Science.gov

Sample records for 1d 2-region systems

  1. DESIGN PACKAGE 1D SYSTEM SAFETY ANALYSIS

    SciTech Connect

    L.R. Eisler

    1995-02-02

    The purpose of this analysis is to systematically identify and evaluate hazards related to the Yucca Mountain Project Exploratory Studies Facility (ESF) Design Package 1D, Surface Facilities, (for a list of design items included in the package 1D system safety analysis see section 3). This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach was used since a radiological System Safety analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the Design Package 1D structures/systems/components in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the structure/system/component (S/S/C) design, (2) add safety devices and capabilities to the designs that reduce risk, (3) provide devices that detect and warn personnel of hazardous conditions, and (4) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the Design Package 1D structures/systems/components (S/S/Cs) during normal operations excluding hazards occurring during maintenance and ''off normal'' operations.

  2. Multiple-state quantum Otto engine, 1D box system

    SciTech Connect

    Latifah, E.; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  3. Study of spin-polaron formation in 1D systems

    SciTech Connect

    Arredondo, Y.; Navarro, O.; Vallejo, E.

    2014-05-15

    We study numerically the formation of spin-polarons in low-dimensional systems. We consider a ferromagnetic Kondo lattice model with Hund coupling J{sub H} and localized spins interacting antiferromagnetically with coupling constant J. We investigate the ground state phase diagram as a function of the exchange couplings J{sub H} and J and as a function of the band filling, since it has been observed that doping either on the ferromagnetic or antiferromagnetic regime lead to formation of magnetic domains [1]. We explore the quasi-particle formation and phase separation using the density-matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems.

  4. Carbon-atom wires: 1-D systems with tunable properties.

    PubMed

    Casari, C S; Tommasini, M; Tykwinski, R R; Milani, A

    2016-02-28

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp(2)-carbon architectures. PMID:26847474

  5. Particle simulation of bounded 1D plasma systems

    SciTech Connect

    Lawson, W.S.

    1989-02-01

    The physical and numerical problems of kinetic simulation of a bounded electrostatic plasma system in one planar dimension are examined, and solutions to them are presented. These problems include particle absorption, reflection and emission at boundaries, the solution of Poisson's equation under non-periodic boundary conditions, and the treatment of an external circuit connecting the boundaries. The methods which are described here are implemented in a code named PDW1, which is available from Professor C. K. Birdsall, Plasma Theory and Simulation Group, Cory Hall, University of California, Berkeley, CA 94720. copyright 1989 Academic Press, Inc.

  6. Partical Simulation of Bounded 1D Plasma Systems

    NASA Astrophysics Data System (ADS)

    Lawson, William S.

    1989-02-01

    The physical and numerical problems of kinetic simulation of a bounded electrostatic plasma system in one planar dimension are examined, and solutions to them are presented. These problems include particle absorption, reflection and emission at boundaries, the solution of Poisson's equation under non-periodic boundary conditions, and the treatment of an external circuit connecting the boundaries. The methods which are described here are immlemented in a code named PDW1, which is available from Professor C. K. Birdsall, Plasma Theory and Simulation Group, Cory Hall, University of California, Berkeley, CA 94720.

  7. Carbon-atom wires: 1-D systems with tunable properties

    NASA Astrophysics Data System (ADS)

    Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A.

    2016-02-01

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp2-carbon architectures.

  8. Electronic-to-vibrational energy transfer efficiency in the O/1 D/-N2 and O/1 D/-CO systems

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1974-01-01

    With the aid of a molecular resonance fluorescence technique, which utilizes optical pumping from the v = 1 level of the ground state of CO by A 1 Pi-X 1 Sigma radiation, a study is made of the efficiency of E-V transfer from O(1 D) to CO. O(1 D) is generated at a known rate by O2 photodissociation at 1470 A in an intermittent mode, and the small modulation of the fluorescent signal associated with CO (v = 1) above the normal thermal background is interpreted in terms of E-V transfer efficiency. The CO (v = 1) lifetime in this system is determined mainly by resonance trapping of the IR fundamental band, and is found to be up to ten times longer than the natural radiative lifetime. For CO, (40 plus or minus 8)% of the O(1 D) energy is converted into vibrational energy. By observing the effect of N2 on the CO (v = 1) fluorescent intensity and lifetime, it is possible to obtain the E-V transfer efficiency for the system O(1 D)-N2 relative to that for O(1 D)-CO. The results indicate that the efficiency for N2 is (83 plus or minus 10)% of that for CO.

  9. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction. PMID:25322249

  10. Neutronic analysis of the 1D and 1E banks reflux detection system

    SciTech Connect

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  11. Microstates of the D1-D5-Kaluza-Klein monopole system

    SciTech Connect

    Bena, Iosif; Kraus, Per

    2005-07-15

    We find supergravity solutions corresponding to all U(1)xU(1) invariant chiral primaries of the D1-D5-KK system. These solutions are 1/8 BPS, carry angular momentum, and are asymptotically flat in the 3+1 dimensional sense. They can be thought of as representing the ground states of the four-dimensional black hole constructed from the D1-D5-KK-P system. Demanding the absence of unphysical singularities in our solutions determines all free parameters, and gives precise agreement with the quantum numbers expected from the CFT point of view. The physical mechanism behind the smoothness of the solutions is that the D1 branes and D5 branes expand into a KK-monopole supertube in the transverse space of the original KK monopole.

  12. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  13. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.

    PubMed

    Smith, David C; Spencer, Joseph H; Sloan, Jeremy; McDonnell, Liam P; Trewhitt, Harrison; Kashtiban, Reza J; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  14. Supersymmetric configurations in the rotating D1-D5 system andpp-waves

    NASA Astrophysics Data System (ADS)

    Maoz, Liat

    Two families of supersymmetric configurations are considered. One is the 1/4 supersymmetric D1--D5 system with angular momentum, and the other is a family of pp-waves of type IIB string theory with some supersymmetry. In the first part of the thesis some configurations of the D1--D5 system are examined which give conical singularities in AdS 3 as their near horizon limit. It is shown that they can be made non-singular by adding angular momentum to the brane system. The smooth asymptotically flat solutions constructed this way are used to obtain global AdS 3 as the near horizon geometry. Using the relation of the D1--D5 system to the oscillating string, a large family of supergravity solutions is constructed which describe BPS excitations on AdS3 x S 3 with angular momentum on S3. These solutions take into account the full back reaction on the metric, and can be viewed as Kaluza-Klein monopole "supertubes", which are completely non-singular geometries. The different chiral primaries of the dual CFT are identified with these different supergravity solutions. This part is adapted from the papers [1], [2]. In its second part, a general class of supersymmetric pp-wave solutions of type IIB string theory is constructed, such that the superstring worldsheet action in light cone gauge is that of an interacting massive field theory. It is shown that when the light cone Lagrangian has (2.2) supersymmetry, one can find backgrounds that lead to arbitrary superpotentials on the worldsheet. Both flat and curved transverse spaces are considered. In particular, the background giving rise to the N = 2 sine Gordon theory on the worldsheet is analyzed. Massive mirror symmetry relates it to the deformed CP1 model (or sausage model) which seems to elude a purely supergravity target space interpretation. These are results which appeared in the paper [3].

  15. 1D cadmium(II) thiocyanate systems: Synthesis and characterization of three new polymeric 1D cadmium(II) thiocyanato complexes

    NASA Astrophysics Data System (ADS)

    Saber, Mohamed R.; Abu-Youssef, Morsy A. M.; Goher, Mohamed A. S.; Sabra, Berry A.; Hafez, Afaf K.; Badr, Ahmed M.-A.; Mautner, Franz A.

    2012-01-01

    Three new cadmium(II) thiocyanato complexes, [{Cd(NCS) 2(val)}·H 2O] n1, [Cd(NCS) 2(3-ampy) 2] n2, and [Cd(NCS) 2(pyrazolinone)] n3, (val = D, L-valine, 3-ampy = 3-aminopyridine and pyrazolinone = 3-methyl-1-phenyl-2-pyrazolin-5-one) have been synthesized and structurally characterized. The X-ray structure analysis revealed di-μ-N,S thiocyanato bridges connecting cadmium centers in a 1D chain with the co-ligand blocking the remaining coordination sites. The structure of complex 1 features six coordinate Cd(II) centers, each cadmium is surrounded by two N atoms and two S atoms from two bridging N,S-thiocyanato groups giving rise to a zigzag 1D chain and two oxygen atoms of the alternating chelating μ-O,O'-valine that coordinates as zwitterionic terminal amino acid. The structure of complex 2 consists of octahedral Cd(II) centers, connected by di-μ-N,S-bridging NCS groups, thus forming a 1D chain system along the [1 0 1] direction. The amino-groups are forming one intra-chain N sbnd H⋯N hydrogen bond and one interchain N sbnd H⋯N hydrogen bond to N-atoms of adjacent chains. The structure of 3 reveals di-μ-N,S-NCS doubly bridged unusual penta-coordinated cadmium centers with the alternating monodentate pyrazolinone ligand blocking the fifth coordination site. IR spectra and thermal properties of complexes are reported.

  16. Exact spin dynamics of inhomogeneous 1-d systems at high temperature

    NASA Astrophysics Data System (ADS)

    Danieli, E. P.; Pastawski, H. M.; Levstein, P. R.

    2002-07-01

    The evaluation of spin excitation dynamics in finite 1-d systems of spins {1}/{2} with XY exchange interaction J acquired new interest because NMR experiments at high temperature ( kBT≫ J) confirmed the predicted spin wave behavior of mesoscopic echoes. In this work, we use the Jordan-Wigner transformation to obtain the exact dynamics of inhomogeneous chains and rings where the evolution is reduced to one-body dynamics. For higher dimensions, the spin excitations manifest many-body effects that can be interpreted as a simple dynamics of non-interacting fermions plus a decoherent process.

  17. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System

    PubMed Central

    2011-01-01

    Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models

  18. Statistical investigation and thermal properties for a 1-D impact system with dissipation

    NASA Astrophysics Data System (ADS)

    Díaz I., Gabriel; Livorati, André L. P.; Leonel, Edson D.

    2016-05-01

    The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.

  19. Strong and Weak 2D Topological Superconductivity in Hidden Quasi-1D Systems

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yao, Hong

    2014-03-01

    Partly motivated by the newly discovered family of bismuth-based superconductors including LaO1-xFxBiS2, we study possible 2D topological superconductivities (TSC) in hidden quasi-1D systems with spin-orbit couplings. By doing RPA calculations and renormalization group (RG) treatment, we theoretically find that in a large portion of the phase diagram with varying interaction strengths and spin-orbit coupling the ground states favors superconductivity with odd-parity pairing, which results in either chiral TSC or time reversal invariant weak-Z2 TSC. We shall discuss several ways to experimentally identify these strong and weak 2D topological superconductivity. Possible applications to the bismuth-based superconductors LaO1-xFxBiS2 will also be remarked.

  20. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    PubMed

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240

  1. Modelling Hydrology of a Single Bioretention System with HYDRUS-1D

    PubMed Central

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240

  2. A tiny gas-sensor system based on 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Bouzidi, A.; Bria, D.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2015-12-01

    We present a gas monitoring system for detecting the gas concentration in ambient air. This sensor is based on a 1D photonic crystal formed by alternating layers of magnesium fluoride (MgF2) and silicon (Si) with an empty layer in the middle. The lamellar cavity (defect layer) will be filled with polluted air that has a refractive index close to that of pure air, varying between n 0  =  1.00 to n 0  =  1.01. The transmission spectrum of this sensor is calculated by the Green function approach. The numerical results show that the transmission peak, which appears in the gap, is caused by the infiltration of impure air into the empty middle layer. This transmission peak can be used for detection purposes in real-time environmental monitoring. The peak frequency is sensitive to the air-gas mixture, and a variation in the refractive index as small as Δn  =  10-5 can be detected. A sensitivity, Δλ/Δn, of 700 nm per refractive index unit (RIU) is achieved with this sensor.

  3. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  4. Quantum propagation and confinement in 1D systems using the transfer-matrix method

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Carles, Robert; Pérez, José-Philippe

    2014-05-01

    The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.

  5. Application of exergetic sustainable index to the quantum irreversible Diesel refrigerator cycles for 1D box system

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin; Caner, Necmettin

    2015-04-01

    In this paper, an irreversible quantum Diesel refrigerator for a 1D-box system is described and analyzed. The exergetic sustainability index that is the rate of the exergy output from the system to the total exergetic losses including exergy destruction and exergy loss from the system is applied for the first time to an irreversible quantum engine. Other thermodynamic parameters including work input, cooling load, exergy destruction, COP and exergy efficiency are investigated according to the cycle temperatures and numerical results are presented.

  6. Disappearance of 2D Magnetic Character in Quasi-1D System CoNb2O6 under Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mitsuda, Setsuo; Kobayashi, Satoru; Katagiri, Kouji; Yoshizawa, Hideki; Ishikawa, Masayasu; Miyatani, Kazuo; Kohn, Kay

    1995-07-01

    We report neutron scattering as well as ac susceptibility studies on the formation of magnetic ordering in a quasi-1D ferromagnetic chain system CoNb2O6 in magnetic fields up to 600 Oe. At T=1.5 K, a noncollinear ferrimagnetic (FR) phase with up-up-down spin arrangement along the b axis is field-induced in the magnetic field above ˜300 Oe. Interestingly, the pronounced 2D magnetic character previously found in the noncollinear antiferromagnetic phase disappears in the FR phase. This is direct evidence that the 2D magnetic character is due to the cancellation of interchain exchange fields at an apex site of a 2D isosceles-triangular lattice where quasi-1D ferromagnetic chains lie.

  7. Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator

    Energy Science and Technology Software Center (ESTSC)

    1993-08-02

    SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less

  8. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    SciTech Connect

    Caudill, Christy

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  9. The research of 1D / 3D coupling simulation on pump and pipe system

    NASA Astrophysics Data System (ADS)

    Wu, D. Z.; Liu, Q. L.; Wu, P.; Wang, L. Q.; Paulus, T.; Wang, B. G.; Oesterle, M.

    2012-11-01

    The research of performances of hydraulic mechanical depends on static complete characteristic curves, which have great difference compared with the actual work condition and have accidents potential. So we need a new way to compute the dynamic system, which is more reasonable. So the method to couple one dimensional simulation and three dimensional CFD analysis based on Flowmaster and Fluent is explored, and the dynamic characteristics and internal flow of the pumping system are analyzed. First, a pipe system model is created in Flowmaster and a pump model is created in Fluent; then VB code and scheme code are used to realize the automated operation for Flowmaster and Fluent; at last, the exchange of data between these two parts is realized by an interface program. In this paper, the interaction between pumps and pipe system are analyzed by coupling one-dimensional and three-dimensional simulations. This study would be helpful to identify the influences of the rapid adjustment process on stability of system and provide guides for design of pump system.

  10. Vlasov-Poisson in 1D for initially cold systems: post-collapse Lagrangian perturbation theory

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane

    2015-01-01

    We study analytically the collapse of an initially smooth, cold, self-gravitating collisionless system in one dimension. The system is described as a central 'S' shape in phase-space surrounded by a nearly stationary halo acting locally like a harmonic background on the S. To resolve the dynamics of the S under its self-gravity and under the influence of the halo, we introduce a novel approach using post-collapse Lagrangian perturbation theory. This approach allows us to follow the evolution of the system between successive crossing times and to describe in an iterative way the interplay between the central S and the halo. Our theoretical predictions are checked against measurements in entropy conserving numerical simulations based on the waterbag method. While our post-collapse Lagrangian approach does not allow us to compute rigorously the long-term behaviour of the system, i.e. after many crossing times, it explains the close to power-law behaviour of the projected density observed in numerical simulations. Pushing the model at late time suggests that the system could build at some point a very small flat core, but this is very speculative. This analysis shows that understanding the dynamics of initially cold systems requires a fine-grained approach for a correct description of their very central part. The analyses performed here can certainly be extended to spherical symmetry.

  11. Multiparticle systems in κ -Poincaré inspired by (2 +1 )D gravity

    NASA Astrophysics Data System (ADS)

    Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2015-04-01

    Inspired by a Chern-Simons description of 2 +1 -dimensional gravity coupled to point particles we propose a new Lagrangian of a multiparticle system living in κ -Minkowski/κ -Poincaré spacetime. We derive the dynamics of interacting particles with κ -momentum space, alternative to the one proposed in the "principle of relative locality" literature. The model that we obtain takes account of the nonlocal topological interactions between the particles, so that the effective multiparticle action is not a sum of their free actions. In this construction the locality of particle processes is naturally implemented, even for distant observers. In particular a particle process is characterized by a local deformed energy-momentum conservation law. The spacetime transformations are generated by total charges/generators for the composite particle system, and leave unaffected the locality of individual particle processes.

  12. New way to produce dense double-antikaonic dibaryon system, 𝐾̄𝐾̄NN, through Λ(1405)-doorway sticking in p + p collisions

    PubMed Central

    YAMAZAKI, Toshimitsu; AKAISHI, Yoshinori; HASSANVAND, Maryam

    2011-01-01

    A recent successful observation of a dense and deeply bound 𝐾̄ nuclear system, K−pp, in the p + p → K+ + K−pp reaction in a DISTO experiment indicates that the double-𝐾̄ dibaryon, K−K−pp, which was predicted to be a dense nuclear system, can also be formed in p + p collisions. We find theoretically that the K−-K− repulsion plays no significant role in reducing the density and binding energy of K−K−pp and that, when two Λ(1405) resonances are produced simultaneously in a short-range p + p collision, they act as doorways to copious formation of K−K−pp, if and only if K−K−pp is a dense object, as predicted. PMID:21670568

  13. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  14. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively. PMID:24952535

  15. Design and initial 1D radiography tests of the FANTOM mobile fast-neutron radiography and tomography system

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.

  16. The Existence of Weak 𝒟-Pullback Exponential Attractor for Nonautonomous Dynamical System

    PubMed Central

    Li, Yongjun; Wei, Xiaona; Zhang, Yanhong

    2016-01-01

    First, for a process {U(t, τ)∣t ≥ τ}, we introduce a new concept, called the weak 𝒟-pullback exponential attractor, which is a family of sets {ℳ(t)∣t ≤ T}, for any T ∈ ℝ, satisfying the following: (i) ℳ(t) is compact, (ii) ℳ(t) is positively invariant, that is, U(t, τ)ℳ(τ) ⊂ ℳ(t), and (iii) there exist k, l > 0 such that dist(U(t, τ)B(τ), ℳ(t)) ≤ ke −(t−τ); that is, ℳ(t) pullback exponential attracts B(τ). Then we give a method to obtain the existence of weak 𝒟-pullback exponential attractors for a process. As an application, we obtain the existence of weak 𝒟-pullback exponential attractor for reaction diffusion equation in H 0 1 with exponential growth of the external force. PMID:27119090

  17. On the value of including x-component data in 1D modeling of electromagnetic data from helicopterborne time domain systems in horizontally layered environments

    NASA Astrophysics Data System (ADS)

    Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt

    2012-09-01

    Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that

  18. On the efficiency of 1D atom localisation via EIT in a degenerate two-level atomic system

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Jelena; Arsenović, Dušan; Jelenković, Branislav M.

    2016-04-01

    We analyse one-dimensional (1D) subwavelength atom localisation in a cold atomic medium under the action of two optical fields, the standing-wave and travelling probe fields, in the presence of a magnetic field. Optical Bloch equations are solved numerically for the hyperfine atomic transition {{F}g}=2\\to {{F}e}=1 of the 87Rb D1 line. All Zeeman sublevels are included in the calculations. This atomic scheme allows electromagnetically induced transparency (EIT) if the applied magnetic field is zero or small. The results for the position-dependent probe absorption are presented for two configurations, depending on the orientation of the magnetic field with respect to the optical fields’ polarisations. The efficiency of the atom localisation is analysed for a large range of field intensities and applied magnetic fields. The observed behaviour of the probe absorption is analysed through the effects of EIT induced by two fields of various strengths and its dependence on the applied magnetic fields.

  19. Cu_2(1,4-diazacycloheptane)_2Cl_4: a Quasi-1D S=1/2 Spin Liquid System

    NASA Astrophysics Data System (ADS)

    Hammar, P. R.; Broholm, C.; Reich, D. H.; Trouw, F.

    1996-03-01

    The material Cu_2(1,4-diazacycloheptane)_2Cl4 consists of well-separated double chains of Cu atoms, whose structure suggests the possibility of significant antiferromagnetic next-nearest-neighbor interactions(B. Chiari, et al., Inorg. Chem 29), 1172 (1990).. We report on measurements of magnetic susceptibility, \\chi(H,T), heat capacity, C_p(T), and neutron scattering that show that this material has a singlet ground state and a gap to spin-carrying excitations. \\chi(H=0,T) shows a broad peak at T_Peak = 8K indicative of 1D antiferromagnetic correlations. Below the peak, \\chi drops dramatically towards zero. For T << T_Peak, \\chi(H)≈ 0 below a critical field HC = 6.6T and rises sharply above HC to a plateau at 8T. Below T_Peak, C_p(T) ∝ T-3/2exp(-Δ/T) with an activation energy Δ = 10K. Inelastic neutron scattering on powders shows a gap of 0.8 meV and a magnetic bandwidth of 0.6 meV. Comparison of these data to predictions for S=1/2 spin ladders and next-near-neighbor chains will be discussed. Supported by NSF grants DMR93-02065 and DMR94-53362, DOE BES-Materials Science contract W-31-109-ENG-38 with IPNS-ANL, and by the David and Lucile Packard Foundation

  20. Longevity of duct tape in residential air distribution systems: 1-D, 2-D, and 3-D joints

    SciTech Connect

    Abushakra, Bass

    2002-05-30

    The aging tests conducted so far showed that duct tape tends to degrade in its performance as the joint it is applied to requires a geometrical description of a higher number of space dimensions (1-D, 2-D, 3-D). One-dimensional joints are the easiest to seal with duct tape, and thus the least to experience failure. Two-dimensional joints, such as the flexible duct core-to-collar joints tested in this study, are less likely to fail than three-dimensional collar-to-plenum joints, as the shrinkage could have a positive effect in tightening the joint. Three-dimensional joints are the toughest to seal and the most likely to experience failure. The 2-D flexible duct core-to-collar joints passed the six-month period of the aging test in terms of leakage, but with the exception of the foil-butyl tape, showed degradation in terms hardening, brittleness, partial peeling, shrinkage, wrinkling, delamination of the tape layers, flaking, cracking, bubbling, oozing and discoloration. The baking test results showed that the failure in the duct tape joints could be attributed to the type of combination of the duct tape and the material it is applied to, as the duct tape behaves differently with different substrates. Overall, the foil-butyl tape (Tape 4) had the best results, while the film tape (Tape 3) showed the most deterioration. The conventional duct tapes tested (Tape 1 and Tape 2) were between these two extremes, with Tape 2 performing better than Tape 1. Lastly, we found that plastic straps became discolored and brittle during the tests, and a couple of straps broke completely. Therefore, we recommend that clamping the duct-taped flexible core-to-collar joints should be done with metallic adjustable straps.

