Thermal characterization of large size lithium-ion pouch cell based on 1d electro-thermal model
NASA Astrophysics Data System (ADS)
Vertiz, G.; Oyarbide, M.; Macicior, H.; Miguel, O.; Cantero, I.; Fernandez de Arroiabe, P.; Ulacia, I.
2014-12-01
Thermal management is one of the key factors to keep lithium-ion cells in optimum electrical performance, under safe working conditions and into a reasonably low ageing process. This issue is becoming particularly relevant due to the heterogeneous heat generation along the cell. Cell working temperature is determined by ambient temperature, heat generation and evacuation capacity. Therefore, thermal management is established by: i) the intrinsic thermal properties (heat capacity & thermal conductivity) and ii) the heat generation electro-thermal parameters (internal resistance, open circuit voltage & entropic factor). In this research, different methods - calculated and experimental - are used to characterize the main heat properties of a 14Ah -LiFePO4/graphite-commercial large sizes pouch cell. In order to evaluate the accuracy of methods, two comparisons were performed. First, Newman heat generation estimations were compared with experimental heat measurements. Secondly, empirical thermal cell behaviour was match with 1D electro-thermal model response. Finally, considering the results, the most adequate methodology to evaluate the key thermal parameters of a large size Lithium-ion pouch cell are proposed to be: i) pulse method for internal resistance, ii)heat loss method for entropic factor; and iii)experimental measurement (ARC calorimeter and C-177-97 standard method) for heat capacity and thermal conductivity.
A 1-D radiative conductive model to study the SOIR/VEx thermal profiles
NASA Astrophysics Data System (ADS)
Mahieux, Arnaud; Erwin, Justin T.; Chamberlain, Sarah; Robert, Séverine; Carine Vandaele, Ann; Wilquet, Valérie; Thomas, Ian; Yelle, Roger V.; Bertaux, Jean-Loup
2015-04-01
SOIR is an infrared spectrometer on board Venus Express that probes the Venus terminator region since 2006. The measurements are taken on the morning and evening sides of the terminator, covering all latitudes from the North Pole to the South Pole. Its wavelength range - 2.2 to 4.3 μm - allows a detailed chemical inventory of the Venus atmosphere [1-5], such as CO2, CO, H2O, HCl, HF, SO2 and aerosols. CO2 is detected from 70 km up to 165 km, CO from 70 km to 140 km, and the minor species typically below 110 km down to 70 km. Number density profiles of these species are computed from the measured spectra. Temperature profiles are obtained while computing the spectral inversion of the CO2 spectra combined with the hydrostatic law [6]. These temperature measurements show a striking permanent temperature minimum (at 125 km) and a weaker temperature maximum (over 100-115 km). The time variability of the CO2 density profiles spans over two orders of magnitude, and a clear trend is seen with latitude. The temperature variations are also important, of the order of 35 K for a given pressure level, but the latitude variation are small. Miss-RT, a 1D radiative transfer model has been developed to reproduce the SOIR terminator profiles, derived from the Mars thermosphere code presented in [7]. This model has been expanded to better account for the CO2, CO, and O non-LTE radiative heating and cooling processes which have to be considered in the dense atmosphere of Venus. Radiative cooling by minor species detected by SOIR (e.g. HCl, SO2, and H2O) are found to be small in comparison to the 15 μm CO2 cooling. Aerosol cooling in the 60-90km altitude range may be important to the thermal balance. There is a good agreement between the 1D model temperature profile and the mean SOIR temperature profile. Further we can suggest parameters that can be adjusted to improve the agreement between the model and measurements. The remaining differences can be attributed to the atmosphere
NASA Astrophysics Data System (ADS)
Subin, Z. M.; Riley, W. J.
2009-12-01
Compared to solid ground, lakes tend to have decreased albedo, increased ground heat conductance, and increased effective ground heat capacity. These features alter local surface fluxes compared to nearby vegetation, which in turn alter the climate of the nearby atmosphere and surrounding land areas. Interest in feedbacks between lake behavior and climate change provides motivation for including lakes in global climate models, as does the desire to do effective regional downscaling of climate model predictions over regions with large lake area fraction, like the Great Lakes region. Finally, the initiation, warming, and expansion of Arctic thermokarst lakes could provide an important geophysical and biogeochemical feedback to climate warming. The Community Land Model (CLM) 3.5 currently uses a 1D Hostetler lake scheme. We have updated this model to improve the characterization of surface fluxes, eddy diffusivity, and convective mixing. We also link the lake model with the full snow physics found over other land surface types (including 5 snow layers, aerosol deposition, partial transparency of snow layers, and snow aging), add phase change & ice physics to the lake model, and include soil layers beneath lakes. These soil layers will be an important component of future thermokarst lake modeling, as thermokarst lakes tend to form regions of unfrozen soil (talik) beneath them that become active sites for anaerobic decomposition of pre-modern peat. We have also integrated the updated lake model into a modified version of the Weather Research and Forecasting (WRF) Model 3.0. We will present comparisons between predicted and observed thermal conditions, snow and ice depths, and surface energy fluxes at several lake sites, using local meteorological forcing or integrated regional atmospheric coupling. The thermal predictions are generally reasonable and show a marked improvement from runs performed with the baseline CLM 3.5 version of the lake model. Over Sparkling Lake
NASA Technical Reports Server (NTRS)
Schmitt, G. A.; Abreu, V. J.; Hays, P. B.
1981-01-01
Thermal and nonthermal O(1D) number density profiles are calculated. The two populations are assumed to be coupled by a thermalization cross-section which determines the loss and production in the nonthermal and thermal populations, respectively. The sources, sinks and transport of the two populations are used to model volume emission rate profiles at 6300 A. The 6300 A brightness measured by the Visible Airglow Experiment is then used to establish the presence of the nonthermal population and to determine the thermalization cross-section.
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Crain, William K.; Stuckey, C. Irvin; Palko, Richard L.
1998-01-01
The purpose of the work is to demonstrate that the flat test panel substrate temperatures are consistent with analysis predictions for MCC-1 applied to a aluminum substrate. The testing was performed in an aerothermal facility on samples of three different thicknesses of MCC-1 on an aluminum substrate. The results of the test were compared with a Transient Thermal model. The key assumptions of the Transient Thermal model were: (1) a one-dimensional heat transfer; (2) a constant ablation recession rate (determined from pre and post-test measurements); (3) ablation temperature of 540 degrees F; (4) Char left behind the ablation front; and (5) temperature jump correction for incident heat transfer coefficient. Two methods were used to model the heating of bare MCC-1: (1) Directly input surface temperature as a function of time; and (2) Aerothermal heating using calibration plate data and subtracting the radiation losses to tunnel walls. The results are presented as graphs. This article is presented in Viewgraph format.
Coherent thermal conductance of 1-D photonic crystals
NASA Astrophysics Data System (ADS)
Tschikin, Maria; Ben-Abdallah, Philippe; Biehs, Svend-Age
2012-10-01
We present an exact calculation of coherent thermal conductance in 1-D multilayer photonic crystals using the S-matrix method. In particular, we study the thermal conductance in a bilayer structure of Si/vacuum or Al2O3/vacuum slabs by means of the exact radiative heat flux expression. Based on the results obtained for the Al2O3/vacuum structure we show by comparison with previous works that the material losses and (localized) surface modes supported by the inner layers play a fundamental role and cannot be omitted in the definition of thermal conductance. Our results could have significant implications in the conception of efficient thermal barriers.
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
NASA Astrophysics Data System (ADS)
Driba, D. L.; De Lucia, M.; Peiffer, S.
2014-12-01
Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in
Brady 1D seismic velocity model ambient noise prelim
Mellors, Robert J.
2013-10-25
Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.
1-D Modeling of Massive Particle Injection (MPI) in Tokamaks
NASA Astrophysics Data System (ADS)
Wu, W.; Parks, P. B.; Izzo, V. A.
2008-11-01
A 1-D Fast Current Quench (FCQ) model is developed to study current evolution and runaway electron suppression under massive density increase. The model consists of coupled toroidal electric field and energy equations, and it is solved numerically for DIII-D and ITER operating conditions. Simulation results suggest that fast shutdown by D2 liquid jet/pellet injection is in principle achievable for the desired plasma cooling time (˜15 ms for DIII-D and ˜50 ms for ITER) under ˜150x or higher densification. The current density and pressure profile are practically unaltered during the initial phase of jet propagation when dilution cooling dominates. With subsequent radiation cooling, the densified discharge enters the strongly collisional regime where Pfirsch-Schluter thermal diffusion can inhibit current contraction on the magnetic axis. Often the 1/1 kink instability, addressed by Kadomtsev's magnetic reconnection model, can be prevented. Our results are compared with NIMROD simulations in which the plasma is suddenly densified by ˜100x and experiences instantaneous dilution cooling, allowing for use of actual (lower) Lundquist numbers.
GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL
KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.
2007-01-17
This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.
Non-cooperative Brownian donkeys: A solvable 1D model
NASA Astrophysics Data System (ADS)
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F < 0 and negative for F > 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Structural stability of a 1D compressible viscoelastic fluid model
NASA Astrophysics Data System (ADS)
Huo, Xiaokai; Yong, Wen-An
2016-07-01
This paper is concerned with a compressible viscoelastic fluid model proposed by Öttinger. Although the model has a convex entropy, the Hessian matrix of the entropy does not symmetrize the system of first-order partial differential equations due to the non-conservative terms in the constitutive equation. We show that the corresponding 1D model is symmetrizable hyperbolic and dissipative and satisfies the Kawashima condition. Based on these, we prove the global existence of smooth solutions near equilibrium and justify the compatibility of the model with the Navier-Stokes equations.
A 1-D morphodynamic model of postglacial valley incision
NASA Astrophysics Data System (ADS)
Tunnicliffe, Jon F.; Church, Michael
2015-11-01
Chilliwack River is typical of many Cordilleran valley river systems that have undergone dramatic Holocene degradation of valley fills that built up over the course of Pleistocene glaciation. Downstream controls on base level, mainly blockage of valleys by glaciers, led to aggradation of significant glaciofluvial and glaciolacustrine valley fills and fan deposits, subsequently incised by fluvial action. Models of such large-scale, long-term degradation present a number of important challenges since the evolution of model parameters, such as the rate of bedload transport and grain size characteristics, are governed by the nature of the deposit. Sediment sampling in the Chilliwack Valley reveals a complex sequence of very coarse to fine textural modes. We present a 1-D numerical morphodynamic model for the river-floodplain system tailored to conditions in the valley. The model is adapted to dynamically adjust channel width to optimize sediment transporting capacity and to integrate relict valley fill material as the channel incises through valley deposits. Sensitivity to model parameters is studied using four principal criteria: profile concavity, rate of downstream grain size fining, bed surface sand content, and the timescale to equilibrium. Model results indicate that rates of abrasion and coarsening of the grain size distributions exert the strongest controls on all of the interrelated model performance criteria. While there are a number of difficulties in satisfying all model criteria simultaneously, results indicate that 1-D models of valley bottom sedimentary systems can provide a suitable framework for integrating results from sediment budget studies and chronologies of sediment evacuation established from dating.
Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint
McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.
2012-06-01
To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.
Prediction of car cabin environment by means of 1D and 3D cabin model
NASA Astrophysics Data System (ADS)
Fišer, J.; Pokorný, J.; Jícha, M.
2012-04-01
Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.
Measurement-induced disturbance and thermal negativity in 1D optical lattice chain
Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu
2013-03-15
We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.
Evaluation of 2 1-D cloud models for the analysis of VAS soundings
NASA Technical Reports Server (NTRS)
Emmitt, G. D.
1984-01-01
Evaluation of the satellite Visual Infrared Spin Scan Radiometer Atmospheric Sounder (VISSR) has begun to document several of its critical shortcomings as far as numerical cloud models are concerned: excessive smoothing of thermal inversions; imprecise measurement of boundary layer moisture; and tendency to exaggerate atmospheric stability. The sensitivity of 1-D cloud models to their required inputs is stressed with special attention to those parameters obtained from atmospheric soundings taken by the VAS or rawinsonde. In addition to performing model experiments using temperature and moisture profiles having the general characteristics of VAS soundings, standard input sensitivity tests were made and 1-D model performance was compared with observations and the results of a 2-D model experiment using AVE/VAS data (Atmospheric Variability Experiment). Although very encouraging, the results are not sufficient to make any specific conclusions. In general, the VAS soundings are likely to be inadequate to provide the cloud base (and subcloud layer) information needed for inputs to current cumulus models. Above cloud base, the tendency to exaggerate the stability of the atmosphere requires solution before meaningful model experiments are run.
A 1-D model study of Arctic sea-ice salinity
NASA Astrophysics Data System (ADS)
Griewank, P. J.; Notz, D.
2014-03-01
We use a 1-D model to study how salinity evolves in Arctic sea ice. To do so, we first explore how sea-ice surface melt and flooding can be incorporated into the 1-D thermodynamic SAMSIM sea-ice model presented by Griewank and Notz (2013). We introduce flooding and a flushing parametrization which treats sea ice as a hydraulic network of horizontal and vertical fluxes. Forcing SAMSIM with 36 years of ERA-interim atmospheric reanalysis data, we obtain a modeled Arctic sea-ice salinity that agrees well with ice-core measurements. The simulations hence allow us to identify the main drivers of the observed mean salinity profile in Arctic sea ice. Our results show a 1.5-4 g kg-1 decrease of bulk salinity via gravity drainage after ice growth has ceased and before flushing sets in, which hinders approximating bulk salinity from ice thickness beyond the first growth season. In our simulations, salinity variability of first-year ice is mostly restricted to the top 20 cm. We find that ice thickness, thermal resistivity, freshwater column, and stored energy change by less than 5% on average when the full salinity parametrization is replaced with a prescribed salinity profile. We conclude that for earth system models the impact of fully parametrizing the Arctic temporal salinity evolution is too small to justify the increase in computational cost and model complexity.
Characterization and thermal stability of cobalt-modified 1-D nanostructured trititanates
Morgado, Edisson; Abreu, Marco A.S. de
2009-01-15
One-dimensional (1-D) nanostructured sodium trititanates were obtained via alkali hydrothermal method and modified with cobalt via ion exchange at different Co concentrations. The resulting cobalt-modified trititanate nanostructures (Co-TTNS) were characterized by TGA, XRD, TEM/SAED, DRS-UV-Vis and N{sub 2} adsorption techniques. Their general chemical formula was estimated as Na{sub x}Co{sub y/2}H{sub 2-x-y}Ti{sub 3}O{sub 7}.nH{sub 2}O and they maintained the same nanostructured and multilayered nature of the sodium precursor, with the growth direction of nanowires and nanotubes along [010]. As a consequence of the Co{sup 2+} incorporation replacing sodium between trititanate layers, two new diffraction lines became prominent and the interlayer distance was reduced with respect to that of the precursor sodium trititanate. Surface area was slightly increased with cobalt intake whereas pore size distribution was hardly affected. Besides, Co{sup 2+} incorporation in trititanate crystal structure also resulted in enhanced visible light photon absorption as indicated by a strong band-gap narrowing. Morphological and structural thermal transformations of Co-TTNS started nearly 400 deg. C in air and the final products after calcination at 800 deg. C were found to be composed of TiO{sub 2}-rutile, CoTiO{sub 3} and a bronze-like phase with general formula Na{sub 2x}Ti{sub 1-x}Co{sub x}O{sub 2}. - Graphical abstract: Co{sup 2+} incorporation in 1D-trititanate crystal nanostructure (Co-TTNS) causes reduction in interlayer distance by comparison with its sodium precursor (Na-TTNS) and leads to enhanced visible light photon absorption efficiency due to a strong band-gap narrowing.
Quasi 1D Modeling of Mixed Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.
2012-01-01
The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
NASA Astrophysics Data System (ADS)
Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.
2015-01-01
Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due
Validation of 1-D transport and sawtooth models for ITER
Connor, J.W.; Turner, M.F.; Attenberger, S.E.; Houlberg, W.A.
1996-12-31
In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles.
Kinetic and Stochastic Models of 1D yeast ``prions"
NASA Astrophysics Data System (ADS)
Kunes, Kay
2005-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.
Kinetic Model for 1D aggregation of yeast ``prions''
NASA Astrophysics Data System (ADS)
Kunes, Kay; Cox, Daniel; Singh, Rajiv
2004-03-01
Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).
A 1D model of the arterial circulation in mice.
Aslanidou, Lydia; Trachet, Bram; Reymond, Philippe; Fraga-Silva, Rodrigo A; Segers, Patrick; Stergiopulos, Nikolaos
2016-01-01
At a time of growing concern over the ethics of animal experimentation, mouse models are still an indispensable source of insight into the cardiovascular system and its most frequent pathologies. Nevertheless, reference data on the murine cardiovascular anatomy and physiology are lacking. In this work, we developed and validated an in silico, one dimensional model of the murine systemic arterial tree consisting of 85 arterial segments. Detailed aortic dimensions were obtained in vivo from contrast-enhanced micro-computed tomography in 3 male, C57BL/6J anesthetized mice and 3 male ApoE(-/-) mice, all 12-weeks old. Physiological input data were gathered from a wide range of literature data. The integrated form of the Navier-Stokes equations was solved numerically to yield pressures and flows throughout the arterial network. The resulting model predictions have been validated against invasive pressure waveforms and non-invasive velocity and diameter waveforms that were measured in vivo on an independent set of 47 mice. In conclusion, we present a validated one-dimensional model of the anesthetized murine cardiovascular system that can serve as a versatile tool in the field of preclinical cardiovascular research. PMID:26555250
Generalized 1D photopyroelectric technique for optical and thermal characterization of liquids
NASA Astrophysics Data System (ADS)
Balderas-López, J. A.
2012-06-01
The analytical solution for the one-dimensional heat diffusion problem for a three-layer system, in the Beer-Lambert model for light absorption, is used for the implementation of a photopyroelectric (PPE) methodology for thermal and optical characterization of pigments in liquid solution, even for those ones potentially harmful to the pyroelectric sensor, taking the liquid sample's thickness as the only variable. Exponential decay of the PPE amplitude followed by a constant PPE phase for solutions at low pigment concentration, and exponential decay of the PPE amplitude but a linear decrease of the PPE phase for the concentrated ones are theoretically shown, allowing measurements of the optical absorption coefficient (at the wavelength used for the analysis) and the thermal diffusivity for the liquid sample, respectively. This PPE methodology was tested by measuring the thermal diffusivity of a concentrated solution of methylene blue in distilled water and the optical absorption coefficient, at two wavelengths (658 and 785 nm), of water solutions of copper sulfate at various concentrations. These optical parameters were used for measuring the molar absorption coefficient of this last pigment in water solution at these two wavelengths. This last optical property was also measured using a commercial spectrometer, finding very good agreement with the corresponding ones using this PPE technique.
GaAs solar cell photoresponse modeling using PC-1D V2.1
NASA Technical Reports Server (NTRS)
Huber, D. A.; Olsen, L. C.; Dunham, G.; Addis, F. W.
1991-01-01
Photoresponse data of high efficiency GaAs solar cells were analyzed using PC-1D V2.1. The approach required to use PC-1D for photoresponse data analysis, and the physical insights gained from performing the analysis are discussed. In particular, the effect of Al(x)Ga(1-x)As heteroface quality was modeled. Photoresponse or spectral quantum efficiency is an important tool in characterizing material quality and predicting cell performance. The strength of the photoresponse measurement lies in the ability to precisely fit the experimental data with a physical model. PC-1D provides a flexible platform for calculations based on these physical models.
Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model
Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G
2015-01-01
CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125
Grinberg, L; Cheever, E; Anor, T; Madsen, J R; Karniadakis, G E
2011-01-01
We compare results from numerical simulations of pulsatile blood flow in two patient-specific intracranial arterial networks using one-dimensional (1D) and three-dimensional (3D) models. Specifically, we focus on the pressure and flowrate distribution at different segments of the network computed by the two models. Results obtained with 1D and 3D models with rigid walls show good agreement in massflow distribution at tens of arterial junctions and also in pressure drop along the arteries. The 3D simulations with the rigid walls predict higher amplitude of the flowrate and pressure temporal oscillations than the 1D simulations with compliant walls at various segments even for small time-variations in the arterial cross-sectional areas. Sensitivity of the flow and pressure with respect to variation in the elasticity parameters is investigated with the 1D model. PMID:20661645
Two-loop effective action of O(N) spin models in 1/D expansion
NASA Astrophysics Data System (ADS)
Matsui, T.; Kleinert, H.; Ami, S.
1984-08-01
We calculate the two-loop effective action of O(N) spin models on the lattice in a 1/D expansion to order 1/D2. The resulting free energy depends on β = 1/T and the order parameter Φ. It matches the high and low temperature regimes and is quite reliable close to the phase transition where it has a simple Landau expansion.
Benchmarks and models for 1-D radiation transport in stochastic participating media
Miller, D S
2000-08-21
Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic context. This last adaptation shows consistent improvement over both the atomic mix and standard models when used in the 1-D slab geometry but shows limited improvement in the 1-D spherical geometry. Benchmark values are also computed for radiation transmission from the 1-D sphere without material heating present. This is to evaluate the performance of the standard model on this geometry--something which has never been done before. All of the various tests demonstrate the importance of stochastic structure on the solution. Also demonstrated are the range of usefulness and limitations of a simple atomic mix formulation.
Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.
Hughes, Travis S; Wilson, Henry D; de Vera, Ian Mitchelle S; Kojetin, Douglas J
2015-01-01
Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/). PMID:26241959
A Mathematical Model of T1D Acceleration and Delay by Viral Infection.
Moore, James R; Adler, Fred
2016-03-01
Type 1 diabetes (T1D) is often triggered by a viral infection, but the T1D prevalence is rising among populations that have a lower exposure to viral infection. In an animal model of T1D, the NOD mouse, viral infection at different ages may either accelerate or delay disease depending on the age of infection and the type of virus. Viral infection may affect the progression of T1D via multiple mechanisms: triggering inflammation, bystander activation of self-reactive T-cells, inducing a competitive immune response, or inducing a regulatory immune response. In this paper, we create mathematical models of the interaction of viral infection with T1D progression, incorporating each of these four mechanisms. Our goal is to understand how each viral mechanism interacts with the age of infection. The model predicts that each viral mechanism has a unique pattern of interaction with disease progression. Viral inflammation always accelerates disease, but the effect decreases with age of infection. Bystander activation has little effect at younger ages and actually decreases incidence at later ages while accelerating disease in mice that do get the disease. A competitive immune response to infection can decrease incidence at young ages and increase it at older ages, with the effect decreasing over time. Finally, an induced Treg response decreases incidence at any age of infection, but the effect decreases with age. Some of these patterns resemble those seen experimentally. PMID:27030351
Statistical investigation and thermal properties for a 1-D impact system with dissipation
NASA Astrophysics Data System (ADS)
Díaz I., Gabriel; Livorati, André L. P.; Leonel, Edson D.
2016-05-01
The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.
1-D/3-D geologic model of the Western Canada Sedimentary Basin
Higley, D.K.; Henry, M.; Roberts, L.N.R.; Steinshouer, D.W.
2005-01-01
The 3-D geologic model of the Western Canada Sedimentary Basin comprises 18 stacked intervals from the base of the Devonian Woodbend Group and age equivalent formations to ground surface; it includes an estimated thickness of eroded sediments based on 1-D burial history reconstructions for 33 wells across the study area. Each interval for the construction of the 3-D model was chosen on the basis of whether it is primarily composed of petroleum system elements of reservoir, hydrocarbon source, seal, overburden, or underburden strata, as well as the quality and areal distribution of well and other data. Preliminary results of the modeling support the following interpretations. Long-distance migration of hydrocarbons east of the Rocky Mountains is indicated by oil and gas accumulations in areas within which source rocks are thermally immature for oil and (or) gas. Petroleum systems in the basin are segmented by the northeast-trending Sweetgrass Arch; hydrocarbons west of the arch were from source rocks lying near or beneath the Rocky Mountains, whereas oil and gas east of the arch were sourced from the Williston Basin. Hydrocarbon generation and migration are primarily due to increased burial associated with the Laramide Orogeny. Hydrocarbon sources and migration were also influenced by the Lower Cretaceous sub-Mannville unconformity. In the Peace River Arch area of northern Alberta, Jurassic and older formations exhibit high-angle truncations against the unconformity. Potential Paleozoic though Mesozoic hydrocarbon source rocks are in contact with overlying Mannville Group reservoir facies. In contrast, in Saskatchewan and southern Alberta the contacts are parallel to sub-parallel, with the result that hydrocarbon source rocks are separated from the Mannville Group by seal-forming strata within the Jurassic. Vertical and lateral movement of hydrocarbons along the faults in the Rocky Mountains deformed belt probably also resulted in mixing of oil and gas from numerous
Comparison of 1D and 2D modelling with soil erosion model SMODERP
NASA Astrophysics Data System (ADS)
Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan
2013-04-01
The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can
HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation
Technology Transfer Automated Retrieval System (TEKTRAN)
A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...
