Science.gov

Sample records for 1g hts wire

  1. HTS Wire Development Workshop: Proceedings

    SciTech Connect

    Not Available

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  2. Theory of AC Loss in Cables with 2G HTS Wire

    SciTech Connect

    Clem, J.R.; Malozemoff, A.P.

    2009-09-13

    While considerable work has been done to understand AC losses in power cables made of first generation (1G) high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer 2G wire reduces the surface superconductor hysteretic losses. Instead, gap and polygonal losses, flux transfer losses in imbalanced two layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  3. Reliable commercial HTS wire for power applications

    NASA Astrophysics Data System (ADS)

    Kellers, Jürgen; Masur, Lawrence J.

    2002-08-01

    The production of HTS wire for power applications is increasingly maturing into industrial dimensions. The most widely considered manufacturing method for this conductor is the BSCCO-2223-OPIT route, used internationally by many organizations, including American Superconductor. Significant advances in HTS wire technology have been made in the past years, with currently a guaranteed minimum critical current performance of 115 A at 77 K over commercial long length. For the HTS wire itself this is equivalent to an engineering current density of 13.5 kA/cm 2. During the past 18 months, American Superconductor increased its HTS wire manufacturing capacity in its Westborough operations from 250 to 500 km/year to meet the increased demand for development and demonstration purposes. While this level of quality and quantity is sufficient to demonstrate technical feasibility and reliability of prototype power applications, it cannot satisfy fully commercial requirements for economic viability. To address broader markets with a commercially viable product, a price level of $50/(kA m) is possible with BSCCO-2223-OPIT when manufactured in much larger quantities. Therefore, American Superconductor is currently siting a new facility dedicated solely to the manufacturing of BSCCO-OPIT-2223 wire in quantities of 10,000 km/year. Key initial applications for this wire are power transmission cables, industrial motors and electrical generators. This paper will report on the performance and reliability testing of BSCCO-2223 wires. We will discuss the electrical, bending, tensile, and fatigue testing results of wires manufactured for applications such as American Superconductor's 5000 hp ultra-compact motor. Due to their compactness, these motors will be less expensive to manufacture compared with conventional motors and will be more energy efficient. We will also review the stringent electrical, mechanical, and environmental testing developed jointly by American Superconductor and

  4. Synchronous motor with HTS-2G wires

    NASA Astrophysics Data System (ADS)

    Dezhin, D.; Ilyasov, R.; Kozub, S.; Kovalev, K.; Verzhbitsky, L.

    2014-05-01

    One of the applications of new high-temperature superconductor materials (HTS) is field coils for synchronous electrical machines. The use of YBCO 2G HTS tapes (HTS-2G) allows increasing of magnetic flux density in the air gap, which will increase the output power and reduce the dimensions of the motor. Such motors with improved characteristics can be successfully used in transportation as traction motor. In MAI-based "Center of Superconducting machines and devices" with the support of "Rosatom" has been designed and tested a prototype of the 50 kW synchronous motor with radial magnetic flux from a field-coils based on HTS-2G tapes. The experimental and theoretical results are presented.

  5. A study on the required performance of a 2G HTS wire for HTS wind power generators

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun

    2016-05-01

    YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.

  6. Thermal conductivity of 2G HTS wires for current lead applications

    NASA Astrophysics Data System (ADS)

    Hoffmann, C.; Strickland, N.; Pooke, D.; Gannon, J.; Carter, B.; Otto, A.

    2010-06-01

    We have studied the thermal conductivity of several 2G HTS coated conductor wires produced by AMSC's RABiTSTM/MOD processes. The measurements employed a non-steady state method in which the sample is connected to a cold head on one end and a copper block on the other end. The heat capacity of the copper block is used to determine heat flow through the sample as the cold head slowly warms up. Measurements were done at temperatures ranging from 10 K to 130 K on 2G wires made with a Ni 5at%W substrate and different lamination architectures. The focus of the investigation was on the effects of lamina material type, thickness of the silver layer and alloyed silver. The data show that 2G wires can be 3 times less thermally conductive when compared to 1G BSCCO wires with a Ag-Au matrix, making them excellent candidates for use in current lead applications.

  7. Study of HTS Wires at High Magnetic Fields

    SciTech Connect

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  8. Applied Hts Bulks and Wires to Rotating Machines for Marine Propulsion

    NASA Astrophysics Data System (ADS)

    Miki, M.; Felder, B.; Kimura, Y.; Tsuzuki, K.; Taguchi, R.; Shiliang, Y.; Xu, Y.; Ida, T.; Izumi, M.

    2010-04-01

    High-temperature superconductors allow a compact and efficient way to provide high-torque density to rotating machines with excellent operation. A field pole, providing flux density of more than 1.5 T around the armature, was initially designed for an axial-gap type with the flux parallel to the rotor axis. Melt-growth Gd-123 bulks as well as Bi-2223 wire windings have been successfully assembled on the rotor disk. No iron core was used, though being an auxiliary flux control found in most HTS motors. Both bulk and wire types have realized a practical motor operation within a limited output range. For bulks, a 15 kW, 720 rpm, synchronous motor was designed and tested in the group of TUMSAT, Kitano Seiki and University of Fukui. A bulk field pole was cooled down by liquid nitrogen and was magnetized in the motor. To enhance the output power to more than 30 kW, we developed a thermosyphon system using condensed neon. Another field pole with HTS wire for large-scale marine propulsion is also discussed on a 100 kW, 230 rpm tested machine. A closed-cycle condensed neon associated with thermal insulation is also reported.

  9. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect

    Kennth Marken

    2006-08-11

    the project start and that date a substantial shift in the MRI marketplace occurred, with rapid growth for systems at higher fields (1.5 T and above) and a consequent decline in the low field market (<1.0 T). While the project aim appeared technically attainable at that time, the conclusion was reached that the system and market economics do not warrant additional investment. The program was redirected to develop BSCCO 2212 multifilament wire development for high field superconducting magnets for NMR and other scientific research upon an agreement between DOE and Oxford Instruments, Superconducting Technology. The work t took place between September, 2004 and the project end in early 2006 was focused on 2212 multifilamentary wire. This report summarizes the technical achievements both in 2212 dip coated for an HTS MRI system and in BSCCO 2212 multifilamentary wire for high field magnets.

  10. Study on thermo-mechanical treatment in fabrication of Bi2212/Ag HTS wire

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Ha, D. W.; Oh, S. S.; Han, I. Y.; Bruzek, C. E.; Oh, J. G.; Sohn, H. S.

    2007-07-01

    Round shape Bi2212/Ag wire is isotropic, while Bi2212/Ag or Bi2223/Ag tape has anisotropic characteristics or performances with respect to magnetic field orientation, which is the only HTS wires that can be used to make Rutherford cable to transport high current. In this work, two different Bi2212/Ag round wires with different Ag ratio were fabricated using powder-in-tube method and processing factor at each step was investigated. Double stacked 385 (55 × 7) filamentary wires of various final diameter were heat treated at different melting temperatures. Microstructure after pre-annealing was investigated. Wires which have Ag ratio (silver area/superconductor area) of 0.3 and 0.42 after powder filling show similar critical current density. Higher Ag ratio wire at 0.74 mm diameter heat treated at melting temperature 890 °C shows critical current density of 2750 A/mm 2 at 4.2 K, 0 T.

  11. MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires

    SciTech Connect

    Paranthaman, Mariappan Parans; Sathyamurthy, Srivatsan; Bhuiyan, Md S; Martin, Patrick M; Aytug, Tolga; Kim, Kyunghoon; Fayek, Mostafa; Leonard, Keith J; Li, Jing; Zhang, W.; Rupich, Marty

    2007-01-01

    The metal organic deposition (MOD) of buffer layers on RABiTS substrates is considered a potential, low-cost approach to manufacturing high performance Second Generation (2G) high temperature superconducting (HTS) wires. The typical architecture used by American Superconductor in their 2G HTS wire consists of a Ni-W (5 at.%) substrate with a reactively sputtered Y2O3 seed layer, YSZ barrier layer and a CeO2 cap layer. This architecture supports critical currents of over 300 A/cm-width (77 K, self-field) with 0.8 mum YBCO films deposited by the TFA-MOD process. The main challenge in the development of the MOD buffers is to match or exceed the performance of the standard vacuum deposited buffer architecture. We have recently shown that the texture and properties of MOD - La2Zr2Ogamma (LZO) barrier layers can be improved by inserting a thin sputtered Y2O3 seed layer and prepared MOD deposited LZO layers followed by MOD or RF sputtered CeO2 cap layers that support MOD-YBCO films with Ic's of 200 and 255 A/cm-width, respectively. Detailed X-ray and microstructural characterizations indicated that MOD - CeO2 cap reacted completely with MOD YBCO to form BaCeOs. However, sputtered CeO2 cap/MOD YBCO interface remains clean. By further optimizing the coating conditions and reducing the heat-treatment temperatures, we have demonstrated an Ic of 336 A/cm with improved LZO layers and sputtered CeO2 cap and exceeded the performance of that of standard vacuum deposited buffers.

  12. V-1 TRANSITION AND N-VALUE OF MULTIFILAMENTARY LTS AND HTS WIRES AND CABLES.

    SciTech Connect

    GHOSH,A.K.

    2003-05-25

    For low T, multifilamentary conductors like NbTi and Nb{sub 3}Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by ({rho}/{rho}{sub c})= (I/I{sub c}){sup n}. For NbTi, this parameterization has been very useful in the development of high Jc wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5T is {approx} 40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb{sub 3}Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages {approx} a few {mu}V prior to quenching. However, in ''well behaved'' wires, n is {approx} 30-40 at 12T and also shows a monotonic behavior with field. Strain induced I{sub c} degradation in these wires is usually associated with lower n-values. For high T{sub c} multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values {approx} 15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire.

  13. Reflective HTS switch

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1994-01-01

    A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

  14. Reflective HTS switch

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

    1994-09-27

    A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

  15. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    SciTech Connect

    Usov, Igor O; Arendt, Paul N; Stan, Liliana; Holesinger, Terry G; Foltyn, Steven R; Depaula, Raymond F

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  16. HTS High Gradient Magnetic Separation system

    SciTech Connect

    Daugherty, M.A.; Coulter, J.Y.; Hults, W.L.

    1996-09-01

    We report on the assembly, characterization and operation of a high temperature superconducting (HTS) magnetic separator. The magnet is made of 624 m of Silver/BSCCO superconducting wire and has overall dimensions of 18 cm OD, 15.5 cm height and 5 cm ID. The HTS current leads are designed to operate with the warm end at 75 K and the cold end cooled by a two stage Gifford-McMahon cryocooler. The upper stage of the cryocooler cools the thermal shield and two heat pipe thermal intercepts. The lower stage of the cryocooler cools the HTS magnet and the bottom end of the HTS current leads. The HTS magnet was initially characterized in liquid cryogens. We report on the current- voltage (I-V) characteristics of the HTS magnet at temperatures ranging from 15 to 40 K. At 40 K the magnet can generate a central field of 2.0 T at a current of 120 A.

  17. 1998 wire development workshop proceedings

    SciTech Connect

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  18. Development of HTS Magnet for Rotating Gantry

    NASA Astrophysics Data System (ADS)

    Tasaki, Kenji; Koyanagi, Kei; Takayama, S. Shigeki; Ishii, Yusuke; Kurusu, Tsutomu; Amemiya, Naoyuki; Ogitsu, Toru; iwata, Yoshiyuki; Noda, Koji

    The effectiveness of heavy-ion radiotherapy for cancer treatment has been recognized by medical experts and the public. However, due to the large size of the equipment, this therapy has not been widely adopted. In particular, the rotating gantries used to irradiate patients with the heavy-ion beams from any direction may be as heavy as 600 tons in our estimation. By employing high-temperature superconducting (HTS) wires in these rotating gantries and increasing the magnetic field generated by the deflecting coils, the total weight of the rotating gantry can be reduced to around the weight of those used for proton radiotherapy. A project for developing an HTS deflecting magnet for heavy-ion radiotherapy has been underway since 2013, supported by the Japanese Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED). The aim of this project is to develop fundamental technologies for designing and fabricating HTS deflecting magnets, such as irregular magnetic field estimating techniques, design technology for HTS magnets, high-precision HTS coil winding technology, AC loss estimating techniques, and thermal runaway estimating techniques and to fabricate a small model of an HTS deflecting magnet and evaluate its performance. In this paper, the project's progress will be described.

  19. Development of a brushless HTS exciter for a 10 kW HTS synchronous generator

    NASA Astrophysics Data System (ADS)

    Bumby, Chris W.; Badcock, Rodney A.; Sung, Hae-Jin; Kim, Kwang-Min; Jiang, Zhenan; Pantoja, Andres E.; Bernardo, Patrick; Park, Minwon; Buckley, Robert G.

    2016-02-01

    HTS synchronous generators, in which the rotor coils are wound from high-T c superconducting wire, are exciting attention due to their potential to deliver very high torque and power densities. However, injection of the large DC currents required by the HTS rotor coils presents a technical challenge. In this paper we discuss the development of a brushless HTS exciter which operates across the cryostat wall to inject a superconducting DC current into the rotor coil circuit. This approach fundamentally alters the thermal load upon the cryogenic system by removing the need for thermally inefficient normal-conducting current leads. We report results from an experimental laboratory device and show that it operates as a constant voltage source with an effective internal resistance. We then discuss the design of a prototype HTS-PM exciter based on our experimental device, and describe its integration with a demonstration HTS generator. This 200 RPM, 10 kW synchronous generator comprises eight double pancake HTS rotor coils which are operated at 30 K, and are energised to 1.5 T field through the injection of 85 A per pole. We show how this excitation can be achieved using an HTS-PM exciter consisting of 12 stator poles of 12 mm YBCO coated-conductor wire and an external permanent magnet rotor. We demonstrate that such an exciter can excite the rotor windings of this generator without forming a thermal-bridge across the cryostat wall. Finally, we provide estimates of the thermal load imposed by our prototype HTS-PM exciter on the rotor cryostat. We show that duty cycle operation of the device ensures that this heat load can be minimised, and that it is substantially lower than that of equivalently-rated conventional current leads.

  20. Bi-2223/Ag HTS coil magnetic field properties for magnet and bias winding

    NASA Astrophysics Data System (ADS)

    Jin, J. X.; Grantham, C.; Liu, H. K.; Dou, S. X.

    1997-08-01

    Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+x high-Tc supercondicting (HTS) multifilament wire, is used to prepare a HTS coil. The magnetic field behaviour of the HTS coil is studied with respect to its critical current and magnetic field properties. The anisotropic HTS wire has strong magnetic field dependent critical current, which causes critical current degradation when used in the form of a coil. The HTS coil magnetic field is measured and its distribution is investigated. The experimental results and analysis provide basic information for the design of a magnet or bias winding with the Ag-clad (Bi,Pb)2Sr2Ca2Cu3O10+x HTS wire.

  1. DEVELOPMENT OF HTS CONDUCTORS FOR ELECTRIC POWER APPLICATIONS

    SciTech Connect

    Goyal, A.; Rupich, M.

    2012-10-23

    Second generation (2G) technologies to fabricate high-performance superconducting wires developed at the Oak Ridge National Laboratory (ORNL) were transferred to American Superconductor via this CRADA. In addition, co-development of technologies for over a decade was done to enable fabrication of commercial high-temperature superconducting (HTS) wires with high performance. The massive success of this CRADA has allowed American Superconductor Corporation (AMSC) to become a global leader in the fabrication of HTS wire and the technology is fully based on the Rolling Assisted Biaxially Textured Substrates (RABiTS) technology invented and developed at ORNL.

  2. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    SciTech Connect

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  3. Test Results for a 25 Meter Prototype Fault Current Limiting Hts Cable for Project Hydra

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Duckworth, R. C.; Demko, J. A.; Ellis, A.; James, D. R.; Gouge, M. J.; Tuncer, E.

    2010-04-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its HTS cable test facility. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture between Southwire and nkt cables. System integration and HTS wire were provided by American Superconductor Corporation who was the overall team leader of the project. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ˜200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3-Φ) HTS Triax™ design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase (7967 V phase-to-ground) and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  4. Review of activities in USA on HTS materials

    SciTech Connect

    Peterson, D.E.

    1995-02-01

    Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

  5. HTS thin films: Passive microwave components and systems integration issues

    SciTech Connect

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  6. Development of HTS-SQUID Gradiometer with an External HTS Multiturn Thin Film Pickup Coil

    NASA Astrophysics Data System (ADS)

    Teraoka, M.; Tsukamoto, A.; Adachi, S.; Takai, H.; Tanabe, K.

    Highly-sensitive HTS-SQUIDs are applied to various systems such as eddy-current non-destructive evaluation (NDE) and compact magnetometer systems. To avoid unstable operation of the SQUID due to an excitation field, a flux transformer made of normal Cu wire is used to separate the pickup coil and SQUID. However, the resistance of the flux transformer generates thermal noise and reduces the signal bandwidth at low frequencies. In this study, we investigate use of a superconducting flux transformer with resistive connections (SFTR). The SFTR consists of pickup and input coils made of HTS thin films. The two coils are connected by using an HTS coated conductor. The input coil is stacked on an HTS thin film gradiometer. From the measured results of resistances of the connections between each coil and the coated conductor, it was found that the resistance of bonding wire was a dominant component. The estimated resistance of the SFTR was 7.2 mΩ, corresponding to a lower cut-off frequency of 11.7 Hz.

  7. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Demko, Jonathan A; Ellis, Alvin R; Gouge, Michael J; James, David Randy; Tuncer, Enis

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  8. Calibration of a HTS Based LOX 400 mm Level Sensor

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Jacob, S.; Nadig, D. S.; Prasad, M. V. N.; Gour, Abhay S.; Pankaj, S.; Gowthaman, M.; Sudharshan, H.

    The measurement of the cryogen level in a cryostage of space crafts is crucial. At the same time the weight of the sensor should be small as it affects the payload fraction of the space craft. An attempt to develop a HTS based level sensor of 400 mm for Liquid Oxygen (LOX) measurement was made. In the initial phase of testing, loss of superconductivity of HTS wire in LOX inside a cryostat was noticed. Thus, a new four wall cryostat was designed to have a stable LOX level to provide thermal stability to the HTS based LOX sensor. The calibration of the developed sensor was carried out against capacitance level sensor which was pre calibrated using diode array to verify its linearity and performance for different current excitation levels. The calibrations were carried out without heater wires. The automatic data logging was accomplished using a program developed in LabVIEW 11.0.

