Science.gov

Sample records for 1h nmr-based metabonomic

  1. [1H-NMR based metabonomic approach to evaluate detoxification effect of vinegar-processed Euphorbia kansui].

    PubMed

    Liu, Yu-Mei; Hui, Rong-Rong; He, Cui-Cui; Duan, Jin-Ao; Li, Jian-Xin

    2014-01-01

    Euphorbia kansui (EK) is a toxic herbal drug, and often used after vinegar-processing to reduce its toxicity. In present study, a 1H-NMR based metabonomic approach was used to evaluate the detoxification effect of vinegar-processed EK. The water extracts of EK and VEK were administered orally to male SD rats at doses of 9 g x kg(-1) x d(-1) for 1 week, respectively, and one more week observation was further conducted. The control group was orally given with saline. Histopathological studies of liver samples on the 8th and 15th day were conducted, and the metabolites of rat urine and liver were analysed by 1H-NMR. Histopathological studies of liver samples from EK and VEK treated rats showed no negative impacts. In metabonomic analyses of urines, changes of metabolites indicated liver damages, kidney lesions and imbalance of gut microbes in the second week. VEK-treated rats showed a quite lower toxicity compared with EK-treated ones. The present study revealed that the metabonomic approach might be helpful for the evaluation of toxicity of EK and detoxic effect of VEK. PMID:24761654

  2. Intervention effects of puerarin on blood stasis in rats revealed by a (1)H NMR-based metabonomic approach.

    PubMed

    Zou, Zhong Jie; Liu, Zhong Hua; Gong, Meng Juan; Han, Bin; Wang, Shu Mei; Liang, Sheng Wang

    2015-03-15

    Puerarin possesses a wide spectrum of biological activities including ameliorating effects on blood stasis, but the definite mechanism of this effect is still not known. In this study, a (1)H NMR-based plasma and urinary metabonomic approach was applied to comprehensively and holistically investigate the therapeutic effects of puerarin on blood stasis and its underlying mechanisms. Puerarin was injected intraperitoneally once daily for consecutive 7 days. The blood stasis rat model was established by placing the rats in ice-cold water during the time interval between two injections of adrenaline. With pattern recognition analysis, a clear separation of blood stasis model group and healthy control group was achieved and puerarin pretreatment group was located much closer to the control group than the model group, which was consistent with results of hemorheology studies. 15 and 10 potential biomarkers associated with blood stasis in plasma and urine, respectively, which were mainly involved in energy metabolism, lipid and membrane metabolisms, amino acid metabolism and gut microbiota metabolism, were identified. Puerarin could prevent blood stasis through partially regulating the disturbed metabolic pathways. This work highlights that metabonomics is a valuable tool for studying the essence of blood stasis as well as evaluating the efficacy of the corresponding drug treatment. PMID:25837270

  3. Metabonomic Profiling of Serum and Urine by 1H NMR-Based Spectroscopy Discriminates Patients with Chronic Obstructive Pulmonary Disease and Healthy Individuals

    PubMed Central

    Liu, Shuo; Mao, Shitao; Ling, Yuan; Liu, Dan; He, Xiaoyu; Wang, Xiaoge

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) has seriously impacted the health of individuals and populations. In this study, proton nuclear magnetic resonance (1H NMR)-based metabonomics combined with multivariate pattern recognition analysis was applied to investigate the metabolic signatures of patients with COPD. Serum and urine samples were collected from COPD patients (n = 32) and healthy controls (n = 21), respectively. Samples were analyzed by high resolution 1H NMR (600 MHz), and the obtained spectral profiles were then subjected to multivariate data analysis. Consistent metabolic differences have been found in serum as well as in urine samples from COPD patients and healthy controls. Compared to healthy controls, COPD patients displayed decreased lipoprotein and amino acids, including branched-chain amino acids (BCAAs), and increased glycerolphosphocholine in serum. Moreover, metabolic differences in urine were more significant than in serum. Decreased urinary 1-methylnicotinamide, creatinine and lactate have been discovered in COPD patients in comparison with healthy controls. Conversely, acetate, ketone bodies, carnosine, m-hydroxyphenylacetate, phenylacetyglycine, pyruvate and α-ketoglutarate exhibited enhanced expression levels in COPD patients relative to healthy subjects. Our results illustrate the potential application of NMR-based metabonomics in early diagnosis and understanding the mechanisms of COPD. PMID:23755267

  4. Systemic and characteristic metabolites in the serum of streptozotocin-induced diabetic rats at different stages as revealed by a (1)H-NMR based metabonomic approach.

    PubMed

    Diao, Chengfeng; Zhao, Liangcai; Guan, Mimi; Zheng, Yongquan; Chen, Minjiang; Yang, Yunjun; Lin, Li; Chen, Weijian; Gao, Hongchang

    2014-03-01

    Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal metabolism of carbohydrates, lipids, and proteins. Investigating the changes in metabolic pathways during the evolution of diabetes mellitus may contribute to the understanding of its metabolic features and pathogenesis. In this study, serum samples were collected from diabetic rats and age-matched controls at different time points: 1 and 9 weeks after streptozotocin (STZ) treatment. (1)H nuclear magnetic resonance ((1)H NMR)-based metabonomics with quantitative analysis was performed to study the metabolic changes. The serum samples were also subjected to clinical chemistry analysis to verify the metabolic changes observed by metabonomics. Partial least squares discriminant analysis (PLS-DA) demonstrated that the levels of serum metabolites in diabetic rats are different from those in control rats. These findings indicate that the metabolic characteristics of the two groups are markedly different at 1 and 9 weeks. Quantitative analysis showed that the levels of some metabolites, such as pyruvate, lactate, citrate, acetone, acetoacetate, acetate, glycerol, and valine, varied in a time-dependent manner in diabetic rats. These results suggest that serum metabolites related to glycolysis, the tricarboxylic acid cycle, gluconeogenesis, fatty acid β-oxidation, branched-chain amino acid metabolism, and the tyrosine metabolic pathways are involved in the evolution of diabetes. The metabolic changes represent potential features and promote a better understanding of the mechanisms involved in the development of diabetes mellitus. This work further suggests that (1)H NMR metabonomics is a valuable approach for providing novel insights into the pathogenesis of diabetes mellitus and its complications. PMID:24448714

  5. A 1H-NMR-Based Metabonomic Study on the Anti-Depressive Effect of the Total Alkaloid of Corydalis Rhizoma.

    PubMed

    Wu, Hongwei; Wang, Peng; Liu, Mengting; Tang, Liying; Fang, Jing; Zhao, Ye; Zhang, Yi; Li, Defeng; Xu, Haiyu; Yang, Hongjun

    2015-01-01

    Corydalis Rhizoma, named YuanHu in China, is the dried tuber of Corydalis yanhusuo W.T. Wang which is used in Traditional Chinese Medicine for pain relief and blood activation. Previous pharmacological studies showed that apart from analgesics, the alkaloids from YuanHu may be useful in the therapy of depression by acting on the GABA, dopamine and benzodiazepine receptors. In this study, the antidepressive effect of the total alkaloid of YuanHu (YHTA) was investigated in a chronic unpredictable mild stress (CUMS) rat model using 1H-NMR-based metabonomics. Plasma metabolic profiles were analyzed and multivariate data analysis was applied to discover the metabolic biomarkers in CUMS rats. Thirteen biomarkers of CUMS-introduced depression were identified, which are myo-inositol, glycerol, glycine, creatine, glutamine, glutamate, β-glucose, α-glucose, acetoacetate, 3-hydroxybutyrate, leucine and unsaturated lipids (L7, L9). Moreover, a metabolic network of the potential biomarkers in plasma perturbed by CUMS was detected. After YHTA treatment, clear separation between the model group and YHTA-treated group was achieved. The levels of all the abnormal metabolites mentioned above showed a tendency of restoration to normal levels. The results demonstrated the therapeutic efficacy of YHTA against depression and suggested that NMR-based metabolomics can provide a simple and easy tool for the evaluation of herbal therapeutics. PMID:26035102

  6. 1H NMR-based metabonomic analysis of the serum and urine of rats following subchronic exposure to dichlorvos, deltamethrin, or a combination of these two pesticides.

    PubMed

    Wang, Hui-Ping; Liang, Yu-Jie; Sun, Ying-Jian; Chen, Jia-Xiang; Hou, Wei-Yuan; Long, Ding-Xin; Wu, Yi-Jun

    2013-05-25

    Metabonomic analysis, clinical chemical analysis and histopathology were used to investigate the toxic effects of subchronic exposure to dichlorvos, deltamethrin, and a combination of these two pesticides, in rats. Weight loss, hind limb weakness and histopathological changes in kidney tissue were only observed in rats exposed to high doses of deltamethrin, or a combination of deltamethrin and dichlorvos. Urinary metabonomic analysis indicated that exposure to a mixture of dichlorvos and deltamethrin was followed by increases in urinary lactate, dimethylamine, N-glycoprotein (NAC) and glycine similar to those observed in rats treated with either dichlorvos or deltamethrin alone. Serum metabonomic analysis suggests that dichlorvos induced an increase in lactate and alanine and a decrease in dimethylglycine (DMG), NAC and very low- and low-density lipoprotein (VLDL/LDL). High levels of lactate and low levels of NAC and VLDL/LDL were observed in the deltamethrin treatment group. Treating rats with a mixture of dichlorvos and deltamethrin caused an increase in serum lactate, trimethylamine-N-oxide (TMAO), choline and alanine, with the highest levels of these metabolites observed in those that received the highest dose. Exposure to a mixture of dichlorvos and deltamethrin also resulted in a decrease in serum acetone, DMG, NAC, and VLDL/LDL. Changes in serum TMAO, alanine, choline and acetone in this treatment group were higher than in rats treated with either dichlorvos or deltamethrin. These results suggest that exposing rats to subchronic doses of dichlorvos, deltamethrin, or a combination of these pesticides, disrupted the energy metabolism of the liver and reduced kidney function. PMID:23566885

  7. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by 1H-NMR-based metabonomics

    PubMed Central

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-01-01

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC. PMID:27075403

  8. The Serum Metabolite Response to Diet Intervention with Probiotic Acidified Milk in Irritable Bowel Syndrome Patients Is Indistinguishable from that of Non-Probiotic Acidified Milk by 1H NMR-Based Metabonomic Analysis

    PubMed Central

    Pedersen, Simon M. M.; Nielsen, Niels Chr.; Andersen, Henrik J.; Olsson, Johan; Simrén, Magnus; Öhman, Lena; Svensson, Ulla; Malmendal, Anders; Bertram, Hanne C.

    2010-01-01

    The effects of a probiotic acidified milk product on the blood serum metabolite profile of patients suffering from Irritable Bowel Syndrome (IBS) compared to a non-probiotic acidified milk product was investigated using 1H NMR metabonomics. For eight weeks, IBS patients consumed 0.4 L per day of a probiotic fermented milk product or non-probiotic acidified milk. Both diets resulted in elevated levels of blood serum L-lactate and 3-hydroxybutyrate. Our results showed identical effects of acidified milk consumption independent of probiotic addition. A similar result was previously obtained in a questionnaire-based evaluation of symptom relief. A specific probiotic effect is thus absent both in the patient subjective symptom evaluations and at the blood serum metabolite level. However, there was no correspondence between symptom relief and metabolite response on the patient level. PMID:22254002

  9. Effects of high fructose and salt feeding on systematic metabonome probed via (1) H NMR spectroscopy.

    PubMed

    Yang, Yongxia; Zheng, Lingyun; Wang, Linlin; Wang, Shumei; Wang, Yaling; Han, Zhihui

    2015-04-01

    Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt-fed rats was investigated by use of (1) H nuclear magnetic resonance (NMR)-based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time-dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2-oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N-oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern. PMID:25641270

  10. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    SciTech Connect

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-11-01

    A metabonomic approach using {sup 1}H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. {sup 1}H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary {sup 1}H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  11. NMR-Based Metabonomic Studies on Stomach Heat and Cold Syndromes and Intervention Effects of the Corresponding Formulas

    PubMed Central

    Zou, Zhongjie; Han, Bin; Gong, Mengjuan; Wang, Shumei; Liang, Shengwang

    2014-01-01

    Zuojin Wan (ZJW) and Lizhong Wan (LZW) have been widely used in the treatment of Stomach heat and cold syndrome (SH and SC), respectively. In this study, a proton nuclear magnetic resonance (1H NMR) based metabonomic approach was developed to profile SH and SC-related metabolic perturbations in rat serum and to investigate the intervention effects of ZJW and LZW on the corresponding SH and SC. Compared to the conventional macroscopic and histopathological examinations, the metabonomic approach could enable discrimination between SH and SC based on serum metabolic profiles. Meanwhile, 17 and 15 potential biomarkers associated with SH and SC, respectively, which were mainly involved in gastric dysfunction and mucosal lesions, gut microbiotal activity, transmethylation, glucose and lipid metabolism, and amino acid metabolism, were identified. Furthermore, taking the potential biomarkers as drug targets, it was revealed that administration of ZJW and LZW could exclusively reverse the pathological process of SH and SC, respectively, through partially regulating the disturbed metabolic pathways. This work showed biological basis related to SH and SC at metabolic level and offered a new paradigm for better understanding and explanation of “Fang Zheng Dui Ying” principle in traditional Chinese medicine from a systemic view. PMID:24701240

  12. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma.

    PubMed

    Rocha, Cláudia M; Carrola, Joana; Barros, António S; Gil, Ana M; Goodfellow, Brian J; Carreira, Isabel M; Bernardo, João; Gomes, Ana; Sousa, Vitor; Carvalho, Lina; Duarte, Iola F

    2011-09-01

    In this work, the variations in the metabolic profile of blood plasma from lung cancer patients and healthy controls were investigated through NMR-based metabonomics, to assess the potential of this approach for lung cancer screening and diagnosis. PLS-DA modeling of CPMG spectra from plasma, subjected to Monte Carlo Cross Validation, allowed cancer patients to be discriminated from controls with sensitivity and specificity levels of about 90%. Relatively lower HDL and higher VLDL + LDL in the patients' plasma, together with increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine, histidine, tyrosine, valine), and methanol, could be detected. These changes were found to be present at initial disease stages and could be related to known cancer biochemical hallmarks, such as enhanced glycolysis, glutaminolysis, and gluconeogenesis, together with suppressed Krebs cycle and reduced lipid catabolism, thus supporting the hypothesis of a systemic metabolic signature for lung cancer. Despite the possible confounding influence of age, smoking habits, and other uncontrolled factors, these results indicate that NMR-based metabonomics of blood plasma can be useful as a screening tool to identify suspicious cases for subsequent, more specific radiological tests, thus contributing to improved disease management. PMID:21744875

  13. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    NASA Astrophysics Data System (ADS)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  14. Prospective evaluation of potential toxicity of repeated doses of Thymus vulgaris L. extracts in rats by means of clinical chemistry, histopathology and NMR-based metabonomic approach.

    PubMed

    Benourad, Fouzia; Kahvecioglu, Zehra; Youcef-Benkada, Mokhtar; Colet, Jean-Marie

    2014-10-01

    In the field of natural extracts, research generally focuses on the study of their biological activities for food, cosmetic, or pharmacological purposes. The evaluation of their adverse effects is often overlooked. In this study, the extracts of Thymus vulgaris L. were obtained by two different extraction methods. Intraperitoneal injections of both extracts were given daily for four days to male Wistar Han rats, at two different doses for each extract. The evaluation of the potential toxic effects included histopathological examination of liver, kidney, and lung tissues, as well as serum biochemistry of liver and kidney parameters, and (1)H-NMR-based metabonomic profiles of urine. The results showed that no histopathological changes were observed in the liver and kidney in rats treated with both extracts of thyme. Serum biochemical investigations revealed significant increases in blood urea nitrogen, creatinine, and uric acid in animals treated with polyphenolic extract at both doses. In these latter groups, metabonomic analysis revealed alterations in a number of urine metabolites involved in the energy metabolism in liver mitochondria. Indeed, the results showed alterations of glycolysis, Krebs cycle, and β-oxidative pathways as evidenced by increases in lactate and ketone bodies, and decreases in citrate, α-ketoglutarate, creatinine, hippurate, dimethylglycine, and dimethyalanine. In conclusion, this work showed that i.p. injection of repeated doses of thyme extracts causes some disturbances of intermediary metabolism in rats. The metabonomic study revealed interesting data which could be further used to determine the cellular pathways affected by such treatments. PMID:24574060

  15. Application of a NMR-based untargeted quantitative metabonomic approach to screen for illicit salbutamol administration in cattle.

    PubMed

    Tang, Chaohua; Zhang, Kai; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2016-07-01

    The use of metabonomic methodologies to identify illicit salbutamol administration in cattle has not been previously investigated. In this study, a nuclear magnetic resonance (NMR)-based untargeted quantitative metabonomic approach was applied to discriminate biofluid samples (plasma and urine) obtained from cattle before and after salbutamol treatment. Six male cattle (265.7 ± 3.9 kg) were fed salbutamol (0.15 mg/kg body weight) for 21 consecutive days. Plasma and urine samples were collected before and after treatment. By the use of targeted profiling, 46 and 43 metabolites in plasma and urine, respectively, were quantified, of which 9 and 11 metabolites were significantly affected (P < 0.05) by salbutamol treatment. Partial least squares discriminant analysis showed that both plasma and urine samples collected after treatment were well separated from those before treatment, with Q (2) values of 0.56 and 0.573 for plasma and urine samples, respectively. The variable importance plot (VIP) scores of glucose and lactate in plasma, and urine, hippurate, acetate, glycine, formate, n-phenylacetyl, benzoate, and phenylacetate in urine were >1.0, which implies that these metabolites may serve as potential biomarkers for salbutamol treatment. These findings suggest the potential value of NMR-based untargeted quantitative metabonomic methodologies for plasma and urine analyses as a screening technique for detection of illicit salbutamol usage in cattle. PMID:27116419

  16. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats.

    PubMed

    Bu, Qian; Lv, Lei; Yan, Guangyan; Deng, Pengchi; Wang, Yanli; Zhou, Jiaqing; Yang, Yanzhu; Li, Yan; Cen, Xiaobo

    2013-05-01

    (1)H NMR spectroscopy was applied to investigate the changes of cerebral metabolites in brain hippocampus, nucleus accumbens (NAC) and prefrontal cortex (PFC) of the rats subjected to subcutaneous twice-daily injections of 2.5mg/kg methamphetamine (MAP) for 7 days. The results indicated that MAP exposure induced significant behavioral sensitization and altered cerebral metabolites in rats. The neurotransmitters glutamate, glutamine and GABA significantly decreased in hippocampus, NAC and PFC. Specifically, increased succinic acid semialdehyde, a metabolism product of GABA, was observed in hippocampus. Additionally, decreased serotonin was observed in both NAC and PFC, whereas decreased dopamine was only observed in NAC after repeated MAP treatment. Glutathione obviously decreased in above brain regions, whereas acetylcysteine declined in hippocampus and NAC, and taurine declined in NAC and PFC. Homocysteic acid was elevated in hippocampus and NAC by repeated MAP administration. Membrane ingredients like phosphocholine elevated in response to MAP administration in NAC and PFC. N-Acetyl-aspartate, a marker of neuronal viability, decreased in the three regions; however, myo-inositol, a glial cell marker, increased in hippocampus and PFC. Tricarboxylic acid cycle intermediate products, such as α-ketoglutarate, succinate, citrate and the methionine significantly decreased in above three brain regions after MAP administration; however, ADP decreased in hippocampus. These results indicate that repeated MAP treatment causes neurotransmitters disturbance, imbalance between oxidative stress and antioxidants, and gliosis in hippocampus, NAC and PFC. Profound metabolic changes detected across brain regions provide the first evidence of metabonomic changes in MAP-induced sensitized rats. PMID:23462569

  17. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1H NMR spectroscopy

    PubMed Central

    HASIM, AYSHAMGUL; ALI, MAYINUER; MAMTIMIN, BATUR; MA, JUN-QI; LI, QIAO-ZHI; ABUDULA, ABULIZI

    2012-01-01

    1H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  18. Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by (1)H NMR spectroscopy.

    PubMed

    Hasim, Ayshamgul; Ali, Mayinuer; Mamtimin, Batur; Ma, Jun-Qi; Li, Qiao-Zhi; Abudula, Abulizi

    2012-06-01

    (1)H nuclear magnetic resonance (NMR)-based metabonomics has been used to characterize the metabolic profiles of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC). Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to model the systematic variation related to patients with CIN or CSCC with healthy controls. Potential metabolic biomarkers were identified using database comparisons, and the one-way analysis of variance (ANOVA) test was used to examine the significance of the metabolites. Compared with plasma obtained from the healthy controls, plasma from patients with CIN had higher levels of very-low density lipoprotein (VLDL), acetone, unsaturated lipid and carnitine, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, glycine, acetylcysteine, myo-inositol, choline and glycoprotein. Plasma from patients with CSCC had higher levels of acetate and formate, together with lower levels of creatine, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine and tyrosine compared with the plasma of the healthy controls. In addition, compared with the plasma of patients with CIN, the plasma of CSCC patients had higher levels of acetate, formate, lactate, isoleucine, leucine, valine, alanine, glutamine, histidine, tyrosine, acetylcysteine, myo-inositol, glycoprotein, α-glucose and β-glucose, together with lower levels of acetone, unsaturated lipid and carnitine. Moreover, the profiles showed high feasibility and specificity by statistical analysis with OPLS-DA compared to the Thinprep cytology test (TCT) by setting the histopathological outcome as standard. The metabolic profile obtained for cervical cancer is significant, even for the precancerous disease. This suggests a systemic metabolic response to cancer, which may be used to identify potential early diagnostic biomarkers of the cancer and to establish

  19. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse.

    PubMed

    Jiang, Ning; Yan, Xianzhong; Zhou, Wenxia; Zhang, Qi; Chen, Hebing; Zhang, Yongxiang; Zhang, Xuemin

    2008-09-01

    In this work, metabonomic methods utilizing (1)H NMR spectroscopy and multivariate statistical technique have been applied to investigate the metabolic profiles of SAM. The serum metabolome of senescence-prone 8 (SAMP8), a murine model of age-related learning and memory deficits and Alzheimer's disease (AD), was compared with that of control, senescence-resistant 1 (SAMR1), which shows normal aging process. Serum samples were collected for study from both male and female 12-month-old SAMP8 and age matched SAMR1 ( n = 5). (1)H NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The results showed that the serum metabolic patterns of SAMP8 and SAMR1 were significantly different due to strains and genders. Subtle differences in the endogenous metabolite profiles in serum between SAMP8 and SAMR1 were observed. The most important metabolite responsible for the strain separation was lack of inosine, which meant the protective function of anti-inflammation, immunomodulation and neuroprotection might be attenuated in SAMP8. Other differential metabolites observed between strains included decreased glucose, PUFA, choline, phosphocholine, HDL, LDL, D-3-hydoxybutyrate, citrate and pyruvate and increased lactate, SFA, alanine, methionine, glutamine and VLDL in serum of SAMP8 compared with those of SAMR1, suggesting perturbed glucose and lipid metabolisms in SAMP8. Besides the differences observed between the strains, an impact of gender on metabolism was also found. The females exhibited larger metabolic deviations than males and these gender differences in SAMP8 were much larger than in SAMR1. Higher levels of VLDL, lactate and amino acids and lower levels of HDL, LDL and unsaturated lipids were detected in female than in male SAMP8. These facts indicated that the metabolism disequilibrium in female and male SAMP8 was different and this may partly explain that females were more prone to AD than males. The results of this work may

  20. (1)H-NMR-based discrimination of thermal and vinegar treated ginseng roots.

    PubMed

    Kim, So-Hyun; Hyun, Sun-Hee; Yang, Seung-Ok; Choi, Hyung-Kyoon; Lee, Boo-Yong

    2010-08-01

    To investigate the changes in nonvolatile metabolites of thermal and/or vinegar treated ginseng (TVG), samples prepared using various treatment conditions were analyzed using an (1)H-NMR-based metabolomics technique. The processing conditions of the ginseng in this study were 100, 140, and 180 degrees C with and without vinegar and the duration of exposure to each temperature was 10, 30, and 50 min, respectively. There was a clear separation in the score plots among various treatment conditions. Major compounds contributing to the separation of 50% methanol extracts of TVG with various process conditions were valine, lactate, alanine, arginine, glucose, fructose, and sucrose. As temperature increased, valine, arginine, glucose, fructose, and sucrose concentrations decreased, whereas lactate, glucose, and fructose increased in the vinegar-treated samples compared to non-vinegar-treated samples. The present study suggests the usefulness of an (1)H-NMR-based metabolomics approach to discriminate TVG samples, subjected to different processing conditions. PMID:20722913

  1. [¹H-NMR based metabonomic approach to evaluate anti-coagulant effect of Danggui Sini decoction].

    PubMed

    Zheng, Hua; Qin, Xia; Song, Hui; Tang, Chao-lin; Ruan, Jun-xiang; Zhang, Hong-ye; Lu, Shi-yin; Liang, Yong-hong; Su, Zhi-heng

    2015-10-01

    To study the anti-coagulant effect and influence of danggui Sini decoction (DSD) on rat's plasma endogenous metabolites by animal experiment and ¹H-NMR based metabolomics method. After intragastric administration of Danggui Sini Decoction for 7 days, Plasma thrombin time (TT) was measured. Rat plasma metabolic fingerprint in two groups was analyzed using ¹H-NMR, based on which the principal component analysis( PCA) and orthogonal partial least-squares discriminant analysis(OPLS-DA) models for metabonomic analysis. Potential biomarkers were screened by using variable importance in the projection (VIP) and T test. DSD could prolong TT of the rat significantly (P < 0.05). Compared with control group, six kinds of endogenous metabolites in DSD group change significantly (P < 0.05), among which isobutyrate, carnitine and phenylalanine content had an upward trend (P < 0.01) and lysine, Histidine and cholesterol content had a downward trend (P < 0.05). It is likely that carnitine, phenylalanine, Histidine and cholesterol are the potential metabolic markers in the anti-coagulant process and DSD affects the platelet aggregation and the expression of tissue factor and fiber protease by regulating the energy, amino acid and lipid metabolism. PMID:27062832

  2. 1H NMR Based Serum Metabolic Profiles Associated with Pathological Progression of Pancreatic Islet β Cell Tumor in Rip1-Tag2 Mice

    PubMed Central

    Yang, Yongxia; Liu, Ying; Zheng, Lingyun; Zhang, Qianqian; Gu, Quliang; Wang, Linlin; Wang, Lijing

    2015-01-01

    Pancreatic islet β cell tumor is the most common islet cell tumor. A well-characterized tumor progression in Rip1-Tag2 mice undergoes five stages, involving normal, hyperplasia, angiogenic islets, tumorigenesis and invasive carcinoma. 1H NMR based metabonomics was applied to identify potential biomarkers for monitoring pancreatic islet β cell tumor progression in Rip1-Tag2 mice. Multivariate analysis results showed the serum metabonome at hyperplasia stage shared the similar characteristics with the ones at normal stage as a result of slight proliferation of pancreatic islet β cells. At angiogenic islets stage, the up-regulated glycolysis, disturbed choline and phospholipid metabolism composed the metabolic signature. In addition to the changes mentioned above, several metabolites were identified as early biomarkers for tumorigenesis, including increased methionine, citrate and choline, and reduced acetate, taurine and glucose, which suggested the activated energy and amino acid metabolism. All the changes were aggravated at invasive carcinoma stage, coupled with notable changes in alanine, glutamate and glycine. Moreover, the distinct metabolic phenotype was found associated with the implanting of SV40 large T antigen in Rip1-Tag2 mice. The combined metabolic and multivariate statistics approach provides a robust method for screening the biomarkers of disease progression and examining the association between gene and metabolism. PMID:25892966

  3. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments

    PubMed Central

    Dona, Anthony C.; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A.; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R.

    2016-01-01

    Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice. PMID:27087910

  4. ¹H NMR-based metabonomics in brain nucleus accumbens and striatum following repeated cocaine treatment in rats.

    PubMed

    Li, Y; Yan, G-Y; Zhou, J-Q; Bu, Q; Deng, P-C; Yang, Y-Z; Lv, L; Deng, Y; Zhao, J-X; Shao, X; Zhu, R-M; Huang, Y-N; Zhao, Y-L; Cen, X-B

    2012-08-30

    Studies have shown a few cerebral metabolites modified by cocaine in brain regions; however, endogenous metabolic profiling has been lacking. Ex vivo (1)H NMR (hydrogen-1 nuclear magnetic resonance) spectroscopy-based metabonomic approach coupled with partial least squares was applied to investigate the changes of cerebral metabolites in nucleus accumbens (NAc) and striatum of rats subjected to cocaine treatment. Our results showed that both single and repeated cocaine treatment can induce significant changes in a couple of cerebral metabolites. The increase of neurotransmitters glutamate and gamma-amino butyric acid (GABA) were observed in NAc and striatum from the rats repeatedly treated with cocaine. Creatine and taurine increased in NAc whereas taurine increased and creatine decreased in striatum after repeated cocaine treatment. Elevation of N-acetylaspartate in NAc and striatum and decrease of lactate in striatum were observed, which may reflect the mitochondria dysregulation caused by cocaine; moreover, alterations of choline, phosphocholine and glycerol in NAc and striatum could be related to membrane disruption. Moreover, groups of rats with and without conditioned place preference (CPP) apparatus are presenting difference in metabolites. Collectively, our results provide the first evidence of metabonomic profiling of NAc and striatum in response to cocaine, exhibiting a regionally-specific alteration patterns. We find that repeated cocaine administration leads to significant metabolite alterations, which are involved in neurotransmitter disturbance, oxidative stress, mitochondria dysregulation and membrane disruption in brain. PMID:22609933

  5. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  6. Prediction of variability in CYP3A4 induction using a combined 1H NMR metabonomics and targeted UPLC-MS approach.

    PubMed

    Rahmioglu, Nilufer; Le Gall, Gwénaëlle; Heaton, James; Kay, Kristine L; Smith, Norman W; Colquhoun, Ian J; Ahmadi, Kourosh R; Kemsley, E Kate

    2011-06-01

    The activity of Cytochrome P450 3A4 (CYP3A4) enzyme is associated with many adverse or poor therapeutic responses to drugs. We used (1)H NMR-based metabonomics to identify a metabolic signature associated with variation in induced CYP3A4 activity. A total of 301 female twins, aged 45--84, participated in this study. Each volunteer was administered a potent inducer of CYP3A4 (St. John's Wort) for 14 days and the activity of CYP3A4 was quantified through the metabolism of the exogenously administered probe drug quinine sulfate (300 mg). Pre- and postintervention fasting urine samples were used to obtain metabolite profiles, using (1)H NMR spectroscopy, and were analyzed using UPLC--MS to obtain a marker for CYP3A4 induction, via the ratio of 3-hydroxyquinine to quinine (3OH-Q:Q). Multiple linear regression was used to build a predictive model for 3OH-Q:Q values based on the preintervention metabolite profiles. A combination of seven metabolites and seven covariates showed a strong (r = 0.62) relationship with log(3OH-Q:Q). This regression model demonstrated significant (p < 0.00001) predictive ability when applied to an independent validation set. Our results highlight the promise of metabonomics for predicting CYP3A4-mediated drug response. PMID:21491888

  7. Revealing Potential Biomarkers of Functional Dyspepsia by Combining 1H NMR Metabonomics Techniques and an Integrative Multi-objective Optimization Method

    PubMed Central

    Wu, Qiaofeng; Zou, Meng; Yang, Mingxiao; Zhou, Siyuan; Yan, Xianzhong; Sun, Bo; Wang, Yong; Chang, Shyang; Tang, Yong; Liang, Fanrong; Yu, Shuguang

    2016-01-01

    Metabonomics methods have gradually become important auxiliary tools for screening disease biomarkers. However, recognition of metabolites or potential biomarkers closely related to either particular clinical symptoms or prognosis has been difficult. The current study aims to identify potential biomarkers of functional dyspepsia (FD) by a new strategy that combined hydrogen nuclear magnetic resonance (1H NMR)-based metabonomics techniques and an integrative multi-objective optimization (LPIMO) method. First, clinical symptoms of FD were evaluated using the Nepean Dyspepsia Index (NDI), and plasma metabolic profiles were measured by 1H NMR. Correlations between the key metabolites and the NDI scores were calculated. Then, LPIMO was developed to identify a multi-biomarker panel by maximizing diagnostic ability and correlation with the NDI score. Finally, a KEGG database search elicited the metabolic pathways in which the potential biomarkers are involved. The results showed that glutamine, alanine, proline, HDL, β-glucose, α-glucose and LDL/VLDL levels were significantly altered in FD patients. Among them, phosphatidycholine (PtdCho) and leucine/isoleucine (Leu/Ile) were positively and negatively correlated with the NDI Symptom Index (NDSI) respectively. Our procedure not only significantly improved the credibility of the biomarkers, but also demonstrated the potential of further explorations and applications to diagnosis and treatment of complex disease. PMID:26743458

  8. Toxicity assessment of Arisaematis Rhizoma in rats by a (1)H NMR-based metabolomics approach.

    PubMed

    Dong, Ge; Wang, Junsong; Guo, Pingping; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2015-02-01

    Arisaematis Rhizoma (AR), a famous traditional Chinese medicine, has been widely used in Asia over thousands of years. Documented with noticeable toxicity in ancient books, AR has been used to treat various diseases in the clinic. Therefore, it is important to assess the toxicity of AR dynamically and holistically. In this study, a (1)H NMR-based metabolomics approach complemented with serum chemistry and histopathology has been applied to investigate the toxicity of AR. Rats were intragastrically administered with AR (0, 0.5 and 1 g kg(-1) body weight) for 30 days, and serum and urine samples were collected. Their (1)H NMR profiles were analyzed by multivariate pattern recognition techniques to denote metabolic variations induced by AR, and 13 metabolites in urine and 6 metabolites in serum were significantly altered, which suggested that disturbances in energy metabolism, perturbation of the gut microflora environment, membrane damage, folate deficiency and injury of kidneys are produced by AR. Histopathology showed a slight vacuolization of the glomerular matrix and edema of renal tubular epithelial cells in kidneys of AR administered rats, which were evidenced by increased levels of blood urea nitrogen and creatinine in serum chemistry. Our results indicated that oral administration of crude AR was found to induce slight renal toxicity. Therefore, precautions should be made to monitor the potential nephrotoxicity of AR in clinical use. The metabolomics approach provided a promising tool for the study and better understanding of TCM-induced toxicity dynamically and holistically. PMID:25407163

  9. Discrimination of the geographical origin of beef by (1)H NMR-based metabolomics.

    PubMed

    Jung, Youngae; Lee, Jueun; Kwon, Joseph; Lee, Kwang-Sik; Ryu, Do Hyun; Hwang, Geum-Sook

    2010-10-13

    The geographical origin of beef is of increasing interest to consumers and producers due to "mad cow" disease and the implementation of the Free Trade Agreement (FTA). In this study, (1)H NMR spectroscopy coupled with multivariate statistical analyses was used to differentiate the geographical origin of beef samples. Principal component analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) showed significant separation between extracts of beef originating from four countries: Australia, Korea, New Zealand, and the United States. The major metabolites responsible for differentiation in OPLS-DA loading plots were succinate and various amino acids including isoleucine, leucine, methionine, tyrosine, and valine. A one-way ANOVA was performed to statistically certify the difference in metabolite levels. The data suggest that NMR-based metabolomics is an efficient method to distinguish fingerprinting difference between raw beef samples, and several metabolites including various amino acids and succinate can be possible biomarkers for discriminating the geographical origin of beef. PMID:20831251

  10. NMR Based Cerebrum Metabonomic Analysis Reveals Simultaneous Interconnected Changes during Chick Embryo Incubation

    PubMed Central

    Feng, Yue; Zhu, Hang; Zhang, Xu; Wang, Xuxia; Xu, Fuqiang; Tang, Huiru; Ye, Chaohui; Liu, Maili

    2015-01-01

    To find out if content changes of the major functional cerebrum metabolites are interconnected and formed a network during the brain development, we obtained high-resolution magic-angle-spinning (HR-MAS) 1H NMR spectra of cerebrum tissues of chick embryo aged from incubation day 10 to 20, and postnatal day 1, and analyzed the data with principal component analysis (PCA). Within the examined time window, 26 biological important molecules were identified and 12 of them changed their relative concentration significantly in a time-dependent manner. These metabolites are generally belonged to three categories, neurotransmitters, nutrition sources, and neuronal or glial markers. The relative concentration changes of the metabolites were interconnected among/between the categories, and, more interestingly, associated with the number and size of Nissl-positive neurons. These results provided valuable biochemical and neurochemical information to understand the development of the embryonic brain. PMID:26485040

  11. NMR-Based Metabonomic Analysis of Physiological Responses to Starvation and Refeeding in the Rat.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda, L Gerardo

    2016-09-01

    Starvation is a postabsorptive condition derived from a limitation on food resources by external factors. Energy homeostasis is maintained under this condition by using sources other than glucose via adaptive mechanisms. After refeeding, when food is available, other adaptive processes are linked to energy balance. However, less has been reported about the physiological mechanisms present as a result of these conditions, considering the rat as a supraorganism. Metabolic profiling using (1)H nuclear magnetic resonance spectroscopy was used to characterize the physiological metabolic differences in urine specimens collected under starved, refed, and recovered conditions. In addition, because starvation induced lack of faecal production and not all animals produced faeces during refeeding, 24 h pooled faecal water samples were also analyzed. Urinary metabolites upregulated by starvation included 2-butanamidoacetate, 3-hydroxyisovalerate, ketoleucine, methylmalonate, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglycine, pseudouridine, creatinine, taurine, and N-acetyl glycoprotein, which were related to renal and skeletal muscle function, β-oxidation, turnover of proteins and RNA, and host-microbial interactions. Food-derived metabolites, including gut microbial cometabolites, and tricarboxylic acid cycle intermediates were upregulated under refed and recovered conditions, which characterized anabolic urinary metabotypes. The upregulation of creatine and pantothenate indicated an absorptive state after refeeding. Fecal short chain fatty acids, 3-(3-hydroxyphenyl)propionate, lactate, and acetoin provided additional information about the combinatorial metabolism between the host and gut microbiota. This investigation contributes to allow a deeper understanding of physiological responses associated with starvation and refeeding. PMID:27518853

  12. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH THE USE OF NMR BASED METABONOMICS

    EPA Science Inventory

    In support of the Environmental Protection Agency's Computational Toxicology Program, metabonomics, the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, is being employed to enable rapid id...