  1. Controlling a class of chaotic quantum system under disturbances and noisy measurements: Application to 1D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Aguilar-López, Ricardo; López-Pérez, Pablo A.; Lara-Cisneros, Gerardo; Femat, Ricardo

    2016-09-01

    In this paper, a robust nonlinear feedback control scheme with adaptive gain is proposed to control the chaotic behavior in a Bose-Einstein condensate (BEC). The control goal concerns the track or regulation purposes. The BEC system is represented as stochastic ordinary differential equations with measured output perturbed by Gaussian noise, which represents the nature of the quantum systems. The convergence of the BEC control law is analyzed under the frame of the Lyapunov stability theory. Numerical experiments show an adequate performance of the proposed methodology under the required conditions. The results are applicable when the shape of the condensate is sufficiently simple.

  2. An investigation of equilibration in small quantum systems: the example of a particle in a 1D random potential

    NASA Astrophysics Data System (ADS)

    Luck, J. M.

    2016-03-01

    We investigate the equilibration of a small isolated quantum system by means of its matrix of asymptotic transition probabilities in a preferential basis. The trace of this matrix is shown to measure the degree of equilibration of the system launched from a typical state, from the standpoint of the chosen basis. This approach is substantiated by an in-depth study of the example of a tight-binding particle in one dimension. In the regime of free ballistic propagation, the above trace saturates to a finite limit, testifying good equilibration. In the presence of a random potential, the trace grows linearly with the system size, testifying poor equilibration in the insulating regime induced by Anderson localization. In the weak-disorder situation of most interest, a universal finite-size scaling law describes the crossover between the ballistic and localized regimes. The associated crossover exponent 2/3 is dictated by the anomalous band-edge scaling characterizing the most localized energy eigenstates.

  3. Single parameter scaling for 1d systems with scale-free long-range correlated disordered potentials

    NASA Astrophysics Data System (ADS)

    Sandler, Nancy; Petersen, Greg

    2013-03-01

    Disordered optical lattices have renewed the interest in localization physics under power-law long-range correlated disorder potentials. For these systems, insight can be gained by combining numerical data and analytic expressions based on scaling laws. Thus, the absence of a transition in short-range correlated disordered systems can been proved by verifying the validity of the single parameter scaling (SPS) hypothesis for the distribution function of the dimensionless conductance. In this talk we discuss this hypothesis for a system with scale-free long-range correlated disorder potentials of the form ~ 1 /rα as a function of the correlation exponent α. We present results for the 1st (the β-function) and 2nd (variance) cumulants of the distribution function, and show a violation of SPS at an energy scale ESPS, that scales with an α-renormalized disorder strength. Calculations for the localization length reveals the existence of a crossover scale Ecross between two regions as correlations increase. An increased number of more extended-like states appear near the band-center while states near the band edges experience reduced localization lengths. We confirm previously predicted scaling behavior near the band edge and center. Supported by NSF-MWN/CIAM and NSF-PIRE.

  4. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  5. Coastal fog prediction with a coupled model (1D+3D) system using the data from a 300 m met tower as input

    NASA Astrophysics Data System (ADS)

    Kim, W.; Yum, S. S.

    2015-12-01

    Visibility degradation due to fog can be very hazardous both to ground transportation and aviation traffic. However, prediction of fog using numerical models is difficult because fog formation is usually determined by local meteorological conditions that are hard to be measured and modeled with sufficient resolution. For this reason, there have been several attempts to build a coupled system of a fine resolution 1D model and a 3D mesoscale model with a usual grid resolution. In this study we uses the coupled system of the 1D PAFOG model and the 3D WRF model to simulate fogs formed at a southern coastal region of Korea, where the National Center for Intensive Observation of Severe Weather (NCIO) is located. Unique to NCIO is that it has a 300 m meteorological tower on which some basic meteorological variables (temperature, dew point temperature and winds) are measured at eleven different altitudes. In addition comprehensive cloud physics measurements are made with various remote sensing instruments such as cloud radar, wind profiler, microwave radiometer, micro rain radar. Several fog cases are identified during 2015 and will be simulated by the coupled system. The comprehensive set of measurement data from NCIO will be utilized as input to the model system and for evaluating the results. Particularly the data for initial and boundary conditions, which are tightly connected to the coupled model predictability, are extracted from the tower measurement. Furthermore, various sensitivity experiments will be done to enhance our understanding of the coastal fog formation mechanism. Detailed results will be discussed at the conference.

  6. Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D-0D Simulation of the Entire Cardiovascular System with SPECT Data.

    PubMed

    Zhang, Hao; Fujiwara, Naoya; Kobayashi, Masaharu; Yamada, Shigeki; Liang, Fuyou; Takagi, Shu; Oshima, Marie

    2016-08-01

    The detailed flow information in the circle of Willis (CoW) can facilitate a better understanding of disease progression, and provide useful references for disease treatment. We have been developing a one-dimensional-zero-dimensional (1D-0D) simulation method for the entire cardiovascular system to obtain hemodynamics information in the CoW. This paper presents a new method for applying 1D-0D simulation to an individual patient using patient-specific data. The key issue is how to adjust the deviation of physiological parameters, such as peripheral resistance, from literature data when patient-specific geometry is used. In order to overcome this problem, we utilized flow information from single photon emission computed tomography (SPECT) data. A numerical method was developed to optimize physiological parameters by adjusting peripheral cerebral resistance to minimize the difference between the resulting flow rate and the SPECT data in the efferent arteries of the CoW. The method was applied to three cases using different sets of patient-specific data in order to investigate the hemodynamics of the CoW. The resulting flow rates in the afferent arteries were compared to those of the phase-contrast magnetic resonance angiography (PC-MRA) data. Utilization of the SPECT data combined with the PC-MRA data showed a good agreement in flow rates in the afferent arteries of the CoW with those of PC-MRA data for all three cases. The results also demonstrated that application of SPECT data alone could provide the information on the ratios of flow distributions among arteries in the CoW. PMID:26721836

  7. Evaluation of the ocean technology system's MK 1-S wireless surface unit, MK 1 DCI two diver air radio, MK 1-D-A wireless diver unit, MK 1-D-H hardwire diver unit and MK 1-D/S unit

    NASA Astrophysics Data System (ADS)

    Reyle, B. E.

    1985-05-01

    The OTS was evaluated for intelligibility, reliability and human engineering. The test subjects possessed various levels of experience with wireless or hardwire communication and SCUBA. The conditions under which the equipment was tested varied. Surface air temperatures ranged from 37 to 85 F; water temperatures from 65 to 80 F; and water depths from 8 feet of seawater (FSW) to greater than 60 FSW. The tests were conducted inside a circular 30 foot deep ascent tower, in shallow open bay water, and finally in an open ocean environment. The equipment was evaluated in areas of both high and low noise levels on the surface as well as in water. The OTS produced an overall intelligibility of 89.24% during manned open water testing using the Modified Rhyme Test (MRT) as the evaluation criteria, with a minimum effective range of 330 yards at 12 FSW and at least 875 yards, although it appears that the range of the MK 1-D-A is somewhat greater. Human engineering aspects of the OTS were found to be more than satisfactory, with no material failures encountered during testing. It is interesting to note that whenever the equipment required minor adjustments, these could be effected by the diver in the water (on the surface) and in most cases in less than 5 minutes. The amount of maintenance required on the OTS was minimal.

  8. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    NASA Astrophysics Data System (ADS)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  9. Hermite WENO limiting for multi-moment finite-volume methods using the ADER-DT time discretization for 1-D systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Norman, Matthew R.

    2015-02-01

    New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, function-based WENO methods explicitly form a non-oscillatory, high-order polynomial over the cell in question. This study chooses a function-based approach and details how fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, eighth-, and tenth-order accuracy are developed. These are compared against traditional single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to compare against more familiar methods from literature. The new HWENO methods improve upon existing HWENO methods (1) by giving a better resolution of unreinforced contact discontinuities and (2) by only needing a single HWENO polynomial to update both the cell mean value and cell mean derivative. Test cases to validate and assess these methods include 1-D linear transport, the 1-D inviscid Burger's equation, and the 1-D inviscid Euler equations. Smooth and non-smooth flows are used for evaluation. These HWENO methods performed better than comparable literature-standard WENO methods for all regimes of discontinuity and smoothness in all tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and they collapse to solutions similar to typical WENO methods when limiting is required. The study concludes that the new HWENO methods are robust and effective when used in the ADER-DT MMFV framework. These results are intended to demonstrate capability rather than exhaust all possible implementations.

  10. Validating a 1-D SVAT model in a range of USA and Australian ecosystems: evidence towards its use as a tool to study Earth's system interactions

    NASA Astrophysics Data System (ADS)

    Petropoulos, G. P.; North, M. R.; Ireland, G.; Srivastava, P. K.; Rendall, D. V.

    2015-03-01

    This paper describes the validation of the SimSphere SVAT model conducted at different ecosystem types in the USA and Australia. Specific focus was given to examining the models' ability in predicting Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3 m (Tair 1.3 m) and Air Temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from 8 sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. The application of the model confirmed its high capability in representing the multifarious and complex interactions of the Earth system. Comparisons showed a good agreement between modelled and measured fluxes, especially for the days with smoothed daily flux trends. A good to excellent agreement between the model predictions and the in situ measurements was reported, particularly so for the LE, H, T1.3 m and T 50 m parameters (RMSD = 39.47, 55.06 W m-2, 3.23, 3.77 °C respectively). A systematic underestimation of Rg and Rnet (RMSD = 67.83, 58.69 W m-2, MBE = 67.83, 58.69 W m-2 respectively) was also found. Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. Very high values of the Nash-Sutcliffe efficiency index were also reported for all parameters ranging from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the first comprehensive validation of SimSphere, particularly so in USA and Australian ecosystem types. Findings are important and timely, given the rapidly expanding use of this model worldwide both as an educational and research

  11. 1D-VAR Retrieval Using Superchannels

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen

    2008-01-01

    Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.

  12. Vought F4U-1D Corsair

    NASA Technical Reports Server (NTRS)

    1945-01-01

    Vought F4U-1D Corsair: In February and March of 1945 this Corsair was examined in the NACA's 30 x 60 Full Scale Tunnel at Langley Field. The F4U-1D has rockets mounted on its wings for this test. After installation and during testing, the wings would be lowered to their flight position.

  13. Non-cooperative Brownian donkeys: A solvable 1D model

    NASA Astrophysics Data System (ADS)

    Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.

    2003-12-01

    A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.

  14. Effective-range signatures in quasi-1D matter waves: sound velocity and solitons

    NASA Astrophysics Data System (ADS)

    Sgarlata, F.; Mazzarella, G.; Salasnich, L.

    2015-06-01

    We investigate ultracold and dilute bosonic atoms under strong transverse harmonic confinement using a 1D modified Gross-Pitaevskii equation (1D MGPE), which accounts for the energy dependence of the two-body scattering amplitude within an effective-range expansion. We study sound waves and solitons of the quasi-1D system, comparing the 1D MGPE results with the 1D GPE ones. We find that when the finite-size nature of the interaction is taken into account, the speed of sound and the density profiles of both dark and bright solitons show relevant quantitative changes with respect to predictions given by the standard 1D GPE.

  15. Bi{sub 2}O{sub 3}–CuO–P{sub 2}O{sub 5} system: Two novel compounds built from the intergrowths oxocentered polycationic 1D-ribbons

    SciTech Connect

    Colmont, Marie; Endara, Diana; Aliev, Almaz; Terryn, Christine; Huvé, Marielle; Mentré, Olivier

    2013-07-15

    Single crystals of two novel bismuth copper oxyphosphates were grown from a unique melt. They have been structurally characterized by means of single crystal X-Ray Diffraction (XRD). Bi{sub 29.4}Cu{sub 9.29}O{sub 32}(PO{sub 4}){sub 16}Cu{sub 2.63} (1) is orthorhombic, space group Pca2{sub 1}, a=33.0549(2)A, b=11.6991(4)A and c=5.2902(2)A, R{sub 1}=0.059 and wR{sub 2}=0.061. Bi{sub 37.2}Cu{sub 18.8}O{sub 44}(PO{sub 4}){sub 24}Cu{sub 5} (2) is orthorhombic, space group Pna2{sub 1}, a=11.6010(3)A, b=47.4384(5)A and c=5.267(2)A, R{sub 1}=0.0940 and wR{sub 2}=0.0981. Both compounds are formed of similar 1D building units (BUs) organized into two different 3D regular intergrowths mediated by phosphate groups. Here, the so-called 1D-BUs are infinite ribbons formed by edge-sharing O(Bi,M){sub 4} tetrahedra with n=4 and n=3 tetrahedra-wide units. Both compounds were analyzed from the viewpoint of their relationship with the parent δ-Bi{sub 2}O{sub 3} fluorite-like structure, where phosphorus atoms substitutes for some Bi sites. A non-exhaustive review of the related structural types is given. We have checked by second harmonic generacy (SHG) microscopy that the two non-centrosymmetric structures (despite polar subunits) lead to SHG before the samples are irreversibly damaged. - Graphical abstract: This paper reports the crystal structure of two new bismuth oxophosphate compounds. Both are built on the association of n=3 and 4 building unit ribbons surrounded by isolated PO4 tetrahedra and tunnels hosting Cu{sup 2+} cations. They come in addition to the numerous Bi-based compounds already pointed out. Once more, this is the proof of the richness of this crystal system. - Highlights: • Two new bismuth oxophosphates were synthesized. • Crystal structure were solved thanks to single crystal X-Ray diffraction. • They show two different associations of n=3 and 4 ribbons built on [O,(Bi,M){sub 4}] tetrahedral sharing edges and surrounded by isolated PO4 groups. • SHG

  16. Polar discontinuities and 1D interfaces in monolayered materials

    NASA Astrophysics Data System (ADS)

    Martinez-Gordillo, Rafael; Pruneda, Miguel

    2015-12-01

    Interfaces are the birthplace of a multitude of fascinating discoveries in fundamental science, and have enabled modern electronic devices, from transistors, to lasers, capacitors or solar cells. These interfaces between bulk materials are always bi-dimensional (2D) 'surfaces'. However the advent of graphene and other 2D crystals opened up a world of possibilities, as in this case the interfaces become one-dimensional (1D) lines. Although the properties of 1D nanoribbons have been extensively discussed in the last few years, 1D interfaces within infinite 2D systems had remained mostly unexplored until very recently. These include grain boundaries in polycrystalline samples, or interfaces in hybrid 2D sheets composed by segregated domains of different materials (as for example graphene/BN hybrids, or chemically different transition metal dichalcogenides). As for their 2D counterparts, some of these 1D interfaces exhibit polar characteristics, and can give rise to fascinating new physical properties. Here, recent experimental discoveries and theoretical predictions on the polar discontinuities that arise at these 1D interfaces will be reviewed, and the perspectives of this new research topic, discussed.

  17. 1D ferrimagnetism in homometallic chains

    NASA Astrophysics Data System (ADS)

    Coronado, E.; Gómez-García, C. J.; Borrás-Almenar, J. J.

    1990-05-01

    The magnetic properties of the cobalt zigzag chain Co(bpy)(NCS)2 (bpy=2,2'-bipyridine) are discussed on the basis of an Ising-chain model that takes into account alternating Landé factors. It is emphasized, for the first time, that a homometallic chain containing only one type of site can give rise to a 1D ferrimagneticlike behavior.

  18. Understanding 1D Electrostatic Dust Levitation

    NASA Astrophysics Data System (ADS)

    Hartzell, C. M.; Scheeres, D. J.

    2011-12-01

    Electrostatically-dominated dust motion has been hypothesized since the Lunar Horizon Glow was observed by the Surveyor spacecraft. The hypothesized occurence of this phenomenon was naturally extended to asteroids due to their small gravities. Additionally, it has been suggested that the dust ponds observed on Eros by the NEAR mission may be created by electrostatically-dominated dust transport. Previous attempts to numerically model dust motion on the Moon and Eros have been stymied by poorly understood dust launching mechanisms. As a result, the initial velocity and charge of dust particles used in numerical simulations may or may not have any relevance to the actual conditions occurring in situ. It has been seen that properly tuned initial states (velocity and charge) result in dust particles levitating above the surface in both 1D and 2D simulations. Levitation is of interest to planetary scientists since it provides a way to quickly redistribute the surface dust particles over a body. However, there is currently no method to predict whether or not a certain initial state will result in levitation. We have developed a method to provide constraints on the initial states that result in levitation as a function of dust particle size and central body gravity. Additionally, our method can be applied to several models of the plasma sheath. Thus, we limit the guesswork involved in determining which initial conditions result in levitation. We provide a more detailed understanding of levitation phenomena couched in terms of the commonly recognized spring-mass system. This method of understanding dust motion removes the dependency on the launching mechanism, which remains fraught with controversy. Once a feasible dust launching mechanism is identified (be it micrometeoroid bombardment or electrostatic lofting), our method will allow the community to quickly ascertain if dust levitation will occur in situ or if it is simply a numerical artifact. In addition to

  19. Grid Cell Responses in 1D Environments Assessed as Slices through a 2D Lattice.

    PubMed

    Yoon, KiJung; Lewallen, Sam; Kinkhabwala, Amina A; Tank, David W; Fiete, Ila R

    2016-03-01

    Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior. PMID:26898777

  20. Preparation of 1D nanostructures using biomolecules

    NASA Astrophysics Data System (ADS)

    Pruneanu, Stela; Olenic, Liliana; Barbu Tudoran, Lucian; Kacso, Irina; Farha Al-Said, Said A.; Hassanien, Reda; Houlton, Andrew; Horrocks, Benjamin R.

    2009-08-01

    In this paper we have shown that one-dimensional (1D) particle arrays can be obtained using biomolecules, like DNA or amino-acids. Nano-arrays of silver and gold were prepared in a single-step synthesis, by exploiting the binding abilities of λ-DNA and L-Arginine. The morphology and optical properties of these nanostructures were investigated using AFM, TEM and UV-Vis absorption spectroscopy.

  1. 1D design style implications for mask making and CEBL

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2013-09-01

    At advanced nodes, CMOS logic is being designed in a highly regular design style because of the resolution limitations of optical lithography equipment. Logic and memory layouts using 1D Gridded Design Rules (GDR) have been demonstrated to nodes beyond 12nm.[1-4] Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. One of the significant advantages of 1D GDR is the ease of splitting layouts into lines and cuts. A lines and cuts approach has been used to achieve good pattern fidelity and process margin to below 12nm.[4] Line scaling with excellent line-edge roughness (LER) has been demonstrated with self-aligned spacer processing.[5] This change in design style has important implications for mask making: • The complexity of the masks will be greatly reduced from what would be required for 2D designs with very complex OPC or inverse lithography corrections. • The number of masks will initially increase, as for conventional multiple patterning. But in the case of 1D design, there are future options for mask count reduction. • The line masks will remain simple, with little or no OPC, at pitches (1x) above 80nm. This provides an excellent opportunity for continual improvement of line CD and LER. The line pattern will be processed through a self-aligned pitch division sequence to divide pitch by 2 or by 4. • The cut masks can be done with "simple OPC" as demonstrated to beyond 12nm.[6] Multiple simple cut masks may be required at advanced nodes. "Coloring" has been demonstrated to below 12nm for two colors and to 8nm for three colors. • Cut/hole masks will eventually be replaced by e-beam direct write using complementary e-beam lithography (CEBL).[7-11] This transition is gated by the availability of multiple column e-beam systems with throughput adequate for high- volume manufacturing. A brief description of 1D and 2D design styles will be presented, followed by examples of 1D layouts. Mask complexity for 1

  2. Coalescence phenomena in 1D silver nanostructures

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Wing, C.; Pérez-Alvarez, M.; Mondragón-Galicia, G.; Arenas-Alatorre, J.; Gutiérrez-Wing, M. T.; Henk, M. C.; Negulescu, I. I.; Rusch, K. A.

    2009-07-01

    Different coalescence processes on 1D silver nanostructures synthesized by a PVP assisted reaction in ethylene glycol at 160 °C were studied experimentally and theoretically. Analysis by TEM and HRTEM shows different defects found on the body of these materials, suggesting that they were induced by previous coalescence processes in the synthesis stage. TEM observations showed that irradiation with the electron beam eliminates the boundaries formed near the edges of the structures, suggesting that this process can be carried out by the application of other means of energy (i.e. thermal). These results were also confirmed by theoretical calculations by Monte Carlo simulations using a Sutton-Chen potential. A theoretical study by molecular dynamics simulation of the different coalescence processes on 1D silver nanostructures is presented, showing a surface energy driven sequence followed to form the final coalesced structure. Calculations were made at 1000-1300 K, which is near the melting temperature of silver (1234 K). Based on these results, it is proposed that 1D nanostructures can grow through a secondary mechanism based on coalescence, without losing their dimensionality.