Minimum 1D P- and S- Velocity Models for Montenegro and Vicinity
NASA Astrophysics Data System (ADS)
Vucic, Ljiljana; Kissling, Edi; Spakman, Wim; Glavatovic, Branislav
2015-04-01
The territory of Montenegro and its vicinity are characterized by high-seismicity rate and very complex tectonics. Namely, southern Adria microplate subducts beneath Eurasia, forming the Dinarides fold-and-thrust belt which spreads through whole Montenegro and the western Balkans. Present-day lithosphere structure of the Adria-Dinarides collision zone in general is not constrained very well and, consequently, there is a lack of three-dimensional (3D) velocity models in this region. For these reasons, high resolution 3D tomography modeling of this area is considered to be of great importance. As part of preparatory phase for conducting a 3D local earthquake tomography study, a substantial amount of waveform data was collected, from all surroundings national seismic networks including 130 seismic stations from 11 countries. The data set comprises waveforms from 1452 earthquakes in the region recorded during time period 1990 - 2014. The collected data were obtained in different formats and the data base was harmonized by converting and integrating all data to miniseed format. The potential resolution of collected data for seismic tomography purpose was analyzed by ray density testing, using specially developed software for this specific purpose. The result is expressed as the number of rays between selected group of earthquake hypocenters and seismic stations, penetrating through the 3D model of the Earth crust and it documents the great potential of the data set for 3D seismic tomography. As a prerequisite to 3D tomography and for consistent high-precision earthquake locations, a minimum 1D velocity model has been calculated. The data set of around 400 earthquakes was selected from the main database and consistent wave onsets picking was performed, including seismic phase interpretation and its quality assessment. This highly consistent travel time data set is used for calculation of 1D velocity models for the region under study. The minimum 1D models were derived
West, W.P.; Evans, T.E.; Brooks, N.H.
1996-10-01
NEWT1D, a one dimensional multifluid model of the scrape-off layer and divertor plasma, has been used to model the plasma including the distribution of carbon ionization states in the SOL and divertor of ELMing H-mode at two injected power levels in DIII-D. Comparison of the code predictions to the measured divertor and scrape-off layer (SOL) plasma density and temperature shows good agreement. Comparison of the predicted line emissions to the spectroscopic data suggests that physically sputtered carbon from the strike point is not transported up the flux tube; a distributed source of carbon a few centimeters up the flux tube is required to achieve reasonable agreement.
Numerical study of 1-D, 3-vector component, thermally-conductive MHD solar wind
NASA Technical Reports Server (NTRS)
Han, S.; Wu, S. T.; Dryer, M.
1993-01-01
In the present study, transient, 1-dimensional, 3-vector component MHD equations are used to simulate steady and unsteady, thermally conductive MHD solar wind expansions between the solar surface and 1 AU (astronomical unit). A variant of SIMPLE numerical method was used to integrate the equations. Steady state solar wind properties exhibit qualitatively similar behavior with the known Weber-Davies Solutions. Generation of Alfven shock, in addition to the slow and fast MHD shocks, was attempted by the boundary perturbations at the solar surface. Property changes through the disturbance were positively correlated with the fast and slow MHD shocks. Alfven shock was, however, not present in the present simulations.
Thermally enhanced Wigner oscillations in two-electron 1D quantum dots.
Cavaliere, F; Ziani, N Traverso; Negro, F; Sassetti, M
2014-12-17
Motivated by a recent experiment (Pecker et al 2013 Nat. Phys. 9 576), we study the stability, with respect to thermal effects, of Friedel and Wigner density fluctuations for two electrons trapped in a one-dimensional quantum dot. Diagonalizing the system exactly, the finite-temperature average electron density is computed. While the weak and strong interaction regimes display a Friedel oscillation or a Wigner molecule state at zero temperature, which as expected smear and melt as the temperature increases, a peculiar thermal enhancement of Wigner correlations in the intermediate interaction regime is found. We demonstrate that this effect is due to the presence of two different characteristic temperature scales: T(F), dictating the smearing of Friedel oscillations, and T(W), smoothing Wigner oscillations. In the early Wigner molecule regime, for intermediate interactions, T(F) < T(W) leading to the enhancement of the visibility of Wigner oscillations. These results complement those obtained within the Luttinger liquid picture, valid for larger numbers of particles. PMID:25419598
Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System
2011-01-01
Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models
Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation
NASA Astrophysics Data System (ADS)
Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P.
2012-07-01
Four kinds of new one-dimensional nanostructures, celery-shaped nanorods, needle-shaped nanorods, twist fold-shaped nanorods, and awl-shaped nanorods of ZnO, have been grown on single silicon substrates by an Au catalyst assisted thermal evaporation of ZnO and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The photoluminescence spectra (PL) analysis noted that UV emission band is the band-to-band emission peak and the emission bands in the visible range are attributed to the oxygen vacancies, Zn interstitials, or impurities. The field-emission properties of four kinds of ZnO nanorods have been invested and the awl-shaped nanorods of ZnO have preferable characteristics due to the smallest emitter radius on the nanoscale in the tip in comparison with other nanorods. The growth mechanism of the ZnO nanorods can be explained on the basis of the vapor-liquid-solid (VLS) processes.
Coupled 1D-3D hydrodynamic modelling, with application to the Pearl River Delta
NASA Astrophysics Data System (ADS)
Twigt, Daniel J.; de Goede, Erik D.; Zijl, Firmijn; Schwanenberg, Dirk; Chiu, Alex Y. W.
2009-12-01
Within the hydrodynamic modelling community, it is common practice to apply different modelling systems for coastal waters and river systems. Whereas for coastal waters 3D finite difference or finite element grids are commonly used, river systems are generally modelled using 1D networks. Each of these systems is tailored towards specific applications. Three-dimensional coastal water models are designed to model the horizontal and vertical variability in coastal waters and are less well suited for representing the complex geometry and cross-sectional areas of river networks. On the other hand, 1D river network models are designed to accurately represent complex river network geometries and complex structures like weirs, barrages and dams. A disadvantage, however, is that they are unable to resolve complex spatial flow variability. In real life, however, coastal oceans and rivers interact. In deltaic estuaries, both tidal intrusion of seawater into the upstream river network and river discharge into open waters play a role. This is frequently approached by modelling the systems independently, with off-line coupling of the lateral boundary forcing. This implies that the river and the coastal model run sequentially, providing lateral discharge (1D) and water level (3D) forcing to each other without the possibility of direct feedback or interaction between these processes. An additional disadvantage is that due to the time aggregation usually applied to exchanged quantities, mass conservation is difficult to ensure. In this paper, we propose an approach that couples a 3D hydrodynamic modelling system for coastal waters (Delft3D) with a 1D modelling system for river hydraulics (SOBEK) online. This implies that contrary to off-line coupling, the hydrodynamic quantities are exchanged between the 1D and 3D domains during runtime to resolve the real-time exchange and interaction between the coastal waters and river network. This allows for accurate and mass conserving
Zero finite-temperature charge stiffness within the half-filled 1D Hubbard model
Carmelo, J.M.P.; Gu, Shi-Jian; Sacramento, P.D.
2013-12-15
Even though the one-dimensional (1D) Hubbard model is solvable by the Bethe ansatz, at half-filling its finite-temperature T>0 transport properties remain poorly understood. In this paper we combine that solution with symmetry to show that within that prominent T=0 1D insulator the charge stiffness D(T) vanishes for T>0 and finite values of the on-site repulsion U in the thermodynamic limit. This result is exact and clarifies a long-standing open problem. It rules out that at half-filling the model is an ideal conductor in the thermodynamic limit. Whether at finite T and U>0 it is an ideal insulator or a normal resistor remains an open question. That at half-filling the charge stiffness is finite at U=0 and vanishes for U>0 is found to result from a general transition from a conductor to an insulator or resistor occurring at U=U{sub c}=0 for all finite temperatures T>0. (At T=0 such a transition is the quantum metal to Mott–Hubbard-insulator transition.) The interplay of the η-spin SU(2) symmetry with the hidden U(1) symmetry beyond SO(4) is found to play a central role in the unusual finite-temperature charge transport properties of the 1D half-filled Hubbard model. -- Highlights: •The charge stiffness of the half-filled 1D Hubbard model is evaluated. •Its value is controlled by the model symmetry operator algebras. •We find that there is no charge ballistic transport at finite temperatures T>0. •The hidden U(1) symmetry controls the U=0 phase transition for T>0.
Thermodynamic nature of vitrification in a 1D model of a structural glass former
NASA Astrophysics Data System (ADS)
Semenov, A. N.
2015-07-01
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.
Thermodynamic nature of vitrification in a 1D model of a structural glass former.
Semenov, A N
2015-07-28
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids. PMID:26233148
SILVA: EDF two-phase 1D annular model of a CFB boiler furnace
Montat, D.; Fauquet, P.; Lafanechere, L.; Bursi, J.M.
1997-12-31
Aiming to improve its knowledge of CFB boilers, EDF has initiated a R and D program including: laboratory work on mock-ups, numerical modelling and on-site tests in CFB power plants. One of the objectives of this program is the development of a comprehensive steady-state 1D model of the solid circulation loop, named SILVA, for plant operation and design evaluation purposes. This paper describes its mathematical and physical modelling. Promising validation of the model on cold mock-up and industrial CFB is presented.
Thermodynamic nature of vitrification in a 1D model of a structural glass former
Semenov, A. N.
2015-07-28
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids.
Assessment of improved root growth representation in a 1-D, field scale crop model
NASA Astrophysics Data System (ADS)
Miltin Mboh, Cho; Gaiser, Thomas; Ewert, Frank
2015-04-01
Many 1-D, field scale crop models over-simplify root growth. The over-simplification of this "hidden half" of the crop may have significant consequences on simulated root water and nutrient uptake with a corresponding reflection on the simulated crop yields. Poor representation of root growth in crop models may therefore constitute a major source of uncertainty propagation. In this study we assess the effect of an improved representation of root growth in a model solution of the model framework SIMPLACE (Scientific Impact assessment and Modeling PLatform for Advanced Crop and Ecosystem management) compared to conventional 1-D approaches. The LINTUL5 crop growth model is coupled to the Hillflow soil water balance model within the SIMPLACE modeling framework (Gaiser et al, 2013). Root water uptake scenarios in the soil hydrological simulator Hillflow (Bronstert, 1995) together with an improved representation of root growth is compared to scenarios for which root growth is simplified. The improvement of root growth is achieved by integrating root growth solutions from R-SWMS (Javaux et al., 2008) into the SIMPLACE model solution. R-SWMS is a three dimensional model for simultaneous modeling of root growth, soil water fluxes and solute transport and uptake. These scenarios are tested by comparing how well the simulated water contents match with the observed soil water dynamics. The impacts of the scenarios on above ground biomass and wheat grain are assessed
Box model and 1D longitudinal model of flow and transport in Bosten Lake, China
NASA Astrophysics Data System (ADS)
Li, Ning; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang
2015-05-01
Bosten Lake in the southeast of Yanqi Catchment, China, supports the downstream agricultural and natural environments. Over the last few decades the intensive agricultural activities in Yanqi Catchment resulted in decreased lake levels and deteriorated lake water quality. A two-box model is constructed to understand the evolution of lake level and salinity between 1958 and 2008. The two-box model of the lake indicates that the evaporation does have the same trend as the observed lake area and the annual average evaporation agrees with the value obtained from the Penman-Monteith approach. To achieve a correct salt balance, the ratio of outflow concentration and average lake concentration has to be around 0.7. This is due to the incomplete mixing of the lake caused by short-circuiting between tributary inflow and the main outflow via the pump stations abstracting water from the lake. This short-circuiting is investigated in more detail by a 1D numerical flow and transport model of the lake calibrated with observations of lake level and lake concentrations. The distributed model reproduces the correct time-varying outflow concentration. It is used for the assessment of two basic management options: increasing river discharge (by water saving irrigation, reduction of phreatic evaporation or reduction of agricultural area) and diverting saline drainage water to the desert. Increasing river discharge to the lake by 20% reduces the east basin salt concentration by 0.55 kg/m3, while capturing all the drainage water and discharging it to depressions instead of the lake reduces the east basin salt concentration by 0.63 kg/m3. A combination of increasing river inflow and decreasing drainage salt flux is sufficient to bring future lake TDS below the required 1 kg/m3, to keep a lake level that sustains the lake ecosystem, and to supply more water for downstream development and ecosystem rehabilitation.
Magnetostriction and thermal expansion on 1D quantum spin system azurite
Fabris, Frederick W; Wolff-fabris, F; Francoual, S; Zapf, V; Jaime, M; Scott, B; Lacerda, A; Tozer, S; Hannahs, S; Murphy, T
2008-01-01
Recently the natural mineral Azurite has been proposed as model substance for the distorted S = 1/2 diamond chain in the spin fluid state. Azurite has alternating doublet monomers and singlet dimers along the chains yielding plateau-like features in the magnetization curves. Although Azurite was also reported to order antiferromagnetically at 1.86 K, the detailed phase diagram and its relationship to the 1/3 plateau is largely unknown. In the present paper, we report preliminary results from a dilatometry study on Azurite carried out in the 0.05--2.30 K temperature range at magnetic fields up to 31 T. It is shown that sizable structural distortions accompany the magnetic ordering and that at 100 mK the long range order between monomers is suppressed precisely at the transition field where the 1/3 plateau sets in.
Roberts, David; Sykes, Andrew
2009-01-01
We study the drag force acting on an impurity moving through a 1D Bose-Einstein condensate in the presence of both quantum and thermal fluctuations. We are able to find exact analytical solutions of the partial differential equations to the level of the Bogoliubov approximation. At zero temperature, we find a nonzero force is exerted on the impurity at subcritical velocities, due to the scattering of quantum fluctuations. We make the following explicit assumptions: far from the impurity the system is in a quantum state given by that of a zero (or finite) temperature Bose-Einstein condensate, and the scattering process generates only causally related reflection/transmission. The results raise unanswered questions in the quantum dynamics associated with the formation of persistent currents.
NASA Astrophysics Data System (ADS)
Mohamed Ahmed, Khalid Abdelazez; Abbood, Hayder A.; Huang, Kaixun
2012-11-01
Manganite Mn(OH)O nanowires were successfully synthesized using a hydrothermal method based on a mild and direct reaction between potassium permanganate and ethylene glycol. Subsequent heat treatment of Mn(OH)O nanowires in air at 400 °C for 4 h and 900 °C for 2 h, was conducted to prepare pyrolusite MnO2 nanobelts and necklace-like bixbyite-C Mn2O3 nanowires, respectively. A variety of techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected area electron diffraction (SA-ED), high resolution transmission electron microscopy (HR-TEM) and thermogravimetry-differential thermal analyzer (TG-DTA), were employed to characterize the resulting materials. The ethylene glycol and heating furnace imposed an effect on the morphology evolution of one dimensional (1D) manganese oxides nanocrystals.
Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model.
Wang, Xiaofei; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2015-01-01
A reliable and fast numerical scheme is crucial for the 1D simulation of blood flow in compliant vessels. In this paper, a 1D blood flow model is incorporated with a Kelvin-Voigt viscoelastic arterial wall. This leads to a nonlinear hyperbolic-parabolic system, which is then solved with four numerical schemes, namely: MacCormack, Taylor-Galerkin, monotonic upwind scheme for conservation law and local discontinuous Galerkin. The numerical schemes are tested on a single vessel, a simple bifurcation and a network with 55 arteries. The numerical solutions are checked favorably against analytical, semi-analytical solutions or clinical observations. Among the numerical schemes, comparisons are made in four important aspects: accuracy, ability to capture shock-like phenomena, computational speed and implementation complexity. The suitable conditions for the application of each scheme are discussed. PMID:25145651
Nested 1D-2D approach for urban surface flood modeling
NASA Astrophysics Data System (ADS)
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
Optimisation of A 1d-ecosystem Model To Observations In The North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Schartau, M.; Oschlies, A.
An optimisation experiment is performed with a vertically resolved, nitrogen based ecosystem model, comprising four state variables (1D-NPZD model): dissolved inor- ganic nitrogen (N), phytoplankton (P), herbivorous zooplankton (Z) and detritus (D). Parameter values of the NPZD-model are optimised while regarding observational data from three locations in the North Atlantic simultaneously: Bermuda Atlantic Time-series Study (BATS), data of the North Atlantic Bloom Experiment (NABE) and observations from Ocean Weather Ship-India (OWS-INDIA). The simultaneous opti- misation yields a best parameter set which can be utilized for basin wide simulations in coupled physical-biological (general circulation) models of the North Atlantic. After optimisation of the 1D-NPZD model, systematic discrepancies between 14C-fixation rates and modelled primary production are emphasized. Using the optimal parame- ter estimates for coupled 3D-simulations, the biogeochemical fluxes show substantial differences in contrast to previous model results. For instance, rapid recycling of or- ganic matter enhances primary production rates. This becomes most evident within the oligotrophic regions of the subtropical gyre.
1D Nonisothermal Fiber Spinning Models for Thermotropic Polymeric Liquid Crystals
NASA Astrophysics Data System (ADS)
Zhou, Hong; Forest, M. Gregory; Wang, Qi
1997-11-01
Previous slender one-dimensional models for axisymmetric filaments of liquid crystalline polymers (LCPs) are extended to include temperature-dependent material behavior and an energy equation. A two-phase model is posited, where below the glass transition temperature the material is modeled as a rigid cooling LCP fiber. We present families of numerical steady boundary-value solutions for thermal spinning flows; effects of temperature-dependent viscosity, LCP relaxation, excluded-volume potential, and viscous heating are modeled and exhibited. The predictions focus on thermal influence on spun fiber performance properties, such as birefringence and axial force, and process stability. A cooling ambient clearly contributes to faster stable spinning speeds.
Periodic solutions for a 1D-model with nonlocal velocity via mass transport
NASA Astrophysics Data System (ADS)
Ferreira, Lucas C. F.; Valencia-Guevara, Julio C.
2016-05-01
This paper concerns periodic solutions for a 1D-model with nonlocal velocity given by the periodic Hilbert transform. There is a rich literature showing, via numerics and rigorous analysis, that this model presents singular behavior of solutions. For instance, they can blow up by forming mass-concentration. We develop a global well-posedness theory for periodic measure initial data that allows, in particular, to analyze how the model evolves from those singularities. Our results are based on periodic mass transport theory and the abstract gradient flow theory in metric spaces developed by Ambrosio et al. (2005). A viscous version of the model is also analyzed and inviscid limit properties are obtained.
Optimal modeling of 1D azimuth correlations in the context of Bayesian inference
NASA Astrophysics Data System (ADS)
De Kock, Michiel B.; Eggers, Hans C.; Trainor, Thomas A.
2015-09-01
Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data, one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of two-dimensional (2D) angular correlations onto a 1D azimuth from three centrality classes of 200-GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier series (FS) and a Gaussian plus various combinations of individual cosine components. We evaluate model performance with BI methods and with power-spectrum analysis. We find that FS-only models are rejected in all cases by Bayesian analysis, which always prefers a Gaussian. A cylindrical quadrupole cos(2 ϕ ) is required in some cases but rejected for 0%-5%-central Au-Au collisions. Given a Gaussian centered at the azimuth origin, "higher harmonics" cos(m ϕ ) for m >2 are rejected. A model consisting of Gaussian +dipole cos(ϕ )+quadrupole cos(2 ϕ ) provides good 1D data descriptions in all cases.
Survey of Multi-Material Closure Models in 1D Lagrangian Hydrodynamics
Maeng, Jungyeoul Brad; Hyde, David Andrew Bulloch
2015-07-28
Accurately treating the coupled sub-cell thermodynamics of computational cells containing multiple materials is an inevitable problem in hydrodynamics simulations, whether due to initial configurations or evolutions of the materials and computational mesh. When solving the hydrodynamics equations within a multi-material cell, we make the assumption of a single velocity field for the entire computational domain, which necessitates the addition of a closure model to attempt to resolve the behavior of the multi-material cells’ constituents. In conjunction with a 1D Lagrangian hydrodynamics code, we present a variety of both the popular as well as more recently proposed multi-material closure models and survey their performances across a spectrum of examples. We consider standard verification tests as well as practical examples using combinations of fluid, solid, and composite constituents within multi-material mixtures. Our survey provides insights into the advantages and disadvantages of various multi-material closure models in different problem configurations.
NASA Astrophysics Data System (ADS)
Minárik, Stanislav
2015-08-01
In this paper, we propose theoretical basis for investigation of dynamics of acoustic phonons in a thin layers containing nano-scale structural inhomogeneities. One-dimensional (1D) model of a crystal lattice was considered to reveal specific features of the processes arising in such system of phonons in equilibrium state. Standard quantization of energy of 1D ionic chain vibrating by acoustic frequencies was carried out while the presence of foreign ions in this chain was taken into account. Since only two dimensions are dominant in thin layers, only longitudinal vibrations of the chain in the plane of the layer were considered. Results showed that foreign ions affect the energy quantization. Phonon-phonon interaction between two phonon`s modes can be expected if the mass of foreign ions implanted by ion-beam differs from the mass of ions in the initial layer. We believe that the obtained results will help to understand the character of phonon systems in nanostructured thin layers prepared by ion-bem technology, and will allow better explain some thermal and electrical phenomena associated with lattice dynamics in such layers.
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Evaluation of a Revised Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-Wind Model
NASA Astrophysics Data System (ADS)
Zhang, Y.; Du, A. M.; Du, D.; Sun, W.
2014-08-01
We modified the one-dimensional conservation element and solution element (CESE) hydrodynamic (HD) model into a new version [ 1D CESE-HD-2], by considering the direction of the shock propagation. The real-time performance of the 1D CESE-HD-2 model during Solar Cycle 23 (February 1997 - December 2006) is investigated and compared with those of the Shock Time of Arrival Model ( STOA), the Interplanetary-Shock-Propagation Model ( ISPM), and the Hakamada-Akasofu-Fry version 2 ( HAFv.2). Of the total of 584 flare events, 173 occurred during the rising phase, 166 events during the maximum phase, and 245 events during the declining phase. The statistical results show that the success rates of the predictions by the 1D CESE-HD-2 model for the rising, maximum, declining, and composite periods are 64 %, 62 %, 57 %, and 61 %, respectively, with a hit window of ± 24 hours. The results demonstrate that the 1D CESE-HD-2 model shows the highest success rates when the background solar-wind speed is relatively fast. Thus, when the background solar-wind speed at the time of shock initiation is enhanced, the forecasts will provide potential values to the customers. A high value (27.08) of χ 2 and low p-value (< 0.0001) for the 1D CESE-HD-2 model give considerable confidence for real-time forecasts by using this new model. Furthermore, the effects of various shock characteristics (initial speed, shock duration, background solar wind, longitude, etc.) and background solar wind on the forecast are also investigated statistically.
Fluid friction and wall viscosity of the 1D blood flow model.
Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria
2016-02-29
We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. PMID:26862041
NASA Astrophysics Data System (ADS)
Klimeck, Gerhard
2001-03-01
The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about
Full Waveform 3D Synthetic Seismic Algorithm for 1D Layered Anelastic Models
NASA Astrophysics Data System (ADS)
Schwaiger, H. F.; Aldridge, D. F.; Haney, M. M.
2007-12-01
Numerical calculation of synthetic seismograms for 1D layered earth models remains a significant aspect of amplitude-offset investigations, surface wave studies, microseismic event location approaches, and reflection interpretation or inversion processes. Compared to 3D finite-difference algorithms, memory demand and execution time are greatly reduced, enabling rapid generation of seismic data within workstation or laptop computational environments. We have developed a frequency-wavenumber forward modeling algorithm adapted to realistic 1D geologic media, for the purpose of calculating seismograms accurately and efficiently. The earth model consists of N layers bounded by two halfspaces. Each layer/halfspace is a homogeneous and isotropic anelastic (attenuative and dispersive) solid, characterized by a rectangular relaxation spectrum of absorption mechanisms. Compressional and shear phase speeds and quality factors are specified at a particular reference frequency. Solution methodology involves 3D Fourier transforming the three coupled, second- order, integro-differential equations for particle displacements to the frequency-horizontal wavenumber domain. An analytic solution of the resulting ordinary differential system is obtained. Imposition of welded interface conditions (continuity of displacement and stress) at all interfaces, as well as radiation conditions in the two halfspaces, yields a system of 6(N+1) linear algebraic equations for the coefficients in the ODE solution. An optimized inverse 2D Fourier transform to the space domain gives the seismic wavefield on a horizontal plane. Finally, three-component seismograms are obtained by accumulating frequency spectra at designated receiver positions on this plane, followed by a 1D inverse FFT from angular frequency ω to time. Stress-free conditions may be applied at the top or bottom interfaces, and seismic waves are initiated by force or moment density sources. Examples reveal that including attenuation
1D numerical model of muddy subaqueous and subaerial debris flows
Imran, J.; Parker, G.; Locat, J.; Lee, H.
2001-01-01
A 1D numerical model of the downslope flow and deposition of muddy subaerial and subaqueous debris flows is presented. The model incorporates the Herschel-Bulkley and bilinear rheologies of viscoplastic fluid. The more familiar Bingham model is integrated into the Herschel-Bulkley rheological model. The conservation equations of mass and momentum of single-phase laminar debris flow are layer-integrated using the slender flow approximation. They are then expressed in a Lagrangian framework and solved numerically using an explicit finite difference scheme. Starting from a given initial shape, a debris flow is allowed to collapse and propagate over a specified topography. Comparison between the model predictions and laboratory experiments shows reasonable agreement. The model is used to study the effect of the ambient fluid density, initial shape of the failed mass, and rheological model on the simulated propagation of the front and runout characteristics of muddy debris flows. It is found that initial failure shape influence the front velocity but has little bearing on the final deposit shape. In the Bingham model, the excess of shear stress above the yield strength is proportional to the strain rate to the first power. This exponent is free to vary in the Herschel-Bulkley model. When it is set at a value lower than unity, the resulting final deposits are thicker and shorter than in the case of the Bingham rheology. The final deposit resulting from the bilinear model is longer and thinner than that from the Bingham model due to the fact that the debris flow is allowed to act as a Newtonian fluid at low shear rate in the bilinear model.
