, N1-methyl-2-(/sup 125/I)lysergic acid diethylamide (/sup 125/I-MIL). Choroid plexus tumors obtained from transgenic mice were examined for the presence of serotonin 5-HT1c receptors. /sup 125/I-LSD binding to choroid plexus tumors displays a pharmacological profile that matches the properties of 5-HT1c receptors in normal choroid plexus. The tumor exhibits the highest site density of serotonin receptors (6600 fmol/mg protein) found in any tissue. /sup 125/I-LSD autoradiography of brain sections from transgenic mice shows high levels of specific labelling over the tumor. The affinities of various indolealkyl, phenlakyl and beta-carboline derivatives for the serotonin 5-HT1c receptor were measured in pig choroid plexus using /sup 125/I-MIL. Serotonin precursors and metabolites were all very weak inhibitors of specific /sup 125/I-MIL binding. Structure-affinity relationships were determined for a number of indolealkylamine analogues. Only serotonin is present in cerebrospinal fluid at concentrations near its 5-HT1c inhibition constant, suggesting that serotonin is the natural 5-HT1c agonist.

  1. Expression of ATP6V1C1 during oral carcinogenesis.

    PubMed

    Oliveira Alves, M G; Carta, Cfl; Padín-Iruegas, M-E; Pérez-Sayáns, M; Suarez-Peñaranda, J M; Issa, J S; García-García, A; Almeida, J D

    2016-05-01

    We investigated the gene and protein expressions of V-type ATPase protein subunit C1 (ATP6V1C1) in cases of oral squamous cell carcinoma (OSCC) and contralateral normal mucosa in smokers, nonsmokers and former smokers. Subjects were separated into five groups of 15: group 1, smokers with OSCC; group 2, normal contralateral mucosa of OSCC patients; group 3, chronic smokers; group 4, former smokers who had stopped smoking 1 year earlier; group 5, individuals who had never smoked. Exfoliative cytology specimens from oral mucosa of smokers, former smokers and nonsmokers showed normal gene and protein expression. We found significantly greater gene expression in the OSCC group than in the nonsmoker groups. No difference in gene expression was observed between normal contralateral mucosa and nonsmoker groups, smoker and nonsmoker groups or former smoker and nonsmoker groups. We observed intense immunostaining for ATP6V1C1 protein in all cases of OSCC and weak or no staining in smoker, former smoker and nonsmoker groups. Significantly greater expression of ATP6V1C1 protein was observed in the OSCC group compared to the other groups, which supports the role of ATP6V1C1 in effecting changes associated with oral cancer. Analysis of the mucosae of chronic smokers, former smokers and the normal contralateral mucosa of patients with OSCC showed unaltered ATP6V1C1 gene and protein expression. Early stages of carcinogenesis, represented by altered epithelium of chronic smokers, had neither gene nor protein alterations as seen in OSCC. Therefore, we infer that the changes in ATP6V1C1 occur during later stages of carcinogenesis. Our preliminary study provides a basis for future studies of using ATP6V1C1 levels for detecting early stage OSCC. PMID:26984774

  2. MUC1-C ACTIVATES THE TAK1 INFLAMMATORY PATHWAY IN COLON CANCER

    PubMed Central

    Takahashi, Hidekazu; Jin, Caining; Rajabi, Hasan; Pitroda, Sean; Alam, Maroof; Ahmad, Rehan; Raina, Deepak; Hasegawa, Masanori; Suzuki, Yozo; Tagde, Ashujit; Bronson, Roderick T.; Weichselbaum, Ralph; Kufe, Donald

    2015-01-01

    The mucin 1 (MUC1) oncoprotein has been linked to the inflammatory response by promoting cytokine-mediated activation of the NF-κB pathway. The TGF-β-activated kinase 1 (TAK1) is an essential effector of proinflammatory NF-κB signaling that also regulates cancer cell survival. The present studies demonstrate that the MUC1-C transmembrane subunit induces TAK1 expression in colon cancer cells. MUC1 also induces TAK1 in a MUC1+/−/IL-10−/− mouse model of colitis and colon tumorigenesis. We show that MUC1-C promotes NF-κB-mediated activation of TAK1 transcription and, in a positive regulatory loop, MUC1-C contributes to TAK1-induced NF-κB signaling. In this way, MUC1-C binds directly to TAK1 and confers the association of TAK1 with TRAF6, which is necessary for TAK1-mediated activation of NF-κB. Targeting MUC1-C thus suppresses the TAK1→NF-κB pathway, downregulates BCL-XL, and in turn sensitizes colon cancer cells to MEK inhibition. Analysis of colon cancer databases further indicates that MUC1, TAK1 and TRAF6 are upregulated in tumors associated with decreased survival and that MUC1-C-induced gene expression patterns predict poor outcomes in patients. These results support a model in which MUC1-C-induced TAK1→NF-κB signaling contributes to intestinal inflammation and colon cancer progression. PMID:25659581

  3. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    SciTech Connect

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  4. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    SciTech Connect

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-07-18

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.

  5. Neue biosensorische Prinzipien für die Hämoglobin-A1c Bestimmung

    NASA Astrophysics Data System (ADS)

    Stöllner, Daniela

    2002-06-01

    Hämoglobin-A1c (HbA1c) ist ein Hämoglobin (Hb)-Subtypus, der durch nicht-enzymatische Glykierung des N-terminalen Valinrestes der Hämoglobin-beta-Kette entsteht. Das gemessene Verhältnis von HbA1c zum Gesamt-Hämoglobin (5-20 % bei Diabetikern) repräsentiert den Mittelwert der Blutglucosekonzentration über einen zweimonatigen Zeitraum und stellt zur Beurteilung der diabetischen Stoffwechsellage eine Ergänzung zur Akutkontrolle der Glukosekonzentration dar. Ziel der vorliegenden Arbeit war es, einen amperometrischen Biosensor für die Bestimmung des medizinisch relevanten Parameters HbA1c zu entwickeln. Durch Selektion geeigneter Bioerkennungselemente und deren Immobilisierung unter Erhalt der Bindungsfunktion für die Zielmoleküle Hämoglobin bzw. HbA1c wurden spezifische, hochaffine und regenerationsstabile Sensoroberflächen geschaffen. Für die Entwicklung des HbA1c-Biosensors wurden zwei Konzepte - Enzymsensor und Immunosensor - miteinander verglichen. Die enzymatische Umsetzung von HbA1c erfolgte mit der Fructosylamin Oxidase (FAO) aus Pichia pastoris N 1-1 unter Freisetzung von H2O2, welches sowohl optisch über eine Indikatorreaktion als auch elektrochemisch nach Einschluss der FAO in PVA-SbQ und Fixierung des Immobilisats vor einer H2O2-Elektrode nachgewiesen wurde. Die Kalibration des Enzymsensors mit der HbA1c-Modellsubstanz Fructosyl-Valin ergab Nachweisgrenzen, die ausserhalb des physiologisch relevanten HbA1c-Konzentrationsbereich lagen. Aus der Umsetzung von glykierten Peptiden mit einer nicht HbA1c analogen Aminosäurensequenz, z.B. Fructosyl-Valin-Glycin wurde zudem eine geringe HbA1c-Spezifität abgeleitet. Für den Immunosensor wurden zwei heterogene Immunoassay-Formate unter Verwendung von hochaffinen und spezifischen Antikörpern in Kombination mit Glucose Oxidase (GOD) als Markerenzym zum Nachweis von HbA1c untersucht. Beim indirekt-kompetitiven Immunoassay wurde anstelle des kompletten HbA1c-Moleküls das glykierte Pentapeptid

  6. CACNA1C risk variant affects facial emotion recognition in healthy individuals

    PubMed Central

    Nieratschker, Vanessa; Brückmann, Christof; Plewnia, Christian

    2015-01-01

    Recognition and correct interpretation of facial emotion is essential for social interaction and communication. Previous studies have shown that impairments in this cognitive domain are common features of several psychiatric disorders. Recent association studies identified CACNA1C as one of the most promising genetic risk factors for psychiatric disorders and previous evidence suggests that the most replicated risk variant in CACNA1C (rs1006737) is affecting emotion recognition and processing. However, studies investigating the influence of rs1006737 on this intermediate phenotype in healthy subjects at the behavioral level are largely missing to date. Here, we applied the “Reading the Mind in the Eyes” test, a facial emotion recognition paradigm in a cohort of 92 healthy individuals to address this question. Whereas accuracy was not affected by genotype, CACNA1C rs1006737 risk-allele carries (AA/AG) showed significantly slower mean response times compared to individuals homozygous for the G-allele, indicating that healthy risk-allele carriers require more information to correctly identify a facial emotion. Our study is the first to provide evidence for an impairing behavioral effect of the CACNA1C risk variant rs1006737 on facial emotion recognition in healthy individuals and adds to the growing number of studies pointing towards CACNA1C as affecting intermediate phenotypes of psychiatric disorders. PMID:26611642

  7. Ammonia oxidation is not required for growth of Group 1.1c soil Thaumarchaeota.

    PubMed

    Weber, Eva B; Lehtovirta-Morley, Laura E; Prosser, James I; Gubry-Rangin, Cécile

    2015-03-01

    Thaumarchaeota are among the most abundant organisms on Earth and are ubiquitous. Within this phylum, all cultivated representatives of Group 1.1a and Group 1.1b Thaumarchaeota are ammonia oxidizers, and play a key role in the nitrogen cycle. While Group 1.1c is phylogenetically closely related to the ammonia-oxidizing Thaumarchaeota and is abundant in acidic forest soils, nothing is known about its physiology or ecosystem function. The goal of this study was to perform in situ physiological characterization of Group 1.1c Thaumarchaeota by determining conditions that favour their growth in soil. Several acidic grassland, birch and pine tree forest soils were sampled and those with the highest Group 1.1c 16S rRNA gene abundance were incubated in microcosms to determine optimal growth temperature, ammonia oxidation and growth on several organic compounds. Growth of Group 1.1c Thaumarchaeota, assessed by qPCR of Group 1.1c 16S rRNA genes, occurred in soil, optimally at 30°C, but was not associated with ammonia oxidation and the functional gene amoA could not be detected. Growth was also stimulated by addition of organic nitrogen compounds (glutamate and casamino acids) but not when supplemented with organic carbon alone. This is the first evidence for non-ammonia oxidation associated growth of Thaumarchaeota in soil. PMID:25764563

  8. CACNA1C risk variant affects facial emotion recognition in healthy individuals.

    PubMed

    Nieratschker, Vanessa; Brückmann, Christof; Plewnia, Christian

    2015-01-01

    Recognition and correct interpretation of facial emotion is essential for social interaction and communication. Previous studies have shown that impairments in this cognitive domain are common features of several psychiatric disorders. Recent association studies identified CACNA1C as one of the most promising genetic risk factors for psychiatric disorders and previous evidence suggests that the most replicated risk variant in CACNA1C (rs1006737) is affecting emotion recognition and processing. However, studies investigating the influence of rs1006737 on this intermediate phenotype in healthy subjects at the behavioral level are largely missing to date. Here, we applied the "Reading the Mind in the Eyes" test, a facial emotion recognition paradigm in a cohort of 92 healthy individuals to address this question. Whereas accuracy was not affected by genotype, CACNA1C rs1006737 risk-allele carries (AA/AG) showed significantly slower mean response times compared to individuals homozygous for the G-allele, indicating that healthy risk-allele carriers require more information to correctly identify a facial emotion. Our study is the first to provide evidence for an impairing behavioral effect of the CACNA1C risk variant rs1006737 on facial emotion recognition in healthy individuals and adds to the growing number of studies pointing towards CACNA1C as affecting intermediate phenotypes of psychiatric disorders. PMID:26611642

  9. Low HbA1c and Increased Mortality Risk-is Frailty a Confounding Factor?

    PubMed Central

    Abdelhafiz, Ahmed H; Sinclair, Alan J

    2015-01-01

    Diabetes mellitus is increasingly becoming an older person disease due to the increased survival and aging of the population. Previous studies which showed benefits of tight glycemic control and a linear relationship between HbA1c and mortality have largely included younger patients newly diagnosed with diabetes and with less comorbidities. Recent studies, which included older population with diabetes, have shown a U-shaped relationship of increased mortality associated with low HbA1c. The mechanism of such relationship is unclear. There was no direct causal link between low HbA1c and mortality. It appears that malnutrition, inflammation and functional decline are characteristics shared by the populations that showed increased mortality and low HbA1c. In these studies functional status, disability or frailty was not routinely measured. Therefore, although adjustment for comorbidities was made there may be a residual confounding by unmeasured factors such as frailty. Thus, frailty or decline in functional reserve may be the main confounding factor explaining the relationship between increased mortality risk and low HbA1c. PMID:26236548

