Science.gov

Sample records for 1s photoelectron spectra

  1. Method for estimating ionicities of oxides using O1s photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Wu, L. Q.; Li, Y. C.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Xue, L. C.; Ge, X. S.; Ding, L. L.

    2015-09-01

    The average valence, ValO, of the oxygen anions in the perovskite oxide BaTiO3, was found using O1s photoelectron spectra to be -1.55. This experimental result is close to the theoretical value for BaTiO3 (-1.63) calculated by Cohen [Nature 358, 136 (1992)] using density functional theory. Using the same approach, we obtained values of ValO for several monoxides, and investigated the dependence of ValO and the ionicity on the second ionization energy, V(M2+), of the metal cation. We found that the dependence of the ionicity on V(M2+) in this work is close to that reported by Phillips [Rev. Mod. Phys. 42, 317 (1970)]. We therefore suggest that O1s photoelectron spectrum measurements should be accepted as a general experimental method for estimating the ionicity and average valence of oxygen anions.

  2. Method for estimating ionicities of oxides using O1s photoelectron spectra

    SciTech Connect

    Wu, L. Q.; Li, Z. Z.; Tang, G. D. Qi, W. H.; Xue, L. C.; Ge, X. S.; Ding, L. L.; Li, Y. C.; Li, S. Q.

    2015-09-15

    The average valence, V{sub alO}, of the oxygen anions in the perovskite oxide BaTiO{sub 3}, was found using O1s photoelectron spectra to be −1.55. This experimental result is close to the theoretical value for BaTiO{sub 3} (−1.63) calculated by Cohen [Nature 358, 136 (1992)] using density functional theory. Using the same approach, we obtained values of V{sub alO} for several monoxides, and investigated the dependence of V{sub alO} and the ionicity on the second ionization energy, V(M{sup 2+}), of the metal cation. We found that the dependence of the ionicity on V(M{sup 2+}) in this work is close to that reported by Phillips [Rev. Mod. Phys. 42, 317 (1970)]. We therefore suggest that O1s photoelectron spectrum measurements should be accepted as a general experimental method for estimating the ionicity and average valence of oxygen anions.

  3. Photoelectron Spectra

    ERIC Educational Resources Information Center

    Bock, Hans; Mollere, Phillip D.

    1974-01-01

    Presents an experimental approach to teaching molecular orbital models. Suggests utilizing photoelectron spectroscopy and molecular orbital theory as complementary approaches to teaching the qualitative concepts basic to molecular orbital theory. (SLH)

  4. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    SciTech Connect

    Foehlisch, A.; Nilsson, A.; Martensson, N.

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  5. Correlation between N 1s core level x-ray photoelectron and x-ray absorption spectra of amorphous carbon nitride films

    NASA Astrophysics Data System (ADS)

    Quirós, C.; Gómez-García, J.; Palomares, F. J.; Soriano, L.; Elizalde, E.; Sanz, J. M.

    2000-08-01

    This work presents a comparative analysis of the N 1s core level spectra, as measured by x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS), of amorphous CNx films which gives evidence of the existing correlation between the different components that constitute the respective spectra. After annealing, the contribution of XPS at 399.3 eV and the components of XAS at 399.6 and 400.8 eV are clearly enhanced. They are assigned to sp2 with two neighbors and to sp states of nitrogen. In addition, the XPS component at 401.3 eV is related to the XAS feature at 402.0 eV and has been assigned to sp2 nitrogen bonded to three carbon neighbors.

  6. Origins of sp(3)C peaks in C1s X-ray Photoelectron Spectra of Carbon Materials.

    PubMed

    Fujimoto, Ayaka; Yamada, Yasuhiro; Koinuma, Michio; Sato, Satoshi

    2016-06-21

    X-ray photoelectron spectroscopy (XPS) is among the most powerful techniques to analyze defective structures of carbon materials such as graphene and activated carbon. However, reported assignments of defects, especially sp(3)C and sp(2)C, are questionable. Most reports assign sp(3)C peaks to be higher than sp(2)C peaks, whereas a few reports assign sp(3)C peaks to be lower than sp(2)C peaks. Our group previously reported that calculated binding energies of sp(3)C were basically lower than those of sp(2)C. This work clarified that one of the reasons for the prevailing ambiguous assignments of sp(3)C peaks is charging effects of diamond. PMID:27264720

  7. Satellite structure in the Argon 1s photoelectron spectrum

    SciTech Connect

    Azuma, Y.; LeBrun, T.; MacDonald, M.; Southworth, S.H.