  3. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  4. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification

    PubMed Central

    Sonnenberg, Rainer; Nolte, Arne W; Tautz, Diethard

    2007-01-01

    Background Identification of species via DNA sequences is the basis for DNA taxonomy and DNA barcoding. Currently there is a strong focus on using a mitochondrial marker for this purpose, in particular a fragment from the cytochrome oxidase I gene (COI). While there is ample evidence that this marker is indeed suitable across a broad taxonomic range to delineate species, it has also become clear that a complementation by a nuclear marker system could be advantageous. Ribosomal RNA genes could be suitable for this purpose, because of their global occurrence and the possibility to design universal primers. However, it has so far been assumed that these genes are too highly conserved to allow resolution at, or even beyond the species level. On the other hand, it is known that ribosomal gene regions harbour also highly divergent parts. We explore here the information content of two adjacent divergence regions of the large subunit ribosomal gene, the D1-D2 region. Results Universal primers were designed to amplify the D1-D2 region from all metazoa. We show that amplification products in the size between 800–1300 bp can be obtained across a broad range of animal taxa, provided some optimizations of the PCR procedure are implemented. Although the ribosomal genes occur in multiple copies in the genomes, we find generally very little intra-individual polymorphism (<< 0.1% on average) indicating that concerted evolution is very effective in most cases. Studies in two fish taxa (genus Cottus and genus Aphyosemion) show that the D1-D2 LSU sequence can resolve even very closely related species with the same fidelity as COI sequences. In one case we can even show that a mitochondrial transfer must have occurred, since the nuclear sequence confirms the taxonomic assignment, while the mitochondrial sequence would have led to the wrong classification. We have further explored whether hybrids between species can be detected with the nuclear sequence and we show for a test case of

  5. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    SciTech Connect

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  6. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  7. Endogenous N-terminal Domain Cleavage Modulates α1D-Adrenergic Receptor Pharmacodynamics.

    PubMed

    Kountz, Timothy S; Lee, Kyung-Soon; Aggarwal-Howarth, Stacey; Curran, Elizabeth; Park, Ji-Min; Harris, Dorathy-Ann; Stewart, Aaron; Hendrickson, Joseph; Camp, Nathan D; Wolf-Yadlin, Alejandro; Wang, Edith H; Scott, John D; Hague, Chris

    2016-08-26

    The α1D-adrenergic receptor (ADRA1D) is a key regulator of cardiovascular, prostate, and central nervous system functions. This clinically relevant G protein-coupled receptor has proven difficult to study, as it must form an obligate modular homodimer containing the PDZ proteins scribble and syntrophin or become retained in the endoplasmic reticulum as non-functional protein. We previously determined that targeted removal of the N-terminal (NT) 79 amino acids facilitates ADRA1D plasma membrane expression and agonist-stimulated functional responses. However, whether such an event occurs in physiological contexts was unknown. Herein, we report the ADRA1D is subjected to innate NT processing in cultured human cells. SNAP near-infrared imaging and tandem-affinity purification revealed the ADRA1D is expressed as both full-length and NT truncated forms in multiple human cell lines. Serial truncation mapping identified the cleavage site as Leu(90)/Val(91) in the 95-amino acid ADRA1D NT domain, suggesting human cells express a Δ1-91 ADRA1D species. Tandem-affinity purification MS/MS and co-immunoprecipitation analysis indicate NT processing of ADRA1D is not required to form scribble-syntrophin macromolecular complexes. Yet, label-free dynamic mass redistribution signaling assays demonstrate that Δ1-91 ADRA1D agonist responses were greater than WT ADRA1D. Mutagenesis of the cleavage site nullified the processing event, resulting in ADRA1D agonist responses less than the WT receptor. Thus, we propose that processing of the ADRA1D NT domain is a physiological mechanism employed by cells to generate a functional ADRA1D isoform with optimal pharmacodynamic properties. PMID:27382054

  8. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  9. Structural stability of a 1D compressible viscoelastic fluid model

    NASA Astrophysics Data System (ADS)

    Huo, Xiaokai; Yong, Wen-An

    2016-07-01

    This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.

  10. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  11. A new potential energy surface for the H2S system and dynamics study on the S(1D) + H2(X1Σg+) reaction

    PubMed Central

    Yuan, Jiuchuang; He, Di; Chen, Maodu

    2015-01-01

    We constructed a new global potential energy surface (PES) for the electronic ground state (1A′) of H2S based on 21,300 accurate ab initio energy points over a large configuration space. The ab initio energies are obtained from multireference configuration interaction calculations with a Davidson correction using basis sets of quadruple zeta quality. The neural network method is applied to fit the PES, and the root mean square error of fitting is small (1.68 meV). Time-dependent wave packet studies for the S(1D) + H2(X1Σg+) → H(2S) + SH(X2Π) reaction on the new PES are conducted to study the reaction dynamics. The calculated integral cross sections decrease with increasing collision energy and remain fairly constant within the high collision energy range. Both forward and backward scatterings can be observed as expected for a barrierless reaction with a deep well on the PES. The calculated integral cross sections and differential cross sections are in good agreement with the experimental results. PMID:26435516

  12. A new potential energy surface for the H2S system and dynamics study on the S(1D) + H2(X1Σg+) reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Jiuchuang; He, Di; Chen, Maodu

    2015-10-01

    We constructed a new global potential energy surface (PES) for the electronic ground state (1A‧) of H2S based on 21,300 accurate ab initio energy points over a large configuration space. The ab initio energies are obtained from multireference configuration interaction calculations with a Davidson correction using basis sets of quadruple zeta quality. The neural network method is applied to fit the PES, and the root mean square error of fitting is small (1.68 meV). Time-dependent wave packet studies for the S(1D) + H2(X1Σg+) → H(2S) + SH(X2Π) reaction on the new PES are conducted to study the reaction dynamics. The calculated integral cross sections decrease with increasing collision energy and remain fairly constant within the high collision energy range. Both forward and backward scatterings can be observed as expected for a barrierless reaction with a deep well on the PES. The calculated integral cross sections and differential cross sections are in good agreement with the experimental results.

  13. A new potential energy surface for the H2S system and dynamics study on the S((1)D) + H2(X(1)Σg(+)) reaction.

    PubMed

    Yuan, Jiuchuang; He, Di; Chen, Maodu

    2015-01-01

    We constructed a new global potential energy surface (PES) for the electronic ground state ((1)A') of H2S based on 21,300 accurate ab initio energy points over a large configuration space. The ab initio energies are obtained from multireference configuration interaction calculations with a Davidson correction using basis sets of quadruple zeta quality. The neural network method is applied to fit the PES, and the root mean square error of fitting is small (1.68 meV). Time-dependent wave packet studies for the S((1)D) + H2(X(1)Σg(+)) → H((2)S) + SH(X(2)Π) reaction on the new PES are conducted to study the reaction dynamics. The calculated integral cross sections decrease with increasing collision energy and remain fairly constant within the high collision energy range. Both forward and backward scatterings can be observed as expected for a barrierless reaction with a deep well on the PES. The calculated integral cross sections and differential cross sections are in good agreement with the experimental results. PMID:26435516

  14. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  15. Bernoulli convolutions and 1D dynamics

    NASA Astrophysics Data System (ADS)

    Kempton, Tom; Persson, Tomas

    2015-10-01

    We describe a family {φλ} of dynamical systems on the unit interval which preserve Bernoulli convolutions. We show that if there are parameter ranges for which these systems are piecewise convex, then the corresponding Bernoulli convolution will be absolutely continuous with bounded density. We study the systems {φλ} and give some numerical evidence to suggest values of λ for which {φλ} may be piecewise convex.

  16. Blood flow quantification using 1D CFD parameter identification

    NASA Astrophysics Data System (ADS)

    Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir

    2014-03-01

    Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.

  17. Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D alpha and 5-HT1D beta.

    PubMed Central

    Weinshank, R L; Zgombick, J M; Macchi, M J; Branchek, T A; Hartig, P R

    1992-01-01

    The serotonin 1D (5-HT1D) receptor is a pharmacologically defined binding site and functional receptor site. Observed variations in the properties of 5-HT1D receptors in different tissues have led to the speculation that multiple receptor proteins with slightly different properties may exist. We report here the cloning, deduced amino acid sequences, pharmacological properties, and second-messenger coupling of a pair of human 5-HT1D receptor genes, which we have designated 5-HT1D alpha and 5-HT1D beta due to their strong similarities in sequence, pharmacological properties, and second-messenger coupling. Both genes are free of introns in their coding regions, are expressed in the human cerebral cortex, and can couple to inhibition of adenylate cyclase activity. The pharmacological binding properties of these two human receptors are very similar, and match closely the pharmacological properties of human, bovine, and guinea pig 5-HT1D sites. Both receptors exhibit high-affinity binding of sumatriptan, a new anti-migraine medication, and thus are candidates for the pharmacological site of action of this drug. Images PMID:1565658

  18. On the current drive capability of low dimensional semiconductors: 1D versus 2D

    DOE PAGESBeta

    Zhu, Y.; Appenzeller, J.

    2015-10-29

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Lastly, our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  19. A 1-D morphodynamic model of postglacial valley incision

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Jon F.; Church, Michael

    2015-11-01

    Chilliwack River is typical of many Cordilleran valley river systems that have undergone dramatic Holocene degradation of valley fills that built up over the course of Pleistocene glaciation. Downstream controls on base level, mainly blockage of valleys by glaciers, led to aggradation of significant glaciofluvial and glaciolacustrine valley fills and fan deposits, subsequently incised by fluvial action. Models of such large-scale, long-term degradation present a number of important challenges since the evolution of model parameters, such as the rate of bedload transport and grain size characteristics, are governed by the nature of the deposit. Sediment sampling in the Chilliwack Valley reveals a complex sequence of very coarse to fine textural modes. We present a 1-D numerical morphodynamic model for the river-floodplain system tailored to conditions in the valley. The model is adapted to dynamically adjust channel width to optimize sediment transporting capacity and to integrate relict valley fill material as the channel incises through valley deposits. Sensitivity to model parameters is studied using four principal criteria: profile concavity, rate of downstream grain size fining, bed surface sand content, and the timescale to equilibrium. Model results indicate that rates of abrasion and coarsening of the grain size distributions exert the strongest controls on all of the interrelated model performance criteria. While there are a number of difficulties in satisfying all model criteria simultaneously, results indicate that 1-D models of valley bottom sedimentary systems can provide a suitable framework for integrating results from sediment budget studies and chronologies of sediment evacuation established from dating.

  20. Additive discrete 1D linear canonical transform

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Healy, John J.; Guo, Chang-liang; Sheridan, John T.

    2015-09-01

    The continuous linear canonical transforms (LCT) can describe a wide variety of wave field propagations through paraxial (first order) optical systems. Digital algorithms to numerically calculate the LCT are therefore important in modelling scalar wave field propagations and are also of interest for many digital signal processing applications. The continuous LCT is additive, but discretization can remove this property. In this paper we discuss three special cases of the LCT for which constraints can be identified to ensure the DLCT is additive.

  1. Diagnostics from a 1-D atmospheric column

    SciTech Connect

    Flatley, J.M.; Mace, G.

    1996-04-01

    Various diagnostics were computed from an array of radiosondes during an intensive field operation arranged by the Atmospheric Radiation Measurement Program. The network data was centered around the site at Lamont, Oklahoma. The apparent heat source and apparent moisture sink were computed and compared to the kinematic vertical velocity for both real data and the mesoscale analysis and prediction system. Three different case studies of various weathe regimes were examined.

  2. MX chains: 1-D analog of CuO planes

    SciTech Connect

    Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.

    1989-01-01

    We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs.

  3. Magnetic behavior of some 1D Cu chains

    NASA Astrophysics Data System (ADS)

    Willett, Roger D.; Gomez-García, Carlos J.; Ghosh, Ashutosh

    2004-05-01

    The magnetic properties of three 1D copper(II) salts are reported. The compound Cu(14ane)Cu(N 3) 4 contains alternating site chains with weak FM coupling with J/k=0.635 K . Magnetization studies are reported on Cu(TIM)CuCl 4, an alternating site, alternating FM/AFM exchange system with J FM/k=29.7 K and J AFM/k=-8.66 K. (HPy) 2Cu 3Cl 8.2H 2O contains FM chains composed of alternating Cu 2Cl 62- dimers and CuCl 2(H 2O) 2 monomers, with intradimer coupling J 1/k=17.35 K and dimer-monomer coupling J 2/k=1.93 K .

  4. Entanglement Entropy in 1-D integrable chains

    NASA Astrophysics Data System (ADS)

    Franchini, Fabio; Evangelisti, Stefano; Ercolessi, Elisa; Ravanini, Francesco; de Luca, Andrea

    2012-02-01

    We study analytically the Renyi entropy of a bipartite lattice in the limit of two semi-infinite chains joined at the origin, for a few integrable 1-dimensional models, by using the techniques of Corner Transfer Matrices of the corresponding 2-D classical systems, namely the 8-vertex model and the RSOS. In the scaling limit, close to a conformal point, we reproduce the leading behavior expected from CFT prediction. The sub-leading corrections, however, differ from na"ive expectations and we show that lattice effect can give rise to additional relevant terms in any numerical approach. Moreover, in the vicinity of a non-conformal (ferromagnetic) point, we observe a violation of universality and a behavior of the entropy characteristic of an essential singularity.

  5. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon.

    PubMed

    Baño Otalora, Beatriz; Popovic, Natalija; Gambini, Juan; Popovic, Miroljub; Viña, José; Bonet-Costa, Vicent; Reiter, Russel J; Camello, Pedro Javier; Rol, Maria Ángeles; Madrid, Juan Antonio

    2012-08-01

    Alzheimer disease (AD) is a neurodegenerative disorder that primarily causes β-amyloid accumulation in the brain, resulting in cognitive and behavioral deficits. AD patients, however, also suffer from severe circadian rhythm disruptions, and the underlying causes are still not fully known. Patients with AD show reduced systemic melatonin levels. This may contribute to their symptoms, since melatonin is an effective chronobiotic and antioxidant with neuroprotective properties. Here, the authors critically assessed the effects of long-term melatonin treatment on circadian system function, hippocampal oxidative stress, and spatial memory performance in the APPswe/PS1 double transgenic (Tg) mouse model of AD. To test if melatonin MT1/MT2 receptor activation, alone, was involved, the authors chronically treated some mice with the selective MT1/MT2 receptor agonist ramelteon. The results indicate that many of the circadian and behavioral parameters measured, including oxidative stress markers, were not significantly affected in these AD mice. During the day, though, Tg controls (Tg-CON) showed significantly higher mean activity and body temperature (BT) than wild-type (WT) mice. Overall, BT rhythm amplitude was significantly lower in Tg than in WT mice. Although melatonin treatment had no effect, ramelteon significantly reduced the amplitude of the BT rhythm in Tg mice. Towards the end of the experiment, Tg mice treated with ramelteon (Tg-RAM) showed significantly higher circadian rhythm fragmentation than Tg-CON and reduced circadian BT rhythm strength. The free-running period (τ) for the BT and locomotor activity (LA) rhythms of Tg-CON was <24 h. Whereas melatonin maintained τ at 24 h for BT and LA in both genotypes, ramelteon treatment had no effect. In the behavioral tests, the number of approaches and time spent exploring novel objects were significantly higher in Tg-CON than WT controls. Brain tissue analysis revealed significant reduction in hippocampal protein

  6. Data Management Systems (DMS): Complex data types study. Volume 1: Appendices A-B. Volume 2: Appendices C1-C5. Volume 3: Appendices D1-D3 and E

    NASA Technical Reports Server (NTRS)

    Leibfried, T. F., Jr.; Davari, Sadegh; Natarajan, Swami; Zhao, Wei

    1992-01-01

    Two categories were chosen for study: the issue of using a preprocessor on Ada code of Application Programs which would interface with the Run-Time Object Data Base Standard Services (RODB STSV), the intent was to catch and correct any mis-registration errors of the program coder between the user declared Objects, their types, their addresses, and the corresponding RODB definitions; and RODB STSV Performance Issues and Identification of Problems with the planned methods for accessing Primitive Object Attributes, this included the study of an alternate storage scheme to the 'store objects by attribute' scheme in the current design of the RODB. The study resulted in essentially three separate documents, an interpretation of the system requirements, an assessment of the preliminary design, and a detailing of the components of a detailed design.

  7. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  8. 1-D Numerical Analysis of RBCC Engine Performance

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1998-01-01

    An RBCC engine combines air breathing and rocket engines into a single engine to increase the specific impulse over an entire flight trajectory. Considerable research pertaining to RBCC propulsion was performed during the 1960's and these engines were revisited recently as a candidate propulsion system for either a single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) launch vehicle. There are a variety of RBCC configurations that had been evaluated and new designs are currently under development. However, the basic configuration of all RBCC systems is built around the ejector scramjet engine originally developed for the hypersonic airplane. In this configuration, a rocket engine plays as an ejector in the air-augmented initial acceleration mode, as a fuel injector in scramjet mode and the rocket in all rocket mode for orbital insertion. Computational fluid dynamics (CFD) is a useful tool for the analysis of complex transport processes in various components in RBCC propulsion systems. The objective of the present research was to develop a transient 1-D numerical model that could be used to predict flow behavior throughout a generic RBCC engine following a flight path.

  9. 9 CFR 95.2 - Region of origin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Region of origin. 95.2 Section 95.2... BYPRODUCTS (EXCEPT CASINGS), AND HAY AND STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.2 Region of... Administrator, Veterinary Services, the name of the region of origin of such product or material: Provided,...

  10. 17 CFR 140.2 - Regional office-regional coordinators.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Regional office-regional coordinators. 140.2 Section 140.2 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION ORGANIZATION, FUNCTIONS, AND PROCEDURES OF THE COMMISSION Organization § 140.2 Regional office—regional coordinators. Each of the Regional...

  11. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  12. The SLE-associated Pbx1-d isoform acts as a dominant-negative transcriptional regulator

    PubMed Central

    Sengupta, M; Liang, S; Potula, H-HS; Chang, L-J; Morel, L

    2013-01-01

    Pbx1 is a transcription factor involved in multiple cellular processes, including the maintenance of self-renewal of hematopoietic progenitors. We have shown that the CD4 + T-cell expression of a novel splice isoform of Pbx1, Pbx1-d, is associated with lupus susceptibility in the NZM2410 mouse and in lupus patients. The function of Pbx1 in T cells is unknown, but the splicing out of the DNA-binding domain in Pbx1-d predicts a dominant-negative function. In support of this hypothesis, we have shown that Pbx1-d transduction accelerates differentiation of MC3T3-E1 osteoblast pregenitors and mimics the effect of short hairpin RNA silencing of Pbx1. Conversely, Pbx1-d transduction reduced the expression of Sox3, a gene strongly transactivated by Pbx1, and Pbx1-d did not bind the Sox3 promoter. These results constitute a first step towards the understanding on how Pbx1-d contributes to systemic autoimmunity in the NZM2410 mouse model as well as in lupus patients. PMID:22992721

  13. Phosphorylation and desensitization of alpha1d-adrenergic receptors.

    PubMed Central

    García-Sáinz, J A; Vázquez-Cuevas, F G; Romero-Avila, M T

    2001-01-01

    In rat-1 fibroblasts stably expressing rat alpha(1d)-adrenoceptors, noradrenaline and PMA markedly decreased alpha(1d)-adrenoceptor function (noradrenaline-elicited increases in calcium in whole cells and [(35)S]guanosine 5'-[gamma-thio]triphosphate binding in membranes), suggesting homologous and heterologous desensitizations. Photoaffinity labelling, Western blotting and immunoprecipitation identified alpha(1d)-adrenoceptors as a broad band of 70-80 kDa. alpha(1d)-Adrenoceptors were phosphorylated in the basal state and noradrenaline and PMA increased it. The effect of noradrenaline was concentration-dependent (EC(50) 75 nM), rapid (maximum at 1 min) and transient. Phorbol ester-induced phosphorylation was concentration-dependent (EC(50) 25 nM), slightly slower (maximum at 5 min) and stable for at least 60 min. Inhibitors of protein kinase C decreased the effect of phorbol esters but not that of noradrenaline. Evidence of cross-talk of alpha(1d)-adrenoceptors with receptors endogenously expressed in rat-1 fibroblasts was given by the ability of endothelin, lysophosphatidic acid and bradykinin to induce alpha(1d)-adrenoceptor phosphorylation. In summary, it is shown for the first time here that alpha(1d)-adrenoceptors are phosphoproteins and that receptor phosphorylation is increased by the natural ligand, noradrenaline, by direct activation of protein kinase C and via cross-talk with other receptors endogenously expressed in rat-1 fibroblasts. Receptor phosphorylation has functional repercussions. PMID:11171057

  14. Low Temperature Rate Constants for the Reactions of O((1)D) with N2, O2, and Ar.

    PubMed

    Grondin, Romain; Loison, Jean-Christophe; Hickson, Kevin M

    2016-07-14

    The kinetics of the gas-phase quenching reactions O((1)D) + N2, O((1)D) + O2, and O((1)D) + Ar have been studied over the 50-296 K temperature range using the Laval nozzle method. O((1)D) atoms were created in situ by the pulsed photolysis of O3 precursor molecules at 266 nm. Rate constants for these processes were measured directly, following the decay of O((1)D) atoms through vacuum ultraviolet laser-induced fluorescence at 115.215 nm. For the O((1)D) + N2 and O((1)D) + O2 reactions, the quenching efficiencies are seen to increase as the temperature falls. For the O((1)D) + N2 system, this indicates the likely influence of the intermediate complex lifetime on the quenching rate through nonadiabatic processes. For the O((1)D) + O2 system, which is considerably more complex, this behavior could result from the interactions between several potential energy surfaces. PMID:26814664

  15. Polar molecule reactive collisions in quasi-1D systems

    NASA Astrophysics Data System (ADS)

    Simoni, A.; Srinivasan, S.; Launay, J.-M.; Jachymski, K.; Idziaszek, Z.; Julienne, P. S.