  10. Association of CACNA1C Variants with Bipolar Disorder in the Korean Population

    PubMed Central

    Kim, Soojin; Cho, Chul-Hyun; Geum, Dongho

    2016-01-01

    Objective Previous studies have suggested an association between CACNA1C and susceptibility of bipolar disorder. In this study, we examined the association of CACNA1C variants with bipolar disorder in the Korean population. Methods We selected 2 CACNA1C single nucleotide polymorphisms (SNPs), namely, rs723672 and rs1051375, based on their functions and minor allele frequencies described in previous studies. Genotypes of these 2 SNPs were analyzed by extracting DNA from blood samples collected from 287 patients with bipolar disorder and 340 healthy controls. Results Genotype frequencies of both rs723672 and rs1051375 SNPs were significantly different in patients and controls (p=0.0462 and 1.732E-14, respectively). Dominant, recessive, and allele models showed significant differences between patients and controls with respect to the rs1051375 SNP (p=1.72E-11, 4.17E-10, 4.95E-16, respectively). Conclusion Our results suggested that CACNA1C SNPs rs723672 and rs1051375 were associated with bipolar disorder in the Korean population. In addition, our results highlighted the importance of CACNA1C in determining susceptibility to bipolar disorder. PMID:27482248

  11. Dyslexia and DYX1C1: deficits in reading and spelling associated with a missense mutation.

    PubMed

    Bates, T C; Lind, P A; Luciano, M; Montgomery, G W; Martin, N G; Wright, M J

    2010-12-01

    The status of DYX1C1 (C15q21.3) as a susceptibility gene for dyslexia is unclear. We report the association of this gene with reading and spelling ability in a sample of adolescent twins and their siblings. Family-based association analyses were carried out on 13 single-nucleotide polymorphisms (SNPs) in DYX1C1, typed in 790 families with up to 5 offspring and tested on 6 validated measures of lexical processing (irregular word) and grapheme-phoneme decoding (pseudo-word) reading- and spelling-based measures of dyslexia, as well as a short-term memory measure. Significant association was observed at the misssense mutation rs17819126 for all reading measures and for spelling of lexical processing words, and at rs3743204 for both irregular and nonword reading. Verbal short-term memory was associated with rs685935. Support for association was not found at rs3743205 and rs61761345 as previously reported by Taipale et al., but these SNPs had very low (0.002 for rs3743205) minor allele frequencies in this sample. These results suggest that DYX1C1 influences reading and spelling ability with additional effects on short-term information storage or rehearsal. Missense mutation rs17819126 is a potential functional basis for the association of DYX1C1 with dyslexia. PMID:19901951

  12. Dependence on the MUC1-C Oncoprotein in Non-Small Cell Lung Cancer Cells

    PubMed Central

    Raina, Deepak; Kosugi, Michio; Ahmad, Rehan; Panchamoorthy, Govind; Rajabi, Hasan; Alam, Maroof; Shimamura, Takeshi; Shapiro, Geoffrey I.; Supko, Jeffrey; Kharbanda, Surender; Kufe, Donald

    2011-01-01

    Non-small cell lung cancer (NSCLC) cells are often associated with constitutive activation of the phosphatidylinositol 3-kinase (PI3K)->Akt->mTOR pathway. The mucin 1 (MUC1) heterodimeric glycoprotein is aberrantly overexpressed in NSCLC and induces gene signatures that are associated with poor survival of NSCLC patients. The present results demonstrate that the MUC1 C-terminal subunit (MUC1-C) cytoplasmic domain associates with PI3K p85 in NSCLC cells. We show that inhibition of MUC1-C with cell-penetrating peptides blocks this interaction with PI3K p85 and suppresses constitutive phosphorylation of Akt and its downstream effector, mTOR. In concert with these results, treatment of NSCLC cells with the MUC1-C peptide inhibitor, GO-203, was associated with downregulation of PI3K->Akt signaling and inhibition of growth. GO-203 treatment was also associated with increases in reactive oxygen species (ROS) and induction of necrosis by a ROS-dependent mechanism. Moreover, GO-203 treatment of H1975 (EGFR L858R/T790M) and A549 (K-Ras G12S) xenografts growing in nude mice resulted in tumor regressions. These findings indicate that NSCLC cells are dependent on MUC1-C for activation of the PI3K->Akt pathway and for survival. PMID:21421804

  13. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel

    NASA Astrophysics Data System (ADS)

    Lai, Qingquan; Gouné, Mohamed; Perlade, Astrid; Pardoen, Thomas; Jacques, Pascal; Bouaziz, Olivier; Bréchet, Yves

    2016-05-01

    The austenitization from a spheroidized microstructure during intercritical annealing was studied in a Fe-0.1C-3.5Mn alloy. The austenite grains preferentially nucleate and grow from intergranular cementite. The nucleation at intragranular cementite is significantly retarded or even suppressed. The DICTRA software, assuming local equilibrium conditions, was used to simulate the austenite growth kinetics at various temperatures and for analyzing the austenite growth mechanism. The results indicate that both the mode and the kinetics of austenite growth strongly depend on cementite composition. With sufficiently high cementite Mn content, the austenite growth is essentially composed of two stages, involving the partitioning growth controlled by Mn diffusion inside ferrite, followed by a stage controlled by Mn diffusion within austenite for final equilibration. The partitioning growth results in a homogeneous distribution of carbon within austenite, which is supported by NanoSIMS carbon mapping.

  14. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel

    NASA Astrophysics Data System (ADS)

    Lai, Qingquan; Gouné, Mohamed; Perlade, Astrid; Pardoen, Thomas; Jacques, Pascal; Bouaziz, Olivier; Bréchet, Yves

    2016-07-01

    The austenitization from a spheroidized microstructure during intercritical annealing was studied in a Fe-0.1C-3.5Mn alloy. The austenite grains preferentially nucleate and grow from intergranular cementite. The nucleation at intragranular cementite is significantly retarded or even suppressed. The DICTRA software, assuming local equilibrium conditions, was used to simulate the austenite growth kinetics at various temperatures and for analyzing the austenite growth mechanism. The results indicate that both the mode and the kinetics of austenite growth strongly depend on cementite composition. With sufficiently high cementite Mn content, the austenite growth is essentially composed of two stages, involving the partitioning growth controlled by Mn diffusion inside ferrite, followed by a stage controlled by Mn diffusion within austenite for final equilibration. The partitioning growth results in a homogeneous distribution of carbon within austenite, which is supported by NanoSIMS carbon mapping.

  15. Stress and A1c Among People with Diabetes Across the Lifespan.

    PubMed

    Hilliard, Marisa E; Yi-Frazier, Joyce P; Hessler, Danielle; Butler, Ashley M; Anderson, Barbara J; Jaser, Sarah

    2016-08-01

    Stress is known to negatively affect health and is a potentially serious barrier to diabetes-related health outcomes. This paper synthesizes what is known about stress and glycemic control among people with type 1 and type 2 diabetes across the lifespan. Chronic stress-especially in relation to living with diabetes-was most strongly associated with A1c, particularly among subgroups that face disproportionate stress, such as minority groups or adolescents/young adults. Mechanisms of the stress-A1c association include physiological, psychological, behavioral, and environmental links. Understanding the dimensions of stress as they relate to health in diabetes can be of significant clinical importance, and interventions targeting mechanisms that either exacerbate or buffer stress have reported modest improvements in A1c. PMID:27287017

  16. Fast Adaptation in Vestibular Hair Cells Requires Myosin-1c Activity

    PubMed Central

    Stauffer, Eric A.; Scarborough, John D.; Hirono, Moritoshi; Miller, Emilie D.; Shah, Kavita; Mercer, John A.; Holt, Jeffrey R.; Gillespie, Peter G.

    2009-01-01

    Summary In sensory hair cells of the inner ear, mechanical amplification of small stimuli requires fast adaptation, the rapid closing of mechanically activated transduction channels. In frog and mouse vestibular hair cells, we found that the rate of fast adaptation depends on both channel opening and stimulus size and that it is modeled well as a release of a mechanical element in series with the transduction apparatus. To determine whether myosin-1c molecules of the adaptation motor are responsible for the release, we introduced the Y61G mutation into the Myo1c locus and generated mice homozygous for this sensitized allele. Measuring transduction and adaptation in the presence of NMB-ADP, an allele-specific inhibitor, we found that the inhibitor not only blocked slow adaptation, as demonstrated previously in transgenic mice, but also inhibited fast adaptation. These results suggest that mechanical activity of myosin-1c is required for fast adaptation in vestibular hair cells. PMID:16102537

  17. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 GeneExpression through Activation of SREBP-1c

    SciTech Connect

    Jakel, Heidelinde; Nowak, Maxime; Moitrot, Emanuelle; Dehondt, Helene; Hum, Dean W.; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart,Jean-Charles

    2004-07-23

    Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X-receptor (LXR) ligand mediated effect on plasma triglyceride levels.Following treatment with the LXR ligand T0901317, we found that APOA5mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease OF APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.

  18. INTRACELLULAR TARGETING OF THE ONCOGENIC MUC1-C PROTEIN WITH A NOVEL GO-203 NANOPARTICLE FORMULATION

    PubMed Central

    Hasegawa, Masanori; Sinha, Raj Kumar; Kumar, Manoj; Alam, Maroof; Yin, Li; Raina, Deepak; Kharbanda, Akriti; Panchamoorthy, Govind; Gupta, Dikshi; Singh, Harpal; Kharbanda, Surender; Kufe, Donald

    2015-01-01

    Purpose The MUC1-C oncoprotein is an intracellular target that is druggable with cell-penetrating peptide inhibitors. However, development of peptidyl drugs for treating cancer has been a challenge because of unfavorable pharmacokinetic parameters and limited cell penetrating capabilities. Experimental Design Encapsulation of the MUC1-C inhibitor, GO-203, in novel polymeric nanoparticles (NPs) was studied for effects on intracellular targeting of MUC1-C signaling and function. Results Our results show that loading GO-203 into tetrablock polylactic acid (PLA)-polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG copolymers is achievable and, notably, is enhanced by increasing PEG chain length. Additionally, we found that release of GO-203 from these NPs is controllable over at least 7 days. GO-203/NP treatment of MUC1-C-positive breast and lung cancer cells in vitro was more active with less frequent dosing than that achieved with non-encapsulated GO-203. Moreover, treatment with GO-203/NPs blocked MUC1-C homodimerization, consistent with on-target effects. GO-203/NP treatment was also effective in downregulating TIGAR, disrupting redox balance and inhibiting the self-renewal capacity of cancer cells. Significantly, weekly administration of GO-203/NPs to mice bearing syngeneic or xenograft tumors was associated with regressions that were comparable to those found when dosing on a daily basis with GO-203. Conclusions These findings thus define an effective approach for (i) sustained administration of GO-203 in polymeric PLA-(PEG-PPG-PEG) NPs to target MUC1-C in cancer cells and (ii) the potential delivery of other anti-cancer peptide drugs. PMID:25712682

  19. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples

    PubMed Central

    Lee, Sin Hang; Zhou, Shaoxia; Zhou, Tianjun; Hong, Guofan

    2016-01-01

    Three sets of polymerase chain reaction (PCR) primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap) cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV) assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine. PMID:26867194

  20. Spin wave ballistic transport properties of [Co1-c Gdc ] ℓ‧ [Co]ℓ [Co1-c Gdc ] ℓ‧ nanojunctions between Co leads

    NASA Astrophysics Data System (ADS)

    Ashokan, V.; Khater, A.; Abou Ghantous, M.; Ghader, D.

    2015-06-01

    The spin wave (SW) ballistic transport properties are investigated for nanojunction systems composed of thin [Co1-c Gdc ] ℓ‧ [Co]ℓ [Co1-c Gdc ] ℓ‧ layered nanostructures between cobalt leads. The nanojunction is considered as a homogeneous random alloy of concentrations c on an hcp crystal lattice. ℓ corresponds to the numbers of the hcp (0001) atomic planes per given layer. The phase field matching theory (PFMT) is used to investigate the spin dynamics of the nanojunction system in the virtual crystal approximation (VCA), valid in particular for submicroscopic SW wavelengths. The model calculations yield the spin modes localized on the nanojunction, normal to its plane, in their propagating and resonant forms. The eigenvectors of these modes are calculated for certain cases to illustrate the spin precession configurations on the nanojunction. The VCA-PFMT approach yields a general model, and is used to calculate the SW ballistic scattering and transport across the nanojunction for spin waves incident from the Co leads onto the nanojunction. The results demonstrate resonance Fano assisted maxima in the SW transmission spectra due to interactions between incident lead spin waves and localized spin resonances on the nanojunction. It is shown that these maxima change with nanojunction thickness and alloy concentration. The spectral transmission results for low frequency SWs are of specific interest, in particular they correspond to submicroscopic wavelengths which present an interest for current research of magnonic devices.

  1. Sanger Sequencing for BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del Mutation Screen on Pap Smear Cytology Samples.