  9. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  10. Design and Development of a 100 MVA HTS Generator for Commercial Entry

    SciTech Connect

    2007-06-07

    In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: (1) identify and develop technologies that would be needed for such a generator; (2) develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology; (3) perform proof of concept tests at the 1.5 MW level for GE's proprietary warm iron rotor HTS generator concept; and (4) design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables. The design for the HTS generator was based on GE's warm iron rotor concept in which a cold HTS coil is wound around a warm magnetic iron pole. This approach for rotating HTS electrical machinery provides the efficiency benefits of the HTS technology while addressing the two most important considerations for power generators in utility applications: cost and reliability. The warm iron rotor concept uses the least amount of expensive HTS wire compared to competing concepts and builds on the very high reliability of conventional iron core stators and armature windings.

  11. An HTS Machine Laboratory Prototype

    NASA Astrophysics Data System (ADS)

    Mijatovic, N.; Jensen, B. B.; Træholta, C.; Abrahamsen, A. B.; Zermeno, V. M. R.; Pedersen, N. F.

    This paper describes Superwind HTS machine laboratory setup which is a small scale HTS machine designed and build as a part of the efforts to identify and tackle some of the challenges the HTS machine design may face. One of the challenges of HTS machines is a Torque Transfer Element (TTE) which is in this design integral part of the cryostat. The discussion of the requirements for the TTE supported with a simple case study comparing a shaft and a cylinder as candidates for TTE are presented. The discussion resulted with a cylinder as a TTE design rated for a 250Nm and with more then 10 times lower heat conduction compared to a shaft. The HTS machine was successfully cooled to 77K and tests have been performed. The IV curves of the HTS field winding employing 6 HTS coils indicate that two of the coils had been damaged. The maximal value of the torque during experiments of 78Nm was recorded. Loaded with 33%, the TTE performed well and showed suffcient margin for future experiments.

  12. Thermal management of long-length HTS cable systems

    SciTech Connect

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  13. Development of the Current Bypassing Methods into the Transverse Direction in Non-insulation HTS Coils

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Kim, S. B.; Ikoma, H.; Kanemoto, D.

    In the case of motors and generators, the benefits of using high temperature superconducting (HTS) coils can be represented by the reduction of 50% in both losses and sizes compared to conventional machines. However, it is hard to establish quench detection and protection devices for the HTS coils applied to the rotors of motors and generators. So, the stability of the coils is lower than for the quiescent coils applied to NMR, MRI and so on. Therefore, it is important to improve the self-protection ability of HTS coils. We have studied the methods to improve the self-protection ability of HTS coils by removing the layer-to-layer insulation and inserting metal tape instead of the electrical insulation. The operating current in the non-insulated HTS coil was bypassed into the transverse direction by the generated normal region because of their electrical contact among the winding. In this study, we examined the method to control the current bypassing on layer-to-layer for controlling the inductance of the non-insulated HTS coil. The current bypassing properties on non-insulated HTS coil wound with 2G wires will be discussed.

  14. HTS magnetometers for fetal magnetocardiography.

    PubMed

    Li, Z; Wakai, R T; Paulson, D N; Schwartz, B

    2004-01-01

    High temperature superconducting (HTS) SQUID sensors have adequate magnetic field sensitivity for adult magnetocardiography (MCG) measurements, but it remains to be seen how well they perform for fetal MCG (fMCG), where the heart signals are typically ten times smaller than the adult signals. In this study, we assess the performance of a prototype HTS SQUID system; namely, a three-SQUID gradiometer formed from three vertically-aligned HTS dc-SQUID magnetometers integrated into a fiberglass liquid nitrogen dewar of diameter 12.5 cm and height 30 cm. Axial gradiometers with short or long baseline, as well as a second order gradiometer, can be formed out of these magnetometers via electronic subtraction. The calibrated magnetometer sensitivities at 1 kHz are 109 fT/square root of Hz, 155 fT/square root of Hz and 51 fT/square root of Hz. Direct comparison is made between the HTS SQUID system and a LTS SQUID system by making recordings with both systems during the same session on adult and fetal subjects. Although the fMCG could be resolved with the HTS SQUID system in most near-term subjects, the signal-to-noise ratio was relatively low and the system could not be operated outside of a shielded room. PMID:16012655

  15. Race-track coils for a 3 MW HTS ship motor

    NASA Astrophysics Data System (ADS)

    Ueno, E.; Kato, T.; Hayashi, K.

    2014-09-01

    Since the discovery of high-temperature superconductivity (HTS), Sumitomo Electric has been developing silver-sheathed Bi2223 superconducting wire and products. Ship propulsion motors are one of the most promising applications of HTS. Sumitomo Electric Industries, Ltd. (SEI) has recently manufactured 24 large racetrack coils, using 70 km long DI-BSCCO wires, for use in a 3 MW HTS motor developed by Kawasaki Heavy Industries, Ltd. (KHI). The 3 MW HTS motor, using our newly developed racetrack coils, has successfully passed the loading test. It is particularly important that the HTS field coils used in ship propulsion motors can withstand the expansive forces repeatedly applied to them. As racetrack type coils have straight sections, the support mechanism they require to withstand expansive forces is very different from that of circular coils. Therefore, we ran tests and obtained the basic data to evaluate the 20-year durability of racetrack coils against the repeatedly applied expansive forces expected in domestic ship propulsion motors.

  16. Large Scale Applications of HTS in New Zealand

    NASA Astrophysics Data System (ADS)

    Wimbush, Stuart C.

    New Zealand has one of the longest-running and most consistently funded (relative to GDP) programmes in high temperature superconductor (HTS) development and application worldwide. As a consequence, it has a sustained breadth of involvement in HTS technology development stretching from the materials discovery right through to burgeoning commercial exploitation. This review paper outlines the present large scale projects of the research team at the newly-established Robinson Research Institute of Victoria University of Wellington. These include the construction and grid-based testing of a three-phase 1 MVA 2G HTS distribution transformer utilizing Roebel cable for its high-current secondary windings and the development of a cryogen-free conduction-cooled 1.5 T YBCO-based human extremity magnetic resonance imaging system. Ongoing activities supporting applications development such as low-temperature full-current characterization of commercial superconducting wires and the implementation of inductive flux-pump technologies for efficient brushless coil excitation in superconducting magnets and rotating machines are also described.

  17. Development of HTS magnets for application

    NASA Astrophysics Data System (ADS)

    Hatanaka, Kichiji; Fukuda, Mitsuhiro; Yorita, Tetsuhiko; Ueda, Hiroshi; Yasuda, Yuusuke; Kamakura, Keita; Morita, Yoshiya; Yamane, Hiroyoshi; Kawaguchi, Takeo

    2014-09-01

    We have been developing magnets utilizing high-temperature superconducting (HTS) wires for this decade. We built three model magnets, a mirror coil for an ECR ion source, a set of coils for a scanning magnet and a super-ferric dipole magnet to generate magnetic field of 3 T. They were excited with AC/pulse currents as well as DC currents. Recently we fabricated a cylindrical magnet for a practical use which polarizes ultracold neutrons (UCN). It consists of 10 double pancakes and the field strength at the center is higher than 3.5 T which is required to fully polarize 210 neV neutrons. It was successfully cooled and excited. The magnet was used to polarized UCN generated by the RCNP-KEK superthermal UCN source, One dipole magnet has been manufactured which is used as a switching magnet after the RCNP ring cyclotron and is excited by pulse currents. It becomes possible to deliver beams to two experimental halls by time sharing. Their designs and performances are presented in the talk.

  18. TOPICAL REVIEW: Current status of high-Tc wire

    NASA Astrophysics Data System (ADS)

    Vase, Per; Flükiger, René; Leghissa, Martino; Glowacki, Bartek

    2000-07-01

    This paper is the result of the work of a SCENET (The European Network for Superconductivity) material working group's efforts on giving values for present and future expected performance of high-temperature superconducting (HTS) wires and tapes. The purpose of the work is to give input to the design of HTS applications like power cables, motors, current leads, magnets, transformers and generators. The current status performance values are supposed to be used in the design of today's prototypes and the future values for the design of fully commercial HTS applications of the future. We focus on what is expected to be the relevant parameters for HTS application design. The most successful technique by far for making HTS tapes has been on the (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) material by the powder-in-tube (PIT) technique and this paper therefore focuses on giving the current status and expected future performance for Bi-2223 tapes.

  19. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.

    2010-11-01

    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  20. Study on stabilization and quench protection of coils wound of HTS coated conductors considering quench origins - Proposal of criteria for stabilization and quench protection

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Osami; Fujimoto, Yasutaka; Takao, Tomoaki

    2014-09-01

    It has been considered that HTS coils are hard to be quenched because of high quench energy due to high critical temperature and high specific heat of HTS wires. Therefore, attention to quench protection was not much paid. However, HTS coils still have possibility to be quenched during operation by mainly the following two origins, (a) presence of non-recoverable local defects in the conductors and (b) temperature rise of long part of the conductor. Actually, severe quench accidents, such as burning coils, are occurring in various places as scales of HTS increased. Purposes of this paper are to study on behaviors of normal zone and hot spot temperature of wires during quench detect/energy dump sequence and to find criteria for the stability and quench protection. In the paper, criteria are proposed for stability and quench protection of HTS coils. A criterion for the stability is that a coil can be operated stably without a quench against defects in coil windings and that for quench protection is that a coil can be safely protected from damages caused by a quench due to temperature rise of long part of coil wires. The criteria are used as design rules for HTS coils.

  1. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  2. Development Status of AMSC Amperium® Wire

    NASA Astrophysics Data System (ADS)

    Fleshler, S.; DeMoranville, K.; Gannon, J., Jr.; Li, X.; Podtburg, E.; Rupich, M. W.; Sathyamurthy, S.; Thieme, C. L. H.; Tucker, D.; Whitman, L.

    2014-05-01

    AMSC produces Second Generation (2G) HTS wire for utility power applications as well as coil, motor and generator solutions. In this paper, various types of AMSC's Amperium® wire suitable to power cables, fault current limiters and coils are reviewed. In addition, recently developed performance-improvements in amperage, reduced ac power loss and mechanical properties are summarized. The introduction of thicker HTS layers coupled with optimized heat treatments to enhance critical current density dramatically improve both cable and coil wire current-carrying capability. A non-magnetic RABiTSTM substrate has now been developed to the point where it is compatible with the manufacturing process and capable of sustaining large critical currents. Finally, the ability of Amperium® wires to withstand cable-winding stresses, and to exhibit the high transverse c-axis strength critical to the reliability of the wire in coils, are discussed.

  3. Electrical and Mechanical Characterizations of Nanocomposite Insulation for HTS Systems

    SciTech Connect

    Walsh, J K; Fabian, Paul E; Hooker, M W; Lizotte, M J; Tuncer, Enis; Sauers, Isidor

    2011-01-01

    As HTS wire technology continues to advance, a critical need has emerged for dielectric materials that can be used in superconducting components such as terminations, fault current limiters, transformers, and motors. To address this need, CTD is developing nanocomposite insulations based on epoxy and benzoxazine chemistries. Depending on part geometry, some processing methods are more efficient than others. For this reason, CTD is investigating both fiber-reinforced and filled resin systems for use in these applications. A thorough set of electrical testing including AC breakdown, breakdown as a function of thickness, and flashover shows promising performance characteristics. In addition, mechanical testing (short beam shear and compression) indicate that these new materials to have as good or better performance than G10.

  4. Reliable commercial high temperature superconductor wire for space missions

    NASA Astrophysics Data System (ADS)

    Masur, Lawrence J.; Kellers, Jürgen

    2002-01-01

    High Temperature Superconductors (HTS) are widely considered for large power applications used by industrial end-users and electric utilities. The prominent application areas include power transmission cables, electric motors, generators, current limiters, and transformers. The promising design concepts rely on HTS to be a flexible composite conductor, robust enough to handle an industrial environment. Currently, the most advanced manufacturing method for flexible composite conductor is the Bi-2223-OPIT, used by many organizations. Significant advances in HTS technology have been made, with average critical current performance of 130 A at 77 K which is equivalent to an engineering current density of 15.1 kA/cm2. During the past 18 months, American Superconductor increased its HTS wire manufacturing capacity from 250 km to 500 km per year to meet the increased demand for development and demonstrations. While this level of quality and quantity enables impressive demonstrations of prototype power applications, it does not fully meet the requirements of commercial economic viability. Therefore, to further decrease wire price to the range of $50/kA-m, American Superconductor is currently siting a new facility dedicated to the manufacturing of Bi-OPIT-2223 wire in quantities of 10,000 km per year. The purpose of this paper is to examine the functional, reliable, and economical aspects of today's HTS materials with an eye towards application in space missions. .

  5. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational introduction; general safety;…

  6. Electronic gradiometry for NDE in an unshielded environment with stationary and moving HTS SQUIDs

    NASA Astrophysics Data System (ADS)

    Carr, C.; Cochran, A.; Kuznik, J.; McKirdy, D. McA.; Donaldson, G. B.

    Difficulties in the fabrication of multilayer high-temperature superconductor (HTS) devices have led to recent interest in the use of simpler HTS SQUID magnetometers in electronic gradiometers. One application of such systems is electromagnetic non-destructive evaluation. We have developed a prototype two-SQUID system and we present recent results in this paper. We first demonstrate the level of interference suppression by comparing magnetometer and gradiometer signals. Then we present several results taken conventionally with the HTS SQUIDs stationary above moving specimens and, for the first time, with the SQUIDs unshielded in motion above stationary specimens. The specimens comprise a pair of wires in a return current loop as a calibration source, and an aircraft-grade aluminium plate with fine slits mimicking fatigue cracks, first exposed and then covered with an additional aluminium sheet to simulate internal flaws. These results are an important, though by no means final, step towards practical non-destructive evaluation of real test subjects with HTS SQUIDs.

  7. Operating characteristics of contactless power transfer for electric vehicle from HTS antenna to normal conducting receiver

    NASA Astrophysics Data System (ADS)

    Chung, Yoon Do; Lee, Chang Young; Jo, Hyun Chul; Park, Young Gun; Yim, Seong Woo

    2014-09-01

    As contactless power transfer (CPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUCPT4EV) system. As the HTS coil has an enough current density and high quality factor Q value, it can deliver a mass amount of electric energy and improved efficiency in spite of a small scale antenna. The SUCPT4EV system has been expected as a reasonable option to improve the transfer efficiency of large electric power. In this study, we examined the improvement of transmission efficiency and properties for HTS transmitted antenna coils within 40 cm distance at radio frequency (RF) generator of 60 W, 370 kHz. In addition, we achieved impedance matching conditions for different material coils between HTS and normal conductors.

  8. Electrical parameter evaluation of a 1 MW HTS motor via analysis and experiments

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Kim, S. H.; Lee, J. D.; Kim, Y. C.; Park, H. J.; Kwon, W. S.; Park, G. S.

    2009-06-01

    A 1 MW class HTS (high-temperature superconducting) synchronous motor has been developed. Design concerns of the developed motor are focused on smaller machine size and higher efficiency than conventional motors or generators with the same rating simultaneously reducing expensive Bi-2223 HTS wire which is used for superconducting field coil carrying the operating current around 30 K (-243 °C). Influence of an important parameter, synchronous reactance, has been analyzed on the machine performances such as voltage variation and output power during motor and generator operation. The developed motor was also analyzed by three-dimensional electromagnetic FEM (finite element method) to get magnetic field distribution, inductance, electromagnetic stress and so forth. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of Neon thermosiphon mechanism and the stator (armature) coil is cooled by water through hollow copper conductor. This paper also describes evaluation of some electrical parameters from performance test results which were obtained at steady state in generator and motor mode of our HTS machine.

  9. Theory of ac loss in power transmission cables with second generation high temperature superconductor wires

    SciTech Connect

    Clem, J. R.; Malozemoff, A. P.

    2010-02-22

    While a considerable amount of work has been done in an effort to understand ac losses in power transmission cables made of first generation high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer in 2G wires reduces the surface superconductor hysteretic losses, for which a new formula is derived. Instead, gap and polygonal losses, flux transfer losses in imbalanced two-layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. A formula for the flux transfer losses is also derived with a paramagnetic approximation for the substrate. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  10. Development of Non-destructive Evaluation System Using an HTS-SQUID Gradiometer with an External Pickup Coil

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Kawauchi, S.; Ishikawa, F.; Tanabe, K.

    We are developing a new eddy-current non-destructive evaluation (NDE) system using a high-temperature superconducting quantum interference device (HTS-SQUID) gradiometer with the aim of applying it to power plants. Electric power facilities such as ducts and vessels are generally untransportable because of their size, and thus it is difficult to apply a conventional SQUID NDE system. The new NDE system employs an external Cu pickup coil which is supposed to be driven flexibly by a robot arm at room temperature and an HTS-SQUID chip which is placed in a magnetically shielded vessel. In the present research, we investigated the performance of an HTS-SQUID sensor connected with external pickup coils before mounting them to a robot arm. By varying the Cu coil conditions such as their sizes, the number of turns, and the diameter of wire, we qualitatively evaluated the frequency dependence of the effective area and the cutoff frequency.

  11. AC loss measurements in HTS coil assemblies with hybrid coil structures

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  12. Flux Compression in HTS Films

    NASA Astrophysics Data System (ADS)

    Mikheenko, P.; Colclough, M. S.; Chakalov, R.; Kawano, K.; Muirhead, C. M.

    We report on experimental investigation of the effect of flux compression in superconducting YBa2Cu3Ox (YBCO) films and YBCO/CMR (Colossal Magnetoresistive) multilayers. The flux compression produces positive magnetic moment (m) upon the cooling in a field from above to below the critical temperature. We found effect of compression in all measured films and multilayers. In accordance with theoretical calculations, m is proportional to applied magnetic field. The amplitude of the effect depends on the cooling rate, which suggests the inhomogeneous cooling as its origin. The positive moment is always very small, a fraction of a percent of the ideal diamagnetic response. A CMR layer in contact with HTS decreases the amplitude of the effect. The flux compression weakly depends on sample size, but sensitive to its form and topology. The positive magnetic moment does not appear in bulk samples at low rates of the cooling. Our results show that the main features of the flux compression are very different from those in Paramagnetic Meissner effect observed in bulk high temperature superconductors and Nb disks.