  13. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    PubMed Central

    Ghazi, Negar; Arjmand, Mohammad; Akbari, Ziba; Mellati, Ali Owsat; Saheb-Kashaf, Hamid; Zamani, Zahra

    2016-01-01

    Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs) and quadratic discriminant analysis (QDA) modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III) who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients. PMID:27141542

  14. {sup 1}H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    SciTech Connect

    Zhang, Ying; Lin, Lianjie; Xu, Yanbin; Lin, Yan; Jin, Yu; Zheng, Changqing

    2013-04-19

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ({sup 1}H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC.

  15. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen.

    PubMed

    Kovacevic, Vera; Simpson, André J; Simpson, Myrna J

    2016-09-01

    Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna. PMID:26809854

  16. Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts

    NASA Astrophysics Data System (ADS)

    Lin, Bencheng; Zhang, Huashan; Lin, Zhiqing; Fang, Yanjun; Tian, Lei; Yang, Honglian; Yan, Jun; Liu, Huanliang; Zhang, Wei; Xi, Zhuge

    2013-05-01

    The toxicological effects of single-walled carbon nanotubes (SWCNTs) were investigated after intratracheal instillation in male Wistar rats over a 15-day period using metabonomic analysis of 1H (nuclear magnetic resonance) NMR spectra of blood plasma and liver tissue extracts. Concurrent liver histopathology examinations and plasma clinical chemistry analyses were also performed. Significant changes were observed in clinical chemistry features, including alkaline phosphatase, total protein, and total cholesterol, and in liver pathology, suggesting that SWCNTs clearly have hepatotoxicity in the rat. 1H NMR spectra and pattern recognition analyses from nanomaterial-treated rats showed remarkable differences in the excretion of lactate, trimethylamine oxide, bilineurin, phosphocholine, amylaceum, and glycogen. Indications of amino acid metabolism impairment were supported by increased lactate concentrations and decreased alanine concentrations in plasma. The rise in plasma and liver tissue extract concentrations of choline and phosphocholine, together with decreased lipids and lipoproteins, after SWCNTs treatment indicated a disruption of membrane fluidity caused by lipid peroxidation. Energy, amino acid, and fat metabolism appeared to be affected by SWCNTs exposure. Clinical chemistry and metabonomic approaches clearly indicated liver injury, which might have been associated with an indirect mechanism involving nanomaterial-induced oxidative stress.

  17. 1H-NMR-based profiling of organic components in leachate from animal carcasses disposal site with time.

    PubMed

    Kwon, Yong-Kook; Bae, Hyun-Whee; Shin, Sun Kyoung; Jeon, Tae-Wan; Seo, Jungju; Hwang, Geum-Sook

    2014-09-01

    Leachate, generated by the decomposition of animal carcasses, presents many environmental, sanitary, and food safety hazards. However, research on the characteristics of leachate is lacking. In this study, we performed biochemical profiling of leachate from two animal species (pig and cattle) in two soil types (sandy loam and sandy soil) using (1)H-NMR-based profiling, followed by multivariate data analysis. The leachate was collected from a well-controlled artificial burial site over a 31-week period. Principal components analysis (PCA) of the NMR data showed similar patterns between species and soil types. Organic components, including organic acids and phenols, predominated, and their levels increased with time. The methylamine level in leachate from pig carcasses 18 weeks following burial was significantly higher than that from cattle carcasses; leachate from cattle carcasses in sandy soil 1 week after burial contained unique components (specifically ethanol, formate, alanine, N-methylation, and taurine), in contrast with those from sandy loam soil. This study suggests that a NMR-based profiling approach is useful to characterize the organic components in leachate from animal carcasses over time. PMID:24819439

  18. Study of the Cardiotoxicity of Venenum Bufonis in Rats using an 1H NMR-Based Metabolomics Approach

    PubMed Central

    Wang, Junsong; Guo, Pingping; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2015-01-01

    Venenum Bufonis, a well-known traditional Chinese medicine, has been widely used in Asia and has gained popularity in Western countries over the last decade. Venenum Bufonis has obvious side effects that have been observed in clinical settings, but few studies have reported on its cardiotoxicity. In this work, the cardiotoxicity of Venenum Bufonis was investigated using a 11H NMR-based metabolomics approach. The 1H NMR profiles of the serum, myocardial extracts and liver extracts of specific-pathogen-free rats showed that Venenum Bufonis produced significant metabolic perturbations dose-dependently with a distinct time effect, peaking at 2 hr after dosing and attenuating gradually. Clinical chemistry, electrocardiographic recordings, and histopathological evaluation provided additional evidence of Venenum Bufonis-induced cardiac damage that complemented and supported the metabolomics findings. The combined results demonstrated that oxidative stress, mitochondrial dysfunction, and energy metabolism perturbations were associated with the cardiac damage that results from Venenum Bufonis. PMID:25781638

  19. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes. PMID:26540222

  20. (1)H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model.

    PubMed

    Niu, Qian-Yun; Li, Zhen-Yu; Du, Guan-Hua; Qin, Xue-Mei

    2016-01-25

    Doxorubicin (DOX) is used as a chemotherapy drug with severe carditoxicity. In this study, an integrated echocardiography along with pathological examination and (1)H NMR analysis of multiple biological matrices (urine, serum, heart, and kidney) was employed to systemically assess the toxicity of DOX. Echocardiographic results showed that impaired left ventricular contractility and degenerative pathology lesions in DOX group, which were in consistent with pathology. The endogenous metabolites in the urine, serum, heart and kidney was identified by comparison with the data from the literature and databases. Multivariate analysis, including PCA and OPLS, revealed 8 metabolites in urine, including succinate, 2-ketoglutarate, citrate, hippurate, methylamine, benzoate, allantion, and acetate were the potential changed biomarkers. In serum, perturbed metabolites include elevation of leucine, β-glucose, O-acetyl-glycoprotein, creatine, lysine, glycerin, dimethylglycine, trimethylamine-N-oxide, myo-inositol, and N-acetyl-glycoprotein, together with level decreases of acetone, lipid, lactate, glutamate, phosphocholine, acetoacetate and pyruvate. For heart, DOX exposure caused decline of lipid, lactate, leucine, alanine, glutamate, choline, xanthine, glycerin, carnitine, and fumarate, together with elevation of glutamine, creatine, inosine, taurine and malate. Metabolic changes of kidney were mainly involved in the accumulation of α-glucose, lactate, phosphocholine, betaine, threonine, choline, taurine, glycine, urea, hypoxanthine, glutamate, and nicotinamide, coupled with reduction of asparagine, valine, methionine, tyrosine, lysine, alanine, leucine, ornithine, creatine, lipid, and acetate. In addition, alterations of urinary metabolites exhibited a time-dependent manner. Complementary evidences by multiple matrices revealed disturbed pathways concerning energy metabolism, fatty acids oxidation, amino acids and purine metabolism, choline metabolism, and gut microbiota

  1. (1)H NMR based metabolomics approach to study the toxic effects of dichlorvos on goldfish (Carassius auratus).

    PubMed

    Liu, Yan; Chen, Ting; Li, Ming-Hui; Xu, Hua-Dong; Jia, Ai-Qun; Zhang, Jian-Fa; Wang, Jun-Song

    2015-11-01

    Dichlorvos (DDVP), one of the most widely used organophosphorus pesticides (OPs), has caused serious pollution in environment. In this study, (1)H nuclear magnetic resonance (NMR) based metabolomics approach combined with histopathological and immunohistochemical examination, and biochemical assays were used to investigate toxicities of DDVP on goldfish (Carassius auratus). After 10 days' exposure of DDVP at three dosages of 5.18, 2.59 and 1.73 mg/L, goldfish tissues (gill, brain, liver and kidney) and serum were collected. Histopathology revealed severe impairment of gills, livers and kidneys, and immunohistochemistry disclosed glial fibrillary acidic protein (GFAP) positive reactive astrocytes in brains. Orthogonal signal correction-partial least squares-discriminant analysis (OSC-PLS-DA) of NMR profiles disclosed that DDVP influenced many metabolites (glutamate, aspartate, acetylcholine, 4-aminobutyrate, glutathione, AMP and lactate in brain; glutathione, glucose, histamine in liver; BCAAs, AMP, aspartate, glutamate, riboflavin in kidney) dose-dependently, involved with imbalance of neurotransmitters, oxidative stress, and disorders of energy and amino acid metabolism. Several self-protection mechanisms concerning glutamate degradation and glutathione (GSH) redox system were found in DDVP intoxicated goldfish. PMID:26210017

  2. 1H NMR-Based Metabolite Profiling of Plasma in a Rat Model of Chronic Kidney Disease

    PubMed Central

    Kim, Ju-Ae; Choi, Hyo-Jung; Kwon, Yong-Kook; Ryu, Do Hyun; Kwon, Tae-Hwan; Hwang, Geum-Sook

    2014-01-01

    Chronic kidney disease (CKD) is characterized by the gradual loss of the kidney function to excrete wastes and fluids from the blood. 1H NMR-based metabolomics was exploited to investigate the altered metabolic pattern in rats with CKD induced by surgical reduction of the renal mass (i.e., 5/6 nephrectomy (5/6 Nx)), particularly for identifying specific metabolic biomarkers associated with early of CKD. Plasma metabolite profiling was performed in CKD rats (at 4- or 8-weeks after 5/6 Nx) compared to sham-operated rats. Principle components analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) score plots showed a significant separation between the groups. The resulting metabolic profiles demonstrated significantly increased plasma levels of organic anions, including citrate, β-hydroxybutyrate, lactate, acetate, acetoacetate, and formate in CKD. Moreover, levels of alanine, glutamine, and glutamate were significantly higher. These changes were likely to be associated with complicated metabolic acidosis in CKD for counteracting systemic metabolic acidosis or increased protein catabolism from muscle. In contrast, levels of VLDL/LDL (CH2)n and N-acetylglycoproteins were decreased. Taken together, the observed changes of plasma metabolite profiles in CKD rats provide insights into the disturbed metabolism in early phase of CKD, in particular for the altered metabolism of acid-base and/or amino acids. PMID:24465563

  3. LC-MS- and (1)H NMR-Based Metabolomic Analysis and in Vitro Toxicological Assessment of 43 Aristolochia Species.

    PubMed

    Michl, Johanna; Kite, Geoffrey C; Wanke, Stefan; Zierau, Oliver; Vollmer, Guenter; Neinhuis, Christoph; Simmonds, Monique S J; Heinrich, Michael

    2016-01-22

    Species of Aristolochia are used as herbal medicines worldwide. They cause aristolochic acid nephropathy (AAN), a devastating disease associated with kidney failure and renal cancer. Aristolochic acids I and II (1 and 2) are considered to be responsible for these nephrotoxic and carcinogenic effects. A wide range of other aristolochic acid analogues (AAAs) exist, and their implication in AAN may have been overlooked. An LC-MS- and (1)H NMR-based metabolomic analysis was carried out on 43 medicinally used Aristolochia species. The cytotoxicity and genotoxicity of 28 Aristolochia extracts were measured in human kidney (HK-2) cells. Compounds 1 and 2 were found to be the most common AAAs. However, AA IV (3), aristolactam I (4), and aristolactam BI (5) were also widespread. No correlation was found between the amounts of 1 or 2 and extract cytotoxicity against HK-2 cells. The genotoxicity and cytotoxicity of the extracts could be linked to their contents of 5, AA D (8), and AA IIIa (10). These results undermine the assumption that 1 and 2 are exclusively responsible for the toxicity of Aristolochia species. Other analogues are likely to contribute to their toxicity and need to be considered as nephrotoxic agents. These findings facilitate understanding of the nephrotoxic mechanisms of Aristolochia and have significance for the regulation of herbal medicines. PMID:26706944

  4. Combining biochemical with (1)H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism.

    PubMed

    Shen, Xiao-Li; Liu, Huan; Xiang, Huan; Qin, Xue-Mei; Du, Guan-Hua; Tian, Jun-Sheng

    2016-09-10

    Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal metabolism of carbohydrates, lipids and proteins. Genipin possesses a wide spectrum of biological activities including ameliorating effects on diabetes, but the definite mechanism of this effect remains unknown. To investigate the antidiabetic activities of genipin and explore the biochemical changes of serum endogenous metabolites on diabetic rats induced by alloxan, (1)H NMR spectroscopy coupled with multivariate data analysis was used to. All rats were randomly divided into six groups including negative control (NC) group, diabetic mellitus (DM) group, metformin hydrochloride group, high dose group of genipin, middle dose group of genipin and low dose group of genipin. Diabetes was induced by a single intraperitoneal injection of 120mg/kg body weight of alloxan. Serum samples were collected for the (1)H NMR-based metabolomics and clinical biochemical analysis. Daily oral administration of genipin (25, 50 and 100mg/kg body weight) and metformin hydrochloride (125mg/kg) for two weeks showed beneficial effects on blood glucose level (P<0.01). Significant differences in the metabolic profile as well as the result of biochemical parameters between the diabetic group and the control group were observed. The PLS-DA scores and corresponding loading plots demonstrated that genipin significantly restored the abnormal metabolic state. Detailed analysis of the altered metabolite levels indicated that genipin significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism and amino acid metabolism. Genipin showed the best anti-diabetic effects at a dose of 100mg/kg in rats. This finding indicates that chemical and metabolomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment. PMID:27411170

  5. NMR-based metabonomic analysis on effect of light on production of antioxidant phenolic compounds in submerged cultures of Inonotus obliquus.

    PubMed

    Zheng, Weifa; Zhang, Meimei; Zhao, Yanxia; Miao, Kangjie; Jiang, Hong

    2009-10-01

    This study was designed to investigate the light effect on biosynthesis of antioxidant phenolic compounds by Inonotus obliquus grown in submerged cultures using (1)H NMR spectroscopy combining multivariate pattern recognition strategies. I. obliquus were exposed to a range of light conditions and resultant data were compared to those from field-grown sclerotia and the mycelia grown in daylight. Daylight illumination inhibited biosynthesis of davallialactone and phelligridins and other hispidin analogs. Continuous darkness enhanced the formation of phelligridins, davallialactone and inoscavins. Phelligridins and davallialactone also occurred in the mycelia grown in blue and red light with levels lower than those found in darkness. In addition, polyphenols synthesized under daylight conditions showed less potential antioxidant activity than those determined with other light regimes. These findings demonstrate that light regulates biosynthesis of polyphenols in I. obliquus and their subsequent antioxidant activities, and (1)H NMR-based metabolic profiling is a cost-effective approach for evaluating light effects on fungal metabolisms. PMID:19433352

  6. Metabonomic Response to Milk Proteins after a Single Bout of Heavy Resistance Exercise Elucidated by 1H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Yde, Christian Clement; Ditlev, Ditte Bruun; Reitelseder, Søren; Bertram, Hanne Christine

    2013-01-01

    In the present study, proton NMR-based metabonomics was applied on femoral arterial plasma samples collected from young male subjects (milk protein n = 12 in a crossover design; non-caloric control n = 8) at different time intervals (70, 220, 370 min) after heavy resistance training and intake of either a whey or calcium caseinate protein drink in order to elucidate the impact of the protein source on post-exercise metabolism, which is important for muscle hypertrophy. Dynamic changes in the post-exercise plasma metabolite profile consisted of fluctuations in alanine, beta-hydroxybutyrate, branched amino acids, creatine, glucose, glutamine, glutamate, histidine, lipids and tyrosine. In comparison with the intake of a non-caloric drink, the same pattern of changes in low-molecular weight plasma metabolites was found for both whey and caseinate intake. However, the study indicated that whey and caseinate protein intake had a different impact on low-density and very-low-density lipoproteins present in the blood, which may be ascribed to different effects of the two protein sources on the mobilization of lipid resources during energy deficiency. In conclusion, no difference in the effects on low-molecular weight metabolites as measured by proton NMR-based metabonomics was found between the two protein sources. PMID:24957889

  7. Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using (1)H-NMR based metabolomics.

    PubMed

    Lankadurai, Brian P; Nagato, Edward G; Simpson, André J; Simpson, Myrna J

    2015-10-01

    The enhanced production and environmental release of Buckminsterfullerene (C60) nanoparticles will likely increase the exposure and risk to soil dwelling organisms. We used (1)H NMR-based metabolomics to investigate the response of Eisenia fetida earthworms to sub-lethal C60 nanoparticle exposure in both contact and soil tests. Principal component analysis of (1)H NMR data showed clear separation between controls and exposed earthworms after just 2 days of exposure, however as exposure time increased the separation decreased in soil but increased in contact tests suggesting potential adaptation during soil exposure. The amino acids leucine, valine, isoleucine and phenylalanine, the nucleoside inosine, and the sugars glucose and maltose emerged as potential bioindicators of exposure to C60 nanoparticles. The significant responses observed in earthworms using NMR-based metabolomics after exposure to very low concentrations of C60 nanoparticles suggests the need for further investigations to better understand and predict their sub-lethal toxicity. PMID:26024814

  8. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    PubMed Central

    Lankadurai, Brian P.; Furdui, Vasile I.; Reiner, Eric J.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  9. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil.

    PubMed

    Lankadurai, Brian P; Furdui, Vasile I; Reiner, Eric J; Simpson, André J; Simpson, Myrna J

    2013-01-01

    1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS) in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg) for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS), betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA) of contaminants is not clearly defined. PMID:24958147

  10. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    PubMed

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. PMID:26874256

  11. 1H NMR-based metabolomics combined with HPLC-PDA-MS-SPE-NMR for investigation of standardized Ginkgo biloba preparations

    PubMed Central

    Agnolet, Sara; Jaroszewski, Jerzy W.; Verpoorte, Robert

    2010-01-01

    Commercial preparations of Ginkgo biloba are very complex mixtures prepared from raw leaf extracts by a series of extraction and prepurification steps. The pharmacological activity is attributed to a number of flavonoid glycosides and unique terpene trilactones (TTLs), with largely uncharacterized pharmacological profiles on targets involved in neurological disorders. It is therefore important to complement existing targeted analytical methods for analysis of Ginkgo biloba preparations with alternative technology platforms for their comprehensive and global characterization. In this work, 1H NMR-based metabolomics and hyphenation of high-performance liquid chromatography, photo-diode array detection, mass spectrometry, solid-phase extraction, and nuclear magnetic resonance spectroscopy (HPLC-PDA-MS-SPE-NMR) were used for investigation of 16 commercially available preparations of Ginkgo biloba. The standardized extracts originated from Denmark, Italy, Sweden, and United Kingdom, and the results show that 1H NMR spectra allow simultaneous assessment of the content as well as identity of flavonoid glycosides and TTLs based on a very simple sample-preparation procedure consisting of extraction, evaporation and reconstitution in acetone-d6. Unexpected or unwanted extract constituents were also easily identified in the 1H NMR spectra, which contrasts traditional methods that depend on UV absorption or MS ionizability and usually require availability of reference standards. Automated integration of 1H NMR spectral segments (buckets or bins of 0.02 ppm width) provides relative distribution plots of TTLs based on their H-12 resonances. The present study shows that 1H NMR-based metabolomics is an attractive method for non-selective and comprehensive analysis of Ginkgo extracts. Electronic supplementary material The online version of this article (doi:10.1007/s11306-009-0195-x) contains supplementary material, which is available to authorized users. PMID:20526353

  12. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines. PMID:26110755

  13. A bird's eye view of anisatin induced convulsive seizures in brain by a (1)H NMR based metabolic approach.

    PubMed

    Wei, Dan-Dan; Ge-Dong; Guo, Ping-Ping; Wang, Jun-Song; Li, Ming-Hui; Yang, Ming-Hua; Kong, Ling-Yi

    2014-11-01

    Anisatin is the main convulsant component in plants of the genus Illicium, many of which are important spices or folk medicines. The neurotoxicity of anisatin has been widely investigated, mainly focusing on its action on the γ-amino butyrate (GABA) system; however, little is known about the metabolic alterations that it causes. In this study, a NMR-based metabolomic approach was performed on the extracts of cortexes and cerebellums of mice administered with anisatin to explore the metabolic events associated with its intoxication. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed many differential metabolites that indicated metabolic disturbance in neurotransmission and neuromodulation (GABA, glutamate, glutamine, and taurine), stress of reactive oxygen species (ROS) (ascorbate, phosphatidylcholine, choline, and ethanolamine), energy metabolism (NAD(+)i.e., nicotinamide-adenine dinucleotide, lactate, citrate, fumarate, creatine/phosphocreatine, and creatinine), amino acid metabolism (leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophan, alanine, threonine, and glycine) and nucleic acid metabolism (NAD(+), nicotinamide/niacinamide, adenosine, and guanosine). This pilot metabolomic study on anisatin intoxication should help to develop a holistic view of convulsive seizures induced by anisatin, and provide a better understanding of the mechanisms. PMID:25133938

  14. 1H NMR-Based Metabolomics Investigation of Copper-Laden Rat: A Model of Wilson’s Disease

    PubMed Central

    Xu, Jingjing; Jiang, Huaizhou; Li, Jinquan; Cheng, Kian-Kai; Dong, Jiyang; Chen, Zhong

    2015-01-01

    Background and Purpose Wilson’s disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of ‘decoppering’ process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established. Materials and Methods A combination of 1HNMR spectroscopy and multivariate statistical analysis was applied to examine the metabolic profiles of the urine and blood serum samples collected from the copper-laden rat model of WD with PA treatment. Results Copper accumulation in the copper-laden rats is associated with increased lactate, creatinine, valine and leucine, as well as decreased levels of glucose and taurine in the blood serum. There were also significant changes in p-hydroxyphenylacetate (p-HPA), creatinine, alpha-ketoglutarate (α-KG), dimethylamine, N-acetylglutamate (NAG), N-acetylglycoprotein (NAC) in the urine of these rats. Notably, the changes in p-HPA, glucose, lactate, taurine, valine, leucine, and NAG were found reversed following PA treatment. Nevertheless, there were no changes for dimethylamine, α-KG, and NAC as a result of the treatment. Compared with the controls, the concentrations of hippurate, formate, alanine, and lactate were changed when PA was applied and this is probably due to its side effect. A tool named SMPDB (Small Molecule Pathway Database) is introduced to identify the metabolic pathway influenced by the copper-laden diet. Conclusion The study has shown the potential application of NMR-based metabolomic

  15. (1)H NMR-Based Metabolomics Reveals a Pedoclimatic Metabolic Imprinting in Ready-to-Drink Carrot Juices.

    PubMed

    Tomassini, Alberta; Sciubba, Fabio; Di Cocco, Maria Enrica; Capuani, Giorgio; Delfini, Maurizio; Aureli, Walter; Miccheli, Alfredo

    2016-06-29

    Carrots are usually consumed in their native form or processed into many different products. Carrot juice is a popular beverage consumed throughout the world and is attracting increasing attention due to its nutritional value, being a natural source of bioactive compounds. Ready-to-drink carrot juices produced in the same factory were analyzed by (1)H nuclear magnetic resonance (NMR) spectroscopy. The juices were made from carrot roots of the same cultivar grown in three different geographical areas in Italy. More than 30 compounds have been identified and quantified, and the data was subjected to univariate ANOVA and multivariate analyses. Clear geographical-dependent clustering was observed, and the metabolic profiles were related to the different pedoclimatic conditions. The proposed phytoprofiling approach could be employed on an industrial scale to evaluate finished products involving different sites of supply of the raw material, thus improving both the quality and uniformity of the juices. PMID:27281439

  16. (1)H NMR-based metabolomics study on a goldfish model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

    PubMed

    Lu, Zhaoguang; Wang, Junsong; Li, Minghui; Liu, Qingwang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-11-01

    A goldfish (Carassius auratus) model of Parkinson's disease (PD) was constructed by a single dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to previously reported methods. Global metabolite changes in brain of the MPTP induced goldfish model of PD were investigated. (1)H NMR-based metabolomics combined with various statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) found significant increase of leucine, isoleucine, valine, alanine, alanylalanine, creatinine, myo-inositol, 18:2 fatty acid, total fatty acids, arachic alcohol, taurine and significant decrease of N-acetylaspartate, (phospho)creatine, (phospho)choline, betaine, glutamine, 3-hexenedioate, acetamide, malonate, isocitrate, scyllo-inositol, phosphatidylcholines, cholesterols, n-3 fatty acids, polyunsaturated fatty acids (PUFAs) in brain of MPTP induced PD goldfish. These disturbed metabolite levels were involved in oxidative stress, energy failure, neuronal cell injury and death, consistent with those observed in clinical PD patients, and rodents and primates model of PD, indicating that the acute MPTP model of goldfish was an ideal and valuable model for PD research. In addition, several unusual metabolites in brain were significantly changed between MPTP induced PD and control goldfish, which might also play an important role in the pathogenesis of PD. This study also demonstrated the applicability and potential of (1)H NMR-based metabolomics approach for evaluation of animal models of disease induced by chemicals, such as MPTP-induced PD goldfish. PMID:25242684

  17. (1)H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium.

    PubMed

    Nagato, Edward G; D'eon, Jessica C; Lankadurai, Brian P; Poirier, David G; Reiner, Eric J; Simpson, Andre J; Simpson, Myrna J

    2013-09-01

    Metal and metalloid contamination constitutes a major concern in aquatic ecosystems. Thus it is important to find rapid and reliable indicators of metal stress to aquatic organisms. In this study, we tested the use of (1)H nuclear magnetic resonance (NMR) - based metabolomics to examine the response of Daphnia magna neonates after a 48h exposure to sub-lethal concentrations of arsenic (49μgL(-1)), copper (12.4μgL(-1)) or lithium (1150μgL(-1)). Metabolomic responses for all conditions were compared to a control using principal component analysis (PCA) and metabolites that contributed to the variation between the exposures and the control condition were identified and quantified. The PCA showed that copper and lithium exposures result in statistically significant metabolite variations from the control. Contributing to this variation was a number of amino acids such as: phenylalanine, leucine, lysine, glutamine, glycine, alanine, methionine and glutamine as well as the nucleobase uracil and osmolyte glycerophosphocholine. The similarities in metabolome changes suggest that lithium has an analogous mode of toxicity to that of copper, and may be impairing energy production and ionoregulation. The PCA also showed that arsenic exposure resulted in a metabolic shift in comparison to the control population but this change was not statistically significant. However, significant changes in specific metabolites such as alanine and lysine were observed, suggesting that energy metabolism is indeed disrupted. This research demonstrates that (1)H NMR-based metabolomics is a viable platform for discerning metabolomic changes and mode of toxicity of D. magna in response to metal stressors in the environment. PMID:23732010

  18. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a (1)H NMR-based metabolomics study.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Hwang, Jeong-Ah; Lee, Sang-Jun; Lee, Cherl-Ho; Hong, Young-Shick

    2010-10-13

    The effects of climatic conditions on green tea metabolites in three different growing areas of Jeju Island, South Korea, were investigated through global metabolite profiling by (1)H nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), revealed clear discriminations of green teas from the three different growing areas. Variations of theanine, isoleucine, leucine, valine, alanine, threonine, glutamine, quinic acid, glucose, epicatechin (EC), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG), and caffeine levels were responsible for the discriminations. Green teas grown in an area with high temperature, long sun exposure time, and high rainfall had higher levels of theanine but lower levels of isoleucine, leucine, valine, alanine, EC, EGC, EGCG, and caffeine than those grown in areas with relatively low temperature, short sun exposure time, and low rainfall. These results indicate that high temperature, long sun exposure, and high preciptation stimulate theanine synthesis in green tea during the spring season. This study highlights how metabolomics coupled with multivariate statistical analysis can illuminate the metabolic characteristics of green tea associated with climatic variables, thereby allowing for the assessment of quality strategy in green tea production. PMID:20828156

  19. (1)H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment.

    PubMed

    Chen, Jian-Li; Shi, Bi-Yun; Xiang, Huan; Hou, Wen-Jing; Qin, Xue-Mei; Tian, Jun-Sheng; Du, Guan-Hua

    2015-11-10

    Genipin, a hydrolyzed metabolite of geniposide extracted from the fruit of Gardenia jasminoides Ellis, has shown promise in alleviating depressive symptoms, however, the antidepressant mechanism of genipin remains unclear and incomprehensive. In this study, the metabolic profiles of aqueous and lipophilic extracts in liver of the chronic unpredictable mild stress (CUMS)-induced rat with genipin treatment were investigated using proton nuclear magnetic resonance ((1)H NMR) spectroscopy coupled with multivariate data analysis. Significant differences in the metabolic profiles of rats in the CUMS model group (MS) and the control group (NS) were observed with metabolic effects including decreasing in choline, glycerol and glycogen, increasing in lactate, alanine and succinate, and a disordered lipid metabolism, while the moderate dose (50mg/kg) of genipin could significantly regulate the concentrations of glycerol, lactate, alanine, succinate and the lipid to their normal levels. These biomakers were involved in metabolism pathways such as glycolysis/gluconeogensis, tricarboxylic acid (TCA) cycle and lipid metabolism, which may be helpful for understanding of antidepressant mechanism of genipin. PMID:26204246

  20. A 1H-NMR Based Study on Hemolymph Metabolomics in Eri Silkworm after Oral Administration of 1-Deoxynojirimycin

    PubMed Central

    Deng, Ming-Jie; Lin, Xiao-Dong; Lin, Qiu-Ting; Wen, De-Fu; Zhang, Mei-Ling; Wang, Xian-Qin; Gao, Hong-Chang; Xu, Jia-Ping

    2015-01-01

    We aimed to investigate whether 1-deoxynojirimycin (DNJ) modulates glycometabolism and has toxicity in Eri silkworm (Samia cynthia ricini, Saturniidae). In this paper, hemolymph metabolites were used to explore metabolic changes after oral administration of DNJ or mulberry latex and to characterize the biological function of DNJ at the metabolic and systemic levels. Hemolymph samples were collected from fourth-instar larvae of Eri silkworm and ex-vivo high-resolution 1H nuclear magnetic resonance (NMR) spectra were acquired from the collected hemolymph samples. Then the obtained spectra were analyzed by principal component analysis (PCA) and independent-samples t-test. Metabolic pattern recognition analysis of hemolymph samples indicated that the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) were significantly different from the control group. Moreover, compared to the control group, the groups of 0.25% DNJ, latex, and the mixture of 0.5% DNJ and latex (1:1) showed the decreased levels of citrate, succinate, fumarate, malate, and glutamine in hemolymph, the groups of 0.25% DNJ and the mixture of 0.5% DNJ and latex (1:1) showed the increased levels of trehalose and lactate. In addition, mulberry leaves exude latex was highly toxic to Eri silkworm because rich unidentified high-molecular-weight factor (s) acted as toxic substances. In our results, latex caused 20 deaths among 50 fourth-instar larvae of Eri silkmoth, but DNJ or the mixture did not caused death. All these results suggest that DNJ has a positive impact on the reverse glycometabolism by modulating glycometabolism and inhibiting glucogenesis and energy metabolism. DNJ is a secure substance as a single-ingredient antidiabetic medicine due to its nontoxicity and bioactivity. PMID:26148185

  1. 1H NMR-Based Profiling Reveals Differential Immune-Metabolic Networks during Influenza Virus Infection in Obese Mice

    PubMed Central

    Milner, J. Justin; Wang, Jue; Sheridan, Patricia A.; Ebbels, Tim; Beck, Melinda A.; Saric, Jasmina

    2014-01-01

    Obese individuals are at greater risk for death from influenza virus infection. Paralleling human evidence, obese mice are also more susceptible to influenza infection mortality. However, the underlying mechanisms driving greater influenza severity in the obese remain unclear. Metabolic profiling has been utilized in infectious disease models to enhance prognostic or diagnostic methods, and to gain insight into disease pathogenesis by providing a more global picture of dynamic infection responses. Herein, metabolic profiling was used to develop a deeper understanding of the complex processes contributing to impaired influenza protection in obese mice and to facilitate generation of new explanatory hypotheses. Diet-induced obese and lean mice were infected with influenza A/Puerto Rico/8/34. 1H nuclear magnetic resonance-based metabolic profiling of urine, feces, lung, liver, mesenteric white adipose tissue, bronchoalveolar lavage fluid and serum revealed distinct metabolic signatures in infected obese mice, including perturbations in nucleotide, vitamin, ketone body, amino acid, carbohydrate, choline and lipid metabolic pathways. Further, metabolic data was integrated with immune analyses to obtain a more comprehensive understanding of potential immune-metabolic interactions. Of interest, uncovered metabolic signatures in urine and feces allowed for discrimination of infection status in both lean and obese mice at an early influenza time point, which holds prognostic and diagnostic implications for this methodology. These results confirm that obesity causes distinct metabolic perturbations during influenza infection and provide a basis for generation of new hypotheses and use of this methodology in detection of putative biomarkers and metabolic patterns to predict influenza infection outcome. PMID:24844920

  2. mQTL.NMR: an integrated suite for genetic mapping of quantitative variations of (1)H NMR-based metabolic profiles.