Uniform Contractivity in Wasserstein Metric for the Original 1D Kac's Model
NASA Astrophysics Data System (ADS)
Hauray, Maxime
2016-03-01
We study here a very popular 1D jump model introduced by Kac: it consists of N velocities encountering random binary collisions at which they randomly exchange energy. We show the uniform (in N) exponential contractivity of the dynamics in a non-standard Monge-Kantorovich-Wasserstein: precisely the MKW metric of order 2 on the energy. The result is optimal in the sense that for each N, the contractivity constant is equal to the L^2 spectral gap of the generator associated to Kac's dynamic. As a corollary, we get an uniform but non optimal contractivity in the MKW metric of order 4. We use a simple coupling that works better that the parallel one. The estimates are simple and new (to the best of our knowledge).
Initial Stage of the Microwave Ionization Wave Within a 1D Model
NASA Astrophysics Data System (ADS)
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.
2016-06-01
The dynamics of the microwave breakdown in a gas is simulated numerically within a simple 1D model which takes into account such processes as the impact ionization of gas molecules, the attachment of electrons to neutral molecules, and plasma diffusion. Calculations are carried out for different spatial distributions of seed electrons with account for reflection of the incident electromagnetic wave from the plasma. The results reveal considerable dependence of the ionization wave evolution on the relation between the field frequency and gas pressure, as well as on the existence of extended rarefied halo of seed electrons. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave moving towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with the formation of repetitive jumps of the ionization front.
HELIOS-CR A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
NASA Astrophysics Data System (ADS)
Macfarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
2006-05-01
HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations.
Application of HYDRUS 1D model for assessment of phenol-soil adsorption dynamics.
Pal, Supriya; Mukherjee, Somnath; Ghosh, Sudipta
2014-04-01
Laboratory-scale batch, vertical, and horizontal column experiments were conducted to investigate the attenuative capacity of a fine-grained clayey soil of local origin in the surrounding of a steel plant wastewater discharge site in West Bengal, India, for removal of phenol. Linear, Langmuir, and Freundlich isotherm plots from batch experimental data revealed that Freundlich isotherm model was reasonably fitted (R (2) = 0.94). The breakthrough column experiments were also carried out with different soil bed heights (5, 10, and 15 cm) under uniform flow to study the hydraulic movements of phenol by evaluating time concentration flow behavior using bromide as a tracer. The horizontal migration test was also conducted in the laboratory using adsorptive phenol and nonreactive bromide tracer to explore the movement of solute in a horizontal distance. The hydrodynamic dispersion coefficients (D) in the vertical and horizontal directions in the soil were estimated using nonlinear least-square parameter optimization method in CXTFIT model. In addition, the equilibrium convection dispersion model in HYDRUS 1D was also examined to simulate the fate and transport of phenol in vertical and horizontal directions using Freundlich isotherm constants and estimated hydrodynamic parameters as input in the model. The model efficacy and validation were examined through statistical parameters such as the coefficient of determination (R (2)), root mean square error and design of index (d). PMID:24407784
Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling
NASA Astrophysics Data System (ADS)
Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.
2016-07-01
Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When
Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate
Mastin, Larry G.
2014-01-01
During volcanic eruptions, empirical relationships are used to estimate mass eruption rate from plume height. Although simple, such relationships can be inaccurate and can underestimate rates in windy conditions. One-dimensional plume models can incorporate atmospheric conditions and give potentially more accurate estimates. Here I present a 1-D model for plumes in crosswind and simulate 25 historical eruptions where plume height Hobs was well observed and mass eruption rate Mobs could be calculated from mapped deposit mass and observed duration. The simulations considered wind, temperature, and phase changes of water. Atmospheric conditions were obtained from the National Center for Atmospheric Research Reanalysis 2.5° model. Simulations calculate the minimum, maximum, and average values (Mmin, Mmax, and Mavg) that fit the plume height. Eruption rates were also estimated from the empirical formula Mempir = 140Hobs4.14 (Mempir is in kilogram per second, Hobs is in kilometer). For these eruptions, the standard error of the residual in log space is about 0.53 for Mavg and 0.50 for Mempir. Thus, for this data set, the model is slightly less accurate at predicting Mobs than the empirical curve. The inability of this model to improve eruption rate estimates may lie in the limited accuracy of even well-observed plume heights, inaccurate model formulation, or the fact that most eruptions examined were not highly influenced by wind. For the low, wind-blown plume of 14–18 April 2010 at Eyjafjallajökull, where an accurate plume height time series is available, modeled rates do agree better with Mobs than Mempir.
1D Chemical Modeling of coupled snow-atmosphere chemistry at Dome C Antarctica
NASA Astrophysics Data System (ADS)
Gil, Jaime E.; Thomas, Jennie; von Glasgow, Roland; Bekki, Slimane; Kukui, Alexandre; Frey, Markus; Jourdain, Bruno; Kerbrat, Michel; Genthon, Christophe; Preuknert, Susanne; Legrand, Michel
2013-04-01
High levels of nitrogen oxides NOx (NOx=NO+NO2) generated by the photolysis of nitrate present in surface snow profoundly impact atmospheric composition and oxidizing capacity in the Antarctic boundary layer. In particular, NOx emissions from sunlit snow increase OH values by effectively recycling HO2 to OH. In order to better characterize this chemistry the OPALE campaign was conducted in December 2011/January 2012 at Dome C, Antarctica (altitude of 3,233 meters, 75 ° S, 123 ° E). The campaign included boundary layer profiling, measurements of the physical properties of snow, as well as a comprehensive suite of atmospheric chemistry measurements (including NOx, HONO, OH and RO2, H2O2, CH2O, O3). We present results using the 1-D coupled snow-boundary layer model MISTRA-SNOW in combination with observations made during the measurement campaign to understand this chemistry. The model includes both chemistry at the surface of snow grains (aqueous chemistry), in firn air (gas phase chemistry), and gas/aerosol chemistry in the boundary layer. Model predictions of NOx mixing ratios using a model sensitivity analysis approach are presented. The model was initialized using measured snow properties, including temperature, density, and snow grain size. In addition, the model dynamics are driven using the measured surface temperature at Dome C. To calculate the rate of snowpack ventilation, measured wind speeds during the campaign were used. The model was run varying the amount of nitrate and bromide available for reaction at the surface of snow grains and results are compared to measurements made in the atmospheric boundary from 2-4 January 2012. We test the hypothesis that very low concentrations of bromine may alter the ratio of NO/NO2. We also investigate the influence of NOx emissions from snow, and bromine (if present), on OH concentrations in the boundary layer on the Antarctic plateau.
The optimization of high resolution topographic data for 1D hydrodynamic models
NASA Astrophysics Data System (ADS)
Ales, Ronovsky; Michal, Podhoranyi
2016-06-01
The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.
A 1-D evolutionary model for icy satellites, applied to Enceladus
NASA Astrophysics Data System (ADS)
Malamud, Uri; Prialnik, Dina
2016-04-01
We develop a long-term 1-D evolution model for icy satellites that couples multiple processes: water migration and differentiation, geochemical reactions and silicate phase transitions, compaction by self-gravity, and ablation. The model further considers the following energy sources and sinks: tidal heating, radiogenic heating, geochemical energy released by serpentinization or absorbed by mineral dehydration, gravitational energy and insolation, and heat transport by conduction, convection, and advection. We apply the model to Enceladus, by guessing the initial conditions that would render a structure compatible with present-day observations, assuming the initial structure to have been homogeneous. Assuming the satellite has been losing water continually along its evolution, we postulate that it was formed as a more massive, more icy and more porous satellite, and gradually transformed into its present day state due to sustained long-term tidal heating. We consider several initial compositions and evolution scenarios and follow the evolution for the age of the Solar System, testing the present day model results against the available observational constraints. Our model shows the present configuration to be differentiated into a pure icy mantle, several tens of km thick, overlying a rocky core, composed of dehydrated rock at the center and hydrated rock in the outer part. For Enceladus, it predicts a higher rock/ice mass ratio than previously assumed and a thinner ice mantle, compatible with recent estimates based on gravity field measurements. Although, obviously, the model cannot be used to explain local phenomena, it sheds light on the internal structure invoked in explanations of localized features and activities.
Topological order in 1D super-lattice Bose-Hubbard models
NASA Astrophysics Data System (ADS)
Fleischhauer, Michael; Grusdt, Fabian; Hoening, Michael
2013-05-01
After the discovery of topological insulators as a new state of matter and their consequent classification for free fermions, the question arises what kind of topological order can be supported by incompressible systems of interacting bosons. We consider a 1D super-lattice Hamiltonian with a non-trivial band structure (the Su-Schrieffer-Heeger model) and show that its Mott-insulating (MI) states can be classified by a quantized many-body winding number. This quantization is protected by sub-lattice and time-reversal symmetries, and it allows the implementation of a quantized cyclic pumping process (Thouless pump) in a simple super-lattice Bose-Hubbard model (BHM). For extended BHMs we discuss a connection of such a pump with the fractional quantum Hall effect. Furthermore we show that the quantization of the winding number leads to localized, protected edge states at sharp interfaces between topologically distinct MI phases which can be experimentally realized using Bose-Fermi mixtures in optical superlattices. DMRG simulations show that these edge states manifest themself either in localized density maxima or localized density minima, which can easily be detected. Supported by research center OPTIMAS and graduate school MAINZ.
1D Tight-Binding Models Render Quantum First Passage Time "Speakable"
NASA Astrophysics Data System (ADS)
Ranjith, V.; Kumar, N.
2015-12-01
The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.
1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to
NASA Astrophysics Data System (ADS)
Hassan, Kazi; Allen, Deonie; Haynes, Heather
2016-04-01
This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume
1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan
NASA Astrophysics Data System (ADS)
Dobrijevic, M.; Loison, J. C.; Hickson, K. M.; Gronoff, G.
2016-04-01
Many models with different characteristics have been published so far to study the chemical processes at work in Titan's atmosphere. Some models focus on neutral species in the stratosphere or ionic species in the ionosphere, but few of them couple all the species throughout the whole atmosphere. Very few of these emphasize the importance of uncertainties in the chemical scheme and study their propagation in the model. We have developed a new 1D-photochemical model of Titan's atmosphere coupling neutral species with positive and negative ions from the lower atmosphere up to the ionosphere and have compared our results with observations to have a comprehensive view of the chemical processes driving the composition of the stratosphere and ionosphere of Titan. We have updated the neutral, positive ion and negative ion chemistry and have improved the description of N2 photodissociation by introducing high resolution N2 absorption cross sections. We performed for the first time an uncertainty propagation study in a fully coupled ion-neutral model. We determine how uncertainties on rate constants on both neutral and ionic reactions influence the model results and pinpoint the key reactions responsible for this behavior. We find very good agreement between our model results and observations in both the stratosphere and in the ionosphere for most neutral compounds. Our results are also in good agreement with an average INMS mass spectrum and specific flybys in the dayside suggesting that our chemical model (for both neutral and ions) provides a good approximation of Titan's atmospheric chemistry as a whole. Our uncertainty propagation study highlights the difficulty to interpret the INMS mass spectra for masses 14, 31, 41 and we identified the key reactions responsible for these ambiguities. Despite an overall improvement in the chemical model, disagreement for some specific compounds (HC3N, C2H5CN, C2H4) highlights the role that certain physical processes could play
Cenozoic ice volume and temperature simulations with a 1-D ice-sheet model
NASA Astrophysics Data System (ADS)
de Boer, B.; van de Wal, R. S. W.; Bintanja, R.; Lourens, L. J.; Tuenter, E.
2009-04-01
Ice volume and temperature for the past 35 Million years is investigated with a 1-D ice-sheet model, simulating ice-sheets on both hemispheres. The simulations include two continental Northern Hemisphere (NH) ice-sheets representative for glaciation on the two major continents, i.e. Eurasia (EAZ) and North America (NAM). Antarctic glaciation is simulated with two separate ice-sheets, respectively for West and East Antarctica. The surface air temperature is reconstructed with an inventive inverse procedure, forced with benthic δ18O data. The procedure linearly relates the temperature to the difference between the modelled and observed marine δ18O 100 years later. The derived temperature, representative for the NH, is used to run the ice-sheet model over 100 years, to obtain a mutually consistent record of marine δ18O, sea level and temperature for the last 35 Ma of the Cenozoic. For Northern Hemispheric glaciations results are good compared to similar simulations performed with a much more comprehensive 3-D ice-sheet model. On average, differences are only 1.9 ˚ C for temperature and 6.1 m for sea level. Results with ice-sheets on both hemispheres are very similar. Most notably, the reconstructed ice volume as function of temperature shows a transition from climate dominated by Antarctic ice volume variation towards NH ice-sheets controlled climate. The transition period falls within the range of interglacials (about -2 to +8 ˚ C with respect to present day) and is thus characterized by lower ice volume changes per ˚ C. The relationship between temperature, sea level and δ18O input is tested with an equilibrium experiment, which results in a linear and symmetric relationship for both temperature and total sea level, providing limited evidence for hysteresis, though transient behaviour is still important. Furthermore results show a rather good comparison with other simulations of Antarctic ice volume and observed sea level and deep-sea temperature.
NASA Astrophysics Data System (ADS)
Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique
2016-04-01
MSL Rover Environmental Monitoring Station (REMS) performed high-resolution measurements of temperature and relative humidity during more than one Martian year. In this work, a 1D subsurface model is used to study water vapor exchange between the atmosphere and the subsurface at Gale crater using REMS data. The thermal model used includes several layers of varying thickness with depth and properties that can be changed to correspond to those of Martian rocks at locations studied. It also includes the transport of water vapor through porous Martian regolith and the different phases considered are vapor, ice and adsorbed H2O. The total mass flux is given by the sum of diffusive and advective transport. The role of an adsorbing regolith on water transfer as well as the range of parameters with significant effect on water transport in Martian conditions are investigated. In addition, kinetics of the adsorption process is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere.
NASA Astrophysics Data System (ADS)
Pradel, J.-L.; David, C.; Quinebèche, S.; Blondel, P.
2014-05-01
Industrial scale-up (or scale down) in Compounding and Reactive Extrusion processes is one of the most critical R&D challenges. Indeed, most of High Performances Polymers are obtained within a reactive compounding involving chemistry: free radical grafting, in situ compatibilization, rheology control... but also side reactions: oxidation, branching, chain scission... As described by basic Arrhenius and kinetics laws, the competition between all chemical reactions depends on residence time distribution and temperature. Then, to ensure the best possible scale up methodology, we need tools to match thermal history of the formulation along the screws from a lab scale twin screw extruder to an industrial one. This paper proposes a comparison between standard scale-up laws and the use of Computer modeling Software such as Ludovic® applied and compared to experimental data. Scaling data from a compounding line to another one, applying general rules (for example at constant specific mechanical energy), shows differences between experimental and computed data, and error depends on the screw speed range. For more accurate prediction, 1D-Computer Modeling could be used to optimize the process conditions to ensure the best scale-up product, especially in temperature sensitive reactive extrusion processes. When the product temperature along the screws is the key, Ludovic® software could help to compute the temperature profile along the screws and extrapolate conditions, even screw profile, on industrial extruders.
Self-assembling morphologies in a 1D model of two-inclusion-containing lipid membranes
NASA Astrophysics Data System (ADS)
Zhou, Ling; Cheng, Mingfei; Fang, Jinghuai; Peng, Ju
2016-08-01
The self-assembling morphologies in a 1D model of two-inclusion-containing lipid membranes are investigated by using self-consistent field theory. It is found that the shape and overall volume fraction of lipids, the hydrophobic strength and the distance of inclusions play important roles in the morphology of lipid membrane. The membrane consisting of cylindrical lipids with a symmetrical head and tail only forms the well-known normal morphology. However, for the membrane consisting of cone-like lipids with a relatively big head, the increase of the hydrophobic strength of inclusions can realize the membrane transition from the normal morphology to the pore morphologies. With increasing distance between two inclusions, two pores, three pores and four pores appear in turn. Conversely, the increase of the overall volume fraction of lipids can make the membrane undergo a reentrant transition from pore morphologies to normal morphologies. The results may be helpful in our understanding of the pore-forming mechanism.
Modelling hydrology of a single bioretention system with HYDRUS-1D.
Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan
2014-01-01
A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240
Modelling Hydrology of a Single Bioretention System with HYDRUS-1D
Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan
2014-01-01
A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems. PMID:25133240
Investigating the Response of Greenland Outlet Glaciers to Perturbations Using a 1D Flowline Model
NASA Astrophysics Data System (ADS)
Petrakopoulos, K.; Stearns, L. A.; van der Veen, C. J.
2015-12-01
Over the past two decades, the behavior of many Greenland tidewater outlet glaciers has been characterized by dramatic acceleration, thinning, and retreat. In some cases this behavior is followed by re-advance, thickening and deceleration. The mechanisms that control glacier stability are not fully understood, and hinder ice sheet mass balance projections. Many studies suggest that accelerations are caused exclusively by processes at the terminus, namely by mechanisms that result in increases in iceberg calving rates. In this study we investigate whether comparable accelerations can initiate at different places along the glacier trunk due to changes in subglacial processes or shear margin evolution. We begin our experiments using a prognostic depth integrated (1-D) flowline model applied to Helheim Glacier, and investigate its flow response to perturbations at the terminus and up-flow. Our work shows that large-scale accelerations could have initiated up-flow far from the terminus. The results of this study will contribute to the long-lasting debate about the role of terminus dynamics, and thus ocean conditions, in modulating ice sheet mass balance.
Spectral functions in the 1D and 2D Bose Hubbard model
NASA Astrophysics Data System (ADS)
Ivancic, Robert; Duchon, Eric; Trivedi, Nandini
2014-03-01
We use state of the art numerical techniques including quantum Monte Carlo and maximum entropy methods to obtain the low energy excitation spectra in the superfluid and Mott-insulator phases of the Bose Hubbard model. These results are checked in 1D against Bethe Ansatz and tDMRG results and extended to 2D where such approaches are impossible. In the superfluid, we find linearly dispersing Bogoliubov sound modes as well as additional gapped modes broadened by interaction effects. In the Mott insulator, we find evidence for a finite gap and well defined quasiparticle excitations. We examine properties such as the excitation lifetime, density of states, and speed of sound as the system is tuned across the quantum phase transition that separates the superfluid and Mott states. These results provide an important theoretical framework for upcoming ultracold atom experiments in one and two dimensions. We acknowledge support from the NSF DMR-0907275 (R.I., E.D. and N.T.).
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
NASA Astrophysics Data System (ADS)
Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.
2015-12-01
At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
NASA Astrophysics Data System (ADS)
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond
Thermal Network Modelling Handbook
NASA Technical Reports Server (NTRS)
1972-01-01
Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.
Liang, Xiaoyan; Schnaper, H. William; Matsusaka, Taiji; Pastan, Ira; Ledbetter, Steve; Hayashida, Tomoko
2016-01-01
Fibrosis is a final common pathway leading to loss of kidney function, in which the fibrogenic cytokine, transforming growth factor β (TGF-β), plays a central role. While previous studies showed that TGF-β antagonism by various means prevents fibrosis in mouse models, clinical approaches based on these findings remain elusive. 1D11 is a neutralizing antibody to all three isoforms of TGF-β. In both adriamycin (ADR)-induced nephropathy and NEP25 podocyte ablation nephropathy, thrice-weekly intraperitoneal administration of 1D11 from the day of disease induction until the mice were sacrificed (day 14 for ADR and day 28 for NEP25), significantly reduced glomerular COL1A2 mRNA accumulation and histological changes. Consistent with our previous findings, proteinuria remained overt in the mice treated with 1D11, suggesting distinct mechanisms for proteinuria and fibrogenesis. Podocyte numbers determined by WT1 staining were significantly reduced in NEP25-model glomeruli as expected, while WT1-positive cells were preserved in mice receiving 1D11. Even when 1D11 was administered after the onset of proteinuria on day 3, 1D11 preserved WT1-positive cell numbers in glomeruli and significantly reduced glomerular scar score (2.5 ± 0.2 [control IgG] vs. 1.8 ± 0.2 [1D11], P < 0.05) and glomerular COL1A2 mRNA expression (19.3 ± 4.4 [control IgG] vs. 8.4 ± 2.4 [1D11] fold increase over the healthy control, P < 0.05). Transmission electron microscopy revealed loss of podocytes and denuded glomerular basement membrane in NEP25 mice with disease, whereas podocytes remained attached to the basement membrane, though effaced and swollen, in those receiving 1D11 from day 3. Together, these data suggest that TGF-β neutralization by 1D11 prevents glomerular fibrosis even when started after the onset of proteinuria. While overt proteinuria and podocyte effacement persist, 1D11 prevents total podocytes detachment, which might be a key event activating fibrogenic events in glomeruli
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Čadež, T.
2016-03-01
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott-Hubbard phase. The Mott-Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Rayleigh Wave Dispersion and A 1d S-velocity Model of The Fennoscandian Mantle
NASA Astrophysics Data System (ADS)
Funke, S.; Friederich, W.; Sstwg, The
We derive a Rayleigh wave dispersion curve from surface wave data recorded at the SVEKALAPKO tomographic array deployed in Southern Finland from September 1998 to March 1999. After a suite of processing steps, complex spectral amplitudes of the Rayleigh wave train are determined for each available seismogram. The process- ing includes low-pass filtering, instrument correction, deconvolution using a standard earth model to compress the Rayleigh wave train, computation of Gabor matrices (sonograms) to pick group travel times, and finally estimation of complex spectral amplitudes in a Gaussian time window of frequency-dependent width centered on the group travel time. Spectral amplitude values are only accepted if the signal-to-noise ratio in the considered frequency interval is above a pre-chosen threshold and if the picked group travel time does not deviate too strongly from that predicted by a stan- dard earth model. The final dataset contains spectral amplitude values at 34 selected periods from 52 earthquakes observed at on average 25 stations. For each selected frequency, we determine a phase velocity by fitting plane waves propagating across the array with this velocity to the complex spectral amplitudes of all earthquakes and stations. Errors are estimated with a bootstrap method. We obtain reliable phase velocities in the frequency band from 8 mHz to 50 mHz. Phase veloci- ties for lower frequencies exhibit large errors due to the lack of big earthquakes during the time of deployment. The phase velocities are substantially higher than predicted by standard earth model ak135 below 20 mHz and slightly lower above 25 mHz. We have inverted the dispersion curve for a 1D shear wave velocity model down to about 400 km depth and obtain a 50 km thick crust and a fast upper mantle with a sub- Moho velocity of 4.7 km/s. Our data do not require a low-velocity zone in the upper mantle. Indeed, the dispersion curve can be explained by a nearly straight velocity profile from
Development of a 1D canopy module to couple mesoscale meteorogical model with building energy model
NASA Astrophysics Data System (ADS)
Mauree, Dasaraden; Kohler, Manon; Blond, Nadège; Clappier, Alain
2013-04-01
The actual global warming, highlighted by the scientific community, is due to the greenhouse gases emissions resulting from our energy consumption. This energy is mainly produced in cities (about 70% of the total energy use). Around 36% of this energy are used in buildings (residential/tertiary) and this accounts for about 20% of the greenhouse gases emissions. Moreover, the world population is more and more concentrated in urban areas, 50% of the actual world population already lives in cities and this ratio is expected to reach 70% by 2050. With the obviously increasing responsibility of cities in climate change in the future, it is of great importance to go toward more sustainable cities that would reduce the energy consumption in urban areas. The energy use inside buildings is driven by two factors: (1) the level of comfort wished by the inhabitants and (2) the urban climate. On the other hand, the urban climate is influenced by the presence of buildings. Indeed, artificial surfaces of urban areas modify the energy budget of the Earth's surface and furthermore, heat is released into the atmosphere due to the energy used by buildings. Modifications at the building scale (micro-scale) can thus have an influence on the climate of the urban areas and surroundings (meso-scale), and vice and versa. During the last decades, meso-scale models have been developed to simulate the atmospheric conditions for domain of 100-1000km wide with a resolution of few kilometers. Due to their low resolution, the effects of small obstacles (such as buildings, trees, ...) near the ground are not reproduced properly and parameterizations have been developed to represent such effects in meso-scale models. On the other side, micro-scale models have a higher resolution (around 1 meter) and consequently can better simulate the impact of obstacles on the atmospheric heat flux exchanges with the earth surface. However, only a smaller domain (less than 1km) can be simulated for the same
Diesel Engine performance improvement in a 1-D engine model using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Karra, Prashanth
2015-12-01
A particle swarm optimization (PSO) technique was implemented to improve the engine development and optimization process to simultaneously reduce emissions and improve the fuel efficiency. The optimization was performed on a 4-stroke 4-cylinder GT-Power based 1-D diesel engine model. To achieve the multi-objective optimization, a merit function was defined which included the parameters to be optimized: Nitrogen Oxides (NOx), Nonmethyl hydro carbons (NMHC), Carbon Monoxide (CO), Brake Specific Fuel Consumption (BSFC). EPA Tier 3 emissions standards for non-road diesel engines between 37 and 75 kW of output were chosen as targets for the optimization. The combustion parameters analyzed in this study include: Start of main Injection, Start of Pilot Injection, Pilot fuel quantity, Swirl, and Tumble. The PSO was found to be very effective in quickly arriving at a solution that met the target criteria as defined in the merit function. The optimization took around 40-50 runs to find the most favourable engine operating condition under the constraints specified in the optimization. In a favourable case with a high merit function values, the NOx+NMHC and CO values were reduced to as low as 2.9 and 0.014 g/kWh, respectively. The operating conditions at this point were: 10 ATDC Main SOI, -25 ATDC Pilot SOI, 0.25 mg of pilot fuel, 0.45 Swirl and 0.85 tumble. These results indicate that late main injections preceded by a close, small pilot injection are most favourable conditions at the operating condition tested.
Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model
NASA Astrophysics Data System (ADS)
Batalha, Natasha; Domagal-Goldman, Shawn D.; Ramirez, Ramses; Kasting, James F.
2015-09-01
A recent study by Ramirez et al. (Ramirez, R.M. et al. [2014]. Nat. Geosci. 7(1), 59-63.) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ˜1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere was indeed H2-rich, we might be able to see evidence of this in the rock record. The hypothesis proposed here is consistent with new data from the Curiosity Rover, which show evidence for a long-lived lake in Gale Crater near Mt. Sharp. It is also consistent with measured oxygen fugacities of martian meteorites, which show evidence for progressive mantle oxidation over time.
Modeling of general 1-D periodic leaky-wave antennas in layered media using EIGER.
Wilton, Donald R.; Basilio, Lorena I.; Celepcikay, Ferhat T.; Johnson, William Arthur; Baccarelli, Paolo; Valerio, Guido; Paulotto, Simone; Langston, William L.; Jackson, David R.
2010-09-01
This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER{trademark} code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case.
Modeling of general 1-D periodic leaky-wave antennas in layered media with EIGER.
Wilton, Donald R.; Basilio, Lorena I.; Celepcikay, F. T.; Johnson, William Arthur; Baccarelli, Paolo; Valerio, G.; Paulotto, Simone; Langston, William L.; Jackson, David R.
2010-06-01
This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER{trademark} code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case.
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
NASA Astrophysics Data System (ADS)
Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.
2014-07-01
Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (space-borne or air-borne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the Light Detection and Ranging (LiDAR), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30-90 m). On the other hand, LiDAR technique is able to produce a high resolution DEMs (around 1m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicates the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. LiDAR 1 m) to lower resolution are much less compared to the loss of model accuracy due to the use of low-cost DEM that have not only a lower resolution, but also a lower quality. Lastly, to better explore the sensitivity of the hydraulic models
Space-based Observational Constraints for 1-D Plume Rise Models
NASA Technical Reports Server (NTRS)
Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles
2012-01-01
We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined
Model Comparison for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques
2015-11-01
Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
1D Runoff-runon stochastic model in the light of queueing theory : heterogeneity and connectivity
NASA Astrophysics Data System (ADS)
Harel, M.-A.; Mouche, E.; Ledoux, E.
2012-04-01
Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed where R is greater than I. The infiltration rate equals the infiltrability when runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max(Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect to each other differently depending on the rainfall intensity and the nature of the soil heterogeneity. The runoff connectivity, assessed using the connectivity function of Allard (1993), affects greatly the dynamics of the runoff hillslope. Our aim is to assess, in a stochastic framework, the runoff organization on 1D slopes with random infiltrabilities (log-normal, exponential, bimodal and uniform distributions) by means of theoretical developments and numerical simulations. This means linking the nature of soil heterogeneity with the resulting runoff organisation. In term of connectivity, we investigate the relations between structural (infiltrability) and functional (runoff) connectivity. A theoretical framework based on the queueing theory is developed. We implement the idea of Jones et al. (2009), who remarked that the above formulation is
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber
Lee, Andrew; Miller, David C.
2012-01-01
A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.
Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian
2015-04-24
West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.
Bengoechea, Rocio; Pittman, Sara K; Tuck, Elizabeth P; True, Heather L; Weihl, Conrad C
2015-12-01
Limb-girdle muscular dystrophy type 1D (LGMD1D) is caused by dominantly inherited missense mutations in DNAJB6, an Hsp40 co-chaperone. LGMD1D muscle has rimmed vacuoles and inclusion bodies containing DNAJB6, Z-disc proteins and TDP-43. DNAJB6 is expressed as two isoforms; DNAJB6a and DNAJB6b. Both isoforms contain LGMD1D mutant residues and are expressed in human muscle. To identify which mutant isoform confers disease pathogenesis and generate a mouse model of LGMD1D, we evaluated DNAJB6 expression and localization in skeletal muscle as well as generating DNAJB6 isoform specific expressing transgenic mice. DNAJB6a localized to myonuclei while DNAJB6b was sarcoplasmic. LGMD1D mutations in DNAJB6a or DNAJB6b did not alter this localization in mouse muscle. Transgenic mice expressing the LGMD1D mutant, F93L, in DNAJB6b under a muscle-specific promoter became weak, had early lethality and developed muscle pathology consistent with myopathy after 2 months; whereas mice expressing the same F93L mutation in DNAJB6a or overexpressing DNAJB6a or DNAJB6b wild-type transgenes remained unaffected after 1 year. DNAJB6b localized to the Z-disc and DNAJB6b-F93L expressing mouse muscle had myofibrillar disorganization and desmin inclusions. Consistent with DNAJB6 dysfunction, keratin 8/18, a DNAJB6 client also accumulated in DNAJB6b-F93L expressing mouse muscle. The RNA-binding proteins hnRNPA1 and hnRNPA2/B1 accumulated and co-localized with DNAJB6 at sarcoplasmic stress granules suggesting that these proteins maybe novel DNAJB6b clients. Similarly, hnRNPA1 and hnRNPA2/B1 formed sarcoplasmic aggregates in patients with LGMD1D. Our data support that LGMD1D mutations in DNAJB6 disrupt its sarcoplasmic function suggesting a role for DNAJB6b in Z-disc organization and stress granule kinetics. PMID:26362252
The state of art model for thermal transistor
NASA Astrophysics Data System (ADS)
Vachhani, M. G.; Gajjar, P. N.
2016-05-01
A state of art model for thermal transistor is proposed using three FK 1D chains. In this paper we study how control over heat transfer in nanoscale materials be achieved using microscopic model of thermal transistor. We study the influence of spring constant of source segment on the switching efficiency, thermal amplification and working region of the thermal transistor. We found the increase in switching efficiency and thermal amplification where as decrease in working region with increase in spring constant of source segment.
NASA Astrophysics Data System (ADS)
Reynolds, Dylan; Wood, Stephen E.; Bapst, Jonathan; Mehlhaff, Joshua; Griffiths, Stephen G.
2014-11-01
We have applied a self-consistent 1-D model for heat diffusion, vapor diffusion, and ice condensation/sublimation, and surface energy balance to investigate our hypothesis for the source of the recently observed water vapor around Ceres [1]. As described in a companion presentation [2], we find that the estimated global flux of 6 kg/s can be produced by steady-state sublimation of subsurface ice driven by the “geothermal” temperature gradient for a heat flux of 1 mW/m2 - the value estimated for a chondritic abundance of heat-producing elements [3,4]. We will present a detailed description of our Ceres cryothermal diffusion model and comparisons with previous models. One key difference is the use of a new physics-based analytic model (‘MaxRTCM’) for calculating the thermal conductivity (Kth) of planetary regolith [5] that has been validated by comparisons to a wide range of laboratory data [6]. MaxRTCM predicts much lower Kth values in the upper regolith than those in previous work [3]. It also accounts for a process first modeled in a study of unstable equatorial ground ice on Mars [7,8], where vapor diffusing up from a receding ice table toward the surface can recondense at shallower depths - eventually forming a steady-state profile of pore ice volume fraction that increases with depth and maintains a constant flux of vapor at all depths [7]. Using MaxRTCM we calculate the corresponding Kth(z) profiles and will present predictions and implications of the resulting temperature profile in the upper few kilometers of Ceres’ megaregolith.References: [1] Küppers et al. (2014), Nature, 505(7484), 525-527. [2] Wood et al., 2014, this meeting. [3] Fanale & Salvail (1989) Icarus 82, 97-110. [4] McCord and Sotin (2005) JGR 110, E05009. [5] Wood (2013) LPSC Abs. 44, 3077. [6] Wood (2014), Icarus, in revision. [7] Mellon et al. (1997), JGR, 102, 19357-69. [8] Clifford (1993), JGR, 98, 10973-11016.
Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Duarte, Joao; Bottiglieri, Teodoro; Sinton, Christopher M.; Heilig, Charles W.; Pascual, Juan M.
2012-01-01
Brain glucose supplies most of the carbon required for acetyl-coenzyme A (acetyl-CoA) generation (an important step for myelin synthesis) and for neurotransmitter production via further metabolism of acetyl-CoA in the tricarboxylic acid (TCA) cycle. However, it is not known whether reduced brain glucose transporter type I (GLUT-1) activity, the hallmark of the GLUT-1 deficiency (G1D) syndrome, leads to acetyl-CoA, TCA or neurotransmitter depletion. This question is relevant because, in its most common form in man, G1D is associated with cerebral hypomyelination (manifested as microcephaly) and epilepsy, suggestive of acetyl-CoA depletion and neurotransmitter dysfunction, respectively. Yet, brain metabolism in G1D remains underexplored both theoretically and experimentally, partly because computational models of limited brain glucose transport are subordinate to metabolic assumptions and partly because current hemizygous G1D mouse models manifest a mild phenotype not easily amenable to investigation. In contrast, adult antisense G1D mice replicate the human phenotype of spontaneous epilepsy associated with robust thalamocortical electrical oscillations. Additionally, and in consonance with human metabolic imaging observations, thalamus and cerebral cortex display the lowest GLUT-1 expression and glucose uptake in the mutant mouse. This depletion of brain glucose is associated with diminished plasma fatty acids and elevated ketone body levels, and with decreased brain acetyl-CoA and fatty acid contents, consistent with brain ketone body consumption and with stimulation of brain beta-oxidation and/or diminished cerebral lipid synthesis. In contrast with other epilepsies, astrocyte glutamine synthetase expression, cerebral TCA cycle intermediates, amino acid and amine neurotransmitter contents are also intact in G1D. The data suggest that the TCA cycle is preserved in G1D because reduced glycolysis and acetyl-CoA formation can be balanced by enhanced ketone body
NASA Astrophysics Data System (ADS)
Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.
2013-12-01
Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.
NASA Astrophysics Data System (ADS)
Matrullo, Emanuela; De Matteis, Raffaella; Satriano, Claudio; Amoroso, Ortensia; Zollo, Aldo
2013-10-01
We present a 1-D velocity model of the Earth's crust in Campania-Lucania region obtained by solving the coupled hypocentre-velocity inverse problem for 1312 local earthquakes recorded at a dense regional network. The model is constructed using the VELEST program, which calculates 1-D `minimum' velocity model from body wave traveltimes, together with station corrections, which account for deviations from the simple 1-D structure. The spatial distribution of station corrections correlates with the P-wave velocity variations of a preliminary 3-D crustal velocity model that has been obtained from the tomographic inversion of the same data set of P traveltimes. We found that station corrections reflect not only inhomogeneous near-surface structures, but also larger-scale geological features associated to the transition between carbonate platform outcrops at Southwest and Miocene sedimentary basins at Northeast. We observe a significant trade-off between epicentral locations and station corrections, related to the existence of a thick low-velocity layer to the NE. This effect is taken into account and minimized by re-computing station corrections, fixing the position of a subset of well-determined hypocentres, located in the 3-D tomographic model.
NASA Astrophysics Data System (ADS)
Sutanto, S. J.; Wenninger, J.; Coenders-Gerrits, A. M. J.; Uhlenbrook, S.
2012-08-01
Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured) was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d-1 into 0.4 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.6 mm d-1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d-1 into 1 mm d-1 for soil evaporation, 0.3 mm d-1 for interception and 2.3 mm d-1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.
A 1D Model For Describing Ion Cyclotron Resonance Heating At Arbitrary Cyclotron Harmonics
NASA Astrophysics Data System (ADS)
Van Eester, Dirk; Lerche, Ernesto
2011-12-01
Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ICRF heating scenario's creating high energy tails. The present paper discusses an extension of the 1D TOMCAT wave equation solver [1] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response that is suitable for numerical application. This choice of variable yields symmetric and intuitive expressions, and guarantees that a positive definite power absorption is obtained for any of the wave modes in the plasma. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach is proposed. To keep the required computation time for this generalized description reasonable tabulation of integrals is intensively used. An example is provided to illustrate the potential of the new wave code.
Fomina, Irina; Dobrokhotova, Zhanna; Aleksandrov, Grygory; Emelina, Anna; Bykov, Mikhail; Bogomyakov, Artem; Puntus, Lada; Novotortsev, Vladimir; Eremenko, Igor
2012-01-15
The new 1D coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n} (1), where Piv=OOCBu{sup t-}, was synthesized in high yield (>95%) by the reaction of thulium acetate with pivalic acid in air at 100 Degree-Sign S. According to the X-ray diffraction data, the metal atoms in compound 1 are in an octahedral ligand environment unusual for lanthanides. The magnetic and luminescence properties of polymer 1, it's the solid-phase thermal decomposition in air and under argon, and the thermal behavior in the temperature range of -50 Horizontal-Ellipsis +50 Degree-Sign S were investigated. The vaporization process of complex 1 was studied by the Knudsen effusion method combined with mass-spectrometric analysis of the gas-phase composition in the temperature range of 570-680 K. - Graphical Abstract: Novel 1D coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n} was synthesized and studied by X-ray diffraction. The magnetic, luminescence properties, the thermal behavior and the volatility for the compound {l_brace}Tm(Piv){sub 3{r_brace}n} were investigated. Black-Small-Square Highlights: Black-Right-Pointing-Pointer We synthesized the coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n}. Black-Right-Pointing-Pointer Tm atoms in polymer have the coordination number 6. Black-Right-Pointing-Pointer Polymer exhibits blue-color emission at room temperature. Black-Right-Pointing-Pointer Polymer shows high thermal stability and volatility. Black-Right-Pointing-Pointer Polymer has no phase transitions in the range of -50 Horizontal-Ellipsis +50 Degree-Sign S.
Modeling Thermal Contact Resistance
NASA Technical Reports Server (NTRS)
Kittel, Peter; Sperans, Joel (Technical Monitor)
1994-01-01
One difficulty in using cryocoolers is making good thermal contact between the cooler and the instrument being cooled. The connection is often made through a bolted joint. The temperature drop associated with this joint has been the subject of many experimental and theoretical studies. The low temperature behavior of dry joints have shown some anomalous dependence on the surface condition of the mating parts. There is also some doubts on how well one can extrapolate from the test samples to predicting the performance of a real system. Both finite element and analytic models of a simple contact system have been developed. The model assumes (a) the contact is dry (contact limited to a small portion of the total available area and the spaces in-between the actual contact patches are perfect insulators), (b) contacts are clean (conductivity of the actual contact is the same as the bulk), (c) small temperature gradients (the bulk conductance may be assumed to be temperature independent), (d) the absolute temperature is low (thermal radiation effects are ignored), and (e) the dimensions of the nominal contact area are small compared to the thickness of the bulk material (the contact effects are localized near the contact). The models show that in the limit of actual contact area much less than the nominal area (a much less than A), that the excess temperature drop due to a single point of contact scales as a(exp -1/2). This disturbance only extends a distance approx. A(exp 1/2) into the bulk material. A group of identical contacts will result in an excess temperature drop that scales as n(exp -1/2), where n is the number of contacts and n dot a is constant. This implies that flat rough surfaces will have a lower excess temperature drop than flat polished surfaces.
NASA Astrophysics Data System (ADS)
Marcq, E.
2012-01-01
In order to understand the early history of telluric interiors and atmospheres during the ocean magma stage, a coupled interior-atmosphere-escape model is being developed. This paper describes the atmospheric part and its first preliminary results. A unidimensional, radiative-convective, H2O-CO2 atmosphere is modeled following a vertical T(z) profile similar to Kasting (1988) and Abe and Matsui (1988). Opacities in the thermal IR are then computed using a k-correlated code (KSPECTRUM), tabulated continuum opacities for H2O-H2O and CO2-CO2 absorption, and water or sulphuric acid clouds in the moist convective zone (whenever present). The first results show the existence of two regimes depending on the relative value of the surface temperature Ts compared to a threshold temperature Tc depending on the total gaseous inventory. For Ts < Tc, efficient blanketing results in a cool upper atmosphere, a cloud cover, and a long lifetime for the underneath magma ocean with a net thermal IR flux between 160 and 200 Wm-2. For Ts > Tc, the blanketing is not efficient enough to prevent large radiative heat loss to space through a hot, cloudless atmosphere. Our current calculations may underestimate the thermal flux in the case of hot surfaces with little gaseous content in the atmosphere.
NASA Astrophysics Data System (ADS)
Haji Mohammadi, M.; Kang, S.; Sotiropoulos, F.
2011-12-01
It is well-known that meander bends impose local losses of energy to the flow in rivers. These local losses should be added together with friction loss to get the total loss of energy. In this work, we strive to develop a framework that considers the effect of bends in meandering rivers for one-dimensional (1-D) homogenous equations of flow. Our objective is to develop a simple, yet physically sound, and efficient model for carrying out engineering computations of flow through meander bends. We consider several approaches for calculating 1-D hydraulic properties of meandering rivers such as friction factor and Manning coefficient. The method of Kasper et al. (2005), which is based on channel top width, aspect ratio and radius of curvature, is adopted for further calculations. In this method, a correction is implemented in terms of local energy loss, due to helical motion and secondary currents of fluid particles driven by centrifugal force, in meanders. To validate the model, several test cases are simulated and the computed results are compared with the reported data in the literature in terms of water surface elevation, shear velocity, etc. For all cases the computed results are in reasonable agreement with the experimental data. 3-D RANS turbulent flow simulations are also carried out, using the method of Kang et al. (Adv. In Water Res., vol. 34, 2011), for different geometrical parameters of Kinoshita Rivers to determine the spatial distribution of shear stress on river bed and banks, which is the key factor in scour/deposition patterns. The 3-D solutions are then cross-sectionally averaged and compared with the respective solutions from the 1-D model. The comparisons show that the improved 1D model, which incorporates the effect of local bend loss, captures key flow parameters with reasonable accuracy. Our results also underscore the range of validity and limitations of 1D models for meander bend simulations. This work was supported by NSF Grants (as part of
Sun, Jian-Ke; Jin, Xu-Hui; Chen, Chao; Zhang, Jie
2010-08-01
An unusual example showing reversible interconversion of chain-like isomers under controlled experimental settings is reported, which illustrates the key role of assembly conditions for the target packing architecture with related properties. The reaction of Mn(II) ions with an organic ligand 2-hydroxypyrimidine-4,6-dicarboxylic acid (H(3)hpdc) at room temperature gives a coordination polymer {[Mn(3)(hpdc)(2)(H(2)O)(6)] x 2 H(2)O}(n) containing parallel staggered stacking, whereas the reaction under hydrothermal conditions at 150 degrees C affords a compound {[Mn(3)(hpdc)(2)(H(2)O)(6)] x H(2)O}(n) possessing plywood-like stacking. Interestingly, two compounds contain similar one-dimensional chain components with different orientations that can be controlled by thermodynamic factors. Thermally triggered reversible interconversion of the two compounds was verified by X-ray powder, IR, and element analysis. The spin-canted antiferromagnetic behaviors are observed in as-synthesized samples, and the influence of chain orientations on magnetic properties has been detected. PMID:20608747
NASA Astrophysics Data System (ADS)
Formisano, M.; Federico, C.; Coradini, A.; Carli, C.; Turrini, D.
2011-12-01
Vesta is one of the largest Main Belt asteroid, considered the parent of the HED (Howardite - Eucrite - Diogenite) meteorites. Spectroscopic studies in fact show the presence of the 0.9 and 1.9 μm absorption bands for pyroxene in the spectra of Vesta that match those observed in the spectra of HED meteorites (see Gaffey, 1997, Surface Lihologic Heterogeneity of Asteroid 4 Vesta, Icarus, 127). The spectral connection between Vesta and the Howardite-Eurcrite-Diogenite (HED) suite of meteorites suggests that Vesta formed very early in the history of the Solar System and differentiated on a Ma-long timescale due to the decay of short-lived radioactive nuclides (see Keil K., 2002, Geological History of Asteroid 4 Vesta: The Smallest Terrestrial Planet. Asteroids III, and references therein). The importance of studying the thermal evolution of Vesta is therefore linked to the understanding of the processes of core and crust formation in planetary bodies so Vesta can be considered a good model for the primordial stages of the terrestrial planets. Our interest is mainly focused on the study of different energy sources, and how they contribute to differentiation and, more generally, to the thermal history of the body. We analyze not only the contribution of short-lived radionuclides, i.e. 26Al and 60Fe, but also the contribution of long-lived radionuclides, in particular 40K, 232Th, 235U and 238U, and that of accretional heating. The contribution of the long-lived radionuclides does not change the overall thermal history but it only slows down the cooling of the body. We have also observed that the effect of the accretional heating is limited if not negligible: in the most favourable scenarios its contribution only raise the starting temperature of the body but it is not sufficient to start the differentiation process. Vesta thermal and structural evolution is therefore characterized by the contribution of the short-lived radionuclides. The scenarios we considered differ
NASA Astrophysics Data System (ADS)
Pekşen, Ertan; Yas, Türker; Kıyak, Alper
2014-09-01
We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Hagen, S. C.; Wang, D.
2014-12-01
Hydrodynamic models are widely applied to coastal areas in order to predict water levels and flood inundation and typically involve solving a form of the Shallow Water Equations (SWE). The SWE are routinely discretized by applying numerical methods, such as the finite element method. Like other numerical models, hydrodynamic models include uncertainty. Uncertainties are generated due to errors in the discrete approximation of coastal geometry, bathymetry, bottom friction and forcing functions such as tides and wind fields. Methods to counteract these uncertainties should always begin with improvements to physical characterization of: the geometric description through increased resolution, parameters that describe land cover variations in the natural and urban environment, parameters that enhance transfer of surface forcings to the water surface, open boundary forcings, and the wetting/drying brought upon by flood and ebb cycles. When the best possible physical representation is achieved, we are left with calibration and data assimilation to reduce model uncertainty. Data assimilation has been applied to coastal hydrodynamic models to better estimate system states and/or system parameters by incorporating observed data into the model. Kalman Filter is one of the most studied data assimilation methods that minimizes the mean square errors between model state estimations and the observed data in linear systems (Kalman , 1960). For nonlinear systems, as with hydrodynamic models, a variation of Kalman filter called Ensemble Kalman Filter (EnKF), is applied to update the system state according to error statistics in the context of Monte Carlo simulations (Evensen , 2003) & (Hitoshi et. al, 2014). In this research, Kalman Filter is incorporated to simultaneously estimate an influential parameter used in the shallow water equations, bottom roughness, and to adjust the physical feature of bathymetry. Starting from an initial estimate of bottom roughness and bathymetry, and
NASA Astrophysics Data System (ADS)
Ingeman-Nielsen, Thomas; Baumgartner, François
2006-11-01
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface allows easy construction of 1D models and control of the parameters. Modelling results are in agreement with other authors, but the time of computation is less efficient than other available codes. Nevertheless, the CR1Dmod routine handles complex resistivities and offers solutions based on the full EM-equations as well as the quasi-static approximation. Thus, modelling of effects based on changes in the magnetic permeability and the permittivity is also possible.
Thermal-dynamic modeling study
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.
1973-01-01
Study provides basic information for designing models and conducting thermal-dynamic structural tests. Factors considered are development and interpretation of thermal-dynamic structural scaling laws; identification of major problem areas; and presentation of model fabrication, instrumentation, and test procedures.
NASA Astrophysics Data System (ADS)
Kim, Seongryong; Rhie, Junkee; Kim, Geunyoung
2011-04-01
We propose a full-grid search procedure for broad-band waveform modelling to determine a 1-D crustal velocity model. The velocity model can be more constrained because of the use of broad-band waveforms instead of traveltimes for the crustal phases, although only a small number of event-station pairs were employed. Despite the time-consuming nature of the full-grid search method to search the whole model parameter space, the use of an empirical relationship between the P- and S-wave velocities can significantly reduce computation time. The proposed method was applied to a case in the southern Korean Peninsula. Broad-band waveforms obtained from two inland earthquakes that occurred on 2007 January 20 (Mw 4.6) and 2004 April 26 (Mw 3.6) were used to test the method. The three-layers over half-space crustal velocity model of the P- and S-wave velocities was estimated. Comparisons of waveform fitness between the final model and previously published models demonstrate advancements in the average value of waveform fitness for the inland earthquakes. In addition, 1-D velocity models were determined for three distinct tectonic regions, namely, the Gyonggi Massif, the Okcheon Belt and the Gyeongsang Basin, which are all located inside the study area. A comparison between the three models demonstrates that the crustal thickness of the southern Korean Peninsula increases from NW to SE and that the lower crustal composition of the Okcheon belt differs from that of the other tectonic regions.