  13. A Test of HTS Power Cable in a Sweeping Magnetic Field

    SciTech Connect

    Piekarz, H.; Hays, S.; Blowers, J.; Shiltsev, V.; /Fermilab

    2011-11-29

    Short sample HTS power cable composed of multiple 344C-2G strands and designed to energize a fast-cycling dipole magnet was exposed to a sweeping magnetic field in the (2-20) T/s ramping rate. The B-field orientation toward the HTS strands wide surface was varied from 0{sup 0} to 10{sup 0}, in steps of 1{sup 0}. The test arrangement allowed measurement of the combined hysteresis and eddy current power losses. For the validity of these measurements, the power losses of a short sample cable composed of multiple LTS wire strands were also performed to compare with the known data. The test arrangement of the power cable is described, and the test results are compared with the projections for the eddy and hysteresis power losses using the fine details of the test cable structures.

  14. Stability test of conduction-cooled LTS/HTS composite coil

    NASA Astrophysics Data System (ADS)

    Cui, Ying Min; Wang, Yin Shun; Lv, Gang; Pi, Wei

    2016-06-01

    A small LTS/HTS composite coil made of NbTi/Cu and YBCO, with an inner diameter of 80 mm, an outer diameter of 88mm, a height of 50 mm, and an inductance of 5.5 μH, was designed to test its heat disturbance performance in a GM cryocooler. For comparison, a conventional LTS coil of a similar size made of NbTi/Cu wire was also tested. Transport current was applied from 50 A to 700 A at 8 K and 8.5 K, respectively. The two coils’ heat disturbance, minimum quench energy and quench propagation velocity performance were investigated and simulated. The results indicate that the LTS/HTS composite coil shows better thermal stability and is more fit for operation in conductive cryocooler systems compared to LTS coils.

  15. Cryogen-free lkA-class Ic measurement system featuring an 8 T HTS magnet

    NASA Astrophysics Data System (ADS)

    Strickland, N. M.; Hoffmann, C.; Wimbush, S. C.; Pooke, D. M.; Huang, T.; Lazic, Z.; Chamritski, V.; Talantsev, E. F.; Long, N. J.; Tallon, J. L.

    2014-05-01

    We have developed a cryogen-free critical-current (Ic) measuring system comprising a conduction-cooled 8 T HTS magnet and convection-cooled sample, both cooled by commercial cryocoolers. The sample can be rotated and transport currents of up to 800 A delivered with less than 0.5 K temperature rise during the Ic measurement. The system is automated with respect to variations in temperature (30-90 K), field (0-8 T), and field angle (0-360°). We have used this system to measure HTS wire samples, concentrating on metal-organic deposited YBCO on RABiTS substrates. Particular emphasis is given to the evolution of Ic anisotropy with temperature, and the dangers of extrapolating from 77 K to 30 K.

  16. R&D ERL: HTS Solenoid

    SciTech Connect

    Gupta, R.; Muratore, J.; Plate, S.

    2010-01-01

    An innovative feature of the ERL project is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The HTS solenoid design offers many advantages because of several unique design features. Typically the solenoid is placed outside the cryostat which means that the beam gets significantly defused before a focusing element starts. In the current design, the solenoid is placed inside the cryostat which provides an early focusing structure and thus a significant reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at {approx}77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre-tests which would have been prohibitively expensive at 4 K in liquid helium because of the additional requirements of cryostat and associated facilities.

  17. Hybrid Current Lead Design of HTS SMES

    NASA Astrophysics Data System (ADS)

    Ge, T.; Ren, L.; He, Q.; Jiao, F.; Dong, H.; Jin, T.; Zhou, S.

    In application of Superconducting magnetic energy storage device (SMES), current lead represents a key development component. This paper will focus on parameters and structure design of hybrid high-temperature superconductor (HTS) current lead in a SMES with 100 kJ/100 kW class. Based on the theoretical analysis, finite element simulation (FEA) has been used. It studies the thermal influence of variable cross-sectional area, HTS material and the connection between current lead and cryocooler. Some improvements have been proposed to reduce heat losses. At the end of this paper, a whole procedure about hybrid current lead design is given.

  18. Total AC loss study of 2G HTS coils for fully HTS machine applications

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yuan, Weijia; Kvitkovic, Jozef; Pamidi, Sastry

    2015-11-01

    The application of HTS coils for fully HTS machines has become a new research focus. In the stator of an electrical machine, HTS coils are subjected to a combination of an AC applied current and AC external magnetic field. There is a phase shift between the AC current and AC magnetic field. In order to understand and estimate the total AC loss of HTS coils for electrical machines, we designed and performed a calorimetric measurement for a 2G HTS racetrack coil. Our measurement indicates that the total AC loss is greatly influenced by the phase shift between the applied current and the external magnetic field when the magnetic field is perpendicular to the tape surface. When the applied current and the external magnetic field are in phase, the total AC loss is the highest. When there is a 90 degree phase difference, the total AC loss is the lowest. In order to explain this phenomenon, we employ H formulation and finite element method to model the 2G HTS racetrack coil. Our calculation agrees well with experimental measurements. Two parameters are defined to describe the modulation of the total AC loss in terms of phase difference. The calculation further reveals that the influence of phase difference varies with magnetic field direction. The greatest influence of phase difference is in the perpendicular direction. The study provides key information for large-scale 2G HTS applications, e.g. fully HTS machines and superconducting magnetic energy storage, where the total AC loss subjected to both applied currents and external magnetic fields is a critical parameter for the design.

  19. HTS axial flux induction motor with analytic and FEA modeling

    NASA Astrophysics Data System (ADS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J. H.

    2013-11-01

    This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  20. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  1. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  2. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  3. Mobile conduction-cooled HTS SMES

    NASA Astrophysics Data System (ADS)

    Ren, L.; Tang, Y.; Li, J.; Shi, J.; Chen, L.; Guo, F.; Fang, J.; Wen, J.

    2010-11-01

    An immovable 35 kJ/7 kW high- Tc superconducting magnetic energy storage (HTS SMES) system had been developed in the Electric Power System Dynamic Simulation Laboratory, Huazhong University of Science and Technology in 2005. In order to adapt for on-site experimental conditions, the mechanical configuration of the magnet is reinforced and the SMES system is assembled in a special container to be freighted to the actual power system for the feasibility study on different applications at different sites. The mobile HTS SMES system had withstood various kinds of poor road surfaces and then arrived at the experimental site on August 18, 2009. In this paper, the reconstructed configuration and the shock absorption of the magnet are presented. The field test results show that the mobile SMES system can operate on the power network at different locations and suppress effectively power fluctuation of the generator terminal.

  4. Cold storage characteristics of mobile HTS magnet

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Miyazaki, Yoshiki; Nagashima, Ken; Kawano, Asumi; Okamura, Tetsuji

    2011-06-01

    A cold storage system specialized in mobile high-temperature superconducting (HTS) magnets (e.g. for magnetically levitated (maglev) vehicles) has been proposed. In this system, a cooling source is detachable and a HTS coil is capable of maintaining superconducting state with its heat capacity. This system allows a considerably lightweight HTS magnet. An apparatus was constructed to evaluate the possibility of using cold storage systems in maglev vehicles. The thermal characteristic of this apparatus was based on a magnet for previous maglev test vehicles [1]. The operational temperature range of the magnet was assumed from 20 K to 50 K. Some experiments indicated that heat conduction by residual gas was not negligible. Especially over 30 K, gas conduction took a large part of heat input. This phenomenon is attributable to reduction of cryopumping effect. However, activated carbon in the apparatus compensates cryopumping effect. A unique heat capacitor was also used to enhance the cold storage effect. Water ice was chosen as a heat capacitor because water ice has a higher heat capacity than metallic materials at cryogenic temperatures. A small amount of water ice also prolonged cryogenic temperature condition. These results indicate 1 day of cold storage is probable in a magnet for maglev vehicles.

  5. Designing HTS coils for magnetic circuits

    SciTech Connect

    Jenkins, R.G.; Jones, H.; Goodall, R.M.

    1996-07-01

    The authors discuss some of the main considerations involved in the design of HTS coils to operate in liquid nitrogen and provide ampere-turns for magnetic circuits in general, and then in particular for a small-scale electromagnetic (i.e, attractive) maglev demonstrator. The most important factor affecting design is the sensitive and strongly anisotropic dependence of HTS tape`s critical current on magnetic field. Any successful design must limit the field in the windings, especially components perpendicular to the tape`s surface (radial components in the case of solenoids), to acceptably low levels such that local critical currents nowhere fall below the operating current. This factor is relevant to the construction of HTS coils for all applications. A second important factor is that the presence of an iron magnetic circuit can greatly alter the flux distribution within the coils from that found when they are in free space. FE modelling has been used to calculate accurate field profiles in proposed designs for comparison with short sample I{sub c}(B) data. They present a design for a maglev demonstrator, illustrating how some of the problems, in particular the reduction of radial field components, may be addressed, and describe its predicted performance.

  6. Progress in development of high capacity magnetic HTS bearings

    NASA Astrophysics Data System (ADS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-10-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction.

  7. High output power electric motors with bulk HTS elements

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Kovalev, K. L.; Penkin, V. T.; Poltavets, V. N.; Koneev, S. M.-A.; Akimov, I. I.; Gawalek, W.; Oswald, B.; Krabbes, G.

    2003-04-01

    New types of electric machines with the rotors containing bulk HTS (YBCO and Bi-Ag) elements are presented. Different schematics of hysteresis, reluctance, “trapped field” and composed synchronous HTS machines are discussed. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. The test results of the series of hysteresis, reluctance, “trapped field” and composed with permanent magnets HTS motors with output power rating 0.1-18 kW and current frequency 50 and 400 Hz are given. These results show that in the media of liquid nitrogen the specific output power per one weight unit of HTS motors is 4-7 times better than for conventional electric machines. Comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. The test results for liquid nitrogen cryogenic pump system with hysteresis 500 W HTS motor are discussed. The designs and first test results of HTS motor operating in the media of liquid nitrogen with output power 100 kW and power factor more than 0.8 are given. Future development and applications of new types of HTS motors for aerospace technology, on-land industry and transport systems are discussed.

  8. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  9. Study on Thrust Improvement and Ripple Suppression of HTS Linear Switched Reluctance Motor with Coreless HTS Excitation Windings

    NASA Astrophysics Data System (ADS)

    Oto, Satoshi; Hirayama, Tadashi; Kawabata, Shuma

    This paper describes a linear switched reluctance motor (LSRM) in which HTS tapes are used for coreless excitation windings in order to reduce the thrust ripple and normal force. This LSRM consists of a mover with saliency structure, coreless HTS coils and a stator back yoke. In this paper, we first describe the operating principle of the HTS-LSRM. Next, we calculate performances of the HTS-LSRM using 3-D FEM analysis. The effects of the motor structure on the thrust characteristic and normal force characteristics are clarified from the numerical results. Furthermore, we investigate the motor structure for thrust improvement, thrust ripple and normal force reduction.

  10. Thermal analysis for the HTS stator consisting of HTS armature windings and an iron core for a 2.5 kW HTS generator

    NASA Astrophysics Data System (ADS)

    Song, P.; Qu, T.-M.; Lai, L.-F.; Wu, M.-S.; Yu, X.-Y.; Han, Z.

    2016-05-01

    Most present demonstrations of high-temperature superconducting (HTS) synchronous motors/generators are partially superconducting, only installing HTS coils on the rotor as excitation windings. The possible applicability of HTS armature windings is an interesting research topic because these windings can certainly increase the power density attributed to a potentially high armature loading capacity. In this study, we analysed the thermal behaviours of a developed 2.5 kW-300 rpm synchronous generator prototype that consists of an HTS stator with Bi-2223-Ag armature windings on an iron core and a permanent magnet (PM) rotor. The entire HTS stator, including the iron core, is cooled with liquid nitrogen through conduction cooling. The rated frequency is set at 10 Hz to reduce AC loss. The properties of the HTS windings and the iron core are characterized, and the temperatures in the HTS stator under different operation conditions are measured. The estimated iron loss is 11.5 W under operation in 10 Hz at liquid nitrogen temperature. Conduction cooling through the silicon iron core is sufficient to cool the iron core and to compensate for the temperature increment caused by iron loss. The stable running capacity is limited to 1.6 kW when the armature current is 12.6 A (effective values) due to the increasing temperature in the slots as a result of the AC loss in the HTS coils. The thermal contact between the HTS coils and the cooling media should be improved in the future to take away the heat generated by AC loss.

  11. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  12. Waveform control pulse magnetization for HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Ida, Tetsuya; Shigeuchi, Koji; Okuda, Sayo; Watasaki, Masahiro; Izumi, Mitsuru

    2016-03-01

    For the past 10 years, we have studied high-temperature superconducting (HTS) bulk magnets for use in electromagnetic rotating machines. If the magnetic field effectively magnetizes the HTS bulk, then the size of the motor and generator can be reduced without a reduction in output. We showed that the melt-textured Gd-Ba-Cu-O HTS bulk effectively traps a high magnetic field using waveform control pulse magnetization (WCPM). WCPM makes it possible to generate any pulsed magnetic field waveform by appropriately changing the duty ratio of the pulse width modulation. By chopping so that the pulsed magnetic field has a period of about 1ms, the WCPM technology enables active control of the rise time and suppresses magnetic flux motion that decreases magnetization efficiency. This method is also useful for any HTS bulk magnet, and the high magnetic flux density is trapped in the HTS bulk by a single pulse magnetic field. We developed a magnetizer that has a feedback system from the penetrated magnetic flux density to realize WCPM. In this research, using only a single pulse magnetic field of WCPM method at 77K, an HTS bulk with a 45mm diameter and 19mm thickness trapped a maximum magnetic field of 1.63T, which is more than 90% of the trapped magnetic flux density by FC magnetization. This result suggests that the pulse magnetizing method can replace the conventional field-cooled method and promote the practical use of HTS magnets for electromagnetic power applications.

  13. Upgrade of SULTAN/EDIPO for HTS Cable Test

    NASA Astrophysics Data System (ADS)

    Wesche, R.; Bruzzone, P.; Uglietti, D.; Bykovsky, N.; Lewandowska, M.

    CRPP hosts two unique conductor test facilities SULTAN (SUpraLeiter TestANlage) and EDIPO (European DIPOle). They allow the test of high current superconductors in high magnetic fields (SULTAN 11 T, EDIPO 12.5 T). In both facilities sample currents up to 100 kA can be supplied by means of a NbTi transformer. Presently the facilities are upgraded for the test of high current high-temperature superconductor (HTS) samples. For HTS conductor testing at temperatures between 20 and 50 K, the heat flux between the HTS sample under test and the NbTi transformer needs to be limited to around 10 W per conductor leg by means of an HTS adapter connecting them. The second required upgrade is the supply of intermediate temperature helium (20-50 K) to the HTS test conductor. It is mandatory that the helium gas coming from the HTS conductor under test can be returned to the cryoplant as cold gas (T < 20 K). To reach this goal a tube-in-tube heat exchanger has been manufactured in which 4.5 K helium coming from the cryoplant is in counter flow with the warm gas leaving the HTS test conductor.

  14. Monolithic HTS microwave phase shifter and other devices

    NASA Astrophysics Data System (ADS)

    Jackson, Charles M.; Kobayashi, June H.; Guillory, Emery B.; Pettiette-Hall, Claire; Burch, John F.

    1992-08-01

    We describe a monolithic high-temperature superconductor (HTS) phase shifter based on the distributed Josephson inductance (DJI) design integrated monolithically into a 10-GHz microstrip line. This microwave circuit incorporates greater than 1000 HTS RF SQUIDS. Recent data demonstrate the performance of this broadband HTS circuit. We observed phase shifts greater than 150 deg in resonant structures, and 20 deg in broadband circuits. The nonlinear inductance of the superconducting transmission line can be used for other novel applications, including parametric amplification. A comparison of the DJI circuit to a series array of Josephson elements (used for pulse sharpening) will contrast these two new and exciting nonlinear transmission line circuits.

  15. Efficient growth of HTS films with volatile elements

    DOEpatents

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  16. Efficient growth of HTS films with volatile elements

    DOEpatents

    Siegal, Michael P.; Overmyer, Donald L.; Dominguez, Frank

    1998-01-01

    A system for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source.

  17. Recent developments in processing HTS silver-clad Bi-2223 tapes, coils and test magnets

    SciTech Connect

    Haldar, P.; Hoehn, J.G. Jr.; Motowidlo, L.R.; Balachandran, U.; Iwasa, Y.; Yunus, M.

    1993-10-01

    Considerable progress has been made in fabricating Bi-2223 high temperature superconductor (HTS) wires and tapes with high critical current densities that are attractive for electric power and high-field magnet applications. Powder-in-tube processed silver-clad Bi-2223 short tape samples, small coils and test magnets have been fabricated and measured at liquid nitrogen (77K), pumped liquid nitrogen (64 K), liquid neon (27K) and liquid helium (4.2K) temperatures. Optimization of thermo-mechanical process parameters have yielded J{sub c}`s in the superconducting core > 4.0 {times} 10{sup 4} A/cm{sup 2} at 77K zero field and > 2.0 {times} 10{sup 5} A/cm{sup 2} at 4.2K, zero field. Long lengths (up to 70 m) of mono-core conductors were fabricated and tested to carry significant amounts of current (23 A, {approximately}15,000 A/cm{sup 2}) at liquid nitrogen temperature. Recent test magnets assembled from pancake wound coils were measured to generate magnetic fields as high as 2.6, 1.8 and 0.36 Tesla at 4.2K, 27K and 77K respectively. These results show promise towards practical utilization of HTS materials.

  18. Experimental Manufacture and Performance Evaluation of Linear Switched Reluctance Motor with HTS Excitation Windings

    NASA Astrophysics Data System (ADS)

    Hirayama, Tadashi; Oto, Satoshi; Higashijima, Atsushi; Kawabata, Shuma

    This paper presents an experimental manufacture and performance evaluation of prototype linear switched reluctance motor with HTS excitation windings (HTS-LSRM). The Ag-alloy sheathed Bi-2223 tapes are used for HTS coils. We first present a structure of the prototype HTS-LSRM. Next, current-carrying properties of the HTS coils are measured. Furthermore, current and voltage waveforms are measured and we evaluation a control performance of the current and voltage.