    PubMed

    Hedjazi, Lyamine; Gauguier, Dominique; Zalloua, Pierre A; Nicholson, Jeremy K; Dumas, Marc-Emmanuel; Cazier, Jean-Baptiste

    2015-04-21

    High-throughput (1)H nuclear magnetic resonance (NMR) is an increasingly popular robust approach for qualitative and quantitative metabolic profiling, which can be used in conjunction with genomic techniques to discover novel genetic associations through metabotype quantitative trait locus (mQTL) mapping. There is therefore a crucial necessity to develop specialized tools for an accurate detection and unbiased interpretability of the genetically determined metabolic signals. Here we introduce and implement a combined chemoinformatic approach for objective and systematic analysis of untargeted (1)H NMR-based metabolic profiles in quantitative genetic contexts. The R/Bioconductor mQTL.NMR package was designed to (i) perform a series of preprocessing steps restoring spectral dependency in collinear NMR data sets to reduce the multiple testing burden, (ii) carry out robust and accurate mQTL mapping in human cohorts as well as in rodent models, (iii) statistically enhance structural assignment of genetically determined metabolites, and (iv) illustrate results with a series of visualization tools. Built-in flexibility and implementation in the powerful R/Bioconductor framework allow key preprocessing steps such as peak alignment, normalization, or dimensionality reduction to be tailored to specific problems. The mQTL.NMR package is freely available with its source code through the Comprehensive R/Bioconductor repository and its own website ( http://www.ican-institute.org/tools/ ). It represents a significant advance to facilitate untargeted metabolomic data processing and quantitative analysis and their genetic mapping. PMID:25803548

  3. 1H nuclear magnetic resonance spectroscopy-based metabonomic study in patients with cirrhosis and hepatic encephalopathy

    PubMed Central

    Dabos, Konstantinos John; Parkinson, John Andrew; Sadler, Ian Howard; Plevris, John Nicholas; Hayes, Peter Clive

    2015-01-01

    AIM: To identify plasma metabolites used as biomarkers in order to distinguish cirrhotics from controls and encephalopathics. METHODS: A clinical study involving stable cirrhotic patients with and without overt hepatic encephalopathy was designed. A control group of healthy volunteers was used. Plasma from those patients was analysed using 1H - nuclear magnetic resonance spectroscopy. We used the Carr Purcell Meiboom Gill sequence to process the sample spectra at ambient probe temperature. We used a gated secondary irradiation field for water signal suppression. Samples were calibrated and referenced using the sodium trimethyl silyl propionate peak at 0.00 ppm. For each sample 128 transients (FID’s) were acquired into 32 K complex data points over a spectral width of 6 KHz. 30 degree pulses were applied with an acquisition time of 4.0 s in order to achieve better resolution, followed by a recovery delay of 12 s, to allow for complete relaxation and recovery of the magnetisation. A metabolic profile was created for stable cirrhotic patients without signs of overt hepatic encephalopathy and encephalopathic patients as well as healthy controls. Stepwise discriminant analysis was then used and discriminant factors were created to differentiate between the three groups. RESULTS: Eighteen stabled cirrhotic patients, eighteen patients with overt hepatic encephalopathy and seventeen healthy volunteers were recruited. Patients with cirrhosis had significantly impaired ketone body metabolism, urea synthesis and gluconeogenesis. This was demonstrated by higher concentrations of acetoacetate (0.23 ± 0.02 vs 0.05 ± 0.00, P < 0.01), and b-hydroxybutarate (0.58 ± 0.14 vs 0.08 ± 0.00, P < 0.01), lower concentrations of glutamine (0.44 ± 0.08 vs 0.63 ± 0.03, P < 0.05), histidine (0.16 ± 0.01 vs 0.36 ± 0.04, P < 0.01) and arginine (0.08 ± 0.01 vs 0.14 ± 0.02, P < 0.03) and higher concentrations of glutamate (1.36 ± 0.25 vs 0.58 ± 0.04, P < 0.01), lactate (1.53 ± 0

  4. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  5. A (1)H HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars.

    PubMed

    Song, Eun-Hye; Kim, Hyun-Ju; Jeong, Jaesik; Chung, Hyun-Jung; Kim, Han-Yong; Bang, Eunjung; Hong, Young-Shick

    2016-04-20

    Rice grain metabolites are important for better understanding of the plant physiology of various rice cultivars and thus for developing rice cultivars aimed at providing diverse processed products. However, the variation of global metabolites in rice grains has rarely been explored. Here, we report the identification of intra- or intercellular metabolites in rice (Oryza sativa L.) grain powder using a (1)H high-resolution magic angle spinning (HR-MAS) NMR-based metabolomic approach. Compared with nonwaxy rice cultivars, marked accumulation of lipid metabolites such as fatty acids, phospholipids, and glycerophosphocholine in the grains of waxy rice cultivars demonstrated the distinct metabolic regulation and adaptation of each cultivar for effective growth during future germination, which may be reflected by high levels of glutamate, aspartate, asparagine, alanine, and sucrose. Therefore, this study provides important insights into the metabolic variations of diverse rice cultivars and their associations with environmental conditions and genetic backgrounds, with the aim of facilitating efficient development and the improvement of rice grain quality through inbreeding with genetic or chemical modification and mutation. PMID:27030107

  6. Serum metabonomics study of the hepatoprotective effect of Corydalis saxicola Bunting on carbon tetrachloride-induced acute hepatotoxicity in rats by (1)H NMR analysis.

    PubMed

    Liang, Yong-Hong; Tang, Chao-Ling; Lu, Shi-Yin; Cheng, Bang; Wu, Fang; Chen, Zhao-Ni; Song, Fangming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Song, Hui; Zheng, Hua; Su, Zhi-Heng

    2016-09-10

    Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the exact hepatoprotective mechanism of CS was still looking forward to further elucidation by far. In present work, metabonomic study of biochemical changes in the serum of carbon tetrachloride (CCl4)-induced acute liver injury rats after CS treatment were performed using proton nuclear magnetic resonance ((1)H-NMR) analysis. Metabolic profiling by means of principal components analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced by CS treatment. A total of 9 metabolites including isoleucine (1), lactate (2), alanine (3), glutamine (4), acetone (5), succinate (6), phosphocholine (7), d-glucose (8) and glycerol (9) were considered as potential biomarkers involved in the development of CCl4-induced acute liver injury. According to pathway analysis by metabolites identified and correlation network construction by Pearson's correlation coefficency matrix, alanine, aspartate and glutamate metabolism and glycerolipid metabolism were recognized as the most influenced metabolic pathways associated with CCl4 injury. As a result, notably, deviations of metabolites 1, 3, 4, 7 and 9 in the process of CCl4-induced acute liver injury were improved by CS treatment, which suggested that CS mediated synergistically abnormalities of the metabolic pathways, composed of alanine, aspartate and glutamate metabolism and glycerolipid metabolism. In this study, it was the first report to investigate the hepatoprotective effect of the CS based on metabonomics strategy, which may be a potentially powerful tool to interpret the action mechanism of traditional Chinese folk medicines. PMID:27399344

  7. 1H-NMR-Based Metabolic Analysis of Human Serum Reveals Novel Markers of Myocardial Energy Expenditure in Heart Failure Patients

    PubMed Central

    Su, Liang; Lai, Wenyan; Wang, Peng; Xie, Zhibing; Xie, Zhiquan; Zeng, Qingchun; Ren, Hao; Xu, Dingli

    2014-01-01

    Objective Elevated myocardial energy expenditure (MEE) is related with reduced left ventricular ejection fraction, and has also been documented as an independent predictor of cardiovascular mortality. However, the serum small-molecule metabolite profiles and pathophysiological mechanisms of elevated MEE in heart failure (HF) are still lacking. Herein, we used 1H-NMR-based metabolomics analysis to screen for potential biomarkers of MEE in HF. Methods A total of 61 subjects were enrolled, including 46 patients with heart failure and 15 age-matched controls. Venous serum samples were collected from subjects after an 8-hour fast. An INOVA 600 MHz nuclear magnetic resonance spectrometer with Carr-Purcell-Melboom-Gill (CPMG) pulse sequence was employed for the metabolomics analysis and MEE was calculated using colored Doppler echocardiography. Metabolomics data were processed using orthogonal signal correction and regression analysis was performed using the partial least squares method. Results The mean MEE levels of HF patients and controls were 139.61±58.18 cal/min and 61.09±23.54 cal/min, respectively. Serum metabolomics varied with MEE changed, and 3-hydroxybutyrate, acetone and succinate were significantly elevated with the increasing MEE. Importantly, these three metabolites were independent of administration of angiotensin converting enzyme inhibitor, β-receptor blockers, diuretics and statins (P>0.05). Conclusions These results suggested that in patients with heart failure, MEE elevation was associated with significant changes in serum metabolomics profiles, especially the concentration of 3-hydroxybutyrate, acetone and succinate. These compounds could be used as potential serum biomarkers to study myocardial energy mechanism in HF patients. PMID:24505394

  8. Haemolymph from Mytilus galloprovincialis: Response to copper and temperature challenges studied by (1)H-NMR metabonomics.

    PubMed

    Digilio, Giuseppe; Sforzini, Susanna; Cassino, Claudio; Robotti, Elisa; Oliveri, Caterina; Marengo, Emilio; Musso, Davide; Osella, Domenico; Viarengo, Aldo

    2016-01-01

    Numerous studies on molluscs have been carried out to clarify the physiological roles of haemolymph serum proteins and haemocytes. However, little is known about the presence and functional role of the serum metabolites. In this study, Nuclear Magnetic Resonance (NMR) was used to assess whether changes of the metabolic profile of Mytilus galloprovincialis haemolymph may reflect alterations of the physiological status of the organisms due to environmental stressors, namely copper and temperature. Mussel haemolymph was taken from the posterior adductor muscle after a 4-day exposure to ambient (16°C) or high temperature (24°C) and in the absence or presence (5μg/L, 20μg/L, or 40μg/L) of sublethal copper (Cu(2+)). The total glutathione (GSH) concentration in the haemolymph of both control and treated mussels was minimal, indicating the absence of significant contaminations by muscle intracellular metabolites due to the sampling procedure. In the (1)H-NMR spectrum of haemolymph, 27 metabolites were identified unambiguously. The separate and combined effects of exposure to copper and temperature on the haemolymph metabolic profile were assessed by Principal Component Analysis (PCA) and Ranking-PCA multivariate analysis. Changes of the metabolomic profile due to copper exposure at 16°C became detectable at a dose of 20μg/L copper. Alanine, lysine, serine, glutamine, glycogen, glucose and protein aliphatics played a major role in the classification of the metabolic changes according to the level of copper exposition. High temperature (24°C) and high copper levels caused a coherent increase of a common set of metabolites (mostly glucose, serine, and lysine), indicating that the metabolic impairment due to high temperature is enforced by the presence of copper. Overall, the results demonstrate that, as for human blood plasma, the analysis of haemolymph metabolites represents a promising tool for the diagnosis of pollutant-induced stress syndrome in marine mussels

  9. Pea Fiber and Wheat Bran Fiber Show Distinct Metabolic Profiles in Rats as Investigated by a 1H NMR-Based Metabolomic Approach

    PubMed Central

    Liu, Guangmang; Xiao, Liang; Fang, Tingting; Cai, Yimin; Jia, Gang; Zhao, Hua; Wang, Jing; Chen, Xiaoling; Wu, Caimei

    2014-01-01

    This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats. PMID:25541729

  10. Identifying health effects of exposure to trichloroacetamide using transcriptomics and metabonomics in mice ( Mus musculus ).

    PubMed

    Zhang, Yan; Zhang, Zongyao; Zhao, Yanping; Cheng, Shupei; Ren, Hongqiang

    2013-03-19

    Microarray-based transcriptomics and one-dimensional proton nuclear magnetic resonance ((1)H NMR) based metabonomics approaches were employed to investigate the health effects of nitrogenous disinfection byproducts (N-DBPs) of trichloroacetamide (TCAcAm) on mice. Mice were exposed to TCAcAm at concentrations of 50, 500, and 5000 μg/L for 90 days, and hepatic transcriptome and serum metabonome and histopathological parameters were detected in comparison with those of control. TCAcAm esposures resulted in liver inflammation, weight loss (in 5000 ug/L TCAcAm group), and alterations in hepatic transcriptome and serum metabonome. Based on the differentially expressed genes and altered metabolites, several significant pathways were identified, which are associated with lipid, xenobiotics, amino acid and energy metabolism, and cell process. Moreover, integrative pathway analyses revealed that TCAcAm exposure in this study induced hepatotoxicity and cytotoxicity. These results also highlight the noninvasive prospect of transcriptomic and metabonomic approaches in evaluating the health risk of emerging N-DBPs. PMID:23406383

  11. High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease.

    PubMed

    Pears, Michael R; Cooper, Jonathan D; Mitchison, Hannah M; Mortishire-Smith, Russell J; Pearce, David A; Griffin, Julian L

    2005-12-30

    The neuronal ceroid lipofuscinoses (NCLs) constitute a range of progressive neurological disorders primarily affecting children. Although six of the causative genes have been characterized, the underlying disease pathogenesis for this family of disorders is unknown. Using a metabolomics approach based on high resolution 1H NMR spectroscopy of the cortex, cerebellum, and remaining regions of the brain in conjunction with statistical pattern recognition, we report metabolic deficits associated with juvenile NCL in a Cln3 knock-out mouse model. Tissue from Cln3 null mutant mice aged 1-6 months was characterized by an increased glutamate concentration and a decrease in -amino butyric acid (GABA) concentration in aqueous extracts from the three regions of the brain. These changes are consistent with the reported altered expression of genes involved in glutamate metabolism in older mice and imply a change in neurotransmitter cycling between glutamate/glutamine and the production of GABA. Further variations in myo-inositol, creatine, and N-acetyl-aspartate were also identified. These metabolic changes were distinct from the normal aging/developmental process. Together, these changes represent the first documented pre-symptomatic symptoms of the Cln3 mouse at 1 month of age and demonstrate the versatility of 1H NMR spectroscopy as a tool for phenotyping mouse models of disease. PMID:16239221

  12. A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana.

    PubMed

    Kaiser, Kayla A; Barding, Gregory A; Larive, Cynthia K

    2009-12-01

    Metabolite analysis is recognized as an important facet of systems biology, however complete metabolome characterization has not been realized due to challenges in sample preparation, inherent instrumental limitations and the labor intensive task of data interpretation. This work aims to compare several commonly used metabolite extraction strategies for their effect on the (1)H nuclear magnetic resonance (NMR) metabolic profile of extracts of the model plant Arabidopsis thaliana. Extractions were carried out on aliquots from a pool of homogenized plant tissue using CD(3)CN/D(2)O, buffered D(2)O, perchloric acid in D(2)O, CD(3)OD/D(2)O and CD(3)OD/D(2)O/CDCl(3) as the extraction solvents. The effects of lyophilization as a sample pretreatment, solvent evaporation and extract fractionation for removal of interfering species were studied. Representative spectra are presented for qualitative interpretation. Analytical reproducibility was evaluated by principal components analysis. Perchloric acid facilitated acid-catalyzed cleavage of sucrose, further complicating biological interpretation of the resulting metabolite profile. The solvent system CD(3)OD/D(2)O/CDCl(3) gave the least reproducible results in our hands. D(2)O extracts suffered from poor stability probably due to contamination by soluble enzymes, which were not denatured in this solvent. CD(3)CN/D(2)O extracts showed greater stability than D(2)O alone, but problems were encountered due to degradation of (1)H NMR spectral resolution during lengthy acquisitions due to partial phase separation. In addition, this solvent system produced spectra with significant contamination by lipids that obscured spectral regions containing the resonances of the aliphatic amino acids. These problems were solved by speedvacuuming the CD(3)CN/D(2)O extract and reconstituting in D(2)O solution. PMID:19551810

  13. "Omics" Prospective Monitoring of Bariatric Surgery: Roux-En-Y Gastric Bypass Outcomes Using Mixed-Meal Tolerance Test and Time-Resolved (1)H NMR-Based Metabolomics.

    PubMed

    Lopes, Thiago I B; Geloneze, Bruno; Pareja, José C; Calixto, Antônio R; Ferreira, Márcia M C; Marsaioli, Anita J

    2016-07-01

    Roux-en-Y gastric bypass (RYGB) surgery goes beyond weight loss to induce early beneficial hormonal changes that favor glycemic control. In this prospective study, ten obese subjects diagnosed with type 2 diabetes underwent bariatric surgery. Mixed-meal tolerance test was performed before and 12 months after RYGB, and the outcomes were investigated by a time-resolved hydrogen nuclear magnetic resonance ((1)H NMR)-based metabolomics. To the best of our knowledge, no previous omics-driven study has used time-resolved (1)H NMR-based metabolomics to investigate bariatric surgery outcomes. Our results presented here show a significant decrease in glucose levels after bariatric surgery (from 159.80 ± 61.43 to 100.00 ± 22.94 mg/dL), demonstrating type 2 diabetes remission (p < 0.05). The metabolic profile indicated lower levels of lactate, alanine, and branched chain amino acids for the operated subject at fasting state after the surgery. However, soon after food ingestion, the levels of these metabolites increased faster in operated than in nonoperated subjects. The lipoprotein profile achieved before and after RYGB at fasting was also significantly different, but converging 180 min after food ingestion. For example, the very low-density lipoprotein, low-density lipoprotein, N-acetyl-glycoproteins, and unsaturated lipid levels decreased after RYGB, while phosphatidylcholine and high-density lipoprotein increased. This study provides important insights on RYGB surgery and attendant type 2 diabetes outcomes using an "omics" systems science approach. Further research on metabolomic correlates of RYGB surgery in larger study samples is called for. PMID:27428253

  14. 1H HR-MAS NMR Based Metabolic Profiling of Cells in Response to Treatment with a Hexacationic Ruthenium Metallaprism as Potential Anticancer Drug

    PubMed Central

    Vermathen, Martina; Paul, Lydia E. H.; Diserens, Gaëlle

    2015-01-01

    1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy was applied in combination with multivariate statistical analyses to study the metabolic response of whole cells to the treatment with a hexacationic ruthenium metallaprism [1]6+ as potential anticancer drug. Human ovarian cancer cells (A2780), the corresponding cisplatin resistant cells (A2780cisR), and human embryonic kidney cells (HEK-293) were each incubated for 24 h and 72 h with [1]6+ and compared to untreated cells. Different responses were obtained depending on the cell type and incubation time. Most pronounced changes were found for lipids, choline containing compounds, glutamate and glutathione, nucleotide sugars, lactate, and some amino acids. Possible contributions of these metabolites to physiologic processes are discussed. The time-dependent metabolic response patterns suggest that A2780 cells on one hand and HEK-293 cells and A2780cisR cells on the other hand may follow different cell death pathways and exist in different temporal stages thereof. PMID:26024484

  15. 1H-NMR-Based Metabolomic Study for Identifying Serum Profiles Associated with the Response to Etanercept in Patients with Rheumatoid Arthritis

    PubMed Central

    Valerio, Mariacristina; Scrivo, Rossana; Valesini, Guido; Manetti, Cesare

    2015-01-01

    Objective A considerable proportion of patients with rheumatoid arthritis (RA) do not have a satisfactory response to biological therapies. We investigated the use of metabolomics approach to identify biomarkers able to anticipate the response to biologics in RA patients. Methods Due to gender differences in metabolomic profiling, the analysis was restricted to female patients starting etanercept as the first biological treatment and having a minimum of six months’ follow-up. Each patient was evaluated by the same rheumatologist before and after six months of treatment. At this time, the clinical response (good, moderate, none) was determined according to the EUropean League Against Rheumatism (EULAR) criteria, based on both erythrocyte sedimentation rate (EULAR-ESR) and C-reactive protein (EULAR-CRP). Sera collected prior and after six months of etanercept were analyzed by 1H-nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate data analysis. Results Twenty-seven patients were enrolled: 18 had a good/moderate response and 9 were non responders according to both EULAR-ESR and EULAR-CRP after six months of etanercept. Metabolomic analysis at baseline was able to discriminate good, moderate, and non-responders with a very good predictivity (Q2 = 0.68) and an excellent sensitivity, specificity, and accuracy (100%). In good responders, we found an increase in isoleucine, leucine, valine, alanine, glutamine, tyrosine, and glucose levels and a decrease in 3-hydroxybutyrate levels after six months of treatment with etanercept with respect to baseline. Conclusion Our study confirms the potential of metabolomic analysis to predict the response to biological agents. Changes in metabolic profiles during treatment may help elucidate their mechanism of action. PMID:26558759

  16. (1)H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery.

    PubMed

    Gil, Ryan B; Lehmann, Rainer; Schmitt-Kopplin, Philippe; Heinzmann, Silke S

    2016-07-01

    peaks with standard phosphate buffering and with in silico alignment. C citrate peak with additional potassium fluoride and standard phosphate buffering without in silico alignment. D citrate peaks with additional potassium fluoride and standard phosphate buffering with in silico alignment. Below the respective spectrum are displayed the percent relative standard deviation (RSD) of the respective citrate peaks. This is a measure of the positional noise of peaks within a (1)H NMR analysis. It can be seen that D performs the best in reducing positional noise of citrate peaks. E-H STOCSY analysis of correlating spectral features with the driver peak at 2.675 ppm (see red arrow) to identify structural correlations. As a, b, c, and d are known to be structurally correlated, STOCSY analysis should reveal r (2) = 1 if data is perfectly aligned and can therefore be used as a measure of peak alignment. E Strong positional noise does not allow identifying the c and d peaks of the AB system to be correlated. F, G Neither in silico alignment or KF addition alone can completely improve the alignment and therefore increase the correlations. H Highly improved alignment by combining both KF addition and in silico alignment reduces positional noise and elucidates all four citrate peaks to be strongly correlated. PMID:27178551

  17. Therapeutic Effects of Chinese Medicine Herb Pair, Huzhang and Guizhi, on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats Revealed by Anti-Inflammatory Assessments and NMR-Based Metabonomics

    PubMed Central

    Han, Bin; Huang, Huizhu; Li, Zhong; Gong, Mengjuan; Shi, Wan; Zhu, Chunxia; Gu, Zulian; Zou, Zhongjie

    2016-01-01

    The present study was undertaken to evaluate the therapeutic effects of Huzhang-Guizhi herb pair (HG), firstly included in Hu-Zhang Power documented in Taiping Shenghui Fang, on monosodium urate (MSU) crystals-induced gouty arthritis in rats. We found that pretreatment with HG in rats with gouty arthritis could significantly attenuate the ankle joint swelling, and this beneficial antigout effect might be mediated, at least in part, by inhibiting tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) production in synovial fluid as well as nuclear transcription factor-κB p65 (NF-κB p65) protein expression in synovial tissue. Moreover, metabonomic analysis demonstrated that 5 and 6 potential biomarkers associated with gouty arthritis in plasma and urine, respectively, which were mainly involved in energy metabolism, amino acid metabolism, and gut microbe metabolism, were identified. HG could reverse the pathological process of MSU-induced gouty arthritis through regulating the disturbed metabolic pathways. These results provided important mechanistic insights into the protective effects of HG against MSU-induced gouty arthritis in rats. PMID:26989428

  18. Therapeutic Effects of Chinese Medicine Herb Pair, Huzhang and Guizhi, on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats Revealed by Anti-Inflammatory Assessments and NMR-Based Metabonomics.

    PubMed

    Han, Bin; Huang, Huizhu; Li, Zhong; Gong, Mengjuan; Shi, Wan; Zhu, Chunxia; Gu, Zulian; Zou, Zhongjie

    2016-01-01

    The present study was undertaken to evaluate the therapeutic effects of Huzhang-Guizhi herb pair (HG), firstly included in Hu-Zhang Power documented in Taiping Shenghui Fang, on monosodium urate (MSU) crystals-induced gouty arthritis in rats. We found that pretreatment with HG in rats with gouty arthritis could significantly attenuate the ankle joint swelling, and this beneficial antigout effect might be mediated, at least in part, by inhibiting tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) production in synovial fluid as well as nuclear transcription factor-κB p65 (NF-κB p65) protein expression in synovial tissue. Moreover, metabonomic analysis demonstrated that 5 and 6 potential biomarkers associated with gouty arthritis in plasma and urine, respectively, which were mainly involved in energy metabolism, amino acid metabolism, and gut microbe metabolism, were identified. HG could reverse the pathological process of MSU-induced gouty arthritis through regulating the disturbed metabolic pathways. These results provided important mechanistic insights into the protective effects of HG against MSU-induced gouty arthritis in rats. PMID:26989428

  19. NMR-based metabolic profiling for serum of mouse exposed to source water.

    PubMed

    Zhang, Yan; Li, Weixin; Sun, Jie; Zhang, Rui; Wu, Bing; Zhang, Xuxiang; Cheng, Shupei

    2011-07-01

    (1)H nuclear magnetic resonance (NMR) based metabonomic method was used to characterize the profile of low-molecular-weight endogenous metabolites in mouse (Mus musculus) serum following exposure to Taihu Lake source water for 90 days. The (1)H NMR spectra of mice sera were recoded and a total of 21 metabolites were identified. Data reduction and latent biomarkers identification were processed by pattern recognition (PR) analysis. The principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) identified differences in metabolic profiles between control and treatment groups. A number of serum metabolic perturbations were observed in sera of source water treatment mice compared to control mice, including decreased levels of acetone, pyruvate, glutamine, lysine and citrate. These results indicated that Taihu Lake source water could induce energy metabolism changes in mouse related to fatty acid β-oxidation, tricarboxylic acid (TCA) cycle, citric acid cycle, and metabolism of some amino acids. (1)H NMR-based metabolic profiling provides new insight into the toxic effect of Taihu Lake source water, and suggests potential biomarkers for noninvasive monitoring of health risk. PMID:21400091

  20. Integration of 1H NMR and UPLC-Q-TOF/MS for a Comprehensive Urinary Metabonomics Study on a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress

    PubMed Central

    Jia, Hong-mei; Feng, Yu-fei; Liu, Yue-tao; Chang, Xing; Chen, Lin; Zhang, Hong-wu; Ding, Gang; Zou, Zhong-mei

    2013-01-01

    Depression is a type of complex psychiatric disorder with long-term, recurrent bouts, and its etiology remains largely unknown. Here, an integrated approach utilizing 1H NMR and UPLC-Q-TOF/MS together was firstly used for a comprehensive urinary metabonomics study on chronic unpredictable mild stress (CUMS) treated rats. More than twenty-nine metabolic pathways were disturbed after CUMS treatment and thirty-six potential biomarkers were identified by using two complementary analytical technologies. Among the identified biomarkers, nineteen (10, 11, 16, 17, 21–25, and 27–36) were firstly reported as potential biomarkers of CUMS-induced depression. Obviously, this paper presented a comprehensive map of the metabolic pathways perturbed by CUMS and expanded on the multitude of potential biomarkers that have been previously reported in the CUMS model. Four metabolic pathways, including valine, leucine and isoleucine biosynthesis; phenylalanine, tyrosine and tryptophan biosynthesis; tryptophan metabolism; synthesis and degradation of ketone bodies had the deepest influence in the pathophysiologic process of depression. Fifteen potential biomarkers (1–2, 4–6, 15, 18, 20–23, 27, 32, 35–36) involved in the above four metabolic pathways might become the screening criteria in clinical diagnosis and predict the development of depression. Moreover, the results of Western blot analysis of aromatic L-amino acid decarboxylase (DDC) and indoleamine 2, 3-dioxygenase (IDO) in the hippocampus of CUMS-treated rats indicated that depletion of 5-HT and tryptophan, production of 5-MT and altered expression of DDC and IDO together played a key role in the initiation and progression of depression. In addition, none of the potential biomarkers were detected by NMR and LC-MS simultaneously which indicated the complementary of the two kinds of detection technologies. Therefore, the integration of 1H NMR and UPLC-Q-TOF/MS in metabonomics study provided an approach to identify the

  1. A metabonomic approach to a unique detoxification effect of co-use of Euphorbia kansui and Zizyphus jujuba.

    PubMed

    Liu, Yu-Mei; Hui, Rong-Rong; He, Cui-Cui; Duan, Jin-Ao; Tang, Yu-Ping; Li, Jian-Xin

    2013-11-01

    Euphorbia kansui (EK) has been widely used in traditional Chinese medicine (TCM); however, it possesses toxic effects. The fruits of Zizyphus jujuba (ZJ) are frequently co-used with EK to reduce EK's toxicity. The present study is to clarify the toxicity of water extract of EK and explore the detox effect of ZJ using (1) H NMR-based metabonomic approach. The water extracts of ZJ, EK and the co-use of EK and ZJ (CEZ) were orally administered to SD rats at designed doses for 1 week, respectively, and one more week observation was further conducted. Histopathological studies of liver samples from all groups showed no negative impacts. In metabonomic analyses of urines, ZJ showed no toxicity, while significant changes of metabolites indicating liver damages, kidney lesions and imbalance of gut microbes were clearly observed during the second week in EK-treated rats. Very meaningfully, CEZ clearly indicated that the toxicities appeared at the first week and became weaker, and furthermore, was recovered during the second week. These results clearly demonstrated the rationality of traditional co-use of EK together with ZJ, and the metabonomic approach should be a promising tool to research the toxicity of TCM. PMID:23280778

  2. (1) H-nuclear magnetic resonance-based metabonomic analysis of brain in rhesus monkeys with morphine treatment and withdrawal intervention.

    PubMed

    Deng, Yi; Bu, Qian; Hu, Zhengtao; Deng, Pengchi; Yan, Guangyan; Duan, Jiachuan; Hu, Chunyan; Zhou, Jiaqing; Shao, Xue; Zhao, Jinxuan; Li, Yan; Zhu, Ruiming; Zhao, Yinglan; Cen, Xiaobo

    2012-11-01

    Comprehensive cerebral metabolites involved in morphine dependence have not been well explored. To gain a better understanding of morphine dependence and withdrawal therapy in a model highly related to humans, metabolic changes in brain hippocampus and prefrontal cortex (PFC) of rhesus monkeys were measured by (1) H-nuclear magnetic resonance spectroscopy, coupled with partial least squares and orthogonal signal correction analysis. The results showed that concentrations of myoinositol (M-Ins) and taurine were significantly reduced, whereas lactic acid was increased in hippocampus and PFC of morphine-dependent monkeys. Phosphocholine and creatine increased in PFC but decreased in hippocampus after chronic treatment of morphine. Moreover, N-acetyl aspartate (NAA), γ-aminobutyric acid, glutamate, glutathione, methionine, and homocysteic acid also changed in these brain regions. These results suggest that chronic morphine exposure causes profound disturbances of neurotransmitters, membrane, and energy metabolism in the brain. Notably, morphine-induced dysregulations in NAA, creatine, lactic acid, taurine, M-Ins, and phosphocholine were clearly reversed after intervention with methadone or clonidine. Our study highlights the potential of metabolic profiling to enhance our understanding of metabolite alteration and neurobiological actions associated with morphine addiction and withdrawal therapy in primates. PMID:22847893

  3. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice

    PubMed Central

    Wei, Tingting; Zhao, Liangcai; Jia, Jianmin; Xia, Huanhuan; Du, Yao; Lin, Qiuting; Lin, Xiaodong; Ye, Xinjian; Yan, Zhihan; Gao, Hongchang

    2015-01-01

    Diabetic nephropathy (DN) is one of the lethal manifestations of diabetic systemic microvascular disease. Elucidation of characteristic metabolic alterations during diabetic progression is critical to understand its pathogenesis and identify potential biomarkers and drug targets involved in the disease. In this study, 1H nuclear magnetic resonance (1H NMR)-based metabonomics with correlative analysis was performed to study the characteristic metabolites, as well as the related pathways in urine and kidney samples of db/db diabetic mice, compared with age-matched wildtype mice. The time trajectory plot of db/db mice revealed alterations, in an age-dependent manner, in urinary metabolic profiles along with progression of renal damage and dysfunction. Age-dependent and correlated metabolite analysis identified that cis-aconitate and allantoin could serve as biomarkers for the diagnosis of DN. Further correlative analysis revealed that the enzymes dimethylarginine dimethylaminohydrolase (DDAH), guanosine triphosphate cyclohydrolase I (GTPCH I), and 3-hydroxy-3-methylglutaryl-CoA lyase (HMG-CoA lyase) were involved in dimethylamine metabolism, ketogenesis and GTP metabolism pathways, respectively, and could be potential therapeutic targets for DN. Our results highlight that metabonomic analysis can be used as a tool to identify potential biomarkers and novel therapeutic targets to gain a better understanding of the mechanisms underlying the initiation and progression of diseases. PMID:26149603

  4. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice.