    2015-01-01

    We study polar molecule scattering in quasi-one-dimensional geometries. Elastic and reactive collision rates are computed as a function of collision energy and electric dipole moment for different confinement strengths. The numerical results are interpreted in terms of first order scattering and of adiabatic models. Universal dipolar scattering is also discussed. Our results are relevant to experiments where control of the collision dynamics through one-dimensional confinement and an applied electric field is envisioned.

  16. Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.

    PubMed

    Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich

    2016-04-01

    High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. PMID:26902182

  17. 1D Nanostructures: Controlled Fabrication and Energy Applications

    SciTech Connect

    Hu, Michael Z.

    2013-01-01

    Jian Wei, Xuchun Song, Chunli Yang, and Michael Z. Hu, 1D Nanostructures: Controlled Fabrication and Energy Applications, Journal of Nanomaterials, published special issue (http://www.hindawi.com/journals/jnm/si/197254/) (2013).

  18. 60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  19. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1).

    PubMed

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. PMID:25088042

  20. On the origin of multi-step spin transition behaviour in 1D nanoparticles

    NASA Astrophysics Data System (ADS)

    Chiruta, Daniel; Jureschi, Catalin-Maricel; Linares, Jorge; Dahoo, Pierre Richard; Garcia, Yann; Rotaru, Aurelian

    2015-09-01

    To investigate the spin state switching mechanism in spin crossover (SCO) nanoparticles, a special attention is given to three-step thermally induced SCO behavior in 1D chains. An additional term is included in the standard Ising-like Hamiltonian to account for the border interaction between SCO molecules and its local environment. It is shown that this additional interaction, together with the short range interaction, drives the multi-steps thermal hysteretic behavior in 1D SCO systems. The relation between a polymeric matrix and this particular multi-step SCO phenomenon is discussed accordingly. Finally, the environmental influence on the SCO system's size is analyzed as well.

  1. Lattice study of (D¯ 1D*)± near-threshold scattering

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Chen, Ying; Gong, Ming; Lei, Yu-Hong; Li, Ning; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Wang, Zhan-Lin; Zhang, Jian-Bo; Clqcd Collaboration

    2016-06-01

    In this exploratory lattice study, low-energy near threshold scattering of the (D¯1D*)± meson system is analyzed using lattice QCD with Nf=2 twisted mass fermion configurations. Both s-wave (JP=0-) and p-wave (JP=1+) channels are investigated. It is found that the interaction between the two charmed mesons is attractive near the threshold in both channels. This calculation provides some hints in the searching of resonances or bound states around the threshold of (D¯1D*)± system.

  2. TBC1D24 genotype–phenotype correlation

    PubMed Central

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  3. 3D/1D Analysis of ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Maggiora, Riccardo; Lancellotti, Vito; Vecchi, Giuseppe

    2003-10-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of a magnetic current (electric field) distribution on the aperture between the two regions. In the vacuum region all the calculations are executed in the spatial domain while in the plasma region an extraction in the spectral domain of some integrals is employed that permits to significantly reduce the integration support and to obtain a high numerical efficiency leading to the practical possibility of using a large number of sub-domain (rectangular or triangular) basis functions on each solid conductor of the system. The plasma enters the formalism of the plasma region via a surface impedance matrix; for this reason any plasma model can be used; at present the FELICE code has been adopted, that affords density and temperature profiles, and FLR effects. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. Calculation of field distributions (both magnetic and electric), useful for sheath considerations, is included. This tool has been implemented in a suite, called TOPICA, that is modular and applicable to ICRF antenna structures of arbitrary shape. This new simulation tool can assist during the detailed design phase and for this reason can be considered a "Virtual Prototyping Laboratory" (VPL). The TOPICA suite has been tested against assessed codes and against measurements and data of mock-ups and existing antennas. The VPL is being used in

  4. Spectral functions of 1D Peierls and Mott insulators

    NASA Astrophysics Data System (ADS)

    Voit, Johannes

    1998-03-01

    We construct the spectral function of the Luther-Emery model which describes one-dimensional Peierls and Mott insulators with a spin resp. charge gap, using symmetries and known limits and equivalences to other models. For the Peierls insulator, we find a true singularity with interaction dependent exponents on the gapped spin dispersion and a finite maximum depending on the magnitude of the spin gap, on a charge dispersion shifted by Δ_σ, as well as strong shadow bands with the same functional form as the main bands. For 1D Mott insulators, one or two singularities with universal inverse-square-root singularities are found depending on whether the charge velocity is larger or smaller than the spin velocity. The shadow band has a single singularity on the renormalized charge dispersion. These results could apply to the description of photoemission experiments in systems like K_0.3 Mo O_3, TTF-TCNQ, or Sr Cu O_2.

  5. Dynamical functions of a 1D correlated quantum liquid

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Bozi, D.; Penc, K.

    2008-10-01

    The dynamical correlation functions in one-dimensional electronic systems show power-law behaviour at low energies and momenta close to integer multiples of the charge and spin Fermi momenta. These systems are usually referred to as Tomonaga-Luttinger liquids. However, near well defined lines of the (k,ω) plane the power-law behaviour extends beyond the low-energy cases mentioned above, and also appears at higher energies, leading to singular features in the photoemission spectra and other dynamical correlation functions. The general spectral-function expressions derived in this paper were used in recent theoretical studies of the finite-energy singular features in photoemission of the organic compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) metallic phase. They are based on a so-called pseudofermion dynamical theory (PDT), which allows us to systematically enumerate and describe the excitations in the Hubbard model starting from the Bethe ansatz, as well as to calculate the charge and spin object phase shifts appearing as exponents of the power laws. In particular, we concentrate on the spin-density m\\rightarrow 0 limit and on effects in the vicinity of the singular border lines, as well as close to half filling. Our studies take into account spectral contributions from types of microscopic processes that do not occur for finite values of the spin density. In addition, the specific processes involved in the spectral features of TTF-TCNQ are studied. Our results are useful for the further understanding of the unusual spectral properties observed in low-dimensional organic metals and also provide expressions for the one- and two-atom spectral functions of a correlated quantum system of ultracold fermionic atoms in a 1D optical lattice with on-site two-atom repulsion.

  6. Spin Excitations and Phonon Anomaly in Quasi-1D Spiral Magneti CuBr2

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Wang, Chong; Yu, Daiwei; Wang, Lichen; Wang, Fa; Iida, Kazuki; Kamazawa, Kazuya; Wakimoto, Shuichi

    CuBr2 can be considered as a model quasi-one-dimensional (quasi-1D) spin-1/2 magnet, in which the frustrating ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions give rise to a cycloidal magnetic order below TN = 73 K. The removal of inversion symmetry by the magnetic order also makes the material a type-II multiferroic system with a remarkably simple crystal structure. Using time-of-flight inelastic neutron scattering spectroscopy, we have determined the spin-wave as well as phonon spectra throughout the entire Brillouin zone. The spin-wave spectrum exhibits pronounced anisotropy and magnon damping, consistent with the material's quasi-1D nature and the non-colinear spin structure. The phonon spectrum exhibits dramatic discontinuities in the dispersion across the quasi-1D magnetic wave vector, indicative of strong magnetoelastic coupling and possibly of a spin-orbital texture that comes along with the spin correlations.

  7. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  8. Localized self-heating in large arrays of 1D nanostructures.

    PubMed

    Monereo, O; Illera, S; Varea, A; Schmidt, M; Sauerwald, T; Schütze, A; Cirera, A; Prades, J D

    2016-03-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called "hot-spots". On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures. PMID:26868599

  9. Nanodamage and Nanofailure of 1d Zno Nanomaterials and Nanodevices

    NASA Astrophysics Data System (ADS)

    Li, Peifeng; Yang, Ya; Huang, Yunhua; Zhang, Yue

    2012-08-01

    One-dimensional (1D) ZnO nanomaterials include nanowires, nanobelts, and nanorods etc. The extensive applied fields and excellent properties of 1D ZnO nanomaterials can meet the requests of the electronic and electromechanical devices for "smaller, faster and colder", and would be applied in new energy convention, environmental protection, information science and technology, biomedical, security and defense fields. While micro porous, etching pits nanodamage and brittle fracture, dissolving, functional failure nanofailure phenomena of 1D ZnO nanomaterials and nanodevices are observed in some practical working environments like illumination, currents or electric fields, external forces, and some chemical gases or solvents. The more important thing is to discuss the mechanism and reduce or prohibit their generation.

  10. Resonant indirect exchange in 1D semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Rozhansky, I. V.; Krainov, I. V.; Averkiev, N. S.; Lähderanta, E.

    2015-06-01

    We consider resonant indirect exchange interaction between magnetic centers in 1D nanostructures. The magnetic centers are assumed to be coupled to the 1D conducting channel by the quantum tunneling which can be of resonant character. The indirect exchange between the centers is mediated by the free carriers of the channel. The two cases of quadratic and linear energy dispersion of the 1D free carriers are considered. The former case is attributed to conventional semiconductor (InGaAs based to be concrete) nanowires or nanowhiskers, while the latter case is associated with carbon nanotubes with magnetic adatoms. We demonstrate that whenever the energy of a bound state at the magnetic center lies within the continuum energy spectra of the delocalized carriers in the channel the indirect exchange is strongly enhanced due to effective tunnel hybridization of the bound states with the continuum.

  11. Probing 1D super-strongly correlated dipolar quantum gases

    NASA Astrophysics Data System (ADS)

    Citro, R.; de Palo, S.; Orignac, E.; Pedri, P.; Chiofalo, M.-L.

    2009-04-01

    One-dimensional (1D) dipolar quantum gases are characterized by a very special condition where super-strong correlations occur to significantly affect the static and dynamical low-energy behavior. This behavior is accurately described by the Luttinger Liquid theory with parameter K < 1. Dipolar Bose gases are routinely studied in laboratory with Chromium atoms. On the other hand, 1D realizations with molecular quantum gases can be at reach of current experimental expertises, allowing to explore such extreme quantum degenerate conditions which are the bottom line for designing technological devices. Aim of the present contribution is to focus on the possible probes expected to signal the reach of Luttinger-Liquid behavior in 1D dipolar gases.

  12. PC-1D installation manual and user's guide

    SciTech Connect

    Basore, P.A.

    1991-05-01

    PC-1D is a software package for personal computers that uses finite-element analysis to solve the fully-coupled two-carrier semiconductor transport equations in one dimension. This program is particularly useful for analyzing the performance of optoelectronic devices such as solar cells, but can be applied to any bipolar device whose carrier flows are primarily one-dimensional. This User's Guide provides the information necessary to install PC-1D, define a problem for solution, solve the problem, and examine the results. Example problems are presented which illustrate these steps. The physical models and numerical methods utilized are presented in detail. This document supports version 3.1 of PC-1D, which incorporates faster numerical algorithms with better convergence properties than previous versions of the program. 51 refs., 17 figs., 5 tabs.

  13. The GIRAFFE Archive: 1D and 3D Spectra

    NASA Astrophysics Data System (ADS)

    Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.

    2013-10-01

    The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).

  14. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  15. A 1D wavelet filtering for ultrasound images despeckling

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel

    2010-03-01

    Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.

  16. Optical properties of LEDs with patterned 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hronec, P.; Kuzma, A.; Å kriniarová, J.; Kováč, J.; Benčurová, A.; Haščík, Å.; Nemec, P.

    2015-08-01

    In this paper we focus on the application of the one-dimensional photonic crystal (1D PhC) structures on the top of Al0.295Ga0.705As/GaAs multi-quantum well light emitting diode (MQW LED). 1D PhC structures with periods of 600 nm, 700 nm, 800 nm, and 900 nm were fabricated by the E-Beam Direct Write (EBDW) Lithography. Effect of 1D PhC period on the light extraction enhancement was studied. 1D PhC LED radiation profiles were obtained from Near Surface Light Emission Images (NSLEI). Measurements showed the strongest light extraction enhancement using 800 nm period of PhC. Investigation of PhC LED radiation profiles showed strong light decoupling when light reaches PhC structure. Achieved LEE was from 22.6% for 600 nm PhC LED to 47.0% for 800 nm PhC LED. LED with PhC structure at its surface was simulated by FDTD simulation method under excitation of appropriate launch field.

  17. NEW FEATURES OF HYDRUS-1D, VERSION 3.0

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper briefly summarizes new features in version 3.0 of HYDRUS-1D, released in May 2005, as compared to version 2.1. The new features are a) new approaches to simulate preferential and nonequilibrium water flow and solute transport, b) a new hysteresis module that avoids the effects of pumpin...

  18. TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE.

    PubMed

    Liu, Fei; Fan, Hongye; Ren, Deshan; Dong, Guanjun; Hu, Erling; Ji, Jianjian; Hou, Yayi

    2015-07-01

    B cells present lipid antigens to CD1d-restricted invariant natural killer T (iNKT) cells to maintain autoimmune tolerance, and this process is disrupted in systemic lupus erythematosus (SLE). Inflammation may inhibit CD1d expression to exacerbate the pathology of lupus. However, how inflammation regulates CD1d expression on B cells is unclear in SLE. In the present study, we showed that the surface expression of CD1d on B cells from SLE mice was decreased and that stimulation of inflammatory responses through TLR9 decreased the membrane and total CD1d levels of CD1d on B cells. Moreover, inflammation-related microRNA-155 (miR-155) negatively correlated with the expression of CD1d in B cells. miR-155 directly targeted the 3'-untranslated region (3'-UTR) of CD1d upon TLR9 activation in both humans and mice. The inhibitory effects of miR-155 on CD1d expression in B cells impaired their antigen-presenting capacity to iNKT cells. In addition, Ets-1, a susceptibility gene of SLE, also directly regulated the expression of the CD1d gene at the transcriptional level. These findings provide new insight into the mechanism underlying decreased CD1d expression on B cells in SLE, suggesting that inhibition of inflammation may increase CD1d expression in B cells to ameliorate SLE via modulating iNKT cells. PMID:25929465

  19. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  20. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room

  1. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  2. A Bayesian Algorithm for Reading 1D Barcodes

    PubMed Central

    Tekin, Ender; Coughlan, James

    2010-01-01

    The 1D barcode is a ubiquitous labeling technology, with symbologies such as UPC used to label approximately 99% of all packaged goods in the US. It would be very convenient for consumers to be able to read these barcodes using portable cameras (e.g. mobile phones), but the limited quality and resolution of images taken by these cameras often make it difficult to read the barcodes accurately. We propose a Bayesian framework for reading 1D barcodes that models the shape and appearance of barcodes, allowing for geometric distortions and image noise, and exploiting the redundant information contained in the parity digit. An important feature of our framework is that it doesn’t require that every barcode edge be detected in the image. Experiments on a publicly available dataset of barcode images explore the range of images that are readable, and comparisons with two commercial readers demonstrate the superior performance of our algorithm. PMID:20428491

  3. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  4. Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir

    NASA Astrophysics Data System (ADS)

    Lauer, J. Wesley; Viparelli, Enrica; Piégay, Hervé

    2016-07-01

    Bed material transported in geomorphically active gravel bed rivers often has a local source at nearby eroding banks and ends up sequestered in bars not far downstream. However, most 1-D numerical models for gravel transport assume that gravel originates from and deposits on the channel bed. In this paper, we present a 1-D framework for simulating morphodynamic evolution of bed elevation and size distribution in a gravel-bed river that actively exchanges sediment with its floodplain, which is represented as an off-channel sediment reservoir. The model is based on the idea that sediment enters the channel at eroding banks whose elevation depends on total floodplain sediment storage and on the average elevation of the floodplain relative to the channel bed. Lateral erosion of these banks occurs at a specified rate that can represent either net channel migration or channel widening. Transfer of material out of the channel depends on a typical bar thickness and a specified lateral exchange rate due either to net channel migration or narrowing. The model is implemented using an object oriented framework that allows users to explore relationships between bank supply, bed structure, and lateral change rates. It is applied to a ∼50-km reach of the Ain River, France, that experienced significant reduction in sediment supply due to dam construction during the 20th century. Results are strongly sensitive to lateral exchange rates, showing that in this reach, the supply of sand and gravel at eroding banks and the sequestration of gravel in point bars can have strong influence on overall reach-scale sediment budgets.

  5. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcón, Hugo; López, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 °C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m²/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials. PMID:25259484

  6. 2D/1D approximations to the 3D neutron transport equation. I: Theory

    SciTech Connect

    Kelley, B. W.; Larsen, E. W.

    2013-07-01

    A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)

  7. Nonreciprocity of edge modes in 1D magnonic crystal

    NASA Astrophysics Data System (ADS)

    Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J. W.; Krawczyk, M.; Nikitov, S.

    2015-03-01

    Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films.

  8. Waves in a 1D electrorheological dusty plasma lattice

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.

    2015-08-01

    The behavior of waves in a one-dimensional (1D) dusty plasma lattice where the dust interacts via Yukawa and electric dipole interactions is discussed theoretically. This study is motivated by recent reports on electrorheological dusty plasmas (e.g. Ivlev et al. 2008 Phys. Rev. Lett. 100, 095003) where the dipole interaction arises due to an external uniaxial AC electric field that distorts the Debye sphere surrounding each grain. Application to possible dusty plasma experimental parameters is discussed.

  9. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  10. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  11. Examining Prebiotic Chemistry Using O(^1D) Insertion Reactions

    NASA Astrophysics Data System (ADS)

    Hays, Brian M.; Laas, Jacob C.; Weaver, Susanna L. Widicus

    2013-06-01

    Aminomethanol, methanediol, and methoxymethanol are all prebiotic molecules expected to form via photo-driven grain surface chemistry in the interstellar medium (ISM). These molecules are expected to be precursors for larger, biologically-relevant molecules in the ISM such as sugars and amino acids. These three molecules have not yet been detected in the ISM because of the lack of available rotational spectra. A high resolution (sub)millimeter spectrometer coupled to a molecular source is being used to study these molecules using O(^1D) insertion reactions. The O(^1D) chemistry is initiated using an excimer laser, and the products of the insertion reactions are adiabatically cooled using a supersonic expansion. Experimental parameters are being optimized by examination of methanol formed from O(^1D) insertion into methane. Theoretical studies of the structure and reaction energies for aminomethanol, methanediol, and methoxymethanol have been conducted to guide the laboratory studies once the methanol experiment has been optimized. The results of the calculations and initial experimental results will be presented.

  12. The hippocampal CA2 region is essential for social memory

    PubMed Central

    Hitti, Frederick L.; Siegelbaum, Steven A.

    2014-01-01

    Summary The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where, and when1. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus (DG) to CA3 and then to CA1, the main hippocampal output2. Genetic lesions of EC3 and hippocampal DG4, CA35, and CA16 regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output7. Here, we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioral role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory, the ability of an animal to remember a conspecific, with no change in sociability or several other hippocampal-dependent behaviors, including spatial and contextual memory. These behavioral and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing. PMID:24572357

  13. Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials.

    PubMed

    Wang, Weidong; Li, Shuai; Zhang, Hongti; Lu, Yang

    2015-01-01

    One-dimensional (1-D) nanomaterials exhibit great potentials in their applications to functional materials, nano-devices and systems owing to their excellent properties. In the past decade, considerable studies have been done, with new patents being developed, on these 1-D building blocks for for their mechanical properties, especially elastic properties, which provide a solid foundation for the design of nanoelectromechanical systems (NEMS) and predictions of reliability and longevity for their devices. This paper reviews some of the recent investigations on techniques as well as patents available for the quantitative characterization of the elastic behaviors of various 1-D nanomaterials, with particular focus on on-chip testing system. The review begins with an overview of major testing methods for 1-D nanostructures' elastic properties, including nanoindentation testing, AFM (atomic force microscopy) testing, in situ SEM (scanning electron microscopy) testing, in situ TEM (transmission electron microscopy) testing and the testing system on the basis of MEMS (micro-electro-mechanical systems) technology, followed by advantages and challenges of each testing approach. This review also focuses on the MEMS-based testing apparatus, which can be actuated and measured inside SEM and TEM with ease, allowing users to highly magnify the continuous images of the specimen while measuring load electronically and independently. The combination of on-chip technologies and the in situ electron microscopy is expected to be a potential testing technique for nanomechanics. Finally, details are presented on the key challenges and possible solutions in the implementation of the testing techniques referred above. PMID:25986228

  14. Localized self-heating in large arrays of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Monereo, O.; Illera, S.; Varea, A.; Schmidt, M.; Sauerwald, T.; Schütze, A.; Cirera, A.; Prades, J. D.

    2016-02-01

    One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called ``hot-spots''. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.One dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal

  15. Non-linearity in Bayesian 1-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong

    2011-05-01

    This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability

  16. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  17. Coherent thermal conductance of 1-D photonic crystals

    NASA Astrophysics Data System (ADS)

    Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age

    2012-10-01

    We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.

  18. Spatial coherence of polaritons in a 1D channel

    SciTech Connect

    Savenko, I. G.; Iorsh, I. V.; Kaliteevski, M. A.; Shelykh, I. A.

    2013-01-15

    We analyze time evolution of spatial coherence of a polariton ensemble in a quantum wire (1D channel) under constant uniform resonant pumping. Using the theoretical approach based on the Lindblad equation for a one-particle density matrix, which takes into account the polariton-phonon and excitonexciton interactions, we study the behavior of the first-order coherence function g{sup 1} for various pump intensities and temperatures in the range of 1-20 K. Bistability and hysteresis in the dependence of the first-order coherence function on the pump intensity is demonstrated.

  19. Deconvolution/identification techniques for 1-D transient signals

    SciTech Connect

    Goodman, D.M.

    1990-10-01

    This paper discusses a variety of nonparametric deconvolution and identification techniques that we have developed for application to 1-D transient signal problems. These methods are time-domain techniques that use direct methods for matrix inversion. Therefore, they are not appropriate for large data'' problems. These techniques involve various regularization methods and permit the use of certain kinds of a priori information in estimating the unknown. These techniques have been implemented in a package using standard FORTRAN that should make the package readily transportable to most computers. This paper is also meant to be an instruction manual for the package. 25 refs., 17 figs., 1 tab.