    PubMed

    Lee, Sin Hang; Zhou, Shaoxia; Zhou, Tianjun; Hong, Guofan

    2016-01-01

    Three sets of polymerase chain reaction (PCR) primers were designed for heminested PCR amplification of the target DNA fragments in the human genome which include the site of BRCA1 c.68_69del, BRCA1 c.5266dup and BRCA2 c.5946del respectively, to prepare the templates for direct Sanger sequencing screen of these three founder mutations. With a robust PCR mixture, crude proteinase K digestate of the fixed cervicovaginal cells in the liquid-based Papanicolaou (Pap) cytology specimens can be used as the sample for target DNA amplification without pre-PCR DNA extraction, purification and quantitation. The post-PCR products can be used directly as the sequencing templates without further purification or quantitation. By simplifying the frontend procedures for template preparation, the cost for screening these three founder mutations can be reduced to about US $200 per test when performed in conjunction with human papillomavirus (HPV) assays now routinely ordered for cervical cancer prevention. With this projected price structure, selective patients in a high-risk population can be tested and each provided with a set of DNA sequencing electropherograms to document the absence or presence of these founder mutations in her genome to help assess inherited susceptibility to breast and ovarian cancer in this era of precision molecular personalized medicine. PMID:26867194

  2. A Review of the Challenge in Measuring Hemoglobin A1c

    PubMed Central

    Weykamp, Cas; Garry John, W.; Mosca, Andrea

    2009-01-01

    The attraction of the simple biochemical concept combined with a clinical requirement for a long-term marker of glycolic control in diabetes has made hemoglobin A1c (HbA1c) one of the most important assays undertaken in the medical laboratory. The diversity in the biochemistry of glycation, clinical requirements, and management demands has resulted in a broad range of methods being developed since HbA1c was described in the late 1960s. A range of analytic principles are used for the measurement of HbA1c. The charge difference between hemoglobin A0 and HbA1c has been widely utilized to separate these two fractions, most notably found these days in ion-exchange high-performance liquid chromatography systems; the difference in molecular structure (affinity chromatography and immunochemical methods) are becoming widely available. Different results found in different laboratories using a variety of HbA1c analyses resulted in the need for standardization, most notably in the United States, Japan, and Sweden. Designated comparison methods are now located in these three countries, but as they are arbitrarily chosen and have differences in specificity, results of these methods and the reference values and action limits of the methods differ and only harmonized HbA1c in specific geographic areas. A reference measurement system within the concept of metrological traceability is now globally accepted as the only valid analytic anchor. However, there is still discussion over the units to be reported. The consensus statement of the International Federation of Clinical Chemistry (IFCC), the American Diabetes Association, the International Diabetes Federation, and the European Association for the Study of Diabetes suggests reporting HbA1c in IFCC units (mmol/mol), National Glycohemoglobin Standardization Program units (%), and estimated average glucose (either in mg/dl or mmol/liter). The implementation of this consensus statement raised new questions, to be answered in a

  3. Endovascular Treatment of a Vertebral Artery Pseudoaneurysm Following Posterior C1-C2 Transarticular Screw Fixation

    SciTech Connect

    Mendez, Jose C. Gonzalez-Llanos, Francisco

    2005-01-15

    We present a case of vertebral artery pseudoaneurysm after a posterior C1-C2 transarticular screw fixation procedure that was effectively treated with endovascular coil occlusion. Vertebral artery pseudoaneurysm complicating posterior C1-C2 transarticular fixation is extremely rare, with only one previous case having been reported previously. Endovascular occlusion is better achieved in the subacute phase of the pseudoaneurysm, when the wall of the pseudoaneurysm has matured and stabilized. Further follow-up angiographies are mandatory in order to confirm that there is no recurrence of the lesion.

  4. 40 CFR Table W-1c to Subpart W of... - Default Average Component Counts For Major Crude Oil Production Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems Pt. 98, Subpt. W, Table W-1C Table W-1C to Subpart W of Part...

  5. Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner

    PubMed Central

    Efimova, Nadia; Grimaldi, Ashley; Bachmann, Alice; Frye, Keyada; Zhu, Xiaodong; Feoktistov, Alexander; Straube, Anne; Kaverina, Irina

    2014-01-01

    ABSTRACT The kinesin KIF1C is known to regulate podosomes, actin-rich adhesion structures that remodel the extracellular matrix during physiological processes. Here, we show that KIF1C is a player in the podosome-inducing signaling cascade. Upon induction of podosome formation by protein kinase C (PKC), KIF1C translocation to the cell periphery intensifies and KIF1C accumulates both in the proximity of peripheral microtubules that show enrichment for the plus-tip-associated proteins CLASPs and around podosomes. Importantly, without CLASPs, both KIF1C trafficking and podosome formation are suppressed. Moreover, chimeric mitochondrially targeted CLASP2 recruits KIF1C, suggesting a transient CLASP–KIF1C association. We propose that CLASPs create preferred microtubule tracks for KIF1C to promote podosome induction downstream of PKC. PMID:25344256

  6. Involvement of capsaicin-sensitive nerves in the bronchomotor effects of arachidonic acid and melittin: a possible role for lipoxin A4.

    PubMed Central

    Manzini, S.; Meini, S.

    1991-01-01

    1. Functional studies have been performed to evaluate the potential involvement of capsaicin-sensitive nerves in the bronchomotor responses evoked by lipid mediators produced from the metabolic breakdown of arachidonic acid (AA) in the guinea-pig bronchus. 2. In the presence of indomethacin, the exogenous administration of AA (0.01-1 mM) produced a concentration-dependent contractile response in guinea-pig isolated bronchial rings. AA-induced contractions were augmented by epithelium-removal and by thiorphan (10 microM), an inhibitor of tachykinin breakdown. A sustained downward and rightward displacement of the complete concentration-response curve to AA was observed after in vitro capsaicin desensitization. 3. BWA4C (1 microM), a selective inhibitor of 5-lipoxygenase, shifted the AA concentration-response curve to the right. In the presence of this inhibitor, capsaicin desensitization did not have any further inhibitory action. 4. A potent, concentration-dependent and capsaicin-sensitive bronchoconstrictor effect was also observed with the polypeptide, melittin (10 nM-1 microM), an activator of phospholipase A2, which therefore should generate endogenous AA. 5. In vitro capsaicin-desensitization produced a significant reduction of the bronchomotor responses evoked by lipoxin A4 (1-6 microM), but not of those elicited by other lipoxygenases products such as leukotriene D4 (1-100 nM) or by 15-hydroxyeicosatetraenoic acid (15-HETE, 1-6 microM). 6. These findings indicate that lipoxin A4 but not leukotriene D4 or 15-HETE, might be one of the lipoxygenase mediators of excitatory effects of AA on capsaicin-sensitive sensory nerves. PMID:1908731

  7. The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages

    PubMed Central

    Kopp, Petra; Lammers, Reiner; Aepfelbacher, Martin; Woehlke, Günther; Rudel, Thomas; Machuy, Nikolaus; Steffen, Walter

    2006-01-01

    Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end–enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells. PMID:16554367

  8. 7 CFR 1c.113 - Suspension or termination of IRB approval of research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Suspension or termination of IRB approval of research... § 1c.113 Suspension or termination of IRB approval of research. An IRB shall have authority to suspend or terminate approval of research that is not being conducted in accordance with the...

  9. The role of myosin 1c and myosin 1b in surfactant exocytosis.

    PubMed

    Kittelberger, Nadine; Breunig, Markus; Martin, René; Knölker, Hans-Joachim; Miklavc, Pika

    2016-04-15

    Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression. PMID:26940917

  10. Magnetic properties of (Ho 1-cGd c) Co 2 compounds

    NASA Astrophysics Data System (ADS)

    Tari, A.; Keith, V.; Hwang, J. S.

    1994-02-01

    E.S.R., magnetisation and susceptibility measurements have been carried out on the series (Ho 1-cGd c)Co 2. In compounds with c≤ 0.40 we find evidence of spin reorientation. In the three most dilute compounds a g-value of about four is obtained which increases with increasing Gd content.

  11. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons

    PubMed Central

    Cygnar, Katherine D.; Zhao, Haiqing

    2009-01-01

    In the nose, odorants are detected on the cilia of olfactory sensory neurons (OSNs), where a cAMP-mediated signaling pathway transforms odor stimulation into electrical responses. Phosphodiesterase (PDE) activity in OSN cilia was long thought to account for rapid response termination by degrading odor-induced cAMP. Two PDEs with distinct cellular localization have been found in OSNs: PDE1C in cilia; PDE4A throughout the cell but absent from cilia. We disrupted both genes in mice and performed electroolfactogram analysis. Unexpectedly, eliminating PDE1C did not prolong response termination. Prolonged termination occurred only in mice lacking both PDEs, suggesting that cAMP degradation by PDE1C in cilia is not a rate-limiting factor for response termination in wildtype. Pde1c−/− OSNs instead displayed reduced sensitivity and attenuated adaptation to repeated stimulation, suggesting potential roles for PDE1C in regulating sensitivity and adaptation. These observations provide new perspectives in regulation of olfactory transduction. PMID:19305400

  12. Is hemoglobin A1c level effective in predicting the prognosis of Fournier gangrene?

    PubMed Central

    Sen, Haluk; Bayrak, Omer; Erturhan, Sakip; Borazan, Ersin; Koc, Mustafa Nihat

    2016-01-01

    Objectives: To evaluate the effect of immune failure and/or diabetes mellitus (DM) association on the mortality and morbidity of the Fournier's Gangrene (FG), and interrelatedly, the usability of HbA1c level in the prediction of prognosis. Materials and Methods: The data of 38 patients with the diagnosis of FG were investigated retrospectively. The patients were divided into two groups as patients with DM (Group 1, n = 18) and non-diabetics (Group 2, n = 20). The patients in group 1 were also divided into two subgroups as patients with HbA1c value ≥7 (Group 1a) and HbA1c value <7 (Group 1b). Results: The mean age of all 38 male patients was 66.3 ± 6.4 years. The initial symptoms were scrotal rash and swelling (n = 20, 52.6%), high fever (>38°C) (n = 22, 57.8%), purulent discharge from genital or perineal areas (n = 13, 34.2%), skin bruises (n = 11, 28.9%) and general state disorder in five patients that were admitted from day care center (13.1%). DM, as the most often comorbid disease, was detected in 18 patients (47.3%). Six patients (15.7%) were deceased during the follow-up period. Conclusion: In the present study, the researchers determined that diabetic patients with HbA1c level of 7 or higher had worse prognosis, and increased mortality. PMID:27453658

  13. Expression of GluK1c underlies the developmental switch in presynaptic kainate receptor function

    PubMed Central

    Vesikansa, Aino; Sakha, Prasanna; Kuja-Panula, Juha; Molchanova, Svetlana; Rivera, Claudio; Huttunen, Henri J.; Rauvala, Heikki; Taira, Tomi; Lauri, Sari E.

    2012-01-01

    Kainate-type glutamate receptors (KARs) regulate synaptic transmission and neuronal excitability via multiple mechanisms, depending on their subunit composition. Presynaptic KARs tonically depress glutamatergic transmission during restricted period of synapse development; however, the molecular basis behind this effect is unknown. Here, we show that the developmental and cell-type specific expression pattern of a KAR subunit splice variant, GluK1c, corresponds to the immature-type KAR activity in the hippocampus. GluK1c localizes to dendritic contact sites at distal axons, the distal targeting being promoted by heteromerization with the subunit GluK4. Presynaptic expression of GluK1c strongly suppresses glutamatergic transmission in cell-pairs in vitro and mimics the immature-type KAR activity at CA3-CA1 synapses in vivo, at a developmental stage when the endogenous expression is already downregulated. These data support a central role for GluK1c in mediating tonic inhibition of glutamate release and the consequent effects on excitability and activity-dependent fine-tuning of the developing hippocampal circuitry. PMID:22413061

  14. Expression of GluK1c underlies the developmental switch in presynaptic kainate receptor function.

    PubMed

    Vesikansa, Aino; Sakha, Prasanna; Kuja-Panula, Juha; Molchanova, Svetlana; Rivera, Claudio; Huttunen, Henri J; Rauvala, Heikki; Taira, Tomi; Lauri, Sari E

    2012-01-01

    Kainate-type glutamate receptors (KARs) regulate synaptic transmission and neuronal excitability via multiple mechanisms, depending on their subunit composition. Presynaptic KARs tonically depress glutamatergic transmission during restricted period of synapse development; however, the molecular basis behind this effect is unknown. Here, we show that the developmental and cell-type specific expression pattern of a KAR subunit splice variant, GluK1c, corresponds to the immature-type KAR activity in the hippocampus. GluK1c localizes to dendritic contact sites at distal axons, the distal targeting being promoted by heteromerization with the subunit GluK4. Presynaptic expression of GluK1c strongly suppresses glutamatergic transmission in cell-pairs in vitro and mimics the immature-type KAR activity at CA3-CA1 synapses in vivo, at a developmental stage when the endogenous expression is already downregulated. These data support a central role for GluK1c in mediating tonic inhibition of glutamate release and the consequent effects on excitability and activity-dependent fine-tuning of the developing hippocampal circuitry. PMID:22413061

  15. Stereoselective synthesis of the C1-C29 part of amphidinol 3.

    PubMed

    Tsuruda, Takeshi; Ebine, Makoto; Umeda, Aya; Oishi, Tohru

    2015-01-16

    Stereoselective synthesis of the C1-C29 part of amphidinol 3 (AM3) was achieved. The C1-C20 part was assembled from three building blocks via regioselective cross metathesis to form the C4-C5 double bond and addition of an alkenyllithium and a lithium acetylide to two Weinreb amides followed by asymmetric reduction to form the C9-C10 and C14-C15 bonds, respectively. The C21-C29 part was synthesized via successive cross metathesis and oxa-Michael addition sequence to construct the 1,3-diol system at C25 and C27 and Brown asymmetric crotylation to introduce the stereogenic centers at C23 and C24. Coupling of the C1-C20 and C21-C29 parts was achieved by Julia-Kocienski olefination and regio- and stereoselective dihydroxylation of the C20-C21 double bond in the presence of the C4-C5 and C8-C9 double bonds to afford the C1-C29 part of AM3. PMID:25517178

  16. On the causes of compositional order in the Ni sub c Pt sub (1-c) alloys

    SciTech Connect

    Gyorffy, B.L. . H.H. Wills Physics Lab.); Pinski, F.J. . Dept. of Physics); Ginatempo, B. . Ist. di Fisica Teorica); Johnson, D.D. ); Staunton, J.B. . Dept. of Physics); Shelton, W.A.; Stocks, G.M.; Nicholson, D.M.