    PubMed

    Wei, Tingting; Zhao, Liangcai; Jia, Jianmin; Xia, Huanhuan; Du, Yao; Lin, Qiuting; Lin, Xiaodong; Ye, Xinjian; Yan, Zhihan; Gao, Hongchang

    2015-01-01

    Diabetic nephropathy (DN) is one of the lethal manifestations of diabetic systemic microvascular disease. Elucidation of characteristic metabolic alterations during diabetic progression is critical to understand its pathogenesis and identify potential biomarkers and drug targets involved in the disease. In this study, (1)H nuclear magnetic resonance ((1)H NMR)-based metabonomics with correlative analysis was performed to study the characteristic metabolites, as well as the related pathways in urine and kidney samples of db/db diabetic mice, compared with age-matched wildtype mice. The time trajectory plot of db/db mice revealed alterations, in an age-dependent manner, in urinary metabolic profiles along with progression of renal damage and dysfunction. Age-dependent and correlated metabolite analysis identified that cis-aconitate and allantoin could serve as biomarkers for the diagnosis of DN. Further correlative analysis revealed that the enzymes dimethylarginine dimethylaminohydrolase (DDAH), guanosine triphosphate cyclohydrolase I (GTPCH I), and 3-hydroxy-3-methylglutaryl-CoA lyase (HMG-CoA lyase) were involved in dimethylamine metabolism, ketogenesis and GTP metabolism pathways, respectively, and could be potential therapeutic targets for DN. Our results highlight that metabonomic analysis can be used as a tool to identify potential biomarkers and novel therapeutic targets to gain a better understanding of the mechanisms underlying the initiation and progression of diseases. PMID:26149603

  5. Metabonomics Study of the Therapeutic Mechanism of Gynostemma pentaphyllum and Atorvastatin for Hyperlipidemia in Rats

    PubMed Central

    Wang, Miao; Wang, Fei; Wang, Yinan; Ma, Xiaonan; Zhao, Min; Zhao, Chunjie

    2013-01-01

    Gynostemma pentaphyllum (GP) is widely used for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China, and atorvastatin is broadly used as an anti-hyperlipidemia drug. This research focuses on the plasma and liver metabolites in the following four groups of rats: control, a hyperlipidemia model, a hyperlipidemia model treated with GP and a hyperlipidemia model treated with atorvastatin. Using 1H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays. GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO). In contrast, atorvastatin affects hyperlipidemia mainly during lipid metabolism and protein metabolism in vivo. PMID:24223845

  6. NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib.

    PubMed

    Du, Changman; Shao, Xue; Zhu, Ruiming; Li, Yan; Zhao, Qian; Fu, Dengqi; Gu, Hui; Kong, Jueying; Luo, Li; Long, Hailei; Deng, Pengchi; Wang, Huijuan; Hu, Chunyan; Zhao, Yinglan; Cen, Xiaobo

    2015-11-01

    Sorafenib, an active multi-kinase inhibitor, has been widely used as a chemotherapy drug to treat advanced clear-cell renal cell carcinoma patients. In spite of the relative safety, sorafenib has been shown to exert a negative impact on cognitive functioning in cancer patients, specifically on learning and memory; however, the underlying mechanism remains unclear. In this study, an NMR-based metabolomics approach was applied to investigate the neurochemical effects of sorafenib in rats. Male rats were once daily administrated with 120 mg/kg sorafenib by gavage for 3, 7, and 28 days, respectively. NMR-based metabolomics coupled with histopathology examinations for hippocampus, prefrontal cortex (PFC), and striatum were performed. The (1)H NMR spectra data were analyzed by using multivariate pattern recognition techniques to show the time-dependent biochemical variations induced by sorafenib. Excellent separation was obtained and distinguishing metabolites were observed between sorafenib-treated and control rats. A total of 36 differential metabolites in hippocampus of rats treated with sorafenib were identified, some of which were significantly changed. Furthermore, these modified metabolites mainly reflected the disturbances in neurotransmitters, energy metabolism, membrane, and amino acids. However, only a few metabolites in PFC and striatum were altered by sorafenib. Additionally, no apparent histological changes in these three brain regions were observed in sorafenib-treated rats. Together, our findings demonstrate the disturbed metabonomics pathways, especially, in hippocampus, which may underlie the sorafenib-induced cognitive deficits in patients. This work also shows the advantage of NMR-based metabolomics over traditional approach on the study of biochemical effects of drugs. PMID:26233726

  7. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology.

    PubMed

    Zhao, Liangcai; Dong, Minjian; Liao, Shixian; Du, Yao; Zhou, Qi; Zheng, Hong; Chen, Minjiang; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Renal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, (1)H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively. The results revealed that reduced levels of bioenergy synthesis and branched chain amino acids (BCAAs), as well as elevated levels of indoxyl sulfate (IS) are involved in metabolic alterations of renal fibrosis rats. Next, by pharmacological treatment we found that reduction of IS levels could prevent the renal fibrotic symptoms. Therefore, we suggested that urinary IS may be used as a potential biomarker for the diagnosis of renal fibrosis, and a therapeutic target for drugs. Novel attempt combining metabonomics and pharmacology was established that have ability to provide more systematic diagnostic and therapeutic information of diseases. PMID:27256510

  8. Identification of key metabolic changes in renal interstitial fibrosis rats using metabonomics and pharmacology

    PubMed Central

    Zhao, Liangcai; Dong, Minjian; Liao, Shixian; Du, Yao; Zhou, Qi; Zheng, Hong; Chen, Minjiang; Ji, Jiansong; Gao, Hongchang

    2016-01-01

    Renal fibrosis is one of the important pathways involved in end-stage renal failure. Investigating the metabolic changes in the progression of disease may enhance the understanding of its pathogenesis and therapeutic information. In this study, 1H-nuclear magnetic resonance (NMR)-based metabonomics was firstly used to screen the metabolic changes in urine and kidney tissues of renal interstitial fibrotic rats induced by unilateral ureteral obstruction (UUO), at 7, 14, 21, and 28 days after operation, respectively. The results revealed that reduced levels of bioenergy synthesis and branched chain amino acids (BCAAs), as well as elevated levels of indoxyl sulfate (IS) are involved in metabolic alterations of renal fibrosis rats. Next, by pharmacological treatment we found that reduction of IS levels could prevent the renal fibrotic symptoms. Therefore, we suggested that urinary IS may be used as a potential biomarker for the diagnosis of renal fibrosis, and a therapeutic target for drugs. Novel attempt combining metabonomics and pharmacology was established that have ability to provide more systematic diagnostic and therapeutic information of diseases. PMID:27256510

  9. MS Based Metabonomics

    SciTech Connect

    Want, Elizabeth J.; Metz, Thomas O.

    2010-03-01

    Metabonomics is the latest and least mature of the systems biology triad, which also includes genomics and proteomics, and has its origins in the early orthomolecular medicine work pioneered by Linus Pauling and Arthur Robinson. It was defined by Nicholson and colleagues in 1999 as the quantitative measurement of perturbations in the metabolite complement of an integrated biological system in response to internal or external stimuli, and is often used today to describe many non-global types of metabolite analyses. Applications of metabonomics are extensive and include toxicology, nutrition, pharmaceutical research and development, physiological monitoring and disease diagnosis. For example, blood samples from millions of neonates are tested routinely by mass spectrometry (MS) as a diagnostic tool for inborn errors of metabolism. The metabonome encompasses a wide range of structurally diverse metabolites; therefore, no single analytical platform will be sufficient. Specialized sample preparation and detection techniques are required, and advances in NMR and MS technologies have led to enhanced metabonome coverage, which in turn demands improved data analysis approaches. The role of MS in metabonomics is still evolving as instrumentation and software becomes more sophisticated and as researchers realize the strengths and limitations of current technology. MS offers a wide dynamic range, high sensitivity, and reproducible, quantitative analysis. These attributes are essential for addressing the challenges of metabonomics, as the range of metabolite concentrations easily exceeds nine orders of magnitude in biofluids, and the diversity of molecular species ranges from simple amino and organic acids to lipids and complex carbohydrates. Additional challenges arise in generating a comprehensive metabolite profile, downstream data processing and analysis, and structural characterization of important metabolites. A typical workflow of MS-based metabonomics is shown in Figure

  10. A 1H NMR-based metabolomics approach to evaluate the geographical authenticity of herbal medicine and its application in building a model effectively assessing the mixing proportion of intentional admixtures: A case study of Panax ginseng: Metabolomics for the authenticity of herbal medicine.

    PubMed

    Nguyen, Huy Truong; Lee, Dong-Kyu; Choi, Young-Geun; Min, Jung-Eun; Yoon, Sang Jun; Yu, Yun-Hyun; Lim, Johan; Lee, Jeongmi; Kwon, Sung Won; Park, Jeong Hill

    2016-05-30

    Ginseng, the root of Panax ginseng has long been the subject of adulteration, especially regarding its origins. Here, 60 ginseng samples from Korea and China initially displayed similar genetic makeup when investigated by DNA-based technique with 23 chloroplast intergenic space regions. Hence, (1)H NMR-based metabolomics with orthogonal projections on the latent structure-discrimination analysis (OPLS-DA) were applied and successfully distinguished between samples from two countries using seven primary metabolites as discrimination markers. Furthermore, to recreate adulteration in reality, 21 mixed samples of numerous Korea/China ratios were tested with the newly built OPLS-DA model. The results showed satisfactory separation according to the proportion of mixing. Finally, a procedure for assessing mixing proportion of intentionally blended samples that achieved good predictability (adjusted R(2)=0.8343) was constructed, thus verifying its promising application to quality control of herbal foods by pointing out the possible mixing ratio of falsified samples. PMID:26942336

  11. NMR-based metabolic profiling identifies biomarkers of liver regeneration following partial hepatectomy in the rat.

    PubMed

    Bollard, Mary E; Contel, Nancy R; Ebbels, Timothy M D; Smith, Leon; Beckonert, Olaf; Cantor, Glenn H; Lehman-McKeeman, Lois; Holmes, Elaine C; Lindon, John C; Nicholson, Jeremy K; Keun, Hector C

    2010-01-01

    Tissue injury and repair are often overlapping consequences of disease or toxic exposure, but are not often considered as distinct processes in molecular studies. To establish the systemic metabolic response to liver regeneration, the partial hepatectomy (PH) model has been studied in the rat by an integrated metabonomics strategy, utilizing (1)H NMR spectroscopy of urine, liver and serum. Male Sprague-Dawley rats were subjected to either surgical removal of approximately two-thirds of the liver, sham operated (SO) surgery, or no treatment (n = 10/group) and samples collected over a 7 day period. A number of urinary metabolic perturbations were observed in PH rats compared with SO and control animals, including elevated levels of taurine, hypotaurine, creatine, guanidinoacetic acid, betaine, dimethylglycine and bile acids. Serum betaine and creatine were also elevated after PH, while levels of triglyceride were reduced. In the liver, triglycerides, cholesterol, alanine and betaine were elevated after PH, while choline and its derivatives were reduced. Upon examining the dynamic pattern of urinary response (the 'metabolic trajectory'), several metabolites could be categorized into groups likely to reflect perturbations to different processes such as dietary intake or hepatic 1-carbon metabolism. Several of the urinary perturbations observed during the regenerative phase of the PH model have also been observed after exposure to liver toxins, indicating that hepatic regeneration may make a contribution to the systemic alterations in metabolism associated with hepatotoxicity. The observed changes in 1-carbon and lipid metabolism are consistent with the proposed role of these pathways in the activation of a regenerative response and provide further evidence regarding the utility of urinary NMR profiles in the detection of liver-specific pathology. Biofluid (1)H NMR-based metabolic profiling provides new insight into the role of metabolism of liver regeneration, and

  12. Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis

    NASA Astrophysics Data System (ADS)

    Li, Jinquan; Zhao, Zhenghuan; Feng, Jianghua; Gao, Jinhao; Chen, Zhong

    2013-11-01

    Recently, some types of MnO nanoparticle (Mn-NP) with favorable imaging capacity have been developed to improve the biocompatible profile of the existing Mn-based MRI contrast agent Mn-DPDP; however, the overall bio-effects and potential toxicity remain largely unknown. In this study, 1H NMR-based metabolic profiling, integrated with traditional biochemical analysis and histopathological examinations, was used to investigate the absorption, distribution, metabolism, excretion and toxicity of Mn-NPs as candidates for MRI contrast agent. The metabolic responses in biofluids (plasma and urine) and tissues (liver, spleen, kidney, lung and brain) from rats could be divided into four classes following Mn-NP administration: Mn biodistribution-dependent, time-dependent, dose-dependent and complicated metabolic variations. The variations of these metabolites involved in lipid, energy, amino acid and other nutrient metabolism, which disclosed the metabolic fate and biological effects of Mn-NPs in rats. The changes of metabolic profile implied that the disturbance and impairment of biological functions induced by Mn-NP exposure were correlated with the particle size and the surface chemistry of nanoparticles. Integration of metabonomic technology with traditional methods provides a promising tool to understand the toxicological behavior of biomedical nanomaterials and will result in informed decision-making during drug development.

  13. Metabonomic changes from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma in tissues from rats.

    PubMed

    Wen, Shi; Li, Zhishui; Feng, Jianghua; Bai, Jianxi; Lin, Xianchao; Huang, Heguang

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors and is difficult to diagnose in the early phase. This study was aimed at obtaining the metabolic profiles and characteristic metabolites of pancreatic intraepithelial neoplasia (PanIN) and PDAC tissues from Sprague-Dawley (SD) rats to establish metabonomic methods used in the early diagnosis of PDAC. In the present study, the animal models were established by embedding 7,12-dimethylbenzanthracene (DMBA) in the pancreas of SD rats to obtain PanIN and PDAC tissues. After the preprocessing of tissues, (1) H nuclear magnetic resonance (NMR) spectroscopy combined with multivariate and univariate statistical analysis was applied to identify the potential metabolic signatures and the corresponding metabolic pathways. Pattern recognition models were successfully established and differential metabolites, including glucose, amino acids, carboxylic acids and coenzymes, were screened out. Compared with the control, the trends in the variation of several metabolites were similar in both PanIN and PDAC. Kynurenate and methionine levels were elevated in PanIN but decreased in PDAC, thus, could served as biomarkers to distinguish PanIN from PDAC. Our results suggest that NMR-based techniques combined with multivariate statistical analysis can distinguish the metabolic differences among PanIN, PDAC and normal tissues, and, therefore, present a promising approach for physiopathologic metabolism investigations and early diagnoses of PDAC. PMID:27019331

  14. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on 1H Nuclear Magnetic Resonance

    PubMed Central

    Wen, Chao-wei; Lin, Xiao-dong; Dong, Min-jian; Deng, Ming-jie

    2016-01-01

    1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, 1H nuclear magnetic resonance (1H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) on the fat body glycometabolism and energy metabolism of the fourth-instar larvae of Eri silkworms, Samia cynthia ricini. Metabolic pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) of fat body extracts indicated that the groups of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) were significantly different from the control group. Further, compared to the control group, the metabolites levels of lactate, trehalose, succinate, malate, and fumarate were remarkably changed in experimental groups, which were involved in glycolysis, hydrolysis of trehalose, and tricarboxylic acid (TCA) cycle. Our results indicate that DNJ has a positive impact on the reverse energy metabolism of Eri silkworms and metabonomic analysis based on NMR can be used as a tool to identify potential biomarkers. PMID:27294120

  15. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on (1) H Nuclear Magnetic Resonance.

    PubMed

    Wen, Chao-Wei; Lin, Xiao-Dong; Dong, Min-Jian; Deng, Ming-Jie

    2016-01-01

    1-Deoxynojirimycin (DNJ), the main hypoglycemic constituent in mulberry (Morus alba) latex, has been extensively researched. Although there is considerable interest in the biological effects of DNJ, the roles of 1-deoxynojirimycin (DNJ) in glycometabolism and energy metabolism in insects have received little attention. In this paper, (1)H nuclear magnetic resonance ((1)H NMR) based metabonomic was performed to study the effects of the oral supplementation of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) on the fat body glycometabolism and energy metabolism of the fourth-instar larvae of Eri silkworms, Samia cynthia ricini. Metabolic pattern recognition analysis (partial least square-discriminant analysis, PLS-DA) of fat body extracts indicated that the groups of 0.25% DNJ, 0.5% DNJ, latex, and the mixture of 0.5% DNJ and latex (1 : 1) were significantly different from the control group. Further, compared to the control group, the metabolites levels of lactate, trehalose, succinate, malate, and fumarate were remarkably changed in experimental groups, which were involved in glycolysis, hydrolysis of trehalose, and tricarboxylic acid (TCA) cycle. Our results indicate that DNJ has a positive impact on the reverse energy metabolism of Eri silkworms and metabonomic analysis based on NMR can be used as a tool to identify potential biomarkers. PMID:27294120

  16. Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S,8R,13S,16R)-(-)-pyrenophorol using 1H nuclear magnetic resonance fingerprinting.

    PubMed

    Aliferis, Konstantinos A; Chrysayi-Tokousbalides, Maria

    2006-03-01

    The biochemical mode of action of (5S,8R,13S,16R)-(-)-pyrenophorol isolated from a Drechslera avenae pathotype was investigated by using metabolic fingerprinting. (1)H NMR spectra of crude leaf extracts from untreated Avena sterilis seedlings and A. sterilis seedlings treated with pyrenophorol were compared with those obtained from treatments with the herbicides diuron, glyphosate, mesotrione, norflurazon, oxadiazon, and paraquat. Multivariate analysis was carried out to group treatments according to the mode of action of the phytotoxic substances applied. Analysis results revealed that none of the herbicide treatments fitted the pyrenophorol model and indicate that the effect of the phytotoxin on A. sterilis differs than those caused by glyphosate, mesotrione, norflurazon, oxadiazon, paraquat, and diuron, which inhibit 5-enolpyruvylshikimate-3-phosphate synthase, 4-hydroxyphenyl-pyruvate-dioxygenase, phytoene desaturase, protoporphyrinogen oxidase, photosystem I, and photosystem II, respectively. The method applied, combined with appropriate data preprocessing and analysis, was found to be rapid for the screening of phytotoxic substances for metabolic effects. PMID:16506820

  17. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  18. Role of Bai-Shao towards the antidepressant effect of Chaihu-Shu-Gan-San using metabonomics integrated with chemical fingerprinting.

    PubMed

    Chang, Xing; Jia, Hongmei; Zhou, Chao; Zhang, Hongwu; Yu, Meng; Yang, Junshan; Zou, Zhongmei

    2015-12-01

    Chaihu-Shu-Gan-San (CSGS) is a classical traditional Chinese medicine formula for the treatment of depression. As one of the single herbs in CSGS, Bai-Shao displayed antidepressant effect. In order to explore the role of Bai-Shao towards the antidepressant effect of CSGS, the metabolic regulation and chemical profiles of CSGS with and without Bai-Shao (QBS) were investigated using metabonomics integrated with chemical fingerprinting. At first, partial least squares regression (PLSR) analysis was applied to characterize the potential biomarkers associated with chronic unpredictable mild stress (CUMS)-induced depression. Among 46 differential metabolites found in the ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) and (1)H NMR-based urinary metabonomics, 20 were significantly correlated with the preferred sucrose consumption observed in behavior experiments and were considered as biomarkers to evaluate the antidepressant effect of CSGS. Based on differential regulation on CUMS-induced metabolic disturbances with CSGS and QBS treatments, we concluded that Bai-Shao made crucial contribution to CSGS in the improvement of the metabolic deviations of six biomarkers (i.e., glutamate, acetoacetic acid, creatinine, xanthurenic acid, kynurenic acid, and N-acetylserotonin) disturbed in CUMS-induced depression. While the chemical constituents of Bai-Shao contributed to CSGS were paeoniflorin, albiflorin, isomaltopaeoniflorin, and benzoylpaeoniflorin based on the multivariate analysis of the UPLC-Q-TOF/MS chemical profiles from CSGS and QBS extracts. These findings suggested that Bai-Shao played an indispensable role in the antidepressant effect of CSGS. PMID:26540435

  19. Metabonomic alterations from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma facilitate the identification of biomarkers in serum for early diagnosis of pancreatic cancer.

    PubMed

    Lin, Xianchao; Zhan, Bohan; Wen, Shi; Li, Zhishui; Huang, Heguang; Feng, Jianghua

    2016-08-16

    Pancreatic cancer is a highly malignant disease with a poor prognosis and it is essential to diagnose and treat the disease at an early stage. The aim of this study was to understand the underlying biochemical mechanisms of pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) and to identify potential serum biomarkers for early detection of pancreatic cancer. 7,12-Dimethylbenz(a)anthracene (DMBA)-induced PanIN and PDAC rat models were established and the serum samples were collected. The serum samples were measured using (1)H nuclear magnetic resonance (NMR) spectroscopy and analyzed by chemometric methods including principal component analysis (PCA) and (orthogonal) partial least squares discriminant analysis ((O)PLS-DA). The related biochemical pathways were derived from KEGG analysis of the significantly different metabolites. As results, some serum metabolites demonstrated alarming metabolic changes in the precursor lesion of pancreatic cancer (PanIN-2 in this study). These changes involved elevated levels of ketone compounds including 3-hydroxybutyrate, acetoacetate, and acetone, some amino acids including asparagine, glutamate, threonine, and phenylalanine, glycoproteins and lipoproteins including N-acetylglycoprotein, LDL and VLDL, and some metabolites that have been shown to contribute to mutagenicity and cancer promotion such as deoxyguanosine and cytidine. More metabolites were shown to be significantly different between PanIN and PDAC, suggesting that a more complex set of changes occurs from noninvasive precursor lesion to invasive cancer. The serum metabonomic changes of rats with PanIN and PDAC may extend our understanding of pancreatic molecular pathogenesis, and the metabolic variations from PanIN to PDAC will be helpful to understand evolution processes of the pancreatic disease. NMR-based metabonomic analysis of animal models will be beneficial for the human study and will be helpful for the early detection of

  20. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    SciTech Connect

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun; Yu, Hong; He, Xiaohua; Zhang, Baifang; Zhang, Yuanzhen; Feng, Jianghua; Wang, Hui

    2014-03-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by {sup 1}H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal

  1. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: a preliminary study.

    PubMed

    Dudka, Ilona; Kossowska, Barbara; Senhadri, Hanna; Latajka, Rafał; Hajek, Julianna; Andrzejak, Ryszard; Antonowicz-Juchniewicz, Jolanta; Gancarz, Roman

    2014-07-01

    Environmental metabonomics is the application of metabonomics to characterize the interactions of organisms with their environment. Metabolic profiling is an exciting addition to the armory of the epidemiologist for the discovery of new disease risk biomarkers and diagnostics. This work is a continuation of research searching for preclinical serum markers in a group of 389 healthy smelter workers exposed to lead, cadmium and arsenic. Changes in the metabolic profiles were studied using Proton Nuclear Magnetic Resonance Spectroscopy on pooled serum samples from both the metal exposed and control groups. These multivariate metabonomic datasets were analyzed with Principal Component Analysis and Partial Least Squares Discriminant Analysis. Analysis of metabolic profiles of people exposed to heavy metals suggests energy metabolism disturbance induced by heavy metals. Changes in lipid fraction (very-low-density lipoprotein - VLDL, low-density lipoprotein - LDL), unsaturated lipids and in the level of amino acids suggest perturbation of the metabolism of lipids and amino acids. This study illustrated the high reliability of NMR-based metabonomic profiling on the study of the biochemical effects induced by the mixture of heavy metals. This approach is capable of identifying intermediate biomarkers of response to toxicants at environmental/occupational concentrations, paving the way to its use in a monitoring of smelter workers exposed to low doses of lead, cadmium and arsenic. PMID:24713610

  2. Distinct Metabolic Profile of Primary Focal Segmental Glomerulosclerosis Revealed by NMR-Based Metabolomics

    PubMed Central

    Wang, Weiming; Ren, Hong; Xie, Jingyuan; Shen, Pingyan; Lin, Donghai; Chen, Nan

    2013-01-01

    Background Primary focal segmental glomerulosclerosis (FSGS) is pathological entity which is characterized by idiopathic steroid-resistant nephrotic syndrome (SRNS) and progression to end-stage renal disease (ESRD) in the majority of affected individuals. Currently, there is no practical noninvasive technique to predict different pathological types of glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was investigated. Methods NMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n = 25), membranous nephropathy (MN, n = 24), minimal change disease (MCD, n = 14) and IgA nephropathy (IgAN, n = 26), and healthy controls (CON, n = 35). The acquired data were analyzed using principal component analysis (PCA) followed by orthogonal projections to latent structure discriminant analysis (OPLS-DA). Model validity was verified using permutation tests. Results FSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose, dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine, phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and β-hydroxyisovalerate decreased. Additionally, FSGS patients had lower urine N-methylnicotinamide levels compared with other glomerulopathies. Conclusions NMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS. PMID:24244321

  3. Tissue Metabonomic Phenotyping for Diagnosis and Prognosis of Human Colorectal Cancer

    PubMed Central

    Tian, Yuan; Xu, Tangpeng; Huang, Jia; Zhang, Limin; Xu, Shan; Xiong, Bin; Wang, Yulan; Tang, Huiru

    2016-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide and prognosis based on the conventional histological grading method for CRC remains poor. To better the situation, we analyzed the metabonomic signatures of 50 human CRC tissues and their adjacent non-involved tissues (ANIT) using high-resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy together with the fatty acid compositions of these tissues using GC-FID/MS. We showed that tissue metabolic phenotypes not only discriminated CRC tissues from ANIT, but also distinguished low-grade tumor tissues (stages I-II) from the high-grade ones (stages III-IV) with high sensitivity and specificity in both cases. Metabonomic phenotypes of CRC tissues differed significantly from that of ANIT in energy metabolism, membrane biosynthesis and degradations, osmotic regulations together with the metabolism of proteins and nucleotides. Amongst all CRC tissues, the stage I tumors exhibited largest differentiations from ANIT. The combination of the differentiating metabolites showed outstanding collective power for differentiating cancer from ANIT and for distinguishing CRC tissues at different stages. These findings revealed details in the typical metabonomic phenotypes associated with CRC tissues nondestructively and demonstrated tissue metabonomic phenotyping as an important molecular pathology tool for diagnosis and prognosis of cancerous solid tumors. PMID:26876567

  4. Applications of Metabonomics in Pesticide Toxicology.

    PubMed

    Wang, Pan; Wu, Yi-Jun

    2015-01-01

    Metabonomic studies quantitatively measure the small molecule metabolites and their intermediates in the biological samples (serum, urine or tissue extracts) and have gained wide applications in many fields, especially in toxicology. Pesticides are extensively used around the world and pesticide toxicity has become a serious threat to human health. Metabonomic approach has been applied in many aspects of pesticide toxicology research such as eco-environmental toxicity studies, biomarker identification, and mechanism of toxicity studies. Both whole organism animal models and cell culture models are used for metabonomic studies on pesticide toxicology. In the literature, metabonomic analyses on the toxicity of over thirty common pesticides, including insecticides, herbicides and fungicides, have been carried out using magnetic resonance spectroscopy or mass spectrometry. The combined toxicity of pesticides or pesticide with heavy metals was also investigated with metabonomic approach. In this article, recent progresses made in applying metabonomic approach in pesticide toxicology are thoroughly reviewed and the challenges with application of this approach are also discussed. PMID:26279326

  5. Integrative metabonomics as potential method for diagnosis of thyroid malignancy

    PubMed Central

    Tian, Yuan; Nie, Xiu; Xu, Shan; Li, Yan; Huang, Tao; Tang, Huiru; Wang, Yulan

    2015-01-01

    Thyroid nodules can be classified into benign and malignant tumors. However, distinguishing between these two types of tumors can be challenging in clinics. Since malignant nodules require surgical intervention whereas asymptomatic benign tumors do not, there is an urgent need for new techniques that enable accurate diagnosis of malignant thyroid nodules. Here, we used 1H NMR spectroscopy coupled with pattern recognition techniques to analyze the metabonomes of thyroid tissues and their extracts from thyroid lesion patients (n = 53) and their adjacent healthy thyroid tissues (n = 46). We also measured fatty acid compositions using GC−FID/MS techniques as complementary information. We demonstrate that thyroid lesion tissues can be clearly distinguishable from healthy tissues, and malignant tumors can also be distinguished from the benign tumors based on the metabolic profiles, both with high sensitivity and specificity. In addition, we show that thyroid lesions are accompanied with disturbances of multiple metabolic pathways, including alterations in energy metabolism (glycolysis, lipid and TCA cycle), promotions in protein turnover, nucleotide biosynthesis as well as phosphatidylcholine biosynthesis. These findings provide essential information on the metabolic features of thyroid lesions and demonstrate that metabonomics technology can be potentially useful in the rapid and accurate preoperative diagnosis of malignant thyroid nodules. PMID:26486570

  6. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  7. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy.

    PubMed

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M Iqbal; Rahman, Atta-Ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using (1)H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  8. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  9. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  10. Early Stage Diagnosis of Oral Cancer Using 1H NMR-Based Metabolomics12

    PubMed Central

    Tiziani, Stefano; Lopes, Victor; Günther, Ulrich L

    2009-01-01

    Oral cancer is the eighth most common cancer worldwide and represents a significant disease burden. If detected at an early stage, survival from oral cancer is better than 90% at 5 years, whereas late stage disease survival is only 30%. Therefore, there is an obvious clinical utility for novel metabolic markers that help to diagnose oral cancer at an early stage and to monitor treatment response. In the current study, blood samples of oral cancer patients were analyzed using nuclear magnetic resonance spectroscopy to derive a metabolic signature for oral cancer. Using multivariate chemometric analysis, we obtained an excellent discrimination between serum samples from cancer patients and from a control group and could also discriminate between different stages of disease. The metabolic profile obtained for oral cancer is significant, even for early stage disease and relatively small tumors. This suggests a systemic metabolic response to cancer, which bears great potential for early diagnosis. PMID:19242608

  11. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  12. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    SciTech Connect

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  13. Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy.

    PubMed

    Dong, Fangcong; Zhang, Lulu; Hao, Fuhua; Tang, Huiru; Wang, Yulan

    2013-06-01

    The interplay between genetic mutation and environmental factors is believed to contribute to the etiology of inflammatory bowel disease (IBD). While focused attention has been paid to the aforementioned research, time-specific and organ-specific metabolic changes associated with IBD are still lacking. Here, we induced acute ulcerative colitis in mice by providing water containing 3% dextran sulfate sodium (DSS) for 7 days and investigated the metabolic changes of plasma, urine, and a range of biological tissues by employing a (1)H nuclear magnetic resonance (NMR)-based metabonomics approach with complementary information on serum clinical chemistry and histopathology. We found that DSS-induced acute ulcerative colitis leads to significant elevations in the levels of amino acids in plasma and decreased levels in the membrane-related metabolites and a range of nucleotides, nucleobases, and nucleosides in the colon. In addition, acute-colitis-induced elevations in the levels of nucleotides in the liver were observed, accompanied by reduced levels of glucose. DSS-induced acute colitis also resulted in increased levels of oxidized glutathione and attenuated levels of taurine in the spleen. Furthermore, acute colitis resulted in depletion in the levels of gut microbial cometabolites in urine along with an increase in citric acid cycle intermediates. These findings suggest that DSS-induced acute colitis causes a disturbance of lipid and energy metabolism, damage to the colon and liver, a promoted antioxidative and anti-inflammatory response, and perturbed gut microbiotal communities. The information obtained here provided details of the time-dependent and holistic metabolic changes in the development of the DSS-induced acute ulcerative colitis, which could be useful in discovery of novel therapeutic targets for management of IBD. PMID:23651354

  14. Untargeted NMR-based methodology in the study of fruit metabolites.

    PubMed

    Sobolev, Anatoly Petrovich; Mannina, Luisa; Proietti, Noemi; Carradori, Simone; Daglia, Maria; Giusti, Anna Maria; Antiochia, Riccarda; Capitani, Donatella

    2015-01-01

    In this review, fundamental aspects of the untargeted NMR-based methodology applied to fruit characterization are described. The strategy to perform the structure elucidation of fruit metabolites is discussed with some examples of spectral assignments by 2D experiments. Primary ubiquitous metabolites as well as secondary species-specific metabolites, identified in different fruits using an untargeted 1H-NMR approach, are summarized in a comprehensive way. Crucial aspects regarding the quantitative elaboration of spectral data are also discussed. The usefulness of the NMR-based metabolic profiling was highlighted using some results regarding quality, adulteration, varieties and geographical origin of fruits and fruit-derived products such as juices. PMID:25749679

  15. NMR-based metabonomic analysis of normal rat urine and faeces in response to (±)-venlafaxine treatment.

    PubMed

    Serrano-Contreras, José I; García-Pérez, Isabel; Meléndez-Camargo, María E; Zepeda-Vallejo, Luis G

    2016-05-10

    (±)-Venlafaxine, a bicyclic antidepressant of the serotonin-norepinephrine reuptake inhibitor (SNRI) class, is prescribed for the treatment of depression and anxiety disorders. As is the case with other antidepressants, its precise mechanisms of action are still unknown. Pharmacometabonomic approaches allow for the detection of diverse metabolites, unlike classic methods for analysing drug interaction based on single metabolites and linear pathways. This provides a global view of the state of homeostasis during treatment and an insight into the mechanisms of action of a drug. Accordingly, the final outcome of treatment is characterised by the network of reactome pathways derived from the on-target and off-target effects of the drug. Regarding antidepressants, the drug network may be located in the gut-microbiome-brain-liver-kidney-immune-cardiovascular system axis (GMBLKICA), implying that neurotransmitters participate as signalling molecules in bidirectional communication. If their bioavailability is increased, this communication and the state of homeostasis may be disrupted. With a pharmacometabonomic approach using NMR in combination with different chemometric methods, a determination was made of subtle changes in the metabolic profile (metabotype) of urine and faeces in normal Wistar rats following a single administration of pharmacological doses of (±)-venlafaxine hydrochloride. Based on the drug-response metabotypes observed, (±)-venlafaxine had effects on gut microbial co-metabolites and osmolytes. Hence, it can be hypothesized that bidirectional communication in the multiorgan axis was perturbed by this drug, and very likely by its active metabolite, (±)-desvenlafaxine. This disrupted signalling could be related not only to therapeutic and adverse effects, but also to the lag period in treatment response. PMID:26895493

  16. ¹H NMR-based metabonomic analysis of brain in rats of morphine dependence and withdrawal intervention.