    1995-08-01

    Atomic inner-shell photoelectron spectra typically display several relatively weak {open_quotes}satellite peaks{close_quotes} at higher ionization energy than the primary peak. Such satellite peaks are associated with final-state configurations corresponding to ionization of an inner-shell electron and excitation or ionization of one or more valence electrons. The observation of satellite peaks demonstrates that the independent-electron picture is inadequate to describe atomic structure and the photoionization process. The measured energies and intensities of photoelectron satellites provide sensitive tests of many-electron theoretical models. We recorded the Ar 1s photoelectron spectrum on beam line X-24A at an X-ray energy of 3628 eV. The primary peak at 3206 eV ionization energy was recorded at an observed resolution of 1.8 eV (FWHM). The satellite structure shows remarkable similarity to that recorded in the suprathreshold region of the Ar K photoabsorption cross section, demonstrating the manner in which these techniques complement each other. Surprisingly, while the region just above the K threshold in Ar was the subject of several theoretical studies using multi-configuration calculations, we find good agreement between our results and those of Dyall and collaborators using a shake model.

  8. Negative Ion Photoelectron Spectra of Halomethyl Anions

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2009-06-01

    Halomethyl anions undergo a significant geometry change upon electron photodetachment, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce the experimental data using physically reasonable parameters. A three-dimensional anharmonic coupled-mode analysis was employed to accurately reproduce the observed vibrational structure. We present the 364 nm negative ion photoelectron spectra of the halomethyl anions CHX_2^- and CDX_2^- (X = Cl, Br, I) and report electron affinities, vibrational frequencies, and geometries.

  9. Quantum optimal control of photoelectron spectra and angular distributions

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-01-01

    Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.

  10. Carbon 1s photoelectron spectrum of methane: Vibrational excitation and core-hole lifetime

    NASA Astrophysics Data System (ADS)

    Carroll, T. X.; Berrah, N.; Bozek, J.; Hahne, J.; Kukk, E.; Sæthre, L. J.; Thomas, T. D.

    1999-05-01

    The carbon 1s photoelectron spectrum has been measured for CH4 at photon energies of 302, 320, and 330 eV and for CD4 at 330 eV with an instrumental resolution about half the natural linewidth. These spectra have been analyzed to obtain vibrational spacings, vibrational intensities, and the lifetime of the carbon 1s core-hole state. The vibrational intensities vary with photon energy, in agreement with earlier results. At 330 eV, the observed Franck-Condon factors for both CH4 and CD4 can be understood only if anharmonic effects (consistent with the predictions of theory) are included. On the other hand, the vibrational spacings in CH4 show no evidence for anharmonicity (in contrast with theoretical predictions). In CD4 the observed anharmonicity in the vibrational energy spacings is about half of the predicted value, but the experimental and theoretical values differ only by an amount comparable to the experimental uncertainty. The measured values of the lifetime show a dependence on photon energy; this is attributed to failure of the theory of post-collision interaction to predict correctly the observed electron spectrum near threshold. At 330 eV, the measured Lorentzian lifetime, 93-95 meV, agrees with predictions of simple theory, but not with the prediction of more complete theory. It is also observed that there are systematic discrepancies between the observed line shapes and those predicted by the theory of postcollision interaction.

  11. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    SciTech Connect

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A.; Antonsson, E.; Neville, J. J.; Miron, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  12. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    NASA Astrophysics Data System (ADS)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A.; Antonsson, E.; Neville, J. J.; Miron, C.

    2015-09-01

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters' surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  13. C1s and O1s gas phase shake-up spectra from Mo(CO) 6

    NASA Astrophysics Data System (ADS)

    Bustad, J.; Enkvist, C.; Lunell, S.; Tillborg, H.; Nilsson, A.; Osborne, S.; Sandell, A.; Mårtensson, N.; Svensson, S.

    1994-02-01

    Experimental high-resolution core photoelectron C1s and O1s shake-up spectra of molybdenum hexacarbonyl, MO(CO) 6, are reported and compared with results of semiempirical INDO/CI calculations. Several hitherto unobserved peaks are identified and assigned. It is found that an intra- and inter-group classification can be used to describe the transitions. The transitions of lowest energy have Mo-CO inter-group character. Dynamical effects on the line widths of the experimental shake-up peaks are discussed. A discussion of the relevance of experimental results obtained for the MO(CO) 6 molecule for CO adsorption on metal surfaces is presented.