  20. Phthalocyanine based 1D nanowires for device applications

    NASA Astrophysics Data System (ADS)

    Saini, Rajan; Mahajan, Aman; Bedi, R. K.

    2012-06-01

    1D nanowires (NWs) of Cu (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-Phthalocyanine (CuPc(OBu)8) molecule have been grown on different substrates by cost effective solution processing technique. The density of NWs is found to be strongly dependent on the concentration of solution. The possible formation mechanism of these structures is π-π interaction between phthalocyanine molecules. The improved conductivity of these NWs as compared to spin coated film indicates their potential for molecular device applications.

  1. Coupled 1D-3D hydrodynamic modelling, with application to the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Zijl, Firmijn; Schwanenberg, Dirk; Chiu, Alex Y. W.

    2009-12-01

    Within the hydrodynamic modelling community, it is common practice to apply different modelling systems for coastal waters and river systems. Whereas for coastal waters 3D finite difference or finite element grids are commonly used, river systems are generally modelled using 1D networks. Each of these systems is tailored towards specific applications. Three-dimensional coastal water models are designed to model the horizontal and vertical variability in coastal waters and are less well suited for representing the complex geometry and cross-sectional areas of river networks. On the other hand, 1D river network models are designed to accurately represent complex river network geometries and complex structures like weirs, barrages and dams. A disadvantage, however, is that they are unable to resolve complex spatial flow variability. In real life, however, coastal oceans and rivers interact. In deltaic estuaries, both tidal intrusion of seawater into the upstream river network and river discharge into open waters play a role. This is frequently approached by modelling the systems independently, with off-line coupling of the lateral boundary forcing. This implies that the river and the coastal model run sequentially, providing lateral discharge (1D) and water level (3D) forcing to each other without the possibility of direct feedback or interaction between these processes. An additional disadvantage is that due to the time aggregation usually applied to exchanged quantities, mass conservation is difficult to ensure. In this paper, we propose an approach that couples a 3D hydrodynamic modelling system for coastal waters (Delft3D) with a 1D modelling system for river hydraulics (SOBEK) online. This implies that contrary to off-line coupling, the hydrodynamic quantities are exchanged between the 1D and 3D domains during runtime to resolve the real-time exchange and interaction between the coastal waters and river network. This allows for accurate and mass conserving

  2. Validation of 3D/1D Analysis of ICRF Antennas

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Lancellotti, V.; Kyrytsya, V.; Maggiora, R.; Vecchi, G.; Parisot, A.; Wukitch, S. J.

    2004-11-01

    An innovative tool has been realized for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked by means of electromagnetic current distribution on the aperture between the two regions. The plasma enters the formalism via a surface impedance matrix for this reason any plasma model can be used. The source term directly models the TEM mode of the coax feeding the antenna and the current in the coax is determined self-consistently, giving the input impedance/admittance of the antenna itself. The suite, called TOPICA, has been used in the design of various ICRF antennas and also for the performance prediction of the ALCATOR C-MOD D and E antenna. An extensive set of comparisons between measured and simulated antenna parameters during ALCATOR C-MOD operation will be presented.

  3. Optical properties of graphene nanostructures from first-principles: from 1D to 0D

    NASA Astrophysics Data System (ADS)

    Varsano, Daniele; Prezzi, Deborah; Ruini, Alice; Molinari, Elisa

    2010-03-01

    The possibility of patterning graphene sheets in a controllable manner to design semiconducting low-dimensional nanostructures opens exciting opportunities also in view of novel phenomena occurring under light excitation as well as nanoscale optoelectronics applications. We discuss the main characteristics of optical excitations in quasi-1D armchair graphene nanoribbons (A-GNRs) by means of ab-initio many-body calculations [1]. Our theoretical approach includes both self-energy corrections and excitonic effects through the GW-BSE formalism, providing full understanding of excited-state properties. Electron-hole interaction is found to suppress the van Hove singularities -as known for other 1D systems- and introduces strongly bound excitonic peaks. Starting from these ideal structures, we discuss the effect of width modulation on confinement and optical response [2]. Our results show that edge-modulated A-GNRs are efficient systems for the creation of carbon-based QD structures with prominent exciton localization features. [1] D. Prezzi, D. Varsano, A. Ruini, A. Marini, and E. Molinari, Phys. Rev. B 77, 041404 (2008). [2] D. Prezzi, D. Varsano, A. Ruini, and E. Molinari, to be published (2009)

  4. Measuring the Speed of Sound in a 1D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fry, Jacob; Revelle, Melissa; Hulet, Randall

    2016-05-01

    We report measurements of the speed of sound in a two-spin component, 1D gas of fermionic lithium. The 1D system is an array of one-dimensional tubes created by a 2D optical lattice. By increasing the lattice depth, the tunneling between tubes is sufficiently small to make each an independent 1D system. To measure the speed of sound, we create a density notch at the center of the atom cloud using a sheet of light tuned far from resonance. The dipole force felt by both spin states will be equivalent, so this notch can be thought of as a charge excitation. Once this beam is turned off, the notch propagates to the edge of the atomic cloud with a velocity that depends on the strength of interatomic interactions. We control interactions using a magnetically tuned Feshbach resonance, allowing us to measure the speed of sound over a wide range of interaction. This method may be used to extract the Luttinger parameter vs. interaction strength. Supported by an ARO MURI Grant, NSF, and The Welch Foundation.

  5. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells

    PubMed Central

    Venkataswamy, Manjunatha M.; Porcelli, Steven A.

    2009-01-01

    In spite of their relatively limited antigen receptor repertoire, CD1d-restricted NKT cells recognize a surprisingly diverse range of lipid and glycolipid antigens. Recent studies of natural and synthetic CD1d presented antigens provide an increasingly detailed picture of how the specific structural features of these lipids and glycolipids influence their ability to be presented to NKT cells and stimulate their diverse immunologic functions. Particularly for synthetic analogues of α-galactosylceramides which have been the focus of intense recent investigation, it is becoming clear that the design of glycolipid antigens with the ability to precisely control the specific immunologic activities of NKT cells is likely to be feasible. The emerging details of the mechanisms underlying the structure-activity relationship of NKT cell antigens will assist greatly in the design and production of immunomodulatory agents for the precise manipulation of NKT cells and the many other components of the immune system that they influence. PMID:19945296

  6. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.

    PubMed

    Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2015-01-01

    A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed. PMID:25145651

  7. Arrest of human mitochondrial RNA polymerase transcription by the biological aldehyde adduct of DNA, M1dG

    PubMed Central

    Cline, Susan D.; Lodeiro, M. Fernanda; Marnett, Lawrence J.; Cameron, Craig E.; Arnold, Jamie J.

    2010-01-01

    The biological aldehydes, malondialdehyde and base propenal, react with DNA to form a prevalent guanine adduct, M1dG. The exocyclic ring of M1dG opens to the acyclic N2-OPdG structure when paired with C but remains closed in single-stranded DNA or when mispaired with T. M1dG is a target of nucleotide excision repair (NER); however, NER is absent in mitochondria. An in vitro transcription system with purified human mitochondrial RNA polymerase (POLRMT) and transcription factors, mtTFA and mtTFB2, was used to determine the effect of M1dG on POLRMT elongation. DNA templates contained a single adduct opposite either C or T downstream of either the light-strand (LSP) or heavy-strand (HSP1) promoter for POLRMT. M1dG in the transcribed strand arrested 60–90% POLRMT elongation complexes with greater arrest by the adduct when opposite T. POLRMT was more sensitive to N2-OPdG and M1dG after initiation at LSP, which suggests promoter-specific differences in the function of POLRMT complexes. A closed-ring analog of M1dG, PdG, blocked ≥95% of transcripts originating from either promoter regardless of base pairing, and the transcripts remained associated with POLRMT complexes after stalling at the adduct. This work suggests that persistent M1dG adducts in mitochondrial DNA hinder the transcription of mitochondrial genes. PMID:20671026

  8. Quadratic Finite Element Method for 1D Deterministic Transport

    SciTech Connect

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  9. Electron Energy Levels in the 1D-2D Transition

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint

    Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.

  10. Directed enzymatic activation of 1-D DNA tiles.

    PubMed

    Garg, Sudhanshu; Chandran, Harish; Gopalkrishnan, Nikhil; LaBean, Thomas H; Reif, John

    2015-02-24

    The tile assembly model is a Turing universal model of self-assembly where a set of square shaped tiles with programmable sticky sides undergo coordinated self-assembly to form arbitrary shapes, thereby computing arbitrary functions. Activatable tiles are a theoretical extension to the Tile assembly model that enhances its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly. In this article, we experimentally demonstrate a simplified version of the Activatable tile assembly model. In particular, we demonstrate the simultaneous assembly of protected DNA tiles where a set of inert tiles are activated via a DNA polymerase to undergo linear assembly. We then demonstrate stepwise activated assembly where a set of inert tiles are activated sequentially one after another as a result of attachment to a growing 1-D assembly. We hope that these results will pave the way for more sophisticated demonstrations of activated assemblies. PMID:25625898

  11. Effective theory of black holes in the 1/D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-06-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  12. Axion string dynamics I: 2+1D

    NASA Astrophysics Data System (ADS)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-01

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1 dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.

  13. Robust recognition of 1D barcodes using Hough transform

    NASA Astrophysics Data System (ADS)

    Dwinell, John; Bian, Peng; Bian, Long Xiang

    2012-01-01

    In this paper we present an algorithm for the recognition of 1D barcodes using the Hough transform, which is highly robust regarding the typical degraded image. The algorithm addresses various typical image distortions, such as inhomogeneous illumination, reflections, damaged barcode or blurriness etc. Other problems arise from recognizing low quality printing (low contrast or poor ink receptivity). Traditional approaches are unable to provide a fast solution for handling such complex and mixed noise factors. A multi-level method offers a better approach to best manage competing constraints of complex noise and fast decode. At the lowest level, images are processed in gray scale. At the middle level, the image is transformed into the Hough domain. At the top level, global results, including missing information, is processed within a global context including domain heuristics as well as OCR. The three levels work closely together by passing information up and down between levels.

  14. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.

    PubMed

    Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702

  15. E-beam to complement optical lithography for 1D layouts

    NASA Astrophysics Data System (ADS)

    Lam, David K.; Liu, Enden D.; Smayling, Michael C.; Prescop, Ted

    2011-04-01

    The semiconductor industry is moving to highly regular designs, or 1D gridded layouts, to enable scaling to advanced nodes, as well as improve process latitude, chip size and chip energy consumption. The fabrication of highly regular ICs is straightforward. Poly and metal layers are arranged into 1D layouts. These 1D layouts facilitate a two-step patterning approach: a line-creation step, followed by a line-cutting step, to form the desired IC pattern (See Figure 1). The first step, line creation, can be accomplished with a variety of lithography techniques including 193nm immersion (193i) and Self-Aligned Double Patterning (SADP). It appears feasible to create unidirectional parallel lines to at least 11 nm half-pitch, with two applications of SADP for pitch division by four. Potentially, this step can also be accomplished with interference lithography or directed self assembly in the future. The second step, line cutting, requires an extremely high-resolution lithography technique. At advanced nodes, the only options appear to be the costly quadruple patterning with 193i, or EUV or E-Beam Lithography (EBL). This paper focuses on the requirements for a lithography system for "line cutting", using EBL to complement Optical. EBL is the most cost-effective option for line cutting at advanced nodes for HVM.

  16. Mechanisms of action of the 5-HT1B/1D receptor agonists.

    PubMed

    Tepper, Stewart J; Rapoport, Alan M; Sheftell, Fred D

    2002-07-01

    Recent studies of the pathophysiology of migraine provide evidence that the headache phase is associated with multiple physiologic actions. These actions include the release of vasoactive neuropeptides by the trigeminovascular system, vasodilation of intracranial extracerebral vessels, and increased nociceptive neurotransmission within the central trigeminocervical complex. The 5-HT(1B/1D) receptor agonists, collectively known as triptans, are a major advance in the treatment of migraine. The beneficial effects of the triptans in patients with migraine are related to their multiple mechanisms of action at sites implicated in the pathophysiology of migraine. These mechanisms are mediated by 5-HT(1B/1D) receptors and include vasoconstriction of painfully dilated cerebral blood vessels, inhibition of the release of vasoactive neuropeptides by trigeminal nerves, and inhibition of nociceptive neurotransmission. The high affinity of the triptans for 5-HT(1B/1D) receptors and their favorable pharmacologic properties contribute to the beneficial effects of these drugs, including rapid onset of action, effective relief of headache and associated symptoms, and low incidence of adverse effects. PMID:12117355

  17. Rapid anti-depressant and anxiolytic actions following dopamine D1-D2 receptor heteromer inactivation.

    PubMed

    Shen, Maurice Y F; Perreault, Melissa L; Bambico, Francis R; Jones-Tabah, Jace; Cheung, Marco; Fan, Theresa; Nobrega, José N; George, Susan R

    2015-12-01

    A role for the mesolimbic dopaminergic system in the pathophysiology of depression has become increasingly evident. Specifically, brain-derived neurotrophic factor (BDNF) has been shown to be elevated in the nucleus accumbens of depressed patients and to positively contribute to depression-like behaviour in rodents. The dopamine D1-D2 receptor heteromer exhibits significant expression in NAc and has also been shown to enhance BDNF expression and signalling in this region. We therefore examined the effects of D1-D2 heteromer stimulation in rats by SKF 83959, or its inactivation by a selective heteromer-disrupting TAT-D1 peptide on depression- and anxiety-like behaviours in non-stressed animals and in animals exposed to chronic unpredictable stress. SKF 83959 treatment significantly enhanced the latency to immobility in the forced swim test, increased the latency to drink condensed milk and reduced total milk consumption in the novelty-induced hypophagia test, and additionally reduced the total time spent in the open arms in the elevated plus maze test. These pro-depressant and anxiogenic effects of SKF 83959 were consistently abolished or attenuated by TAT-D1 peptide pre-treatment, signifying the behaviours were mediated by the D1-D2 heteromer. More importantly, in animals exposed to chronic unpredictable stress (CUS), TAT-D1 peptide treatment alone induced significant and rapid anxiolytic and antidepressant-like effects in two tests for CUS-induced anhedonia-like reactivity and in the novelty-suppressed feeding test. Together these findings indicate a positive role for the D1-D2 heteromer in mediating depression- and anxiety-like behaviours and suggest its possible value as a novel therapeutic target. PMID:26431907

  18. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  19. 1D X-ray Beam Compressing Monochromators

    SciTech Connect

    Korytar, D.; Dobrocka, E.; Konopka, P.; Zaprazny, Z.; Ferrari, C.; Mikulik, P.; Vagovic, P.; Ac, V.; Erko, A.; Abrosimov, N.

    2010-04-06

    A total beam compression of 5 and 10 corresponding to the asymmetry angles of 9 deg. and 12 deg. is achieved with V-5 and V-10 monochromators, respectively, in standard single crystal pure germanium (220) X-ray beam compressing (V-shaped) monochromators for CuKalpha{sub 1} radiation. A higher 1D compression of X-ray beam is possible using larger angles of asymmetry, however it is achieved at the expense of the total intensity, which is decreased due to the refraction effect. To increase the monochromator intensity, several ways are considered both theoretically and experimentally. Linearly graded germanium rich Ge{sub x}Si{sub (1-x)} single crystal was used to prepare a V-21 single crystal monochromator with 15 deg. asymmetry angles (compression factor of 21). Its temperature gradient version is discussed for CuKalpha{sub 1} radiation. X-ray diffraction measurements on the graded GeSi monochromator showed more than 3-times higher intensity at the output compared with that of a pure Ge monochromator.

  20. Dynamic decoupling in the presence of 1D random walk

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Arnab; Chakraborty, Ipsita; Bhattacharyya, Rangeet

    2016-05-01

    In the recent past, many dynamic decoupling sequences have been proposed for the suppression of decoherence of spins connected to thermal baths of various natures. Dynamic decoupling schemes for suppressing decoherence due to Gaussian diffusion have also been developed. In this work, we study the relative performances of dynamic decoupling schemes in the presence of a non-stationary Gaussian noise such as a 1D random walk. Frequency domain analysis is not suitable to determine the performances of various dynamic decoupling schemes in suppressing decoherence due to such a process. Thus, in this work, we follow a time domain calculation to arrive at the following conclusions: in the presence of such a noise, we show that (i) the traditional Carr–Purcell–Meiboom–Gill (CPMG) sequence outperforms Uhrig’s dynamic decoupling scheme, (ii) CPMG remains the optimal sequence for suppression of decoherence due to random walk in the presence of an external field gradient. Later, the theoretical predictions are experimentally verified by using nuclear magnetic resonance spectroscopy on spin 1/2 particles diffusing in a liquid medium.

  1. Graphs on uniform points in [0,1]d

    NASA Astrophysics Data System (ADS)

    Appel, Martin J. B.; Russo, Ralph P.; Yang, King J.

    1995-06-01

    Statistical problems in pattern or structure recognition for a random multidimensional point set may be addressed by variations on the random graph model of Erdos and Renyui. The imposition of graph structure with a variable edge criterion on a large random point set allows a search for signature quantities or behavior under the given distributional hypothesis. The work is motivated by the question of how to make statistical inferences from sensed mine field data. This article describes recent results obtained in the following special cases. On independent random points U1,...,Un distributed uniformly on [0,1]d, a random graph Gn(x) is constructed in which two distinct such points are joined by an edge if the l(infinity )-distance between them is at most some prescribed value 0 = 2.

  2. 1-D Modeling of Massive Particle Injection (MPI) in Tokamaks

    NASA Astrophysics Data System (ADS)

    Wu, W.; Parks, P. B.; Izzo, V. A.

    2008-11-01

    A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.

  3. Scratched-XY Universality and Phase Diagram of Disordered 1D Bosons in Optical Lattice

    NASA Astrophysics Data System (ADS)

    Yao, Zhiyuan; Pollet, Lode; Prokof'ev, Nikolay; Svistunov, Boris

    The superfluid-insulator quantum phase transition in a 1D system with weak links belongs to the so-called scratched-XY universality class, provided the irrenormalizable exponent ζ characterizing the distribution of weak links is smaller than 2 / 3 . With a combination of worm-algorithm Monte Carlo simulations and asymptotically exact analytics, we accurately trace the position of the scratched-XY critical line on the ground-state phase diagram of bosonic Hubbard model at unity filling. In particular, we reveal the location of the tricritical point separating the scratched-XY criticality from the Giamarchi-Schulz one.

  4. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    NASA Astrophysics Data System (ADS)

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-01

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  5. Prediction of car cabin environment by means of 1D and 3D cabin model

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  6. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    SciTech Connect

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-17

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  7. KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Chierchia, Luigi; You, Jiangong

    In this paper, one-dimensional (1D) nonlinear wave equations with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u≡0. It is proved that for ``most'' potentials V(x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theorem which allows for multiple normal frequencies.

  8. Doped SiO2 telecommunication fibre as a 1-D detector for radiation therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, A. T.; Abdul Sani, Siti Fairus; Bradley, D. A.

    2012-02-01

    Present studies concern Ge-doped SiO2 telecommunication fibre as a high spatial resolution 1-D thermoluminescence (TL) system for radiotherapeutic dosimetry. Using tube xray bremsstrahlung sources operating at kilovoltage energies, these fibres have been shown to offer linear response, from < 1Gy up to in excess of 30 Gy. Measurement of the photoelectron dose enhancement resulting from use of a moderately high atomic number medium (iodinated contrast media) demonstrates the fibres to have the local dose sensitivity required of interface dosimetry. In PMMA, the TL yield is ~60% greater in the presence of iodine than in its absence.

  9. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  10. Distribution of dopamine D1-D4 receptor subtypes in human dorsal vagal complex.

    PubMed

    Hyde, T M; Knable, M B; Murray, A M

    1996-11-01

    The distribution of D1/D5, D2/D3, D2/D3/D4, and individually, putative D2-D4 receptors across the dorsal vagal complex of the human medulla was assessed with quantitative receptor autoradiography. D1/D5 receptors were found in very low levels. D2 receptors were concentrated in the intermediate and medial subnuclei of the nucleus of the solitary tract (NTS), and in the dorsal motor nucleus of the vagus (DMN), while D3 receptors were more homogeneous across the entire NTS, area postrema (AP), and DMN. In contrast, D4 receptors were found almost exclusively in the intermediate and medial subnuclei of the NTS, and in the DMN. These findings suggest that the "D2 family" of receptors is an important component of brain stem mechanisms regulating visceral function, including gastrointestinal systems, such as emesis, along with cardiovascular and pulmonary systems. Compounds with individual selectivity for D2, D3, or D4 receptors may be useful in the manipulation of neural networks regulating these visceral systems. PMID:8923662

  11. Universal low-energy physics in 1D strongly repulsive multi-component Fermi gases

    NASA Astrophysics Data System (ADS)

    Jiang, Yuzhu; He, Peng; Guan, Xi-Wen

    2016-04-01

    It has been shown (Yang and You 2011 Chin. Phys. Lett. 28 020503) that at zero temperature the ground state of the one-dimensional (1D) w-component Fermi gas coincides with that of the spinless Bose gas in the limit ω \\to ∞ . This behavior was experimentally evidenced through quasi-1D tightly trapping ultracold 173Yb atoms in a recent paper (Pagano et al 2014 Nat. Phys. 10 198). However, understanding of low-temperature behavior of Fermi gases with a repulsive interaction requires spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(w) Heisenberg spin chain. Here we analytically derive universal thermodynamics of 1D strongly repulsive fermionic gases with SU(w) symmetry via the Yang-Yang thermodynamic Bethe ansatz method. The analytical free energy and magnetic properties of the systems at low temperature in a weak magnetic field are obtained through the Wiener-Hopf method. In particular, the free energy essentially manifests the spin-charge separated conformal field theories for high-symmetry systems with arbitrary repulsive interaction strength. We also find that the sound velocity of the Fermi gases in the large w limit coincides with that for the spinless Bose gas, whereas the spin velocity vanishes quickly as w becomes large. This indicates strong suppression of the Fermi exclusion statistics by the commutativity feature among the w-component fermions with different spin states in the Tomonaga-Luttinger liquid phase. Moreover, the equations of state and critical behavior of physical quantities at finite temperature are analytically derived in terms of the polylogarithm functions in the quantum critical region.