    1991-01-01

    We review, briefly, the arguments which gave rise to the current controversy concerning the origin of compositional order in Ni{sub c}Pt{sub 1-c} alloys. We note that strain fluctuations play an important role in determining the state of compositional order in this system and outline a theoretical framework that takes account of them. 29 refs., 4 figs.

  17. Validation of NHB 8060.1C, Test 18 Arc Tracking, September 30, 1991

    NASA Technical Reports Server (NTRS)

    Linley, Larry

    2005-01-01

    A test project was conducted to validate Test 18 of NASA Handbook (NHB) 8060.1C and, if necessary, identify and recommend improvements in the procedures or criteria of the test. The NHB 8060.1C, Test 18 test system was modified to produce better discrimination of test results. Changes, and their effects on test results, in the graphite immersion-depth, test timing sequence, and atmospheric conditions were investigated for the wire-insulation constructions tested. Based on the test results, the graphite immersion-depths (between 0.8 mm and 1.6 mm), the timing sequence, and the change in the test conditions from ambient to three environments common in manned spaceflight did not significantly affect test results. The criteria used in Test 18 of NHB 8060.1C was found to be appropriate for qualifying arc-tracking and arc-propagation characteristics of wire-insulation materials, Using the Test 18 criteria, Kapton and ETFE were considered inappropriate for use, while PTFE was considered appropriate. Recommendations from this test project for Test 18 of NHB 8060.1C include changing the experimental setup and configurational tests and performing qualification testing in air rather than in the three environments common in manned spaceflight.

  18. Spirastrellolide E: Synthesis of an advanced C(1)-C(24) southern hemisphere

    PubMed Central

    Sokolsky, Alexander; Wang, Xiaozhao; Smith, Amos B.

    2014-01-01

    The synthesis of a C(1)-C(24) advanced southern hemisphere fragment towards the total synthesis of spirastrellolide E has been achieved. Highlights of the route include a highly convergent Type I Anion Relay Chemistry (ARC) tactic for fragment assembly, in conjunction with a directed, regioselective gold-catalyzed alkyne functionalization to generate the central unsaturated [6,6]-spiroketal. PMID:26097261

  19. IGF-1 C Domain-Modified Hydrogel Enhances Cell Therapy for AKI.

    PubMed

    Feng, Guowei; Zhang, Jimin; Li, Yang; Nie, Yan; Zhu, Dashuai; Wang, Ran; Liu, Jianfeng; Gao, Jie; Liu, Na; He, Ningning; Du, Wei; Tao, Hongyan; Che, Yongzhe; Xu, Yong; Kong, Deling; Zhao, Qiang; Li, Zongjin

    2016-08-01

    Low cell retention and engraftment after transplantation limit the successful application of stem cell therapy for AKI. Engineered microenvironments consisting of a hydrogel matrix and growth factors have been increasingly successful in controlling stem cell fate by mimicking native stem cell niche components. Here, we synthesized a bioactive hydrogel by immobilizing the C domain peptide of IGF-1 (IGF-1C) on chitosan, and we hypothesized that this hydrogel could provide a favorable niche for adipose-derived mesenchymal stem cells (ADSCs) and thereby enhance cell survival in an AKI model. In vitro studies demonstrated that compared with no hydrogel or chitosan hydrogel only, the chitosan-IGF-1C hydrogel increased cell viability through paracrine effects. In vivo, cotransplantation of the chitosan-IGF-1C hydrogel and ADSCs in ischemic kidneys ameliorated renal function, likely by the observed promotion of stem cell survival and angiogenesis, as visualized by bioluminescence imaging and attenuation of fibrosis. In conclusion, IGF-1C immobilized on a chitosan hydrogel provides an artificial microenvironment for ADSCs and may be a promising therapeutic approach for AKI. PMID:26869006

  20. 7 CFR 1c.111 - Criteria for IRB approval of research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Criteria for IRB approval of research. 1c.111 Section... Criteria for IRB approval of research. (a) In order to approve research covered by this policy the IRB... minimized: (i) By using procedures which are consistent with sound research design and which do...

  1. 7 CFR 1c.111 - Criteria for IRB approval of research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Criteria for IRB approval of research. 1c.111 Section... Criteria for IRB approval of research. (a) In order to approve research covered by this policy the IRB... minimized: (i) By using procedures which are consistent with sound research design and which do...

  2. The role of myosin 1c and myosin 1b in surfactant exocytosis

    PubMed Central

    Kittelberger, Nadine; Breunig, Markus; Martin, René; Knölker, Hans-Joachim; Miklavc, Pika

    2016-01-01

    ABSTRACT Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression. PMID:26940917

  3. Functional Characterization of Schizophrenia-Associated Variation in CACNA1C

    PubMed Central

    Eckart, Nicole; Song, Qifeng; Yang, Rebecca; Wang, Ruihua; Zhu, Heng; McCallion, Andrew S.; Avramopoulos, Dimitrios

    2016-01-01

    Calcium channel subunits, including CACNA1C, have been associated with multiple psychiatric disorders. Specifically, genome wide association studies (GWAS) have repeatedly identified the single nucleotide polymorphism (SNP) rs1006737 in intron 3 of CACNA1C to be strongly associated with schizophrenia and bipolar disorder. Here, we show that rs1006737 marks a quantitative trait locus for CACNA1C transcript levels. We test 16 SNPs in high linkage disequilibrium with rs1007637 and find one, rs4765905, consistently showing allele-dependent regulatory function in reporter assays. We find allele-specific protein binding for 13 SNPs including rs4765905. Using protein microarrays, we identify several proteins binding ≥3 SNPs, but not control sequences, suggesting possible functional interactions and combinatorial haplotype effects. Finally, using circular chromatin conformation capture, we show interaction of the disease-associated region including the 16 SNPs with the CACNA1C promoter and other potential regulatory regions. Our results elucidate the pathogenic relevance of one of the best-supported risk loci for schizophrenia and bipolar disorder. PMID:27276213

  4. Functional Characterization of Schizophrenia-Associated Variation in CACNA1C.

    PubMed

    Eckart, Nicole; Song, Qifeng; Yang, Rebecca; Wang, Ruihua; Zhu, Heng; McCallion, Andrew S; Avramopoulos, Dimitrios

    2016-01-01

    Calcium channel subunits, including CACNA1C, have been associated with multiple psychiatric disorders. Specifically, genome wide association studies (GWAS) have repeatedly identified the single nucleotide polymorphism (SNP) rs1006737 in intron 3 of CACNA1C to be strongly associated with schizophrenia and bipolar disorder. Here, we show that rs1006737 marks a quantitative trait locus for CACNA1C transcript levels. We test 16 SNPs in high linkage disequilibrium with rs1007637 and find one, rs4765905, consistently showing allele-dependent regulatory function in reporter assays. We find allele-specific protein binding for 13 SNPs including rs4765905. Using protein microarrays, we identify several proteins binding ≥3 SNPs, but not control sequences, suggesting possible functional interactions and combinatorial haplotype effects. Finally, using circular chromatin conformation capture, we show interaction of the disease-associated region including the 16 SNPs with the CACNA1C promoter and other potential regulatory regions. Our results elucidate the pathogenic relevance of one of the best-supported risk loci for schizophrenia and bipolar disorder. PMID:27276213

  5. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  6. Software selection based on analysis and forecasting methods, practised in 1C

    NASA Astrophysics Data System (ADS)

    Vazhdaev, A. N.; Chernysheva, T. Y.; Lisacheva, E. I.

    2015-09-01

    The research focuses on the problem of a “1C: Enterprise 8” platform inboard mechanisms for data analysis and forecasting. It is important to evaluate and select proper software to develop effective strategies for customer relationship management in terms of sales, as well as implementation and further maintenance of software. Research data allows creating new forecast models to schedule further software distribution.

  7. Close Approach Prediction Analysis of the Earth Science Constellation with the Fengyun-1C Debris

    NASA Technical Reports Server (NTRS)

    Duncan, Matthew; Rand, David K.

    2008-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. Each day, close approach predictions are generated by a U.S. Department of Defense Joint Space Operations Center Orbital Safety Analyst using the high accuracy Space Object Catalog maintained by the Air Force's 1" Space Control Squadron. Prediction results and other ancillary data such as state vector information are sent to NASAJGoddard Space Flight Center's (GSFC's) Collision Risk Assessment analysis team for review. Collision analysis is performed and the GSFC team works with the ESC member missions to develop risk reduction strategies as necessary. This paper presents various close approach statistics for the ESC. The ESC missions have been affected by debris from the recent anti-satellite test which destroyed the Chinese Fengyun- 1 C satellite. The paper also presents the percentage of close approach events induced by the Fengyun-1C debris, and presents analysis results which predict the future effects on the ESC caused by this event. Specifically, the Fengyun-1C debris is propagated for twenty years using high-performance computing technology and close approach predictions are generated for the ESC. The percent increase in the total number of conjunction events is considered to be an estimate of the collision risk due to the Fengyun-1C break- UP.

  8. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies.

    PubMed

    Brown, Susan C; Torelli, Silvia; Brockington, Martin; Yuva, Yeliz; Jimenez, Cecilia; Feng, Lucy; Anderson, Louise; Ugo, Isabella; Kroger, Stephan; Bushby, Kate; Voit, Thomas; Sewry, Caroline; Muntoni, Francesco

    2004-02-01

    We recently identified mutations in the fukutin related protein (FKRP) gene in patients with congenital muscular dystrophy type 1C (MDC1C) and limb girdle muscular dystrophy type 2I (LGMD2I). The sarcolemma of these patients typically displays an immunocytochemical reduction of alpha-dystroglycan. In this report we extend these observations and report a clear correlation between the residual expression of alpha-dystroglycan and the phenotype. Three broad categories were identified. Patients at the severe end of the clinical spectrum (MDC1C) were compound heterozygote between a null allele and a missense mutation or carried two missense mutations and displayed a profound depletion of alpha-dystroglycan. Patients with LGMD with a Duchenne-like severity typically had a moderate reduction in alpha-dystroglycan and were compound heterozygotes between a common C826A (Leu276Ileu) FKRP mutation and either a missense or a nonsense mutation. Individuals with the milder form of LGMD2I were almost invariably homozygous for the Leu276Ile FKRP mutation and showed a variable but subtle alteration in alpha-dystroglycan immunolabeling. Our data therefore suggest a correlation between a reduction in alpha-dystroglycan, the mutation and the clinical phenotype in MDC1C and LGMD2I which supports the hypothesis that dystroglycan plays a central role in the pathogenesis of these disorders. PMID:14742276

  9. Interference with hemoglobin A(1C) determination by the hemoglobin variant Shelby.

    PubMed

    Scuderi, Richard T; Griffin, Terrance L; Mehta, Shruti P; Herold, David A; Fitzgerald, Robert L

    2007-09-01

    Hemoglobin variant carrier status was found in a 46-year-old African American man following detection of a falsely elevated hemoglobin A1c (HbA1c) by ionexchange high-performance liquid chromatography (HPLC, VARIANT A1c, Bio-Rad Laboratories, Hercules, CA). Additional analysis of the hemoglobin variant using the Beta Thal Short program (Bio-Rad) revealed an unknown peak with a retention time of 4.84 minutes and a proportion of 26.3%. No mass shift in alpha-globin or beta-globin proteins was observed by mass spectrometry. DNA sequencing revealed a missense mutation in 1 beta-globin allele corresponding to the hemoglobin Shelby trait. The patient was asymptomatic with a normal hemoglobin value of 13.6 g/dL (136 g/L) but had increased target cells on a peripheral blood smear. An alternative method for HbA1c determination using boronate-affinity HPLC provided a value of 3.9% (0.04; reference range, 4.0%-6.9% [0.04-0.07]), more consistent with the patient's recent blood glucose values in the normal range. PMID:17709318

  10. 7 CFR 1c.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF HUMAN SUBJECTS § 1c.123 Early termination of research support: Evaluation of applications and... 7 Agriculture 1 2010-01-01 2010-01-01 false Early termination of research support: Evaluation of... the rights and welfare of human subjects (whether or not the research was subject to...