  14. Spectroscopic studies of superconductors. Part B: Tunneling, photoelectron, and other spectra

    SciTech Connect

    Bozovic, I.; Marel, D. van der

    1996-12-31

    Part B is divided into the following sections: (1) tunneling, photoelectron, and other spectra; (2) tunneling spectra: theoretical studies; (3) photoelectron spectra; and (4) other spectra (XAFS, RBS, ESR, Moessbauer, thermoreflectance, etc.). Separate abstracts were prepared for most papers in this volume.

  15. On the analysis of photo-electron spectra

    SciTech Connect

    Gao, C.-Z.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-09-15

    We analyze Photo-Electron Spectra (PES) for a variety of excitation mechanisms from a simple mono-frequency laser pulse to involved combination of pulses as used, e.g., in attosecond experiments. In the case of simple pulses, the peaks in PES reflect the occupied single-particle levels in combination with the given laser frequency. This usual, simple rule may badly fail in the case of excitation pulses with mixed frequencies and if resonant modes of the system are significantly excited. We thus develop an extension of the usual rule to cover all possible excitation scenarios, including mixed frequencies in the attosecond regime. We find that the spectral distributions of dipole, monopole and quadrupole power for the given excitation taken together and properly shifted by the single-particle energies provide a pertinent picture of the PES in all situations. This leads to the derivation of a generalized relation allowing to understand photo-electron yields even in complex experimental setups.

  16. Autoionizing resonance profiles in the photoelectron spectra of atomic cadmium

    NASA Astrophysics Data System (ADS)

    Kobrin, P. H.; Becker, U.; Southworth, S.; Truesdale, C. M.; Lindle, D. W.; Shirley, D. A.

    1982-08-01

    Photoelectron spectra have been taken of atomic Cd with synchrotron radiation between 19 and 27 eV using the double-angle time-of-flight method. Dramatically different energy dependences of the partial cross sections for producing the lowest 2D52, 2D32, 2S12, and 2P32,12 ionic states of Cd+ were observed for photon energies in the neighborhood of the [ 4d9(5s 5p 3P)]2P326s 1P1 autoionizing resonance at 588 Å. Partial decay widths from the excited resonance state have been determined by fitting the resonance line shapes to theoretical expressions for the partial cross sections. Resonance profiles in the photoelectron angular-distribution asymmetry parameter for the 2D52 and 2D32 channels are also reported. The 2P32,12 satellite is found to decrease slightly relative to the 2S12 main line in the 19-25-eV range. Three new satellite peaks have been detected with intensities enhanced by autoionization.

  17. Off-resonance photoemission dynamics studied by recoil frame F1s and C1s photoelectron angular distributions of CH{sub 3}F

    SciTech Connect

    Stener, M. Decleva, P.; Mizuno, T.; Yagishita, A.; Yoshida, H.

    2014-01-28

    F1s and C1s photoelectron angular distributions are considered for CH{sub 3}F, a molecule which does not support any shape resonance. In spite of the absence of features in the photoionization cross section profile, the recoil frame photoelectron angular distributions (RFPADs) exhibits dramatic changes depending on both the photoelectron energy and polarization geometry. Time-dependent density functional theory calculations are also given to rationalize the photoionization dynamics. The RFPADs have been compared with the theoretical calculations, in order to assess the accuracy of the theoretical method and rationalize the experimental findings. The effect of finite acceptance angles for both ionic fragments and photoelectrons has been included in the calculations, as well as the effect of rotational averaging around the fragmentation axis. Excellent agreement between theory and experiment is obtained, confirming the good quality of the calculated dynamical quantities (dipole moments and phase shifts)

  18. Selectivity in Ketenimine Cycloadditions. Photoelectron Hel Spectra of Ketenimines

    NASA Astrophysics Data System (ADS)

    Bernardi, Fernando; Bottoni, Andrea; Ballaglia, Arturo; Distefano, Giuseppe; Dondoni, Alessandro

    1980-05-01

    The first few bands in the photoelectron (Hel) spectra of ketenimines R1R2C-C=NR3(R1,R2=H, CH3, C5H6, CH2=CH; R3=alkyl or aryl group) are assigned to the corresponding molecular orbitals. The assignment is based on SCF-MO calculations made at three different levels (CNDO/2, ab-initio STO-3C and 4-31G) coupled with perturbational molecular orbital analyses. The π-orbitals of the unsaturated substituents are found to interact with one of the two perpendicular π-electron systems of the>C=C=N- residue, the critical factor being the position of attack of the substituent. The relevance of these results on the site selectivity observed in cycloaddition reactions of these species is discussed.