Data Assimilation Using a Variational Method for a 1D Radiation Belt Diffusion Model
NASA Astrophysics Data System (ADS)
Marchand, R.; Degeling, A. W.; O'Donnell, S.; Rankin, R.; Kabin, K.
2009-12-01
A variational data assimilation algorithm has been developed to incorporate electron flux time-series data from satellites into a simple one dimensional diffusion model for the radial transport of radiation belt electrons. The model developed assumes a power law scaling for the radial diffusion coefficient with L shell. The effectiveness of this method is investigated by means of a series of identical twin numerical experiments. This involves using the diffusion model to produce synthetic observations along various satellite trajectories. These observations are in turn used to estimate time-dependent parameters input to the diffusion model, which are compared against the values initially used. The data assimilation algorithm considers the time dependent source located at the outer boundary as a function to be determined. Using synthetic satellite electron flux observations, the algorithm computes a source function that, when used as an input to the diffusion model, most closely reproduces the synthetic observations in a least-squares sense. Observational errors are taken into account, and an estimate of the uncertainty in the output source function is also produced. This uncertainty is found to consistently reflect the quality of the source function estimation during identical twin numerical experiments. Initial tests indicate that the quality of the outer boundary source estimation is strongly dependent on the satellite location, indicating that the outer boundary source estimation becomes poor as information relating to the outer boundary contained in the observations is reduced. The potential of using this data assimilation method to estimate one or more parameters that determine the radial diffusion coefficient, and the possibility of determining whether physical processes affecting the observations are missing in the dynamical model will be discussed.
PROM4: 1D isothermal and isobaric modeler for solar prominences
NASA Astrophysics Data System (ADS)
Gouttebroze, P.; Labrosse, N.
2013-06-01
PROM4 computes simple models of solar prominences which consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. PROM4 solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level populations and hydrogen line profiles. Written in Fortran 90 and with two versions available (one with text in English, one with text in French), the code needs 64-bit arithmetic for real numbers.
Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model
NASA Astrophysics Data System (ADS)
Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho
2016-05-01
Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.
Reactive Transport Modeling of Microbially-Mediated Chromate Reduction in 1-D Soil Columns
NASA Astrophysics Data System (ADS)
Qiu, H.; Viamajala, S.; Alam, M. M.; Peyton, B. M.; Petersen, J. N.; Yonge, D. R.
2002-12-01
Cr(VI) reduction tests were performed with the well known metal reducing bacterium Shewanella oneidensis MR-1 in liquid phase batch reactors and continuous flow soil columns under anaerobic conditions. In the batch tests, the cultures were grown with fumarate as the terminal electron acceptor and lactate as the electron donor in a simulated groundwater medium to determine yield coefficients and specific growth rates. The bench-scale soil column experiments were carried out with MR-1 to test the hypothesis that the kinetic parameters obtained in batch studies, combined with microbial attachment /detachment processes, will accurately predict reactive transport of Cr(VI) during bacterial Cr(VI) reduction in a soil matrix. Cr(VI)-free simulated groundwater media containing fumarate as the limiting substrate and lactate was supplied to a 2.1cm (ID) x 15 cm soil column inoculated with MR-1 for a duration of 9 residence times to allow for biomass to build-up in the column. Thereafter the column was supplied with both Cr(VI) and substrate. The concentrations of effluent substrate, biomass and Cr(VI) were monitored on a periodic basis and attached biomass in the column was measured in the termination of each column test. A reactive transport model was developed in which 6 governing equations deal with Cr(VI) bioreaction, fumarate (as electron donor) consumption, aqueous biomass growth and transport, solid biomass detachment and attachment kinetics, aqueous and solid phase enzyme reaction and transport, respectively. The model incorporating the enzyme reaction kinetics for Cr(VI) reduction, Monod kinetic expressions for substrate depletion, nonlinear attachment and detachment kinetics for aqueous and solid phase microorganism concentration, was solved by a fully implicit, finite-difference procedure using RT3D (A Modular Computer Code for Reactive Multi-species Transport in 3-Dimensional Groundwater Systems) platform in one dimension. Cr(VI)-free column data was used to
Stochastic Heat Equation Limit of a (2 + 1)d Growth Model
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Corwin, Ivan; Toninelli, Fabio Lucio
2016-07-01
We determine a {q to 1} limit of the two-dimensional q-Whittaker driven particle system on the torus studied previously in Corwin and Toninelli (Electron. Commun. Probab. 21(44):1-12, 2016). This has an interpretation as a (2 + 1)-dimensional stochastic interface growth model, which is believed to belong to the so-called anisotropic Kardar-Parisi-Zhang (KPZ) class. This limit falls into a general class of two-dimensional systems of driven linear SDEs which have stationary measures on gradients. Taking the number of particles to infinity we demonstrate Gaussian free field type fluctuations for the stationary measure. Considering the temporal evolution of the stationary measure, we determine that along characteristics, correlations are asymptotically given by those of the (2 + 1)-dimensional additive stochastic heat equation. This confirms (for this model) the prediction that the non-linearity for the anisotropic KPZ equation in (2 + 1)-dimension is irrelevant.
Prediction of the expansion velocity of ultracold 1D quantum gases for integrable models
NASA Astrophysics Data System (ADS)
Mei, Zhongtao; Vidmar, Lev; Heidrich-Meisner, Fabian; Bolech, Carlos
In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states. The physical interpretation of rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum gas expand into a larger volume rendering it dilute and noninteracting. We exploit this picture to calculate the expansion velocity of a one-dimensional Fermi-Hubbard model by using the distribution of rapidities defined by the initial state. Our results are consistent with the ones from time-dependent density-matrix renormalization. We show in addition that an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model. Our results are of interests for future sudden-expansion experiments with ultracold quantum gases.
A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, Jim
2015-01-01
Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).
A Simplified 1-D Model for Calculating CO2 Leakage through Conduits
Zhang, Y.; Oldenburg, C.M.
2011-02-15
In geological CO{sub 2} storage projects, a cap rock is generally needed to prevent CO{sub 2} from leaking out of the storage formation. However, the injected CO{sub 2} may still encounter some discrete flow paths such as a conductive well or fault (here referred to as conduits) through the cap rock allowing escape of CO{sub 2} from the storage formation. As CO{sub 2} migrates upward, it may migrate into the surrounding formations. The amount of mass that is lost to the formation is called attenuation. This report describes a simplified model to calculate the CO{sub 2} mass flux at different locations of the conduit and the amount of attenuation to the surrounding formations. From the comparison among the three model results, we can conclude that the steady-state conduit model (SSCM) provides a more accurate solution than the PMC at a given discretization. When there is not a large difference between the permeability of the surrounding formation and the permeability of the conduits, and there is leak-off at the bottom formation (the formation immediately above the CO{sub 2} plume), a fine discretization is needed for an accurate solution. Based on this comparison, we propose to use the SSCM in the rapid prototype for now given it does not produce spurious oscillations, and is already in FORTRAN and therefore can be easily made into a dll for use in GoldSim.
NASA Technical Reports Server (NTRS)
Johnson, Hollis Ralph
1987-01-01
The static thermal atmosphere is described and its predictions are compared to observations both to test the validity of the classic assumptions and to distinguish and describe those spectral features with diagnostic value.
NASA Astrophysics Data System (ADS)
Lauer, Wesley; Viparelli, Enrica; Piegay, Herve
2014-05-01
Sedimentary deposits adjacent to rivers can represent important sources and sinks for bed material sediment, particularly on decadal and longer timescales. The Morphodynamics and Sediment Tracers in 1-D model (MAST-1D) is a size-specific sediment transport model that allows for active exchange between channel and floodplain sediment on river reaches of tens to hundreds of kilometers in length. The model is intended to provide a mechanism for performing a first-order assessment of the likely importance of off-channel sediment exchange in controlling decadal-scale geomorphic trends, thereby helping plan and/or prioritize field data collection and higher resolution modeling work. The model develops a sediment budget for short segments of an alluvial valley. Each segment encompasses several active river bends. In each segment, a sediment transport capacity computation is performed to determine the downstream flux of bed material sediment, following the approach of most other 1-D sediment transport models. However, the model differs from most other bed evolution models in that sediment can be exchanged with the floodplain in each segment, and mass conservation is applied to both the active layer and floodplain sediment storage reservoirs. The potential for net imbalances in overall exchange as well as the size specific nature of the computations allows the model to simulate reach-scale aggradation/degradation and/or changes in bed texture. The inclusion of fine sediment in the model allows it to track geochemical tracer material and also provides a mechanism to simulate, to first order, the effects of changes in the supply of silt and clay on overall channel hydraulic capacity. The model is applied to a ~40 km reach of the Ain River, a tributary of the Rhône River in eastern France that has experienced a significant sediment deficit as a result of the construction of several dams between 1920 and 1970. MAST-1D simulations result in both incision and the formation of a
Constraining the temporal evolution of a deep hypersaline anoxic basin by 1D geochemical modelling
NASA Astrophysics Data System (ADS)
Goldhammer, Tobias; Aiello, Ivano; Zabel, Matthias
2014-05-01
Deep hypersaline anoxic basins (DHABs) are seafloor features of the accretionary prism of the Mediterranean Ridge. They have formed by the dissolution of exhumed shallow Messinian evaporites and subsequent concentration of the ultra-saline solutions in depressions on the seafloor. As an example, the horseshoe-shaped Urania basin is a DHAB south of the Peloponnese peninsula contains one of the most saline (about six times higher than Mediterranean seawater) and sulfidic (up to 15mM) water bodies of the Earth. Furthermore, its deepest part is underlain by a mud volcano that is responsible for the injection of fluid mud beneath the brine lake, with exceptionally sharp chemoclines between water column, brine, and mud layer. We here present a model approach to reconstruct the temporal aspects of the formation, dynamics and persistence of the brine-mud-system in the deep pit of the Urania Basin. Based on data from a sampling campaign with RV Meteor (Cruise M84/1 in February 2011), we set up a one-dimensional geochemical model that integrates diffusion, reaction and advective transport and mixing. Using a set of model preconditions, we aimed to answer (1) which processes are required to maintain the current situation of steep chemical gradients of the brine-mud-system, (2) how fast the current situation could have developed under different scenarios, and (3) how long such extraordinary conditions could have persisted through Earth's history. We further discuss the consequences of the temporal framework for the evolution of prokaryotic life in this extreme habitat.
Dynamical correlation functions of the 1D Bose gas (Lieb Liniger model)
NASA Astrophysics Data System (ADS)
Caux, Jean-Sebastien; Calabrese, Pasquale
2007-03-01
The momentum- and frequency-dependent correlation functions (one-body and density-density) of the one-dimensional interacting Bose gas (Lieb-Liniger model) are obtained for any value (repulsive or attractive) of the interaction parameter. In the repulsive regime, we use the Algebraic Bethe Ansatz and the ABACUS method to reconstruct the correlators to high accuracy for systems with finite but large numbers of particles. For attractive interactions, the correlations are computed analytically. Our results are discussed, with particular emphasis on their applications to quasi-one-dimensional atomic gases.
Zeng, Y; Albertus, P; Klein, R; Chaturvedi, N; Kojic, A; Bazant, MZ; Christensen, J
2013-06-07
Mathematical models of batteries which make use of the intercalation of a species into a solid phase need to solve the corresponding mass transfer problem. Because solving this equation can significantly add to the computational cost of a model, various methods have been devised to reduce the computational time. In this paper we focus on a comparison of the formulation, accuracy, and order of the accuracy for two numerical methods of solving the spherical diffusion problem with a constant or non-constant diffusion coefficient: the finite volume method and the control volume method. Both methods provide perfect mass conservation and second order accuracy in mesh spacing, but the control volume method provides the surface concentration directly, has a higher accuracy for a given numbers of mesh points and can also be easily extended to variable mesh spacing. Variable mesh spacing can significantly reduce the number of points that are required to achieve a given degree of accuracy in the surface concentration (which is typically coupled to the other battery equations) by locating more points where the concentration gradients are highest. (C) 2013 The Electrochemical Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
Comprehensive 1D Modelling of Reactive Chemical Transport in Unsaturated Soil
NASA Astrophysics Data System (ADS)
Wissmeier, L.; Barry, D. A.
2007-12-01
Computer models for simulating environmental processes of water flow, solute transport and geochemical reactions have greatly advanced during recent years. However, there is still demand for the development of programs that a capable of simulating the numerous interactions between physical transport processes and biogeochemical reactions in natural soils. We present a new tool for simulating transient vadose zone flow and solute transport according to the moisture- based form of Richards' equation within the widely used geochemical software PHREEQC. The direct implementation into the geochemical framework provides access to comprehensive geochemical models, giving capabilities beyond existing software for coupled unsaturated flow and reaction. Possible reactions include complex aqueous speciation, cation exchange, equilibrium phase dissolution and precipitation, formation of solid solutions, redox reactions, gas phase exchange, surface adsorption considering electrostatics and kinetic reactions with user-defined rate equations, among others. As a result of the close coupling procedure, the influence of geochemical reactions on water content, e.g., through dissolution or precipitation of water-containing phases, can be investigated. For the solution of the partial differential equations of flow and transport, an explicit finite-difference formulation with a second-order space discretization and first-order time discretization was employed. The use of integrated diffusivities transforms Richards' equation into a simple advection-diffusion equation. Changes in water content and solute concentration were conceptualized as local kinetic reactions of individual elements where changes in moisture content result from fluxes of oxygen and hydrogen across cell boundaries. Reactions and chemical element transport are coupled via sequential two-step operator splitting. The scheme was implemented into PHREEQC without any source code modification such that it can be applied by
Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling
NASA Astrophysics Data System (ADS)
Harrison, L. R.; Keller, E. A.
2003-12-01
In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is
Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.
2014-06-01
The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and those available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.
Existence of a metallic phase in a 1D Holstein Hubbard model at half filling
NASA Astrophysics Data System (ADS)
Krishna, Phani Murali; Chatterjee, Ashok
2007-06-01
The one-dimensional half-filled Holstein-Hubbard model is studied using a series of canonical transformations including phonon coherence effect that partly depends on the electron density and is partly independent and also incorporating the on-site and the nearest-neighbour phonon correlations and the exact Bethe-ansatz solution of Lieb and Wu. It is shown that choosing a better variational phonon state makes the polarons more mobile and widens the intermediate metallic region at the charge-density-wave-spin-density-wave crossover recently predicted by Takada and Chatterjee. The presence of this metallic phase is indeed a favourable situation from the point of view of high temperature superconductivity.
Development of a 3D to 1D Particle Transport Model to Predict Deposition in the Lungs
NASA Astrophysics Data System (ADS)
Oakes, Jessica M.; Grandmont, Celine; Shadden, Shawn C.; Vignon-Clementel, Irene E.
2014-11-01
Aerosolized particles are commonly used for therapeutic drug delivery as they can be delivered to the body systemically or be used to treat lung diseases. Recent advances in computational resources have allowed for sophisticated pulmonary simulations, however it is currently impossible to solve for airflow and particle transport for all length and time scales of the lung. Instead, multi-scale methods must be used. In our recent work, where computational methods were employed to solve for airflow and particle transport in the rat airways (Oakes et al. (2014), Annals of Biomedical Engineering 42, 899), the number of particles to exit downstream of the 3D domain was determined. In this current work, the time-dependent Lagrangian description of particles was used to numerically solve a 1D convection-diffusion model (trumpet model, Taulbee and Yu (1975), Journal of Applied Physiology, 38, 77) parameterized specifically for the lung. The expansion of the airway dimensions was determined based on data collected from our aerosol exposure experiments (Oakes et al. (2014), Journal of Applied Physiology, 116, 1561). This 3D-1D framework enables us to predict the fate of particles in the whole lung. This work was supported by the Whitaker Foundation at the IIE, a INRIA Associated Team Postdoc Grant, and a UC Presidential Fellowship.
Exact solution of the 1D Hubbard model with NN and NNN interactions in the narrow-band limit
NASA Astrophysics Data System (ADS)
Mancini, Ferdinando; Plekhanov, Evgeny; Sica, Gerardo
2013-10-01
We present the exact solution, obtained by means of the Transfer Matrix (TM) method, of the 1D Hubbard model with nearest-neighbor (NN) and next-nearest-neighbor (NNN) Coulomb interactions in the atomic limit ( t = 0). The competition among the interactions ( U, V 1, and V 2) generates a plethora of T = 0 phases in the whole range of fillings. U, V 1, and V 2 are the intensities of the local, NN and NNN interactions, respectively. We report the T = 0 phase diagram, in which the phases are classified according to the behavior of the principal correlation functions, and reconstruct a representative electronic configuration for each phase. In order to do that, we make an analytic limit T → 0 in the transfer matrix, which allows us to obtain analytic expressions for the ground state energies even for extended transfer matrices. Such an extension of the standard TM technique can be easily applied to a wide class of 1D models with the interaction range beyond NN distance, allowing for a complete determination of the T = 0 phase diagrams.
NASA Astrophysics Data System (ADS)
Hayden-Lesmeister, A.; Remo, J. W.; Piazza, B.
2015-12-01
The Atchafalaya River (AR) in Louisiana is the principal distributary of the Mississippi River (MR), and its basin contains the largest contiguous area of baldcypress-water tupelo swamp forests in North America. After designation of the Atchafalaya River Basin (ARB) as a federal floodway following the destructive 1927 MR flood, it was extensively modified to accommodate a substantial portion of the MR flow (~25%) to mitigate flooding in southern Louisiana. These modifications and increased flows resulted in substantial incision along large portions of the AR, altering connectivity between the river and its associated waterbodies. As a result of incision, the hydroperiod has been substantially altered, which has contributed to a decline in ecological health of the ARB's baldcypress-water tupelo forests. While it is recognized that the altered hydroperiod has negatively affected natural baldcypress regeneration, it is unclear whether proposed projects designed to enhance flow connectivity will increase long-term survival of these forests. In this study, we have constructed a 1D2D hydrodynamic model using SOBEK 2.12 to realistically model key physical parameters such as residence times, inundation extent, water-surface elevations (WSELs), and flow velocities to increase our understanding of the ARB's altered hydroperiod and the consequences for baldcypress-water tupelo forests. While the model encompasses a majority of the ARB, our modeling effort is focused on the Flat Lake Water Management Unit located in the southern portion of the ARB, where it will also be used to evaluate flow connectivity enhancement projects within the management unit. We believe our 1D2D hybrid hydraulic modeling approach will provide the flexibility and accuracy needed to guide connectivity enhancement efforts in the ARB and may provide a model framework for guiding similar efforts along other highly-altered river systems.
Vlasov dynamics of 1D models with long-range interactions
NASA Astrophysics Data System (ADS)
Druken, Kelsey A.
Subduction zones, mid-ocean spreading centers and mantle plumes are three of the largest sources for volcanism on Earth. With subduction as the driving tectonic force, these systems are responsible for the evolution of both the crust and mantle and as a result are important processes in our understanding of the solid Earth. Mantle plume processes, however, are still strongly debated within the community, particularly when occurring near subduction zones. Using both laboratory (i.e. analog) and numerical modeling techniques, we examine the dynamic interaction between subduction-driven and plume-driven flow. Results highlight the weak nature of buoyant plumes in comparison to the dominant slab-induced circulation. As a consequence of the subduction-induced flow, surface expressions differ significantly from traditional plume expectations. Variations in slab sinking style and plume position lead to a range in plume head and conduit melting signatures, as well as migrating hotspots. Motivated by the debated origin of recent (< 20 Ma) volcanism in the Northwest U.S., we also report results of the evolution of finite strain within rollback-induced as well as plume-driven flow fields. If the patterns differ between background subduction and plume structures, seismic anisotropy observations could help distinguish the plume and non plume models that are suggested for the region. We find rollback-induced horizontal shear causes predominantly trench-normal strain alignment in the backarc mantle wedge in contrast to longitudinal subduction which, despite the simple flow field, results in complex and variable orientations from the lack of strong horizontal shear. Splitting observations from the High Lava Plains region with the Northwest U.S. are in good agreement with the trench-normal laboratory predictions of strain alignment. Alignment within plume heads are found to exhibit striking tangential patterns that are perpendicular to the plume-driven flow. While we show that
NASA Astrophysics Data System (ADS)
Velarde, M. G.; Ebeling, W.; Chetverikov, A. P.
2013-01-01
We study the thermal excitation of intrinsic localized modes in the form of solitons in 1d and 2d anharmonic lattices at moderately high temperatures. Such finite-amplitude fluctuations form long-living dynamical structures with life-time in the pico-second range thus surviving a relatively long time in comparison to other thermal fluctuations. Further we discuss the influence of such long-living fluctuations on the dynamics of added excess free electrons. The atomic lattice units are treated as quasi-classical objects interacting by Morse forces and stochastically moving according to Langevin equations. In 2d the atoms are initially organized in a triangular lattice. The electron distributions are in a first estimate represented by equilibrium adiabatic distributions in the actual polarization fields. Computer simulations show that in 2d systems such excitations are moving with supersonic velocities along lattice rows oriented with the cristallographic axes. By following the electron distributions we have also been able to study the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life times.
Environmental Modeling of Mars: Thermal Behavior
NASA Astrophysics Data System (ADS)
Martin, T. Z.; Bridges, N. T.; Murphy, J. R.
2003-05-01
There is increasing demand for modeling of the Martian physical environment both for scientific studies and for design and operation of Mars missions. A variety of resources are available to meet these needs; most are the products of individual research efforts, and one - Mars-GRAM - is a parameterization model specifically intended for engineering applications. There is often a gap of understanding between the scientists and engineers that must be carefully addressed in order to portray accuracy of data, reliability of models, and applicability. At JPL we are collecting the most relevant scientific results and providing them to engineering staff in order to carry out a variety of studies. Among these are estimation of minimum nighttime 1-m air temperatures at the Mars Exploration Rover landing sites, in order to predict thermal losses that could limit mission lifetime; evaluation of the thermal flux on MRO instruments and radiative coolers; bounding atmospheric dust opacities for balloon operations; and wind modeling for evaluation of landing risk at potential MER sites. For MER, we combined thermal models validated by MGS TES data with a 1-D boundary layer model developed for Mars Pathfinder meteorology data modeling, to produce temperatures at 1 meter at 0600 hrs near the mission endpoints, to estimate whether certain landing sites would produce excessive cooling, and thus battery drain. Low thermal inertias at the Sinus Meridiani site produce temperatures that are problematical for a small fraction of the original landing ellipse. Data have generously been provided by MGS TES and Odyssey THEMIS team members, as well as mesoscale and boundary layer modelers. This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology.
A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.
Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N
2015-07-01
The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. PMID:25766693
Phase transitions at strong coupling in the 2+1-d abelian Higgs model
NASA Astrophysics Data System (ADS)
MacKenzie, R. B.; Nebia-Rahal, Faïza; Paranjape, M. B.
2013-12-01
We study, using numerical Monte-Carlo simulations, an effective description of the 2+1 dimensional Abelian Higgs model which is valid at strong coupling, in the broken symmetry sector. In this limit, the massive gauge boson and the massive neutral Higgs decouple leaving only the massive vortices. The vortices have no long range interactions. We find a phase transition as the mass of the vortices is made lighter and lighter. At the transition, the contributions to the functional integral come from a so-called infinite vortex anti-vortex loop. Adding the Chern-Simons term simply counts the linking number between the vortices. We find that the Wilson loop exhibits perimeter law behaviour in both phases, although the polarization cloud increases by an order of magnitude at the transition. We also study the 't Hooft loop. We find the 't Hooft loop exhibits perimeter law behaviour in the presence of the Chern-Simons term but is trivial in its absence. Thus we have a theory with perimeter law for both the Wilson loop and the 't Hooft loop, but contains no massless particles.
A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function
Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N
2015-01-01
The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery–vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. PMID:25766693
Thermal modeling of stratospheric airships
NASA Astrophysics Data System (ADS)
Wu, Jiangtao; Fang, Xiande; Wang, Zhenguo; Hou, Zhongxi; Ma, Zhenyu; Zhang, Helei; Dai, Qiumin; Xu, Yu
2015-05-01
The interest in stratospheric airships has increased and great progress has been achieved since the late 1990s due to the advancement of modern techniques and the wide range of application demands in military, commercial, and scientific fields. Thermal issues are challenging for stratospheric airships, while there is no systematic review on this aspect found yet. This paper presents a comprehensive literature review on thermal issues of stratospheric airships. The main challenges of thermal issues on stratospheric airships are analyzed. The research activities and results on the main thermal issues are surveyed, including solar radiation models, environmental longwave radiation models, external convective heat transfer, and internal convective heat transfer. Based on the systematic review, guides for thermal model selections are provided, and topics worthy of attention for future research are suggested.