    PubMed

    Hu, Zhengtao; Deng, Yi; Hu, Chunyan; Deng, Pengchi; Bu, Qian; Yan, Guangyan; Zhou, Jiaqing; Shao, Xue; Zhao, Jinxuan; Li, Yan; Zhu, Ruiming; Xu, Youzhi; Zhao, Yinglan; Cen, Xiaobo

    2012-05-16

    Metabolic consequences of morphine dependence and withdrawal intervention have not been well explored. In the present study, the metabolic changes in brain hippocampus, nucleus accumbens (NAc), prefrontal cortex (PFC) and striatum of rats with morphine dependence and withdrawal intervention were explored by using ¹H nuclear magnetic resonance coupled with principal component analysis, partial least squares and orthogonal signal correction analysis. We found that the concentrations of neurotransmitters including glutamate, glutamine and gamma-aminobutyric acid changed differentially in hippocampus, NAc, PFC and striatum after repeated morphine treatment. Significant changes were also found in a number of cerebral metabolites including N-acetyl aspartate (NAA), lactic acid, creatine, myo-inositol and taurine. These findings indicate the profound disturbances of energy metabolism, amino acid metabolism and neurotransmitters caused by chronic morphine treatment. Interestingly, morphine-induced changes in lactic acid, creatine and NAA were clearly reversed by intervention of methadone or clonidine. Our study provides a comprehensive understanding of the metabolic alteration associated with morphine addiction and withdrawal therapy, which may help to develop new pharmacotherapies. PMID:22391120

  17. A metabonomic analysis of organ specific response to USPIO administration.

    PubMed

    Feng, Jianghua; Liu, Huili; Bhakoo, Kishore K; Lu, Lehui; Chen, Zhong

    2011-09-01

    As ultrasmall superparamagnetic particles of iron oxides (USPIO) have been widely used in clinical medicine as MRI contrast agents, hence their potential toxicity and adverse effects following administration have attracted particular attention. In the present study, high resolution magic-angle-spinning (1)H NMR spectroscopy coupled with multivariate statistical analysis was used to directly determine the metabolic consequences of specific-tissues, including kidney, liver and spleen following the intravenous administration of USPIO. Alterations of renal, hepatic and splenic function were reflected by changes in a number of metabolic pathways including small molecules involved in energy, lipid, glucose, and amino acids metabolism. The toxicological potential and metabolic fate of USPIO seems to be linked to their surface chemistry and particle size. Hierarchical principal component analysis was used to explore the multidimensional metabolic relationships between various biological matrices such as kidney, liver, spleen, plasma and urine. Information on the involvement of USPIO in transportation, absorption, biotransformation, biodistribution and secretion was derived from metabolic correlation analysis between different organs and biofluids. Such a metabonomic strategy provides methodology for investigating the potential adverse biological effects of similar nanoparticles on the environmental and human health and assessing the drug interventions on the targeted organ. PMID:21641028

  18. [Discussion on studies of individualized diagnosis and treatment using metabonomics].

    PubMed

    Li, Ying-shuai

    2011-07-01

    As one of the most active branch disciplines in the systematic biology research field, metabonomics has developed rapidly in recent years and become the research hotspot at home and abroad. The proposal of individualized diagnosis and treatment has emphasized and focused on the effect of internal factors of the human body and individual difference on the diagnosis and treatment of disease. Since metabonomics reflects that under the joint action of genes and the environment, the overall features of individual biological systems and functions states, thus, providing a new train of thought and research platform for studying individualized diagnosis and treatment. Through discussion of the train of thoughts, methods, progress of metabonomics used in studies on individualized difference, we believe that metabonomics technologies have a broad prospect of application in the individualized diagnosis and treatment. It is promising to have significant breakthrough from theory to practice. PMID:21866674

  19. Modeling Longitudinal Metabonomics and Microbiota Interactions in C57BL/6 Mice Fed a High Fat Diet.

    PubMed

    Montoliu, Ivan; Cominetti, Ornella; Boulangé, Claire L; Berger, Bernard; Siddharth, Jay; Nicholson, Jeremy; Martin, François-Pierre J

    2016-08-01

    Longitudinal studies aim typically at following populations of subjects over time and are important to understand the global evolution of biological processes. When it comes to longitudinal omics data, it will often depend on the overall objective of the study, and constraints imposed by the data, to define the appropriate modeling tools. Here, we report the use of multilevel simultaneous component analysis (MSCA), orthogonal projection on latent structures (OPLS), and regularized canonical correlation analysis (rCCA) to study associations between specific longitudinal urine metabonomics data and microbiome data in a diet-induced obesity model using C57BL/6 mice. (1)H NMR urine metabolic profiling was performed on samples collected weekly over a period of 13 weeks, and stool microbial composition was assessed using 16S rRNA gene sequencing at three specific time periods (baseline, first week response, end of study). MSCA and OPLS allowed us to explore longitudinal urine metabonomics data in relation to the dietary groups, as well as dietary effects on body weight. In addition, we report a data integration strategy based on regularized CCA and correlation analyses of urine metabonomics data and 16S rRNA gene sequencing data to investigate the functional relationships between metabolites and gut microbial composition. Thanks to this workflow enabling the breakdown of this data set complexity, the most relevant patterns could be extracted to further explore physiological processes at an anthropometric, cellular, and molecular level. PMID:27396289

  20. Combined subchronic toxicity of dichlorvos with malathion or pirimicarb in mice liver and serum: a metabonomic study.

    PubMed

    Wang, Pan; Wang, Hui-Ping; Xu, Ming-Yuan; Liang, Yu-Jie; Sun, Ying-Jian; Yang, Lin; Li, Li; Li, Wei; Wu, Yi-Jun

    2014-08-01

    Organophosphorus (OP) and carbamate (CM) pesticides are widely used in agriculture. These pesticides are highly toxic to humans and their residues in food pose potential threat to human health. In this study, we investigated the effect of subchronic low-level exposure of OPs (dichlorvos, DDVP; malathion, MAL), CM pirimicarb (PI), or their mixtures (DDVP+MAL, DDVP+PI) on mice liver. Metabonomic analysis based on (1)H nuclear magnetic resonance spectroscopy was carried out in combination with biochemical assays. Serum metabonomic analysis showed that levels of trimethylamine-N-oxide, lactate, acetone, very low- and low-density lipoprotein and 3-hydroxybutyrate changed after exposure to the pesticides. In the liver extracts, lactate, glucose, choline, glutathione, alanine, glutamine and isoleucine levels changed after the treatment by pesticides. Our results indicated that exposure to low dose DDVP, MAL and PI, either alone or in combination lead to alteration of liver glucose, fat and protein metabolism, energy metabolism and oxidative balance. This study also showed that metabonomics is of potential use in food toxicity study. PMID:24907623

  1. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    SciTech Connect

    Conotte, R.; Colet, J.-M.

    2014-04-15

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. {sup 1}H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea.

  2. Metabonomic analysis of ovarian tumour cyst fluid by proton nuclear magnetic resonance spectroscopy.

    PubMed

    Kyriakides, Michael; Rama, Nona; Sidhu, Jasmin; Gabra, Hani; Keun, Hector C; El-Bahrawy, Mona

    2016-02-01

    The majority of ovarian tumours are of the epithelial type, which can be sub classified as benign, borderline or malignant. Epithelial tumours usually have cystic spaces filled with cyst fluid, the metabolic profile of which reflects the metabolic activity of the tumour cells, due to their close proximity. The approach of metabonomics using 1H-NMR spectroscopy was employed to characterize the metabolic profiles of ovarian cyst fluid samples (n = 23) from benign, borderline and malignant ovarian tumours in order to shed more light into ovarian tumour and cancer development. The analysis revealed that citrate was elevated in benign versus malignant tumours, while the amino acid lysine was elevated in malignant versus non-malignant tumours, both at a 5% significance level. Choline and lactate also had progressively increasing levels from benign to borderline to malignant samples. Finally, hypoxanthine was detected exclusively in a sub-cohort of the malignant tumours. This metabonomic study demonstrates that ovarian cyst fluid samples have potential to be used to distinguish between the different types of ovarian epithelial tumours. Furthermore, the respective metabolic profiles contain mechanistic information which could help identify biomarkers and therapeutic targets for ovarian tumours. PMID:26769844

  3. Metabonomic analysis of ovarian tumour cyst fluid by proton nuclear magnetic resonance spectroscopy

    PubMed Central

    Kyriakides, Michael; Rama, Nona; Sidhu, Jasmin; Gabra, Hani; Keun, Hector C.; El-Bahrawy, Mona

    2016-01-01

    The majority of ovarian tumours are of the epithelial type, which can be sub classified as benign, borderline or malignant. Epithelial tumours usually have cystic spaces filled with cyst fluid, the metabolic profile of which reflects the metabolic activity of the tumour cells, due to their close proximity. The approach of metabonomics using 1H-NMR spectroscopy was employed to characterize the metabolic profiles of ovarian cyst fluid samples (n = 23) from benign, borderline and malignant ovarian tumours in order to shed more light into ovarian tumour and cancer development. The analysis revealed that citrate was elevated in benign versus malignant tumours, while the amino acid lysine was elevated in malignant versus non-malignant tumours, both at a 5% significance level. Choline and lactate also had progressively increasing levels from benign to borderline to malignant samples. Finally, hypoxanthine was detected exclusively in a sub-cohort of the malignant tumours. This metabonomic study demonstrates that ovarian cyst fluid samples have potential to be used to distinguish between the different types of ovarian epithelial tumours. Furthermore, the respective metabolic profiles contain mechanistic information which could help identify biomarkers and therapeutic targets for ovarian tumours. PMID:26769844

  4. Investigation of toxicological effects of Shuanghuanglian injection in Beagle dogs by metabonomic and traditional approaches.

    PubMed

    Yan, Guangyan; Zhao, Yinglan; Deng, Pengchi; Lv, Lei; Wang, Yanli; Bu, Qian; Liu, Bin; Hu, Chunyan; Zhuo, Yanqiang; Yang, Xunning; Wang, Li; Cen, Xiaobo

    2010-11-01

    In this study, clinical biochemistry, hematology, histopathology and (1)H nuclear magnetic resonance spectroscopy-based metabonomic approaches were applied to investigate the toxicological effects of Shuanghuanglian (SHL) injection after intravenous administration (dosed at 4, 12 and 36 mL stock/kg) in Beagle dogs for 30 d. Decreases in red blood cells, hemoglobin, mean cell volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were observed in the high-dose group. Elevated reticulocytes, total bilirubin and direct bilirubin were also observed in this group. Moreover, significant hemosiderosis and Prussian blue positivity were detected in the liver, spleen and kidney from high-dose group animals, and transmission electron microscopy examination revealed an appreciable number of acanthrocytes in the liver. These results collectively indicate that SHL injection has the potential to cause hemolytic anemia. Metabonomic analysis showed increases in serum lactate, choline and phosphocholine but a decrease in taurine in treated groups and these findings may underlie the toxicological mechanism of SHL injection. In summary, SHL injection shows hemolytic effects in Beagle dogs; moreover, serum choline and phosphocholine as well as lactate and taurine may be the biomarkers for hemolytic anemia induced by SHL injection. PMID:20864460

  5. Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics.

    PubMed

    Kochhar, Sunil; Jacobs, Doris M; Ramadan, Ziad; Berruex, France; Fuerholz, Andreas; Fay, Laurent B

    2006-05-15

    The measurement of metabolite profiles that are interpreted to yield biomarkers using multivariate data analysis is now a well-established approach for gaining an improved understanding of the impact of genetic modifications, toxicological and therapeutic interventions, and exposure to stimuli (e.g., noxious agents, stressors, nutrients) on the network of transcripts, proteins, and metabolites present in cells, tissues, or whole organisms. This has been termed metabonomics. In this study, multivariate analysis of (1)H nuclear magnetic resonance (NMR) spectra of metabolite profiles of urine and plasma from 150 healthy humans revealed that in young people and/or individuals with low body mass indexes, females had higher rates of lipid biosynthesis than did males, whereas males had higher rates of protein turnover than did females. With increasing age, overall lipid biosynthesis decreased in females, whereas metabolism increasingly favored lipid synthesis over protein turnover in males. By relating the derived metabonomic data to known metabolic pathways and published biochemical data, it appears that females synthesize relatively more lipoproteins and unsaturated lipids than do males. Furthermore, the changes in lipid biosynthesis and urinary citrate excretion in females showed a positive correlation. Estrogen most likely plays an essential role in the regulation of, and communication between, protein and lipid biosynthesis by controlling pH in mitochondria and the cytoplasm and hence the observed altered citrate levels. PMID:16600169

  6. Metabonomics for detection of nuclear materials processing.

    SciTech Connect

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  7. A metabonomics study of the hepatotoxicants galactosamine, methylene dianiline and clofibrate in rats.

    PubMed

    Ishihara, Kenji; Katsutani, Naruo; Aoki, Toyohiko

    2006-09-01

    The efficacy of high-resolution (1)H nuclear magnetic resonance ((1)H-NMR) spectroscopy-based metabonomics was studied in a model of rat liver toxicity. Hepatotoxicities were induced in male rats using methylene dianiline, clofibrate and galactosamine. Twenty-four-hr urine from days 1 to 5 after treatment were subjected to (1)H-NMR evaluation of the biochemical effects. Blood were also taken at Days 2, 3 and 5 to examine biochemical changes associated with hepatotoxicities, and histopathological changes were evaluated at termination. Increases in liver enzymes were observed in animals treated with methylene dianiline or galactosamine, and histopathological analysis revealed changes associated with hepatobiliary damage and hepatocellular necrosis in methylene dianiline- and galactosamine-treated animals, respectively. Principal component analysis and statistical Spotfire analyses were used to visualize similarities and differences in urine biochemical profiles produced by (1)H-NMR spectra. The biochemical effects of methylene dianiline and galactosamine were characterized by elevated levels of glucose, fructose, beta-hydroxybutyrate, alanine, acetoacetate, lactate and creatine and decreased levels of hippurate, 2-oxoglutarate, citrate, succinate, trimethylamine-N-oxide, taurine and N-acetylglutamate in rat urine. Clofibrate treatment elevated the levels of N-methylnicotinamide and 3,4-dihydroxymandelate and decreased the levels of 2-oxoglutarate and N-acetylaspartate. This work shows that combinations of (1)H-NMR and pattern recognition are powerful tools in the evaluation of the biochemical effects of xenobiotics in liver. PMID:16930299

  8. Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting.

    PubMed

    Aliferis, Konstantinos A; Materzok, Sylwia; Paziotou, Georgia N; Chrysayi-Tokousbalides, Maria

    2009-08-01

    A validated method applying (1)H NMR fingerprinting for the study of metabolic changes caused in Lemna minor L. by various phytotoxic substances is presented. (1)H NMR spectra of crude extracts from untreated and treated colonies with the herbicides glyphosate, mesotrione, norflurazon, paraquat and the phytotoxin pyrenophorol were subjected to multivariate analyses for detecting differences between groups of treatments. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were carried out in order to discriminate and classify treatments according to the observed changes in the metabolome of the plant. Although the compounds at the concentrations used did not cause macroscopically observable symptoms of phytotoxicity, characteristic metabolic changes were detectable by analyzing (1)H NMR spectra. Analyses results revealed that metabonomics applying (1)H NMR fingerprinting is a potential method for the investigation of toxicological effects of xenobiotics on L. minor, and possibly on other duckweed species, helping in the understanding of such interactions. PMID:19443011

  9. Extracting meaningful information from metabonomic data using multivariate statistics.

    PubMed

    Bylesjö, Max

    2015-01-01

    Metabonomics aims to identify and quantify all small-molecule metabolites in biologically relevant samples using high-throughput techniques such as NMR and chromatography/mass spectrometry. This generates high-dimensional data sets with properties that require specialized approaches to data analysis. This chapter describes multivariate statistics and analysis tools to extract meaningful information from metabonomic data sets. The focus is on the use and interpretation of latent variable methods such as principal component analysis (PCA), partial least squares/projections to latent structures (PLS), and orthogonal PLS (OPLS). Descriptions of the key steps of the multivariate data analyses are provided with demonstrations from example data. PMID:25677152

  10. Application of (1)H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis.

    PubMed

    Zabek, Adam; Swierkot, Jerzy; Malak, Anna; Zawadzka, Iga; Deja, Stanisław; Bogunia-Kubik, Katarzyna; Mlynarz, Piotr

    2016-01-01

    Rheumatoid arthritis is a chronic autoimmune-based inflammatory disease that leads to progressive joint degeneration, disability, and an increased risk of cardiovascular complications, which is the main cause of mortality in this population of patients. Although several biomarkers are routinely used in the management of rheumatoid arthritis, there is a high demand for novel biomarkers to further improve the early diagnosis of rheumatoid arthritis, stratification of patients, and the prediction of a better response to a specific therapy. In this study, the metabolomics approach was used to provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy. The results indicated that twelve metabolites were important for the discrimination of healthy control and rheumatoid arthritis. Notably, valine, isoleucine, lactate, alanine, creatinine, GPC  APC and histidine relative levels were lower in rheumatoid arthritis, whereas 3-hydroxyisobutyrate, acetate, NAC, acetoacetate and acetone relative levels were higher. Simultaneously, the analysis of the concentration of metabolites in rheumatoid arthritis and 3 months after induction treatment revealed that L1, 3-hydroxyisobutyrate, lysine, L5, acetoacetate, creatine, GPC+APC, histidine and phenylalanine were elevated in RA, whereas leucine, acetate, betaine and formate were lower. Additionally, metabolomics tools were employed to discriminate between patients with different IL-17A genotypes. Metabolomics may provide relevant biomarkers to improve diagnostic accuracy, define prognosis and predict and monitor treatment efficacy in rheumatoid arthritis. PMID:26476882

  11. Plasma Metabonomic Profiling of Diabetic Retinopathy.

    PubMed

    Chen, Liyan; Cheng, Ching-Yu; Choi, Hyungwon; Ikram, Mohammad Kamran; Sabanayagam, Charumathi; Tan, Gavin S W; Tian, Dechao; Zhang, Liang; Venkatesan, Gopalakrishnan; Tai, E Shyong; Wang, Jie Jin; Mitchell, Paul; Cheung, Chiu Ming Gemmy; Beuerman, Roger Wilmer; Zhou, Lei; Chan, Eric Chun Yong; Wong, Tien Yin

    2016-04-01

    Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of visual impairment in working-age adults. Patients with diabetes often develop DR despite appropriate control of systemic risk factors, suggesting the involvement of other pathogenic factors. We hypothesize that the plasma metabolic signature of DR is distinct and resolvable from that of diabetes alone. A nested population-based case-control metabonomic study was first performed on 40 DR cases and 40 control subjects with diabetes using gas chromatography-mass spectrometry. Eleven metabolites were found to be correlated with DR, and the majority were robust when adjusted for metabolic risk factors and confounding kidney disease. The metabolite markers 2-deoxyribonic acid; 3,4-dihydroxybutyric acid; erythritol; gluconic acid; and ribose were validated in an independent sample set with 40 DR cases, 40 control subjects with diabetes, and 40 individuals without diabetes. DR cases and control subjects with diabetes were matched by HbA1c in the validation set. Activation of the pentose phosphate pathway was identified from the list of DR metabolite markers. The identification of novel metabolite markers for DR provides insights into potential new pathogenic pathways for this microvascular complication and holds translational value in DR risk stratification and the development of new therapeutic measures. PMID:26822086

  12. Application of metabonomics on an experimental model of fibrosis and cirrhosis induced by thioacetamide in rats

    SciTech Connect

    Constantinou, Maria A.; Theocharis, Stamatios E.; Mikros, Emmanuel . E-mail: mikros@pharm.uoa.gr

    2007-01-01

    Metabonomics has already been used to discriminate different pathological states in biological fields. The metabolic profiles of chronic experimental fibrosis and cirrhosis induction in rats were investigated using {sup 1}H NMR spectroscopy of liver extracts and serum combined with pattern recognition techniques. Rats were continuously administered with thioacetamide (TAA) in the drinking water (300 mg TAA/L), and sacrificed on 1st, 2nd, and 3rd month of treatment. {sup 1}H NMR spectra of aqueous and lipid liver extracts, together with serum were subjected to Principal Component Analysis (PCA). Liver portions were also subjected to histopathological examination and biochemical determination of malondialdehyde (MDA). Liver fibrosis and cirrhosis were progressively induced in TAA-treated rats, verified by the histopathological examination and the alterations of MDA levels. TAA administration revealed a number of changes in the {sup 1}H NMR spectra compared to control samples. The performance of PCA in liver extracts and serum, discriminated the control samples from the fibrotic and cirrhotic ones. Metabolic alterations revealed in NMR spectra during experimental liver fibrosis and cirrhosis induction, characterize the stage of fibrosis and could be illustrated by subsequent PCA of the spectra. Additionally, the PCA plots of the serum samples presented marked clustering during fibrosis progression and could be extended in clinical diagnosis for the management of cirrhotic patients.

  13. Recent developments in sample preparation and data pre-treatment in metabonomics research.

    PubMed

    Li, Ning; Song, Yi peng; Tang, Huiru; Wang, Yulan

    2016-01-01

    Metabonomics is a powerful approach for biomarker discovery and an effective tool for pinpointing endpoint metabolic effects of external stimuli, such as pathogens and disease development. Due to its wide applications, metabonomics is required to deal with various biological samples of different properties. Hence sample preparation and corresponding data pre-treatment become important factors in ensuring validity of an investigation. In this review, we summarize some recent developments in metabonomics sample preparation and data-pretreatment procedures. PMID:26342458

  14. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2008-03-15

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  15. U1h Superstructure

    SciTech Connect

    Glen Sykes

    2000-11-01

    The U1H Shaft Project is a design build subcontract to supply the U. S. Department of Energy (DOE) a 1,045 ft. deep, 20 ft. diameter, concrete lined shaft for unspecified purposes. The subcontract awarded to Atkinson Construction by Bechtel Nevada to design and construct the shaft for the DOE has been split into phases with portions of the work being released as dictated by available funding. The first portion released included the design for the shaft, permanent hoist, headframe, and collar arrangement. The second release consisted of constructing the shaft collar to a depth of 110 ft., the service entry, utility trenches, and installation of the temporary sinking plant. The temporary sinking plant included the installation of the sinking headframe, the sinking hoist, two deck winches, the shaft form, the sinking work deck, and temporary utilities required to sink the shaft. Both the design and collar construction were completed on schedule. The third release consisted of excavating and lining the shaft to the station depth of approximately 950 feet. Work is currently proceeding on this production sinking phase. At a depth of approximately 600 feet, Atkinson has surpassed production expectation and is more than 3 months ahead of schedule. Atkinson has employed the use of a Bobcat 331 excavator as the primary means of excavation. the shaft is being excavated entirely in an alluvial deposit with varying degrees of calcium carbonate cementation. Several more work packages are expected to be released in the near future. The remaining work packages include, construction of the shaft station a depth of 975 ft. and construction of the shaft sump to a depth of 1,045 ft., installation of the loading pocket and station steel and equipment, installation of the shaft steel and guides, installation of the shaft utilities, and installation of the permanent headframe, hoist, collar utilities, and facilities.

  16. Analysis of bacterial biofilms using NMR-based metabolomics

    PubMed Central

    Zhang, Bo; Powers, Robert

    2013-01-01

    Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this ‘social structure’ of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms. PMID:22800371

  17. Non-invasive fecal metabonomic detection of colorectal cancer

    PubMed Central

    Phua, Lee Cheng; Chue, Xiu Ping; Koh, Poh Koon; Cheah, Peh Yean; Ho, Han Kiat; Chan, Eric Chun Yong

    2014-01-01

    Colorectal cancer (CRC) is a major cause of mortality in many developed countries. Effective screening strategies were called for to facilitate timely detection and to promote a better clinical outcome. In this study, the role of fecal metabonomics in the non-invasive detection of CRC was investigated. Gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) was utilized for the metabolic profiling of feces obtained from 11 CRC patients and 10 healthy subjects. Concurrently, matched tumor and normal mucosae surgically excised from CRC patients were profiled. CRC patients were differentiated clearly from healthy subjects based on their fecal metabonomic profiles (orthogonal partial least squares discriminant analysis [OPLS-DA], 1 predictive and 3 Y-orthogonal components, R2X = 0.373, R2Y = 0.995, Q2 [cumulative] = 0.215). The robustness of the OPLS-DA model was demonstrated by an area of 1 under the receiver operator characteristic curve. OPLS-DA revealed fecal marker metabolites (e.g., fructose, linoleic acid, and nicotinic acid) that provided novel insights into the tumorigenesis of CRC. Interestingly, a disparate set of CRC-related metabolic aberrations occurred at the tissue level, implying the contribution of processes beyond the direct shedding of tumor cells to the fecal metabotype. In summary, this work established proof-of-principle for GC/TOFMS-based fecal metabonomic detection of CRC and offered new perspectives on the underlying mechanisms. PMID:24424155

  18. Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

    PubMed Central

    Latino, Diogo A. R. S.; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the

  19. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  20. NMR-based metabolomics approach to study the chronic toxicity of crude ricin from castor bean kernels on rats.

    PubMed

    Guo, Pingping; Wang, Junsong; Dong, Ge; Wei, Dandan; Li, Minghui; Yang, Minghua; Kong, Lingyi

    2014-07-29

    Ricin, a large, water soluble toxic glycoprotein, is distributed majorly in the kernels of castor beans (the seeds of Ricinus communis L.) and has been used in traditional Chinese medicine (TCM) or other folk remedies throughout the world. The toxicity of crude ricin (CR) from castor bean kernels was investigated for the first time using an NMR-based metabolomic approach complemented with histopathological inspection and clinical chemistry. The chronic administration of CR could cause kidney and lung impairment, spleen and thymus dysfunction and diminished nutrient intake in rats. An orthogonal signal correction partial least-squares discriminant analysis (OSC-PLSDA) of metabolomic profiles of rat biofluids highlighted a number of metabolic disturbances induced by CR. Long-term CR treatment produced perturbations on energy metabolism, nitrogen metabolism, amino acid metabolism and kynurenine pathway, and evoked oxidative stress. These findings could explain well the CR induced nephrotoxicity and pulmonary toxicity, and provided several potential biomarkers for diagnostics of these toxicities. Such a (1)H NMR based metabolomics approach showed its ability to give a systematic and holistic view of the response of an organism to drugs and is suitable for dynamic studies on the toxicological effects of TCM. PMID:24992468

  1. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts.

    PubMed

    Ott, Karl-Heinz; Araníbar, Nelly; Singh, Bijay; Stockton, Gerald W

    2003-03-01

    The biochemical mode-of-action (MOA) for herbicides and other bioactive compounds can be rapidly and simultaneously classified by automated pattern recognition of the metabonome that is embodied in the 1H NMR spectrum of a crude plant extract. The ca. 300 herbicides that are used in agriculture today affect less than 30 different biochemical pathways. In this report, 19 of the most interesting MOAs were automatically classified. Corn (Zea mays) plants were treated with various herbicides such as imazethapyr, glyphosate, sethoxydim, and diuron, which represent various biochemical modes-of-action such as inhibition of specific enzymes (acetohydroxy acid synthase [AHAS], protoporphyrin IX oxidase [PROTOX], 5-enolpyruvylshikimate-3-phosphate synthase [EPSPS], acetyl CoA carboxylase [ACC-ase], etc.), or protein complexes (photosystems I and II), or major biological process such as oxidative phosphorylation, auxin transport, microtubule growth, and mitosis. Crude isolates from the treated plants were subjected to 1H NMR spectroscopy, and the spectra were classified by artificial neural network analysis to discriminate the herbicide modes-of-action. We demonstrate the use and refinement of the method, and present cross-validated assignments for the metabolite NMR profiles of over 400 plant isolates. The MOA screen also recognizes when a new mode-of-action is present, which is considered extremely important for the herbicide discovery process, and can be used to study deviations in the metabolism of compounds from a chemical synthesis program. The combination of NMR metabolite profiling and neural network classification is expected to be similarly relevant to other metabonomic profiling applications, such as in drug discovery. PMID:12590124

  2. The influence of pharmacogenetics on fatty liver disease in the wistar and kyoto rats: a combined transcriptomic and metabonomic study.

    PubMed

    Griffin, Julian L; Scott, James; Nicholson, Jeremy K

    2007-01-01

    Although fatty liver disease is caused by a number of toxicological insults and the metabolic syndrome, the exact mechanisms by which many of these pathophysiological stimulii induce fatty liver are unknown. The rapid and profound steatosis caused by orotic acid, resulting from an impairment in the production of ApoB, has been investigated in the Wistar strain rat using a combined transcriptomic and metabonomic/metabolomic approach. Analysis of liver tissue from rats exposed to orotic acid for 1, 3, and 14 days was performed by DNA microarrays and high resolution 1H NMR spectroscopy based metabonomics of both tissue extracts and intact tissue (n = 3). Data were analyzed using a combination of ANOVA and principal components analysis, used as a data reduction tool to visualize the most perturbed transcripts and metabolites. Orotic acid produced a profound 8-fold increase in total lipids, and in particular increases in resonances associated with polyunsaturated fats (CH=CH and CH2CH=CH groups). This was accompanied by increases in the concentrations of trimethylamine-oxide (TMAO), betaine, choline, and phosphocholine, as well as a relative decrease in glucose and glycogen. At the transcriptional level, perturbations were detected in both oxidative stress and osmoregulation/pH homeostasis. However, this contrasts with a previous transcriptomic/metabolic study of fatty liver disease in a combined data set of Wistar (out-bred) and Kyoto (in-bred) strains of rats, with only 4 transcripts being found to be in common between the two analyses. This emphasizes the need to understand how strain background interacts with a given toxic lesion or genetic modification. PMID:17203948

  3. Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine, blood plasma, and liver extracts

    SciTech Connect

    Wang Quanjun; Jiang Ying; Wu Chunqi; Zhao Jianyu; Yu Shouzhong; Yuan Benli; Yan Xianzhong . E-mail: yanxz@nic.bmi.ac.cn; Liao Mingyang . E-mail: liaomingy@hotmail.com

    2006-08-15

    Antiangiogenic compound has been believed to be an ideal drug in the current cancer biological therapy, but the angiogenesis inhibitors suffer setback for unknown toxicity now. A novel synthetic indolin-s-ketone small molecular compound, 3Z-3-[({sup 1} H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one (Z24) can inhibit angiogenesis in new blood vessels. The hepatotoxicity effects of Z24 oral administration (dosed at 60, 130 and 200 mg/kg) have been investigated in female Wistar rats by using metabonomic analysis of {sup 1}H NMR spectra of urine, plasma and liver extracts, as well as by clinical chemistry analysis, liver histopathology and electron micrographs examination. The {sup 1}H NMR spectra of the biofluids were analyzed visually and via pattern recognition by using principal component analysis. The metabonomic trajectory analysis on the time-related hepatotoxicity of Z24 was carried out based on the {sup 1}H NMR spectra of urine samples, which were collected daily predose and postdose over an 8-day period. Urinary excretion of citrate, lactate, 2-oxo-glutarate and succinate increased following Z24 dosing. Increased plasma levels of lactate, TMAO and lipid were observed, with concomitant decrease in the level of glucose and phosphatidylcholine. Metabolic profiling on aqueous soluble extracts of liver tissues with the high dose level of Z24 showed an increase in lactate and glutamine, together with a decrease in glucose, glycogen and choline. On the other hand, studies on lipid soluble extracts of liver tissues with the high dose level of Z24 showed increased level in lipid triglycerides and decreased level in unsaturated fatty acids and phosphatidylcholine. Moreover, the most notable effect of Z24 on the metabolism was the reduction in the urinary levels of creatinine and TMAO and the increase in acetate, citrate, succinate and 2-oxo-glutamate with time dependence. The results indicate that in rats Z24 inhibits mitochondrial function

  4. NMR-based investigation of the Drosophila melanogaster metabolome under the influence of daily cycles of light and temperature.

    PubMed

    Gogna, Navdeep; Singh, Viveka Jagdish; Sheeba, Vasu; Dorai, Kavita

    2015-12-01

    We utilized an NMR-based metabolomic approach to profile the metabolites in Drosophila melanogaster that cycle with a daily rhythm. 1H 1D and 2D NMR experiments were performed on whole-body extracts sampled from flies that experienced strong time cues in the form of both light and temperature cycles. Multivariate and univariate statistical analysis was used to identify those metabolites whose concentrations oscillate diurnally. We compared metabolite levels at two time points twelve hours apart, one close to the end of the day and the other close to the end of the night, and identified metabolites that differed significantly in their relative concentrations. We were able to identify 14 such metabolites whose concentrations differed significantly between the two time points. The concentrations of metabolites such as sterols, fatty acids, amino acids such as leucine, valine, isoleucine, alanine and lysine as well as other metabolites such as creatine, glucose, AMP and NAD were higher close to the end of the night, whereas the levels of lactic acid, and a few amino acids such as histidine and tryptophan were higher close to the end of the day. We compared signal intensities across 12 equally spaced time points for these 14 metabolites, in order to profile the changes in their levels across the day, since the NMR metabolite peak intensity is directly proportional to its molar concentration. Through this report we establish NMR-based metabolomics combined with multivariate statistical analysis as a useful method for future studies on the interactions between circadian clocks and metabolic processes. PMID:26422411

  5. [Comparison of chemical composition between raw and vinegar-baked Paeoniae Radix Alba using NMR based metabolomic approach].

    PubMed

    Li, Zhen-Yu; Fan, Ma-Li; Qin, Xue-Mei

    2015-02-01

    To compare the chemical change of Paeoniae Radix Alba (PRA) after vinegar-baking processing, as well as the effect of vinegar types exerted on the processing, 1H NMR-based metabolomic approach combined with multivariate statistical analysis was used to investigate the different metabolites between the raw and two vinegar-baked PRA. More than thirty metabolites were identified in the 1H NMR spectrum of PRA, and the multivariate statistical analysis showed that raw and two vinegar-baked PRA could be separated obviously. After vinegar-baking, the contents of isoleucine, lactate, alanine, arginine, albiflorin, and 5-hydroxymethyl furfural (5-HMF) elevated, while those of sucrose, paeoniflorin and its analogues (calculated by benzoate) decreased. The chemical compositions of two vinegar-baked PRA were also different. Shanxi vinegar- baked PRA showed higher levels of leucine, isoleucine, valine, and albiflorin, while rice vinegar-baked PRA contained more sucrose and paeoniflorin's analogues (calculated by benzoate). And the chemical changes in Shanxi vinegar-baked PRA were greater than those of rice vinegar-baked PRA. The results revealed the chemical differences between raw and vinegar-baked PRA, as well as the influence of vinegar type on processing, in a holistic manner, the results obtained suggested that the correlations between the chemical change and the drug action after processing, as well as the vinegar type used in processing, should be further studied. PMID:25975031

  6. U1h shaft project

    SciTech Connect

    Brian Briggs; R. G. Musick

    2000-06-30

    The U1h shaft project is a design/build subcontract to construct one 20 foot (ft) finished diameter shaft to a depth of 1,045 ft at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 1,045 ft of concrete lined shaft, development of a shaft station at a depth of 976 ft, and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper should be of interest to those involved with the construction of relatively deep shafts and underground excavations.

  7. Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review

    PubMed Central

    Kimhofer, T; Fye, H; Taylor-Robinson, S; Thursz, M; Holmes, E

    2015-01-01

    Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance. PMID:25826224

  8. Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review.