  19. Carbon 1s photoelectron spectroscopy of CF4 and CO: Search for chemical effects on the carbon 1s hole-state lifetime

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas X.; Borve, Knut J.; Saethre, Leif J.; Bozek, John D.; Kukk, Edwin; Hahne, Jeffrey A.; Thomas, T. Darrah

    2002-06-01

    Carbon 1s photoelectron spectra for CF4 and CO have been measured at several photon energies near the carbon 1s threshold. The spectra have been analyzed in terms of the vibrational structure and the natural linewidth. For CO the vibrational structure shows evidence for anharmonicity in both the energy spacing and the intensity. Analysis of the results using an anharmonic model gives an equilibrium bond length for core-ionized CO that is 4.85 pm shorter than that of neutral CO. For CF4, the vibrational structure is very weak, and the analysis shows that the change in equilibrium CF bond length upon ionization is no more than 0.54 pm. Ab initio theoretical calculations give results in accord with these bond-length changes. The unusually small bond-length contraction in CF4 can be understood in terms of nonbonded fluorine-fluorine repulsion. The natural linewidth for core-ionized CO, 95plus-or-minus5 meV, is essentially the same as that of CH4. This result is in contrast with expectations based on the one-center model of Auger decay and earlier predictions based on semiempirical molecular orbital theory. More recent calculations indicate, however, that there is only a small difference between CO and CH4, in agreement with the observed result. For CF4, the natural linewidth is 77plus-or-minus6 meV. This value differs from that for CH4 in the direction expected from the electronegativities of hydrogen and fluorine, but is greater than the prediction based on semiempirical theory. The natural linewidth for CO with a carbon 1s electron excited to the 2pi resonance is 83 meV, which is significantly less than is found for core-ionized CO. Although this difference is supported by theoretical calculations, the direction of the difference is counterintuitive. An overview is presented of the current state of experimental and theoretical knowledge on carbon 1s linewidths.

  20. Calculated photoelectron pitch angle and energy spectra. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Mantas, G. P.; Bowhill, S. A.

    1974-01-01

    Calculations of the steady-state photoelectron energy and angular distribution in the altitude region between 120 and 1000 km are presented. The distribution is found to be isotropic at all altitudes below 250 km, while above this altitude anisotropies in both pitch angle and energy are found. The isotropy found in the angular distribution below 250 km implies that photoelectron transport below 250 km is insignificant, while the angular anisotropy found above this altitude implies a net photoelectron current in the upward direction. The energy anisotropy above 500 km arises from the selective backscattering of the low energy photoelectron population of the upward flux component by Coulomb collisions with the ambient ions. The total photoelectron flux attains its maximum value between about 40 and 70 km above the altitude at which the photoelectron production rate is maximum. The displacement of the maximum of the equilibrium flux is attributed to an increasing (with altitude) photoelectron lifetime. Photoelectrons at altitudes above that where the flux is maximum are on the average more energetic than those below that altitude.

  1. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  2. Vibrationally resolved molecular-frame angular distribution of O 1s photoelectrons from CO{sub 2} molecules

    SciTech Connect

    Saito, N.; Morishita, Y.; Suzuki, I.H.; Liu, X-J.; Pruemper, G.; Ueda, K.; Machida, M.; Oura, M.; Yamaoka, H.; Tamenori, Y.; Koyano, I.

    2005-10-15

    Vibrationally resolved O 1s photoelectron angular distributions from CO{sub 2} molecules, aligned parallel and perpendicular to the electric vector of the incident light, have been measured in the 5{sigma}{sub g}* shape resonance region, with photon energies up to 2 eV above the O 1s ionization threshold, using multiple-coincidence electron-ion momentum imaging spectroscopy. The angular distributions depend on the vibrational quanta of the antisymmetric vibrations in the O 1s ionized state but do not vary significantly as a function of the photon energy across the 5{sigma}{sub g}* shape resonance.