  12. Evidence for an age-dependent functional expression of alpha 1D-adrenoceptors in the rat vasculature.

    PubMed

    Ibarra, M; Terrón, J A; López-Guerrero, J J; Villalobos-Molina, R

    1997-03-19

    The role of the alpha 1-adrenoceptor subtypes, and their possible change with maturation, in alpha 1-adrenoceptor-induced pressor responses in the rat has not been established. Thus, the effects of the alpha 1D-, alpha 1A/1D- and alpha 1B/1D-adrenoceptor antagonists, BMY 7378 (8-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl) 8-azaspiro (4.5) decane-7,9-dione 2HCl), 5-methyl-urapidil and chloroethylclonidine, respectively, on the pressor responses induced by phenylephrine in 1- and 5-month-old pithed rats were investigated. The pressor responses induced by phenylephrine were competitively antagonized by both BMY 7378 and chloroethylclonidine in 5-month-old, but not in young immature animals; in marked contrast, 5-methylurapidil antagonized with similar potency the phenylephrine-induced pressor responses in animals of both ages. The present pharmacological data suggest that functional expression of alpha 1D-adrenoceptors in the rat resistance vessels increases with age; alpha 1A-, but not alpha 1B- or alpha 1D-adrenoceptors, seem to predominate in immature animals. These findings represent the first evidence that age-related changes in functional alpha 1-adrenoceptor subtypes occur in the systemic vasculature in vivo. PMID:9098690

  13. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  14. Synthesis and properties of a few 1-D cobaltous fumarates

    SciTech Connect

    Bora, Sanchay J.; Das, Birinchi K.

    2012-08-15

    Metal fumarates are often studied in the context of metal organic framework solids. Preparation, structure and properties of three cobalt(II) fumarates, viz. [Co(fum)(H{sub 2}O){sub 4}]{center_dot}H{sub 2}O 1, [Co(fum)(py){sub 2}(H{sub 2}O){sub 2}] 2, and [Co(fum)(4-CNpy){sub 2}(H{sub 2}O){sub 2}] 3 (fum=fumarate, py=pyridine, 4-CNpy=4-cyanopyridine) are described. All three are chain polymers involving bridging fumarato ligands between each pair of octahedral Co(II) centres, but while the first one is zigzag in structure, the latter two are linear. Indexed powder X-ray diffraction patterns, solid state electronic spectra and magnetic properties of the species are reported. Thermal decomposition behaviour of the compounds suggests that they may be suitable as precursors to make Co{sub 3}O{sub 4} via pyrolysis below 600 Degree-Sign C. - Graphical abstract: Structure and properties of three chain-polymeric cobalt(II) fumarates are described. Highlights: Black-Right-Pointing-Pointer Three fumarate bridged 1-D coordination polymers of cobalt(II) are reported. Black-Right-Pointing-Pointer While Co(II) fumarate pentahydrate is zigzag, the species having both pyridine and water as co-ligands are linear in structure. Black-Right-Pointing-Pointer Prominent lines in the powder X-ray diffraction patterns have been indexed. Black-Right-Pointing-Pointer Thermal decomposition of the species yields Co{sub 3}O{sub 4} as the final product.

  15. A new general 1-D vadose zone flow solution method

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.; Lai, Wencong; Steinke, Robert C.; Zhu, Jianting; Talbot, Cary A.; Wilson, John L.

    2015-06-01

    We have developed an alternative to the one-dimensional partial differential equation (PDE) attributed to Richards (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water-content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content", simulates sharp fronts and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution method is explicitly integrable, does not require iterations and therefore has no convergence limits and is computationally efficient. The method accepts boundary fluxes including arbitrary precipitation, bare soil evaporation, and evapotranspiration. The method can simulate heterogeneous soils using layers. Results are presented in terms of fluxes and water content profiles. Comparing our method against analytical solutions, laboratory data, and the Hydrus-1D solver, we find that predictive performance of our finite water-content ODE method is comparable to or in some cases exceeds that of the solution of Richards' equation, with or without a shallow water table. The presented ODE method is transformative in that it offers accuracy comparable to the Richards (1931) PDE numerical solution, without the numerical complexity, in a form that is robust, continuous, and suitable for use in large watershed and land-atmosphere simulation models, including regional-scale models of coupled climate and hydrology.

  16. Pseudofermion dynamical theory for the spin dynamical correlation functions of the half-filled 1D Hubbard model

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Čadež, T.

    2016-03-01

    A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott-Hubbard phase. The Mott-Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.

  17. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  18. PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms.

    PubMed

    Wu, Bo; Guo, Bo-Min; Kang, Jie; Deng, Xian-Zhao; Fan, You-Ben; Zhang, Xiao-Ping; Ai, Kai-Xing

    2016-03-01

    Protein phosphatase, Mg(2+)/Mn(2+) dependent, 1D (PPM1D) is emerging as an oncogene by virtue of its negative control on several tumor suppressor pathways. However, the clinical significance of PPM1D in pancreatic cancer (PC) has not been defined. In this study, we determined PPM1D expression in human PC tissues and cell lines and their irrespective noncancerous controls. We subsequently investigated the functional role of PPM1D in the migration, invasion, and apoptosis of MIA PaCa-2 and PANC-1 PC cells in vitro and explored the signaling pathways involved. Furthermore, we examined the role of PPM1D in PC tumorigenesis in vivo. Our results showed that PPM1D is overexpressed in human PC tissues and cell lines and significantly correlated with tumor growth and metastasis. PPM1D promotes PC cell migration and invasion via potentiation of the Wnt/β-catenin pathway through downregulation of apoptosis-stimulating of p53 protein 2 (ASPP2). In contrast to PPM1D, our results showed that ASPP2 is downregulated in PC tissues. Additionally, PPM1D suppresses PC cell apoptosis via inhibition of the p38 MAPK/p53 pathway through both dephosphorylation of p38 MAPK and downregulation of ASPP2. Furthermore, PPM1D promotes PC tumor growth in vivo. Our results demonstrated that PPM1D is an oncogene in PC. PMID:26714478

  19. Preliminary abatement device evaluation: 1D-2D KGM cyclone design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are predominately used in controlling cotton gin particulate matter (PM) emissions. The most commonly used cyclone designs are the 2D-2D and 1D-3D; however other designs such as the 1D-2D KGM have or are currently being used. A 1D-2D cyclone has a barrel length equal to the barrel diamete...

  20. Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

    PubMed Central

    Jaeken, Jan W; De Baerdemacker, Stijn; Lejaeghere, Kurt; Van Speybroeck, Veronique

    2014-01-01

    Summary The geometric and electronic structure of the MIL-47(V) metal-organic framework (MOF) is investigated by using ab initio density functional theory (DFT) calculations. Special focus is placed on the relation between the spin configuration and the properties of the MOF. The ground state is found to be antiferromagnetic, with an equilibrium volume of 1554.70 Å3. The transition pressure of the pressure-induced large-pore-to-narrow-pore phase transition is calculated to be 82 MPa and 124 MPa for systems with ferromagnetic and antiferromagnetic chains, respectively. For a mixed system, the transition pressure is found to be a weighted average of the ferromagnetic and antiferromagnetic transition pressures. Mapping DFT energies onto a simple-spin Hamiltonian shows both the intra- and inter-chain coupling to be antiferromagnetic, with the latter coupling constant being two orders of magnitude smaller than the former, suggesting the MIL-47(V) to present quasi-1D behavior. The electronic structure of the different spin configurations is investigated and it shows that the band gap position varies strongly with the spin configuration. The valence and conduction bands show a clear V d-character. In addition, these bands are flat in directions orthogonal to VO6 chains, while showing dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials. PMID:25383285

  1. Dimensional phase transition from 1D behavior to a 3D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Morath, Denis; Straßel, Dominik; Eggert, Sebastian

    The emergence of new properties from low-dimensional building blocks is a universal theme in different areas in physics. The investigation of transitions between isolated and coupled low-dimensional systems promises to reveal new phenomena and exotic phases. Interacting 1D bosons, which are coupled in a two-dimensional array, are maybe the most fundamental example of a system which illustrates the concept of a dimensional phase transition. However, recent experiments using ultracold gases have shown a surprising discrepancy between theory and experiment and it is far from obvious if the power laws from the underlying 1D theory can predict the transition temperature and order parameter correctly for all interaction strengths. Using a combination of large-scale Quantum Monte-Carlo simulations and chain mean-field calculations, we show that the behavior of the ordering temperature as a function of inter-chain coupling strength does not follow a universal powerlaw, but also depends strongly on the filling

  2. Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method

    NASA Astrophysics Data System (ADS)

    Ampilogov, Dmitrii; Leble, Sergey

    2016-07-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.

  3. 1D GAS-DYNAMIC SIMULATION OF SHOCK-WAVE PROCESSES VIA INTERNET

    SciTech Connect

    Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.; Zakharenkov, A. S.

    2009-12-28

    We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainless steel plates are presented in comparison with experimental data from Shakhray et al.(2005).

  4. Vibron properties in quasi 1D molecular structures: the case of two parallel unshifted macromolecuar chains

    NASA Astrophysics Data System (ADS)

    Čevizović, D.; Petković, S.; Galović, S.; Reshetnyak, A.; Chizhov, A.

    2016-01-01

    We study the hopping mechanism of the vibron excitation transport in the system of two parallel unshifted 1D macromolecuar chains in the framework of non-adiabatic polaron theory. We suppose that the vibron interaction with thermal oscillations of the macromolecular structural elements will result in vibron self-trapping and the formation of the partial dressed vibron state. We also suppose that quasiparticle motion takes place via a sequence of random sitejumps, in each of which the quasiparticle can migrate either to the first neighbor site of the macromolecular chain. With use of the modified Holstein polaron model, we calculate the vibron effective mass in dependence of the basic system parameters and temperature. Special attention is paid to the influence of interchain coupling on vibron dressing. We find that for certain values of the system parameters the quasiparticle mass abruptly changes.

  5. Detecting different correlation regimes in a 1D Bose gas using in-situ absorption imaging

    NASA Astrophysics Data System (ADS)

    Salces-Carcoba, Francisco; Sugawa, Seiji; Yue, Yuchen; Putra, Andika; Spielman, Ian

    2016-05-01

    We present the realization of a single 1D Bose gas (1DBG) using a tightly focused Laguerre-Gauss beam as a waveguide for a 87Rb cloud. Axial confinement is provided by a weak trap that also sets the final density profile. A homogeneous 1DBG at T = 0 can be fully described by the dimensionless interaction parameter γ ~ 1/n, where n is the linear density; at sufficiently low densities the system becomes strongly interacting. An inhomogeneous (trapped) system can enter this description within the local density approximation (LDA) where the interaction parameter becomes position dependent γ(x) ~ 1/n(x). The system then displays different correlation regimes over its extension which can be detected by measuring its equation of state (EoS) or the density density correlations in real space using in-situ absorption imaging.

  6. From nonfinite to finite 1D arrays of origami tiles.

    PubMed

    Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L

    2014-06-17

    average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing. PMID:24803094

  7. Hot Gas in SMC SNR 0057-7226 and the Giant H 2 Region N66

    NASA Astrophysics Data System (ADS)

    Danforth, C. W.; Hoopes, C. G.; Sankrit, R.; Chu, Y.-H.; Sembach, K. R.; Blair, W. P.

    2001-12-01

    The supernova remnant SNR 0057-7226 and the dense, young cluster NGC 346 lie within the giant H 2 region N66, the most active star formation site in the SMC. Far Ultraviolet Spectroscopic Explorer (FUSE) observations of the Wolf-Rayet binary system HD 5980, which lies behind the SNR, show high velocity, O 6 and C 3 absorption associated with the far side of the remnant (Hoopes et al 2001, ApJ, 558, L35). Chandra ACIS-I and ROSAT HRI images of N66 show the diffuse X-ray emission associated with the SNR, but little or no diffuse emission around the core of the central cluster. We present high-dispersion, long-slit optical echelle observations of five positions within N66 including positions across the SNR 0057-7226 and NGC 346. These data show bright Hα emission at the SMC rest velocity (v ~155 km s-1). Where the spectrograph slits intersect the SNR, faint Hα emission at high (v ~300 km s-1) and low (v ~50 km s-1) velocities reveals clumps of material on the back and front sides of the SNR shell. Ten FUSE observations of sight lines toward stars in N66--including four toward NGC 346 cluster stars--provide sensitive absorption-line measurements of several ionic species including O 6 which traces hot (T ~3*E5 K), highly-ionized gas and Fe 2 which traces cooler (T ~104 K), ionized and neutral gas. We also present ground based optical narrowband images in Hα , [S 2], and [O 3] which show the morphology of the H 2 region. We use this data set to study the kinematics of the gas in this complex region and to model the properties of the SNR-ISM interaction. This work is supported by NASA Contract NAS5-32985 to the Johns Hopkins University.

  8. The asymptotics of the correlation functions in (1 + 1)d quantum field theory from finite size effects in conformal theories

    SciTech Connect

    Mironov, A. ); Zabrodin, A. )

    1992-06-30

    Using the finite-size effects, the scaling dimensions and correlation functions of the main operators in continuous and lattice models of 1d spinless Bose-gas with pairwise interaction of rather general form are obtained. The long-wave properties of these systems can be described by the Gaussian model with central charge c = 1. The disorder operators of the extended Gaussian model are found to correspond to some nonlocal operators in the XXZ Heisenberg antiferromagnet. This same approach is applicable to fermionic systems. Scaling dimensions of operators and correlation functions in the systems of interacting Fermi-particles are obtained. This paper presents a universal treatment for 1d systems of different kinds which is independent of the exact integrability and which gives universal expressions for critical exponents through the thermodynamic characteristics of the system.

  9. Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H Irradiation Report

    SciTech Connect

    Debra J. Utterbeck; Gray Chang

    2005-09-01

    The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. These experiments are high burnup analogs to previously irradiated experiments and are to be irradiated to = 20 atom % burnup. Results of the evaluations show that AFC-1D will remain in the ATR for approximately 100 additional effective full power days (EFPDs), and AFC-1G and AFC-1H for approximately 300 additional EFPDs in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.

  10. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats.

    PubMed

    García-Pedraza, José-Ángel; García, Mónica; Martín, María-Luisa; Morán, Asunción

    2015-09-01

    Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3±1.0, 43.7±2.7 and 66.7±4.0 for 2, 4 and 6Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125-0.1μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1mg/kg) or l-NAME (nitric oxide; 10mg/kg), but not by indomethacin (COX1/2; 2mg/kg) or glibenclamide (ATP-dependent K(+) channel; 20mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release. PMID:26003124

  11. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s.

    PubMed

    Chaudhry, Amarjit S; Thirumaran, Ranjit K; Yasuda, Kazuto; Yang, Xia; Fan, Yiping; Strom, Stephen C; Schuetz, Erin G

    2013-08-01

    Human liver gene regulatory (Bayesian) network analysis was previously used to identify a cytochrome P450 (P450) gene subnetwork with Aldo-keto reductase 1D1 (AKR1D1) as a key regulatory driver of this subnetwork. This study assessed the biologic importance of AKR1D1 [a key enzyme in the synthesis of bile acids, ligand activators of farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), known transcriptional regulators of P450s] to hepatic P450 expression. Overexpression of AKR1D1 in primary human hepatocytes led to increased expression of CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6. Conversely, AKR1D1 knockdown decreased expression of these P450s. We resequenced AKR1D1 from 98 donor livers and identified a 3'-untranslated region (UTR) (rs1872930) single nucleotide polymorphism (SNP) significantly associated with higher AKR1D1 mRNA expression. AKR1D1 3'-UTR-luciferase reporter studies showed that the variant allele resulted in higher luciferase activity, suggesting that the SNP increases AKR1D1 mRNA stability and/or translation efficiency. Consistent with AKR1D1's putative role as a driver of the P450 subnetwork, the AKR1D1 3'-UTR SNP was significantly associated with increased hepatic mRNA expression of multiple P450s (CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6) and CYP3A4, CYP2C8, CYP2C19, and CYP2B6 activities. After adjusting for multiple testing, the association remained significant for AKR1D1, CYP2C9, and CYP2C8 mRNA expression and CYP2C8 activity. These results provide new insights into the variation in expression and activity of P450s that can account for interindividual differences in drug metabolism/efficacy and adverse drug events. In conclusion, we provide the first experimental evidence supporting a role for AKR1D1 as a key genetic regulator of the P450 network. PMID:23704699

  12. Functional evaluation of the type 1 diabetes (T1D) susceptibility candidate genes.

    PubMed

    Park, Yongsoo

    2007-09-01

    Progress has been made in investigating the genetic factors involved in type 1 diabetes (T1D) development for the past few years. While Linkage disequilibrium (LD) mapping has been useful for both the confirmation and fine-mapping of susceptibility intervals, as well as identification of etiological mutations, identification of specific disease genes has been a challenge and limited to known candidate genes. The overall risk for T1D from the HLA DR and DQ molecules (IDDM1) is determined by combinations of polymorphic alleles. Functional studies indicate that the susceptible and protective HLA-DR and -DQ bind and present non-overlapping peptides. Although consistent linkage evidence was reported for the susceptibility intervals IDDM2, IDDM5 and IDDM12, evidence for most other intervals varies in different data sets. The variable number of tandem repeats at the 5' end of the insulin gene (IDDM2) regulates insulin expression in the thymus. Studies on IDDM5 have led to the discovery of a novel polymorphism 163 A-->G (M55V) in SUMO4 gene, which was found to be associated with T1D patients with Asian origin. Functionally SUMO4 conjugates to IkBalpha and negatively regulates NFkB transcriptional pathway. The M55V substitution reduces the sumoylation activity of the V55 variant, which resulted in higher NFkB dependent transcriptional activity. The polymorphisms of the cytotoxic T lymphocyte antigen 4 gene (CTLA4, IDDM12) encoding a regulatory molecule in the immune system associate with T1D and autoimmune thyroid diseases (ATD). The 3' untranslated region of this gene determines the level of soluble CTLA-4. Genetic mapping of variants conferring a small disease risk can identify pathways in complex disorders, as evidenced by quantitative alterations of candidate genes contributing to autoimmune tissue destruction. Moreover, the identification of two transcription factors that, when mutated, are responsible for severe autoimmune disease is leading to a better understanding

  13. EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Flores, Isadora L; Kawahara, Rebeca; Miguel, Márcia C C; Granato, Daniela C; Domingues, Romênia R; Macedo, Carolina C S; Carnielli, Carolina M; Yokoo, Sami; Rodrigues, Priscila C; Monteiro, Bárbara V B; Oliveira, Carine E; Salmon, Cristiane R; Nociti, Francisco H; Lopes, Márcio A; Santos-Silva, Alan; Winck, Flavia V; Coletta, Ricardo D; Paes Leme, Adriana F

    2016-05-01

    EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT. PMID:26823560

  14. An anti-symmetric exclusion process for two particles on an infinite 1D lattice

    NASA Astrophysics Data System (ADS)

    Potts, J. R.; Harris, S.; Giuggioli, L.

    2011-12-01

    A system of two biased, mutually exclusive random walkers on an infinite 1D lattice is studied whereby the intrinsic bias of one particle is equal and opposite to that of the other. The propagator for this system is solved exactly and expressions for the mean displacement and mean square displacement (MSD) are found. Depending on the nature of the intrinsic bias, the system’s behaviour displays two regimes, characterised by (i) the particles moving towards each other and (ii) away from each other, both qualitatively different from the case of no bias. The continuous-space limit of the propagator is found and is shown to solve a Fokker-Planck equation for two biased, mutually exclusive Brownian particles with equal and opposite drift velocity. Connections to territorial dynamics in animal populations are discussed.

  15. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition

    NASA Astrophysics Data System (ADS)

    Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M.; Knoester, Jasper; Cao, Jianshu

    2016-05-01

    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.

  16. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition.

    PubMed

    Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M; Knoester, Jasper; Cao, Jianshu

    2016-05-13

    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality. PMID:27232033

  17. Dynamical properties of spin and subbands populations in 1D quantum wire

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Khordad, R.; Golshan, M. M.

    2006-10-01

    In this paper we study the spin and subbands populations, as functions of time, for electrons in a quasi-1D quantum wire, with spin-orbit coupling (SOC), to which a perpendicular magnetic field is applied. The system is governed by the Hamiltonian which, in the strong magnetic field limit, resembles the Jaynes-Cummings model (JCM) in quantum optics (QO). Using a procedure similar to that in QO, we explicitly present the time-evolution operator, thereby calculating the spin states and subbands populations as functions of time. We show that the populations exhibit oscillations, depending on the interaction parameters, scale lengths and, particularly, the initial states of the system. Specifically, if the electrons are initially prepared in a maximal coherent superposition of spin states, the expectation values periodically collapse and revive. The collapse-revivals are most profound for the spin along the magnetic field and subbands populations.

  18. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces

    NASA Astrophysics Data System (ADS)

    Temprano, I.; Thomas, G.; Haq, S.; Dyer, M. S.; Latter, E. G.; Darling, G. R.; Uvdal, P.; Raval, R.

    2015-03-01

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process.

  19. CD1d- and MR1-Restricted T Cells in Sepsis

    PubMed Central

    Szabo, Peter A.; Anantha, Ram V.; Shaler, Christopher R.; McCormick, John K.; Haeryfar, S.M. Mansour

    2015-01-01

    Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area. PMID:26322041

  20. NOKIN1D: one-dimensional neutron kinetics based on a nodal collocation method

    NASA Astrophysics Data System (ADS)

    Verdú, G.; Ginestar, D.; Miró, R.; Jambrina, A.; Barrachina, T.; Soler, Amparo; Concejal, Alberto

    2014-06-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method.