  11. 7 CFR 1c.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF HUMAN SUBJECTS § 1c.123 Early termination of research support: Evaluation of applications and... 7 Agriculture 1 2013-01-01 2013-01-01 false Early termination of research support: Evaluation of... the rights and welfare of human subjects (whether or not the research was subject to...

  12. 7 CFR 1c.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF HUMAN SUBJECTS § 1c.123 Early termination of research support: Evaluation of applications and... 7 Agriculture 1 2014-01-01 2014-01-01 false Early termination of research support: Evaluation of... the rights and welfare of human subjects (whether or not the research was subject to...

  13. 7 CFR 1c.123 - Early termination of research support: Evaluation of applications and proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF HUMAN SUBJECTS § 1c.123 Early termination of research support: Evaluation of applications and... 7 Agriculture 1 2011-01-01 2011-01-01 false Early termination of research support: Evaluation of... the rights and welfare of human subjects (whether or not the research was subject to...

  14. PERCEIVED WEIGHT DISCRIMINATION AMPLIFIES THE LINK BETWEEN CENTRAL ADIPOSITY AND NONDIABETIC GLYCEMIC CONTROL (HBA1C)

    PubMed Central

    Tsenkova, Vera K.; Carr, Deborah; Schoeller, Dale A.; Ryff, Carol D.

    2010-01-01

    Background While the preclinical development of type 2 diabetes is partly explained by obesity and central adiposity, psychosocial research has shown that chronic stressors such as discrimination have health consequences as well. Purpose We investigated the extent to which the well-established effects of obesity and central adiposity on nondiabetic glycemic control (indexed by HbA1c) were moderated by a targeted psychosocial stressor linked to weight: perceived weight discrimination. Methods Data came from the nondiabetic subsample (n=938) of the Midlife in the United States (MIDUS II) survey. Results Body mass index (BMI), waist-to-hip ratio, and waist circumference were linked to significantly higher HbA1c (p < .001). Multivariate-adjusted models showed that weight discrimination exacerbated the effects of waist-to-hip ratio on HbA1c ( p < .05), such that people who had higher WHR and reported weight discrimination had the highest HbA1c levels. Conclusions Understanding how biological and psychosocial factors interact at nondiabetic levels to increase vulnerability could have important implications for public health and education strategies. Effective strategies may include targeting sources of discrimination, rather than solely targeting health behaviors and practices of overweight and obese persons. PMID:21136227

  15. 7 CFR 1c.103 - Assuring compliance with this policy-research conducted or supported by any Federal Department or...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Assuring compliance with this policy-research conducted or supported by any Federal Department or Agency. 1c.103 Section 1c.103 Agriculture Office of the Secretary of Agriculture PROTECTION OF HUMAN SUBJECTS § 1c.103 Assuring compliance with this...

  16. 77 FR 2573 - International Product Change-Global Plus 1C and 2C Negotiated Service Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... International Product Change--Global Plus 1C and 2C Negotiated Service Agreements AGENCY: Postal Service TM... Regulatory Commission to add Global Plus 1C and 2C Negotiated Service Agreements to the Competitive Products... of United States Postal Service to Add Global Plus 1C and 2C Negotiated Service Agreements to...

  17. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing

    PubMed Central

    Rondinelli, Beatrice; Schwerer, Hélène; Antonini, Elena; Gaviraghi, Marco; Lupi, Alessio; Frenquelli, Michela; Cittaro, Davide; Segalla, Simona; Lemaitre, Jean-Marc; Tonon, Giovanni

    2015-01-01

    DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3. PMID:25712104

  18. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING.

    PubMed

    Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P; Eynon, N

    2014-12-01

    The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes' responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices - maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) - before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667

  19. Common variants in CACNA1C and MDD susceptibility: A comprehensive meta-analysis.

    PubMed

    Rao, Shuquan; Yao, Yao; Zheng, Chuan; Ryan, Joanne; Mao, Canquan; Zhang, Fuquan; Meyre, David; Xu, Qi

    2016-09-01

    Major depressive disorder (MDD) is one of the most common psychiatric disorders with a relatively high heritability (35-40%). Though rs1006737 in the CACNA1C gene showed significant association with MDD in a British large-scale candidate association study, most of the replication analyses with relatively small sample size reported negative association. Moreover, this locus has never been identified in previous genome-wide association studies (GWAS) for MDD. Here, we conducted a comprehensive meta-analysis of the association between CACNA1C variants and MDD risk by combining all published data. Genetic data from one European GWAS and five individual follow-up studies, which include up to 12,629 patients of MDD and 28,653 controls, that is, the largest sample size on CACNA1C to date, were collected. Rs1006737 showed significant association with MDD in the fixed-effect model (Z = 2.56, P = 0.011, OR = 1.08, 95%CI = 1.04-1.12) and the association remained after reanalyzing the data according to ethnicity. We additionally analyzed other 25 SNPs, genotyped in only one replication study, across the CACNA1C locus, and found that two SNPs, rs4765905 (P = 0.041, OR = 1.05, 95%CI 1.00-1.09) and rs4765937 (P = 0.025, OR = 1.05, 95%CI 1.01-1.09) showed nominal association with MDD, while rs2239073 (P = 0.002, OR = 1.07, 95%CI 1.02-1.11) exhibited significant association with MDD, which survived from multiple corrections. Our study provides support for positive association between CACNA1C and MDD; however, the current data suggest the necessity of replication analyses in a larger-scale sample. © 2016 Wiley Periodicals, Inc. PMID:27260792

  20. THE GSTP1 c.313A>G POLYMORPHISM MODULATES THE CARDIORESPIRATORY RESPONSE TO AEROBIC TRAINING

    PubMed Central

    Zarebska, A; Jastrzebski, Z; Kaczmarczyk, M; Ficek, K; Maciejewska-Karlowska, A; Sawczuk, M; Leońska-Duniec, A; Krol, P; Cieszczyk, P; Zmijewski, P

    2014-01-01

    The GSTP1 c.313A>G polymorphism is a candidate to explain some of the individual differences in cardiorespiratory fitness phenotypes’ responses to aerobic exercise training. We aim to explore the association between the GSTP1 c.313A>G polymorphism and the response to low-high impact aerobic exercise training. Sixty-six Polish Caucasian women were genotyped for the GSTP1 c.313A>G polymorphism; 62 of them completed 12-week aerobic (50-75% HRmax) exercise training and were measured for selected somatic features (body mass and BMI) and cardiorespiratory fitness indices – maximal oxygen uptake (VO2max, maximum heart rate (HRmax), maximum ventilation (VEmax) and anaerobic threshold (AT) – before and after the training period. Two-factor analysis of variance revealed a main training effect for body mass reduction (p=0.007) and BMI reduction (p=0.013), improvements of absolute and relative VO2max (both p<0.001), and increased VEmax (p=0.005), but not for changes in fat-free mass (FFM) (p=0.162). However, a significant training x GSTP1 c.313A>G interaction was found only for FFM (p=0.042), absolute and relative VO2max (p=0.029 and p=0.026), and VEmax (p=0.005). As the result of training, significantly greater improvements in VO2max, VEmax and FFM were gained by the GG+GA group compared to the AA genotype group. The results support the hypothesis that heterogeneity in individual response to training stimuli is at least in part determined by genetics, and GSTP1 c.313A>G may be considered as one (of what appear to be many) target polymorphisms to influence these changes. PMID:25435667

  1. Novel Timothy Syndrome Mutation Leading to Increase in CACNA1C Window Current

    PubMed Central

    Boczek, Nicole J.; Miller, Erin M.; Ye, Dan; Nesterenko, Vlad V.; Tester, David J.; Antzelevitch, Charles; Czosek, Richard J.; Ackerman, Michael J.; Ware, Stephanie M.

    2016-01-01

    Background Timothy syndrome (TS) is a rare multi-system genetic disorder characterized by a myriad of abnormalities including QT prolongation, syndactyly, and neurological symptoms. The predominant genetic causes are recurrent de novo missense mutations in exon 8/8A of the CACNA1C-encoded L-type calcium channel, however some cases remain genetically elusive. Objective To identify the genetic cause of TS in a case that did not harbor a CACNA1C mutation in exon 8/8A, and was negative for all other plausible genetic substrates. Methods Utilization of diagnostic exome sequencing to identify the genetic substrate responsible for our case of TS. The identified mutation was characterized using whole cell patch-clamp technique and the results of these analyses were modeled using a modified Luo-Rudy dynamic model to determine the effects on the cardiac action potential. Results Whole exome sequencing revealed a novel CACNA1C mutation, p.Ile1166Thr, in a young male with diagnosed TS. Functional electrophysiological analysis identified a novel mechanism of TS-mediated disease, with an overall loss of current density and a gain-of-function shift in activation, leading to an increased window current. Modeling studies of this variant predicted prolongation of the action potential, as well as the development of spontaneous early afterdepolarizations. Conclusion Through expanded whole exome sequencing, we have identified a novel genetic substrate for TS, p.Ile1166Thr-CACNA1C. Electrophysiological experiments combined with modeling studies have identified a novel TS mechanism through increased window current. Therefore, expanded genetic testing in cases of TS to the entire CACNA1C coding region, if initial targeted testing is negative, may be warranted. PMID:25260352

  2. Down-regulation of the detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 by vanadium in Hepa 1c1c7 cells.

    PubMed

    Anwar-Mohamed, Anwar; El-Kadi, Ayman O S

    2009-05-01

    Recent data suggest that vanadium (V5+) compounds exert protective effects against chemical-induced carcinogenesis, mainly through modifying various xenobiotic metabolizing enzymes. In fact, we have shown that V5+ down-regulates the expression of Cyp1a1 at the transcriptional level through an ATP-dependent mechanism. However, incongruously, there is increasing evidence that V5+ is found in higher amounts in cancer cells and tissues than in normal cells or tissues. Therefore, the current study aims to address the possible effect of this metal on the regulation of expression of an enzyme that helps maintain endogenous antioxidants used to protect tissues/cells from mutagens, carcinogens, and oxidative stress damage, NAD(P) H:quinone oxidoreductase 1 (Nqo1). In an attempt to examine these effects, Hepa 1c1c7 cells and its AhRdeficient version, c12, were treated with increasing concentrations of V5+ in the presence of two distinct Nqo1 inducers, the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and isothiocyanate sulforaphane (SUL). Our results showed that V5+ inhibits the TCDD- and SUL-mediated induction of Nqo1 at mRNA, protein, and catalytic activity levels. At transcriptional level, V5+ was able to decrease the TCDD- and SUL-induced nuclear accumulation of Nrf2 and the subsequent binding to antioxidant responsive element (ARE) without affecting Nrf2 protein levels. Looking at post-transcriptional level; we found that V5+ did not affect Nqo1 mRNA transcripts turn-over rates. However, at the post-translational level V5+ increased Nqo1 protein half-life. In conclusion, the present study demonstrates that V5+ down-regulates Nqo1 at the transcriptional level, possibly through inhibiting the ATP-dependent activation of Nrf2. PMID:19367690

  3. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Korashy, Hesham M; El Gendy, Mohamed A M; Alhaider, Abdulqader A; El-Kadi, Ayman O

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels. PMID:22570534

  4. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    PubMed Central

    Korashy, Hesham M.; El Gendy, Mohamed A. M.; Alhaider, Abdulqader A.; El-Kadi, Ayman O.