  3. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  4. Comparison of hard and soft x-ray photoelectron spectra of silicon

    NASA Astrophysics Data System (ADS)

    Offi, F.; Werner, W. S. M.; Sacchi, M.; Torelli, P.; Cautero, M.; Cautero, G.; Fondacaro, A.; Huotari, S.; Monaco, G.; Paolicelli, G.; Smekal, W.; Stefani, G.; Panaccione, G.

    2007-08-01

    A detailed comparison of the surface sensitivity of x-ray photoemission spectroscopy for hard and soft x rays is presented and discussed. Electron scattering parameters and their energy dependence are given for Si and two Si spectra are analyzed: a MgKα (hν=1253.6eV) excited spectrum of the Si2p and 2s lines and a hard x-ray excited spectrum (hν=5925eV) of the Si1s line. The differential inelastic scattering characteristics for Si are extracted from reflection electron energy loss spectra taken at energies of 1500 and 4000eV . Using these scattering characteristics and electron mean free paths from the literature, simulated spectra are compared with experiment. The experimental spectra are deconvoluted to give the true intrinsic line shape corresponding to the theoretical collision statistics when interference effects between intrinsic and extrinsic scattering are neglected. The magnitude of interference effects cannot be assessed by our analysis. Within the (unknown) uncertainty introduced by neglecting interference effects, it is possible to determine the relative intensity of intrinsic and extrinsic excitations. In this way, it is found that in the case of the soft x-ray excited photoelectron spectrum of the shallower electronic shells ( 2p and 2s ), intrinsic plasmon creation is rather weak, and the apparent asymmetric line shape of the spectrum might be interpreted as the fact that electron-hole pair creation dominates the intrinsic loss spectrum, while an alternative explanation in terms of surface core level shifted components is also proposed. For the deeper core electronic shell, probed with hard x rays, the opposite situation is observed: while intrinsic electron-hole pair creation was not observed, a strong contribution of intrinsic plasmon losses of about 30% was seen.

  5. Post-collision-interaction distortion of low-energy photoelectron spectra associated with double Auger decay

    SciTech Connect

    Gerchikov, L.; Sheinerman, S.

    2011-08-15

    Atomic inner-shell photoionization followed by double Auger decay is investigated. The focus of our study is the effect of post-collision interaction (PCI) on the photoelectron energy distribution. A semi-classical approach is employed to describe the PCI distortion of the photoelectron line shapes associated with both direct and cascade double Auger decays. This approach is shown to be valid at low photoelectron energies, whereas for large incident photon energies it reduces to the eikonal approximation. The theory is applied to the case of Ar 2p photoionization spectra and good agreement with available experimental data is achieved.

  6. Theoretical study of asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    SciTech Connect

    Rescigno, Thomas N; Miyabe, S.; McCurdy, C.W.; Orel, A.E.

    2009-02-18

    We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO2, and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO^+and O^+ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO2^++ dication that is likely populated following Auger decay and which leads to O^+ + CO^+ fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions.

  7. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil

    NASA Astrophysics Data System (ADS)

    Ruckenbauer, Matthias; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-02-01

    Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine π system. The excited-state photoelectron spectra of 2-thiouracil show bands at much lower energies than in the ground state spectrum, allowing to monitor the excited-state population in time-resolved UV photoelectron spectroscopy experiments. However, the results also reveal that single-photon ionization probe schemes alone will not allow monitoring all photodynamic processes existing in 2-thiouracil. Especially, due to overlapping bands of singlet and triplet states the clear observation of intersystem crossing will be hampered.

  8. Photoelectron spectra of dihalomethyl anions: Testing the limits of normal mode analysis

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2011-05-01

    We report the 364-nm negative ion photoelectron spectra of CHX2- and CDX2-, where X = Cl, Br, and I. The pyramidal dihalomethyl anions undergo a large geometry change upon electron photodetachment to become nearly planar, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce qualitatively the experimental data using physically reasonable parameters. Specifically, the harmonic normal mode analysis using Cartesian displacement coordinates results in much more C-H stretch excitation than is observed, leading to a simulated photoelectron spectrum that is much broader than that which is seen experimentally. A (2 + 1)-dimensional anharmonic coupled-mode analysis much better reproduces the observed vibrational structure. We obtain an estimate of the adiabatic electron affinity of each dihalomethyl radical studied. The electron affinity of CHCl2 and CDCl2 is 1.3(2) eV, of CHBr2 and CDBr2 is 1.9(2) eV, and of CHI2 and CDI2 is 1.9(2) eV. Analysis of the experimental spectra illustrates the limits of the conventional normal mode approach and shows the type of analysis required for substantial geometry changes when multiple modes are active upon photodetachment.