  1. 1D and 2D Assembly of Plant Viruses for Materials Development

    SciTech Connect

    Qian Wang

    2013-01-11

    The research focused on the development of novel bionanoparticle (BNP)-based materials, especially the assembly of chemically and genetically-tailored BNP at the interface between immiscible fluids. The chemical, physical, dynamical and mechanistic aspects have been studied in this research. In particular, rod-like tobacco mosaic virus (TMV) based anisotropic nanorods were synthesized via RNA or polymer assisted assembling process. Such kind of TMV-rods offers an ideal model system for the mechanistic study of orienting and packing anisotropic nanoparticles, which may have great potential in the applications of photovoltaic and field emission devices. Specific objectives include: 1) Synthesize BNPs with controlled functionality at defined positions; 2) synthesize 1D nanorods with defined length via polymer or RNA assisted assembly of TMV or TMV coat proteins; 3) self-assemble and crosslink BNPs and TMV-nanorods at liquid-liquid interfaces; 4) quantitatively characterize the structural organization of the 1D and 2D BNP-assemblies using both small angle neutron scattering and synchrotron small angle X-ray scattering; and 5) develop methods to apply grazing incidence small angle X-ray/neutron scattering to investigate the assemblies of BNPs.

  2. Integrated multicolor detector utilizing 1D photonic bandgap filter with wedge-shaped defect

    NASA Astrophysics Data System (ADS)

    Jaksic, Zoran S.; Petrovic, Radomir; Randjelovic, Danijela; Dankovic, Tatjana; Djuric, Zoran G.; Ehrfeld, Wolfgang; Schmidt, Andreas; Hecker, Karl H.

    1999-03-01

    We propose a single-chip multicolor photodetector for micrometers range based on a linear IR semiconductor detector array with an integrated 1D photonic bandgap (PBG) filter. A wedge- shaped defect slab is introduced into the filer instead of one of the layers. The bandgap of the photonic crystal coincides with the spectral sensitivity range of the photodetector array, while the built-in defect gives a transmission peak within the same range. The defect thickness varies along the array length and thus shifts the transmission peak wavelength. The optimized photonic bandgap filter including defect is designed using the transfer matrix method. The peak frequency is tuned by choosing the geometrical parameters of the wedge-shaped defect. In our experiments, thin alternating Si and SiO2 films are sputtered onto the array surface, thus forming a 1D PBG structure. The defect is fabricated by gradually changing the middle Si layer thickness over the width of the array. Its wedge-forming is performed by micromachining or, alternatively, by in-situ oblique deposition within the sputtering system and, possibly, subsequent chemomechanical polishing. The characteristics of the finished PBG structure are measured using an IR spectrophotometer. An increase of the number of PBG layers improves the confinement of transmission peaks and thus decreases the crosstalk between the array elements. Although our multicolor detector is designed for the (3-5) micrometers atmospheric window, it can be straightforward redesigned for any other optical range.

  3. A 1-D model study of Arctic sea-ice salinity

    NASA Astrophysics Data System (ADS)

    Griewank, P. J.; Notz, D.

    2014-03-01

    We use a 1-D model to study how salinity evolves in Arctic sea ice. To do so, we first explore how sea-ice surface melt and flooding can be incorporated into the 1-D thermodynamic SAMSIM sea-ice model presented by Griewank and Notz (2013). We introduce flooding and a flushing parametrization which treats sea ice as a hydraulic network of horizontal and vertical fluxes. Forcing SAMSIM with 36 years of ERA-interim atmospheric reanalysis data, we obtain a modeled Arctic sea-ice salinity that agrees well with ice-core measurements. The simulations hence allow us to identify the main drivers of the observed mean salinity profile in Arctic sea ice. Our results show a 1.5-4 g kg-1 decrease of bulk salinity via gravity drainage after ice growth has ceased and before flushing sets in, which hinders approximating bulk salinity from ice thickness beyond the first growth season. In our simulations, salinity variability of first-year ice is mostly restricted to the top 20 cm. We find that ice thickness, thermal resistivity, freshwater column, and stored energy change by less than 5% on average when the full salinity parametrization is replaced with a prescribed salinity profile. We conclude that for earth system models the impact of fully parametrizing the Arctic temporal salinity evolution is too small to justify the increase in computational cost and model complexity.

  4. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces.

    PubMed

    Temprano, I; Thomas, G; Haq, S; Dyer, M S; Latter, E G; Darling, G R; Uvdal, P; Raval, R

    2015-03-14

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process. PMID:25770505

  5. DOE2.1D. Building Energy Consumption Analysis

    SciTech Connect

    Buhl, W.F.

    1981-05-01

    DOE2 is a set of programs for the analysis of energy consumption in buildings. Programs are included to calculate the heating and cooling loads for each space (zone) in the building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating and cooling to the space (SYSTEMS), to model primary energy conversion equipment that uses fuel (e.g. oil, gas, or sun) to provide the required heating, cooling, and electricity (PLANT), and to compute the life-cycle cost for building operation based on economic parameters (ECONOMICS). A user-oriented building description language (BDL) facilitates the description of the building geometry, central plant equipment, HVAC systems, occupancy, equipment, and lighting schedules, and the selection of other problem parameters. In addition to the LSPE programs (LOADS, SYSTEMS, PLANT, and ECONOMICS), the system includes the BDL processor, two report generators, a weather data processor, and UPDATE, a code maintenance program. Standard output reports are produced by the RPTGEN program. Only the weather data for Chicago, which are required for execution of the sample problems, are included.

  6. Scanning Cryogenic Magnetometry with a 1D Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Straquadine, Joshua; Yang, Fan; Lev, Benjamin

    We present a novel scanning probe magnetometer suitable for cryogenic studies, in which the probe is a Bose-Einstein condensate of 87Rb. The system is designed for rapid sample changes and operation between 35 K and room temperature while remaining compatible with the UHV requirements of ultracold atom experiments. We demonstrate a spatial resolution (FWHM) of 2.6 μm and a repeatability of 1.9 +/- 1.0 nT. We also show that the system is operating close to the fundamental measurement limits set by photon shot noise and atom shot noise. Our scanning quantum cryogenic atom microscope is suitable for fundamental studies of transport and magnetism in condensed matter systems such as high-temperature superconductors and topological insulators. We discuss the advantages and applications of this magnetometry technique.

  7. 1D quantum simulation using a solid state platform

    NASA Astrophysics Data System (ADS)

    Kirkendall, Megan; Irvin, Patrick; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom

    Understanding the properties of large quantum systems can be challenging both theoretically and numerically. One experimental approach-quantum simulation-involves mapping a quantum system of interest onto a physical system that is programmable and experimentally accessible. A tremendous amount of work has been performed with quantum simulators formed from optical lattices; by contrast, solid-state platforms have had only limited success. Our experimental approach to quantum simulation takes advantage of nanoscale control of a metal-insulator transition at the interface between two insulating complex oxide materials. This system naturally exhibits a wide variety of ground states (e.g., ferromagnetic, superconducting) and can be configured into a variety of complex geometries. We will describe initial experiments that explore the magnetotransport properties of one-dimensional superlattices with spatial periods as small as 4 nm, comparable to the Fermi wavelength. The results demonstrate the potential of this solid-state quantum simulation approach, and also provide empirical constraints for physical models that describe the underlying oxide material properties. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL), FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  8. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  9. Reactions of HO2 with carbon monoxide and nitric oxide and of O/1 D/ with water.

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1973-01-01

    Investigation of the reactions of the hydroperoxyl radical with carbon monoxide and nitric oxide in a static system, and reexamination of the reaction of O(1 D) with water. The HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1 D) atoms produced from the photolysis of N2O react with H2O or with H2 to give OH radicals in the case of H2O or OH radicals and H atoms in the case of H2. With H2O, two OH radicals are produced for each O(1 D) removed at low pressures, but the OH yield drops as the pressure is raised. This drop is attributed to an insertion reaction which removes from 10 to 30% of the O(1 D) atoms at about 650 torr of H2O at 200 F. The OH radicals generated can react with either CO or H2 to produce H atoms, which then add to O2 to produce HO2. In the absence of NO, the HO2 radicals could react by two routes, while with NO present NO2 is produced in a long chain process.

  10. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    NASA Astrophysics Data System (ADS)

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  11. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model

    NASA Astrophysics Data System (ADS)

    Sutanto, S. J.; Wenninger, J.; Coenders-Gerrits, A. M. J.; Uhlenbrook, S.

    2012-08-01

    Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d-1 into 0.4 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.6 mm d-1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d-1 into 1 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.3 mm d-1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.

  12. Herpes Simplex Virus 1 US3 Phosphorylates Cellular KIF3A To Downregulate CD1d Expression

    PubMed Central

    Xiong, Ran; Rao, Ping; Kim, Seil; Li, Michelle; Wen, Xiangshu

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) causes one of the most prevalent herpesviral infections in humans and is the leading etiological agent of viral encephalitis and eye infections. Our understanding of how HSV-1 interacts with the host at the cellular and organismal levels is still limited. We and others previously reported that, upon infection, HSV-1 rapidly and efficiently downregulates CD1d cell surface expression and suppresses the function of NKT cells, a group of innate T cells with critical immunoregulatory function. The viral protein kinase US3 plays a major role in this immune evasion mechanism, and its kinase activity is required for this function. In this study, we investigated the cellular substrate(s) phosphorylated by US3 and how it mediates US3 suppression of CD1d recycling. We identified the type II kinesin motor protein KIF3A as a critical kinesin factor in the cell surface expression of CD1d. Interestingly, KIF3A is phosphorylated by US3 both in vitro and in infected cells. Mass spectrometry analysis of purified KIF3A showed that it is phosphorylated predominantly at serine 687 by US3. Ablation of this phosphorylation abolished US3-mediated downregulation of CD1d expression, suggesting that phosphorylation of KIF3A is the primary mechanism of HSV-1 suppression of CD1d expression by US3 protein. Understanding of the precise mechanism of viral modulation of CD1d expression will help to develop more efficient vaccines in the future to boost host NKT cell-mediated immune responses against herpesviruses. IMPORTANCE Herpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We previously reported that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule CD1d to evade the antiviral function of NKT cells. Here we identified the key cellular motor protein

  13. Measuring fermion parity correlations in 1D topological superconducting wires

    NASA Astrophysics Data System (ADS)

    Burnell, F. J.; Shnirman, Alexander; Oreg, Yuval

    2014-03-01

    Zero energy Majorana fermion states (Majoranas) can arise at the ends of a semiconducting wire in proximity with a superconductor. A first generation of experiments has detected a zero bias conductance peak in these systems that strongly suggests these Majoranas do exist; however, a definitive demonstration of the long-ranged entanglement that is crucial for potential applications in quantum computing has yet to be carried out. We will discuss a possible measurement scheme to detect this long-ranged entanglement in a wire system with two coupled pairs of Majoranas, by varying the coupling between one pair and measuring the effect this has on the state of the second pair. This work was supported by DFG, TAMU, ISF, EU FP7 Project SOLID, and ERC (FP7/2007-2013) 340210 grants, and the BMBF Project RUS 10/053 ``Topologische Materialien für Nanoelektronik.''

  14. A 1D model of the arterial circulation in mice.

    PubMed

    Aslanidou, Lydia; Trachet, Bram; Reymond, Philippe; Fraga-Silva, Rodrigo A; Segers, Patrick; Stergiopulos, Nikolaos

    2016-01-01

    At a time of growing concern over the ethics of animal experimentation, mouse models are still an indispensable source of insight into the cardiovascular system and its most frequent pathologies. Nevertheless, reference data on the murine cardiovascular anatomy and physiology are lacking. In this work, we developed and validated an in silico, one dimensional model of the murine systemic arterial tree consisting of 85 arterial segments. Detailed aortic dimensions were obtained in vivo from contrast-enhanced micro-computed tomography in 3 male, C57BL/6J anesthetized mice and 3 male ApoE(-/-) mice, all 12-weeks old. Physiological input data were gathered from a wide range of literature data. The integrated form of the Navier-Stokes equations was solved numerically to yield pressures and flows throughout the arterial network. The resulting model predictions have been validated against invasive pressure waveforms and non-invasive velocity and diameter waveforms that were measured in vivo on an independent set of 47 mice. In conclusion, we present a validated one-dimensional model of the anesthetized murine cardiovascular system that can serve as a versatile tool in the field of preclinical cardiovascular research. PMID:26555250

  15. Full Waveform 3D Synthetic Seismic Algorithm for 1D Layered Anelastic Models

    NASA Astrophysics Data System (ADS)

    Schwaiger, H. F.; Aldridge, D. F.; Haney, M. M.

    2007-12-01

    Numerical calculation of synthetic seismograms for 1D layered earth models remains a significant aspect of amplitude-offset investigations, surface wave studies, microseismic event location approaches, and reflection interpretation or inversion processes. Compared to 3D finite-difference algorithms, memory demand and execution time are greatly reduced, enabling rapid generation of seismic data within workstation or laptop computational environments. We have developed a frequency-wavenumber forward modeling algorithm adapted to realistic 1D geologic media, for the purpose of calculating seismograms accurately and efficiently. The earth model consists of N layers bounded by two halfspaces. Each layer/halfspace is a homogeneous and isotropic anelastic (attenuative and dispersive) solid, characterized by a rectangular relaxation spectrum of absorption mechanisms. Compressional and shear phase speeds and quality factors are specified at a particular reference frequency. Solution methodology involves 3D Fourier transforming the three coupled, second- order, integro-differential equations for particle displacements to the frequency-horizontal wavenumber domain. An analytic solution of the resulting ordinary differential system is obtained. Imposition of welded interface conditions (continuity of displacement and stress) at all interfaces, as well as radiation conditions in the two halfspaces, yields a system of 6(N+1) linear algebraic equations for the coefficients in the ODE solution. An optimized inverse 2D Fourier transform to the space domain gives the seismic wavefield on a horizontal plane. Finally, three-component seismograms are obtained by accumulating frequency spectra at designated receiver positions on this plane, followed by a 1D inverse FFT from angular frequency ω to time. Stress-free conditions may be applied at the top or bottom interfaces, and seismic waves are initiated by force or moment density sources. Examples reveal that including attenuation

  16. Statistics of scattered photons from a driven three-level emitter in 1D open space

    SciTech Connect

    Roy, Dibyendu; Bondyopadhaya, Nilanjan

    2014-01-07

    We derive the statistics of scattered photons from a Λ- or ladder-type three-level emitter (3LE) embedded in a 1D open waveguide. The weak probe photons in the waveguide are coupled to one of the two allowed transitions of the 3LE, and the other transition is driven by a control beam. This system shows electromagnetically induced transparency (EIT) which is accompanied with the Autler-Townes splitting (ATS) at a strong driving by the control beam, and some of these effects have been observed recently. We show that the nature of second-order coherence of the transmitted probe photons near two-photon resonance changes from bunching to antibunching to constant as strength of the control beam is ramped up from zero to a higher value where the ATS appears.

  17. Simulation of cirrus clouds with a quasi 2-moment microphysical scheme: a 1D case study

    NASA Astrophysics Data System (ADS)

    Pinty, J.-P.

    2003-04-01

    Cirrus clouds are receiving a great scientific interest because of their importance on the climate system through their impact on the radiation budget and on the physico-chemical balance of the upper troposphere. In this presentation, we concentrate on the application of a mixed-phase 2-moment microphysical scheme to simulate cirrus cloud properties with various ice nucleation modes. The complete scheme is implemented in the multi-purpose mesoscale model MésoNH with several capabilities (3D real vs. academic flows, grid-nesting, etc.). The 1D FIRE and subvisible test cases of Jensen et al. (1994 and 1996 both in JGR) are selected in the present study. The simulations are performed with a similar a thermo-dynamical and dynamical framework and microphysical results are analysed. Additional variations of some critical input parameters (CCN and IN concentrations, vertical velocity and ice characteristics) are explored to test the sensitivity of the microphysical scheme.

  18. 1D Coulomb drag between coupled nanowires formed at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Tang, Yuhe; Tomczyk, Michelle; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    ``Coulomb drag'' is a transport phenomenon where Coulomb interaction between two close but electrically isolated conductors induces voltage in one conductor when an electric current is injected in the other conductor. It is a powerful approach to probe electronic correlations. Here we examine 1D electronic correlations in a proximally coupled nanowire system where two parallel nanowires are created with conductive atomic force microscopy at the LaAlO3/SrTiO3 interface. Coulomb drag measurements are made by injecting current into one wire (drive wire) and measuring the induced voltage in the other wire (drag wire). This geometry offers experimental insights into the interplay of electron pairing and superconductivity in reduced dimensions. We gratefully acknowledge financial support from DOE DE-SC0014417 (JL).

  19. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants.

    PubMed Central

    Collins, N; Drake, J; Ayliffe, M; Sun, Q; Ellis, J; Hulbert, S; Pryor, T

    1999-01-01

    The Rp1-D gene for resistance to maize common rust (Puccinia sorghi) is a member of a complex locus (haplotype) composed of Rp1-D and approximately eight other gene homologs. The identity of Rp1-D was demonstrated by using two independent gene-tagging approaches with the transposons Mutator and Dissociation. PIC20, a disease resistance (R) gene analog probe previously mapped to the rp1 locus, detected insertion of Dissociation in an Rp1-D mutation and excision in three revertants. Independent libraries probed with the PIC20 or Mutator probes resulted in isolation of the same gene sequence. Rp1-D belongs to the nucleotide binding site, leucine-rich repeat class of R genes. However, unlike the rust resistance genes M and L6 from flax, the maize Rp1-D gene does not encode an N-terminal domain with similarity to the signal transduction domains of the Drosophila Toll protein and mammalian interleukin-1 receptor. Although the abundance of transcripts of genes from the rp1 complex changed with leaf age, there was no evidence of any change due to inoculation with avirulent or virulent rust biotypes. A set of 27 Rp1-D mutants displayed at least nine different deletions of Rp1-D gene family members that were consistent with unequal crossing-over events. One mutation (Rp1-D*-24) resulted in deletion of all but one gene family member. Other unique deletions were observed in the disease lesion mimic Rp1-D*-21 and the partially susceptible mutant Rp1-D*-5. Different rp1 specificities have distinct DNA fingerprints (haplotypes). Analysis of recombinants between rp1 specificities indicated that recombination had occurred within the rp1 gene complex. Similar analyses indicated that the rust R genes at the rp5 locus, 2 centimorgans distal to rp1, are not closely related to Rp1-D. PMID:10402435

  20. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants.

    PubMed

    Collins, N; Drake, J; Ayliffe, M; Sun, Q; Ellis, J; Hulbert, S; Pryor, T

    1999-07-01

    The Rp1-D gene for resistance to maize common rust (Puccinia sorghi) is a member of a complex locus (haplotype) composed of Rp1-D and approximately eight other gene homologs. The identity of Rp1-D was demonstrated by using two independent gene-tagging approaches with the transposons Mutator and Dissociation. PIC20, a disease resistance (R) gene analog probe previously mapped to the rp1 locus, detected insertion of Dissociation in an Rp1-D mutation and excision in three revertants. Independent libraries probed with the PIC20 or Mutator probes resulted in isolation of the same gene sequence. Rp1-D belongs to the nucleotide binding site, leucine-rich repeat class of R genes. However, unlike the rust resistance genes M and L6 from flax, the maize Rp1-D gene does not encode an N-terminal domain with similarity to the signal transduction domains of the Drosophila Toll protein and mammalian interleukin-1 receptor. Although the abundance of transcripts of genes from the rp1 complex changed with leaf age, there was no evidence of any change due to inoculation with avirulent or virulent rust biotypes. A set of 27 Rp1-D mutants displayed at least nine different deletions of Rp1-D gene family members that were consistent with unequal crossing-over events. One mutation (Rp1-D*-24) resulted in deletion of all but one gene family member. Other unique deletions were observed in the disease lesion mimic Rp1-D*-21 and the partially susceptible mutant Rp1-D*-5. Different rp1 specificities have distinct DNA fingerprints (haplotypes). Analysis of recombinants between rp1 specificities indicated that recombination had occurred within the rp1 gene complex. Similar analyses indicated that the rust R genes at the rp5 locus, 2 centimorgans distal to rp1, are not closely related to Rp1-D. PMID:10402435

  1. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    SciTech Connect

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  2. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    PubMed

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting. PMID:27171200

  3. Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1).

    PubMed

    Faltermann, Susanne; Prétôt, René; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    Microcystin-LR (MC-LR) and nodularin are hepatotoxins produced by several cyanobacterial species. Their toxicity is based on active cellular uptake and subsequent inhibition of protein phosphatases PP1/2A, leading to hyperphosphorylation and cell death. To date, uptake of MC-LR and nodularin in fish is poorly understood. Here, we investigated the role of the organic anion transporting polypeptide Oatp1d1 in zebrafish (drOatp1d1, Slco1d1) in cellular uptake in zebrafish. We stably transfected CHO and HEK293 cell lines expressing drOatp1d1. In both transfectants, uptake of MC-LR and nodularin was demonstrated by competitive inhibition of uptake with fluorescent substrate lucifer yellow. Direct uptake of MC-LR was demonstrated by immunostaining, and indirectly by the high cytotoxicity in stable transfectants. By means of a synthesized fluorescent labeled MC-LR derivative, direct uptake was further confirmed in HEK293 cells expressing drOatp1d1. Additionally, uptake and toxicity was investigated in the permanent zebrafish liver cell line ZFL. These cells had only a low relative abundance of drOatp1d1, drOatp2b1 and drOatp1f transcripts, which correlated with the lack of MC-LR induced cytotoxicity and transcriptional changes of genes indicative of endoplasmic reticulum stress, a known effect of this toxin. Our study demonstrates that drOatp1d1 functions as an uptake transporter for both MC-LR and nodularin in zebrafish. PMID:26769064

  4. Conductance and Absolutely Continuous Spectrum of 1D Samples

    NASA Astrophysics Data System (ADS)

    Bruneau, L.; Jakšić, V.; Last, Y.; Pillet, C.-A.