    PubMed

    Kimhofer, T; Fye, H; Taylor-Robinson, S; Thursz, M; Holmes, E

    2015-03-31

    Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance. PMID:25826224

  9. Genomics, proteomics and metabonomics in toxicology: hopefully not 'fashionomics'.

    PubMed

    Pognan, Francois

    2004-10-01

    Genomics, proteomics and metabonomics are applied to toxicology either as stand-alone technologies or in combination, with the intention of providing a more efficient assessment of the potential side effects of new chemical entities. Two different approaches are taken: a predictive/proactive strategy based on a statistical analogy of 'signatures' of drugs to many known toxicant gene or metabolite fingerprints; and a mechanistic/reactive strategy based on the in-depth biological analysis of the gene, protein or metabolite profiles induced by one or a few compounds of interest. This article focuses on the advantages and disadvantages of these technologies, as well as the many hurdles associated with both these approaches in toxicology that have to be considered before applying them to the assessment of future drugs. PMID:15469409

  10. Serum metabolic signature of minimal hepatic encephalopathy by (1)H-nuclear magnetic resonance.

    PubMed

    Jiménez, Beatriz; Montoliu, Carmina; MacIntyre, David A; Serra, Miguel A; Wassel, Abdallah; Jover, María; Romero-Gomez, Manuel; Rodrigo, Jose M; Pineda-Lucena, Antonio; Felipo, Vicente

    2010-10-01

    Minimal hepatic encephalopathy (MHE) reduces quality of life of cirrhotic patients, predicts overt hepatic encephalopathy, and is associated with poor prognosis. We hypothesized that MHE arises once metabolic alterations derived from the liver reach a particular threshold. Our aim was to assess whether metabolic profiling of serum samples by high-field (1)H-nuclear magnetic resonance spectroscopy ((1)H NMR) and subsequent multivariate analyses would be useful to characterize metabolic perturbations associated with MHE and to identify potential metabolic biomarkers. Metabolic serum profiles from controls (n = 69) and cirrhotic patients without MHE (n = 62) and with MHE (n = 39) were acquired using high field NMR. Supervised modeling of the data provided perfect discrimination between healthy controls and cirrhotic patients and allowed the generation of a predictive model displaying strong discrimination between patients with and without MHE (R(2)Y = 0.68, Q(2)Y = 0.63). MHE patients displayed increased serum concentrations of glucose, lactate, methionine, TMAO, and glycerol, as well as decreased levels of choline, branch amino acids, alanine, glycine, acetoacetate, NAC, and lipid moieties. Serum metabonomics by (1)H NMR offers a useful approach for characterizing underlying metabolic differences between patients with and without MHE. This procedure shows great potential as a diagnostic tool of MHE as it objectively reflects measurable biochemical differences between the patient groups and may facilitate monitoring of both disease progression and effects of therapeutic treatments. PMID:20690770

  11. Metabonomic evaluation of idiosyncrasy-like liver injury in rats cotreated with ranitidine and lipopolysaccharide

    SciTech Connect

    Maddox, Jane F. . E-mail: maddox@msu.edu; Luyendyk, James P.; Cosma, Gregory N.; Breau, Alan P.; Bible, Roy H.; Harrigan, George G.; Goodacre, Royston; Ganey, Patricia E.; Cantor, Glenn H.; Cockerell, Gary L.; Roth, Robert A. . E-mail: rothr@msu.edu

    2006-04-01

    Idiosyncratic liver injury occurs in a small fraction of people on certain drug regimens. The cause of idiosyncratic hepatotoxicity is not known; however, it has been proposed that environmental factors such as concurrent inflammation initiated by bacterial lipopolysaccharide (LPS) increase an individual's susceptibility to drug toxicity. Ranitidine (RAN), a histamine-2 receptor antagonist, causes idiosyncratic liver injury in humans. In a previous report, idiosyncrasy-like liver toxicity was created in rats by cotreating them with LPS and RAN. In the present study, the ability of metabonomic techniques to distinguish animals cotreated with LPS and RAN from those treated with each agent individually was investigated. Rats were treated with LPS or its vehicle and with RAN or its vehicle, and urine was collected for nuclear magnetic resonance (NMR)- and mass spectroscopy-based metabonomic analyses. Blood and liver samples were also collected to compare metabonomic results with clinical chemistry and histopathology. NMR metabonomic analysis indicated changes in the pattern of metabolites consistent with liver damage that occurred only in the LPS/RAN cotreated group. Principal component analysis of urine spectra by either NMR or mass spectroscopy produced a clear separation of the rats treated with LPS/RAN from the other three groups. Clinical chemistry (serum alanine aminotransferase and aspartate aminotransferase activities) and histopathology corroborated these results. These findings support the potential use of a noninvasive metabonomic approach to identify drug candidates with potential to cause idiosyncratic liver toxicity with inflammagen coexposure.

  12. A New Paradigm for Known Metabolite Identification in Metabonomics/Metabolomics: Metabolite Identification Efficiency

    PubMed Central

    Everett, Jeremy R.

    2015-01-01

    A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field. PMID:25750701

  13. Metabonomic Study on the Antidepressant-Like Effects of Banxia Houpu Decoction and Its Action Mechanism

    PubMed Central

    Ji, Weiwei; Qu, Rong; Wang, Mingyan; Yang, Wen; Zhan, Zhen; Ma, Shiping

    2013-01-01

    The aim of this study was to establish an experimental model for metabonomic profiles of the rat's brain and then to investigate the antidepressant effect of Banxia Houpu decoction (BHD) and its possible mechanisms. Behavioral research and metabonomics method based on UPLC-MS were used to assess the efficacy of different fractions of BHD on chronic unpredictable mild stress (CUMS) model of depression. There was a significant difference between the BHD group and the model group. Eight endogenous metabolites, which are contributing to the separation of the model group and control group, were detected, while BHD group regulated the perturbed metabolites showing that there is a tendency of recovery compared to control group. Therefore, we think that those potential metabolite biomarkers have some relationship with BHD's antidepression effect. This work appraised the antidepressant effect of Banxia Houpu decoction as well as revealing a metabonomics method, a valuable parameter in the TCM research. PMID:24250712

  14. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus).

    PubMed

    Li, Minghui; Wang, Junsong; Lu, Zhaoguang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-01-01

    In this study, a (1)H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate-glutamine-gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment. PMID:24291083

  15. ¹H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar).

    PubMed

    Wagner, Liane; Trattner, Sofia; Pickova, Jana; Gómez-Requeni, Pedro; Moazzami, Ali A

    2014-03-15

    A (1)H NMR-based metabolomics approach was used to explore the impact of dietary sesamin on the liver and white muscle metabolic profile of Atlantic salmon (Salmo salar). Fish were fed diets containing different n-6/n-3 fatty acid ratios (V0.5 or V1) and sesamin contents [without (S0), low (SL) 1.16 g/kg feed, and high (SH) 5.8 g/kg feed] for 4 months. Liver and white muscle extracts of aqueous polar and chloroform lipid phases were collected. Multivariate data analyses (PCA and OPLS-DA) of liver chloroform phase showed that high levels of sesamin affected the metabolic profile impartially of the n-6/n-3 ratio. In the aqueous phase, the metabolome of liver and white muscle were affected in fish fed an n-6/n-3 ratio of 1.0 and 0.5, respectively. With high inclusion of sesamin, the levels of several metabolites (e.g. glucose, glycogen, leucine, valine, creatine, carnitine, lactate, nucleosides) were increased. These metabolites are mainly associated with energy metabolism, suggesting that high sesamin inclusion affects liver and white muscle metabolism in fish. This is consistent with lower body weights found in fish fed high sesamin content. PMID:24206691

  16. 1H NMR-based lipidomics of rodent fur: species-specific lipid profiles and SCD1 inhibitor-related dermal toxicity[S

    PubMed Central

    Khandelwal, Purnima; Stryker, Steven; Chao, Hannguang; Aranibar, Nelly; Lawrence, R. Michael; Madireddi, Malavi; Zhao, Wenjun; Chen, Luping; Reily, Michael D.

    2014-01-01

    A method is described that allows noninvasive identification and quantitative assessment of lipid classes present in sebaceous excretions in rodents. The method relies on direct high-field proton NMR analysis of common group lipid protons in deuterated organic solvent extracts of fur. Extracts from as little as 15 mg of fur from rat, mouse, and hamster provided acceptable results on a 600 MHz NMR equipped with a cryogenically cooled proton-observe probe. In rats, sex- and age-related differences in lipid composition are larger than differences in fur collected from various body regions within an individual and much larger than interanimal differences in age- and sex-matched specimens. The utility of this method to noninvasively monitor drug-induced sebaceous gland atrophy in rodents is demonstrated in rats dosed with a stearoyl-CoA desaturase 1 (SCD1) inhibitor. In this model, a 35% reduction in sebum lipids, extracted from fur, was observed. Finally, structural elucidation of cholesta-7,24-dien-3β-ol ester as the most prominent, previously unidentified sebum sterol ester in male Syrian hamsters is described. The utility of this method for drug and cosmetic safety and efficacy assessment is discussed. PMID:24755647

  17. Toxic Markers of Matrine Determined Using 1H-NMR-Based Metabolomics in Cultured Cells In Vitro and Rats In Vivo

    PubMed Central

    Li, Zhonghuang; Zheng, Liang; Shi, Jian; Zhang, Guiyu; Lu, Linlin; Zhu, Lijun; Zhang, Jiajie; Liu, Zhongqiu

    2015-01-01

    Matrine is one of the main bioactive alkaloids of Sophora flavescens Aiton, which has been widely used to treat various diseases in China. These diseases include viral hepatitis, liver fibrosis, cardiac arrhythmia, skin diseases, and tumors. However, matrine is also the main toxic compound of this herb, and the available biomarkers are not reliable in detecting or quantifying matrine risk. Metabolomics is a powerful tool used to identify early toxicity biomarkers that are specific indicators of damage to biosystems. This study aimed to find the potential biomarkers of the matrine-induced toxic effects in rats and HepG2 cells. The toxicological effects of rats induced by matrine could be derived from the elevated taurine and trimethylamine N-oxide levels and the depletion in hippurate and tricarboxylic acid cycle intermediates, such as 2-oxoglutarate, citrate, and succinate in the urine. Cell metabolomics revealed that the levels of alanine, choline, glutathione, lactate, phosphocholine, and cholesterol showed dose-dependent decreases, whereas the levels of taurine, fatty acid, and unsaturated fatty acid showed dose-dependent increases. Overall, a significant perturbation of metabolites in response to high dose of matrine was observed both in vivo and in vitro, and the selected metabolites particularly represent an attractive marker for matrine-induced toxicity. PMID:26413125

  18. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. PMID:25478734

  19. A metabonomic investigation of the effects of 60 days exposure of rats to two types of pyrethroid insecticides.

    PubMed

    Liang, Yu-Jie; Wang, Hui-Ping; Long, Ding-Xin; Li, Wei; Wu, Yi-Jun

    2013-11-25

    Type I and II pyrethroid insecticides display different neurotoxicity. To investigate the long-term (60 days exposure) metabolic effect of the two types of pyrethroid insecticides deltamethrin and permethrin, (1)H nuclear magnetic resonance (NMR) spectroscopy-based metabonomics was used to analyze the biochemical composition of urine and serum samples from rats administrated daily with deltamethrin or permethrin for 60 consecutive days, and principal component analysis used to visualize similarities and differences in the resultant biochemical profiles. Rats treated with either deltamethrin or permethrin displayed increased levels of urinary acetate, dimethylamine, dimethylglycine, trimethylamine and serum free amino acids, and decreased urinary 2-oxoglutarate, all of which are indicative of kidney lesions and nephrotoxicity. The reduced excretion of tricarboxylic acid cycle intermediates, together with increased 3-D-hydroxybutyrate, acetate, and lactate in treated rats could suggest disturbance of the energy metabolism, including an increased rate of anaerobic glycolysis, enhanced fatty acid β-oxidation and ketogenesis. These results show that these two types of insecticides have similarities in the urine and serum spectra, indicating that similar metabolic pathways are perturbed by the insecticides, which induced hepatotoxicity and nephrotoxicity. This approach may lead to the discovery of novel biomarkers of pyrethroids toxicity and thereby provide new insights into the toxicological mechanisms of pesticides pyrethroids. PMID:24121187

  20. (1)H NMR Spectroscopy of Fecal Extracts Enables Detection of Advanced Colorectal Neoplasia.

    PubMed

    Amiot, Aurelien; Dona, Anthony C; Wijeyesekera, Anisha; Tournigand, Christophe; Baumgaertner, Isabelle; Lebaleur, Yann; Sobhani, Iradj; Holmes, Elaine

    2015-09-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its etiopathogenesis and earlier diagnosis. Here, we investigated the fecal metabolic phenotype of patients with advanced colorectal neoplasia and controls using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate modeling. The fecal microbiota composition was assessed by quantitative real-time PCR as well as Wif-1 methylation levels in stools, serum, and urine and correlated to the metabolic profile of each patient. The predictivity of the model was 0.507 (Q(2)Y), and the explained variance was 0.755 (R(2)Y). Patients with advanced colorectal neoplasia demonstrated increased fecal concentrations of four short-chain fatty acids (valerate, acetate, propionate, and butyrate) and decreased signals relating to β-glucose, glutamine, and glutamate. The predictive accuracy of the multivariate (1)H NMR model was higher than that of the guaiac-fecal occult blood test and the Wif-1 methylation test for predicting advanced colorectal neoplasia. Correlation analysis between fecal metabolites and bacterial profiles revealed strong associations between Faecalibacterium prausnitzii and Clostridium leptum species with short-chain fatty acids concentration and inverse correlation between Faecalibacterium prausnitzii and glucose. These preliminary results suggest that fecal metabonomics may potentially have a future role in a noninvasive colorectal screening program and may contribute to our understanding of the role of these dysregulated molecules in the cross-talk between the host and its bacterial microbiota. PMID:26211820

  1. Metabonomic profiling of TASTPM transgenic Alzheimer's disease mouse model.

    PubMed

    Hu, Ze-Ping; Browne, Edward R; Liu, Tao; Angel, Thomas E; Ho, Paul C; Chan, Eric Chun Yong

    2012-12-01

    Identification of molecular mechanisms underlying early stage Alzheimer's disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, nontargeted metabonomics of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild-type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild-type mice (Q2Y=0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in both brain (D-fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D-galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type mice. Our results provided insights on the pathogenesis of APP-induced AD and reinforced the role of TASTPM in drug and biomarker development. PMID:23078235

  2. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  3. A Metabonomic Analysis of Serum from Rats Treated with Ricinine Using Ultra Performance Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Peng, Jing; Cai, Shuang; Wang, Lin; Zhao, Nan; Zhang, Ting-jian; Chen, Zai-xing; Meng, Fan-hao

    2014-01-01

    A metabonomic approach based on ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS) was used to study the hepatotoxicity of ricinine in rats. Potential biomarkers of ricinine toxicity and toxicological mechanism were analyzed by serum metabonomic method. The significant differences in the metabolic profiling of the control and treated rats were clear by using the principal components analysis (PCA) of the chromatographic data. Significant changes of metabolite biomarkers like phenylalanine, tryptophan, cholic acid, LPC and PC were detected in the serum. These biochemical changes were related to the metabolic disorders in amino acids and phospholipids. This research indicates that UPLC/MS-based metabonomic analysis of serum samples can be used to predict the hepatotoxicity and further understand the toxicological mechanism induced by ricinine. This work shows that metabonomics method is a valuable tool in drug mechanism study. PMID:24618672

  4. An NMR-Based Metabolomic Approach to Investigate the Effects of Supplementation with Glutamic Acid in Piglets Challenged with Deoxynivalenol

    PubMed Central

    Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  5. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    PubMed

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (P<0.05). Compared with DON treatment, dietary supplementation with glutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (P<0.05). Addition glutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (P<0.05). These novel findings indicate that glutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino

  6. (1)H nuclear magnetic resonance-based metabolomics study of earthworm Perionyx excavatus in vermifiltration process.

    PubMed

    Wang, Lei; Huang, Xulei; Laserna, Anna Karen Carrasco; Li, Sam Fong Yau

    2016-10-01

    In this study, (1)H nuclear magnetic resonance (NMR)-based metabolomics approach was used to characterize the metabolic response of the earthworm Perionyx excavatus in continuous vermifiltration for two months under hydraulic loading rates of 1m(3)m(-2)d(-1) (VF1) and 1.5m(3)m(-2)d(-1) (VF1.5). Both VF1 and VF1.5 showed higher removal of chemical oxygen demand and total nitrogen than the biofilter without earthworms. Principal component analysis of the NMR spectra of earthworm metabolites showed significant separations between those not subjected to wastewater filtration (control) and VF1 or VF1.5. Temporal variations of earthworm biomass, and the identified metabolites that are significantly different between control, VF1 and VF1.5 revealed that worms underwent increasing metabolic activity within 20days in VF1 and 14days in VF1.5, then decreasing metabolic activity. The use of NMR-based metabolomics in monitoring earthworm metabolism was demonstrated to be a novel approach in studying engineered vermifiltration systems. PMID:27469092

  7. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    PubMed Central

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species. PMID:25785229

  8. NMR-based metabolomics of prostate cancer: a protagonist in clinical diagnostics.

    PubMed

    Kumar, Deepak; Gupta, Ashish; Nath, Kavindra

    2016-06-01

    Advances in the application of NMR spectroscopy-based metabolomic profiling of prostate cancer comprises a potential tactic for understanding the impaired biochemical pathways arising due to a disease evolvement and progression. This technique involves qualitative and quantitative estimation of plethora of small molecular weight metabolites of body fluids or tissues using state-of-the-art chemometric methods delivering an important platform for translational research from basic to clinical, to reveal the pathophysiological snapshot in a single step. This review summarizes the present arrays and recent advancements in NMR-based metabolomics and a glimpse of currently used medical imaging tactics, with their role in clinical diagnosis of prostate cancer. PMID:26959614

  9. Utilization of metabonomics to identify serum biomarkers in murine H22 hepatocarcinoma and deduce antitumor mechanism of Rhizoma Paridis saponins.

    PubMed

    Qiu, Peiyu; Man, Shuli; Yang, He; Fan, Wei; Yu, Peng; Gao, Wenyuan

    2016-08-25

    Murine H22 hepatocarcinoma model is so popular to be used for the preclinical anticancer candidate's evaluation. However, the metabolic biomarkers of this model were not identified. Meanwhile, Rhizoma Paridis saponins (RPS) as natural products have been found to show strong antitumor activity, while its anti-cancer mechanism is not clear. To search for potential metabolite biomarkers of this model, serum metabonomics approach was applied to detect the variation of metabolite biomarkers and the related metabolism genes and signaling pathway were used to deduce the antitumor mechanisms of RPS. As a result, ten serum metabolites were identified in twenty-four mice including healthy mice, non-treated cancer mice, RPS-treated cancer mice and RPS-treated healthy mice. RPS significantly decreased tumor weight correlates to down-regulating lactate, acetate, N-acetyl amino acid and glutamine signals (p < 0.05), which were marked metabolites screened according to the very important person (VIP), loading plot and receiver operating characteristic curve (ROC) tests. For the analysis of metabolic enzyme related genes, RPS reversed the aerobic glycolysis through activating tumor suppressor p53 and PTEN, and suppressed FASN to inhibit lipogenesis. What's more, RPS repressed Myc and GLS expression and decreased glutamine level. The regulating PI3K/Akt/mTOR and HIF-1α/Myc/Ras networks also participated in these metabolic changes. Taken together, RPS suppressed ATP product made the tumor growth slow, which indicated a good anti-cancer effect and new angle for understanding the mechanism of RPS. In conclusion, this study demonstrated that the utility of (1)H NMR metabolic profiles taken together with tumor weight and viscera index was a promising screening tool for evaluating the antitumor effect of candidates. In addition, RPS was a potent anticancer agent through inhibiting cancer cellular metabolism to suppress proliferation in hepatoma H22 tumor murine, which promoted the

  10. Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine

    PubMed Central

    Lao, Yong-Min; Jiang, Jian-Guo; Yan, Lu

    2009-01-01

    In the recent years, a wide range of metabonomic analytical techniques are widely used in the modern research of traditional Chinese medicine (TCM). At the same time, the international community has attached increasing importance to TCM toxicity problems. Thus, many studies have been implemented to investigate the toxicity mechanisms of TCM. Among these studies, many metabonomic-based methods have been implemented to facilitate TCM toxicity investigation. At present, the most prevailing methods for TCM toxicity research are mainly single analysis techniques using only one analytical means. These techniques include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), etc.; with these techniques, some favourable outcomes have been gained in the toxic reaction studies of TCM, such as the action target organs assay, the establishment of action pattern, the elucidation of action mechanism and the exploration of action material foundation. However, every analytical technique has its advantages and drawbacks, no existing analytical technique can be versatile. Multi-analysed techniques can partially overcome the shortcomings of single-analysed techniques. Combination of GC-MS and LC-MS metabolic profiling approaches has unravelled the pathological outcomes of aristolochic acid-induced nephrotoxicity, which can not be achieved by single-analysed techniques. It is believed that with the further development of metabonomic analytical techniques, especially multi-analysed techniques, metabonomics will greatly promote TCM toxicity research and be beneficial to the modernization of TCM in terms of extending the application of modern means in the TCM safety assessment, assisting the formulation of TCM safety norms and establishing the international standards indicators. PMID:19508399

  11. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits

    PubMed Central

    Zhao, Xinjie; Fritsche, Jens; Wang, Jiangshan; Chen, Jing; Rittig, Kilian; Schmitt-Kopplin, Philippe; Fritsche, Andreas; Häring, Hans-Ulrich; Schleicher, Erwin D.

    2010-01-01

    Impaired glucose tolerance (IGT) which precedes overt type 2 diabetes (T2DM) for decades is associated with multiple metabolic alterations in insulin sensitive tissues. In an UPLC-qTOF-mass spectrometry-driven non-targeted metabonomics approach we investigated plasma as well as spot urine of 51 non-diabetic, overnight fasted individuals aiming to separate subjects with IGT from controls thereby identify pathways affected by the pre-diabetic metabolic state. We could clearly demonstrate that normal glucose tolerant (NGT) and IGT subjects clustered in two distinct groups independent of the investigated metabonome. These findings reflect considerable differences in individual metabolite fingerprints, both in plasma and urine. Pre-diabetes associated alterations in fatty acid-, tryptophan-, uric acid-, bile acid-, and lysophosphatidylcholine-metabolism, as well as the TCA cycle were identified. Of note, individuals with IGT also showed decreased levels of gut flora-associated metabolites namely hippuric acid, methylxanthine, methyluric acid, and 3-hydroxyhippuric acid. The findings of our non-targeted UPLC-qTOF-MS metabonomics analysis in plasma and spot urine of individuals with IGT vs NGT offers novel insights into the metabolic alterations occurring in the long, asymptomatic period preceding the manifestation of T2DM thereby giving prospects for new intervention targets. Electronic supplementary material The online version of this article (doi:10.1007/s11306-010-0203-1) contains supplementary material, which is available to authorized users. PMID:20676218

  12. Comparison of Fruits of Forsythia suspensa at Two Different Maturation Stages by NMR-Based Metabolomics.

    PubMed

    Jia, Jinping; Zhang, Fusheng; Li, Zhenyu; Qin, Xuemei; Zhang, Liwei

    2015-01-01

    Forsythiae Fructus (FF), the dried fruit of Forsythia suspensa, has been widely used as a heat-clearing and detoxifying herbal medicine in China. Green FF (GF) and ripe FF (RF) are fruits of Forsythia suspensa at different maturity stages collected about a month apart. FF undergoes a complex series of physical and biochemical changes during fruit ripening. However, the clinical uses of GF and RF have not been distinguished to date. In order to comprehensively compare the chemical compositions of GF and RF, NMR-based metabolomics coupled with HPLC and UV spectrophotometry methods were adopted in this study. Furthermore, the in vitro antioxidant and antibacterial activities of 50% methanol extracts of GF and RF were also evaluated. A total of 27 metabolites were identified based on NMR data, and eight of them were found to be different between the GF and RF groups. The GF group contained higher levels of forsythoside A, forsythoside C, cornoside, rutin, phillyrin and gallic acid and lower levels of rengyol and β-glucose compared with the RF group. The antioxidant activity of GF was higher than that of RF, but no significant difference was observed between the antibacterial activities of GF and RF. Given our results showing their distinct chemical compositions, we propose that NMR-based metabolic profiling can be used to discriminate between GF and RF. Differences in the chemical and biological activities of GF and RF, as well as their clinical efficacies in traditional Chinese medicine should be systematically investigated in future studies. PMID:26035103

  13. An NMR-based metabolomics study of pork from different crossbreeds and relation to sensory perception.

    PubMed

    Straadt, Ida K; Aaslyng, Margit D; Bertram, Hanne Christine

    2014-02-01

    Meat extracts from five different pig crossbreeds including Duroc/Landrace/Yorkshire (DLY), Iberian/Duroc (ID), Iberian/Duroc/Landrace (ILY), Mangalitza/Duroc (MD), and Mangalitza/Landrace/Yorkshire (MLY) were analysed by nuclear magnetic resonance (NMR)-based metabolomics. The results were compared with technological traits and sensory analyses in order to elucidate the potential of NMR-based metabolomics to highlight meat metabolites of importance for technological and sensory attributes of meat. Amino acids including alanine, carnosine, isoleucine, methionine, phenylalanine, and valine, as well as lactate, inosine monophosphate (IMP), inosine, glycerol and choline-containing compounds were found to be significantly affected by crossbreed. The breed-specific differences in the metabolome were ascribed to differences in ante mortem metabolism, differences in the membrane properties and glycolytic potential of muscle fibres and differences in lipolysis and proteolysis. A high content of carnosine in the meat was associated with a low value of many sensory attributes related to meat flavor/taste, while IMP and inosine were in general not correlated with sensory attributes related to meat flavor/taste. PMID:24200563

  14. 1H NMR metabolomics of earthworm responses to polychlorinated biphenyl (PCB) exposure in soil.

    PubMed

    Whitfield Åslund, Melissa L; Simpson, André J; Simpson, Myrna J

    2011-06-01

    (1)H NMR-based metabolomics was used to examine the metabolic profile of D(2)O-buffer extracted tissues of Eisenia fetida earthworms exposed for 2 days to an artificial soil spiked with sub-lethal concentrations of polychlorinated biphenyls (PCBs) (0, 0.5, 1, 5, 10, or 25 mg/kg Aroclor 1254). Univariate statistical analysis of the identified metabolites revealed a significant increase in ATP concentration in earthworms exposed to the highest soil PCB concentration, but detected no significant changes in other metabolites. However, a multivariate approach which considers alterations in multiple metabolites simultaneously, identified a significant linear relationship between earthworm metabolic profiles and PCB concentration (cross-validated PLS-regression with 7 components, R(2)X = 0.99, R(2)Y = 0.77, Q(2)Y = 0.45, P < 0.001). Significant changes in pair-wise metabolic correlations were also detected as PCB concentration increased. For example, lysine and ATP concentrations showed no apparent correlation in control earthworms (r = 0.22, P = 0.54), but were positively correlated in earthworms from the 25 mg/kg treatment (r = 0.87, P = 0.001). Overall, the observed metabolic responses suggest that PCBs disrupted both carbohydrate (energy) metabolism and membrane (osmolytic) function in E. fetida. The ability of (1)H NMR-based metabolomics to detect these responses suggests that this method offers significant potential for direct assessment of sub-lethal PCB toxicity in soil. PMID:21424327

  15. Dynamic stereochemistry of erigeroside by measurement of 1H- 1H and 13C- 1H coupling constants

    NASA Astrophysics Data System (ADS)

    Tafazzoli, Mohsen; Ghiasi, Mina; Moridi, Mahdi

    2008-07-01

    Erigeroside was extracted from Satureja khuzistanica Jamzad (Marzeh Khuzistani in Persian, family of lamiaceae), and 1H, 13C, 13C{ 1H}, 1H- 1H COSY, HMQC and J-HMBC were obtained to identify this compound and determine a complete set of J-coupling constants ( 1JC-H, 2JC-H, 3JC-H and 3JH-H) values within the exocyclic hydroxymethyl group (CH 2OH) and anomeric center. In parallel, density functional theory (DFT) using B3LYP functional and split-valance 6-311++G** basis set has been used to optimized the structures and conformers of erigeroside. In all calculations solvent effects were considered using a polarized continuum (overlapping spheres) model (PCM). The dependencies of 1J, 2J and 3J involving 1H and 13C on the C 5'-C 6' ( ω), C 6'-O 6' ( θ) and C 1'-O 1' ( φ) torsion angles in erigeroside were computed using DFT method. Complete hyper surfaces for 1JC1',H1', 2JC5',H6'R, 2JC5',H6'S, 2JC6',H5', 3JC4',H6'R, 3JC4',H6'S and 2JH6'R-H5'S as well as 3JH5',H6'R were obtained and used to derive Karplus equations to correlate these couplings to ω, θ and φ. These calculated J-couplings are in agreement with experimental values. These results confirm the reliability of DFT calculated coupling constants in aqueous solution.

  16. Impact of metal pollution on shrimp Crangon affinis by NMR-based metabolomics.

    PubMed

    Ji, Chenglong; Yu, Deliang; Wang, Qing; Li, Fei; Zhao, Jianmin; Wu, Huifeng

    2016-05-15

    Both cadmium and arsenic are the important metal/metalloid pollutants in the Bohai Sea. In this work, we sampled the dominant species, shrimp Crangon affinis, from three sites, the Middle of the Bohai Sea (MBS), the Yellow River Estuary (YRE) and the Laizhou Bay (LZB) along the Bohai Sea. The concentrations of metals/metalloids in shrimps C. affinis indicated that the YRE site was polluted by Cd and Pb, while the LZB site was contaminated by As. The metabolic differences between shrimps C. affinis from the reference site (MBS) and metal-pollution sites (YRE and LZB) were characterized using NMR-based metabolomics. Results indicated that the metal pollutions in YRE and LZB induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. In addition, a combination of alanine and arginine might be the biomarker of Cd contamination, while BCAAs and tyrosine could be the biomarkers of arsenic contamination in C. affinis. PMID:26920426

  17. NMR-Based Multi Parametric Quality Control of Fruit Juices: SGF Profiling

    PubMed Central

    Spraul, Manfred; Schütz, Birk; Rinke, Peter; Koswig, Susanne; Humpfer, Eberhard; Schäfer, Hartmut; Mörtter, Monika; Fang, Fang; Marx, Ute C.; Minoja, Anna

    2009-01-01

    With SGF Profiling™ we introduce an NMR-based screening method for the quality control of fruit juices. This method has been developed in a joint effort by Bruker BioSpin GmbH and SGF International e.V. The system is fully automated with respect to sample transfer, measurement, data analysis and reporting and is set up on an Avance 400 MHz flow-injection NMR spectrometer. For each fruit juice a multitude of parameters related to quality and authenticity are evaluated simultaneously from a single data set acquired within a few minutes. This multimarker/multi-aspect NMR screening approach features low cost-per-sample and is highly competitive with conventional and targeted fruit juice quality control methods. PMID:22253974

  18. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Koda, Masanori; Hu, Fangyu; Kato, Rieko; Miyakawa, Takuya; Tanokura, Masaru

    2012-10-10

    (13)C NMR-based metabolomics was demonstrated as a useful tool for distinguishing the species and origins of green coffee bean samples of arabica and robusta from six different geographic regions. By the application of information on (13)C signal assignment, significantly different levels of 14 metabolites of green coffee beans were identified in the classifications, including sucrose, caffeine, chlorogenic acids, choline, amino acids, organic acids, and trigonelline, as captured by multivariate analytical models. These studies demonstrate that the species and geographical origin can be quickly discriminated by evaluating the major metabolites of green coffee beans quantitatively using (13)C NMR-based metabolite profiling. PMID:22989016

  19. Enhanced Y1H Assays for Arabidopis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription regulation plays a key role in development and response to environment. To understand this mechanism, we need to know which transcription factor (TFs) would bind to which promoter, thus regulate their target gene expression. Yeast one-hybrid (Y1H) technique can be used to map this kind...

  20. Application of 1H-NMR metabolomic profiling for reef-building corals.

    PubMed

    Sogin, Emilia M; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  1. Application of 1H-NMR Metabolomic Profiling for Reef-Building Corals

    PubMed Central

    Sogin, Emilia M.; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D.

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  2. A NMR-based, non-targeted multistep metabolic profiling revealed L-rhamnitol as a metabolite that characterised apples from different geographic origins.

    PubMed

    Tomita, Satoru; Nemoto, Tadashi; Matsuo, Yosuke; Shoji, Toshihiko; Tanaka, Fukuyo; Nakagawa, Hiroyuki; Ono, Hiroshi; Kikuchi, Jun; Ohnishi-Kameyama, Mayumi; Sekiyama, Yasuyo

    2015-05-01

    This study utilises (1)H NMR-based metabolic profiling to characterise apples of five cultivars grown either in Japan (Fuji, Orin, and Jonagold) or New Zealand (Fuji, Jazz, and Envy). Principal component analysis (PCA) showed a clear separation between the Fuji-Orin-Jonagold class and the Jazz-Envy class, primarily corresponding to the differences in sugar signals, such as sucrose, glucose, and fructose. Multistep PCA removed the influence of dominant sugars and highlighted minor metabolites such as aspartic acid, 2-methylmalate, and an unidentified compound. These minor metabolites separated the apples into two classes according to different geographical areas. Subsequent partial least squares discriminant analysis (PLS-DA) indicated the importance of the unidentified metabolite. This metabolite was isolated using charcoal chromatography, and was identified as L-rhamnitol by 2D NMR and LC/MS analyses. The remarkable contribution of L-rhamnitol to geographic discrimination suggests that apples may be characterised according to various factors, including storage duration, cultivation method, and climate. PMID:25529666

  3. Robustness of NMR-based metabolomics to generate comparable data sets for olive oil cultivar classification. An inter-laboratory study on Apulian olive oils.

    PubMed

    Piccinonna, Sara; Ragone, Rosa; Stocchero, Matteo; Del Coco, Laura; De Pascali, Sandra Angelica; Schena, Francesco Paolo; Fanizzi, Francesco Paolo

    2016-05-15

    Nuclear Magnetic Resonance (NMR) spectroscopy is emerging as a powerful technique in olive oil fingerprinting, but its analytical robustness has to be proved. Here, we report a comparative study between two laboratories on olive oil (1)H NMR fingerprinting, aiming to demonstrate the robustness of NMR-based metabolomics in generating comparable data sets for cultivar classification. Sample preparation and data acquisition were performed independently in two laboratories, equipped with different resolution spectrometers (400 and 500 MHz), using two identical sets of mono-varietal olive oils. Partial Least Squares (PLS)-based techniques were applied to compare the data sets produced by the two laboratories. Despite differences in spectrum baseline, and in intensity and shape of peaks, the amount of shared information was significant (almost 70%) and related to cultivar (same metabolites discriminated between cultivars). In conclusion, regardless of the variability due to operator and machine, the data sets from the two participating units were comparable for the purpose of classification. PMID:26776024

  4. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain. PMID:23730812

  5. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy.