Adhikari, K; Pal, S; Chakraborty, B; Mukherjee, S N; Gangopadhyay, A
2014-10-01
The movement of contaminants through soil imparts a variety of geo-environmental problem inclusive of lithospheric pollution. Near-surface aquifers are often vulnerable to contamination from surface source if overlying soil possesses poor resilience or contaminant attenuation capacity. The prediction of contaminant transport through soil is urged to protect groundwater from sources of pollutants. Using field simulation through column experiments and mathematical modeling like HYDRUS-1D, assessment of soil resilience and movement of contaminants through the subsurface to reach aquifers can be predicted. An outfall site of effluents of a coke oven plant comprising of alarming concentration of phenol (4-12.2 mg/L) have been considered for studying groundwater condition and quality, in situ soil characterization, and effluent characterization. Hydrogeological feature suggests the presence of near-surface aquifers at the effluent discharge site. Analysis of groundwater of nearby locality reveals the phenol concentration (0.11-0.75 mg/L) exceeded the prescribed limit of WHO specification (0.002 mg/L). The in situ soil, used in column experiment, possess higher saturated hydraulic conductivity (KS = 5.25 × 10(-4) cm/s). The soil containing 47 % silt, 11 % clay, and 1.54% organic carbon content was found to be a poor absorber of phenol (24 mg/kg). The linear phenol adsorption isotherm model showed the best fit (R(2) = 0.977, RMSE = 1.057) to the test results. Column experiments revealed that the phenol removal percent and the length of the mass transfer zone increased with increasing bed heights. The overall phenol adsorption efficiency was found to be 42-49%. Breakthrough curves (BTCs) predicted by HYDRUS-1D model appears to be close fitting with the BTCs derived from the column experiments. The phenol BTC predicted by the HYDRUS-1D model for 1.2 m depth subsurface soil, i.e., up to the depth of groundwater in the study area, showed that the exhaustion
NASA Astrophysics Data System (ADS)
Zhou, Tianci; Chen, Xiao; Fradkin, Eduardo
We investigate the entanglement entropy(EE) of circular entangling surfaces in the 2+1d quantum Lifshitz model, where the spatially conformal invariant ground state is a Rokhsar-Kivelson state with Gibbs weight of 2d free Boson. We use cut-off independent mutual information regulator to define and calculate the subleading correction in the EE. The subtlety due to the Boson compactification in the replica trick is carefully taken care of. Our results show that for circular entangling surface, the subleading term is a constant on both the sphere of arbitrary radius and infinite plane. For the latter case, it parallels the constancy of disk EE in 2+1d conformal field theory, despite the lack of full space time conformal invariance. In the end, we present the mutual information of two disjoint disks and compare its scaling function in the small parameter regime (radii much smaller than their separation) with Cardy's general CFT results. This work was supported in part by the National Science Foundation Grants NSF-DMR-13-06011(TZ) and DMR-1408713 (XC, EF).
Guo, Bing; Zhang, Xiao; Wang, Yan-Ning; Huang, Jing-Jing; Yu, Jie-Hui; Xu, Ji-Qing
2015-03-21
Under ambient conditions, reactions of CdCl2/Cd(CH3COO)2, SCN(-) and various organic amine molecules in strongly acidic solutions afforded the five new thiocyanatocadmates [H2(abpy)][CdCl2(SCN)2] (abpy = azobispyridine) 1, [H(apy)][Cd(SCN)3] (apy = 4-aminopyridine) 2, [H(ba)]2[CdCl2(SCN)2] (ba = tert-butylamine) 3, [H2(tmen)][Cd3Cl6(SCN)2] (tmen = N,N,N',N'-tetramethylethylenediamine) 4, and [H(dba)]2[Cd2(CH3COO)2(SCN)4] (dba = dibutylamine) 5. In compound 2 only, the CH3COO(-) ions in Cd(CH3COO)2 were completely displaced by SCN(-), producing a chained thiocyanatocadmate [Cd(SCN)3](-). In the other four compounds, the Cl(-) or CH3COO(-) ions appeared in the final inorganic anion frameworks. In compound 1, the Cl(-) ions doubly bridge the Cd(2+) centers, forming a one-dimensional (1-D) infinite chain, and the SCN(-) group exists in a terminal form, whereas in compound 3, the reverse situation is observed. Due to a trans-mode arrangement for two terminal Cl(-) or SCN(-) ions around each Cd(2+) center, the inorganic anion chains in compounds 1 and 3 both show a linear shape. In compound 4, Cd(2+) and Cl(-) first aggregate to form a 1-D endless chain with a composition of Cd3Cl6, which can be described as a linear arrangement of the open double cubanes. SCN(-) serves as the second connector, propagating the Cd3Cl6 chain into a three-dimensional (3-D) network with the occluded H2(tmen)(2+) cations. In compound 5, the SCN(-) groups doubly bridge the Cd(2+) centers, forming a 1-D zigzag-shape chain. The formation of the zigzag chain likely derives from chelation of the CH3COO(-) group to the Cd(2+) center. The thermal behavior and the photoluminescence properties of the title compounds were also investigated. PMID:25669175
NASA Astrophysics Data System (ADS)
Raybaud, V.; Nival, P.; Prieur, L.
2011-01-01
Modelling was used as a tool to better understand the physical and biological processes observed during the multidisciplinary cruise DYNAPROC 2 (DYNAmic of rapid PROCesses in the water column), which took place in the Ligurian Sea in September-October 2004. The aim of the cruise was to study the short time-scale physical and biological processes that occur when the ecosystem switches from summer oligotrophy to autumnal mesotrophy. In this study, we have tested two 1D physical-biological coupled models. The first was a classical model in which surface layer dynamics were obtained using the turbulent kinetic energy model of Gaspar [Gaspar et al., 1990]. The simulated food-web took into account ten state variables: three nutrients, three classes of phytoplankton, two classes of zooplankton and two types of detritus. The second model (called IDA, Isopycnals Depth Adjustment) was based on the initial one but it took into account the measured variations of isopycnals depths. The results showed that the IDA model most efficiently reproduced the observed ecosystem dynamics. We have therefore used the IDA model to show that physical processes observed during the cruise had a major effect on biological compartment, mainly on nano- and picophytoplankton.
NASA Astrophysics Data System (ADS)
Zhu, D.; Nakamura, N.
2009-12-01
Spontaneous formation of a vorticity staircase and multiple jets is simulated using a one dimensional barotropic model on a beta-plane with parameterized eddy mixing. The model represents nearly inviscid geostrophic turbulence characterized by a uniform forcing of pseudomomentum, nonuniform dissipation due to mixing, and no frictional damping of the mean flow. The dissipation of pseudomomentum (diffusive flux of vorticity) is modeled with the effective diffusivity parameterization proposed recently by Ferrari and Nikurashin(2009). Rossby wave dynamics and upscale energy cascade are not modeled explicitly but implicit in the parameterization. The parameterized effective diffusivity is a decreasing function of squared vorticity gradient, revealing the active role of (potential) vorticity gradient as a barrier to mixing, consistent with the Rossby elasticity idea. Not only does the parameterized diffusivity agree well with the effective diffusivity of a direct numerical simulation, but it allows the 1D model to reproduce other salient features of the direct simulation, most notably the formation of a welldefined vorticity staircase from a uniform vorticity gradient, through inhomogeneous mixing of vorticity. The staircase formation starts as a small-scale, antidiffusive instability in vorticity gradient that develops when the eddy scale is comparable to the Rhines scale. This spawns numerous gaps (barriers) in diffusivity and corresponding small steps in vorticity, but many of them become unstable and disappear later, until a few stable ones remain. The final number of barriers (vorticity steps) is predictable to a good approximation with a few model parameters.
2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps
NASA Astrophysics Data System (ADS)
Moore, Stan; Moore, Chris; Boerner, Jeremiah
2015-09-01
Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Graves, R. W.
2012-12-01
I have performed low frequency (f < 1 Hz) ground motion simulations for the 2008 Mw 5.23 Mt. Carmel, Illinois and 2011 Mw 5.74 Mineral, Virginia earthquakes to calibrate a rock-site 1D crustal velocity and Q structure model for central and eastern US (CEUS). For each earthquake, the observed ground motions were simulated at sites extending out to about 900 km from the epicenter. Sites within the Mississippi embayment are not included in the modeling. The initial 1D velocity model was developed by averaging profiles extracted from the CUS V1.3 3D velocity model (Ramirez-Guzman et al, 2012) at each of the recording sites, with the surface shear wave velocity set at 2200 m/s. The Mt. Carmel earthquake is represented as a point double couple (strike=25, dip=90, rake=-175) at a depth of 14 km and a slip-rate function having a Brune corner frequency of 0.89 Hz (Hartzell and Mendoza, 2011). The Mineral earthquake is represented as a point double couple (strike=26, dip=55, rake=108) at a depth of 6 km and a slip-rate function having a corner frequency of 0.50 Hz. Full waveform Green's functions were computed using the FK method of Zhu and Rivera (2002). The initial model does well at reproducing the median level of observed response spectral acceleration (Sa) for most sites out to 300 km at periods of 2 to 5 sec, including the observed flattening in distance attenuation between 70 and 150 km. However, this model under predicts the motions beyond about 400 km distance. Increasing Q in the mid- and lower crust from the original value of 700 to 5000 removes this under prediction of the larger distance motions. Modified Mercalli Intensity (MMI) estimates have been computed from the simulations using the ground motion-intensity conversion equations of Atkinson and Kaka (2007; AK2007) and Dangkua and Cramer (2011; DC2011-ENA) for comparison against the observed "Did You Feel It" intensity estimates. Given the bandwidth limitations of the simulations, I use the conversion
NEXT Ion Thruster Thermal Model
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.
2010-01-01
As the NEXT ion thruster progresses towards higher technology readiness, it is necessary to develop the tools that will support its implementation into flight programs. An ion thruster thermal model has been developed for the latest prototype model design to aid in predicting thruster temperatures for various missions. This model is comprised of two parts. The first part predicts the heating from the discharge plasma for various throttling points based on a discharge chamber plasma model. This model shows, as expected, that the internal heating is strongly correlated with the discharge power. Typically, the internal plasma heating increases with beam current and decreases slightly with beam voltage. The second is a model based on a finite difference thermal code used to predict the thruster temperatures. Both parts of the model will be described in this paper. This model has been correlated with a thermal development test on the NEXT Prototype Model 1 thruster with most predicted component temperatures within 5 to 10 C of test temperatures. The model indicates that heating, and hence current collection, is not based purely on the footprint of the magnet rings, but follows a 0.1:1:2:1 ratio for the cathode-to-conical-to-cylindrical-to-front magnet rings. This thermal model has also been used to predict the temperatures during the worst case mission profile that is anticipated for the thruster. The model predicts ample thermal margin for all of its components except the external cable harness under the hottest anticipated mission scenario. The external cable harness will be re-rated or replaced to meet the predicted environment.
Modeling of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.
1992-01-01
The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.
Thermal vegetation canopy model studies
Smith, J.A.; Ranson, K.J.; Nguyen, D.; Balick, L.; Link, L.E.; Fritschen, L.; Hutchison, B.
1981-01-01
An iterative-type thermal model applicable to forest canopies was tested with data from two diverse forest types. The model framework consists of a system of steady-state energy budget equations describing the interactions of short- and long-wave radiation within three horizontally infinite canopy layers. A state-space formulation of the energy dynamics within the canopy is used which permits a factorization of canopy geometrical parameters from canopy optical and thermal coefficients as well as environmental driving variables. Two sets of data characterizing a coniferous (Douglas-fir) and deciduous (oak-hickory) canopy were collected to evaluate the thermal model. The results show that the model approximates measured mean canopy temperatures to within 2/sup 0/C for relatively clear weather conditions and deviates by a maximum of 3/sup 0/C for very hazy or foggy conditions.
NASA Astrophysics Data System (ADS)
Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao
2016-08-01
We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.
NASA Astrophysics Data System (ADS)
Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao
2016-07-01
We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.
NASA Astrophysics Data System (ADS)
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-11-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
Thermal models for icy satellites
NASA Technical Reports Server (NTRS)
Brown, Robert H.
1991-01-01
The solid state greenhouse models were constrained for water ice surfaces using thermal eclipse data. As a result, it was determined that at depths of 3 cm or more Europa can have about a 30 K temperature enhancement over the diurnal mean surface temperature of about 97 K at the equator. It was also determined that the unusual shape of Europa's thermal flux curves during eclipses can be explained by the solid state greenhouse effect. The solid state greenhouse models were applied to the problem of the origin and energy sources of Triton's geyser-like plumes. Two classes of models are examined which may explain the driving energy for Triton's plumes. Triton's internal heatflow is recognized as a major contributor to its global energy balance. Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 pct. of the insolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance.
NASA Astrophysics Data System (ADS)
Rau, Gabriel C.; Cuthbert, Mark O.; McCallum, Andrew M.; Halloran, Landon J. S.; Andersen, Martin S.
2015-08-01
Amplitude decay and phase delay of oscillating temperature records measured at two vertical locations in near-surface sediments can be used to infer water fluxes, thermal diffusivity, and sediment scour/deposition. While methods that rely on the harmonics-based analytical heat transport solution assume a steady state water flux, many applications have reported transient fluxes but ignored the possible violation of this assumption in the method. Here we use natural heat tracing as an example to investigate the extent to which changes in the water flux, and associated temperature signal nonstationarity, can be separated from other influences. We systematically scrutinize the assumption of steady state flow in analytical heat tracing and test the capabilities of the method to detect the timing and magnitude of flux transients. A numerical model was used to synthesize the temperature response to different step and ramp changes in advective thermal velocity magnitude and direction for both a single-frequency and multifrequency temperature boundary. Time-variable temperature amplitude and phase information were extracted from the model output with different signal-processing methods. We show that a worst-case transient flux induces a temperature nonstationarity, the duration of which is less than 1 cycle for realistic sediment thermal diffusivities between 0.02 and 0.13 m2/d. However, common signal-processing methods introduce erroneous temporal spreading of advective thermal velocities and significant anomalies in thermal diffusivities or sensor spacing, which is used as an analogue for streambed scour/deposition. The most time-variant spectral filter can introduce errors of up to 57% in velocity and 33% in thermal diffusivity values with artifacts spanning ±2 days around the occurrence of rapid changes in flux. Further, our results show that analytical heat tracing is unable to accurately resolve highly time-variant fluxes and thermal diffusivities and does not allow
Novel phase-space Monte-Carlo method for quench dynamics in 1D and 2D spin models
NASA Astrophysics Data System (ADS)
Pikovski, Alexander; Schachenmayer, Johannes; Rey, Ana Maria
2015-05-01
An important outstanding problem is the effcient numerical computation of quench dynamics in large spin systems. We propose a semiclassical method to study many-body spin dynamics in generic spin lattice models. The method, named DTWA, is based on a novel type of discrete Monte-Carlo sampling in phase-space. We demonstare the power of the technique by comparisons with analytical and numerically exact calculations. It is shown that DTWA captures the dynamics of one- and two-point correlations 1D systems. We also use DTWA to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. Computing spatial and time-dependent correlations, we find a sharp change in the speed of propagation of correlations at a critical range of interactions determined by the system dimension. The investigations are relevant for a broad range of systems including solids, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.
NASA Astrophysics Data System (ADS)
Dzierzbicka-Glowacka, L.; Maciejewska, A.; Osiński, R.; Jakacki, J.; Jędrasik, J.
2009-04-01
This paper presents a one-dimensional Ecosystem Model. Mathematically, the pelagic variables in the model are described by a second-order partial differential equation of the diffusion type with biogeochemical sources and sinks. The temporal changes in the phytoplankton biomass are caused by primary production, respiration, mortality, grazing by zooplankton and sinking. The zooplankton biomass is affected by ingestion, excretion, respiration, fecal production, mortality, and carnivorous grazing. The changes in the pelagic detritus concentration are determined by input of: dead phytoplankton and zooplankton, natural mortality of predators, fecal pellets, and sinks: sedimentation, zooplankton grazing and decomposition. The nutrient concentration is caused by nutrient release, zooplankton excretion, predator excretion, detritus decomposition and benthic regeneration as sources and by nutrient uptake by phytoplankton as sinks. However, the benthic detritus is described by phytoplankton sedimentation, detritus sedimentation and remineralisation. The particulate organic carbon concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus) concentrations. The 1D ecosystem model was used to simulate the seasonal dynamics of pelagic variables (phytoplankton, zooplankton, pelagic detritus and POC) in the southern Baltic Sea (Gdańsk Deep, Bornholm Deep and Gotland Deep). The calculations were made assuming: 1) increase in the water temperature in the upper layer - 0.008oC per year, 2) increase in the available light - 0.2% per year. Based on this trend, daily, monthly and seasonal and annual variability of phytoplankton, zooplankton, pelagic detritus and particulate organic carbon in different areas of the southern Baltic Sea (Gdańsk Deep, Borrnholm Deep and Gotland Deep) in the euphotic layer was calculated for the years: 2000, 2010, 2020, 2030, 2040 and 2050.
TMT telescope structure thermal model
NASA Astrophysics Data System (ADS)
Vogiatzis, Konstantinos; Sadjadpour, Amir; Roberts, Scott
2014-08-01
The thermal behavior of the Thirty Meter Telescope (TMT) Telescope Structure (STR) and the STR mounted subsystems depends on the heat load of the System, the thermal properties of component materials and the environment as well as their interactions through convection, conduction and radiation. In this paper the thermal environment is described and the latest three-dimensional Computational Solid Dynamics (CSD) model is presented. The model tracks the diurnal temperature variation of the STR and the corresponding deformations. The resulting displacements are fed into the TMT Merit Function Routine (MFR), which converts them into translations and rotations of the optical surfaces. They, in turn, are multiplied by the TMT optical sensitivity matrix that delivers the corresponding pointing error. Thus the thermal performance of the structure can be assessed for requirement compliance, thermal drift correction strategies and look-up tables can be developed and design guidance can be provided. Results for a representative diurnal cycle based on measured temperature data from the TMT site on Mauna Kea and CFD simulations are presented and conclusions are drawn.
NASA Astrophysics Data System (ADS)
Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.
2009-12-01
Hydroelectric Power (HEP) is proving to be a good alternative to carbon based energy. In the past hydropower especially large scale hydro attracted significant criticism as a result of its impact on the environment. A new breed of hydroelectric dam is in the offing. The aim is to have as little a footprint as possible on the environment in both pre and post construction phases and thus minimize impact on biodiversity whilst producing clean renewable energy. The Bui dam is 400 MW scheme currently under development on the Black Volta River in the Bui national park in Ghana. The reservoir created by the Bui barrage is expected to impact (through inundation) the habitat of two species of hippos know to exist in the park, the Hippopotamus amphibius and the Choeropsis liberiensis. Computer-based models present a unique opportunity to assess quantitatively the impact of the new reservoir on the habitat of the target species in this case the H. amphibious. Until this undertaking, there were very few studies documenting the habitat of the H. amphibious let alone model it. The work and subsequent presentation will show the development of a habitat model for the Hippopotamus amphibius. The Habitat Information retrieval Program based on Streamflow Analysis, in short HIPStrA, is a one dimensional (1D) in-stream, spatially explicit hybrid construct that combines physico-chemical evidence and expert knowledge to forecast river habitat suitability (Hs) for the Hippopotamus amphibius. The version of the model presented is specifically developed to assess the impact of a reservoir created by a hydroelectric dam on potential dwelling areas in the Bui gorge for hippos. Accordingly, this version of HIPStrA simulates a special reservoir suitability index (Rsi), a metric that captures the”hippo friendliness” of any lake or reservoir. The impact of measured and simulated flood events as well as low flows, representing extreme events is also assessed. Recommendations are made for the
Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models
NASA Astrophysics Data System (ADS)
Osorio, Y.; Barklem, P. S.
2016-02-01
Context. Mg is the α element of choice for Galactic population and chemical evolution studies because it is easily detectable in all late-type stars. Such studies require precise elemental abundances, and thus departures from local thermodynamic equilibrium (LTE) need to be accounted for. Aims: Our goal is to provide reliable departure coefficients and equivalent widths in non-LTE, and for reference in LTE, for diagnostic lines of Mg studied in late-type stars. These can be used, for example, to correct LTE spectra and abundances. Methods: Using the model atom built and tested in the preceding paper in this series, we performed non-LTE radiative transfer calculations in a grid of 3945 stellar 1D atmospheric models. We used a sub-grid of 86 models to explore the propagation of errors in the recent atomic collision calculations to the radiative transfer results. Results: We obtained departure coefficients for all the levels and equivalent widths (in LTE and non-LTE) for all the radiative transitions included in the "final" model atom presented in Paper I. Here we present and describe our results and show some examples of applications of the data. The errors that result from uncertainties in the collisional data are investigated and tabulated. The results for equivalent widths and departure coefficients are made freely available. Conclusions: Giants tend to have negative abundance corrections while dwarfs have positive, though small, corrections. Error analysis results show that uncertainties related to the atomic collision data are typically on the order of 0.01 dex or less, although for few stellar models in specific lines uncertainties can be as large as 0.03 dex. As these errors are less than or on the same order as typical corrections, we expect that we can use these results to extract Mg abundances from high-quality spectra more reliably than from classical LTE analysis. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130
1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model
NASA Astrophysics Data System (ADS)
Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.
2014-10-01
The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re
Band, D.L.
1986-12-01
The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.
A marching in space and time (MAST) solver of the shallow water equations. Part I: The 1D model
NASA Astrophysics Data System (ADS)
Aricò, C.; Tucciarelli, T.
2007-05-01
A new approach is presented for the numerical solution of the complete 1D Saint-Venant equations. At each time step, the governing system of partial differential equations (PDEs) is split, using a fractional time step methodology, into a convective prediction system and a diffusive correction system. Convective prediction system is further split into a convective prediction and a convective correction system, according to a specified approximated potential. If a scalar exact potential of the flow field exists, correction vanishes and the solution of the convective correction system is the same solution of the prediction system. Both convective prediction and correction systems are shown to have at each x - t point a single characteristic line, and a corresponding eigenvalue equal to the local velocity. A marching in space and time (MAST) technique is used for the solution of the two systems. MAST solves a system of two ordinary differential equations (ODEs) in each computational cell, using for the time discretization a self-adjusting fraction of the original time step. The computational cells are ordered and solved according to the decreasing value of the potential in the convective prediction step and to the increasing value of the same potential in the convective correction step. The diffusive correction system is solved using an implicit scheme, that leads to the solution of a large linear system, with the same order of the cell number, but sparse, symmetric and well conditioned. The numerical model shows unconditional stability with regard of the Courant-Friedrichs-Levi (CFL) number, requires no special treatment of the source terms and a computational effort almost proportional to the cell number. Several tests have been carried out and results of the proposed scheme are in good agreement with analytical solutions, as well as with experimental data.
A 1D radiative-convective model of H2O-CO2 atmospheres around young telluric planets: an update
NASA Astrophysics Data System (ADS)
Marcq, Emmanuel; Salvador, Arnaud; Massol, Hélène; Chassefière, Éric
2016-04-01
The study of the early phases of the evolution of terrestrial planets has recently known significant progress [1,2]. It appears that their cooling phase during the magma ocean stage is first dominated by a radiative cooling stage through its atmosphere. If the planet is able to reach radiative balance during this stage, then its further evolution is dominated by the escape flux, and no large scale condensation of water occurs (Hamano-type II planets). On the other hand, if the planet is far enough from the sun, then radiative equilibrium cannot be reached until the outgoing flux has fallen below the runaway greenhouse limit, implying the condensation of most atmospheric water vapor into a global water ocean, thus sheltering most water from atmospheric escape (Hamano-type I planet). In the solar system, Earth is clearly a type-I planet, whereas Venus was most likely a type-II planet from quite early on in its history [1,2]. In this presentation, we will deal with the atmospheric radiative model used by [2] and first described in [3]. After describing its recent improvements since [3] (pressure grid enabling an arbitrary total volatile amount, correction of the k-correlated radiative transfer in the thermal radiation, improvement of the numerical stability and integration scheme) and their consequences on the detectability of extrasolar type-I or type-II planets, we will deal with the possible improvements and extensions to such models, such as but not limited to: (1) adopting a 1D-spherical geometry suited for larger atmospheres around smaller planets, (2) improvement of the visible albedo parameterization based on recent 3D-modelling GCM [4]. [1] : K. Hamano et al., Nature (2013) [2] : T. Lebrun et al. JGR (2013) [3] : E. Marcq, JGR (2012) [4] : J. Leconte et al. (2015)
NASA Astrophysics Data System (ADS)
Augustins, L.; Billardon, R.; Hild, F.
2016-07-01
One of the critical points of the thermomechanical fatigue design process is the correct description of the cyclic behavior of the material. This work focuses on the material of automotive brake discs, namely flake graphite cast iron. The specificity of this material is its asymmetric behavior under tensile and compressive loadings, which is due to the shape of graphite that acts as small cracks. Multiscale models inspired from the literature are first presented. They lead to a good description of the material behavior under cyclic loadings. An elastoviscoplastic constitutive model is then proposed in a one-dimensional setting in order to accurately describe cyclic tests from room temperature up to {600^{circ}{C}}.
Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. To overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.
Helical coil thermal hydraulic model
NASA Astrophysics Data System (ADS)
Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.
2014-11-01
A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.
Noack Watt, Kristin E; Achilleos, Annita; Neben, Cynthia L; Merrill, Amy E; Trainor, Paul A
2016-07-01
Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281
Achilleos, Annita; Neben, Cynthia L.; Merrill, Amy E.; Trainor, Paul A.