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels. PMID:22570534

  5. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2011-09-01

    Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE. PMID:21167702

  6. High-throughput evaluation of aryl hydrocarbon receptor-binding sites selected via chromatin immunoprecipitation-based screening in Hepa-1c1c7 cells stimulated with 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Kinehara, Masaki; Fukuda, Itsuko; Yoshida, Ken-Ichi; Ashida, Hitoshi

    2008-12-01

    Upon binding to ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) is activated to form a heterodimer with an aryl hydrocarbon receptor nuclear translocator (Arnt) and binds to DNA. It has been shown that the binding of AhR to DNA depends on the dioxin response element (DRE) and controls xenobiotic-response genes. AhR-binding DNA fragments from mouse hepatoma Hepa-1c1c7 cells stimulated with TCDD were once enriched in a chromatin immunoprecipitation (ChIP) DNA library and screened through a high-throughput southwestern chemistry-based enzyme-linked immunosorbent assay (SW-ELISA). After screening 1700 fragments, the ChIP-SW-ELISA screening strategy allowed us to isolate 77 fragments tightly interacting with AhR in the presence of TCDD. Only 39 of the 77 fragments appeared to contain a typical DRE, indicating that in some cases the DRE was dispensable for AhR-binding, while 75 fragments were located within promoter-distal regions. Genomic mapping of the 77 fragments enabled us to estimate 121 potential AhR targets including known targets such as Cyp1A1 and Cyp1B1, but only a limited number exhibited an altered expression dependent on TCDD. This study revealed the fact that TCDD-activated AhR frequently binds to promoter-distal regions even without a DRE and is not always involved in transcriptional regulation, suggesting that within the genome DNA-binding of AhR could take place often in many regions without cis-regulatory elements and might not be a key determinant to establish its regulatory function. PMID:19282623

  7. The ratio of glycated albumin to hemoglobin A1c measured in IFCC units accurately represents the glycation gap.

    PubMed

    Akatsuka, Junya; Mochizuki, Mie; Musha, Ikuma; Ohtake, Akira; Kobayashi, Kisho; Kikuchi, Toru; Kikuchi, Nobuyuki; Kawamura, Tomoyuki; Urakami, Tatsuhiko; Sugihara, Shigetaka; Hoshino, Tadao; Amemiya, Shin

    2015-01-01

    The glycation gap (G-gap: difference between measured hemoglobin A1c [A1C] and the value predicted by its regression on the fructosamine level) is stable and associated with diabetic complications. Measuring A1C level in International Federation of Clinical Chemistry (IFCC) units (A1C-SI; mmol/mol) and National Glycohemoglobin Standardization Program units (A1C-NGSP; %) and using glycated albumin (GA) level instead of fructosamine level for calculating the G-gap, we investigated whether the G-gap is better represented by GA/A1C ratio if expressed in SI units (GA/A1C-SI ratio) rather than in NGSP units (GA/A1C-% ratio). We examined 749 Japanese children with type 1 diabetes using simultaneous GA and A1C measurements. Of these, 369 patients were examined more than five times to assess the consistency of the G-gap and the GA/A1C ratio within individuals. The relationship of GA/A1C-% ratio to the corresponding A1C-NGSP was stronger than that of GA/A1C-SI ratio to A1C-IFCC. At enrollment, the inverse relationship between the GA/A1C-SI ratio and G-gap was highly significant (R(2) = 0.95) compared with that between the GA/A1C-% ratio and G-gap (R(2) = 0.69). A highly significant inverse relationship was also observed between the mean GA/A1C-SI ratio and the mean G-gaps obtained individually over time (R(2) = 0.95) compared with that using the corresponding A1C-NGSP (R(2) = 0.67). We conclude that the G-gap is better represented by the GA/A1C-SI ratio. We propose the use of mean GA/A1C-SI ratios easily obtained individually over time as reference values in Japanese children with type 1 diabetes (6.75 ± 0.60 [means ± SD]). PMID:25367400

  8. Identification of newly recognized serotype 1c as the most prevalent Shigella flexneri serotype in northern rural Vietnam

    PubMed Central

    STAGG, R. M.; CAM, P. D.; VERMA, N. K.

    2008-01-01

    SUMMARY We investigated the identity of 37 Shigella flexneri strains that had previously been isolated from northern rural Vietnam (Son Tay Province) and described as untypable. Twenty-four isolates reacted with MASF 1c, a monoclonal antibody specific for S. flexneri serotype 1c. A further ten untypable isolates were found to be rough mutants (no longer expressing O-antigen) that were derived from serotype 1c strains. Pulsed-field gel electrophoresis demonstrated that these strains consisted of many different clones, indicating serotype 1c was well established in this region in the late 1990s. Serotype 1c was the most prevalent S. flexneri serotype isolated in the Son Tay Province, accounting for about 40% of S. flexneri isolates. Subsequent isolation of S. flexneri serotype 1c in this region and elsewhere in Vietnam confirmed that serotype 1c is of genuine importance in Vietnam. PMID:17922932

  9. An Analysis of the FY-1C, Iridium 33, and Cosmos 2251 Fragments

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2014-01-01

    The beginning of the year 2013 marks the sixth anniversary of the destruction of the Fengyun-1C (FY-1C) weather satellite as the result of an anti-satellite test conducted by China in January 2007 and the fourth anniversary of the accidental collision between Cosmos 2251 and the operational Iridium 33 in February 2009. These two events represent the worst satellite breakups in history. A total of 5579 fragments have been cataloged by the U.S. Space Surveillance Network (SSN), and almost 5000 of them were still in orbit in January 2013. In addition to these cataloged objects, hundreds of thousands (or more) of fragments down to the millimeter size regime were also generated during the breakups. These fragments are too small to be tracked by the SSN, but are large enough to be a safety concern for human space activities and robotic missions in low Earth orbit (LEO, the region below 2000 km altitude). Like their cataloged siblings, many of them remain in orbit today. These two breakup events dramatically changed the landscape of the orbital debris environment in LEO. The spatial density of the cataloged population in January 2013 is shown as the top blue curve. The combined FY-1C, Iridium 33, and Cosmos 2251 fragments (black curve) account for about 50 percent of the cataloged population below an altitude of 1000 km. They are also responsible for the concentrations at 770 km and 850 km, altitudes at which the collisions occurred. The effects of the FY-1C, Iridium 33, and Cosmos 2251 fragments will continue to be felt for decades to come. For example, approximately half of the generated FY-1C fragments will remain in orbit 20 years from now. In general, the Iridium 33 and Cosmos 2251 fragments will decay faster than the FY-1C fragments because of their lower altitudes. Of the Iridium 33 and Cosmos 2251 fragments, the former have much shorter orbital lifetimes than the latter, because lightweight composite materials were heavily used in the construction of the Iridium

  10. Involvement of leukotrienes in acute gastric damage.

    PubMed

    Boughton-Smith, N K

    1989-01-01

    The leukotrienes have potent inflammatory actions which could be of importance in gastric mucosal integrity. In animals, LTC4 produces vasoconstriction in the gastric mucosa. Furthermore, acute gastric damage produced by ethanol is accompanied by marked increases in the mucosal formation of LTC4 and LTB4. Depending on the extent of protection, prostaglandins either have no effect or prevent the increases in leukotriene formation which accompany ethanol-induced damage. Various non-specific inhibitors of leukotriene synthesis prevent ethanol and indomethacin-induced damage to the gastric mucosa. However, a novel selective 5-lipoxygenase inhibitor (BW A4C) had no effect on these models of acute gastric damage at doses which completely inhibited gastric mucosal leukotriene synthesis. These studies cast doubt on the role of the leukotrienes in these models of acute gastric damage. However, the potent biological actions of the leukotrienes may be of importance in the pathogenesis of other forms of gastric damage, or as mediators of chronic gastric ulceration or inflammation. PMID:2657289

  11. Relationship of HbA1c variability, absolute changes in HbA1c, and all-cause mortality in type 2 diabetes: a Danish population-based prospective observational study

    PubMed Central

    Skriver, Mette V; Sandbæk, Annelli; Kristensen, Jette K; Støvring, Henrik

    2015-01-01

    Objective We assessed the relationship of mortality with glycated hemoglobin (HbA1c) variability and with absolute change in HbA1c. Design A population-based prospective observational study with a median follow-up time of 6 years. Methods Based on a validated algorithm, 11 205 Danish individuals with type 2 diabetes during 2001–2006 were identified from public data files, with at least three HbA1c measurements: one index measure, one closing measure 22–26 months later, and one measurement in-between. Medium index HbA1c was 7.3%, median age was 63.9 years, and 48% were women. HbA1c variability was defined as the mean absolute residual around the line connecting index value with closing value. Cox proportional hazard models with restricted cubic splines were used, with all-cause mortality as the outcome. Results Variability between 0 and 0.5 HbA1c percentage point was not associated with mortality, but for index HbA1c ≤8% (64 mmol/mol), a variability above 0.5 was associated with increased mortality (HR of 1 HbA1c percentage point variability was 1.3 (95% CI 1.1 to 1.5) for index HbA1c 6.6–7.4%). For index HbA1c≤8%, mortality increased when HbA1c declined, but was stable when HbA1c rose. For index HbA1c>8%, change in HbA1c was associated with mortality, with the lowest mortality for greatest decline (HR=0.9 (95% CI 0.80 to 0.98) for a 2-percentage point decrease). Conclusions For individuals with an index HbA1c below 8%, both high HbA1c variability and a decline in HbA1c were associated with increased mortality. For individuals with index HbA1c above 8%, change in HbA1c was associated with mortality, whereas variability was not. PMID:25664182

  12. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    SciTech Connect

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  13. Importance of standardization of hemoglobin A1c in the analysis of factors that predict hemoglobin A1c levels in non-diabetic residents of three distinct areas of Japan.

    PubMed

    Takahashi, Y; Noda, M; Tsugane, S; Kimura, S; Akanuma, Y; Kuzuya, T; Ohashi, Y; Kadowaki, T

    2001-08-01

    We performed a statistical analysis to elucidate effects of standardized measurement of hemoglobin A1c (HbA1c) on analysis of factors that affect HbA1c values. Subjects were participants in the Japan Public Health Center-based Prospective Study on Cancer and Cardiovascular Diseases, and a total of 1789 men and 3150 women in three distinct areas who did not have overt diabetes (HbA1c> or =6.1% or prior diagnosis) were analyzed. A different method of HbA1c assay was used in each area: high-performance liquid chromatography in one area and a different immunochemical method in each of the other two areas. Then, calibration of HbA1c was performed using two HbA1c standards (5.5 and 10.5%) provided by the Japan Diabetes Society. Analysis of co-variance was performed separately in men and women. When raw HbA1c data were used as the outcome, 'area', which represents differences in assay systems, lifestyles, etc. had a significant effect on HbA1c levels. When calibrated HbA1c data were used, however, 'area' was no longer a significant factor. In the latter analysis, age and BMI were the principal contributors to HbA1c, and parental history of diabetes had a weak effect in women. Thus, standardization of HbA1c reduced the difference between assay systems, and uncovered two common factors to determine HbA1c levels. PMID:11403857

  14. Posterior C1-C2 calcium pyrophosphate dihydrate crystal deposition disease.

    PubMed

    Ng, Isaac Bing-Yi; Arkun, Knarik; Riesenburger, Ron I

    2016-01-01

    Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease rarely occurs in the posterior aspect of the craniocervical junction (CCJ). To the best of our knowledge, there have been only 2 previously reported cases of patients with posterior CPPD lesions in this region that have led to cervical myelopathy. We report the case of a 70-year-old man presenting with neck pain and cervical myelopathy with multilevel stenosis from C1-C6. The stenosis was worst at C1-C2, secondary to compression by a CPPD lesion posterior to the spinal cord. The patient underwent a C2-C6 laminectomy and fusion with resection of the CPPD lesion. In this report, we discuss the patient and present a novel theory to explain the preponderance of CPPD lesions in the CCJ occurring anteriorly and not posteriorly to the spinal cord. PMID:26976840

  15. Quality of HbA1c Measurement in the Practice: The German Perspective.

    PubMed

    Heinemann, Lutz; Freckmann, Guido

    2015-05-01

    Hemoglobin A1c (HbA1c) measurement has come to be a cornerstone in modern diabetes therapy. However, the methodological aspects of this type of measurement have been given little attention lately due to its position as an established method of choice. Nevertheless, quite a number of issues face practical application, such as clinically relevant differences between different measurement methods--both lab-based and point-of-care (POCT) systems will show better or worse diabetes management results after switching methods; and there are a number of possible reasons that need to be known and observed in practice. The aim of this review is to draw attention to these problems from a German point of view and provide suggestions for appropriate measures to improve the situation. PMID:25691655

  16. Quality of HbA1c Measurement in the Practice

    PubMed Central

    Freckmann, Guido

    2015-01-01

    Hemoglobin A1c (HbA1c) measurement has come to be a cornerstone in modern diabetes therapy. However, the methodological aspects of this type of measurement have been given little attention lately due to its position as an established method of choice. Nevertheless, quite a number of issues face practical application, such as clinically relevant differences between different measurement methods—both lab-based and point-of-care (POCT) systems will show better or worse diabetes management results after switching methods; and there are a number of possible reasons that need to be known and observed in practice. The aim of this review is to draw attention to these problems from a German point of view and provide suggestions for appropriate measures to improve the situation. PMID:25691655

  17. Polygonumnolides C1-C4; minor dianthrone glycosides from the roots of Polygonum multiflorum Thunb.

    PubMed

    Yang, Jian-Bo; Li, Li; Dai, Zhong; Wu, Yu; Geng, Xing-Chao; Li, Bo; Ma, Shuang-Cheng; Wang, Ai-Guo; Su, Ya-Lun