  19. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-10-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (Ic) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum Ic was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO).

  20. H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors

    NASA Astrophysics Data System (ADS)

    Sass, F.; Sotelo, G. G.; Junior, R. de Andrade; Sirois, Frédéric

    2015-12-01

    Several techniques to model high temperature superconductors (HTSs) are used throughout the world. At the same time, the use of superconductors in transportation and magnetic bearings promises an increase in energy efficiency. However, the most widespread simulation technique in the literature, the H-formulation, has not yet been used to simulate superconducting levitation. The goal of this work is to present solutions for the challenges concerning the use of the H-formulation to predict the behavior of superconducting levitators built either with YBCO bulks or stacks of 2G wires. It is worth mentioning the originality of replacing bulks with HTS stacks in this application. In our simulation methodology, the movement between the HTS and the permanent magnet was avoided by restricting the simulation domain to the HTS itself, which can be done by applying appropriate boundary conditions and analytical expressions for the source field. Commercial finite element software was used for the sake of ease of implementation. Simulation results were compared with experimental data, showing good agreement. We conclude that the H-formulation is suitable for problems involving moving objects and is a good alternative to other approaches for simulating superconducting magnetic bearings.

  1. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    SciTech Connect

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  2. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  3. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  4. Design and Evaluation of Ybco Cable for the Albany Hts Cable Project

    NASA Astrophysics Data System (ADS)

    Ohya, M.; Yumura, H.; Ashibe, Y.; Ito, H.; Masuda, T.; Sato, K.

    2008-03-01

    The Albany Cable Project's aim is to develop a 350 meter long HTS cable system with a capacity of 800 A at 34.5 kV, located between two substations in the National Grid Power Company's grid. In-grid use of BSCCO HTS cable began on July 20, 2006, and successful long-term operation proceeded as planned. The cable system consists of two cables, one 320 meters long and the other 30 meters, a cable-to-cable splice in a vault, two terminations, and a cooling system. In Phase-II of the Albany project, this autumn, the 30-meter section will be replaced with YBCO cable. The test manufacturing and evaluation of YBCO cable has been carried out using SuperPower's YBCO wires in order to confirm the credibility of the cable design. No degradation of the critical current was found at any stage of manufacture. The fault-current test, involving a 1-meter sample carrying 23 kA at 38 cycles, was conducted under open-bath conditions. The temperature increases at the conductor and shield were comparable to those of the BSCCO core, and no Ic degradation was found after the fault-current test. After the design suitability was confirmed, a 30-meter YBCO cable was manufactured. The critical current of the conductor and the shield were approximately 2.6 kA and 2.4 kA, respectively, almost the same as the design values, considering the wire's Ic and the effect of the magnetic field. The AC loss of the sample cable was 0.34 W/m/phase at 800 Arms and 60 Hz. Following favorable shipping test results, the YBCO cable was shipped to the United States, and arrived at the site in June 2007.

  5. Prospects of long-distance HTS DC power transmission systems

    NASA Astrophysics Data System (ADS)

    Romashov, M. A.; Sytnikov, V. E.; Shakarian, Y. G.; Ivanov, Y. V.

    2014-05-01

    Continual improvement of technologies for the safe use of power resources is a key to sustainable development of a human society. In particular, high-temperature superconductivity (HTS) should be used to meet the growing needs of the electric-power industry. It is known that HTS power cables allow us to increase the level of transmitted energy to several GW at voltage of 66-110 kV. HTS power cables of a coaxial design are almost ideal non-polluting system shielding electromagnetic field. In the present work we have tried to analyze various configurations of HTS power transmission systems, estimate the cable transmission capacitance depending on distance, and characterize reliability and efficiency of the systems.

  6. Rotor compound concept for designing an industrial HTS synchronous motor

    NASA Astrophysics Data System (ADS)

    Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.

    2013-06-01

    Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.

  7. Optimal design of HTS magnets for a modular toroid-type 2.5 MJ SMES using multi-grouped particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Kwak, S. Y.; Seo, J. H.; Lee, S. Y.; Park, S. H.; Kim, W. S.; Lee, J. K.; Bae, J. H.; Kim, S. H.; Sim, K. D.; Seong, K. C.; Jung, H. K.; Choi, K.; Hahn, S.

    2009-10-01

    Superconducting magnetic energy storage (SMES) is one of the promising power system applications of superconducting technology and has been actively researched and developed worldwide. Generally, there are three types of SMES-solenoid, multiple solenoid, and toroid. Among these types, toroid type seems to require more wires than solenoid type and multiple solenoid type at the same operating current. However toroid type reduces normal field in the wire and stray field dramatically because magnetic field is confined inside the coil. So, the total length of wire in the toroid type can be reduced in comparison with that in the solenoid type by increasing operating current. In this paper, a 2.5 MJ class SMES with HTS magnets of single solenoid, multiple solenoid and modular toroid type were optimized using a recently developed multi-modal optimization technique named multi-grouped particle swarm optimization (MGPSO). The objective of the optimization was to minimize the total length of HTS superconductor wires satisfying some equality and inequality constraints. The stored energy and constraints were calculated using 3D magnetic field analysis techniques and an automatic tetrahedral mesh generator. Optimized results were verified by 3D finite element method (FEM).

  8. Optimization of Our SC HTS Reluctance Motor

    NASA Astrophysics Data System (ADS)

    Oswald, B.; Best, K.-J.; Setzer, M.; Söll, M.; Gawalek, W.; Gutt, A.; Kovalev, L.; Fisher, L.; Krabbes, G.; Freyhardt, H. C.

    2004-06-01

    Since several years we have successfully designed, built and tested at 77K several reluctance motors. YBCO bulk material has been incorporated into the rotor. Our latest results, based on the old design, will be published within the proceedings of the 8th VDI-Status-Seminar. The range of mechanical output power achieved is up to about 200 kW. All these motors have shown that a significant step in performance is obtained by using HTS bulk elements in the rotor, compared to the data of these test motors without superconductors. However, by now the motor parameters have been limited to certain values. In order to optimize this type of motor and to achieve increased output power and power density we have modified the design with several respects. This includes properties of the superconductor (critical current density raised by about 20%), the use of special soft magnetic material in the stator (increased saturation polarization), modified cut of the laminations (optimized for application at 77 K), and new geometry of the motor dimensions aimed at extremely high dynamics in order to adapt this motor to some special applications. With our present paper we present the results of this optimization which have brought the expected improvements and which are in excellent accordance with theory.

  9. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  10. Heat Transfer Experiments and Analysis of a Simulated HTS

    SciTech Connect

    Demko, Jonathan A; Duckworth, Robert C; Gouge, Michael J; Knoll, David

    2010-01-01

    Long-length high temperature superconducting (HTS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HTS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HTS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HTS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall are presented and compared to analysis. These data can be used to benchmark different HTS cable heat transfer and fluid flow analysis approaches.

  11. R&D Progress of HTS Magnet Project for Ultrahigh-field MRI

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    An R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging.

  12. Monolithic HTS microwave phase shifter and other devices

    SciTech Connect

    Jackson, C.M.; Kobayashi, J.H.; Guillory, E.B.; Pettiette-Hall, C.; Burch, J.F. )

    1992-08-01

    We describe a monolithic high-temperature superconductor (HTS) phase shifter based on the distributed Josephson inductance (DJI) design integrated monolithically into a 10-GHz microstrip line. This microwave circuit incorporates >1000 HTS rf SQUIDS. Recent data demonstrate the performance of this broadband HTS circuit. We observed phase shifts greater than 150[degrees] in resonant structures, and 20[degrees] in broadband circuits. The nonlinear inductance of the superconducting transmission line can be used for other novel applications, including parametric amplification. A comparison of the DJI circuit to a series array of Josephson elements (used for pulse sharpening) will contrast these two new and exciting nonlinear transmission line circuits. 19 refs., 4 figs., 2 tabs.

  13. HTS power lead testing at the Fermilab magnet test facility

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  14. Fabrication and wire extrusion of ceramic superconductors

    SciTech Connect

    Poeppel, R.B.; Balachandran, U.; Singh, J.P.; Dusek, J.T.; Picciolo, J.J.; Dorris, S.E.; Lanagan, M.T.; Goretta, K.C.; Youngdahl, C.A.; Hull, J.R.

    1991-05-01

    Many applications of high-temperature superconductors (HTSs) will depend on the ability to fabricate these materials into long lengths with suitable electrical and mechanical properties maintained over the entire length. The program described in this paper is focused on improvement of the relevant material properties of HTSs and on development of fabrication methods that can be transferred to industry for production of commercial conductors. Our research has resulted in advances in fabrication methods that improve the performance of long lengths of polycrystalline HTS wires and tapes. We have examined the Y-Ba-Cu-O (YBCO), Bi-Sr-Ca-Cu-O (BSCCO), and Tl- Ba-Ca-Cu-O (TBCCO) classes of HTSs. Significant results from our research and work by contemporaries are reported in the various sections of the paper. 28 refs.

  15. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  16. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    SciTech Connect

    Kim, Dr. Hosup; Oh, Sang-Soo; Ha, HS; Youm, D; Moon, SH; Kim, JH; Heo, YU; Dou, SX; Wee, Sung Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 m thick SmBa2Cu3O7- (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1000 A/cm for the entire 22 meter long wire and maximum Ic over 1,500 A/cm for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor.

  17. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    PubMed Central

    Kim, Ho-Sup; Oh, Sang-Soo; Ha, Hong-Soo; Youm, Dojun; Moon, Seung-Hyun; Kim, Jung Ho; Dou, Shi Xue; Heo, Yoon-Uk; Wee, Sung-Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1,000 A/cm-width for the entire 22 meter long wire and maximum Ic over 1,500 A/cm-width for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor. PMID:24752189

  18. Quench detection system for twin coils HTS SMES

    NASA Astrophysics Data System (ADS)

    Badel, A.; Tixador, P.; Simiand, G.; Exchaw, O.

    2010-10-01

    The quench detection and protection system is a critical element in superconducting magnets. After a short summary of the quench detection and protection issues in HTS magnets, an original detection system is presented. The main feature of this system is an active protection of the detection electronics during the discharges, making it possible to use standard electronics even if the discharge voltage is very high. The design of the detection system is therefore easier and it can be made very sensitive. An implementation example is presented for a twin coil HTS SMES prototype, showing the improvements when compared to classical detection systems during operation.

  19. Development of a 600 kJ HTS SMES

    NASA Astrophysics Data System (ADS)

    Seong, K. C.; Kim, H. J.; Kim, S. H.; Sim, K. D.; Sohn, M. H.; Lee, E. Y.; Park, S. J.; Hahn, S. Y.; Park, M. W.

    2008-09-01

    This paper describes an overview of development on a 600 kJ high-temperature superconducting magnetic energy storage (HTS SMES). Our final goal will be the commercialization of MJ class HTS SMES system for the increase of power quality within 5 years. Hence, for this purpose, we have developed the research and development in 3 years. The purpose of this research is to develop a pilot system, which can protect the sensitivity loads from a momentary power interruption or a voltage sag.

  20. Albany Hts Cable Project Long Term In-Grid Operation Status Update

    NASA Astrophysics Data System (ADS)

    Yumura, H.; Masuda, T.; Watanabe, M.; Takigawa, H.; Ashibe, Y.; Ito, H.; Hirose, M.; Sato, K.

    2008-03-01

    High-temperature superconducting (HTS) cable systems are expected to be a solution for improvement of the power grid and three demonstration projects in the real grid are under way in the United States. One of them is the Albany, NY Cable Project, involving the installation and operation of a 350 meter HTS cable system with a capacity of 34.5kV, 800A, connecting between two substations in National Grid's electric utility system. A 320 meter and a 30 meter cable are installed in underground conduit and connected together in a vault. The cables were fabricated with 70km of DI-BSCCO wire in a 3 core-in-one cryostat structure. The cable installation of a 320 meter and a 30 meter section was completed successfully using the same pulling method as a conventional underground cable. After the cable installation, the joint and two terminations were assembled at the Albany site. After the initial cooling of the system, the commissioning tests such as the critical current, heat loss measurement and DC withstand voltage test were conducted successfully. The in-grid operation began on July 20th, 2006 and operated successfully in unattended condition through May 1st, 2007. In the 2nd phase of the Albany project, the 30 meter section is to be replaced by a YBCO cable. The YBCO cable had been developed and a new 30 meter cable was manufactured by using SuperPower's YBCO coated conductors. This paper describes the latest status of the Albany cable project.

  1. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  2. Numerical assessment of efficiency and control stability of an HTS synchronous motor

    NASA Astrophysics Data System (ADS)

    Xian, Wei; Yuan, Weijia; Coombs, T. A.

    2010-06-01

    A high temperature superconducting (HTS) permanent magnet synchronous motor (PMSM) is designed and developed in Cambridge University. It is expected to become cost competitive with the conventional PMSM owing to its high efficiency, high power density, high torque density, etc. The structure and parameters of HTS PMSM are detailed. Both AC losses by transport current and applied filed in stator armature winding of HTS PMSM are also analyzed. Computed and simulated results of the characteristics of the HTS PMSM and conventional PMSM are compared. The improvement on stability of direct torque control (DTC) on the HTS PMSM is estimated, and proved by simulation on Matlab/Simulink.

  3. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  4. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  5. Development of HTS Cable System for ALBANY Project

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Yumura, H.; Takigawa, H.; Ito, H.; Ashibe, Y.; Kato, T.; Suzawa, C.; Masuda, T.; Sato, K.; Isojima, S.

    2006-06-01

    High temperature superconducting (HTS) cable is anticipated to transmit a large amount of electricity with a compact size and can reduce the transmission loss and greenhouse gas emission. The Albany project is being undertaken to verify the practicability of a long HTS cable in the real grid by performing a long-term operation test. The cable is 350-meter long and carries 800 A at 34.5 kV between two electric power substations (Menands and Riverside) in Albany, N.Y. [1]. The project is scheduled to run from 2002 to 2007 and is proceeding as planned. The HTS cable and its apparatus were manufactured in Japan, and the cable was shipped to the USA in the middle of August. After it arrives at the site, the cable installation and the apparatus assembly will be carried out sequentially. This system is expected to begin operating early next year after initial cooling. This paper gives an overview and the current status of the development of the HTS cable system.

  6. HTS DC Transmission Line for Megalopolis Grid Development

    NASA Astrophysics Data System (ADS)

    Kopylov, S.; Sytnikov, V.; Bemert, S.; Ivanov, Yu; Krivetskiy, I.; Romashov, M.; Shakaryan, Yu; Keilin, V.; Shikov, A.; Patrikeev, V.; Lobyntsev, V.; Shcherbakov, V.

    2014-05-01

    Using of HTS AC and DC cables in electric power grids allows increasing of the transferred power, losses diminishing, decreasing of exclusion zone areas, the enhancement of the environmental conditions and fire/explosion safety of electric power systems. However, the use of DC superconducting cable lines together with converters brings additional advantages as reduction of losses in cables and suitable lowering of refrigerating plant capacity, as well as the realization of the function of short-circuit currents limitation by means of the appropriate setting of converter equipment. Russian Federal Grid Company and its R&D Center started the construction of the DC HTS power transmission line which includes the cable itself, cryogenic equipment, AC/DC converters, terminals and cable coupling boxes. This line will connect two substations in Saint-Petersburg - 330 kV "Centralnaya" and 220 kV "RP-9". The length of this HTS transmission line will be about 2500 meters. Nowadays are developed all the elements of the line and technologies of the cable manufacturing. Two HTS cable samples, each 30 m length, have been made. This paper describes the results of cables tests.

  7. Characteristics on electodynamic suspension simulator with HTS levitation magnet

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bae, D. K.; Sim, K.; Chung, Y. D.; Lee, Y.-S.

    2009-10-01

    High- Tc superconducting (HTSC) electrodynamic suspension (EDS) system basically consists of the HTSC levitation magnet and the ground conductor. The levitation force of EDS system is forms by the interaction between the moving magnetic field produced by the onboard levitation magnet and the induced magnetic field produced by eddy current in the ground conductor. This paper deals with the characteristics of the EDS simulators with high- Tc superconducting (HTS) levitation magnet. Two EDS simulator systems, rotating type EDS simulator and static type EDS simulator, were studied in this paper. The rotating type EDS simulator consists of a HTS levitation magnet and a 1.5 m diameter rotating ground conductor, a motor, the supporting structure and force measuring devices. In the static type EDS simulator, instead of moving magnetic field, AC current was applied to the fixed HTS levitation magnet to induce the eddy current. The static type EDS simulator consists of a HTS levitation magnet, a ground conductor, force measuring devices and supporting structure. The double-pancake type HTSC levitation magnet was designed, manufactured and tested in the EDS simulator.

  8. A numerical model for stability considerations in HTS magnets

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jorma; Mikkonen, Risto; Paasi, Jaakko

    2000-03-01

    We propose that in an HTS application, stability is lost more likely because of a global increase in temperature caused by heat generation distributed over the whole coil than because of a local normal zone which starts to propagate. For consideration of stability in HTS magnets, we present a computational model based on the heat conduction equation coupled with Maxwell's equations, whereby analysis can be performed by using commercial software packages for computational electromagnetics and thermodynamics. For temperature distribution inside the magnet, we derive the magnetic field dependent effective values of thermal conductivity, specific heat, and heat generated by electromagnetic phenomena for the composite structure of the magnet, while cooling conditions and external heat sources are described as boundary conditions. Our model enables the magnet designer to estimate a safe level of the operation current before a thermal runaway. Finally, as examples, we present some calculations of the HTS magnet with ac to review the effects of slanted electric field-current density E (J ) characteristics and high critical temperature of HTS materials.

  9. A Cryogenic Dc-Dc Power Converter for a 100 kW Synchronous HTS Generator at Liquid Nitrogen Temperatures

    NASA Astrophysics Data System (ADS)

    Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang

    A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.