  9. Photoelectrons as a tool to evaluate solar EUV and XUV model irradiance spectra

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Woods, T. N.; Fontenla, J. M.; Richards, P. G.; Tobiska, W.; Solomon, S. C.; Warren, J.

    2011-12-01

    Solar radiation below 50 nm produces a substantial portion of the F region ionization and most of the E region ionization that drives chemical reactions in the thermosphere. At times before the launch of the SDO spacecraft there is a lack of high temporal and spectral resolution Solar EUV and XUV observations, particularly below 27 nm. To address the space data various solar irradiance models have been developed. We have developed a technique to use observations of escaping photoelectron fluxes from the FAST satellite and two different photoelectron production codes driven by model solar irradiance values to systematically examine differences between observed and calculated escaping photoelectron fluxes. We have compared modeled and observed photoelectron fluxes for the interval from September 14, 2006 to January 1, 2007. This is an interval included ~ 4 solar rotations and is characterized by modest solar and geomagnetic activity. Solar irradiance models included TIMED/SEE data, which is derived from a model below 27 nm, and the FISM Version 1, the SRPM predictive model based on solar observation, HEUVAC, S2000, and NRL, solar irradiance models. We used the GLOW and FLIP photoelectron production codes. Here we focus on the differences between solar irradiance models and small differences between photoelectron production code outputs using the same solar irradiance spectra over this time period.

  10. Theoretical study of asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO{sub 2}

    SciTech Connect

    Miyabe, S.; McCurdy, C. W.; Orel, A. E.; Rescigno, T. N.

    2009-05-15

    We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO{sub 2}{sup 2+} dication that is likely populated following Auger decay and which leads to O{sup +}+CO{sup +} fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions.

  11. High-resolution photoelectron spectra of the pyrimidine-type nucleobases

    SciTech Connect

    Fulfer, K. D.; Hardy, D.; Poliakoff, E. D.; Aguilar, A. A.

    2015-06-14

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  12. N-derived signals in the x-ray photoelectron spectra of N-doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Yu, Y. P.; Xing, X. J.; Xu, L. M.; Wu, S. X.; Li, S. W.

    2009-06-01

    The plasma-assisted molecular beam epitaxial anatase TiO2-xNx (x <0.3) films were chosen to investigate the N-derived variation in the x-ray photoelectron spectroscopy (XPS). With increasing nitrogen concentration, the small chemical shift and the shoulder of the main peak emerge in the N 1s, O 1s, or Ti 2p3/2 core level spectra. In combination with the experimental results obtained from x-ray diffraction and atomic force microscopy, the variations in the spectra could be ascribed to the microstructural distortion. This distortion, induced by the N3- substitution for lattice O2-, could slightly decrease the average ionicity of the Ti-O (or N) bonds. In addition, the other N 1s features (at 399.8 and 401.8 eV) and the oxygen vacancy are also discussed. For the N-doped TiO2, this work introduces a correlation between the microstructural properties and the XPS signals.

  13. First principles study of photoelectron spectra of Cu{sub {ital n}}{sup {minus}} clusters

    SciTech Connect

    Massobrio, C.; Pasquarello, A.; Car, R.

    1995-09-11

    We have determined equilibrium geometries and electronic properties of neutral and anionic Cu{sub {ital n}} ({ital n}=2,9) clusters by means of first principles calculations in which {ital s} and {ital d} electrons are treated on equal footing. We find that the calculated electronic density of states is inadequate to interpret photoelectron spectra of Cu{sub {ital n}}{sup {minus}} clusters. We obtain good agreement between calculated excitation energies and experimental spectra when we include final states effects.

  14. A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra.

    PubMed

    Gavrielides, A; Duguet, T; Esvan, J; Lacaze-Dufaure, C; Bagus, P S

    2016-08-21

    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accurate values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies-by the ΔSCF method-and relative intensities-in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers. PMID:27544119

  15. Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Le, Anh-Thu; Morishita, Toru; Lin, C. D.