    2016-09-01

    Four new dianthrone glycosides, named polygonumnolides C1-C4 (1-4), were isolated from the dried roots of Polygonum multiflorum Thunb, together with two known emodin dianthrones (5-6). Their hepatotoxicities were evaluated against L-02 cell lines. Compounds 1-4 showed weak hepatotoxicity against L-02 cell lines with IC50 values of 313.05, 205.20, 294.20, and 207.35 μM, respectively. PMID:27139982

  18. C1-c2 pedicle screw fixation for treatment of old odontoid fractures.

    PubMed

    Qi, Lei; Li, Mu; Zhang, Shuai; Si, Haipeng; Xue, Jingsong

    2015-02-01

    Nonunion and C1-C2 instability of odontoid fractures usually result from delayed diagnosis and inappropriate treatment. However, the available treatment options for odontoid fractures remain controversial. The authors evaluated the effectiveness of internal screw fixation via the C1 and C2 pedicle in cases of old odontoid fractures. This retrospective study included 21 patients with old odontoid fractures (13 men and 8 women; mean age, 46.5 years; range, 24-69 years). Internal screw fixation via the C1 and C2 pedicle was performed in all patients. Fracture reduction and C1-C2 fusion were assessed with imaging. The neck pain visual analog scale score and cervical spinal cord functional Japanese Orthopaedic Association score (for those who had cervical spinal cord injury) were used to evaluate the effectiveness of treatment. Postoperative complications were recorded. Postoperative imaging showed that the C1-C2 dislocation was satisfactorily repositioned in all patients. Bone fusion was observed 1 year after surgery in all patients. No loosening or breaking of internal fixation occurred. The preoperative neck pain visual analog scale score was 5.9±1.5 and improved significantly to 1.8±0.8 after surgery (P<.001). The Japanese Orthopaedic Association score in patients with cervical spinal injury (n=14) was 9.2±1.9 and also significantly improved to 13.8±1.9 at the last follow-up examination (P<.001), with an average improvement rate of 61.0%. No iatrogenic vertebral artery injury or severe spinal cord injury occurred. Screw fixation via the C1 and C2 pedicle was found to be an effective and safe surgical approach for the treatment of old odontoid fractures with C1-C2 dislocation or instability. PMID:25665108

  19. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons.

    PubMed

    Lee, Anni S; De Jesús-Cortés, Héctor; Kabir, Zeeba D; Knobbe, Whitney; Orr, Madeline; Burgdorf, Caitlin; Huntington, Paula; McDaniel, Latisha; Britt, Jeremiah K; Hoffmann, Franz; Brat, Daniel J; Rajadhyaksha, Anjali M; Pieper, Andrew A

    2016-01-01

    Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract. PMID:27066530

  20. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons123

    PubMed Central

    Lee, Anni S.; Kabir, Zeeba D.; Knobbe, Whitney; Orr, Madeline; Burgdorf, Caitlin; Huntington, Paula; McDaniel, Latisha; Britt, Jeremiah K.; Hoffmann, Franz; Brat, Daniel J.; Rajadhyaksha, Anjali M.

    2016-01-01

    Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract PMID:27066530

  1. The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Stansbery, Eugene; Liou, Jer-chyi; Horstman, Matt; Stokeley, Christopher; Whitlock, David

    2007-01-01

    The intentional break-up of the Fengyun-1C spacecraft on 11 January 2007 via hypervelocity collision with a ballistic object created the most severe artificial debris cloud in Earth orbit since the beginning of space exploration. More than 900 debris on the order of 10 cm or greater in size have been identified by the U.S. Space Surveillance Network (SSN). The majority of these debris reside in long-lived orbits. The NASA Orbital Debris Program Office has conducted a thorough examination of the nature of the Fengyun-1C debris cloud, using SSN data for larger debris and special Haystack radar observations for smaller debris. These data have been compared with the NASA standard satellite break-up model for collisions, and the results are presented in this paper. The orbital longevity of the debris have also been evaluated for both small and large debris. The consequent long-term spatial density effects on the low Earth orbit (LEO) regime are then described. Finally, collision probabilities between the Fengyun-1C debris cloud and the resident space object population of 1 January 2007 have been calculated. The potential effect on the growth of the near-Earth satellite population is presented.

  2. Baseline characteristics and Latino versus non-Latino contrasts among Bronx A1C study participants

    PubMed Central

    Walker, Elizabeth A.; Silver, Lynn D.; Chamany, Shadi; Schechter, Clyde B.; Gonzalez, Jeffrey S.; Carrasco, Jeidy; Powell, Danielle; Berger, Diana; Basch, Charles E.

    2015-01-01

    We describe the New York City A1c Registry and associations among baseline characteristics of low-income, diverse adults with diabetes enrolled in a telephonic intervention trial. Baseline data were analyzed from 941 participants randomized to a telephonic/print or a print-only intervention to improve glycemic control in the context of an A1c Registry program. Summary statistics for key variables were calculated and we highlight contrasts between Latino and non-Latino participants. There were high proportions of Latino (67.7%) and Black (28.0%) participants from the South Bronx. Mean age was 56.3 years, almost 70.0% were foreign born, and 55.8% preferred Spanish language. Mean A1c was 9.2% and mean BMI 32.1kg/m2. There were significant contrasts between the Latino and non-Latino participants for behavioral and psychosocial variables. A telephonic intervention study was able to randomize a large number of low-income, ethnically diverse, urban participants with poor diabetes control. Latino vs. non-Latino differences at baseline were striking. PMID:24407771

  3. CD1c bypasses lysosomes to present a lipopeptide antigen with 12 amino acids

    PubMed Central

    Young, David C.; De Jong, Annemieke; Vazquez, Jenny; Cheng, Tan-Yun; Talekar, Rahul; Barral, Duarte C.; León, Luis; Brenner, Michael B.; Katz, Joel T.; Riese, Richard; Ruprecht, Ruth M.; O'Connor, Peter B.; Costello, Catherine E.; Porcelli, Steven A.; Briken, Volker

    2009-01-01

    The recent discovery of dideoxymycobactin (DDM) as a ligand for CD1a demonstrates how a nonribosomal lipopeptide antigen is presented to T cells. DDM contains an unusual acylation motif and a peptide sequence present only in mycobacteria, but its discovery raises the possibility that ribosomally produced viral or mammalian proteins that commonly undergo lipidation might also function as antigens. To test this, we measured T cell responses to synthetic acylpeptides that mimic lipoproteins produced by cells and viruses. CD1c presented an N-acyl glycine dodecamer peptide (lipo-12) to human T cells, and the response was specific for the acyl linkage as well as the peptide length and sequence. Thus, CD1c represents the second member of the CD1 family to present lipopeptides. lipo-12 was efficiently recognized when presented by intact cells, and unlike DDM, it was inactivated by proteases and augmented by protease inhibitors. Although lysosomes often promote antigen presentation by CD1, rerouting CD1c to lysosomes by mutating CD1 tail sequences caused reduction in lipo-12 presentation. Thus, although certain antigens require antigen processing in lysosomes, others are destroyed there, providing a hypothesis for the evolutionary conservation of large CD1 families containing isoforms that survey early endosomal pathways. PMID:19468063

  4. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  5. Synthesis of Saturated Long Chain Fatty Acids from Sodium Acetate-1-C14 by Mycoplasma1

    PubMed Central

    Pollack, J. D.; Tourtellotte, M. E.

    1967-01-01

    Three strains of Mycoplasma, M. laidlawii A and B, and Mycoplasma sp. A60549, were grown in broth containing sodium acetate-1-C14. The methyl esters of the phospholipid fatty acids of harvested radioactive cells were prepared and identified by comparison of their mobilities to known radioactive fatty acid methyl esters by use of a modified reversed-phase partition-thin layer chromatographic technique. No radioactive methyl oleate or methyl linoleate was detected. Compounds migrating as radioactive methyl myristate, stearate, palmitate, and, with less certainty, laurate and octanoate were detected. The qualitative findings for all three organisms appeared similar. M. laidlawii B synthesized a radioactive substance, presumably a saturated fatty acid detected as the methyl ester derivative, which migrated in a position intermediate to methyl myristate-1-C14 and methyl palmitate-1-C14. This work indicates that M. laidlawii A and B and Mycoplasma sp. A60549 are capable, in a complex medium containing fatty acids, of synthesizing saturated but not unsaturated fatty acids entirely or in part from acetate. Images PMID:6020566

  6. Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C

    PubMed Central

    Zhao, Jian-Zhou; Collins, Hilda L.; Tang, Juliet D.; Cao, Jun; Earle, Elizabeth D.; Roush, Richard T.; Herrero, Salvador; Escriche, Baltasar; Ferré, Juan; Shelton, Anthony M.

    2000-01-01

    A field-collected colony of the diamondback moth, Plutella xylostella, had 31-fold resistance to Cry1C protoxin of Bacillus thuringiensis. After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous selection but decreased to 235-fold at G38 when selection ceased at G28. The Cry1C resistance in this strain was seen to be inherited as an autosomal and incompletely recessive factor or factors when evaluated using a leaf dip assay and recessive when evaluated using Cry1C transgenic broccoli. Saturable binding of 125I-Cry1C was found with brush border membrane vesicles (BBMV) from both susceptible and Cry1C-resistant strains. Significant differences in Cry1C binding to BBMV from the two strains were detected. BBMV from the resistant strain had about sevenfold-lower affinity for Cry1C and threefold-higher binding site concentration than BBMV from the susceptible strain. The overall Cry1C binding affinity was just 2.5-fold higher for BBMV from the susceptible strain than it was for BBMV from the resistant strain. These results suggest that reduced binding is not the major mechanism of resistance to Cry1C. PMID:10966391

  7. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Vitamin D Receptor in LS180 Human Colorectal Adenocarcinoma Cells.

    PubMed

    Barrett, Kathleen G; Fang, Hailin; Kocarek, Thomas A; Runge-Morris, Melissa

    2016-08-01

    The factors that regulate expression of genes in the 1C family of human cytosolic sulfotransferases (SULT1C) are not well understood. In a recent study evaluating the effects of a panel of transcription factor activators on SULT1C family member expression in LS180 human colorectal adenocarcinoma cells, we found that SULT1C2 expression was significantly increased by 1α,25-dihydroxyvitamin D3 (VitD3) treatment. The objective of our current study was to identify the mechanism responsible for VitD3-mediated activation of SULT1C2 transcription. VitD3 treatment of LS180 cells activated transcription of a transfected luciferase reporter plasmid that contained ∼5 kilobase pairs (kbp) of the SULT1C2 gene, which included 402 nucleotides (nt) of the noncoding exon 1, all of intron 1, and 21 nt of exon 2. Although computational analysis of the VitD3-responsive region of the SULT1C2 gene identified a pregnane X receptor (PXR)-binding site within exon 1, the transfected 5 kbp SULT1C2 reporter was not activated by treatment with rifampicin, a prototypical PXR agonist. However, deletion or mutation of the predicted PXR-binding site abolished VitD3-mediated SULT1C2 transcriptional activation, identifying the site as a functional vitamin D response element (VDRE). We further demonstrated that vitamin D receptor (VDR) can interact directly with the SULT1C2 VDRE sequence using an enzyme-linked immunosorbent assay-based transcription factor binding assay. In conclusion, VitD3-inducible SULT1C2 transcription is mediated through a VDRE in exon 1. These results suggest a role for SULT1C2 in VitD3-regulated physiologic processes in human intestine. PMID:27130351

  8. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway.