  10. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  11. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  12. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  13. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  14. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  15. Dispersion interaction between crossed conducting wires

    SciTech Connect

    Dobson, John F.; Gould, Timothy; Klich, Israel

    2009-07-15

    We compute the T=0 K Van der Waals (nonretarded Casimir) interaction energy E between two infinitely long, crossed conducting wires separated by a minimum distance D much greater than their radius. We find that, up to a logarithmic correction factor, E{proportional_to}-D{sup -1}|sin {theta}|{sup -1}f({theta}), where f({theta}) is a smooth bounded function of the angle {theta} between the wires. We recover a conventional result of the form E{proportional_to}-D{sup -4}|sin {theta}|{sup -1}g({theta}) when we include an electronic energy gap in our calculation. Our prediction of gap-dependent energetics may be observable experimentally for carbon nanotubes either via atomic force microscopy detection of the Van der Waals force or torque or indirectly via observation of mechanical oscillations. This shows that strictly parallel wires, as assumed in previous predictions, are not needed to see a unique effect of this type.

  16. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  17. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  18. HTS Fabry-Perot resonators for the far infrared

    SciTech Connect

    Keller, P.; Prenninger, M.; Pechen, E.V.; Renk, K.F.

    1996-12-31

    The authors report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR they use two parallel MgO plates covered with YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on adjacent sides. They have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. They have also shown that thin films of gold are not an adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.

  19. Development of Prototype HTS Components for Magnetic Suspension Applications

    NASA Technical Reports Server (NTRS)

    Haldar, P.; Hoehn, J., Jr.; Selvamanickam, V.; Farrell, R. A.; Balachandran, U.; Iyer, A. N.; Peterson, E.; Salazar, K.

    1996-01-01

    We have concentrated on developing prototype lengths of bismuth and thallium based silver sheathed superconductors by the powder-in-tube approach to fabricate high temperature superconducting (HTS) components for magnetic suspension applications. Long lengths of mono and multi filament tapes are presently being fabricated with critical current densities useful for maglev and many other applications. We have recently demonstrated the prototype manufacture of lengths exceeding 1 km of Bi-2223 multi filament conductor. Long lengths of thallium based multi-filament conductor have also been fabricated with practical levels of critical current density and improved field dependence behavior. Test coils and magnets have been built from these lengths and characterized over a range of temperatures and background fields to determine their performance. Work is in progress to develop, fabricate and test HTS windings that will be suitable for magnetic suspension, levitation and other electric power related applications.

  20. High voltage insulation of bushing for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun

    2012-12-01

    For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.

  1. Homogeneous performance and strain tolerance of long Bi-2223 HTS conductors under hoop stress

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Kitaguchi, H.; Chaud, X.; Debray, F.; Nishijima, G.; Tsuchiya, Y.

    2014-02-01

    Two types of high-strength industrial Bi-2223 conductor, one laminated by copper alloy and the other laminated by stainless steel, have been tested to examine the effect of hoop stress on the transport property. The specimens (˜2 m long) were prepared by winding one layer around a GFRP mandrel and the measurements were made in a liquid helium bath with the hoop stress calculated from the BJR product applied by external magnetic field. A careful measurement wire configuration was necessary to cancel the noise pick-up from the environment for more accurate determination of Ic and n-value. We show for the first time that both conductors showed homogeneous voltage-current characteristics over a long length and degradations with hoop stress occurred uniformly, which is crucial information for the development of HTS magnet technology. The onset of degradation occurred at 200 MPa and 220 MPa, with additional bending stress present from the winding diameter of 108 mm, for copper alloy laminated and stainless steel laminated conductors, respectively. After considering the effect of bending strain, our result agrees well with the previously measured data.

  2. Project Overview of HTS Magnet for Ultra-high-field MRI System

    NASA Astrophysics Data System (ADS)

    Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao

    A project to develop an ultra-high-field magnetic resonance imaging (MRI) system based on HTS magnets using (RE)Ba2Cu3O7 (REBCO; RE=rear earth) coils is underway. The project is supported by the Japanese Ministry of Economy, Trade and Industry and aims to establish magnet technologies for a whole-body 9.4 T MRI system. REBCO wires have high critical current density in high magnetic fields and high strength against hoop stresses, and therefore, MRI magnets using REBCO coils are expected to have cryogenic systems that are smaller, lighter, and simpler than the conventional ones. A major problem in using REBCO coils for MRI magnets is the huge irregular magnetic field generated by the screening current in REBCO tapes. Thus, the main purpose of this project is to make the influence of this screening current predictable and controllable. Fundamental technologies, including treatment of the screening currents, were studied via experiments and numerical simulations using small coils. Two types of model magnets are planned to be manufactured, and the knowledge gained in the development of the model magnets will be reflected in the magnet design of a whole-body 9.4 T MRI system.

  3. Conceptual design of contactless power transfer into HTS receiver coil using normal conducting resonance antenna

    NASA Astrophysics Data System (ADS)

    Kang, Hyoung Ku; Chung, Yoon Do; Yim, Seong Woo

    2014-09-01

    The contactless power transfer (CPT) technology based on strongly coupled electromagnetic resonators has been recently explored to realize the large power delivery and storage without any cable or wire across a large air gap. As the CPT technology makes possible the process of connector-free charging, it has been studied for practical applications to a variety of power applications. In the superconducting magnet system, a widespread method of electric energy supply is realized by the current lead which is one of indispensable subsystems in the power transfer equipment; however, it causes energy losses. To overcome such a problem, the combination CPT technology with HTS receiver coils has been proposed. It is called as, superconducting contactless power transfer (SUCPT) system. Such a technique has been expected a reasonable approach to provide a safe and convenient way of charging or storage without connecting joints in the superconducting applications. In this study, we presented the feasibility and various effects of transmission property from room temperature to very low temperature vessel within 40 cm under different material’s cooling vessels using radio frequency (RF) generator is 370 KHz.

  4. Test results of HTS magnet for SMES application

    NASA Astrophysics Data System (ADS)

    Kozak, J.; Majka, M.; Jaroszynski, L.; Janowski, T.; Kozak, S.; Kondratowicz – Kucewicz, B.; Wojtasiewicz, G.

    2010-06-01

    The magnet for a superconducting magnetic energy storage system (SMES) conducting cooled by SRDK-408 cryocooler is described in this paper. The superconducting magnet consists of 7 double-pancake coils made of Bi-2223 HTS tape with the inner and outer diameters 210 mm, 315 mm respectively and height of 191 mm. The inductance of the magnet is approximately 1 H. In this paper we report the design improvements and the measurement results taken at the cooling of the magnet.

  5. Development of Substrate for RABiTS-based HTS Conductors

    SciTech Connect

    2009-06-05

    During its fifteen years of life, this CRADA has evolved in both scope and purpose. Early efforts to develop high performance bismuth-based powder-in-tube first generation high temperature superconductors (HTS) have shifted toward efforts to understand and develop technologies required to fabricate second generation HTS coated conductors. Since the two original longstanding principal investigators from UT-Battelle and Oxford Superconducting Technology (OST) are not presently employed by their respective organizations, this final report shall focus primarily on results of the more recent past involving research and development of the deformation and annealing processes required to fabricate metallic substrates for RABiTS-based second generation coated conductors. The specific objectives of this recent work involve the development of OST Ni/3%W tape for HTS coated conductors and include: (a) to improve uniformity of cube texture through control of deformation and annealing parameters, (b) to minimize delamination and other buffer deposition problems through understanding and control of key parameters related to the metal substrate, (c) to ensure that the textured metal substrate allows well textured buffers with no delamination, and (d) to prepared a final report.

  6. Testing of an HTS Power Cable Made from YBCO Tapes

    SciTech Connect

    Gouge, Michael J; Duckworth, Robert C; Demko, Jonathan A; Rey, Christopher M; Lindsay, David T; Roden, Mark L; Tolbert, Jerry Carlton

    2007-01-01

    Oak Ridge National Laboratory (ORNL) has designed, built, and tested a 1.25-m-long, prototype high temperature superconducting (HTS) power cable made from second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in liquid nitrogen at 77 K. DC testing of the HTS cable included determination of the V-I curve with a critical current of about 2100 A, which was consistent with the critical currents of the two layers of 4.4-mm wide YBCO tapes. AC testing of the cable was conducted at currents up to about 1500 Arms. The ac losses were determined calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. Over-current testing was conducted at peak current values up to 4.9 kA for pulse lengths of 0.3-0.5 s. Test results are compared to earlier data from a 1.25-m-long power cable made from 1-cm-wide YBCO tapes and also comparable BSCCO cables. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  7. The insulation design for transmission class HTS transformer with continuous disk winding

    NASA Astrophysics Data System (ADS)

    Cheon, H. G.; Kwag, D. S.; Choi, J. H.; Kim, S. H.

    2007-10-01

    In the response to the demands for electrical energy, much effort aimed to develop and commercialize HTS power equipments have been made around the world. Among them HTS transformer is one of very promising one. In Korea, companies and universities are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. The composite continuous disk winding of transmission class HTS transformer is concentrically arranged H1-L-H2 from center. For the development of transmission HTS transformer with continuous disk winding, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as the breakdown of LN2, barrier, kapton films, flashover on FRP in LN2. We are going to compare with measured each value and apply the value to most suitable insulating design of the HTS transformer.

  8. Synchronous Generator with HTS-2G field coils for Windmills with output power 1 MW

    NASA Astrophysics Data System (ADS)

    Kovalev, K.; Kovalev, L.; Poltavets, V.; Samsonovich, S.; Ilyasov, R.; Levin, A.; Surin, M.

    2014-05-01

    Nowadays synchronous generators for wind-mills are developed worldwide. The cost of the generator is determined by its size and weight. In this deal the implementation of HTS-2G generators is very perspective. The application of HTS 2G field coils in the rotor allows to reduce the size of the generator is 1.75 times. In this work the design 1 MW HTS-2G generator is considered. The designed 1 MW HTS-2G generator has the following parameters: rotor diameter 800 mm, active length 400 mm, phase voltage 690V, rotor speed 600 min-1 rotor field coils with HTS-2G tapes. HTS-2G field coils located in the rotating cryostat and cooled by liquid nitrogen. The simulation and optimization of HTS-2G field coils geometry allowed to increase feed DC current up to 50A. Copper stator windings are water cooled. Magnetic and electrical losses in 1 MW HTS-2G generator do not exceed 1.6% of the nominal output power. In the construction of HTS-2G generator the wave multiplier with ratio 1:40 is used. The latter allows to reduce the total mass of HTS-2G generator down to 1.5 tons. The small-scale model of HTS-2G generator with output power 50 kW was designed, manufactured and tested. The test results showed good agreement with calculation results. The manufacturing of 1 MW HTS-2G generator is planned in 2014. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry".

  9. Study of paracetamol 1-g oral solution bioavailability.

    PubMed

    Farre, M; Roset, P N; Abanades, S; Menoyo, E; Alvarez, Y; Rovira, M; Baena, A

    2008-01-01

    The aim of this work was to assess paracetamol bioavailability after administering 1 g in oral solution. Eighteen healthy volunteers were selected for this open-label study. A total of 15.4 ml of Gelocatil Oral Solution (Laboratorios Gelos, S.L.), corresponding to 1 g of paracetamol, were administered to fasting subjects. Blood samples were collected at 0 min, 10 min, 20 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h and 12 h. Paracetamol plasma concentrations were determined by reverse-phase high-performance liquid chromatography. The study was conducted without deviations from protocol. Pharmacokinetic data from 18 subjects were allowed for estimating fast and high-paracetamol bioavailability: t(max) 20 min (10-45) [median (range)], C(max) 24. 3 mg/l (6.5) [mean (standard deviation)], AUC(0-t) 64.0 mg h/l (16.1) and AUC(0-00) 68.1 mg h/l (17.9). These results are comparable to those described for Gelocatil Oral Solution given at a 650 mg dose and for immediate release Gelocatil 650 mg tablets. Absorption speed was very fast, similar to that described for other oral-solution formulations, which provides an immediate onset of pain and fever relief. The results of this study show suitable bioavailability for 1 g Gelocatil Oral Solution, with fast-absorption speed that provides an immediate onset of pain and fever relief. PMID:18389096

  10. TEST RESULTS OF HTS COILS AND AN R AND D MAGNET FOR RIA.

    SciTech Connect

    GUPTA, R.; ANERELLA, M.; HARRISON, M.; SCHMALZLE, J.; SAMPSON, W.; ZELLER, A.

    2005-05-16

    This paper presents the successful construction and test results of a magnetic mirror model for the Rare Isotope Accelerator (RIA) that is based on High Temperature Superconductors (HTS). In addition, the performance of thirteen coils (each made with {approx}220 meters of commercially available HTS tape) is also presented. The proposed HTS magnet is a crucial part of the R&D for the Fragment Separator region where the magnets are subjected to several orders of magnitude more radiation and energy deposition than typical beam line and accelerator magnets receive during their entire lifetime. A preliminary design of an HTS dipole magnet for the Fragment Separator region is also presented.

  11. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; M-A Koneev, S.; Poltavets, V. N.; Larionoff, A. E.; Modestov, K. A.; Larionoff, S. A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-05-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos ϕ≥0.7 to 0.8).

  12. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  13. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  14. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  15. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  16. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  17. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  18. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  19. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  20. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  1. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  2. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  3. Sintered wire annode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2007-12-25

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  4. Zinc wired rebar

    SciTech Connect

    Zhang, X.G.; Hwang, J.

    1997-02-01

    A novel method for corrosion protection of rebar in concrete is reported wherein it is galvanically protected by attaching a zinc wire along its length. The self-corrosion and galvanic-corrosion loss of the zinc wire is dependent on the water/cement ratio, the size of the cathode, and the concrete cover thickness. The wire acts as a sacrificial anode when the rebar embedded in concrete is exposed to corrosive environments.

  5. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  6. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  7. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  8. VIEW SOUTHEASTBUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST-BUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING MACHINE - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  9. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  10. A Possible Path from BCS through HTS to VHTS

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2010-03-01

    Three years after celebrating the 50th anniversary of the BCS theory and the 20th anniversary of the discovery of high temperature superconductivity (HTS), it appears to be most fitting for us to contemplate the possibility of very high temperature superconductivity (VHTS). VHTS, preferably at room temperature, if achieved, could change the world both scientifically and technologically. Unfortunately, it has long been considered by some to belong to the domain of science fiction and to occur only ``at an astronomical distance and under an astronomical pressure.'' With the advent of liquid nitrogen superconductivity in 1987, the outlook has become much brighter. Currently, there appears to be no reason, either theoretical or experimental, why VHTS would be impossible, in spite of the 2006 prediction of the death of HTS by 2010-2015 through the so-called scientometric analysis of the publication record of the previous 20 years. The recent discovery of the new class of Fe-pnictide HTSs fuels more cautious optimism. Since its inception, BCS theory has provided the basic framework for the occurrence and understanding of superconductivity, but it has failed to show where and how to find superconductivity at a higher temperature. This may be attributed to the small energy scale of superconductivity in comparison with those of other excitations in the solids. After examining existing data, we believe that a holistic multidisciplinary enlightened empirical approach appears to be the most effective way to discover novel superconductors with higher transition temperatures. In this talk, I shall present several possible approaches toward VHTS that we are currently pursuing, after briefly summarizing what has happened in the long search for HTS and VHTS.

  11. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  12. 2016 MOST WIRED.

    PubMed

    Barr, Paul; Butcher, Lola; Hoppszallern, Suzanna

    2016-07-01

    This year's IT survey shows that hospitals are aggressively fighting cyber crime and looking for ways to use data to help in the transition to value-based care. Find out who made the 2016 lists of Most Wired, Most Advanced, Most Improved and Most Wired-Small and Rural. PMID:27526506

  13. The exploding wire phenomenon

    NASA Astrophysics Data System (ADS)

    Aspden, H.

    1985-02-01

    Graneau's recent interpretation of the exploding wire phenomenon as an electrodynamic effect verifying Ampère's classical formulation is questioned. Instead, it is shown that the rupturing force arising from the imbalance of the self-induced electromotive force and the ohmic potential during an explosive current surge will account for the wire breaking into several segments, as is observed.

  14. Local flux intrusion in HTS annuli during pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Korotkov, V. S.; Krasnoperov, E. P.; Kartamyshev, A. A.

    2016-03-01

    During pulsed field magnetization of melt-grown HTS flux jumps can occur and the shielding current falls by 10-20 times. As the duration of pulse is shorter than the temperature relaxation time (<< 1 s), the circular current remains small during the field falling. The residual trapped field in the hole of the annulus has a direction opposite to that of the pulsed field. Small circular current and high critical current density are explained by the fact that flux moves through narrow regions of the annulus body. The angle of the sector with “soft flux” (i.e. a low Jc region) is estimated to be ∼ 7 deg.

  15. Water Desalination with Wires.

    PubMed

    Porada, S; Sales, B B; Hamelers, H V M; Biesheuvel, P M

    2012-06-21

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode pairs in freshwater with and in brine without an applied cell voltage, we create an ion adsorption/desorption cycle. We show experimentally how in six subsequent cycles we can reduce the salinity of 20 mM feed (brackish) water by a factor of 3, while application of a cation exchange membrane on the cathode wires makes the desalination factor increase to 4. Theoretical modeling rationalizes the experimental findings, and predicts that system performance can be significantly enhanced by material modifications. To treat large volumes of water, multiple stacks of wire pairs can be used simultaneously in a "merry-go-round" operational mode. PMID:26285717

  16. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  17. A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G).

    PubMed

    Vieira, Natássia M; Naslavsky, Michel S; Licinio, Luciana; Kok, Fernando; Schlesinger, David; Vainzof, Mariz; Sanchez, Nury; Kitajima, João Paulo; Gal, Lihi; Cavaçana, Natale; Serafini, Peter R; Chuartzman, Silvia; Vasquez, Cristina; Mimbacas, Adriana; Nigro, Vincenzo; Pavanello, Rita C; Schuldiner, Maya; Kunkel, Louis M; Zatz, Mayana

    2014-08-01

    Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. More than 20 genes with autosomal recessive (LGMD2A to LGMD2Q) and autosomal dominant inheritance (LGMD1A to LGMD1H) have been mapped/identified to date. Mutations are known for six among the eight mapped autosomal dominant forms: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin-3), LGMD1D (desmin), LGMD1E (DNAJB6), and more recently for LGMD1F (transportin-3). Our group previously mapped the LGMD1G gene at 4q21 in a Caucasian-Brazilian family. We now mapped a Uruguayan family with patients displaying a similar LGMD1G phenotype at the same locus. Whole genome sequencing identified, in both families, mutations in the HNRPDL gene. HNRPDL is a heterogeneous ribonucleoprotein family member, which participates in mRNA biogenesis and metabolism. Functional studies performed in S. cerevisiae showed that the loss of HRP1 (yeast orthologue) had pronounced effects on both protein levels and cell localizations, and yeast proteome revealed dramatic reorganization of proteins involved in RNA-processing pathways. In vivo analysis showed that hnrpdl is important for muscle development in zebrafish, causing a myopathic phenotype when knocked down. The present study presents a novel association between a muscular disorder and a RNA-related gene and reinforces the importance of RNA binding/processing proteins in muscle development and muscle disease. Understanding the role of these proteins in muscle might open new therapeutic approaches for muscular dystrophies. PMID:24647604

  18. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Yoon, Dong-Hee; Lee, Seung-Ryul; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  19. Application of shielding current in bulk HTS to control magnetic field distribution

    NASA Astrophysics Data System (ADS)

    Kii, T.