    PubMed

    Zhang, Jianshuang; Zhong, Xin; Li, Shaosong; Zhang, Guren; Liu, Xin

    2015-11-10

    Ophicordyceps sinensis is a well-known traditional Chinese medicine and cultured mycelium is a substitute for wild O. sinensis. Metabolic profiles of wild O. sinensis from three geographical locations and cultivated mycelia derived from three origins were investigated using (1)H nuclear magnetic resonance (NMR) analysis combined with multivariate statistical analysis. A total of 56 primary metabolites were identified and quantified from O. sinensis samples. The principle component analysis (PCA) showed significant differences between natural O. sinensis and fermentation mycelia. Seven metabolites responsible for differentiation were screened out by orthogonal partial least squares discriminant analysis (OPLS-DA). The concentrations of mannitol, trehalose, arginine, trans-4-hydroxyproline, alanine and glucitol were significantly different between wild and cultured groups. The variation in metabolic profiling among artificial mycelia was greater than that among wild O. sinensis. Furthermore, wild samples from different origins were clearly distinguished by the levels of mannitol, trehalose and some amino acids. This study indicates that (1)H NMR-based metabolomics is useful for fingerprinting and discriminating O. sinensis of different geographical regions and cultivated mycelia of different strains. The present study provided an efficient approach for investigating chemical compositions and evaluating the quality of medicine and health food derived from O. sinensis. PMID:26279370

  6. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State.

    PubMed

    Lin, Hong; An, Yanpeng; Hao, Fuhua; Wang, Yulan; Tang, Huiru

    2016-01-01

    Obesity resulting from interactions of genetic and environmental factors becomes a serious public health problem worldwide with alterations of the metabolic phenotypes in multiple biological matrices involving multiple metabolic pathways. To understand the contributions of gut microbiota to obesity development, we analyzed dynamic alterations in fecal metabonomic phenotype using NMR and fecal microorganism composition in rats using pyrosequencing technology during the high-fat diet (HFD) feeding for 81 days (pre-obesity state). Integrated analysis of these two phenotypic datasets was further conducted to establish correlations between the altered rat fecal metabonome and gut microbiome. We found that one-week HFD feeding already caused significant changes in rat fecal metabonome and such changes sustained throughout 81-days feeding with the host and gut microbiota co-metabolites clearly featured. We also found that HFD caused outstanding decreases in most fecal metabolites implying enhancement of gut absorptions. We further established comprehensive correlations between the HFD-induced changes in fecal metabonome and fecal microbial composition indicating contributions of gut microbiota in pathogenesis and progression of the HFD-induced obesity. These findings provided essential information about the functions of gut microbiota in pathogenesis of metabolic disorders which could be potentially important for developing obesity prevention and treatment therapies. PMID:26916743

  7. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State

    NASA Astrophysics Data System (ADS)

    Lin, Hong; An, Yanpeng; Hao, Fuhua; Wang, Yulan; Tang, Huiru

    2016-02-01

    Obesity resulting from interactions of genetic and environmental factors becomes a serious public health problem worldwide with alterations of the metabolic phenotypes in multiple biological matrices involving multiple metabolic pathways. To understand the contributions of gut microbiota to obesity development, we analyzed dynamic alterations in fecal metabonomic phenotype using NMR and fecal microorganism composition in rats using pyrosequencing technology during the high-fat diet (HFD) feeding for 81 days (pre-obesity state). Integrated analysis of these two phenotypic datasets was further conducted to establish correlations between the altered rat fecal metabonome and gut microbiome. We found that one-week HFD feeding already caused significant changes in rat fecal metabonome and such changes sustained throughout 81-days feeding with the host and gut microbiota co-metabolites clearly featured. We also found that HFD caused outstanding decreases in most fecal metabolites implying enhancement of gut absorptions. We further established comprehensive correlations between the HFD-induced changes in fecal metabonome and fecal microbial composition indicating contributions of gut microbiota in pathogenesis and progression of the HFD-induced obesity. These findings provided essential information about the functions of gut microbiota in pathogenesis of metabolic disorders which could be potentially important for developing obesity prevention and treatment therapies.

  8. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State

    PubMed Central

    Lin, Hong; An, Yanpeng; Hao, Fuhua; Wang, Yulan; Tang, Huiru

    2016-01-01

    Obesity resulting from interactions of genetic and environmental factors becomes a serious public health problem worldwide with alterations of the metabolic phenotypes in multiple biological matrices involving multiple metabolic pathways. To understand the contributions of gut microbiota to obesity development, we analyzed dynamic alterations in fecal metabonomic phenotype using NMR and fecal microorganism composition in rats using pyrosequencing technology during the high-fat diet (HFD) feeding for 81 days (pre-obesity state). Integrated analysis of these two phenotypic datasets was further conducted to establish correlations between the altered rat fecal metabonome and gut microbiome. We found that one-week HFD feeding already caused significant changes in rat fecal metabonome and such changes sustained throughout 81-days feeding with the host and gut microbiota co-metabolites clearly featured. We also found that HFD caused outstanding decreases in most fecal metabolites implying enhancement of gut absorptions. We further established comprehensive correlations between the HFD-induced changes in fecal metabonome and fecal microbial composition indicating contributions of gut microbiota in pathogenesis and progression of the HFD-induced obesity. These findings provided essential information about the functions of gut microbiota in pathogenesis of metabolic disorders which could be potentially important for developing obesity prevention and treatment therapies. PMID:26916743

  9. Comparison of Two Different Astragali Radix by a ¹H NMR-Based Metabolomic Approach.

    PubMed

    Li, Ai-Ping; Li, Zhen-Yu; Sun, Hai-Feng; Li, Ke; Qin, Xue-Mei; Du, Guan-Hua

    2015-05-01

    Astragali Radix (AR) is a commonly used herbal drug in traditional chinese medicine and is widely used for the treatment of diabetes, cardiovascular diseases, nephropathy, and neuropathy. The main source of AR in China is the dried root of Astragalus membranaceus var. mongholicus (Bge.) Hsiao, and both cultivated and wild ARs are used clinically. A systematic comparison of cultivated AR (GS-AR) and wild AR (SX-AR) should be performed to ensure the clinical efficacy and safety. In this study, the chemical composition of the two different ARs, which were collected in the Shanxi (wild) and Gansu (cultivated) provinces, were compared by NMR-based metabolic fingerprint coupled with multivariate analysis. The SX-AR- and GS-AR-induced metabolic changes in the endogenous metabolites in mice were also compared. The results showed that SX-AR and GS-AR differed significantly not only in the primary metabolites but also in the secondary metabolites. However, alterations among the endogenous metabolites in the serum, lung, liver, and spleen were relatively small. This study provided a novel and valuable method for the evaluation of the consistency and diversity of herbal drugs, and further studies should be conducted on the difference in polysaccharides as well as the biological effects between the two kinds of AR. PMID:25844502

  10. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique.

    PubMed

    Wan, Qianfen; Wu, Guangyao; He, Qinghua; Tang, Huiru; Wang, Yulan

    2015-03-01

    T-2 toxin is a common contaminant in grains and animal feedstuff, which becomes an increasing threat to human and animal health due to its high toxicity. Investigating the systemic effects of T-2 toxin is important to evaluate the toxicity and facilitate the assessment of food safety. In our investigation, rats were treated with a single dose of T-2 toxin at dosage levels of 0, 0.5, 2.0 and 4.0 mg kg(-1) body weight via gavage. The metabolic profiles of body fluids and multiple organs were obtained by NMR spectroscopy and analyzed by multivariate data analysis methods. The results showed that low and moderate doses of T-2 toxin only influenced the urinary metabonomes, while a high dose of T-2 toxin induced metabolic alterations in urine and multiple organs. These changes included alterations in the levels of membrane metabolites, TCA cycle intermediates, a range of amino acids, nucleosides and nucleotides. T-2 toxin exposure impaired spleen function, causing immunotoxicity, and inhibited protein and DNA biosynthesis. In addition, T-2 toxin also caused oxidative stress and disturbance in energy metabolism and gut microbiome. Our work provided a comprehensive insight into T-2 toxicity and revealed the great potential of metabonomics in assessing the impact of a toxic compound. PMID:25588579

  11. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use. PMID:25940152

  12. Evidence for altered metabolic pathways during environmental stress: (1)H-NMR spectroscopy based metabolomics and clinical studies on subjects of sea-voyage and Antarctic-stay.

    PubMed

    Yadav, Anand Prakash; Chaturvedi, Shubhra; Mishra, Kamla Prasad; Pal, Sunil; Ganju, Lilly; Singh, Shashi Bala

    2014-08-01

    The Antarctic context is an analogue of space travel, with close similarity in ambience of extreme climate, isolation, constrained living spaces, disrupted sleep cycles, and environmental stress. The present study examined the impact of the harsh habitat of Antarctica on human physiology and its metabolic pathways, by analyzing human serum samples, using (1)H-NMR spectroscopy for identification of metabolites; and quantifying other physiological and clinical parameters for correlation between expression data and metabolite data. Sera from seven adult males (of median age 36years) who participated in this study, from the 28th Indian Expeditionary group to the Antarctica station Maitri, were collected in chronological sequence. These included: i) baseline control; ii) during ship journey; iii) at Antarctica, in the months of March, May, August and November; to enable study of temporal evolution of monitored physiological states. 29 metabolites in serum were identified from the 400MHz (1)H-NMR spectra. Out of these, 19 metabolites showed significant variations in levels, during the ship journey and the stay at Maitri, compared to the base-line levels. Further biochemical analysis also supported these results, indicating that the ship journey, and the long-term Antarctic exposure, affected kidney and liver functioning. Our metabolite data highlights for the first time the effect of environmental stress on the patho-physiology of the human system. Multivariate analysis tools were employed for this metabonomics study, using (1)H-NMR spectroscopy. PMID:24910139

  13. Electronic Nose and Exhaled Breath NMR-based Metabolomics Applications in Airways Disease.

    PubMed

    Santini, Giuseppe; Mores, Nadia; Penas, Andreu; Capuano, Rosamaria; Mondino, Chiara; Trové, Andrea; Macagno, Francesco; Zini, Gina; Cattani, Paola; Martinelli, Eugenio; Motta, Andrea; Macis, Giuseppe; Ciabattoni, Giovanni; Montuschi, Paolo

    2016-01-01

    Breathomics, the multidimensional molecular analysis of exhaled breath, includes analysis of exhaled breath with gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses), and metabolomics of exhaled breath condensate (EBC), a non-invasive technique which provides information on the composition of airway lining fluid, generally by high-resolution nuclear magnetic resonance (NMR) spectroscopy or MS methods. Metabolomics is the identification and quantification of small molecular weight metabolites in a biofluid. Specific profiles of volatile compounds in exhaled breath and metabolites in EBC (breathprints) are potentially useful surrogate markers of inflammatory respiratory diseases. Electronic noses (e-noses) are artificial sensor systems, usually consisting of chemical cross-reactive sensor arrays for characterization of patterns of breath volatile compounds, and algorithms for breathprints classification. E-noses are handheld, portable, and provide real-time data. E-nose breathprints can reflect respiratory inflammation. E-noses and NMR-based metabolomics of EBC can distinguish patients with respiratory diseases such as asthma, COPD, and lung cancer, or diseases with a clinically relevant respiratory component including cystic fibrosis and primary ciliary dyskinesia, and healthy individuals. Breathomics has also been reported to identify patients affected by different types of respiratory diseases. Patterns of breath volatile compounds detected by e-nose and EBC metabolic profiles have been associated with asthma phenotypes. In combination with other -omics platforms, breathomics might provide a molecular approach to respiratory disease phenotyping and a molecular basis to tailored pharmacotherapeutic strategies. Breathomics might also contribute to identify new surrogate markers of respiratory inflammation, thus, facilitating drug discovery. Validation in newly recruited, prospective independent cohorts is essential for development of e

  14. NMR-Based Metabolomic Analysis of Spatial Variation in Soft Corals

    PubMed Central

    He, Qing; Sun, Ruiqi; Liu, Huijuan; Geng, Zhufeng; Chen, Dawei; Li, Yinping; Han, Jiao; Lin, Wenhan; Du, Shushan; Deng, Zhiwei

    2014-01-01

    Soft corals are common marine organisms that inhabit tropical and subtropical oceans. They are shown to be rich source of secondary metabolites with biological activities. In this work, soft corals from two geographical locations were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. A partial least-squares discriminant analysis showed clear separation among extracts of soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed to discrimination between soft corals in two origins belonged to terpenes, sterols and N-containing compounds. The satisfied precision of classification obtained indicates this approach using combined 1H-NMR and chemometrics is effective to discriminate soft corals collected in different geographical locations. The results revealed that metabolites of soft corals evidently depended on living environmental condition, which would provide valuable information for further relevant coastal marine environment evaluation. PMID:24686560

  15. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  16. NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung.

    PubMed

    Lee, Sheng-Han; Wang, Ting-Yi; Hong, Jia-Huei; Cheng, Tsun-Jen; Lin, Ching-Yu

    2016-09-01

    Zinc oxide (ZnO) particles induce acute occupational inhalation illness in humans and rats. However, the possible molecular mechanisms of ZnO particles on the respiratory system remain unclear. In this study, metabolic responses of the respiratory system of rats inhaled ZnO particles were investigated by a nuclear magnetic resonance (NMR)-based metabolomic approach. Male Sprague-Dawley rats were treated with a series of doses of nano-sized (35 nm) or fine-sized (250 nm) ZnO particles. The corresponding control groups inhaled filtered air. After 24 h, bronchoalveolar lavage fluid (BALF) and lung tissues were collected, extracted and prepared for (1)H and J-resolved NMR analysis, followed by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). PCA and PLSDA models from analysis of BALF and hydrophilic lung NMR spectra demonstrated that dose response trends were restricted to the 250 nm ZnO particle exposure group and were not observed in the 35 nm ZnO particle exposure group. Increased isoleucine and valine, as well as decreased acetate, trimethylamine n-oxide, taurine, glycine, formate, ascorbate and glycerophosphocholine, were recorded in the BALF of rats treated with moderate and high dose 250 nm ZnO exposures. Decreases in taurine and glucose, as well as an increase of phosphorylcholine-containing lipids and fatty acyl chains, were detected in the lung tissues from 250 nm ZnO-treated rats. These metabolic changes may be associated with cell anti-oxidation, energy metabolism, DNA damage and membrane stability. We also concluded that a metabolic approach provides more complete measurements and suggests potential molecular mechanisms of adverse effects. PMID:27245357

  17. Nutri-metabolomics: subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces.

    PubMed

    Bondia-Pons, Isabel; Cañellas, Nicolau; Abete, Itziar; Rodríguez, Miguel Ángel; Perez-Cornago, Aurora; Navas-Carretero, Santiago; Zulet, M Ángeles; Correig, Xavier; Martínez, J Alfredo

    2013-12-01

    Postgenomics research and development is witnessing novel intersections of omics data intensive technology and applications in health and personalized nutrition. Chief among these is the nascent field of nutri-metabolomics that harnesses metabolomics platforms to discern person-to-person variations in nutritional responses. To this end, differences in the origin and ripening stage of fruits might have a strong impact on their phytochemical composition, and consequently, on their potential nutri-metabolomics effects on health. The objective of the present study was to evaluate the effects of a 4-week cross-over nutritional intervention on the metabolic status of 24 young healthy subjects. The intervention was carried out with two tomato sauces differing in their natural lycopene content, which was achieved by using tomatoes harvested at different times. Blood samples were drawn from each subject before and after each intervention period. Aqueous and lipid extracts from serum samples were analyzed by 1H-NMR metabolic profiling combined with analysis of variance simultaneous component analysis (ASCA) and multilevel simultaneous component analysis (MSCA). These methods allowed the interpretation of the variation induced by the main factors of the study design (sauce treatment and time). The levels of creatine, creatinine, leucine, choline, methionine, and acetate in aqueous extracts were increased after the intervention with the high-lycopene content sauce, while those of ascorbic acid, lactate, pyruvate, isoleucine, alanine were increased after the normal-lycopene content sauce. In conclusion, NMR-based metabolomics of aqueous and lipid extracts allowed the detection of different metabolic changes after the nutritional intervention. This outcome might partly be due to the different ripening state of the fruits used in production of the tomato sauces. The findings presented herein collectively attest to the emergence of the field of nutri-metabolomics as a novel

  18. Plasma metabonomics study on Chinese medicine syndrome evolution of heart failure rats caused by LAD ligation

    PubMed Central

    2014-01-01

    Background Chinese medicine syndromes (Zheng) in many disease models are not clearly characterized or validated, and the concepts of Chinese medicine syndromes are confounding and controversial. Metabonomics has been applied to the evaluation and classification of the Chinese medicine syndromes both in clinical and nonclinical studies. In this study, we aim to investigate the evolution of the Chinese medicine syndrome in myocardial infarction induced heart failure and to confirm the feasibility of the Zheng classification by plasma metabonomics in a syndrome and disease combination animal model. Methods The heart failure (HF) model was induced by ligation of the left anterior descending coronary artery (LAD) in Sprague–Dawley rats. The rats were divided into the following two groups: the HF model group (LAD ligation) and the sham operated group. GC-MS was used with pattern recognition technology and principal component analysis (PCA) to analyze the plasma samples at 4, 21 and 45 day after operation. Results It was determined that the period from 7 to 28 days was the stable time window of ischemic heart failure with qi deficiency and blood stasis syndrome (QDBS), and the qi deficiency syndrome occurred at 1 to 4 days and 45 to 60 days after operation. The results exhibited 5 plasma metabolite changes in the same trend at 4 and 21 day after the LAD operation, 7 at 21 and 45 day, and 2 at 4 and 45 day. No metabolite showed the same change at all of the 3 time points. At day 21 (the QDBS syndrome time point) after operation, 4 plasma metabolites showed the same trends with the results of our previous study on patients with the blood stasis syndrome. Conclusions The syndrome diagnosis is reliable in the HF rat model in this study. Plasma metabolites can provide a basis for the evaluation of Chinese medicine syndrome animal models. PMID:25012233

  19. Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils

    PubMed Central

    Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio

    2016-01-01

    In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323

  20. 1H NMR Metabolic Profiling of Biofluids from Rats with Gastric Mucosal Lesion and Electroacupuncture Treatment

    PubMed Central

    Xu, Jingjing; Cheng, Kian-Kai; Yang, Zongbao; Wang, Chao; Shen, Guiping; Wang, Yadong; Liu, Qiong; Dong, Jiyang

    2015-01-01

    Gastric mucosal lesion (GML) is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM), electroacupuncture (EA) treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- (1H NMR-) based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM) acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM) acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture. PMID:26170882

  1. Crystalline 1H-1,2,3-triazol-5-ylidenes

    DOEpatents

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  2. Human uroporphyrinogen III synthase: NMR-based mapping of the active site.

    PubMed

    Cunha, Luis; Kuti, Miklos; Bishop, David F; Mezei, Mihaly; Zeng, Lei; Zhou, Ming-Ming; Desnick, Robert J

    2008-05-01

    Uroporphyrinogen III synthase (URO-synthase) catalyzes the cyclization and D-ring isomerization of hydroxymethylbilane (HMB) to uroporphyrinogen (URO'gen) III, the cyclic tetrapyrrole and physiologic precursor of heme, chlorophyl, and corrin. The deficient activity of human URO-synthase results in the autosomal recessive cutaneous disorder, congenital erythropoietic porphyria. Mapping of the structural determinants that specify catalysis and, potentially, protein-protein interactions is lacking. To map the active site and assess the enzyme's possible interaction in a complex with hydroxymethylbilane-synthase (HMB-synthase) and/or uroporphyrinogen-decarboxylase (URO-decarboxylase) by NMR, an efficient expression and purification procedure was developed for these cytosolic enzymes of heme biosynthesis that enabled preparation of special isotopically-labeled protein samples for NMR characterization. Using an 800 MHz instrument, assignment of the URO-synthase backbone (13)C(alpha) (100%), (1)H(alpha) (99.6%), and nonproline (1)H(N) and (15)N resonances (94%) was achieved as well as 85% of the side-chain (13)C and (1)H resonances. NMR analyses of URO-synthase titrated with competitive inhibitors N(D)-methyl-1-formylbilane (NMF-bilane) or URO'gen III, revealed resonance perturbations of specific residues lining the cleft between the two major domains of URO synthase that mapped the enzyme's active site. In silico docking of the URO-synthase crystal structure with NMF-bilane and URO'gen III was consistent with the perturbation results and provided a 3D model of the enzyme-inhibitor complex. The absence of chemical shift changes in the (15)N spectrum of URO-synthase mixed with the homogeneous HMB-synthase holoenzyme or URO-decarboxylase precluded occurrence of a stable cytosolic enzyme complex. PMID:18004775

  3. NMR-based Structural Analysis of the Complete Rough-type Lipopolysaccharide Isolated from Capnocytophaga canimorsus*

    PubMed Central

    Zähringer, Ulrich; Ittig, Simon; Lindner, Buko; Moll, Hermann; Schombel, Ursula; Gisch, Nicolas; Cornelis, Guy R.

    2014-01-01

    We here describe the NMR analysis of an intact lipopolysaccharide (LPS, endotoxin) in water with 1,2-dihexanoyl-sn-glycero-3-phosphocholine as detergent. When HPLC-purified rough-type LPS of Capnocytophaga canimorsus was prepared, 13C,15N labeling could be avoided. The intact LPS was analyzed by homonuclear (1H) and heteronuclear (1H,13C, and 1H,31P) correlated one- and two-dimensional NMR techniques as well as by mass spectrometry. It consists of a penta-acylated lipid A with an α-linked phosphoethanolamine attached to C-1 of GlcN (I) in the hybrid backbone, lacking the 4′-phosphate. The hydrophilic core oligosaccharide was found to be a complex hexasaccharide with two mannose (Man) and one each of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), Gal, GalN, and l-rhamnose residues. Position 4 of Kdo is substituted by phosphoethanolamine, also present in position 6 of the branched ManI residue. This rough-type LPS is exceptional in that all three negative phosphate residues are “masked” by positively charged ethanolamine substituents, leading to an overall zero net charge, which has so far not been observed for any other LPS. In biological assays, the corresponding isolated lipid A was found to be endotoxically almost inactive. By contrast, the intact rough-type LPS described here expressed a 20,000-fold increased endotoxicity, indicating that the core oligosaccharide significantly contributes to the endotoxic potency of the whole rough-type C. canimorsus LPS molecule. Based on these findings, the strict view that lipid A alone represents the toxic center of LPS needs to be reassessed. PMID:24993825

  4. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306.

    PubMed

    Pegos, Vanessa R; Canevarolo, Rafael R; Sampaio, Aline P; Balan, Andrea; Zeri, Ana C M

    2014-01-01

    Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri's metabolism by 1H-NMR spectroscopy. PMID:24957023

  5. Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306

    PubMed Central

    Pegos, Vanessa R.; Canevarolo, Rafael R.; Sampaio, Aline P.; Balan, Andrea; Zeri, Ana C. M.

    2014-01-01

    Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri’s metabolism by 1H-NMR spectroscopy. PMID:24957023

  6. NMR-based platform for fragment-based lead discovery used in screening BRD4-targeted compounds

    PubMed Central

    Yu, Jun-lan; Chen, Tian-tian; Zhou, Chen; Lian, Fu-lin; Tang, Xu-long; Wen, Yi; Shen, Jing-kang; Xu, Ye-chun; Xiong, Bing; Zhang, Nai-xia

    2016-01-01

    Aim: Fragment-based lead discovery (FBLD) is a complementary approach in drug research and development. In this study, we established an NMR-based FBLD platform that was used to screen novel scaffolds targeting human bromodomain of BRD4, and investigated the binding interactions between hit compounds and the target protein. Methods: 1D NMR techniques were primarily used to generate the fragment library and to screen compounds. The inhibitory activity of hits on the first bromodomain of BRD4 [BRD4(I)] was examined using fluorescence anisotropy binding assay. 2D NMR and X-ray crystallography were applied to characterize the binding interactions between hit compounds and the target protein. Results: An NMR-based fragment library containing 539 compounds was established, which were clustered into 56 groups (8–10 compounds in each group). Eight hits with new scaffolds were found to inhibit BRD4(I). Four out of the 8 hits (compounds 1, 2, 8 and 9) had IC50 values of 100–260 μmol/L, demonstrating their potential for further BRD4-targeted hit-to-lead optimization. Analysis of the binding interactions revealed that compounds 1 and 2 shared a common quinazolin core structure and bound to BRD4(I) in a non-acetylated lysine mimetic mode. Conclusion: An NMR-based platform for FBLD was established and used in discovery of BRD4-targeted compounds. Four potential hit-to-lead optimization candidates have been found, two of them bound to BRD4(I) in a non-acetylated lysine mimetic mode, being selective BRD4(I) inhibitors. PMID:27238211

  7. NMR based metabolomics reveals acute hippocampal metabolic fluctuations during cranial irradiation in murine model.

    PubMed

    Rana, Poonam; Gupta, Mamta; Khan, Ahmad Raza; Hemanth Kumar, B S; Roy, Raja; Khushu, Subash

    2014-07-01

    Cranial irradiation is widely used as a treatment modality or prophylactic treatment in cancer patients, but it is frequently related to neurocognitive impairment in cancer survivors. Though most of radiation-induced changes occur during early and late delayed phase of radiation sickness, recent reports have supported the evidence of impaired neurogenesis within 24-48 h of radiation exposure that may implicate changes in acute phase as well. Inspection of these acute changes could be considered important as they may have long lasting effect on cognitive development and functions. In the present study, (1)H NMR spectroscopy based metabolomic approach was used to obtain comprehensive information of hippocampus metabolic physiology during acute phase of radiation sickness in a mouse model for single dose 8 Gy cranial irradiation. The analysis demonstrated reduced metabolic activity in irradiated animals compared to controls, typically evident in citric acid cycle intermediates, glutamine/glutamate and ketone bodies metabolism thus providing strong indication that the hippocampus is metabolically responsive to radiation exposure. The data suggested reduced glucose utilization, altered intermediary and neurotransmitter metabolism in hippocampus tissue extract. To the best of our knowledge this is the first metabolomic study to document cranial irradiation induced acute metabolic changes using in vitro(1)H NMR spectroscopy. PMID:24787771

  8. NMR-based metabolomic analysis of Haliotis diversicolor exposed to thermal and hypoxic stresses.

    PubMed

    Lu, Jie; Shi, Yanyan; Wang, Shuhong; Chen, Hao; Cai, Shuhui; Feng, Jianghua

    2016-03-01

    Haliotis diversicolor is a commercially important cultured shellfish. It is also an important marine model organism for environmental science. High temperature accompanied with hypoxia frequently induces diseases or even death to abalones. In present study, (1)H NMR spectroscopy together with pattern recognition methods was used to investigate the responses of muscle and gill of H. diversicolor to thermal and hypoxic stresses. It was found that obvious gender-, time- and tissue-specific metabolic responses were induced by thermal and hypoxic stresses. In combination with the changes of H. diversicolor in physiological features, the dual-modal stresses were suggested to mainly cause the disturbance in energy metabolism and osmotic balance in muscle and gill tissues with different mechanisms. Further, the corresponding correlation networks and metabolic pathways derived from the characteristic metabolites were used to assess the major metabolic functions of these characteristic metabolites. These findings shed some lights on the metabolic influences of environmental stresses on marine organisms. PMID:26747992

  9. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts.

    PubMed

    Ryu, Shoraku; Furihata, Kazuo; Koda, Masanori; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2016-03-01

    Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB-WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional (1) H NMR and BB-WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26482562

  10. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    PubMed

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions. PMID:26693586

  11. Evaluation of Pacific White Shrimp (Litopenaeus vannamei) Health during a Superintensive Aquaculture Growout Using NMR-Based Metabolomics

    PubMed Central

    Schock, Tracey B.; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W.; Bearden, Daniel W.

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  12. Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics.

    PubMed

    Schock, Tracey B; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W; Bearden, Daniel W

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  13. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis

    PubMed Central

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment. PMID:26745651

  14. Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis.

    PubMed

    Emwas, Abdul-Hamid; Roy, Raja; McKay, Ryan T; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G A Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S

    2016-02-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many "unwanted" or "undesirable" compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment. PMID:26745651

  15. [Comparative metabonomics study on urine in rat treated by Angelica sinensis volatile oil].

    PubMed

    Li, Jin-Xia; Zhang, Man; Sun, Li-Bo; Zhang, Ling; Zhang, Wen-Quan; Zhao, Hai-Fu; Li, Peng-Ling; Hua, Yong-Li; Ji, Peng; Wei, Yan-Ming

    2014-04-01

    Metabonomics was employed to investigate the effect of Angelica sinensis volatile oil (ASVO) to the endogenous metabolites of normal rats, and to reveal the possible ways of metabolism in rats caused by ASVO. The fifty male Waster rats were randomly divided into five groups (each consists of 10 rats), such as control group, high dose group of ASVO, middle dose group of ASVO, low dose group of ASVO, and Aspirin group. They were given 0.9% saline, 0.352 mL x kg(-1) ASVO, 0.176 mL x kg(-1) ASVO, 0.088 mL x kg(-1) ASVO and ASP respectively with the equal volume of 0.2 mL. Drugs and vehicle were given for 3 successive days. The urine was collected at 12, 24, 36, 48 h after modeling with metabolic cages. Rat urine metabolic fingerprint in different stages was analyzed using GC-MS, based on which the principal component analysis (PCA)and orthogonal partial least-squares discriminant analysis (OPLS-DA) models were established for metabonomic analysis. Potential biomarkers were screened by using variable importance in the projection (VIP) and T test. It was revealed that the middle dose of ASVO at 36 h induces a substantial change in rat urine. Compared with control group, seven kinds of endogenous metabolites in ASP group and ASVO group change significantly (P < 0.05), among which aconitic acid, succinic acid, citric acid, alpha-ketone glutaric acid, glycine and malic acid content had an upward trend (P < 0.05) and prostaglandin content had a downward trend (P < 0.01). The mechanism of ASVO and ASP have the similarity. It is likely that ASVO intervenes the metabolic process by affecting the energy, amino acid and lipid metabolism. Our work also indicates that rats administrated with ASVO can increase the energy metabolism of the body, induce the production of inflammatory substances and strengthen the body's immune ability. The result has also provide a proof for futher interpret ASVO pharmacological effects. PMID:25011271

  16. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  17. Metabonomic Study of Biochemical Changes in Human Hair of Heroin Abusers by Liquid Chromatography Coupled with Ion Trap-Time of Flight Mass Spectrometry.

    PubMed

    Xie, Pu; Wang, Tie-jie; Yin, Guo; Yan, Yan; Xiao, Li-he; Li, Qing; Bi, Kai-shun

    2016-01-01

    Hair analysis is with the advantage of non-invasive collection and long surveillance window. The present study employed a sensitive and reliable liquid chromatography coupled with ion trap-time of flight mass spectrometry method to study the metabonomic characters in the hair of 58 heroin abusers and 72 non-heroin abusers. Results indicated that certain endogenous metabolites, such as sorbitol and cortisol, were accelerated, and the level of arachidonic acid, glutathione, linoleic acid, and myristic acid was decreased in hair of heroin abusers. The metabonomic study is helpful for further understanding of heroin addiction and clinical diagnosis. PMID:26445826

  18. 1H nuclear magnetic resonance-based extracellular metabolomic analysis of multidrug resistant Tca8113 oral squamous carcinoma cells

    PubMed Central

    WANG, HUI; CHEN, JIAO; FENG, YUN; ZHOU, WENJIE; ZHANG, JIHUA; YU, YU; WANG, XIAOQIAN; ZHANG, PING

    2015-01-01

    A major obstacle of successful chemotherapy is the development of multidrug resistance (MDR) in the cancer cells, which is difficult to reverse. Metabolomic analysis, an emerging approach that has been increasingly applied in various fields, is able to reflect the unique chemical fingerprints of specific cellular processes in an organism. The assessment of such metabolite changes can be used to identify novel therapeutic biomarkers. In the present study, 1H nuclear magnetic resonance (NMR) spectroscopy was used to analyze the extracellular metabolomic spectrum of the Tca8113 oral squamous carcinoma cell line, in which MDR was induced using the carboplatin (CBP) and pingyangmycin (PYM) chemotherapy drugs in vitro. The data were analyzed using the principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) methods. The results demonstrated that the extracellular metabolomic spectrum of metabolites such as glutamate, glycerophosphoethanol amine, α-Glucose and β-Glucose for the drug-induced Tca8113 cells was significantly different from the parental Tca8113 cell line. A number of biochemicals were also significantly different between the groups based on their NMR spectra, with drug-resistant cells presenting relatively higher levels of acetate and lower levels of lactate. In addition, a significantly higher peak was observed at δ 3.35 ppm in the spectrum of the PYM-induced Tca8113 cells. Therefore, 1H NMR-based metabolomic analysis has a high potential for monitoring the formation of MDR during clinical tumor chemotherapy in the future. PMID:26137105

  19. Extraction of alkaloids for NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection.

    PubMed

    Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W

    2012-11-01

    A museum collection of Cinchonae cortex samples (n = 117), from the period 1850-1950, was extracted with a mixture of chloroform-d1, methanol-d4, water-d2, and perchloric acid in the ratios 5 : 5 : 1 : 1. The extracts were directly analyzed using 1H NMR spectroscopy (600 MHz) and the spectra evaluated using principal component analysis (PCA) and total statistical correlation spectroscopy (STOCSY). A new method called STOCSY-CA, where CA stands for component analysis, is described, and an analysis using this method is presented. It was found that the samples had a rather homogenous content of the well-known cinchona alkaloids quinine, cinchonine, and cinchonidine without any apparent clustering. Signals from analogues were detected but not in substantial amounts. The main variation was related to the absolute amounts of extracted alkaloids, which was attributed to the evolution of the Cinchona tree cultivation during the period in which the samples were collected. PMID:23059630

  20. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics.