    PubMed

    Wang, Yiying; Wang, Yue; Zhang, Zhenbo; Park, Ji-Young; Guo, Donghui; Liao, Hong; Yi, Xiaofang; Zheng, Yu; Zhang, Donna; Chambers, Setsuko K; Zheng, Wenxin

    2016-03-01

    Progestin resistance is a main obstacle for endometrial precancer/cancer conservative therapy. Therefore, biomarkers to predict progestin resistance and studies to gain a more detailed understanding of the mechanism are needed. The antioxidant Nrf2-AKR1C1 signal pathway exerts chemopreventive activity. However whether it plays a role in progestin resistance has not been explored. In this study, elevated levels of AKR1C1 and Nrf2 were found in progestin-resistant endometrial epithelia, but not in responsive endometrial glands. Exogenous overexpression of Nrf2/AKR1C1 resulted in progestin resistance. Inversely, silencing of Nrf2 or AKR1C1 rendered endometrial cancer cells more susceptible to progestin treatment. Moreover, medroxyprogesterone acetate withdrawal resulted in suppression of Nrf2/AKR1C1 expression accompanied by a reduction of cellular proliferative activity. In addition, brusatol and metformin overcame progestin resistance by down-regulating Nrf2/AKR1C1 expression. Our findings suggest that overexpression of Nrf2 and AKR1C1 in endometrial precancer/cancer may be part of the molecular mechanisms underlying progestin resistance. If validated in a larger cohort, overexpression of Nrf2 and AKR1C1 may prove to be useful biomarkers to predict progestin resistance. Targeting the Nrf2/AKR1C1 pathway may represent a new therapeutic strategy for treatment of endometrial hyperplasia/cancer. PMID:26824415

  9. The Zebrafish Orthologue of the Dyslexia Candidate Gene DYX1C1 Is Essential for Cilia Growth and Function

    PubMed Central

    Chandrasekar, Gayathri; Vesterlund, Liselotte; Hultenby, Kjell; Tapia-Páez, Isabel; Kere, Juha

    2013-01-01

    DYX1C1, a susceptibility gene for dyslexia, encodes a tetratricopeptide repeat domain containing protein that has been implicated in neuronal migration in rodent models. The developmental role of this gene remains unexplored. To understand the biological function(s) of zebrafish dyx1c1 during embryonic development, we cloned the zebrafish dyx1c1 and used morpholino-based knockdown strategy. Quantitative real-time PCR analysis revealed the presence of dyx1c1 transcripts in embryos, early larval stages and in a wide range of adult tissues. Using mRNA in situ hybridization, we show here that dyx1c1 is expressed in many ciliated tissues in zebrafish. Inhibition of dyx1c1 produced pleiotropic phenotypes characteristically associated with cilia defects such as body curvature, hydrocephalus, situs inversus and kidney cysts. We also demonstrate that in dyx1c1 morphants, cilia length is reduced in several organs including Kupffer’s vesicle, pronephros, spinal canal and olfactory placode. Furthermore, electron microscopic analysis of cilia in dyx1c1 morphants revealed loss of both outer (ODA) and inner dynein arms (IDA) that have been shown to be required for cilia motility. Considering all these results, we propose an essential role for dyx1c1 in cilia growth and function. PMID:23650548

  10. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway

    PubMed Central

    Wang, Yiying; Wang, Yue; Zhang, Zhenbo; Park, Ji-Young; Guo, Donghui; Liao, Hong; Yi, Xiaofang; Zheng, Yu; Zhang, Donna; Chambers, Setsuko K.; Zheng, Wenxin

    2016-01-01

    Progestin resistance is a main obstacle for endometrial precancer/cancer conservative therapy. Therefore, biomarkers to predict progestin resistance and studies to gain a more detailed understanding of the mechanism are needed. The antioxidant Nrf2-AKR1C1 signal pathway exerts chemopreventive activity. However whether it plays a role in progestin resistance has not been explored. In this study, elevated levels of AKR1C1 and Nrf2 were found in progestin-resistant endometrial epithelia, but not in responsive endometrial glands. Exogenous overexpression of Nrf2/AKR1C1 resulted in progestin resistance. Inversely, silencing of Nrf2 or AKR1C1 rendered endometrial cancer cells more susceptible to progestin treatment. Moreover, medroxyprogesterone acetate withdrawal resulted in suppression of Nrf2/AKR1C1 expression accompanied by a reduction of cellular proliferative activity. In addition, brusatol and metformin overcame progestin resistance by down-regulating Nrf2/AKR1C1 expression. Our findings suggest that overexpression of Nrf2 and AKR1C1 in endometrial precancer/cancer may be part of the molecular mechanisms underlying progestin resistance. If validated in a larger cohort, overexpression of Nrf2 and AKR1C1 may prove to be useful biomarkers to predict progestin resistance. Targeting the Nrf2/AKR1C1 pathway may represent a new therapeutic strategy for treatment of endometrial hyperplasia/cancer. PMID:26824415

  11. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    SciTech Connect

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.; Cleasby, Mark E.; Millard, Susan; Leong, Gary M.; Cooney, Gregory J.; Muscat, George E.O.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  12. Blood glucose self-monitoring and internet diabetes management on A1C outcomes in patients with type 2 diabetes

    PubMed Central

    Chow, Nelson; Shearer, Daniel; Aydin Plaa, Jessica; Pottinger, Betty; Pawlowska, Monika; White, Adam; Tildesley, Hugh D

    2016-01-01

    Objectives The purpose of this study was to determine any correlation between frequency of self-monitoring of blood glucose (SMBG), frequency of patient-provider communication of SMBG (reporting), and hemoglobin A1C for patients with non-insulin-dependent diabetes solely on oral medications. Research design and methods 191 charts of patients with type 2 diabetes treated solely with oral hypoglycemic agents were reviewed retrospectively. A1C, SMBG frequency, and frequency of online communication with an endocrinologist within the most recent 6-month period were used in the analyses. Regression analysis was used to determine correlations to A1C. For subsequent subgroup analysis, patients were separated into infrequent and frequent SMBG groups, defined as those who test on average once or less per day or twice or more per day. Results Although testing frequency did not correlate with A1C, higher reporting frequency correlated with lower A1C. Subgroup analysis of the frequent SMBG group showed a significantly lower A1C in frequent reporters when compared to infrequent reporters (N=118, p<0.05). This trend was not observed in the infrequent SMBG group (N=73, p=0.161). Conclusions The inverse correlation between reporting frequency and A1C, as well as the significant difference in A1C only for the frequent testers, suggests that frequent SMBG has an effect on reducing A1C only when combined with regular, frequent communication of SMBG with a healthcare provider. PMID:27158516

  13. Implementation of the high-order schemes QUICK and LECUSSO in the COMMIX-1C Program

    SciTech Connect

    Sakai, K.; Sun, J.G.; Sha, W.T.

    1995-08-01

    Multidimensional analysis computer programs based on the finite volume method, such as COMMIX-1C, have been commonly used to simulate thermal-hydraulic phenomena in engineering systems such as nuclear reactors. In COMMIX-1C, the first-order schemes with respect to both space and time are used. In many situations such as flow recirculations and stratifications with steep gradient of velocity and temperature fields, however, high-order difference schemes are necessary for an accurate prediction of the fields. For these reasons, two second-order finite difference numerical schemes, QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and LECUSSO (Local Exact Consistent Upwind Scheme of Second Order), have been implemented in the COMMIX-1C computer code. The formulations were derived for general three-dimensional flows with nonuniform grid sizes. Numerical oscillation analyses for QUICK and LECUSSO were performed. To damp the unphysical oscillations which occur in calculations with high-order schemes at high mesh Reynolds numbers, a new FRAM (Filtering Remedy and Methodology) scheme was developed and implemented. To be consistent with the high-order schemes, the pressure equation and the boundary conditions for all the conservation equations were also modified to be of second order. The new capabilities in the code are listed. Test calculations were performed to validate the implementation of the high-order schemes. They include the test of the one-dimensional nonlinear Burgers equation, two-dimensional scalar transport in two impinging streams, von Karmann vortex shedding, shear driven cavity flow, Couette flow, and circular pipe flow. The calculated results were compared with available data; the agreement is good.

  14. Radiometric uncertainty per pixel for the Sentinel-2 L1C products

    NASA Astrophysics Data System (ADS)

    Gorroño, Javier; Gascon, Ferran; Fox, Nigel P.

    2015-10-01

    In the framework of the European Union Copernicus programme, the European Space Agency (ESA) has launched the Sentinel-2 (S2) Earth Observation (EO) mission which provides optical high spatial resolution imagery. Here is presented a tool, S2-RUT, (Sentinel-2 Radiometric Uncertainty Tool) allowing estimation of the radiometric uncertainties associated to each pixel using as input the top-of-atmosphere (TOA) reflectance images provided by ESA. The Sentinel-2 radiometric analysis focuses on the review of the pre- and post-launch characterisations in order to specify the uncertainty contributors at a pixel level and allow changes to be proposed in the uncertainty contributors where necessary. The identified uncertainty contributors are combined using a metrological Guide to Expression of Uncertainty in Measurement' (GUM) model that is validated by comparing the results to a multivariate Monte Carlo Method (MCM). Specific contributors of the TOA reflectance are initially characterised and its future integration in the tool is discussed. The software implementation of the S2-RUT tool relies on the flexibility of the JPEG2000 standard using partial decoding. Auxiliary information for the uncertainty calculation is extracted from the metadata and quality masks integrated in the L1C product. In addition, using the detector footprint mask it is possible to account for parameters dependent on the neighbouring pixels and/or detector module. The L1C uncertainty is coded using 1 byte with an extra optional byte for complementary information. The resulting images and the metadata are directly appended to the original L1C product.

  15. Global modeling of the C1-C3 alkyl nitrates using STOCHEM-CRI

    NASA Astrophysics Data System (ADS)

    Khan, M. A. H.; Cooke, M. C.; Utembe, S. R.; Morris, W. C.; Archibald, A. T.; Derwent, R. G.; Jenkin, M. E.; Orr-Ewing, A. J.; Higgins, C. M.; Percival, C. J.; Leather, K. E.; Shallcross, D. E.

    2015-12-01

    The atmospheric global budget and distribution of C1-C3 alkyl nitrates have been investigated using a global three-dimensional chemistry transport model, STOCHEM-CRI. Alkyl nitrates (RONO2) are significant NOx reservoir species and the more detailed VOC oxidation mechanism (CRI v2-R5) leads to greater photochemical production. RONO2 are significant sources of NOx in regions remote from NOx sources. The study shows that the global burden and the atmospheric life-time of C1-C3 alkyl nitrates are 113 Gg and 9-10 days, respectively, which are in excellent agreement with estimates established by previous studies. The abundance of alkyl nitrates have been found to be higher in the continental atmosphere, with CH3ONO2 mixing ratios up to 20 ppt over the Amazon rainforest. Up to 15, 10, 2, and 5 ppt of modelled CH3ONO2, C2H5ONO2, n-C3H7ONO2 and i-C3H7ONO2 have been found in the northern hemisphere over regions with large anthropogenic emissions of NOx and VOCs. The combination of atmospheric production and long-range transport led to high alkyl nitrate levels at high latitudes. The model performance for C1-C3 alkyl nitrates was established using observations from nine flights and nine field campaigns. The comparison shows a tendency towards model under-prediction of the observations, particularly in the southern hemispheric marine boundary layer, possibly due to the absence of oceanic production mechanisms and air-sea exchange processes in the model. The discrepancies between model and observed seasonal cycles, especially of CH3ONO2, in both hemispheres are discussed.

  16. Ush1c216A knock-in mouse survives Katrina.

    PubMed

    Lentz, Jennifer; Pan, Fuming; Ng, San San; Deininger, Prescott; Keats, Bronya

    2007-03-01

    Usher syndrome is the most common cause of inherited deafness found in combination with blindness. All Usher patients suffer progressive retinitis pigmentosa, with the degree of hearing impairment and the presence or absence of vestibular function differing among subtypes. A cryptic splice site mutation (216G-->A) in exon 3 of the USH1C gene on chromosome 11p, which encodes a PDZ-domain protein, harmonin, was found in Acadian Usher type IC patients in south Louisiana. In vitro analysis using constructs containing the mutant 216A and subsequent analysis of patient cell lines revealed a deletion of 35 bases in the transcript. In order to analyze the impact of this frame-shift mutation, we created a knock-in mouse model containing the human 216G-->A mutation. A targeting construct was made containing 5' and 3' homology arms, each 4kb in length, and a 650 base pair fragment containing exons 3 and 4 of human USH1C cloned from an Acadian patient homozygous for the 216A mutation. W4/129S6 embryonic stem (ES) cells were electroporated with the targeting construct, and after 10 days of neomycin selection, clones were picked and screened by polymerase chain reaction (PCR) and Southern blot analysis for homologous recombination. Two positive clones for targeted insertion were microinjected into C57BL/6 blastocysts which were then transplanted into pseudo-pregnant females. Chimeras were bred with Cre recombinase-expressing mice for simultaneous deletion of the neomycin gene and germline transmission of the 216A allele. Homozygous Ush1c216A (216AA) mice are hyperactive, display circling and head tossing behavior, and do not have a Preyer reflex at 21-25 days old. RT-PCR analysis of the cochlea and retina from 216AA mice shows the same 35 base deletion characteristic of Usher IC patients. PMID:17174357

  17. Interaction between infectious diseases and personality traits: ACP1*C as a potential mediator.

    PubMed

    Napolioni, Valerio; Murray, Damian R; Comings, David E; Peters, Warren R; Gade-Andavolu, Radhika; MacMurray, James

    2014-08-01

    In geographical regions characterized by high pathogen prevalence, it has been shown that human populations tend to be characterized by lower levels of extraversion (E) and openness to experience (OtE). According to the "behavioral immune system" hypothesis, the reduction of extraversion and openness levels represents a behavioral defense against infections. Like the 'classical' immune system, the "behavioral immune system" could also be shaped by its underlying genetic background. Previous studies have shown that the *C allele of the ACP1 gene confers increased susceptibility to infectious/parasitic diseases. We hypothesized that carriers of the ACP1*C allele should likewise be associated with reduced E and OtE. We tested this hypothesis using two samples comprised of 153 students from Southern California (Group 1), and 162 female subjects recruited from an executive health program (Group 2), genotyped for ACP1 polymorphism and evaluated by the NEO Five-Factor Inventory (NEO-FFI). ACP1 was significantly associated with E: we found that carriers of ACP1*C showed reduced score