    2016-03-01

    Superconducting shielding current is excited when external field is applied to superconductor. In case for field cooling of bulk superconductor, shielding current is an origin of strong trapped field. When external field is changed to a properly arranged bulk HTS array, various magnetic field distribution can be formed by an excited shielding current in each bulk HTS. This paper presents a simple intuitively method to design magnetic field distribution using supercurrents in bulk high-temperature superconductor (HTS) array. In this method, an ideal current path for intended field distribution is represented by shielding currents in bulk HTS array. Expected performance can be roughly estimated by using Biot-Savart law. As examples, Maxwell coil pair and helical field generator are designed. This method can be applied to design various magnet devices using bulk HTS array.

  20. HTS Magnets for Advanced Magnetoplasma Space Propulsion Applications

    SciTech Connect

    Carte, M.D.; Chang-Diaz, F.R. Squire, J.P.; Schwenterly, S.W.

    1999-07-12

    Plasma rockets are being considered for both Earth-orbit and interplanetary missions because their extremely high exhaust velocity and ability to modulate thrust allow very efficient use of propellant mass. In such rockets, a hydrogen or helium plasma is RF-heated and confined by axial magnetic fields produced by coils around the plasma chamber. HTS coils cooled by the propellant are desirable to increase the energy efficiency of the system. We describe a set of prototype high-temperature superconducting (HTS) coils that are being considered for the VASIMR ( Variable Specific Impulse Magnetoplasma Rocket) thruster proposed for testing on the Radiation Technology Demonstration (RTD) satellite. Since this satellite will be launched by the Space Shuttle, for safety reasons liquid helium will be used as propellant and coolant. The coils must be designed to operate in the space environment at field levels of 1 T. This generates a unique set of requirements. Details of the overall winding geometry and current density, as well as the challenging thermal control aspects associated with a compact, minimum weight design will be discussed.

  1. Performance Testing of a Cryogenic Refrigeration System for HTS Cables

    NASA Astrophysics Data System (ADS)

    Lee, R. C.; Dada, A.; Garcia, E. L.; Ringo, S. M.

    2006-04-01

    A novel Cryogenic Refrigeration System (CRS) has been developed to provide the refrigeration for an in-grid 350 m HTS cable demonstration in Albany NY. Refrigeration is provided by a closed cycle refrigerator (cryocooler) with a nominal cooling capacity of 6 kW at 70 K. The CRS is designed to meet both the stringent operating and reliability criteria necessary for the utility industry, while demonstrating the commercial requirements of a cost effective and compact design. Integral to the operation of the CRS is the continuous monitoring and control provided by BOC's remote operations infrastructure. The skid mounted CRS has been installed at host utility Niagara Mohawk's site in Albany. Field trials of the CRS and its remote operation were conducted prior to the HTS cable installation using a simulated heat load. A wide variety of operating conditions and modes of operation were tested, including back up and accelerated recovery from fault current conditions. This paper describes the integrated system design and field testing results.

  2. HTS cables open the window for large-scale renewables

    NASA Astrophysics Data System (ADS)

    Geschiere, A.; Willén, D.; Piga, E.; Barendregt, P.

    2008-02-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome.

  3. Restoration and testing of an HTS fault current controller

    SciTech Connect

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  4. Sub-Micron Long HTS Ho Electron Mixers

    NASA Technical Reports Server (NTRS)

    Harnack, 0.; Karasik, B. S.; McGrath, W. R.; Kleinsasser, A. W.; Barner, J. B.

    2000-01-01

    The hot-electron bolometer mixer made from a high-T, superconductor (HTS) was introduced recently as an alternative to a Schottky mixer at THz frequencies. The performance of the mixer depends on the total thermal conductance for heat removal from the phonon sub-system due to either length-dependent phonon diffusion or phonon escape to the substrate. We have measured both the length and temperature dependencies of the IF bandwidth of the mixers fabricated from 25-35 mn thick YBCO films on MgO and sapphire substrates. The films were grown by a laser deposition technique and electron-beam lithography was used to define bridge lengths down to 50 nm. Mixer measurements were done using signal frequencies in the range of 1-100 GHz. For 50 nm and 400 nm long devices on MgO, the 3-dB bandwidth was about 100 MHz. At temperatures below 60 K, the hot-electron plateau was clearly seen starting around 2-3 GHz. At temperatures above 70 K, the flux-flow effects begin to dominate and the IF bandwidth increases to 1-8 GHz, while the conversion efficiency drops by several dB. This temperature dependence of the IF bandwidth can account for previously reported unexpectedly high bandwidth of HTS mixers.

  5. 5 MJ flywheel based on bulk HTS magnetic suspension

    NASA Astrophysics Data System (ADS)

    Poltavets, V.; Kovalev, K.; Ilyasov, R.; Glazunov, A.; Maevsky, V.; Verzbitsky, L.; Akhmadyshev, V.; Shikov, A.

    2014-05-01

    Nowadays the flywheel energy storage systems (FES) are developed intensively as uninterruptible power supply (UPS) devices for on-land and transport (especially airborne) applications worldwide. This work is devoted to the FES with magnetic suspension on the base of bulk HTS YBCO elements and permanent magnets. The developed FES is intended to be used as UPS in Russian atomic industry in case of an emergency. For the successful design of the FES the following questions should be solved: design of the motor/generator, design of the rotor (flywheel), design of the bearing system, design of the control system and system of power load matching, design of the cooling system. The developed small-scale FES with the stored energy 0.5 MJ was used to solve these basic questions. The elaborated FES consists of the synchronous electric machine with permanent magnets, the solid flywheel with axial magnetic suspension on the base of YBCO bulks and permanent magnets, the system of control and power load matching, and the system of liquid nitrogen cooling. The results of theoretical modeling of different schematics of magnetic suspension and experimental investigations of the constructed FES are presented. The design of the future full-scale FES with the stored energy ~5 MJ and output power up to 100 kW is described. The test results of the flywheel rotor and HTS magnetic suspension of 5 MJ FES are presented. This work is done under support of Rosatom within the frames of Russian Project "Superconducting Industry"

  6. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  7. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  8. RAPID COMMUNICATION: High performance superconducting wire in high applied magnetic fields via nanoscale defect engineering

    NASA Astrophysics Data System (ADS)

    Wee, Sung Hun; Goyal, Amit; Zuev, Yuri L.; Cantoni, Claudia

    2008-09-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3-5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 µm thick YBa2Cu3O7-δ (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm-1 and 65.4 kA cm-2, respectively.

  9. High Performance Superconducting Wire in High Applied Magnetic Fields via Nanoscale Defect Engineering

    SciTech Connect

    Goyal, Amit; Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia

    2008-01-01

    High temperature superconducting (HTS) wires capable of carrying large critical currents with low dissipation levels in high applied magnetic fields are needed for a wide range of applications. In particular, for electric power applications involving rotating machinery, such as large-scale motors and generators, a high critical current, Ic, and a high engineering critical current density, JE, in applied magnetic fields in the range of 3 5 Tesla (T) at 65 K are required. In addition, exceeding the minimum performance requirements needed for these applications results in a lower fabrication cost, which is regarded as crucial to realize or enable many large-scale bulk applications of HTS materials. Here we report the fabrication of short segments of a potential superconducting wire comprised of a 4 m thick YBa2Cu3O7− (YBCO) layer on a biaxially textured substrate with a 50% higher Ic and JE than the highest values reported previously. The YBCO film contained columns of self-assembled nanodots of BaZrO3 (BZO) roughly oriented along the c-axis of YBCO. Although the YBCO film was grown at a high deposition rate, three-dimensional self-assembly of the insulating BZO nanodots still occurred. For all magnetic field orientations, minimum Ic and JE at 65 K, 3 T for the wire were 353 A cm−1 and 65.4 kA cm−2, respectively.

  10. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  11. Development of 3kA conduction cooled HTS current lead system

    NASA Astrophysics Data System (ADS)

    Ohsemochi, Koichi; Ono, Michitaka; Nomura, Shunji; Kuriyama, Toru; Kasahara, Hirofumi; Akita, Shirabe; Koso, Seiichi

    2003-10-01

    The research and development of superconducting magnet energy storage (SMES) system, a national project, began in 1999. One of the purposes of this project is investigation concerning the application of high-temperature superconducting (HTS) SMES. As a part of this project, the 3 kA class HTS small model coil was manufactured in order to verify the possibility of realizing conduction cooled HTS SMES. Therefore, it is important to develop the conduction cooled current lead system for applying this coil. We developed a kA class conduction cooled HTS current lead system. This current lead system consists of the copper current lead and the YBaCuO (YBCO) HTS current lead. The YBCO bulk manufactured by Nippon Steel Corporation was applied to the HTS current lead. The YBCO bulk keeps high critical current density ( Jc > 10,000 A/cm 2) in the magnetic field (1 T) at 77 K compared with Bi2223 superconductor. The experiment of this HTS current lead system was carried out, and rated current of 3000 A was achieved successfully.

  12. Design Construction and Test Results of a HTS Solenoid For Energy Recovery Linac

    SciTech Connect

    Anerella, M; Ben-Zvi, I; Kayran, D; McIntyre, G; Muratore, J; Plate, S; Sampson, W; Cole, M

    2011-03-28

    An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at {approx}77 K is simpler and cheaper than 4 K testing. This paper will present the design, construction and test results of this HTS solenoid. The HTS solenoid in the proposed ERL will be situated in the transition region between the superconducting cavity at {approx}4 K and the cryostat at the room temperature. Solenoid inside the cryogenic structure provides an early focusing and hence low emittance beam. The temperature in the transition region will be too high for a conventional low temperature superconductor and resistive heat load from copper coils will be too high on cryogenic system. HTS coils also allow much higher current density and significant reduction in size as compared to copper coils. Hence HTS solenoid provide a unique and technically superior solution. The use of a HTS solenoid with superconducting cavity offers a unique option as it can be placed in a cold to warm transition region to provide early focussing without using additional space. Construction and test results so far are very encouraging for its use in the ERL project.

  13. Experimental Studies on Cryogenic System for 22.9 KV Hts Cable Sytem

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, H. S.; Kim, D. L.; Ryoo, H. S.; Kim, C. D.; Kim, D. H.; Lee, S. K.; Hwang, S. D.

    2008-03-01

    In terms of high transmission capacity with lower voltage, a high temperature superconducting (HTS) cable system is a very attractive challenge for utilities. However, the concomitant cryogenic system for the HTS cable system is one of the tantalizing problems in the operation. The reliability and maintainability of cryogenic system are the key issues to apply it to the real electric power grid. Korea Electric Power Corporation (KEPCO) is making an attempt to verify the applicability of the HTS cable system to improve the efficiency of electric power industry. Since May 2006, a 22.9-kV, 50-MVA, 3-phase, 100-m class HTS cable system with an open cooling system has been operated at the KEPCO Gochang test yard. Concurrently, another HTS cable verification test with the same electrical specification and an hybrid cooling system has been carried out by LS Cable (LSC) Ltd in close proximity to the KEPCO's HTS cable system within Gochang test yard. KEPCO conducts the operation of the open cooling system, and is evaluating the hybrid system of LSC with respect to facility performance and usability. This paper compares the cryogenic performance of both HTS cable systems and discusses cooling test results such as step response.

  14. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    NASA Astrophysics Data System (ADS)

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  15. Novel concept for a space power distribution busbar using HTS materials and passive cooling

    NASA Astrophysics Data System (ADS)

    Shimko, Martin A.; Crowley, Christopher J.; Wallis, Peter N.

    1992-04-01

    This paper presents the performance, defines the range of applications, and shows the feasibility of using high temperature superconducting (HTS) materials with passive heat rejection for space power transmission. A conceptual design for the busbar is presented, and mass and resistive energy losses are estimated for various missions, power levels, and current types (AC and DC). All applications display a large increase in power transmission efficiency, while mass comparisons show the passively cooled HTS busbar mass ranges from 12% of the mass of a copper busbar at geosynchronous orbit (GEO) and beyond, to 38% at a 1000 km earth orbit (LEO). The design of the HTS conductor is novel, consisting of interleaved HTS strip conductors (HTS plus substrate) separated by dielectric insulating material. Appropriate HTS materials are presently available in long length (≳100 m) with current densities (≳1000 amp/cm2) and critical temperatures (95 K) which make the passively cooled busbar feasible. An original numerical model for the conductor/radiator assembly is described which includes the effects of solar insolation, reflected and IR thermal loads from the earth, and internally generated losses in the HTS. Completely passive operation at low earth orbits (LEO) of 1000 km is enabled by a novel asymmetric design for a directional radiator that includes a unique back-to-back busbar configuration that does not require active pointing. The design includes copper conductor downleads employing the same passive cooling scheme.

  16. Analysis on heat loss characteristics of a 10 kV HTS power substation

    NASA Astrophysics Data System (ADS)

    Teng, Yuping; Dai, Shaotao; Song, Naihao; Zhang, Jingye; Gao, Zhiyuan; Zhu, Zhiqin; Zhou, Weiwei; Wei, Zhourong; Lin, Liangzhen; Xiao, Liye

    2014-09-01

    A 10 kV High Temperature Superconducting power substation (10 kV HTS substation), supported by Chinese State 863 projects, was developed and has been running to supply power for several factories for more than two years at an industrial park of Baiyin, Gansu province in Northwest China. The system of the 10 kV HTS substation compositions, including a HTS cable, a HTS transformer, a SFCL, and a SMES, are introduced. The SMES works at liquid helium temperature and the other three apparatus operates under liquid nitrogen condition. There are mainly four types of heat losses existing in each HTS apparatus of the 10 kV HTS substation, including AC loss, Joule heat loss, conductive heat, and leak-in heat from cryostat. A small quantity of AC loss still exists due to the harmonic component of the current when it carries DC for HTS apparatus. The principle and basis for analysis of the heat losses are introduced and the total heat loss of each apparatus are calculated or estimated, which agree well with the test result. The analysis and result presented are of importance for the design of the refrigeration system.

  17. Angular Dependence of Transport AC Losses in Superconducting Wire with Position-Dependent Critical Current Density in a DC Magnetic Field

    NASA Astrophysics Data System (ADS)

    Su, Xing-liang; Xiong, Li-ting; Gao, Yuan-wen; Zhou, You-he

    2013-07-01

    Transport AC losses play a very important role in high temperature superconductors (HTSs), which usually carry AC transport current under applied magnetic field in typical application-like conditions. In this paper, we propose the analytical formula for transport AC losses in HTS wire by considering critical current density of both inhomogeneous and anisotropic field dependent. The angular dependence of critical current density is described by effective mass theory, and the HTS wire has inhomogeneous distribution cross-section of critical current density. We calculate the angular dependence of normalized AC losses under different DC applied magnetic fields. The numerical results of this formula agree well with the experiment data and are better than the results of Norris formula. This analytical formula can explain the deviation of experimental transport current losses from the Norris formula and apply to calculate transport AC losses in realistic practical condition.

  18. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  19. The electrical characteristics of solid insulators for 154 kV class HTS transformer

    NASA Astrophysics Data System (ADS)

    Cheon, H. G.; Choi, J. H.; Pang, M. S.; Kim, W. J.; Kim, S. H.

    2011-11-01

    HTS transformer, without any loss of insulation lifetime due to the reduction in terms of size and weight, can increase the overload capacity, and have some benefits such as the improvement in efficiency, minimization of environmental pollution, and convenient spatial arrangement, which contribute a lot to electric power system operation. However, for practical insulation design of the HTS transformer, it is necessary to establish the research on electrical properties LN 2 as well as solid insulators. These solid insulators have been used as main insulations for HTS transformer. In this paper, we discussed breakdown and V- t characteristics of glass fiber reinforced plastics (GFRP) and pressboard in LN 2.

  20. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    SciTech Connect

    Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

  1. The Improved Transient Stabilities of HTS Coils by Removing the Insulation and Inserting the Metal Tapes

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Kajikawa, H.; Ikoma, H.; Joo, J. H.; Jo, J. M.; Han, Y. J.; Jeong, H. S.

    NMR/MRI magnets have a protection device to prevent the damages due to a quench. On the other hand, the protection device design of HTS coils or magnets are very difficult because it has a very low normal zone propagation velocity (NZPV) and complicate behaviors of quench. We have studied the methods to improve the self-protection ability of HTS coils by removing the turn-to-turn insulation and inserting the metal tape instead of insulation. In this paper, the improved transient stabilities and self- protection abilities of HTS coils by removing the insulation and inserting metal tapes will be presented by minimum quench energy (MQE).

  2. Conductance Degradation in HTS Coated Conductor Solder Joints

    NASA Astrophysics Data System (ADS)

    Canavan, Edgar R.; Leidecker, Henning; Panashchenko, Lyudmyla

    2015-12-01

    Solder joints between YBCO coated conductors and normal metal traces have been analysed as part of an effort to develop a robust HTS lead assembly for a spaceflight mission. Measurements included critical current and current transfer profiles. X-ray micrographs were used to verify proper solder flow and to determine the extent of voiding. SEM of cross-sections with EDS analysis was crucial in understanding the diffusion of the protective silver layer over the YBCO into the solder for different solder processes. The assembly must be stored for an extended period of time prior to final cool-down and operation. Measurements of the joint resistance over the course of months show a significant increase with time. Understanding the interface condition suggests an explanation for the change.