2016-01-01
Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281
NASA Astrophysics Data System (ADS)
Zulkoffli, Zuliani; Abu Bakar, Elmi
2016-02-01
This paper present pose estimation relation of CAD model object and Projection Real Object (PRI). Image sequence of PRI and CAD model rotate on z axis at 10 degree interval in simulation and real scene used in this experiment. All this image is go through preprocessing stage to rescale object size and image size and transform all the image into silhouette. Correlation of CAD and PRI image is going through in this stage. Magnitude spectrum shows a reliable value in range 0.99 to 1.00 and Phase spectrum correlation shows a fluctuate graph in range 0.56 - 0.97. Euclidean distance correlation graph for CAD and PRI shows 2 zone of similar value due to almost symmetrical object shape. Processing stage of retrieval inspected PRI image in CAD database was carried out using range phase spectrum and maximum magnitude spectrum value within ±10% tolerance. Additional processing stage of retrieval inspected PRI image using Euclidean distance within ±5% tolerance also carried out. Euclidean matching shows a reliable result compared to range phase spectrum and maximum magnitude spectrum value by sacrificing more than 5 times processing time.
Thermal modelling using discrete vasculature for thermal therapy: a review
Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.
2013-01-01
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700
NASA Astrophysics Data System (ADS)
Kirkby, A.; Heinson, G.; Holford, S.; Thiel, S.
2015-06-01
We present 1D anisotropic inversion of magnetotelluric (MT) data as a potential tool for mapping structural permeability in sedimentary basins. Using 1D inversions of a 171 site, broadband MT data set from the Koroit region of the Otway Basin, Victoria, Australia, we have delineated an electrically anisotropic layer at approximately 2.5 to 3.5 km depth. The anisotropy strike is consistent between stations at approximately 160° east of north. The depth of anisotropy corresponds to the top depth of the Lower Cretaceous Crayfish Group, and the anisotropy factor increases from west to east. We interpret the anisotropy as resulting from north-northwest oriented, fluid-filled fractures resulting in enhanced electrical and hydraulic conductivity. This interpretation is consistent with permeability data from well formation tests. It is also consistent with the orientation of mapped faults in the area, which are optimally oriented for reactivation in the current stress field.
Thermal modeling of Halley's comet
Weissman, P.R.; Kieffer, H.H.
1984-01-01
The comet thermal model of Weissman and Kieffer is used to calculate gas production rates and other parameters for the 1986 perihelion passage of Halley's Comet. Gas production estimates are very close to revised pre-perihelion estimates by Newburn based on 1910 observations of Halley; the increase in observed gas production post-perihelion may be explained by a variety of factors. The energy contribution from multiply scattered sunlight and thermal emission by coma dust increases the total energy reaching the Halley nucleus at perihelion by a factor of 2.4. The high obliquity of the Halley nucleus found by Sekanina and Larson may help to explain the asymmetry in Halley's gas production rates around perihelion. ?? 1984.
NASA Astrophysics Data System (ADS)
Bernardie, S.; Desramaut, N.; Russo, G.; Grandjean, G.
2012-04-01
Predicting landslide surface displacements is a challenge for scientists, as it may help save human lives and protect individual housing or transport, energetic facilities. One of the main challenges in active landslide monitoring concerns the prediction of slope's movements in the near future. This study focuses on an innovative methodology to predict landslide surface accelerations, based on a black box tool coupled to a 1D mechanical model. These models are able to predict the evolution of the daily displacements according to the variations of precipitation. More specifically, the impulse response model allows predicting the changes in the landslide movements by computing the transfer function between the input signal (precipitation in this case) and the output signal (the displacements). The second model is based on a simple 1D mechanical assumption, with considering a viscoplastic behavior of the landslide's material, and with taking into account the evolution of the pore water pressure in time. These methods have been applied to the Super-Sauze landslide, located in the Southern French Alps, mountainous region. This site is controlled by complex hydrologic processes leading to active movements within black marls, with velocities ranging between 0.002 and 0.4 m per day. After preliminary tests, results show that the snowmelt has to be taken into account in the models, since the phenomena of freezing /thawing has an influence on the water refills, leading to movement changes. Different approaches to integrate rainfall and/or snow-melting inputs are compared and their complementarity is demonstrated. Finally, a validated methodology for predicting movement changes within landslide based on criteria of comparison between the observed and calculated velocities can be proposed. The results suggest that the impulse response model reproduces the observed data with very good accuracy, whereas the mechanical model seems to be more adapted to predict the movements
Human Thermal Model Evaluation Using the JSC Human Thermal Database
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2012-01-01
Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.
Thermal modeling of cometary nuclei
Weissman, P.R.; Kieffer, H.H.
1981-01-01
A new model of the sublimation of volatile ices from a cometary nucleus has been developed which includes the effects of diurnal heating and cooling, rotation period and pole orientation, and thermal properties of the ice and subsurface layers. The model also includes the contribution from coma opacity, scattering, and thermal emission, where the properties of the coma are derived from the integrated rate of volatile production by the nucleus. The model is applied to the specific case of the 1986 apparition of Halley's comet. It is found that the generation of a cometary dust coma actually increases the total energy reaching the Halley nucleus. This results because of the significantly greater geometrical cross section of the coma as compared with the bare nucleus, and because the coma provides an essentially isotropic source of multiply scattered sunlight and thermal emission over the entire nucleus surface. For Halley, the calculated coma opacity is approximately 0.2 at 1 AU from the Sun, and 1.2 at perihelion (0.587 AU). At 1 AU this has little effect on dayside temperatures (maximum ???200??K) but raises nightside temperatures (minimum ???150??K) by about 40??K. At perihelion the higher opacity results in a nearly isothermal nucleus with only small diurnal and latitudinal temperature variations. The general surface temperature is 205??K with a maximum of 209??K at local noon on the equator. Some possible consequences of the results with respect to the generation of nongravitational forces, observed volatile production rates for comets, and cometary lifetimes against sublimation are discussed. ?? 1981.
W-320 Project thermal modeling
Sathyanarayana, K., Fluor Daniel Hanford
1997-03-18
This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.
Thermal modeling and optimization of a thermally matched energy harvester
NASA Astrophysics Data System (ADS)
Boughaleb, J.; Arnaud, A.; Cottinet, P. J.; Monfray, S.; Gelenne, P.; Kermel, P.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T.
2015-08-01
The interest in energy harvesting devices has grown with the development of wireless sensors requiring small amounts of energy to function. The present article addresses the thermal investigation of a coupled piezoelectric and bimetal-based heat engine. The thermal energy harvester in question converts low-grade heat flows into electrical charges by achieving a two-step conversion mechanism for which the key point is the ability to maintain a significant thermal gradient without any heat sink. Many studies have previously focused on the electrical properties of this innovative device for energy harvesting but until now, no thermal modeling has been able to describe the device specificities or improve its thermal performances. The research reported in this paper focuses on the modeling of the harvester using an equivalent electrical circuit approach. It is shown that the knowledge of the thermal properties inside the device and a good comprehension of its heat exchange with the surrounding play a key role in the optimization procedure. To validate the thermal modeling, finite element analyses as well as experimental measurements on a hot plate were carried out and the techniques were compared. The proposed model provided a practical guideline for improving the generator design to obtain a thermally matched energy harvester that can function over a wide range of hot source temperatures for the same bimetal. A direct application of this study has been implemented on scaled structures to maintain an important temperature difference between the cold surface and the hot reservoir. Using the equations of the thermal model, predictions of the thermal properties were evaluated depending on the scaling factor and solutions for future thermal improvements are presented.
NASA Astrophysics Data System (ADS)
Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad
2015-02-01
We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the
Modelling of single bubble-dynamics and thermal effects
NASA Astrophysics Data System (ADS)
Papoulias, D.; Gavaises, M.
2015-12-01
This paper evaluates the solution effects of different Rayleigh-Plesset models (R-P) for simulating the growth/collapse dynamics and thermal behaviour of homogeneous gas bubbles. The flow inputs used for the discrete cavitation bubble calculations are obtained from Reynolds-averaged Navier-Stokes simulations (RANS), performed in high-pressure nozzle holes. Parametric 1-D results are presented for the classical thermal R-P equation [1] as well as for refined models which incorporated compressibility corrections and thermal effects [2, 3]. The thermal bubble model is coupled with the energy equation, which provides the temperature of the bubble as a function of conduction/convection and radiation heat-transfer mechanisms. For approximating gas pressure variations a high-order virial equation of state (EOS) was used, based on Helmholtz free energy principle [4]. The coded thermal R-P model was validated against experimental measurements [5] and model predictions [6] reported in single-bubble sonoluminescence (SBSL).
Battery thermal models for hybrid vehicle simulations
NASA Astrophysics Data System (ADS)
Pesaran, Ahmad A.
This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.
Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.; Fan, Jiwen; Luo, Tao
2014-10-01
Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculated from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.
NASA Astrophysics Data System (ADS)
Wittkowski, M.; Chiavassa, A.; Freytag, B.; Scholz, M.; Höfner, S.; Karovicova, I.; Whitelock, P. A.
2016-03-01
Aims: We aim at comparing spectro-interferometric observations of Mira variable asymptotic giant branch (AGB) stars with the latest 1D dynamic model atmospheres based on self-excited pulsation models (CODEX models) and with 3D dynamic model atmospheres including pulsation and convection (CO5BOLD models) to better understand the processes that extend the molecular atmosphere to radii where dust can form. Methods: We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres. Results: Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phases are mostly consistent with those of the best-fit CODEX models, except for near-maximum phases, where data are better described by near-minimum models. Rosseland angular diameters derived from the model fits are broadly consistent between those based on the 1D and the 3D models and with earlier observations. We derived fundamental parameters including absolute radii, effective temperatures, and luminosities for our sources. Conclusions: Our results provide a first observational support for theoretical results that shocks induced by convection and pulsation in the
NASA Astrophysics Data System (ADS)
Murray, Keenan A.; Kramer, Louisa J.; Doskey, Paul V.; Ganzeveld, Laurens; Seok, Brian; Van Dam, Brie; Helmig, Detlev
2015-09-01
Observed depth profiles of nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) in snowpack interstitial air at Summit, Greenland were best replicated by a 1-D process-scale model, which included (1) geometrical representation of snow grains as spheres, (2) aqueous-phase chemistry confined to a quasi-liquid layer (QLL) on the surface of snow grains, and (3) initialization of the species concentrations in the QLL through equilibrium partitioning with mixing ratios in snowpack interstitial air. A comprehensive suite of measurements in and above snowpack during a high O3 event facilitated analysis of the relationship between the chemistry of snowpack and the overlying atmosphere. The model successfully reproduced 2 maxima (i.e., a peak near the surface of the snowpack at solar noon and a larger peak occurring in the evening that extended down from 0.5 to 2 m) in the diurnal profile of NO2 within snowpack interstitial air. The maximum production rate of NO2 by photolysis of nitrate (NO3-) was approximately 108 molec cm-3 s-1, which explained daily observations of maxima in NO2 mixing ratios near solar noon. Mixing ratios of NO2 in snowpack interstitial air were greatest in the deepest layers of the snowpack at night and were attributed to thermal decomposition of peroxynitric acid, which produced up to 106 molec NO2 cm-3 s-1. Highest levels of NO in snowpack interstitial air were confined to upper layers of the snowpack and observed profiles were consistent with photolysis of NO2. Production of nitrogen oxides (NOx) from NO3- photolysis was estimated to be two orders of magnitude larger than NO production and supports the hypothesis that NO3- photolysis is the primary source of NOx within sunlit snowpack in the Arctic. Aqueous-phase oxidation of formic acid by O3 resulted in a maximum consumption rate of ∼106-107 molec cm-3 s-1 and was the primary removal mechanism for O3.
Human Thermal Model Evaluation Using the JSC Human Thermal Database
NASA Technical Reports Server (NTRS)
Cognata, T.; Bue, G.; Makinen, J.
2011-01-01
The human thermal database developed at the Johnson Space Center (JSC) is used to evaluate a set of widely used human thermal models. This database will facilitate a more accurate evaluation of human thermoregulatory response using in a variety of situations, including those situations that might otherwise prove too dangerous for actual testing--such as extreme hot or cold splashdown conditions. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models. Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality.
Burner liner thermal-structural load modeling
NASA Technical Reports Server (NTRS)
Maffeo, R.
1986-01-01
The software package Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) was developed. The TRANCITS code is used to interface temperature data between thermal and structural analytical models. The use of this transfer module allows the heat transfer analyst to select the thermal mesh density and thermal analysis code best suited to solve the thermal problem and gives the same freedoms to the stress analyst, without the efficiency penalties associated with common meshes and the accuracy penalties associated with the manual transfer of thermal data.
NASA Astrophysics Data System (ADS)
Kirkegaard, Casper; Foged, Nikolaj; Auken, Esben; Christiansen, Anders Vest; Sørensen, Kurt
2012-09-01
Helicopter borne time domain EM systems historically measure only the Z-component of the secondary field, whereas fixed wing systems often measure all field components. For the latter systems the X-component is often used to map discrete conductors, whereas it finds little use in the mapping of layered settings. Measuring the horizontal X-component with an offset loop helicopter system probes the earth with a complementary sensitivity function that is very different from that of the Z-component, and could potentially be used for improving resolution of layered structures in one dimensional modeling. This area is largely unexplored in terms of quantitative results in the literature, since measuring and inverting X-component data from a helicopter system is not straightforward: The signal strength is low, the noise level is high, the signal is very sensitive to the instrument pitch and the sensitivity function also has a complex lateral behavior. The basis of our study is a state of the art inversion scheme, using a local 1D forward model description, in combination with experiences gathered from extending the SkyTEM system to measure the X component. By means of a 1D sensitivity analysis we motivate that in principle resolution of layered structures can be improved by including an X-component signal in a 1D inversion, given the prerequisite that a low-pass filter of suitably low cut-off frequency can be employed. In presenting our practical experiences with modifying the SkyTEM system we discuss why this prerequisite unfortunately can be very difficult to fulfill in practice. Having discussed instrumental limitations we show what can be obtained in practice using actual field data. Here, we demonstrate how the issue of high sensitivity towards instrument pitch can be overcome by including the pitch angle as an inversion parameter and how joint inversion of the Z- and X-components produces virtually the same model result as for the Z-component alone. We conclude that
NASA Astrophysics Data System (ADS)
Van Eester, Dirk; Lerche, Ernesto
2013-05-01
Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenario's creating high energy tails. This paper discusses an extension TOMCAT-U of the 1D TOMCAT tokamak plasma wave equation solver (Van Eester and Koch 1998 Plasma Phys. Control. Fusion 40 1949) to arbitrary harmonics and arbitrary wavelengths while only keeping leading order terms in equilibrium variation terms. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response that is suitable for numerical application. This choice of independent variable yields intuitive expressions involving the Kennel-Engelmann operator which can directly be linked to the corresponding expressions in the RF diffusion operator appearing in the Fokker-Planck equation. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integrodifferential approach that retains all finite Larmor radius effects is proposed. To keep the required computation time for this generalized description reasonable, tabulation of integrals is intensively used. Although the accent is on the presentation of the upgraded formalism as well as the adopted recursions and tabulations, a few examples are provided to illustrate the potential of the new wave code that relies on these tabulations.
Validation of thermal models for a prototypical MEMS thermal actuator.
Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary
2008-09-01
This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the
Alastruey, Jordi; Khir, Ashraf W.; Matthys, Koen S.; Segers, Patrick; Sherwin, Spencer J.; Verdonck, Pascal R.; Parker, Kim H.; Peiró, Joaquim
2011-01-01
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476–3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10−6) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. PMID:21724188
Verley, Jason C.; Axness, Carl L.; Hembree, Charles Edward; Keiter, Eric Richard; Kerr, Bert
2012-04-01
Photocurrent generated by ionizing radiation represents a threat to microelectronics in radiation environments. Circuit simulation tools such as SPICE [1] can be used to analyze these threats, and typically rely on compact models for individual electrical components such as transistors and diodes. Compact models consist of a handful of differential and/or algebraic equations, and are derived by making simplifying assumptions to any of the many semiconductor transport equations. Historically, many photocurrent compact models have suffered from accuracy issues due to the use of qualitative approximation, rather than mathematically correct solutions to the ambipolar diffusion equation. A practical consequence of this inaccuracy is that a given model calibration is trustworthy over only a narrow range of operating conditions. This report describes work to produce improved compact models for photocurrent. Specifically, an analytic model is developed for epitaxial diode structures that have a highly doped subcollector. The analytic model is compared with both numerical TCAD calculations, as well as the compact model described in reference [2]. The new analytic model compares well against TCAD over a wide range of operating conditions, and is shown to be superior to the compact model from reference [2].
Korrodi-Gregório, Luís; Margarida Lopes, Ana; Esteves, Sara L. C.; Afonso, Sandra; Lemos de Matos, Ana; Lissovsky, Andrey A.; da Cruz e Silva, Odete A. B.; Esteves, Pedro José; Fardilha, Margarida
2013-01-01
T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) contains the canonical phosphoprotein phosphatase 1 (PPP1) binding motif, composed by the amino acid sequence RVSF. We identified and validated the binding of TCTEX1D4 to PPP1 and demonstrated that indeed this protein is a novel PPP1 interacting protein. Analyses of twenty-one mammalian species available in public databases and seven Lagomorpha sequences obtained in this work showed that the PPP1 binding motif 90RVSF93 is present in all of them and is flanked by a palindromic sequence, PLGS, except in three species of pikas (Ochotona princeps, O. dauurica and O. pusilla). Furthermore, for the Ochotona species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic sequence were observed. Comparison with other lagomorphs suggests that this event happened before the Ochotona radiation. The dN/dS for the sequence region comprising the PPP1 binding motif and the flanking palindrome highly supports the hypothesis that for Ochotona species this region has been evolving under positive selection. In addition, mutational screening shows that the ability of pikas TCTEX1D4 to bind to PPP1 is maintained, although the PPP1 binding motif is disrupted, and the N- and C-terminal surrounding residues are also abrogated. These observations suggest pika as an ideal model to study novel PPP1 complexes regulatory mechanisms. PMID:24130861
Technology Transfer Automated Retrieval System (TEKTRAN)
Watershed modeling is a key component of watershed management that involves the simulation of hydrological and fluvial processes for predicting flow and sediment transport within a watershed. For practical purposes, most numerical models have been developed to simulate either runoff and soil erosion...
NASA Astrophysics Data System (ADS)
Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.
2016-08-01
An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m‑2 differences in shortwave reach up to 60 W m‑2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m‑2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.
Grant, K.E.; Taylor, K.E.; Ellis, J.S.; Wuebbles, D.J.
1987-07-01
The authors have implemented a series of state of the art radiation transport submodels in previously developed one dimensional and two dimensional chemical transport models of the troposphere and stratosphere. These submodels provide the capability of calculating accurate solar and infrared heating rates. They are a firm basis for further radiation submodel development as well as for studying interactions between radiation and model dynamics under varying conditions of clear sky, clouds, and aerosols. 37 refs., 3 figs.
NASA Astrophysics Data System (ADS)
Ryu, Jaiyoung; Hu, Xiao; Shadden, Shawn C.
2014-11-01
The cerebral circulation is unique in its ability to maintain blood flow to the brain under widely varying physiologic conditions. Incorporating this autoregulatory response is critical to cerebral blood flow modeling, as well as investigations into pathological conditions. We discuss a one-dimensional nonlinear model of blood flow in the cerebral arteries that includes coupling of autoregulatory lumped parameter networks. The model is tested to reproduce a common clinical test to assess autoregulatory function - the carotid artery compression test. The change in the flow velocity at the middle cerebral artery (MCA) during carotid compression and release demonstrated strong agreement with published measurements. The model is then used to investigate vasospasm of the MCA, a common clinical concern following subarachnoid hemorrhage. Vasospasm was modeled by prescribing vessel area reduction in the middle portion of the MCA. Our model showed similar increases in velocity for moderate vasospasms, however, for serious vasospasm (~ 90% area reduction), the blood flow velocity demonstrated decrease due to blood flow rerouting. This demonstrates a potentially important phenomenon, which otherwise would lead to false-negative decisions on clinical vasospasm if not properly anticipated.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple
Effects of a space modulation on the behavior of a 1D alternating Heisenberg spin-1/2 model.
Mahdavifar, Saeed; Abouie, Jahanfar
2011-06-22
The effects of a magnetic field (h) and a space modulation (δ) on the magnetic properties of a one-dimensional antiferromagnetic-ferromagnetic Heisenberg spin-1/2 model have been studied by means of numerical exact diagonalization of finite size systems, the nonlinear σ model, and a bosonization approach. The space modulation is considered on the antiferromagnetic couplings. At δ = 0, the model is mapped to a gapless Lüttinger liquid phase by increasing the magnetic field. However, the space modulation induces a new gap in the spectrum of the system and the system experiences different quantum phases which are separated by four critical fields. By opening the new gap, a magnetization plateau appears at ½M(sat). The effects of the space modulation are reflected in the emergence of a plateau in other physical functions such as the F-dimer and the bond-dimer order parameters, and the pair-wise entanglement. PMID:21613724
Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets
Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.
2007-01-30
Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.
NASA Astrophysics Data System (ADS)
Ireland, Gareth; Petropoulos, George P.; Carlson, Toby N.; Purdy, Sarah
2015-04-01
Sensitivity analysis (SA) consists of an integral and important validatory check of a computer simulation model before it is used to perform any kind of analysis. In the present work, we present the results from a SA performed on the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model utilising a cutting edge and robust Global Sensitivity Analysis (GSA) approach, based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The sensitivity of the following model outputs was evaluated: the ambient CO2 concentration and the rate of CO2 uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary, and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of model outputs were related to the structural properties of vegetation, namely, the Leaf Area Index, Fractional Vegetation Cover, Cuticle Resistance and Vegetation Height. External CO2 in the leaf and the O3 concentration in the air input parameters also exhibited significant influence on model outputs. This work presents a very important step towards an all-inclusive evaluation of SimSphere. Indeed, results from this study contribute decisively towards establishing its capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of this model worldwide, which also includes research conducted by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale. This research was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO". SimSphere is currently maintained and freely distributed by the Department of Geography and Earth Sciences at Aberystwyth University (http://www.aber.ac.uk/simsphere). Keywords: CO2 flux, ambient CO2, O3 flux, SimSphere, Gaussian process emulators
NASA Astrophysics Data System (ADS)
Valstar, Johan; Rowe, Ed; Konstantina, Moirogiorgou; Giannakis, Giorgos; Nikolaidis, Nikolaos
2014-05-01
explore the complex interactions involved in soil development and change. We were unable to identify appropriately-detailed existing models for plant productivity and for the dynamics of soil aggregation and porosity, and so developed the PROSUM and CAST models, respectively, to simulate these subsystems. Moreover, we applied the BRNS generator to obtain a chemical equilibrium model. These were combined with HYDRUS-1D (water and solute transport), a weathering model (derived from the SAFE model) and a simple bioturbation model. The model includes several feedbacks, such as the effect of soil organic matter on water retention and hydraulic conductivity. We encountered several important challenges when building the integrated model. First, a mechanism was developed that initiates the execution of a single time step for an individual sub-model and accounts for the relevant mass transfers between sub-models. This allows for different and sometimes variable time step duration in the submodels. Secondly, we removed duplicated processes and identified and included relevant solute production terms that had been neglected. The model is being tested against datasets obtained from several Soil Critical Zone Observatories in Europe. This contribution focuses on the design strategy for the model.
An analytical 1-D model for vertical momentum and energy flux through a fully developed wind farm
NASA Astrophysics Data System (ADS)
Markfort, Corey D.; Zhang, Wei; Porté-Agel, Fernando
2014-05-01
Wind farms capture momentum from the atmospheric boundary layer (ABL) both at the leading edge and from the atmosphere above. Momentum is advected into the wind farm and wake turbulence draws excess momentum in from between turbines until momentum is only available from above the wind farm. This distance can be described by the so-called drag development length scale, which arises from the canopy drag force term in the momentum equation. At this point the flow can be considered fully developed. The horizontally-averaged velocity profile for a fully developed wind farm flow exhibits a characteristic inflection point near the top of the wind farm, similar to that of sparse canopy-type flows (Markfort et al., JoT, 2012). The inflected vertical velocity profile is associated with the presence of a dominant characteristic turbulence scale, which may be responsible for a significant portion of the vertical momentum flux. We evaluate an analytical canopy-type flow model for wind farm-atmosphere interaction by testing it against wind-tunnel experimental data of flow through a model wind farm. The model is adapted to predict the mean flow, vertical momentum flux, and the mean kinetic energy flux as well as kinetic energy dissipation within the wind farm. This model is particularly useful for wind farm configuration optimization, considering wind turbine spacing and surface roughness and can also be useful to represent wind farms in regional scale atmospheric simulations.
Thermal Effects Modeling Developed for Smart Structures
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
1998-01-01
Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.
NASA Astrophysics Data System (ADS)
Kim, W.; Yum, S. S.