    PubMed

    Mushtaq, Mian Yahya; Marçal, Rosilene Moretti; Champagne, Danielle L; van der Kooy, Frank; Verpoorte, Robert; Choi, Young Hae

    2014-09-01

    We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies. PMID:25098933

  1. 1H NMR spectra part 31: 1H chemical shifts of amides in DMSO solvent.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2014-07-01

    The (1)H chemical shifts of 48 amides in DMSO solvent are assigned and presented. The solvent shifts Δδ (DMSO-CDCl3 ) are large (1-2 ppm) for the NH protons but smaller and negative (-0.1 to -0.2 ppm) for close range protons. A selection of the observed solvent shifts is compared with calculated shifts from the present model and from GIAO calculations. Those for the NH protons agree with both calculations, but other solvent shifts such as Δδ(CHO) are not well reproduced by the GIAO calculations. The (1)H chemical shifts of the amides in DMSO were analysed using a functional approach for near ( ≤ 3 bonds removed) protons and the electric field, magnetic anisotropy and steric effect of the amide group for more distant protons. The chemical shifts of the NH protons of acetanilide and benzamide vary linearly with the π density on the αN and βC atoms, respectively. The C=O anisotropy and steric effect are in general little changed from the values in CDCl3. The effects of substituents F, Cl, Me on the NH proton shifts are reproduced. The electric field coefficient for the protons in DMSO is 90% of that in CDCl3. There is no steric effect of the C=O oxygen on the NH proton in an NH…O=C hydrogen bond. The observed deshielding is due to the electric field effect. The calculated chemical shifts agree well with the observed shifts (RMS error of 0.106 ppm for the data set of 257 entries). PMID:24824670

  2. Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning (1)H NMR spectroscopy.

    PubMed

    Blondel, Claire; Khelalfa, Farid; Reynaud, Stéphane; Fauvelle, Florence; Raveton, Muriel

    2016-07-01

    (1)H-HRMAS NMR-based metabolomics was used to better understand the toxic effects on maize root tips of organochlorine pesticides (OCPs), namely lindane (γHCH) and chlordecone (CLD). Maize seedlings were exposed to 2.5 μM γHCH (mimicking basic environmental contaminations) for 7 days and compared to 2.5 μM CLD and 25 μM γHCH for 7 days (mimicking hot spot contaminations). The (1)H-HRMAS NMR-based metabolomic profiles provided details of the changes in carbohydrates, amino acids, tricarboxylic acid (TCA) cycle intermediates and fatty acids with a significant separation between the control and OCP-exposed root tips. First of all, alterations in the balance between glycolysis/gluconeogenesis were observed with sucrose depletion and with dose-dependent fluctuations in glucose content. Secondly, observations indicated that OCPs might inactivate the TCA cycle, with sizeable succinate and fumarate depletion. Thirdly, disturbances in the amino acid composition (GABA, glutamine/glutamate, asparagine, isoleucine) reflected a new distribution of internal nitrogen compounds under OCP stress. Finally, OCP exposure caused an increase in fatty acid content, concomitant with a marked rise in oxidized fatty acids which could indicate failures in cell integrity and vitality. Moreover, the accumulation of asparagine and oxidized fatty acids with the induction of LOX3 transcription levels under OCP exposure highlighted an induction of protein and lipid catabolism. The overall data indicated that the effect of OCPs on primary metabolism could have broader physiological consequences on root development. Therefore, (1)H-HRMAS NMR metabolomics is a sensitive tool for understanding molecular disturbances under OCP exposure and can be used to perform a rapid assessment of phytotoxicity. PMID:27131813

  3. New direct 11B NMR-based analysis of organoboranes through their potassium borohydrides.

    PubMed

    Medina, Jesus R; Cruz, Gabriel; Cabrera, Carlos R; Soderquist, John A

    2003-06-13

    Representative organoborane mixtures were quantitatively converted to their borohydrides through their reaction with activated KH (KH), permitting their detailed analysis by (11)B NMR. Through the treatment of commercial KH with a THF solution of lithium aluminum hydride (LAH), a dramatic change in the surface morphology results as revealed by scanning electron microscopy (SEM). Energy dispersed spectroscopy (EDS) was employed to reveal that the LAH treatment deposits a significant amount of an unknown aluminum-containing species on the surface of the KH, which imparts a unique reactivity to the KH. Even highly hindered organoboranes are quantitatively converted to their borohydrides by replacing electronegative groups (e.g., OR, halogen) with hydrogen, retaining only the carbon ligation. Through this simple KH treatment, complex organoborane reaction mixtures are converted to the corresponding borohydrides whose (11)B NMR spectra normally exhibit resolved signals for the individual species present. The integration of these signals provides quantitative information on the relative amounts of each component of the mixture. New generalities for the effect of alpha-, beta-, and gamma-substituents have also been determined that provide a new, simple technique for the determination of the isomeric distribution in organoborane mixtures resulting from common organoborane processes (e.g., hydroboration). Moreover, the (1)H-coupled (11)B NMR spectra of these mixtures reveal the extent of alkylation for each species present. Representative organoboranes were examined by this new technique permitting a simple and convenient quantitative analysis of the regio- and diastereomeric composition of a variety of asymmetric organoborane processes. Previously unknown details of pinene-based hydroborations and reductions are revealed for the first time employing the KH (11)B NMR technique. PMID:12790565

  4. [Urine metabonomic study of intervention effects of Morinda officinalis how. on 'kidney-yang deficiency syndrome'].

    PubMed

    Zou, Zhong-jie; Xie, Yuan-yuan; Gong, Meng-juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang

    2013-11-01

    To investigate the intervention effects of Morinda officinalis How. on 'Kidney-yang deficiency syndrome' induced by hydrocortisone in rats, the metabolic profiles of rat urine were characterized using proton nuclear magnetic resonance and principal component analysis (PCA) was applied to study the trajectory of urinary metabolic phenotype of rats with 'Kidney-yang deficiency syndrome' under administration of M. officinalis at different time points. Meanwhile, the intervention effects of M. officinalis on urinary metabolic potential biomarkers associated with 'Kidney-yang deficiency syndrome' were also discussed. The experimental results showed that in accordance to the increased time of administration, an obvious tendency was observed that clustering of the treatment group moved gradually closed to that of the control group. Eight potential biomarkers including citrate, succinate, alpha-ketoglutarate, lactate, betaine, sarcosine, alanine and taurine were definitely up- or down-regulated. In conclusion, the effectiveness of M. oficinalis on 'Kidney-yang deficiency syndrome' is proved using the established metabonomic method and the regulated metabolic pathways involve energy metabolism, transmethylation and transportation of amine. Meanwhile, the administration of M. officinalis can alleviate the kidney impairment induced by 'Kidney-yang deficiency syndrome'. PMID:24475714

  5. Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis.

    PubMed

    Xiao, Jianqi; Zhang, Jie; Sun, Dan; Wang, Lin; Yu, Lijun; Wu, Hongjing; Wang, Dan; Qiu, Xuerong

    2016-01-01

    Poststroke depression (PSD), the most common psychiatric disease that stroke survivors face, is estimated to affect ~30% of poststroke patients. However, there are still no objective methods to diagnose PSD. In this study, to explore the differential metabolites in the urine of PSD subjects and to identify a potential biomarker panel for PSD diagnosis, the nuclear magnetic resonance-based metabonomic method was applied. Ten differential metabolites responsible for discriminating PSD subjects from healthy control (HC) and stroke subjects were found, and five of these metabolites were identified as potential biomarkers (lactate, α-hydroxybutyrate, phenylalanine, formate, and arabinitol). The panel consisting of these five metabolites provided excellent performance in discriminating PSD subjects from HC and stroke subjects, achieving an area under the receiver operating characteristic curve of 0.946 in the training set (43 HC, 45 stroke, and 62 PSD subjects). Moreover, this panel could classify the blinded samples from the test set (31 HC, 33 stroke, and 32 PSD subjects) with an area under the curve of 0.946. These results laid a foundation for the future development of urine-based objective methods for PSD diagnosis and investigation of PSD pathogenesis. PMID:27536114

  6. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease.

    PubMed

    Hall, Andrew M; Vilasi, Annalisa; Garcia-Perez, Isabel; Lapsley, Marta; Alston, Charlotte L; Pitceathly, Robert D S; McFarland, Robert; Schaefer, Andrew M; Turnbull, Doug M; Beaumont, Nick J; Hsuan, Justin J; Cutillas, Pedro R; Lindon, John C; Holmes, Elaine; Unwin, Robert J; Taylor, Robert W; Gorman, Grainne S; Rahman, Shamima; Hanna, Michael G

    2015-03-01

    We studied the extent and nature of renal involvement in a cohort of 117 adult patients with mitochondrial disease, by measuring urinary retinol-binding protein (RBP) and albumin; established markers of tubular and glomerular dysfunction, respectively. Seventy-five patients had the m.3243A>G mutation and the most frequent phenotypes within the entire cohort were 14 with MELAS, 33 with MIDD, and 17 with MERRF. Urinary RBP was increased in 29 of 75 of m.3243A>G patients, whereas albumin was increased in 23 of the 75. The corresponding numbers were 16 and 14, respectively, in the 42 non-m.3243A>G patients. RBP and albumin were higher in diabetic m.3243A>G patients than in nondiabetics, but there were no significant differences across the three major clinical phenotypes. The urine proteome (mass spectrometry) and metabonome (nuclear magnetic resonance) in a subset of the m.3243A>G patients were markedly different from controls, with the most significant alterations occurring in lysosomal proteins, calcium-binding proteins, and antioxidant defenses. Differences were also found between asymptomatic m.3243A>G carriers and controls. No patients had an elevated serum creatinine level, but 14% had hyponatremia, 10% had hypophosphatemia, and 14% had hypomagnesemia. Thus, abnormalities in kidney function are common in adults with mitochondrial disease, exist in the absence of elevated serum creatinine, and are not solely explained by diabetes. PMID:25207879

  7. Plasma metabonomics study of first-Episode schizophrenia treated with olanzapine in female patients.

    PubMed

    Qiao, Ying; Zhang, Lei; He, Shen; Wen, Hui; Yu, Yi-Min; Cao, Chun-Hua; Li, Hua-Fang

    2016-03-23

    Schizophrenia is a persistent chronic mental illness with an unknown pathogenic mechanism; no empirical laboratory-based tests are available to support the diagnosis of schizophrenia or to identify biomarkers correlated with the therapeutic effect of olanzapine. For this study, 15 female first-episode, drug-naïve patients with schizophrenia and 15 healthy female volunteers were recruited. Tests for blood glucose and lipids were conducted at baseline and after 4 weeks of treatment with olanzapine. UPLC-MS based metabonomic analysis was performed on both case and control groups to identify biomarkers of schizophrenia at baseline and to explore which biomarkers correlated with the therapeutic effect of olanzapine after a 4-week treatment. Compared with the control group, the case group showed significant changes in plasma metabolites. Thirteen distinct metabolites were identified. Among all the therapeutically effective cases, levels of these metabolites appeared to shift towards the normal trend; 8 of the identified 13 metabolites changed dramatically. The metabolites that we found are potential biomarkers for the diagnosis and treatment of schizophrenia. PMID:26924724

  8. Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis

    PubMed Central

    Xiao, Jianqi; Zhang, Jie; Sun, Dan; Wang, Lin; Yu, Lijun; Wu, Hongjing; Wang, Dan; Qiu, Xuerong

    2016-01-01

    Poststroke depression (PSD), the most common psychiatric disease that stroke survivors face, is estimated to affect ~30% of poststroke patients. However, there are still no objective methods to diagnose PSD. In this study, to explore the differential metabolites in the urine of PSD subjects and to identify a potential biomarker panel for PSD diagnosis, the nuclear magnetic resonance-based metabonomic method was applied. Ten differential metabolites responsible for discriminating PSD subjects from healthy control (HC) and stroke subjects were found, and five of these metabolites were identified as potential biomarkers (lactate, α-hydroxybutyrate, phenylalanine, formate, and arabinitol). The panel consisting of these five metabolites provided excellent performance in discriminating PSD subjects from HC and stroke subjects, achieving an area under the receiver operating characteristic curve of 0.946 in the training set (43 HC, 45 stroke, and 62 PSD subjects). Moreover, this panel could classify the blinded samples from the test set (31 HC, 33 stroke, and 32 PSD subjects) with an area under the curve of 0.946. These results laid a foundation for the future development of urine-based objective methods for PSD diagnosis and investigation of PSD pathogenesis. PMID:27536114

  9. NMR-based metabolomics of urine in a mouse model of Alzheimer’s disease: identification of oxidative stress biomarkers

    PubMed Central

    Fukuhara, Kiyoshi; Ohno, Akiko; Ota, Yosuke; Senoo, Yuya; Maekawa, Keiko; Okuda, Haruhiro; Kurihara, Masaaki; Okuno, Alato; Niida, Shumpei; Saito, Yoshiro; Takikawa, Osamu

    2013-01-01

    Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia among elderly patients. A biomarker for the disease could make diagnosis easier and more accurate, and accelerate drug discovery. In this study, NMR-based metabolomics analysis in conjunction with multivariate statistics was applied to examine changes in urinary metabolites in transgenic AD mice expressing mutant tau and β-amyloid precursor protein. These mice showed significant changes in urinary metabolites throughout the progress of the disease. Levels of 3-hydroxykynurenine, homogentisate and allantoin were significantly higher compared to control mice in 4 months (prior to onset of AD symptoms) and reverted to control values by 10 months of age (early/middle stage of AD), which highlights the relevance of oxidative stress to this neurodegenerative disorder even prior the onset of dementia. The level of these changed metabolites at very early period may provide an indication of disease risk at asymptomatic stage. PMID:23526113

  10. Hippocampal Proteomic and Metabonomic Abnormalities in Neurotransmission, Oxidative Stress, and Apoptotic Pathways in a Chronic Phencyclidine Rat Model.

    PubMed

    Wesseling, Hendrik; Want, Elizabeth J; Guest, Paul C; Rahmoune, Hassan; Holmes, Elaine; Bahn, Sabine

    2015-08-01

    Schizophrenia is a neuropsychiatric disorder affecting 1% of the world's population. Due to both a broad range of symptoms and disease heterogeneity, current therapeutic approaches to treat schizophrenia fail to address all symptomatic manifestations of the disease. Therefore, disease models that reproduce core pathological features of schizophrenia are needed for the elucidation of pathological disease mechanisms. Here, we employ a comprehensive global label-free liquid chromatography-mass spectrometry proteomic (LC-MS(E)) and metabonomic (LC-MS) profiling analysis combined with the targeted proteomics (selected reaction monitoring and multiplex immunoassay) of serum and brain tissues to investigate a chronic phencyclidine (PCP) rat model in which glutamatergic hypofunction is induced through noncompetitive NMDAR-receptor antagonism. Using a multiplex immunoassay, we identified alterations in the levels of several cytokines (IL-5, IL-2, and IL-1β) and fibroblast growth factor-2. Extensive proteomic and metabonomic brain tissue profiling revealed a more prominent effect of chronic PCP treatment on both the hippocampal proteome and metabonome compared to the effect on the frontal cortex. Bioinformatic pathway analysis confirmed prominent abnormalities in NMDA-receptor-associated pathways in both brain regions, as well as alterations in other neurotransmitter systems such as kainate, AMPA, and GABAergic signaling in the hippocampus and in proteins associated with neurodegeneration. We further identified abundance changes in the level of the superoxide dismutase enzyme (SODC) in both the frontal cortex and hippocampus, which indicates alterations in oxidative stress and substantiates the apoptotic pathway alterations. The present study could lead to an increased understanding of how perturbed glutamate receptor signaling affects other relevant biological pathways in schizophrenia and, therefore, support drug discovery efforts for the improved treatment of patients

  11. Association of Immunosuppressant-induced Protein Changes in the Rat Kidney with Changes in Urine Metabolite Patterns: A Proteo-Metabonomic Study

    PubMed Central

    Klawitter, Jost; Klawitter, Jelena; Kushner, Erich; Jonscher, Karen; Bendrick-Peart, Jamie; Leibfritz, Dieter; Christians, Uwe; Schmitz, Volker

    2010-01-01

    The basic mechanisms underlying calcineurin inhibitor (CI) nephrotoxicity and its enhancement by sirolimus are still largely unknown. We investigated the effects of CIs alone and in combination with sirolimus on the renal proteome and correlated these effects with urine metabolite pattern changes. Thirty-six male Wistar rats were assigned to six treatment groups (n=4/group for proteome analysis and n=6/group for urine 1H-NMR metabolite pattern analysis): vehicle controls, sirolimus 1mg/kg/day, cyclosporine 10mg/kg/day, cyclosporine 10mg/kg/day + sirolimus 1mg/kg/day, tacrolimus 1mg/kg/day, tacrolimus 1mg/kg/day + sirolimus 1mg/kg/day. After 28 days, 24h-urine was collected for 1H-NMR-based metabolic analysis and kidneys were harvested for 2D-gel electrophoresis and histology. Cyclosporine affected the following groups of proteins: calcium homeostasis (regucalcin, calbindin), cytoskeleton (vimentin, caldesmon), response to hypoxia and mitochondrial function (prolyl 4-hydroxylase, proteasome, NADH dehydrogenase) and cell metabolism (kidney aminoacylase, pyruvate dehydrogenase, fructose-1,6-bis phosphate). Several of the changes in protein expression, confirmed by Western blot, were associated with and explained changes in metabolite concentrations in urine. Representative examples are an increase in kidney aminoacylase expression (decrease of hippurate concentrations in urine), up regulation of pyruvate dehydrogenase and fructose-1, 6-bisphosphatase, (increased glucose metabolism) and down regulation of arginine:glycine-amidino transferase (most likely due to an increase in creatinine concentrations). Protein changes explained and qualified immunosuppressant-induced metabolite pattern changes in urine. PMID:19994912

  12. Metabonomics Analysis of Plasma Reveals the Lactate to Cholesterol Ratio as an Independent Prognostic Factor of Short-Term Mortality in Acute Heart Failure

    PubMed Central

    Desmoulin, Franck; Galinier, Michel; Trouillet, Charlotte; Berry, Matthieu; Delmas, Clément; Turkieh, Annie; Massabuau, Pierre; Taegtmeyer, Heinrich; Smih, Fatima; Rouet, Philippe

    2013-01-01

    Objective Mortality in heart failure (AHF) remains high, especially during the first days of hospitalization. New prognostic biomarkers may help to optimize treatment. The aim of the study was to determine metabolites that have a high prognostic value. Methods We conducted a prospective study on a training cohort of AHF patients (n = 126) admitted in the cardiac intensive care unit and assessed survival at 30 days. Venous plasmas collected at admission were used for 1H NMR–based metabonomics analysis. Differences between plasma metabolite profiles allow determination of discriminating metabolites. A cohort of AHF patients was subsequently constituted (n = 74) to validate the findings. Results Lactate and cholesterol were the major discriminating metabolites predicting 30-day mortality. Mortality was increased in patients with high lactate and low total cholesterol concentrations at admission. Accuracies of lactate, cholesterol concentration and lactate to cholesterol (Lact/Chol) ratio to predict 30-day mortality were evaluated using ROC analysis. The Lact/Chol ratio provided the best accuracy with an AUC of 0.82 (P < 0.0001). The acute physiology and chronic health evaluation (APACHE) II scoring system provided an AUC of 0.76 for predicting 30-day mortality. APACHE II score, Cardiogenic shock (CS) state and Lact/Chol ratio ≥ 0.4 (cutoff value with 82% sensitivity and 64% specificity) were significant independent predictors of 30-day mortality with hazard ratios (HR) of 1.11, 4.77 and 3.59, respectively. In CS patients, the HR of 30-day mortality risk for plasma Lact/Chol ratio ≥ 0.4 was 3.26 compared to a Lact/Chol ratio of < 0.4 (P  =  0.018). The predictive power of the Lact/Chol ratio for 30-day mortality outcome was confirmed with the independent validation cohort. Conclusion This study identifies the plasma Lact/Chol ratio as a useful objective and simple parameter to evaluate short term prognostic and could be integrated into quantitative

  13. An integrated metabonomic and proteomic study on Kidney-Yin Deficiency Syndrome patients with diabetes mellitus in China

    PubMed Central

    Jiang, Ning; Liu, Hong-fang; Li, Si-di; Zhou, Wen-xia; Zhang, Yong-xiang; Zhang, Qi; Yan, Xian-zhong

    2015-01-01

    Aim: To investigate specific changes in metabolites and proteins of Kidney-Yin Deficiency Syndrome (KYDS) patients with diabetes mellitus (DM) in China. Methods: KYDS (n=29) and non-KYDS (n=23) patients with DM were recruited for this study. The KYDS was diagnosed by two senior TCM clinicians separately. The metabonomic and proteomic profiles of the patients were assessed using a metabonomic strategy based on NMR with multivariate analysis and a proteomic strategy based on MALDI-TOF-MS, respectively. Results: Eighteen upregulated peptides and thirty downregulated peptides were observed in the plasma of the KYDS patients. Comparing the proteomic profiles of the KYDS and non-KYDS groups, however, no significantly differentially expressed peptides were found. At the same time, major metabolic alterations were found to distinguish the two groups, including eight significantly changed metabolites (creatinine, citrate, TMAO, phenylalanine, tyrosine, alanine, glycine and taurine). The levels of creatinine, citrate, TMAO, phenylalanine and tyrosine were decreased, whereas the levels of alanine, glycine and taurine were increased in the KYDS patients. These biochemical changes were found to be associated with alterations in amino acid metabolism, energy metabolism and gut microflora. Conclusion: The identification of distinct expression profiles of metabolites and signaling pathways in KYDS patients with DM suggests that there are indeed molecular signatures underlying the principles of 'Syndrome Differentiation' in traditional Chinese medicine. PMID:25937635

  14. Metabonomic analysis of the anti-inflammatory effects of volatile oils of Angelica sinensis on rat model of acute inflammation.

    PubMed

    Zhang, Wen-Quan; Hua, Yong-Li; Zhang, Man; Ji, Peng; Li, Jin-Xia; Zhang, Ling; Li, Peng-Ling; Wei, Yan-Ming

    2015-06-01

    Metabonomics based on GC-MS was used to study the possible anti-inflammatory mechanisms of volatile oils of Angelica sinensis (VOAS) in rats with acute inflammation. Acute inflammation was induced by subcutaneous injection of carrageenan in rats. The levels of prostaglandin E2 (PGE2 ), histamine (HIS) and 5-hydroxytryptamine (5-HT) in the inflammatory fluid were detected. Principal component analysis and orthogonal partial least squares-discriminant analysis models were performed for pattern recognition analysis. After the administration of VOAS, the levels of PGE2 , HIS, and 5-HT returned to levels observed in normal group. According to GC-MS analysis, the intervention of VOAS in rats with acute inflammation induced substantial and characteristic changes in their metabolic profiles. Fourteen metabolite biomarkers, namely, lactic acid, malic acid, citric acid, trans-dehydroandrosterone, aldosterone, linoleic acid, hexadecanoic acid, pregnenolone, octadecenoic acid, myristic acid, l-histidine, octadecanoic acid, arachidonic acid (AA) and l-tryptophan, were detected in the inflammatory fluid. The levels of all biomarkers either increased or decreased significantly in model groups. VOAS possibly intervened in the metabolic process of inflammation by altering histidine metabolism, tryptophan metabolism, AA metabolism, steroid hormone biosynthesis, fatty acid metabolism and energy metabolism. Metabonomics was used to reflect an organism's physiological and metabolic state comprehensively, and it is a potentially powerful tool that reveals the anti-acute-inflammatory mechanism of VOAS. PMID:25515821

  15. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  16. Metabonomics Reveals Drastic Changes in Anti-Inflammatory/Pro-Resolving Polyunsaturated Fatty Acids-Derived Lipid Mediators in Leprosy Disease

    PubMed Central

    Amaral, Julio J.; Antunes, Luis Caetano M.; de Macedo, Cristiana S.; Mattos, Katherine A.; Han, Jun; Pan, Jingxi; Candéa, André L. P.; Henriques, Maria das Graças M. O.; Ribeiro-Alves, Marcelo; Borchers, Christoph H.; Sarno, Euzenir N.; Bozza, Patrícia T.; Finlay, B. Brett; Pessolani, Maria Cristina V.

    2013-01-01

    Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT) were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA) metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases. PMID:23967366

  17. Cross Polarization for 1H NMR Image Contrast in Solids

    NASA Astrophysics Data System (ADS)

    Nakai, Toshihito; Fukunaga, Yasuhiro; Nonaka, Masayuki; Matsui, Shigeru; Inouye, Tamon

    1998-09-01

    A novel1H imaging method for solids, yielding images reflecting1H-13C dipolar interactions through cross relaxation timeTIS, is presented. Phase-alternating multiple-contact cross polarization (PAMC CP) was incorporated into the magic-echo frequency-encoding imaging scheme; the PAMC CP sequence may partly but efficiently destroy the initial1H magnetization depending on theTISvalues. A theory describing the effects of the PAMC CP sequence was developed, which was used for the assessment of the sequence as well as the analysis for the experimental results. It was demonstrated that theTIS-weighted1H image and theTISmapping for a phantom, constituted of adamantane and ferrocene, can distinguish these compounds clearly.

  18. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE PAGESBeta

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  19. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    SciTech Connect

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.

  20. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  1. 1H NMR spectroscopy of serum reveals unique metabolic fingerprints associated with subtypes of surgically induced osteoarthritis in sheep.

    PubMed

    Maher, Anthony D; Coles, Chantal; White, Jason; Bateman, John F; Fuller, Emily S; Burkhardt, Dan; Little, Christopher B; Cake, Martin; Read, Richard; McDonagh, Matthew B; Rochfort, Simone Jane

    2012-08-01

    Osteoarthritis (OA) is a highly prevalent joint disease. Its slow progressive nature and the correlation between pathological changes and clinical symptoms mean that OA is often well advanced by the time of diagnosis. In the absence of any specific pharmacological treatments, there is a pressing need to develop robust biomarkers for OA. We have adopted a nuclear magnetic resonance (NMR)-based metabolomic strategy to identify molecular responses to surgically induced OA in an animal model. Sheep underwent one of three types of surgical procedure (sham (control), meniscal destabilization, MD or anterior cruciate ligament transaction, ACLT), and for every animal a serum sample was collected both pre- and postoperatively, thus, affording two types of "control" data for comparison. 1D 1H NMR spectra were acquired from each sample at 800 MHz and the digitized spectral data were analyzed using principal components analysis and partial least-squares regression discriminant analysis. Our approach, combined with the study design, allowed us to separate the metabolic responses to surgical intervention from those associated with OA. We were able to identify dimethyl sulfone (DMSO2) as being increased in MD after 4 weeks, while ACLT-induced OA exhibited increased 3-methylhistidine and decreased branched chain amino acids (BCAAs). The findings are discussed in the context of interpretation of metabolomic results in studies of human disease, and the selection of appropriate "control" data sets. PMID:22784358

  2. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    PubMed Central

    Wang, X; Hu, M; Liu, M; Hu, JZ

    2015-01-01

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in Gastrointestinal Tract (GI). In this work, the 1H NMR-based metabolomics approach is used to investigate the metabolite profile differences of stomach tissue extracts of metastatic B16-F10 melanoma and control groups in C57BL/6J mouse and to search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach. PMID:26246958

  3. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis.

    PubMed

    Jung, Youngae; Lee, Jueun; Kim, Ho Kyoung; Moon, Byeong Cheol; Ji, Yunui; Ryu, Do Hyun; Hwang, Geum-Sook

    2012-12-01

    Curcuma is used to treat skin diseases and colic inflammatory disorders, and in insect repellants and antimicrobial and antidiabetic medications. Two Curcuma species (C. aromatica and C. longa) grown in Jeju-do and Jin-do were used in this study. Methanolic extracts were analyzed by (1)H NMR spectroscopy, and metabolite profiling coupled with multivariate analysis was applied to characterize the differences between species or origin. PCA analysis showed significantly greater differences between species than origins, and the metabolites responsible for the differences were identified. The concentrations of sugars (glucose, fructose, and sucrose) and essential oils (eucalyptol, curdione, and germacrone) were significantly different between the two species. However, the samples from Jeju-do and Jin-do were different mainly in their concentrations of organic acids (fumarate, succinate, acetate, and formate) and sugars. This study demonstrates that NMR-based metabolomics is an efficient method for fingerprinting and determining differences between Curcuma species or those grown in different regions. PMID:23066525

  4. (1)H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit.

    PubMed

    Goulas, Vlasios; Minas, Ioannis S; Kourdoulas, Panayiotis M; Lazaridou, Athina; Molassiotis, Athanassios N; Gerothanassis, Ioannis P; Manganaris, George A

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. 'Canada Giant', 'Ferrovia') were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: 'Canada Giant' fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile 'Ferrovia' possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, (1)H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. 'Ferrovia' fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an (1)H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2-8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  5. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  6. High resolution 1H solid state NMR studies of polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Cheung, T. T. P.; Gerstein, B. C.; Ryan, L. M.; Taylor, R. E.; Dybowski, D. R.

    1980-12-01

    Molecular motions and spatial properties of the solid polymer polyethyleneterephthalate have been investigated using high resolution 1H solid state NMR techniques. The longitudinal spin relaxation time T1ρ of protons (1H) in the rotating frame was measured for a spin locking field ranging from 5 to 20 G. The decay of the 1H magnetization indicated the existence of two distinct T1ρ's and their field dependence shows that they are associated with two mobile phases of the polymer. The 1H magnetization also relaxes under the dipolar narrowed Carr-Purcell (DNCP) multipulse sequence with two dintinct T1y relaxation times. The ratios T1y's and T1ρ's deviate significantly from the expected theoretical values. The combined experiment with magic angle spinning and the DNCP sequence followed by homonuclear dipolar decoupling reveals the individual T1y relaxation of the resolved methylene and aromatic protons. These two species of protons were found to relax with the same T1y's, thus implying that spin diffusion must have taken place under the homonuclear dipolar decoupling multipulse. The qualitative description of spin diffusion under homonuclear decoupling is given. The combined experiment with spin locking and the DNCP sequence yields the correspondence between the two T1ρ's and the two T1y's. The long T1ρ corresponds to the short T1y whereas the short T1ρ corresponds to the long T1y. Communication between the two spatial phases via spin diffusion was also observed in this experiment by monitoring the recovery of the 1H magnitization associated with the short T1ρ after it has been eliminated during the spin locking. The total 1H magnetization is allowed to equilibrate in the laboratory frame for a variable time much shorter than T1 after the spin locking field has been turned off. The spatial relationship between the two phases is discussed.

  7. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  8. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics.

    PubMed

    Liu, Xiaoli; Zhang, Linbao; You, Liping; Cong, Ming; Zhao, Jianmin; Wu, Huifeng; Li, Chenghua; Liu, Dongyan; Yu, Junbao

    2011-03-01

    The Manila clam (Ruditapes philippinarum) has been considered a good sentinel species for metal pollution monitoring in estuarine tidal flats. Along the Bohai coast of China, there are dominantly distributed three species of clams (White, Liangdao Red and Zebra in Yantai population) endowed with distinct tolerances to environmental stressors. In this study, adductor muscle samples were collected from both control and acute mercury exposed White, Liangdao Red and Zebra clams, and the extracts were analyzed by NMR-based metabolomics to compare the metabolic profiles and responses to the acute mercury exposure to determine the most sensitive clam species capable of acting as abioindicator for heavy metal pollution monitoring. The major abundant metabolites in the White clam sample were branched-chain amino acids (leucine, isoleucine and valine), lactate, arginine, aspartate, acetylcholine, homarine and ATP/ADP, while the metabolite profile of Zebra clam sample comprised high levels of glutamine, acetoacetate, betaine, taurine and one unidentified metabolite. For the Liangdao Red clam sample, the metabolite profile relatively exhibited high amount of branched-chain amino acids, arginine, glutamate, succinate, acetylcholine, homarine and two unassigned metabolites. After 48h exposure of 20μgL(-1) Hg(2+), the metabolic profiles showed significant differences between three clam species, which included increased lactate, succinate, taurine, acetylcholine, betaine and homarine and decreased alanine, arginine, glutamine, glutamate, acetoacetate, glycine and ATP/ADP in White clam samples, and elevated succinate, taurine and acetylcholine, and declined glutamine, glycine, and aspartate in Liangdao Red clam samples, while the increased branched-chain amino acids, lactate, succinate, acetylcholine and homarine, and reduced alanine, acetoacetate, glycine and taurine were observed in the Zebra clam samples. Overall, our findings showed that White clams could be a preferable

  9. Therapeutic effect of Xue Niao An on glyoxylate-induced calcium oxalate crystal deposition based on urinary metabonomics approach

    PubMed Central

    Peng, Zhongjiang; Chen, Wei; Gao, Songyan; Su, Li; Li, Na; Wang, Li; Lou, Ziyang; Dong, Xin; Guo, Zhiyong

    2014-01-01

    The anti-nephrolithiasis effect of Xue Niao An (XNA) capsules is explored by analyzing urine metabolic profiles in mouse models, with ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). An animal model of calcium oxalate crystal renal deposition was established in mice by intra-abdominal injection of glyoxylate. Then, treatment with XNA by intra-gastric administration was performed. At the end of the study, calcium deposition in kidney was measured by Von Kossa staining under light microscopy, and the Von Kossa staining changes showed that XNA significantly alleviated the calcium oxalate crystal deposition. Meanwhile, urine samples for fifteen metabolites, including amino acids and fatty acids, with significant differences were detected in the calcium oxalate group, while XNA treatment attenuated metabolic imbalances. Our study indicated that the metabonomic strategy provided comprehensive insight on the metabolic response to XNA treatment of rodent renal calcium oxalate deposition. PMID:25411524

  10. A UHPLC-TOF/MS method based metabonomic study of total ginsenosides effects on Alzheimer disease mouse model.

    PubMed

    Gong, Yingge; Liu, Ying; Zhou, Ling; Di, Xin; Li, Wei; Li, Qing; Bi, Kaishun

    2015-11-10

    A metabonomic method was established to find potential biomarkers and study the metabolism disturbance in Alzheimer disease animal model. Total ginsenosides, as potential agent in neuroprotection and anti-inflammation, was also studied to learn the regulation mechanism to plasma metabolites in model animals. In experiment, amyloid beta 1-42 was occupied to form Alzheimer disease animal model. After drug administration, animals were evaluated by Morris water maze behavior test and sacrificed. Plasma samples were then analyzed using UHPLC-TOF/MS method to determine the endogenous metabolites. Behavior test results revealed that the spatial learning and memory abilities were deficit in model mice, and total ginsenosides could improve cognition abilities in dose-dependent manners. Principal component analysis showed that model and sham were divided into two groups, which means the metabolic network of mice was disturbed after modeling. Accordingly, 19 biomarkers were found and identified. In model group, the levels of proline, valine, tryptophan, LPC (14:0), LPC (15:0), LPC (15:1), LPC (17:0), LPC (18:2), LPC (18:3) and LPC (20:4) were up-regulated, while the levels of acetylcarnitine, palmitoylcarnitine, vaccenylcarnitine, phytosphingosine, N-eicosanoylethanolamine, hexadecenoic acid, docosahexaenoic acid, docosapentaenoic acid and octadecadienoic acid were down-regulated. The levels of these metabolites were recovered in different degrees after total ginsenosides administration. Combining with behavior study results, total ginsenosides could ameliorate both cognition symptoms and metabolic changes in model animals. This metabonomic approach provided a feasible way to understand the endogenous alterations of AD and to study the pharmacodynamic activity of novel agents. PMID:26210744