  3. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  4. Study of HTS Insert Coils for High Field Solenoids

    SciTech Connect

    Lombardo, Vito; /Fermilab

    2009-09-01

    Fermilab is currently working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting materials (HTS) is being considered for these solenoids using Helium refrigeration. Several studies have been performed on insert coils made of BSCCO-2223 tapes and second generation (2G) YBCO coated conductors, which are tested at various temperatures and at external fields of up to 14 T. Critical current (I{sub c}) measurements of YBCO short samples are presented as a function of bending stress, magnetic field and field orientation with respect to the sample surface. An analytical fit of critical current data as a function of field and field orientation is also presented. Results from several single-layer and double-layer pancake coils are also discussed.

  5. Bi-2223 HTS winding in toroidal configuration for SMES coil

    NASA Astrophysics Data System (ADS)

    Kondratowicz-Kucewicz, B.; Janowski, T.; Kozak, S.; Kozak, J.; Wojtasiewicz, G.; Majka, M.

    2010-06-01

    Energy can be stored in the magnetic field of a coil. Superconducting Magnetic Energy Storage (SMES) is very promising as a power storage system for load levelling or power stabilizer. However, the strong electromagnetic force caused by high magnetic field and large coil current is a problem in SMES systems. A toroidal configuration would have a much less extensive external magnetic field and electromagnetic forces in winding. The paper describes the design of HTS winding for SMES coil in modular toroid configuration consist of seven Bi-2223 double-pancakes as well as numerical analysis of SMES magnet model using FLUX 3D package. As the results of analysis the paper presents the optimal coil configuration and the parameters such as radius of toroidal magnet, energy stored in magnet and magnetic field distribution.

  6. Analytical Study of Stress State in HTS Solenoids

    SciTech Connect

    Barzi, E.; Terzini, E.; /Fermilab

    2009-01-01

    A main challenge for high field solenoids made of in High Temperature Superconductor (HTS) is the large stress developed in the conductor. This is especially constraining for BSCCO, a brittle and strain sensitive ceramic material. To find parametric correlations useful in magnet design, analytical models can be used. A simple model is herein proposed to obtain the radial, azimuthal and axial stresses in a solenoid as a function of size, i.e. self-field, and of the engineering current density for a number of different constraint hypotheses. The analytical model was verified against finite element modeling (FEM) using the same hypotheses of infinite rigidity of the constraints and room temperature properties. FEM was used to separately evaluate the effect of thermal contractions at 4.2 K for BSCCO and YBCO coils. Even though the analytical model allows for a finite stiffness of the constraints, it was run using infinite stiffness. For this reason, FEM was again used to determine how much stresses change when considering an outer stainless steel skin with finite rigidity for both BSCCO and YBCO coils. For a better understanding of the actual loads that high field solenoids made of HTS will be subject to, we have started some analytical studies of stress state in solenoids for a number of constraint hypotheses. This will hopefully show what can be achieved with the present conductor in terms of self-field. The magnetic field (B) exerts a force F = B x J per unit volume. In superconducting magnets, where the field and current density (J) are both high, this force can be very large, and it is therefore important to calculate the stresses in the coil.

  7. The Development of Protein Chips for High Throughput Screening (HTS) of Chemically Labeling Small Molecular Drugs.

    PubMed

    Feng, Yingzhu; Wang, Bochu; Chu, Xinxin; Wang, Yazhou; Zhu, Liancai

    2016-01-01

    How to construct protein chips and chemically labeling drug molecules without disrupting structures for HTS is still a challenging area. There are two main obstacles, one is that human multitrans membrane receptors, which are major drug targets, exhibit distinct motifs, and fold structures, and they will collapse unfold without membrane support in vitro; another one is that there still lack effective chemical labeling method for small drugs for detection. Therefore, how to acquire high detecting sensitivity for small molecules and to immobilize membrane protein receptors in native conformation with uniform direction on the chip, need to be solved for drug HTS. This paper reviews drug HTS trends in recent years, proposed a new virion-chip model and a feasible C-H activation method for CY-5 labeling drugs. It is expected to provide a good platform for future drug HTS. PMID:25963567

  8. Investigation of DC current injection effect on the microwave characteristics of HTS YBCO microstrip resonators

    NASA Astrophysics Data System (ADS)

    Nurgaliev, T.; Blagoev, B.; Mateev, E.; Neshkov, L.; Strbik, V.; Uspenskaya, L.; Nedkov, I.; Chromik, Š.

    2014-03-01

    The DC current injection effect from a ferromagnetic (FM) La0.7Sr0.3MnO3 (LSMO) to a high temperature superconducting (HTS) Y1Ba2Cu3O7-x (YBCO) thin film was investigated by the microwave surface impedance measurements in a FM/HTS structure, formed as a microstrip resonator for improving the sensitivity of the experiments. The quality factor and the resonance frequency of this structure were found to strongly depend on the current strength, injected from the LSMO electrode into the HTS microstrip electrode. The magnetic penetration depth and the quasiparticle conductivity of the HTS component were determined to increase under DC current injection process, which in all probability stimulated breaking of Cooper pairs and led to a decrease of the superfluid concentration and an increase of the normal fluid concentration without significantly affecting the relaxation time of the quasiparticles.

  9. Status of 275 kV REBCO HTS Cable Development in the NEDO Project

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Yagi, Masashi; Okuma, Takeshi; Maruyama, Osamu; Shiohara, Yuu; Hayakawa, Naoki; Mizutani, Teruyoshi

    A 275 kV 3 kA high temperature superconducting cable (HTS cable), which could be used as a backbone power line in the future, was developed in the NEDO project called M-PACC. One of the most important developments of a high voltage HTS cable was the high voltage insulation technology. A design guideline and a test specification that was necessary to design, product and demonstrate of a 275 kV, 3 kA HTS cable have been studied by obtaining the various experimental data such as AC withstand voltage, impulse withstand voltage, partial discharge inception stress, and the V-t characteristics of the insulation, on the basis of the Japan Electrical Standards (JEC) and the International Electrotechnical Commission (IEC). Moreover, the 275 kV, 3 kA HTS cable with a length of 30 m was demonstrated under a long-term voltage and current loading test.

  10. Design of an HTS Levitated Double-Sided HTSLSM for Maglev

    NASA Astrophysics Data System (ADS)

    Zheng, Luhai; Jin, Jianxun; Guo, Youguang; Zhu, Jianguo

    A hybrid high temperature superconducting (HTS) linear synchronous propulsion system composed of a double-sided HTS linear synchronous motor (HTSLSM) in the middle and HTS magnetic suspension sub-systems on both sides has been proposed for a middle-low-speed maglev. Three carriages has been made up for the proposed maglev, and each carriage consists of four HTSLSM modules. The HTSLSM has been designed to reach a speed of 69 km/h and a maximum thrust of 48.9 kN for each motor. The finite element analysis has been used for the theoretical verification. The results obtained show that the HTS linear propulsion system satisfies the principal requirements for the maglev.

  11. Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Zhuang, Shujun

    2012-10-01

    Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.

  12. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  13. Wire brush fastening device

    DOEpatents

    Meigs, Richard A.

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  14. Wire brush fastening device

    DOEpatents

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  15. Wire brush fastening device

    SciTech Connect

    Meigs, R.A.

    1993-08-31

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  16. Dielectric coated wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Newman, E. H.

    1976-01-01

    An electrically thin dielectric insulating shell on an antenna composed of electrically thin circular cylindrical wires is examined. A moment method solution is obtained, and the insulating shell is modeled by equivalent volume polarization currents. These polarization currents are related in a simple manner to the surface charge density on the wire antenna. In this way the insulating shell causes no new unknowns to be introduced, and the size of the impedance matrix is the same as for the uninsulated wires. The insulation is accounted for entirely through a modification of the symmetric impedance matrix. This modification influences the current distribution, impedance, efficiency, field patterns, and scattering properties. The theory is compared with measurement for dielectric coated antennas in air.

  17. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  18. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  19. Development and construction of an HTS rotor for ship propulsion application

    NASA Astrophysics Data System (ADS)

    Nick, W.; Frank, M.; Kummeth, P.; Rabbers, J. J.; Wilke, M.; Schleicher, K.

    2010-06-01

    A low-speed high-torque HTS machine is being developed at Siemens on the basis of previous steps (400kW demonstrator, 4MVA generator). The goal of the programme is to utilize the characteristic advantages offered by electrical machines with HTS-excited rotor, such as efficiency, compact size, and dynamic performance. To be able to address future markets, requirements from ship classification as well as potential customers have to be met. Electromagnetic design cannot be focused on nominal operation only, but has to deal with failure modes like short circuit too. Utilization of superconductor requires to consider margins taking into account that the windings have to operate reliably not only in "clean" laboratory conditions, but in rough environment with the stator connected to a power converter. Extensive quality control is needed to ensure homogenous performance (current capacity, electrical insulation, dimensions) for the large quantity of HTS (45 km). The next step was to set up and operate a small-scale "industrial" manufacturing process to produce HTS windings in a reproducible way, including tests at operating conditions. A HTS rotor includes many more components compared to a conventional one, so tough geometric tolerances must be met to ensure robust performance of the system. All this gives a challenging task, which will be concluded by cold testing of the rotor in a test facility. Then the rotor will be delivered for assembly to the stator. In following machine tests the performance of the innovative HTS drive system will be demonstrated.

  20. Heat Transfer Simulation to Liquid Nitrogen from HTS Tapes at the Overload Currents

    NASA Astrophysics Data System (ADS)

    Zubko, V. V.; Ryabov, S. M.; Fetisov, S. S.; Vysotsky, V. S.

    Knowledge of HTS materials behavior at overload currents is important to design fault current limiters or fault protection systems of electro-technical devices. There are sharp voltage peaks and voltage oscillations during rectangular current pulses (DC current) on HTS tapes cooled by liquid nitrogen. It is common knowledge that a homogeneous liquid can withstand certain amount of overheating before switching to the boiling phase. In the liquid nitrogen during the increase of the heat flux there is superheating (temperature overshoot) and boiling hysteresis takes place. We explain voltage peaks and voltage oscillations by the hysteresis phenomenon in boiling nitrogen during the increase and decrease of the heat flux in the nitrogen which is a result of current redistribution in the HTS tapes. Based on the measurements of voltage and temperature of the HTS tapes during current overload and numerical analysis of the process we estimated the heat-transfer characteristics from the HTS tapes to liquid nitrogen. We also obtained the information about limiting superheating of the liquid nitrogen. The influence of covers of the HTS tapes on superheating of the nitrogen is also discussed.

  1. Characteristics of the magnetic field distribution on compact NMR magnets using cryocooled HTS bulks

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Takano, R.; Nakano, T.; Imai, M.; Hahn, S. Y.

    2009-10-01

    Recently, the performance of high temperature superconducting (HTS) bulks such as critical current density, size, and mechanical strength has been improved rapidly. So, various applications using HTS bulks such as motors, bearings and flywheels have been investigated by many research groups. A compact nuclear magnetic resonance (NMR) magnet is one of the new applications after a technique to enhance maximum trapped field of the HTS bulk more than 11.7 T (500 MHz 1H NMR frequency) has been developed. This new compact NMR magnet out of HTS bulks is cost-effective compared with conventional NMR magnets and then expected to be widely used in food and drug industry. In design and manufacture of the compact NMR magnets, spatial field homogeneity of the large trapped magnetic field in HTS bulk annuli is a crucial issue because the behavior of a trapped field is highly non-linear and, as a result, a technique to improve the field homogeneity such as active/passive shimming now becomes more challenging compared with that of the conventional counterparts. This paper presents the magnetic field distributions in single and three assembled HTS bulk annuli measured by a 3-axis and multi-arrayed Hall sensor under two different cryogenic environments: (1) in a bath of liquid nitrogen (LN 2) and (2) dry cooling by a cryocooler. The spatial homogeneity changes with various operating temperatures were investigated and the effect of critical current density enhancement by lowering the operating temperature on the field homogeneity improvement was discussed in detail.

  2. Design, fabrication and evaluation of a conduction cooled HTS magnet for SMES

    NASA Astrophysics Data System (ADS)

    Bae, J. H.; Kim, S. H.; Kim, H. J.; Sohn, M. H.; Seong, K. C.; Kim, H. M.

    2009-10-01

    This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of 22 of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

  3. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    NASA Astrophysics Data System (ADS)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  4. Wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad

    1994-01-01

    The insulation testing and analysis consists of: identifying and prioritizing NASA wiring requirements; selecting candidate wiring constructions; developing test matrix and formulating test program; managing, coordinating, and conducting tests; and analyzing and documenting data, establishing guidelines and recommendations.

  5. Hts, the Drosophila homologue of Adducin, physically interacts with the transmembrane receptor Golden goal to guide photoreceptor axons.

    PubMed

    Ohler, Stephan; Hakeda-Suzuki, Satoko; Suzuki, Takashi

    2011-01-01

    Neurons steer their axons towards their proper targets during development. Molecularly, a number of guidance receptors have been identified. The transmembrane protein Golden goal (Gogo) was reported previously to guide photoreceptor (R) axons in the Drosophila visual system. Here, we show that Hts, the Drosophila homologue of Adducin, physically interacts with Gogo's cytoplasmic domain via its head-neck domain. hts null mutants show similar defects in R axon guidance as do gogo mutants. Rescue experiments suggest that the C-terminal tail but not the MARCKS homology domain of Hts is required. Overexpression of either gogo or hts causes abnormally thick swellings of R8 axons in the medulla, but if both are co-overexpressed, R8 axons appear normal and the amount of excessive Hts is reduced. Our results fit with a model where Gogo both positively and negatively regulates Hts that affects the Actin-Spectrin cytoskeleton in growth cone filopodia, thereby guiding R axons. PMID:21128303

  6. NewsWire, 2002.

    ERIC Educational Resources Information Center

    Byrom, Elizabeth, Ed.; Bingham, Margaret, Ed.; Bowman, Gloria, Ed.; Shoemaker, Dan, Ed.

    2002-01-01

    This document presents the 3 2002 issues of the newsletter "NewsWire," (volume 5). Issue Number One focuses on collaborative Web projects. This issue begins with descriptions of four individual projects: "iEARN"; "Operation RubyThroat"; "Follow the Polar Huskies!"; and "Log in Your Animal Roadkill!" Features that follow include: "Bringing the…

  7. Basic Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This guide is designed to assist teachers conducting a foundation course to prepare students for additional courses of training for entry-level employment in either the residential or commercial and industrial wiring trades. Included in the guide are 17 instructional units and the following sections of information for teachers: guidelines in using…

  8. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  9. Residential Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Taylor, Mark; And Others

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the residential wiring trade. Included in the guide are six instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications and…

  10. A World without Wires

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  11. Caroviologens: Towards molecular wires

    NASA Astrophysics Data System (ADS)

    Blanchard-Desce, M.; Arrhenius, T. S.; Dvolaïtzky, M.; Kugimiya, S.-I.; Lazrak, T.; Lehn, J.-M.

    1992-07-01

    Bispyridinium conjugated polyenes of different lengths and charges have been synthesized. Since they combine the features of carotenoids and of viologens, they have been termed caroviologens. Such molecules, possessing an extended conjugated chain fitted with polar electroactive endgroups, and having a length sufficient to span a lipid membrane could function as transmembrane electron channels, i.e., as molecular wires.

  12. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  13. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  14. Production of hot-wires

    NASA Astrophysics Data System (ADS)

    Dickinson, S. C.

    1983-04-01

    Several methods for producing hot-wire probes are described. Discussion includes the manufacture of probe bodies, soldering plated wires to the prongs etching Walaston type wires, and finishing the probe. This report is written as an instruction manual for researchers who desire to produce or repair their own sensors.

  15. 1997 wire development workshop: Proceedings

    SciTech Connect

    1997-04-01

    This conference is divided into the following sections: (1) First Generation Wires I; (2) First Generation Wires II; (3) Coated conductors I; and (4) Coated conductors II. Applications of the superconducting wires include fault current limiters, superconducting motors, transformers, and power transmission lines.

  16. Engineering Nanocolumnar Defect Configurations for Optimized Vortex Pinning in High Temperature Superconducting Nanocomposite Wires

    SciTech Connect

    Wee, Sung Hun; Zuev, Yuri L; Cantoni, Claudia; Goyal, Amit; Ahuja, Raj; Abiade, J.

    2013-01-01

    High temperature superconducting (HTS), coated conductor wires based on nanocomposite films containing self-assembled, insulating BaZrO3 (BZO) nanocolumnar defects have previously been reported to exhibit enhanced vortex pinning. Here, we report on microstructural design via control of BZO nanocolumns density in YBa2Cu3O7- (YBCO)+BZO nancomposite films to achieve the highest critical current density, Jc(H, ,T). X-ray diffraction and microstructural examination shows increasing number density of epitaxial BZO nanocolumns in the highly cube-textured YBCO matrix with increasing nominal BZO additions. Transport property measurement reveals that an increase in BZO content upto 4 vol% is required to sustain the highest pinning and Jc performance as the magnetic field increases. By growing thicker, single-layer nanocomposite films (~4 m) with controlled density of BZO columnar defects, the critical current (Ic) of ~1000 A/cm at 77 K, self-field and the minimum Ic of 455 A/cm at 65 K and 3 T for all magnetic field orientations were obtained. This is the highest Ic reported to date for films on metallic templates which are the basis for the 2nd generation, coated conductor-based HTS wires.

  17. Mobile HTS SQUID System for Nondestructive Evaluation of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Krause, Hans-Joachim; Hohmann, Rainer; Grueneklee, Michael; Zhang, Yi; Braginski, Alex I.

    1997-03-01

    For the detection of deep-lying flaws in aircraft structures, a mobile eddy-current system is being developed in conjunction with a high-temperature superconductor (Yba_2Cu_3O_7) thin-film HTS SQUID gradiometer. The challenge is to operate the SQUID sensor during movement in strong ambient fields, independent of orientation. A planar rf double hole gradiometer with a gradient sensitivity of 500 fT/(cm √Hz) was designed for that purpose. Two different cooling concepts were successfully implemented: the SQUID operation in the vacuum region of a lightweight nitrogen cryostat, constructed for operation in any orientation, and the use of a commercial Joule-Thomson cryocooler for liquid-nitrogen-free SQUID cooling. With a SQUID integration scheme using a sapphire cold finger, motion-related additional noise is nearly eliminated. Using a system equipped with a differential eddy current excitation, two-dimensional scans were performed to find fatigue cracks and corrosion pits hidden below several layers of aluminum. For demonstration in the Lufthansa maintenance facility at Frankfurt Airport, the system was used to detect flaws in aircraft wheels. Work in progress includes developing longer base gradiometers for detection of deep flaws.