    2016-06-01

    We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators {h = -Δ + v} acting on {ℓ^2(mathbb{Z}_+)} in terms of the limiting behaviour of the Landauer-Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval {[1, L] \\cap mathbb{Z}_+} and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval {I} are non-vanishing in the limit {L to infty} iff {sp_ac(h) \\cap I neq emptyset}. We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579-616, 2015; Bruneau et al., Commun Math Phys 319:501-513, 2013).

  5. Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci

    PubMed Central

    Brorsson, Caroline A.; Pociot, Flemming

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376

  6. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    NASA Astrophysics Data System (ADS)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about

  7. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model

    PubMed Central

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125

  8. Magnetization jumps in 1D valence bond solids

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Sandvik, Anders

    2015-03-01

    A valence bond solid (VBS) is a long-range nonmagnetic state with broken lattice symmetries that can appear in certain quantum spin systems with competing interactions. Recent innovations in models and simulation techniques have enabled large scale numerical studies of these states and associated quantum phase transitions from the standard magnetic (Néel, for two or more dimensions) or power-law critical states (in one dimension). These studies have found evidence for the fractionalization of triplons into deconfined or nearly deconfined spinons (spin-1/2 bosons) in the VBS phase and at critical points. We here study the VBS and magnetization as a function of an external magnetic field in an extended Heisenberg model, known as the J-Q model, in one dimension. Using the stochastic series expansion (SSE) quantum monte carlo method with directed loop updates, we find discontinuities in the induced magnetization from a partially magnetized to a fully polarized state. We characterize the phases and the first-order quantum phase transition.

  9. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    SciTech Connect

    Ozaki, N.; Lappalainen, J.; Linnoila, M.

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  10. Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate.

    PubMed

    Vogler, Andreas; Labouvie, Ralf; Barontini, Giovanni; Eggert, Sebastian; Guarrera, Vera; Ott, Herwig

    2014-11-21

    We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase diagram for such a system and compare our results with theoretical predictions. Because of the high effective mass across the periodic potential and the increased 1D interaction strength, the phase transition is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial dimension such as coupled spin chains in magnetic insulators. PMID:25479499

  11. Magnetic responses in 1D mesoscopic rings and cylinders

    NASA Astrophysics Data System (ADS)

    Maiti, Santanu K.

    2006-03-01

    I investigated a detailed study of persistent current and low-field magnetic susceptibility in one-dimensional mesoscopic rings and cylinders threaded by slowly varying magnetic flux φ in the tight-binding model. In perfect rings described by constant number of electrons Ne, current shows only saw-tooth variation with φ, while for those rings described by constant chemical potential μ, current varies saw-tooth like for some special choices of μ, but in all other cases it shows kink-like structures. On the other hand, in perfect cylinders I get both saw-tooth and kink-like structures in persistent current whether these cylinders are described by constant Ne or μ. In presence of impurity, current gets a continuous variation with φ only for the rings described by constant Ne, while in all other cases it depends on the choice of μ. My exact calculation predicts that the diamagnetic and paramagnetic sign of the low-field currents can be determined exactly for the rings described by constant Ne. In perfect rings, I get only diamagnetic currents both for odd and even Ne, while in presence of impurity current always shows diamagnetic sign for the rings with odd Ne and paramagnetic sign for the rings with even Ne. Both for the perfect and disordered rings described by constant μ the sign of the current cannot be mentioned exactly since it depends on the choice of μ and disordered configurations. Similar arguments are also true for the cylinders those are described either by constant Ne or by constant μ since the sign of the current in these systems depends on Ne, μ and disordered configurations.

  12. UNVEILING THE MAIN HEATING SOURCES IN THE CEPHEUS A HW2 REGION

    SciTech Connect

    Jimenez-Serra, I.; Caselli, P.; MartIn-Pintado, J.; Rodriguez-Franco, A.; Martin, S.; Chandler, C.; Winters, J. M. E-mail: P.Caselli@leeds.ac.u E-mail: arturo@damir.iem.csic.e E-mail: cchandle@nrao.ed

    2009-10-01

    We present high angular resolution Plateau de Bure Interferometer images (beam of approx0.''33) of the J = 27 -> 26 line from several vibrational levels (v {sub 7} = 1 and v {sub 6} = 1) of HC{sub 3}N toward Cepheus A HW2. These images reveal the two main heating sources in the cluster: one centered in the disk collimating the HW2 radio jet (the HW2 disk), and the other associated with a hot core 0.''3 northeast HW2 (the HC). This is the first time that vibrationally excited emission of HC{sub 3}N is spatially resolved in a disk. The kinematics of this emission shows that the HW2 disk rotates following a Keplerian law. We derive the temperature profiles in the two objects from the excitation of HC{sub 3}N along the HW2 disk and the HC. These profiles reveal that both objects are centrally heated and show temperature gradients. The inner and hotter regions have temperatures of 350 +- 30 K and 270 +- 20 K for the HW2 disk and the HC, respectively. In the cooler and outer regions, the temperature drops to 250 +- 30 K in the HW2 disk, and to 220 +- 15 K in the HC. The estimated luminosity of the heating source of the HW2 disk is approx2.2 x 10{sup 4} L {sub sun}, and approx3000 L {sub sun} for the HC. The most massive protostar in the HW2 region is the powering source of the HW2 radio jet. We discuss the formation of multiple systems in this cluster. The proximity of the HC to HW2 suggests that these sources likely form a binary system of B stars, explaining the observed precession of the HW2 radio jet.

  13. Anthrax lethal toxin impairs CD1d-mediated antigen presentation by targeting the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.

    PubMed

    Khan, Masood A; Gallo, Richard M; Brutkiewicz, Randy R

    2010-05-01

    Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis and an important means by which this bacterium evades the host's immune system. In this study, we demonstrate that CD1d-expressing cells treated with LT have reduced CD1d-mediated antigen presentation. We earlier showed an important role for the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulation of CD1d-mediated antigen presentation, and we report here that LT impairs antigen presentation by CD1d in an ERK1/2-dependent manner. Similarly, LT and the ERK1/2 pathway-specific inhibitor U0126 caused a decrease in major histocompatibility complex (MHC) class II-mediated antigen presentation. Confocal microscopy analyses revealed altered intracellular distribution of CD1d and LAMP-1 in LT-treated cells, similar to the case for ERK1/2-inhibited cells. These results suggest that Bacillus anthracis has the ability to evade the host's innate immune system by reducing CD1d-mediated antigen presentation through targeting the ERK1/2 pathway. PMID:20194602

  14. Reactions in the system HfO/sub 2/-SrO, HfO/sub 2/-BaO, and ZrO/sub 2/-BaO in high HfO/sub 2/ or ZrO/sub 2/ regions

    SciTech Connect

    Shevchenko, A.V.; Lopato, L.M.; Gerasimyuk, G.I.; Zaitseva, Z.A.

    1988-02-01

    The objective of this work was to study phase equilibria in the systems HfO/sub 2/-SrO, HfO/sub 2/-BaO, and ZrO/sub 2/-BaO in the 0 to 50 mole% SrO or BaO range and between 1600 and 2800/sup 0/C with the aid of high-temperature calcining and quenching methods. The samples' phase composition was determined by x-ray, microstructural, and petrographic methods. Samples calcined and melted in the solar furnace were analyzed by x-ray diffraction at room temperature on a DRON-1.5 diffractometer with Cu-K/sub ..cap alpha../ radiation and a Ni filter. Refractive indices were measured in high-refraction immersion liquids and in sulfur and selenium alloys. They form characteristic narrow solid solution regions based on the monoclinic, tetragonal, and cubic modifications of HfO/sub 2/(ZrO/sub 2/).

  15. Tctex1d2 Is a Negative Regulator of GLUT4 Translocation and Glucose Uptake.

    PubMed

    Shimoda, Yoko; Okada, Shuichi; Yamada, Eijiro; Pessin, Jeffrey E; Yamada, Masanobu

    2015-10-01

    Tctex1d2 (Tctex1 domain containing 2) is an open reading frame that encodes for a functionally unknown protein that contains a Tctex1 domain found in dynein light chain family members. Examination of gene expression during adipogenesis demonstrated a marked increase in Tctex1d2 protein expression that was essentially undetectable in preadipocytes and markedly induced during 3T3-L1 adipocyte differentiation. Tctex1d2 overexpression significantly inhibited insulin-stimulated glucose transporter 4 (GLUT4) translocation and 2-deoxyglucose uptake. In contrast, Tctex1d2 knockdown significantly increased insulin-stimulated GLUT4 translocation and 2-deoxyglucose uptake. However, acute insulin stimulation (up to 30 min) in 3T3-L1 adipocytes with overexpression or knockdown of Tctex1d2 had no effect on Akt phosphorylation, a critical signal transduction target required for GLUT4 translocation. Although overexpression of Tctex1d2 had no significant effect on GLUT4 internalization, Tctex1d2 was found to associate with syntaxin 4 in an insulin-dependent manner and inhibit Doc2b binding to syntaxin 4. In addition, glucose-dependent insulinotropic polypeptide rescued the Tctex1d2 inhibition of insulin-stimulated GLUT4 translocation by suppressing the Tctex1d2-syntaxin 4 interaction and increasing Doc2b-Synatxin4 interactions. Taking these results together, we hypothesized that Tctex1d2 is a novel syntaxin 4 binding protein that functions as a negative regulator of GLUT4 plasma membrane translocation through inhibition of the Doc2b-syntaxin 4 interaction. PMID:26200093

  16. 1D Tight-Binding Models Render Quantum First Passage Time "Speakable"

    NASA Astrophysics Data System (ADS)

    Ranjith, V.; Kumar, N.

    2015-12-01

    The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.

  17. The Relationship Between the Sloshing and Breathing Frequencies in a 1D Vertically Aligned Dust Particle Chain

    NASA Astrophysics Data System (ADS)

    Kong, Jie; Qiao, Ke; Sabo, Hannah; Matthews, Lorin; Hyde, Truell

    2013-10-01

    When confined in a glass box placed on the lower powered electrode of a GEC rf reference cell, dust particles immersed in plasma can form vertically aligned 1D chains. Both the formation and subsequent structural changes within this vertically aligned dust chain are controlled by the rf power, since the rf power effects the ionization rate in the cell, the screening parameter and the charge on the dust particles. In this study, oscillations of a 1D vertically aligned dust particle chain are employed to investigate the dust charge and screening length through measurement of the resonance frequency. It will be shown that the relationship between the sloshing and breathing frequencies indicates that the ion streaming effect plays an important role in vertical oscillations and must be included in any structural analysis of the system.

  18. A global view of the OCA2-HERC2 region and pigmentation.

    PubMed

    Donnelly, Michael P; Paschou, Peristera; Grigorenko, Elena; Gurwitz, David; Barta, Csaba; Lu, Ru-Band; Zhukova, Olga V; Kim, Jong-Jin; Siniscalco, Marcello; New, Maria; Li, Hui; Kajuna, Sylvester L B; Manolopoulos, Vangelis G; Speed, William C; Pakstis, Andrew J; Kidd, Judith R; Kidd, Kenneth K

    2012-05-01

    Mutations in the gene OCA2 are responsible for oculocutaneous albinism type 2, but polymorphisms in and around OCA2 have also been associated with normal pigment variation. In Europeans, three haplotypes in the region have been shown to be associated with eye pigmentation and a missense SNP (rs1800407) has been associated with green/hazel eyes (Branicki et al. in Ann Hum Genet 73:160-170, 2009). In addition, a missense mutation (rs1800414) is a candidate for light skin pigmentation in East Asia (Yuasa et al. in Biochem Genet 45:535-542, 2007; Anno et al. in Int J Biol Sci 4, 2008). We have genotyped 3,432 individuals from 72 populations for 21 SNPs in the OCA2-HERC2 region including those previously associated with eye or skin pigmentation. We report that the blue-eye associated alleles at all three haplotypes were found at high frequencies in Europe; however, one is restricted to Europe and surrounding regions, while the other two are found at moderate to high frequencies throughout the world. We also observed that the derived allele of rs1800414 is essentially limited to East Asia where it is found at high frequencies. Long-range haplotype tests provide evidence of selection for the blue-eye allele at the three haplotyped systems but not for the green/hazel eye SNP allele. We also saw evidence of selection at the derived allele of rs1800414 in East Asia. Our data suggest that the haplotype restricted to Europe is the strongest marker for blue eyes globally and add further inferential evidence that the derived allele of rs1800414 is an East Asian skin pigmentation allele. PMID:22065085

  19. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    NASA Astrophysics Data System (ADS)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  20. The FC-1D: The profitable alternative Flying Circus Commercial Aviation Group

    NASA Technical Reports Server (NTRS)

    Meza, Victor J.; Alvarez, Jaime; Harrington, Brook; Lujan, Michael A.; Mitlyng, David; Saroughian, Andy; Silva, Alex; Teale, Tim

    1994-01-01

    The FC-1D was designed as an advanced solution for a low cost commercial transport meeting or exceeding all of the 1993/1994 AIAA/Lockheed request for proposal requirements. The driving philosophy behind the design of the FC-1D was the reduction of airline direct operating costs. Every effort was made during the design process to have the customer in mind. The Flying Circus Commercial Aviation Group targeted reductions in drag, fuel consumption, manufacturing costs, and maintenance costs. Flying Circus emphasized cost reduction throughout the entire design program. Drag reduction was achieved by implementation of the aft nacelle wing configuration to reduce cruise drag and increase cruise speeds. To reduce induced drag, rather than increasing the wing span of the FC-1D, spiroids were included in the efficient wing design. Profile and friction drag are reduced by using riblets in place of paint around the fuselage and empennage of the FC-1D. Choosing a single aisle configuration enabled the Flying Circus to optimize the fuselage diameter. Thus, reducing fuselage drag while gaining high structural efficiency. To further reduce fuel consumption a weight reduction program was conducted through the use of composite materials. An additional quality of the FC-1D is its design for low cost manufacturing and assembly. As a result of this design attribute, the FC-1D will have fewer parts which reduces weight as well as maintenance and assembly costs. The FC-1D is affordable and effective, the apex of commercial transport design.

  1. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  2. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  3. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  4. Species Specific Differences of CD1d Oligomer Loading In Vitro

    PubMed Central

    Paletta, Daniel; Fichtner, Alina Suzann; Starick, Lisa; Porcelli, Steven A.; Savage, Paul B.; Herrmann, Thomas

    2015-01-01

    CD1d molecules are MHC class I-like molecules that present glycolipids to iNKT cells. The highly conserved interaction between CD1d:α-Galactosylceramide (αGC) complexes and the iNKT TCR not only defines this population of αβ T cells but can also be used for its direct identification. Therefore, CD1d oligomers are a widely used tool for iNKT cell related investigations. To this end, the lipid chains of the antigen have to be inserted into the hydrophobic pockets of the CD1d binding cleft, often with help of surfactants. In this study, we investigated the influence of different surfactants (Triton X-100, Tween 20, Tyloxapol) on in vitro loading of CD1d molecules derived from four different species (human, mouse, rat and cotton rat) with αGC and derivatives carrying modifications of the acyl-chain (DB01-1, PBS44) and a 6-acetamido-6-deoxy-addition at the galactosyl head group (PBS57). We also compared rat CD1d dimers with tetramers and staining of an iNKT TCR transductant was used as readout for loading efficacy. The results underlined the importance of CD1d loading efficacy for proper analysis of iNKT TCR binding and demonstrated the necessity to adjust loading conditions for each oligomer/glycolipid combination. The efficient usage of surfactants as a tool for CD1d loading was revealed to be species-specific and depending on the origin of the CD1d producing cells. Additional variation of surfactant-dependent loading efficacy between tested glycolipids was influenced by the acyl-chain length and the modification of the galactosyl head group with PBS57 showing the least dependence on surfactants and the lowest degree of species-dependent differences. PMID:26599805

  5. GaAs solar cell photoresponse modeling using PC-1D V2.1

    NASA Technical Reports Server (NTRS)

    Huber, D. A.; Olsen, L. C.; Dunham, G.; Addis, F. W.

    1991-01-01

    Photoresponse data of high efficiency GaAs solar cells were analyzed using PC-1D V2.1. The approach required to use PC-1D for photoresponse data analysis, and the physical insights gained from performing the analysis are discussed. In particular, the effect of Al(x)Ga(1-x)As heteroface quality was modeled. Photoresponse or spectral quantum efficiency is an important tool in characterizing material quality and predicting cell performance. The strength of the photoresponse measurement lies in the ability to precisely fit the experimental data with a physical model. PC-1D provides a flexible platform for calculations based on these physical models.

  6. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport.

    PubMed

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R; Mans, Dorus A; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E C; Yap, Zhi Min; Letteboer, Stef J F; Taylor, S Paige; Herridge, Warren; Johnson, Colin A; Scambler, Peter J; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M; Beales, Philip L; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M; Witman, George B

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  7. Comet Halley O(1D) and H2O production rates

    NASA Technical Reports Server (NTRS)

    Magee-Sauer, K.; Scherb, F.; Roesler, F. L.; Harlander, J.

    1990-01-01

    Ground-based dual-etalon Fabry-Perot spectrometer observations have been made of Comet Halley's forbidden O I 6300 A emission. The 0.2 A resolution of the spectral scans was sufficient to resolve the O I forbidden line emissions from both nearby cometary NH2 and telluric emissions. On the basis of these measurements, the production rate Q of O(1D) was determined; it is then found, by taking into account the photodissociation of H2O and OH as sources of O(1D), that the ratio of H2O/O(1D) production rates is of the order of 6.

  8. TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    PubMed Central

    Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R.; Mans, Dorus A.; Huber, Celine; Boldt, Karsten; Patel, Mitali; van Reeuwijk, Jeroen; Plaza, Jean-Marc; van Beersum, Sylvia E. C.; Yap, Zhi Min; Letteboer, Stef J. F.; Taylor, S. Paige; Herridge, Warren; Johnson, Colin A.; Scambler, Peter J.; Ueffing, Marius; Kayserili, Hulya; Krakow, Deborah; King, Stephen M.; Beales, Philip L.; Al-Gazali, Lihadh; Wicking, Carol; Cormier-Daire, Valerie; Roepman, Ronald; Mitchison, Hannah M.; Witman, George B.; Al-Turki, Saeed; Anderson, Carl; Anney, Richard; Antony, Dinu; Asimit, Jennifer; Ayub, Mohammad; Barrett, Jeff; Barroso, Inês; Bentham, Jamie; Bhattacharya, Shoumo; Blackwood, Douglas; Bobrow, Martin; Bochukova, Elena; Bolton, Patrick; Boustred, Chris; Breen, Gerome; Brion, Marie-Jo; Brown, Andrew; Calissano, Mattia; Carss, Keren; Chatterjee, Krishna; Chen, Lu; Cirak, Sebhattin; Clapham, Peter; Clement, Gail; Coates, Guy; Collier, David; Cosgrove, Catherine; Cox, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Daly, Allan; Danecek, Petr; Smith, George Davey; Day-Williams, Aaron; Day, Ian; Durbin, Richard; Edkins, Sarah; Ellis, Peter; Evans, David; Farooqi, I. Sadaf; Fatemifar, Ghazaleh; Fitzpatrick, David; Flicek, Paul; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Gallagher, Louise; Gaunt, Tom; Geschwind, Daniel; Greenwood, Celia; Grozeva, Detelina; Guo, Xiaosen; Gurling, Hugh; Hart, Deborah; Hendricks, Audrey; Holmans, Peter; Huang, Jie; Humphries, Steve E.; Hurles, Matt; Hysi, Pirro; Jackson, David; Jamshidi, Yalda; Jewell, David; Chris, Joyce; Kaye, Jane; Keane, Thomas; Kemp, John; Kennedy, Karen; Kent, Alastair; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lee, Irene; Li, Rui; Li, Yingrui; Ryan, Liu; Lönnqvist, Jouko; Lopes, Margarida; MacArthur, Daniel G.; Massimo, Mangino; Marchini, Jonathan; Maslen, John; McCarthy, Shane; McGuffin, Peter; McIntosh, Andrew; McKechanie, Andrew; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Min, Josine; Moayyeri, Alireza; Morris, James; Muddyman, Dawn; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael; O'Rahilly, Stephen; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Perry, John; Pietilainen, Olli; Plagnol, Vincent; Quail, Michael A.; Quaye, Lydia; Raymond, Lucy; Rehnström, Karola; Brent Richards, J.; Ring, Sue; Ritchie, Graham R S; Savage, David B.; Schoenmakers, Nadia; Semple, Robert K.; Serra, Eva; Shihab, Hashem; Shin, So-Youn; Skuse, David; Small, Kerrin; Smee, Carol; Soler, Artigas María; Soranzo, Nicole; Southam, Lorraine; Spector, Tim; St Pourcain, Beate; St. Clair, David; Stalker, Jim; Surdulescu, Gabriela; Suvisaari, Jaana; Tachmazidou, Ioanna; Tian, Jing; Timpson, Nic; Tobin, Martin; Valdes, Ana; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Wain, Louise; Walter, Klaudia; Wang, Jun; Ward, Kirsten; Wheeler, Ellie; Whittall, Ros; Williams, Hywel; Williamson, Kathy; Wilson, Scott G.; Wong, Kim; Whyte, Tamieka; ChangJiang, Xu; Zeggini, Eleftheria; Zhang, Feng; Zheng, Hou-Feng

    2015-01-01

    The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. PMID:26044572

  9. Application of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study

    PubMed Central

    Feng, Shangguo; Jiang, Mengying; Shi, Yujun; Jiao, Kaili; Shen, Chenjia; Lu, Jiangjie; Ying, Qicai; Wang, Huizhong

    2016-01-01

    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources. PMID:27486467

  10. Application of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study.

    PubMed

    Feng, Shangguo; Jiang, Mengying; Shi, Yujun; Jiao, Kaili; Shen, Chenjia; Lu, Jiangjie; Ying, Qicai; Wang, Huizhong

    2016-01-01

    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources. PMID:27486467