2015-12-01
Visibility degradation due to fog can be very hazardous both to ground transportation and aviation traffic. However, prediction of fog using numerical models is difficult because fog formation is usually determined by local meteorological conditions that are hard to be measured and modeled with sufficient resolution. For this reason, there have been several attempts to build a coupled system of a fine resolution 1D model and a 3D mesoscale model with a usual grid resolution. In this study we uses the coupled system of the 1D PAFOG model and the 3D WRF model to simulate fogs formed at a southern coastal region of Korea, where the National Center for Intensive Observation of Severe Weather (NCIO) is located. Unique to NCIO is that it has a 300 m meteorological tower on which some basic meteorological variables (temperature, dew point temperature and winds) are measured at eleven different altitudes. In addition comprehensive cloud physics measurements are made with various remote sensing instruments such as cloud radar, wind profiler, microwave radiometer, micro rain radar. Several fog cases are identified during 2015 and will be simulated by the coupled system. The comprehensive set of measurement data from NCIO will be utilized as input to the model system and for evaluating the results. Particularly the data for initial and boundary conditions, which are tightly connected to the coupled model predictability, are extracted from the tower measurement. Furthermore, various sensitivity experiments will be done to enhance our understanding of the coastal fog formation mechanism. Detailed results will be discussed at the conference.
VizieR Online Data Catalog: Grid of 1D models for Mg line formation (Osorio+, 2016)
NASA Astrophysics Data System (ADS)
Osorio, Y.; Barklem, P. S.
2015-11-01
Table mgnlte.dat provides equivalent widths in LTE and non-LTE for 19 MgI spectral lines calculated in 3859 stellar atmospheres and using 21 Mg abundance per star. These data can be used to calculate abundance corrections in a broad variety of stellar models and Mg enhancements in a consistent way. The tables in data/* provides departure coefficients of the LEVEL in 10563 stellar atmospheres at 56 depth points in the atmosphere and using 21 Mg abundance values per star. These data can be used to calculate abundance corrections in a broad variety of stellar models and Mg enhancements in a consistent way. The format of the departure coefficients is the unit-less value of the ratio between the nlte and lte population of the level LEVEL of Mg. (3 data files).
Solid-liquid interdiffusion (SLID) bonding in the Au-In system: experimental study and 1D modelling
NASA Astrophysics Data System (ADS)
Deillon, Léa; Hessler-Wyser, Aïcha; Hessler, Thierry; Rappaz, Michel
2015-12-01
Au-In bonds with a nominal composition of about 60 at.% In were fabricated for use in wafer-level packaging of MEMS. The microstructure of the bonds was studied by scanning electron microscopy. The bond hermeticity was then assessed using oxidation of Cu thin discs predeposited within the sealed packages. The three intermetallic compounds AuIn2, AuIn and Au7In3 were observed. Their thickness evolution during bonding and after subsequent heat treatment was successfully modelled using a finite difference model of diffusion, thermodynamic data and diffusion coefficients calibrated from isothermal diffusion couples. 17% of the packages were hermetic and, although the origin of the leaks could not be clearly identified, it appeared that hermeticity was correlated with the unevenness of the metallisation and/or wafer and the fact that the bonds shrink due to density differences as the relative fractions of the various phases gradually evolve.
The (O1D) 630.0 nm thermospheric dayglow measured by WINDII and modeled by TRANSCAR
NASA Astrophysics Data System (ADS)
Culot, F.; Lathuillère, C.; Lilensten, J.; Witasse, O.
2003-04-01
A key problem in aeronomic research is the study of airglow emissions. They are observed by a large range of techniques such as rockets, ground-based and space instruments. They provide a better understanding of the processes controling the state of the upper mesosphere and thermosphere. The modeling of those emissions is a complementary approach. It involves a wide variety of quantities : EUV &UV solar fluxes, photoelectron fluxes, neutral, ion, and electron densities and temperatures, and also chemical reactions rates. In this work we focus on the 630.0 nm emission (red line), using all of the Wind Imaging Interferometer (WINDII) available data from February 1992 to June 1995, in order to obtain the Volume Emission Rate profiles. Thus, we analyse the links between the altitude and intensity of the measured profiles peaks and various geophysical parameters, among them the Solar Zenith Angle and the solar activity. Finally, we compare our results with those given by the TRANSCAR model which allows us to adjust our modeling of the upper atmosphere and gives rise to a better understanding of the dayglow emissions.
NASA Astrophysics Data System (ADS)
Yu, Chih-Peng; Cheng, Chia-Chi; Lai, Jiunnren; Chiang, Chih-Hung
2012-04-01
In this study, a linear model with frequency dependent structural property was used to generate the corresponding frequency response function and dynamic stiffness for selected dynamic problems where certain nonlinearity can be resulted from time/space varying characteristics of the bridge vibrations. Derivation of the proposed formula is based on the vibration theory of the elementary member with frequency dependent elastic properties, in which Modulus of Elasticity can be interpreted as serial and parallel connections of springs and dashpots. This paper first describes the use of the proposed formulation to reasonably depict the nonlinear cable vibration associated with the varying tension forces over time. The proposed formulation can also be used to simulate flexural vibration of damage beams in which the elastic property involves certain space varying or time varying characteristics. Simple numerical/experimental data were next used to demonstrate and confirm the potential application of such simulation idea. Consequently, it is concluded that such assessment model with frequency dependent parameters can be practically feasible and serve as a useful tool in the spectral analysis regarding dynamic problems of slender bridge members.
Floodplain mapping via 1D and quasi-2D numerical models in the valley of Thessaly, Greece
NASA Astrophysics Data System (ADS)
Oikonomou, Athanasios; Dimitriadis, Panayiotis; Koukouvinos, Antonis; Tegos, Aristoteles; Pagana, Vasiliki; Panagopoulos, Panayiotis-Dionisios; Mamassis, Nikolaos; Koutsoyiannis, Demetris
2013-04-01
The European Union Floods Directive defines a flood as 'a covering by water of land not normally covered by water'. Human activities, such as agriculture, urban development, industry and tourism, contribute to an increase in the likelihood and adverse impacts of flood events. The study of the hydraulic behaviour of a river is important in flood risk management. Here, we investigate the behaviour of three hydraulic models, with different theoretical frameworks, in a real case scenario. The area is located in the Penios river basin, in the plain of Thessaly (Greece). The three models used are the one-dimensional HEC-RAS and the quasi two-dimensional LISFLOOD-FP and FLO-2D which are compared to each other, in terms of simulated maximum water depth as well as maximum flow velocity, and to a real flood event. Moreover, a sensitivity analysis is performed to determine how each simulation is affected by the river and floodplain roughness coefficient, in terms of flood inundation.
NASA Astrophysics Data System (ADS)
Harel, Marie-Alice; Mouche, Emmanuel
2015-04-01
Despite the recent research focused on runoff pattern connectivity in hydrology, there is a surprising lack of theoretical knowledge regarding hillslope runoff generation and dynamics during a rainfall event. The transient problem is especially unaddressed. In this paper we propose a model based on queueing theory formalism for the infiltration-excess overland flow generation on soils with random infiltration properties. The influence of rainfall intensity and duration on runoff dynamics and connectivity is studied thanks to this model, numerical simulation and available steady-state results. We limit our study to a rainfall intensity that is a rectangular function of time. Exact solutions for the case of spatially random exponential distributions of soil infiltrability and rainfall intensity are developed. Simulations validate these analytical results and allow for the study the rising and recession limbs of the hydrograph for different rainfall characteristics. The case of a deterministic uniform rainfall rate and different infiltrability distributions is also discussed in light of runoff connectivity. We show that the connectivity framework contributes to a better understanding and prediction of runoff pattern formation and evolution with time. A fragmented overland flow is shown to have shorter charge and discharge periods after the onset and offset of rainfall compared to well connected runoff fields. These results demonstrate that the transient regime characteristics are linked with connectivity parameters, rainstorm properties and scale issues.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.
2007-01-01
The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.
Transmutation Fuel Performance Code Thermal Model Verification
Gregory K. Miller; Pavel G. Medvedev
2007-09-01
FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.
NASA Astrophysics Data System (ADS)
Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.
2016-06-01
This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.
NASA Astrophysics Data System (ADS)
Ghorbani, Ahmad; Camerlynck, Christian; Florsch, Nicolas
2009-02-01
An inversion code has been constructed using Matlab, to recover 1D parameters of the Cole-Cole model from spectral induced polarization data. In a spectral induced polarization survey, impedances are recorded at various frequencies. Both induced polarization and electromagnetic coupling effects occur simultaneously over the experimental frequency bandwidth, and these become progressively more dominant when the frequency increases. We used the CR1Dmod code published by Ingeman-Nielsen and Baumgartner [2006]. This code solves for electromagnetic responses, in the presence of complex resistivity effects in a 1D Earth. In this paper, a homotopy method has been designed by the authors to overcome the local convergence problem of normal iterative methods. In addition, in order to further condition the inverse problem, we incorporated standard Gauss-Newton (or quasi-Newton) methods. Graphical user interfaces enable straightforward entering of the data and the a priori model, as well as the cable configuration. Two synthetic examples are presented, showing that the spectral parameters can be recovered from multifrequency, complex resistivity data.
NASA Astrophysics Data System (ADS)
Laginha Silva, Patricia; Martins, Flávio A.; Boski, Tomász; Sampath, Dissanayake M. R.
2010-05-01
processes. In this viewpoint the system is broken down into its fundamental components and processes and the model is build up by selecting the important processes regardless of its time and space scale. This viewpoint was only possible to pursue in the recent years due to improvement in system knowledge and computer power (Paola, 2000). The primary aim of this paper is to demonstrate that it is possible to simulate the evolution of the sediment river bed, traditionally studied with synthetic models, with a process-based hydrodynamic, sediment transport and morphodynamic model, solving explicitly the mass and momentum conservation equations. With this objective, a comparison between two mathematical models for alluvial rivers is made to simulate the evolution of the sediment river bed of a conceptual 1D embayment for periods in the order of a thousand years: the traditional synthetic basin infilling aggregate diffusive type model based on the diffusion equation (Paola, 2000), used in the "synthesist" viewpoint and the process-based model MOHID (Miranda et al., 2000). The simulation of the sediment river bed evolution achieved by the process-based model MOHID is very similar to those obtained by the diffusive type model, but more complete due to the complexity of the process-based model. In the MOHID results it is possible to observe a more comprehensive and realistic results because this type of model include processes that is impossible to a synthetic model to describe. At last the combined effect of tide, sea level rise and river discharges was investigated in the process based model. These effects cannot be simulated using the diffusive type model. The results demonstrate the feasibility of using process based models to perform studies in scales of 10000 years. This is an advance relative to the use of synthetic models, enabling the use of variable forcing. REFERENCES • Briggs, L.I. and Pollack, H.N., 1967. Digital model of evaporate sedimentation. Science, 155, 453
Transient thermal stress recovery for structural models
NASA Technical Reports Server (NTRS)
Walls, William
1992-01-01
A method for computing transient thermal stress vectors from temperature vectors is described. The three step procedure involves the use of NASTRAN to generate an influence coefficient matrix which relates temperatures to stresses in the structural model. The transient thermal stresses are then recovered and sorted for maximum and minimum values. Verification data for the procedure is also provided.
Shuai, Z.; Bredas, J.L.; Saxena, A.; Gammel, J.T.; Bishop, A.R.
1994-10-01
Within a two-band model, the authors investigate the electroabsorption (EA) and third-harmonic generation (THG) processes in halogen-bridged mixed-valence Pt complexes: PtCl, PtBr and Ptl. For PtCl, the theoretical THG spectrum shows three peaks, corresponding to (i) a three-photon resonance at 0.83 eV originating in a M(etal)-M(etal) transition; (ii) a two-photon resonance at 1.5 eV from an M-M band-edge transition; and (iii) a three-photon resonance at 1.6 eV from an M-X transition. The latter two peaks account well for the twin-peak structure seen experimentally. They show that the twin-peak intensity strongly decreases from PtCl to PtBr and disappears for PtI. They also discuss the theoretical EA spectra due to localized defects (polarons, bipolarons, kinks, and excitons).
Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M
2015-07-01
This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding. PMID:25753623
Simple Thermal Environment Model (STEM) User's Guide
NASA Technical Reports Server (NTRS)
Justus, C.G.; Batts, G. W.; Anderson, B. J.; James, B. F.
2001-01-01
This report presents a Simple Thermal Environment Model (STEM) for determining appropriate engineering design values to specify the thermal environment of Earth-orbiting satellites. The thermal environment of a satellite, consists of three components: (1) direct solar radiation, (2) Earth-atmosphere reflected shortwave radiation, as characterized by Earth's albedo, and (3) Earth-atmosphere-emitted outgoing longwave radiation (OLR). This report, together with a companion "guidelines" report provides methodology and guidelines for selecting "design points" for thermal environment parameters for satellites and spacecraft systems. The methods and models reported here are outgrowths of Earth Radiation Budget Experiment (ERBE) satellite data analysis and thermal environment specifications discussed by Anderson and Smith (1994). In large part, this report is intended to update (and supersede) those results.
GAS eleven node thermal model (GEM)
NASA Technical Reports Server (NTRS)
Butler, Dan
1988-01-01
The Eleven Node Thermal Model (GEM) of the Get Away Special (GAS) container was originally developed based on the results of thermal tests of the GAS container. The model was then used in the thermal analysis and design of several NASA/GSFC GAS experiments, including the Flight Verification Payload, the Ultraviolet Experiment, and the Capillary Pumped Loop. The model description details the five cu ft container both with and without an insulated end cap. Mass specific heat values are also given so that transient analyses can be performed. A sample problem for each configuration is included as well so that GEM users can verify their computations. The model can be run on most personal computers with a thermal analyzer solution routine.
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Gu, Shi-Jian; Sampaio, M. J.
2014-06-01
Finite-temperature T > 0 transport properties of integrable and nonintegrable one-dimensional (1D) many-particle quantum systems are rather different, showing ballistic and diffusive behavior, respectively. The repulsive 1D Hubbard model is a prominent example of an integrable correlated system. For electronic densities n ≠ 1 (and spin densities m ≠ 0) it is an ideal charge (and spin) conductor, with ballistic charge (and spin) transport for T ⩾ 0. In spite of the fact that it is solvable by the Bethe ansatz, at n = 1 (and m = 0) its T > 0 charge (and spin) transport properties are an issue that remains poorly understood. Here we combine this solution with symmetry and the explicit calculation of current-operator matrix elements between energy eigenstates to show that for on-site repulsion U > 0 and at n = 1 the charge stiffness Dη(T) vanishes for T > 0 in the thermodynamic limit. A similar behavior is found by such methods for the spin stiffness Ds(T) for U > 0 and T > 0, which vanishes at m = 0. This absence of finite temperature n = 1 ballistic charge transport and m = 0 ballistic spin transport are exact results that clarify long-standing open problems.
Thermal Transport Model for Heat Sink Design
NASA Technical Reports Server (NTRS)
Chervenak, James A.; Kelley, Richard L.; Brown, Ari D.; Smith, Stephen J.; Kilbourne, Caroline a.
2009-01-01
A document discusses the development of a finite element model for describing thermal transport through microcalorimeter arrays in order to assist in heat-sinking design. A fabricated multi-absorber transition edge sensor (PoST) was designed in order to reduce device wiring density by a factor of four. The finite element model consists of breaking the microcalorimeter array into separate elements, including the transition edge sensor (TES) and the silicon substrate on which the sensor is deposited. Each element is then broken up into subelements, whose surface area subtends 10 10 microns. The heat capacity per unit temperature, thermal conductance, and thermal diffusivity of each subelement are the model inputs, as are the temperatures of each subelement. Numerical integration using the Finite in Time Centered in Space algorithm of the thermal diffusion equation is then performed in order to obtain a temporal evolution of the subelement temperature. Thermal transport across interfaces is modeled using a thermal boundary resistance obtained using the acoustic mismatch model. The document concludes with a discussion of the PoST fabrication. PoSTs are novel because they enable incident x-ray position sensitivity with good energy resolution and low wiring density.
NASA Astrophysics Data System (ADS)
Hurlbatt, A.; O’Connell, D.; Gans, T.
2016-08-01
Analytical and numerical models allow investigation of complicated discharge phenomena and the interplay that makes plasmas such a complex environment. Global models are quick to implement and can have almost negligible computation cost, but provide only bulk or spatially averaged values. Full fluid models take longer to develop, and can take days to solve, but provide accurate spatio-temporal profiles of the whole plasma. The work presented here details a different type of model, analytically similar to fluid models, but computationally closer to a global model, and able to give spatially resolved solutions for the challenging environment of electronegative plasmas. Included are non-isothermal electrons, gas heating, and coupled neutral dynamics. Solutions are reached in seconds to minutes, and spatial profiles are given for densities, fluxes, and temperatures. This allows the semi-analytical model to fill the gap that exists between global and full fluid models, extending the tools available to researchers. The semi-analytical model can perform broad parameter sweeps that are not practical with more computationally expensive models, as well as exposing non-trivial trends that global models cannot capture. Examples are given for a low pressure oxygen CCP. Excellent agreement is shown with a full fluid model, and comparisons are drawn with the corresponding global model.
Two-temperature models of old supernova remnants with ion and electron thermal conduction
NASA Technical Reports Server (NTRS)
Cui, Wei; Cox, Donald P.
1992-01-01
To investigate the potential effects thermal conduction may have on the evolution of old supernova remnants, we present the results of 1D (spherically symmetric) numerical simulations of a remnant in a homogeneous interstellar medium for four different cases: (1) without thermal conduction; (2) with both electron and ion thermal conduction assuming equal temperatures; (3) with electron thermal conduction only, following electron and ion temperatures separately; and (4) with both electron and ion thermal conduction following separate temperatures. We followed the entire evolution until the completion of the remnant bubble collapse. Our most significant result is that in remnant evolution studies concerned principally with either the shell or bubble evolution at late times, reasonable results are obtained with single-temperature models. When the electron and ion temperatures are followed separately, however, ion thermal conduction cannot safely be ignored.
NASA Astrophysics Data System (ADS)
Persson, O. P.; Solomon, A.
2013-12-01
Though leads only represent a small portion of the Arctic sea-ice area, their contribution to the surface turbulent energy and momentum fluxes can be significant. Numerous modeling studies presented in the literature have been conducted examining these effects. The results of such studies have indicated the importance of the environmental large-scale stability, the environmental humidity, the lead width, the ice (lead) concentration, the lead size distribution, the character of the leads (open water, refrozen), etc. Because global climate models (GCMs) show significant sensitivity to the large-scale net energy flux from the heterogeneous sea-ice surface, and because thinner ice in the projected future Arctic climate will likely result in increasing lead fractions, the appropriate GCM representation of this complex system is important. This study presents modeling results based on observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment, for which the mid-winter sea-ice was greatly heterogeneous. In mid-January, the 100x100 km region surrounding the SHEBA ice camp consisted of a lead fraction of ~16-33% as revealed by SAR data. This included primarily older refrozen lead areas that were generated at least a month earlier (~16-25% areal coverage), with a smaller fraction of newly opened leads (~4-9% areal coverage). Utilizing the sequence of SAR images, the atmospheric observations at the SHEBA site, and a 1-D snow and ice model, the spatial distribution of sea-ice thickness, snow depth, and surface temperatures within this domain were estimated over a 6-week period, revealing the significant impact of leads in all stages on GCM-scale temperatures and fluxes. This combined observational/model data series is used to evaluate a variety of one-dimensional turbulent flux aggregation techniques (e.g., mosaic) that use different assumptions. Furthermore, by using the spatial distribution of these surface characteristics, three-dimensional large eddy
Allué, José Antonio; Sarasa, Leticia; Izco, María; Pérez-Grijalba, Virginia; Fandos, Noelia; Pascual-Lucas, María; Ogueta, Samuel; Pesini, Pedro; Sarasa, Manuel
2016-05-30
APPswe/PS1dE9 and Tg2576 are very common transgenic mouse models of Alzheimer's disease (AD), used in many laboratories as tools to research the mechanistic process leading to the disease. In order to augment our knowledge about the amyloid-β (Aβ) isoforms present in both transgenic mouse models, we have developed two chromatographic methods, one acidic and the other basic, for the characterization of the Aβ species produced in the brains of the two transgenic mouse models. After immunoprecipitation and micro-liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry, 10 species of Aβ, surprisingly all of human origin, were detected in the brain of Tg2576 mouse, whereas 39 species, of both murine and human origin, were detected in the brain of the APP/PS1 mouse. To the best of our knowledge, this is the first study showing the identification of such a high number of Aβ species in the brain of the APP/PS1 transgenic mouse, whereas, in contrast, a much lower number of Aβ species were identified in the Tg2576 mouse. Therefore, this study brings to light a relevant phenotypic difference between these two popular mice models of AD. PMID:27258422
Thermal models pertaining to continental growth
NASA Technical Reports Server (NTRS)
Morgan, Paul; Ashwal, Lew
1988-01-01
Thermal models are important to understanding continental growth as the genesis, stabilization, and possible recycling of continental crust are closely related to the tectonic processes of the earth which are driven primarily by heat. The thermal energy budget of the earth was slowly decreasing since core formation, and thus the energy driving the terrestrial tectonic engine was decreasing. This fundamental observation was used to develop a logic tree defining the options for continental growth throughout earth history.
Thermalization of Bipartite Bose-Hubbard Models.
Khripkov, Christine; Cohen, Doron; Vardi, Amichay
2016-05-19
We study the time evolution of a bipartite Bose-Hubbard model prepared far from equilibrium. When the classical dynamics is chaotic, we observe ergodization of the number distribution and a constant increase of the entanglement entropy between the constituent subsystems until it saturates to thermal equilibrium values. No thermalization is obtained when the system is launched in quasi-integrable phase space regions. PMID:26701599
Development of a dynamic thermal model process
Smith, F. R.
1996-04-01
A dynamic electrical-thermal modeling simulation technique was developed to allow up-front design of thermal and electronic packaging with a high degree of accuracy and confidence. We are developing a hybrid multichip module output driver which controls with power MOSFET driver circuits. These MOSFET circuits will dissipate from 13 to 26 watts per driver in a physical package less than two square inches. The power dissipation plus an operating temperature range of -55{degrees} C to 100{degrees} C makes an accurate thermal package design critical. The project goal was to develop a simulation process to dynamically model the electrical/thermal characteristics of the power MOSFETS using the SABER analog simulator and the ABAQUS finite element simulator. SABER would simulate the electrical characteristics of the multi-chip module design while co-simulation is being done with ABAQUS simulating the solid model thermal characteristics of the MOSFET package. The dynamic parameters, MOSFET power and chip temperature, would be actively passed between simulators to effect a coupled simulator modelling technique. The project required a development of a SABER late for the analog ASIC controller circuit, a dynamic electrical/thermal template for the IRF150 and IRF9130 power MOSFETs, a solid model of the multi-chip module package, FORTRAN code to handle I/Q between and HP755 workstation and SABER, and I/O between CRAY J90 computer and ABAQUS. The simulation model was certified by measured electrical characteristics of the circuits and real time thermal imaging of the output multichip module.
Thermal Ablation Modeling for Silicate Materials
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq
2016-01-01
A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).
Thermal Ablation Modeling for Silicate Materials
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq
2016-01-01
A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Meier, Susan M.; Nissley, David M.; Sheffler, Keith D.; Cruse, Thomas A.
1991-01-01
A thermal barrier coated (TBC) turbine component design system, including an accurate TBC life prediction model, is needed to realize the full potential of available TBC engine performance and/or durability benefits. The objective of this work, which was sponsored in part by NASA, was to generate a life prediction model for electron beam - physical vapor deposited (EB-PVD) zirconia TBC. Specific results include EB-PVD zirconia mechanical and physical properties, coating adherence strength measurements, interfacial oxide growth characteristics, quantitative cyclic thermal spallation life data, and a spallation life model.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.; Nwadike, E. V.
1982-01-01
The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorate (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.
NASA Astrophysics Data System (ADS)
Muench, Thomas; Koch, Manfred; Schlittenhard, Jörg
2010-05-01
On December 5, 2004 a strong earthquake occurred near the city of Waldkirch, about 30 km's north of Freiburg, with a local magnitude of ML = 5.4. This seismic event was one of the strongest observed since the ML = 5.7 'Schwäbische Alb' event of September 3, 1978, 30 years before. In the aftermath of the event several institutions (Bens, BGR, LGBR, LED, SED and NEIC) have attempted to relocate this earthquake that came up with a hypocentral depth range of 9 - 12 km which. In fact, as the exact hypocentral location of the Waldkirch - and other events in the area - namely, the seismic depths, are of utmost importance for the further understanding of the seismotectonics as well as of the seismic hazard in the upper Rhinegraben area, one cannot over stress the necessity for a hypocenter relocation as best as possible. This requires a careful analysis of all factors that may impede an unbiased relocation of such an event. In the present talk we put forward the question whether the Waldkirch seismic event can be relocated with sufficient accuracy by a regional network when, additionally, improved regional 1D- and 3D seismic velocity models for the crust and upper mantle that take into consideration Pn-anisotropy of the upper mantle beneath Germany are employed in the hypocentral determination process. The seismological work starts with a comprehensive analysis of the dataset available for the relocation of the event. By means of traveltime curves a reevaluation of the observed phases is done and it is shown that some of the big observed traveltime residuals are most likely the consequence of wrongly associated phases as well as of the neglect of the anisotropic Pn traveltime correction for the region. Then hypcocenter relocations are done for 1D vertically inhomogeneous and 3D laterally inhomogeneous seismic velocity models, without and with the anisotropic Pn-traveltime correction included. The effects of the - often not well-known - Moho depth and of the VP