  18. Eddy current nondestructive material evaluation based on HTS SQUIDs

    NASA Astrophysics Data System (ADS)

    Mück, M.; Kreutzbruck, M. v.; Baby, U.; Tröll, J.; Heiden, C.

    1997-08-01

    High Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) are promising sensors for applications in eddy current nondestructive evaluation (NDE). Due to their high field sensitivity at low frequencies, they are especially suitable for applications, where a large penetration depth is required. We have investigated two different SQUID-based NDE systems, one of which is optimised for testing felloes of aircraft wheels. The second system allows for testing planar structures using a motorised x-y-stage, which moves the cryostat above the planar samples. As sensors 3 GHz rf SQUIDs made from YBCO were used, having a field noise of about 1 pT/√Hz. This results in a dynamic range of our SQUID system of about 155 dB/√Hz. In most cases, the SQUIDs have been cooled by immersing them in liquid nitrogen. We have however also developed a cryosystem, which allows for cooling the sensors by a Ne-gas flow. In planar test structures we could detect flaws with lengths of 10 mm, having a height of 0.6 mm in a depth of 13 mm. In aircraft felloes, flaws located at the inner surface of the felloe (thickness 8 mm) were easily detectable despite a high static background field of up to 0.5 G caused by ferromagnetic structures inside the felloe. For flaws in a depth of 5 mm, the spatial resolution of both systems was about 8 mm without applying image postprocessing.

  19. Heat Transfer Study for HTS Power Transfer Cables

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S.; Fesmire, J.

    2002-01-01

    Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.

  20. Investigation of the resistive properties of HTS/manganite bilayers

    NASA Astrophysics Data System (ADS)

    Nurgaliev, T.; Blagoev, B.; Štrbik, V.; Chromik, Š.; Sojková, M.

    2016-03-01

    Temperature dependences of the resistivity of manganite La0.7Ca0.3MnO3 (LCMO) films deposited on LaAlO3 and SrTiO3 substrates by RF magnetron sputtering were shown to be successfully simulated in the whole temperature range (covering metal, insulator and metal-insulator transition regions) using a phenomenological phase-coexistence transport model. Quantitative data on the internal parameters of these films were obtained. The possibility was also considered for investigation of individual resistive characteristics and excess conductivity of a high temperature superconducting (HTS) YBa2Cu3O7-x (YBCO) thin film in the vicinity of T C included into a YBCO/LCMO bilayer structure. It was shown that the considered YBCO film in the temperature range from 85.5 K to 114.9 K behaves as a two-dimensional system with respect to the fluctuations in the superconducting order parameter, while a three-dimensional regime is observed in a narrow range of temperatures at T < 85.5 K. Such behavior was assumed to be partly due to the FM LCMO component of the bilayer, the spin-polarized charge carriers of which enter into the YBCO film and cause a "breaking" of superconducting pairs in the superconducting gap and pseudogap regimes.

  1. Development of High Capacity Split Stirling Cryocooler for HTS

    NASA Astrophysics Data System (ADS)

    Yumoto, Kenta; Nakano, Kyosuke; Hiratsuka, Yoshikatsu

    Sumitomo Heavy Industries, Ltd. (SHI) developed a high-power Stirling-type pulse tube cryocooler for cooling high-temperature superconductor (HTS) devices, such as superconductor motors, superconducting magnetic energy storage (SMES), and fault current limiters. The experimental results of a prototype pulse tube cryocooler were reported in September 2013. For a U-type expander, the cooling capacity was 151 W at 70 K with a compressor input power of 4 kW. Correspondingly, the coefficient of performance (COP) was about 0.038. However, the efficiency of the cryocooler is required to be COP > 0.1 and it was found that, theoretically, it is difficult to further improve the efficiency of a pulse tube cryocooler because the workflow generated at the hot end of the pulse tube cannot be recovered. Therefore, it was decided to change the expander to a free-piston type from a pulse tube type. A prototype was developed and preliminary experiments were conducted. A cooling capacity of 120 W at 70 K with a compressor input power of 2.15 kW with corresponding COP of 0.056, was obtained. The detailed results are reported in this paper.

  2. Neon turbo-Brayton cycle refrigerator for HTS power machines

    NASA Astrophysics Data System (ADS)

    Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.

    2012-06-01

    We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.

  3. The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?

    SciTech Connect

    Green, Michael A.

    2007-02-14

    The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).

  4. Test results of a 30-m HTS cable pre-demonstration system in Yokohama project

    NASA Astrophysics Data System (ADS)

    Yumura, H.; Ashibe, Y.; Ohya, M.; Itoh, H.; Watanabe, M.; Yatsuka, K.; Masuda, T.; Honjo, S.; Mimura, T.; Kitoh, Y.; Noguchi, Y.

    2010-11-01

    High temperature superconducting cable demonstration project supported by Ministry of Economy, Trade and Industry and New Energy and Industrial Technology Development Organization has started since FY 2007 in Japan. Target of this project is to operate a 66 kV, 200 MVA HTS cable in a live grid in order to demonstrate its reliability and stable operation. A demonstration site has been decided to Asahi substation which is located in Yokohama. The cable length will be decided to between 200 and 300 m depending on a site configuration. Various preliminary tests such as critical current, ac losses, fault current loading, mechanical tests, have been conducted by using short core samples in order to confirm a HTS cable design and a cable-to-cable joint structure. From these test results, a HTS cable, a joint and a termination have been designed to meet the required specifications. To verify their performances before the installation of the HTS cable system in Yokohama, a 30-m HTS cable was manufactured and various sample tests were conducted as shipping test. The critical current of the HTS conductor and shield were 6.1 kA and 7.1 kA, respectively. The AC loss was 0.83 W/m/ph at 2 kA rms, 60 Hz. As withstand voltage tests, AC 90 kV for 3 h and lightning impulse at ±385 kV were applied to cable core, successfully. These test results has confirmed that the 30-m cable had good properties as designed and satisfied the required specifications. After the success of the shipping tests, the 30-m HTS cable pre-demonstration system has been installed at SEI factory. The cable system will be operated and checked the various performances in this summer.

  5. Silver-sheathed multifilament wires

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Goretta, K. C.; Shi, D.; Lanagan, M. T.; Poeppel, R. B.

    1991-01-01

    The process for manufacturing Ag-sheathed multifilament superconducting wires was investigated. Bi2Sr(1.7)CaCu2O(x), Pb-doped Bi2Sr2Ca2Cu3O(x), or YBa2Cu3O(x) powders were packed into Ag tubes and swaged into long wires. Pieces were cut from each wire, packed into a second Ag tube and swaged or rolled into multifilament wires. Each wire was then sintered to produce a superconductor. Processing considerations included the sheath workability, effects of compacting and residual stresses, and heat treatment schedules. The superconducting properties of the Bi-based wires were superior to those of the YBa2Cu3O(x) wires at 4.2 K, but not at 77 K.

  6. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    SciTech Connect

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  7. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  8. From wires to cosmology

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Baumann, Daniel

    2016-02-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  9. Dental Arch Wire

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  10. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  11. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  12. Integration of HTS Cables in the Future Grid of the Netherlands

    NASA Astrophysics Data System (ADS)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future transmission grid will obtain electrical power generated by decentralized renewable sources, together with large scale generation units located at the coastal region. In this way electrical power has to be distributed and transmitted over longer distances from generation to end user. Potential grid issues like: amount of distributed power, grid stability and electrical loss dissipation merit particular attention. High temperature superconductors (HTS) can play an important role in solving these grid problems. Advantages to integrate HTS components at transmission voltages are numerous: more transmittable power together with less emissions, intrinsic fault current limiting capability, lower ac loss, better control of power flow, reduced footprint, less magnetic field emissions, etc. The main obstacle at present is the relatively high price of HTS conductor. However as the price goes down, initial market penetration of several HTS components (e.g.: cables, fault current limiters) is expected by year 2015. In the full paper we present selected ways to integrate EHV AC HTS cables depending on a particular future grid scenario in the Netherlands.

  13. Developing scientific confidence in HTS-derived prediction models: lessons learned from an endocrine case study.

    PubMed

    Cox, Louis Anthony; Popken, Douglas; Marty, M Sue; Rowlands, J Craig; Patlewicz, Grace; Goyak, Katy O; Becker, Richard A

    2014-08-01

    High throughput (HTS) and high content (HCS) screening methods show great promise in changing how hazard and risk assessments are undertaken, but scientific confidence in such methods and associated prediction models needs to be established prior to regulatory use. Using a case study of HTS-derived models for predicting in vivo androgen (A), estrogen (E), thyroid (T) and steroidogenesis (S) endpoints in endocrine screening assays, we compare classification (fitting) models to cross validation (prediction) models. The more robust cross validation models (based on a set of endocrine ToxCast™ assays and guideline in vivo endocrine screening studies) have balanced accuracies from 79% to 85% for A and E, but only 23% to 50% for T and S. Thus, for E and A, HTS results appear promising for initial use in setting priorities for endocrine screening. However, continued research is needed to expand the domain of applicability and to develop more robust HTS/HCS-based prediction models prior to their use in other regulatory applications. Based on the lessons learned, we propose a framework for documenting scientific confidence in HTS assays and the prediction models derived therefrom. The documentation, transparency and the scientific rigor involved in addressing the elements in the proposed Scientific Confidence Framework could aid in discussions and decisions about the prediction accuracy needed for different applications. PMID:24845243

  14. Parametric study for the cooling of high temperature superconductor (HTS) current leads

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Wesche, Rainer

    2013-01-01

    The analysis of cooling of a binary HTS 20 kA current lead (CL) operating between 4.5 and 300 K has been carried out. Assuming that the HTS module is conduction-cooled, two cooling options for the copper heat exchanger (HEX) part of the CL have been considered, i.e. (1) cooling with a single flow of gaseous helium and (2) cooling with two flows of gaseous helium. The ideal refrigerator power required to cool the whole HTS CL has been calculated for both cooling scenarios and different values of input parameters and the thermodynamic optimization has been performed for both cooling options. The obtained results indicate that the cooling Option 2 cannot provide significant savings of the refrigerator power, as compared to the Option 1. However, it has been observed that at the same helium inlet temperature the temperature at the warm end of the HTS part, and the resulting number of HTS tapes, can be reduced in the Option 2 with respect to the Option 1.

  15. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    NASA Astrophysics Data System (ADS)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  16. MScreen: An Integrated Compound Management and High Throughput Screening (HTS) Data Storage and Analysis System

    PubMed Central

    Jacob, Renju T.; Larsen, Martha J.; Larsen, Scott D.; Kirchhoff, Paul D.; Sherman, David H.; Neubig, Richard R.

    2013-01-01

    High-throughput screening (HTS) has historically been used by the pharmaceutical industry to rapidly test hundreds of thousands of compounds to identify potential drug candidates. More recently, academic groups have used HTS to identify new chemical probes or small interfering RNA (siRNA) that can serve as experimental tools to examine the biology or physiology of novel proteins, processes, or interactions. HTS presents a significant challenge with the vast and complex nature of data generated. This report describes MScreen, a web-based, open-source cheminformatics application for chemical library and siRNA plate management, primary HTS and dose-response data handling, structure search, and administrative functions. Each project in MScreen can be secured with passwords or shared in an open information environment which enables collaborators to easily compare data from many screens, providing a useful means to identify compounds with desired selectivity. Unique features include compound, substance, mixture, and siRNA plate creation and formatting; automated dose-response fitting and quality control (QC); and user, target, and assay method administration. MScreen provides an effective means to facilitate HTS information handling and analysis in the academic setting so that users can efficiently view their screening data and evaluate results for follow-up. PMID:22706349

  17. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  18. Wire detecting apparatus and method

    SciTech Connect

    Kronberg, J.W.

    1991-12-31

    This invention is comprised of an apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receiver`s position with respect to the wiring. The receiver`s audible signal is strongest when the receiver is directly above the wiring and the long axis of the receiver`s coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring`s concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  19. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  20. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  1. A 1.3-GHz LTS/HTS NMR Magnet–A Progress Report

    PubMed Central

    Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun; Iwasa, Yukikazu

    2011-01-01

    In this paper we present details of a 600 MHz HTS insert (H600) double pancake (DP) windings. It will first be operated in the bore of a 500 MHz LTS magnet, achieving a frequency of 1.1 GHz. Upon completion of H600, we will embark on the final phase (Phase 3B) of a 3-Phase program began in 2000: completion of a high resolution 1.3 GHz LTS/HTS magnet. In Phase 3B, the H600 will be coupled to a 700 MHz LTS magnet to achieve the ultimate frequency of 1.3 GHz. The HTS insert is composed of two concentric stacks of double pancakes, one wound with high strength BSCCO-2223 tape, the other with YBCO coated conductor. Details include conductor and coil parameters, winding procedure, DPs mechanical support and integration to the background 500 MHz LTS magnet. Test results of individual DPs in LN2 are also presented. PMID:22081752

  2. Low Temperature Performance of a Boost Converter with MPP and HTS Inductors

    NASA Technical Reports Server (NTRS)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Dickman, John E.

    1996-01-01

    Low temperature performance of a 150 W, 50 kHz, 24/48 V boost PWM dc-to-dc converter is reported. The efficiency of the converter using a molypermalloy powder (MPP) core based inductor went up from 94% at room temperature (23 C) to 95.9% at liquid nitrogen temperature (-196 C). A BSCCO based high temperature superconducting (HTS) inductor with a transition temperature of approximately -158 C was compared to a MPP core based inductor in terms of the power converter performance at liquid nitrogen temperature. The use of the HTS inductor in the converter tested yielded no significant performance improvement over the same converter with the MPP inductor. The experimental results are discussed along with the HTS inductor characteristics.

  3. Voltage current property of two HTS tapes connected by ordinary Sn Pb solder

    NASA Astrophysics Data System (ADS)

    Gu, C.; Zhuang, C.; Qu, T. M.; Han, Z.

    2005-10-01

    The V-I property of two HTS tapes connected by ordinary Sn-Pb solder has been studied both numerically and experimentally. Two basic joint structures: "shake hand" and "pray hand" with different overlapped length are studied. By means of a Finite Element Analysis package ANSYS, not only the entire V-I curve from 0 to 2Ic can be obtained but also the detail of current distribution along the HTS tape can be simulated. The numerical approach is based on a 2D electric field analysis, where the conductivity of the HTS material is simulated in terms of a power law E-J relation. The simulated results are compared with the experimental data obtained from the commonly used four-probe method. We found that from the energy dissipation point of view, the "pray hand" structure is more appropriate for use in the high current region.

  4. The Role of HTS in Drug Discovery at the University of Michigan

    PubMed Central

    Larsen, Martha J.; Larsen, Scott D.; Fribley, Andrew; Grembecka, Jolanta; Homan, Kristoff; Mapp, Anna; Haak, Andrew; Nikolovska-Coleska, Zaneta; Stuckey, Jeanne A.; Sun, Duxin

    2014-01-01

    High throughput screening (HTS) is an integral part of a highly collaborative approach to drug discovery at the University of Michigan. The HTS lab is one of four core centers that provide services to identify, produce, screen and follow-up on biomedical targets for faculty. Key features of this system are: protein cloning and purification, protein crystallography, small molecule and siRNA HTS, medicinal chemistry and pharmacokinetics. Therapeutic areas that have been targeted include anti-bacterial, metabolic, neurodegenerative, cardiovascular, anti-cancer and anti-viral. The centers work in a coordinated, interactive environment to affordably provide academic investigators with the technology, informatics and expertise necessary for successful drug discovery. This review provides an overview of these centers at the University of Michigan, along with case examples of successful collaborations with faculty. PMID:24409957

  5. Characteristics of high efficiency current charging system for HTS magnet with solar energy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Wook; Yoon, Yong-Soo; Chung, Yoon-Do; Jo, Hyun-Chul; Kim, Ho-Min; Oh, Sung-Kwun; Kim, Hyun-Ki; Oh, Jae-Gi; Ko, Tae-Kuk

    In terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program.

  6. Fabrication of hybrid thin film structures from HTS and CMR materials

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Štrbík, V.; Nurgaliev, T.; Chromik, Š.; Dobročka, E.; Španková, M.; Blagoev, B.; Gál, N.

    2016-03-01

    We present the preparation of bilayers from high-temperature superconductors (HTS) and half-metallic ferromagnetic (FM) manganite with a colossal magnetoresistance (CMR). We used YBa2Cu3O7-x (YBCO) and Tl2Ba2CaCu2O8 (TBCCO) thin films as a HTS material and La0.67Sr0.33MnO3 (LSMO) film as a CMR material. In the case of YBCO/LSMO, we prepared FM/HTS heterostructure for studying the spin-polarized current injection effect on the electrical properties of the YBCO strip in dc or low-frequency regimes and on the microwave characteristics of the strip. For the first time, we report the preparation of a TBCCO/LSMO bilayer. In some applications, the TBCCO offers better parameters (higher working temperature, lower surface resistance, lower 1/f noise) than YBCO.

  7. A 1.3-GHz LTS/HTS NMR Magnet-A Progress Report.

    PubMed

    Bascuñán, Juan; Hahn, Seungyong; Park, Dong Keun; Iwasa, Yukikazu

    2011-06-01

    In this paper we present details of a 600 MHz HTS insert (H600) double pancake (DP) windings. It will first be operated in the bore of a 500 MHz LTS magnet, achieving a frequency of 1.1 GHz. Upon completion of H600, we will embark on the final phase (Phase 3B) of a 3-Phase program began in 2000: completion of a high resolution 1.3 GHz LTS/HTS magnet. In Phase 3B, the H600 will be coupled to a 700 MHz LTS magnet to achieve the ultimate frequency of 1.3 GHz. The HTS insert is composed of two concentric stacks of double pancakes, one wound with high strength BSCCO-2223 tape, the other with YBCO coated conductor. Details include conductor and coil parameters, winding procedure, DPs mechanical support and integration to the background 500 MHz LTS magnet. Test results of individual DPs in LN2 are also presented. PMID:22081752

  8. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  9. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  10. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.