    2009-03-01

    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schrödinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.

  16. Electron-momentum distributions and photoelectron spectra of atoms driven by an intense spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Shaaran, T.; Roso, L.; Lewenstein, M.

    2013-06-01

    We use the three-dimensional time-dependent Schrödinger equation (3 D-TDSE) to calculate angular electron momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at surfaces of metallic nanoparticles, nanotips, and gold bow-tie shaped nanostructures. Our studies show that the inhomogeneity of the laser electric field plays an important role on the above-threshold ionization process in the tunneling regime, causing significant modifications on the electron momentum distributions and photoelectron spectra, while its effects in the multiphoton regime appear to be negligible. Indeed, through the tunneling above-threshold ionization (ATI) process, one can obtain higher energy electrons as well as a high degree of asymmetry in the momentum space map. In this study we consider near infrared laser fields with intensities in the mid- 1014 W/cm2 range and we use a linear approximation to describe their spatial dependence. We show that in this case it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are fully supported by their classical counterparts.

  17. Lone-pair interactions in the photoelectron spectra of dicarboxylic acids: malonic acid and its α-alkyl derivatives

    NASA Astrophysics Data System (ADS)

    Ajò, D.; Ciliberto, E.; Fragalà, I.; Granozzi, G.

    1980-02-01

    Photoelectron spectra of malonic, methylmalonic and diethylmalonic acids are reported. The energy splitting of photoelectron bands representing carbonyl oxygen lone pairs is due to a "through-bond" interaction mechanism. The magnitude of the splitting depends upon the α-alkyl substitution because of conformational effects.

  18. On helium-like 1s2l-1snl prime transitions in solar flare spectra

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Neupert, W. M.; Swartz, M.

    1974-01-01

    Expected wavelengths and intensities are computed for 1s2l-1snl prime transitions in helium-like ions of the abundant elements from oxygen to iron under coronal conditions. Probable observations of some of these lines in the spectra of solar flares are discussed, and attention is called to a possible reversal of singlet and triplet intensities as compared to laboratory observations.

  19. Imaging plasmonic fields near gold nanospheres in attosecond time-resolved streaked photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Thumm, Uwe

    2016-05-01

    To study time-resolved photoemission from gold nanospheres, we introduce a quantum-mechanical approach, including the plasmonic near-field-enhancement of the streaking field at the surface of the nanosphere. We use Mie theory to calculate the plasmonically enhanced fields near 10 to 200 nm gold nanospheres, driven by incident near infrared (NIR) or visible laser pulses. We model the gold conduction band in terms of a spherical square well potential. Our simulated streaked photoelectron spectra reveal a plasmonic amplitude enhancement and phase shift related to calculations that exclude the induced plasmonic field. The phase shift is due to the plasma resonance. This suggests the use of streaked photoelectron spectroscopy for imaging the dielectric response and plasmonic field near nanoparticles. Supported by the NSD-EPSCoR program, NSF, and the USDoE.

  20. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Borisenko, Aleksandr V.

    2016-07-01

    The electronic structure of the valence levels of seven nitrogen-containing boron complexes was investigated using methods of ultraviolet photoelectron spectroscopy and density functional theory. The ionization energies of π- and σ-levels were obtained from photoelectron spectra. The electronic structure of nitrogen-containing compounds was compared with the electronic structure of β-diketonates. It was shown the influence of various substituents on carbon and nitrogen atoms of six-membered ring on the electronic structure of complexes. The changes in the electronic structure after the substitution of atoms in condensed cycles have been identified. In order to compare the experimental vertical ionization energies IEi with Kohn-Sham orbital energies εi we used the analogue of Koopmans theorem and average amendment to the orbital energy of the electrons (δbari). For 26 electronic levels of seven studied complexes, the calculated values are in good accordance with experimental energy intervals between electron levels.

  1. Few-femtosecond sensitivity of ultrafast molecular dynamics with time-resolved photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Champenois, Elio G.; Cryan, James P.; Larsen, Kirk; Shivaram, Niranjan H.; Belkacem, Ali

    2016-05-01

    We explore ultrafast dynamics involving non-adiabatic couplings following valence electronic excitation of small molecular systems. By measuring the time-resolved photoelectron spectra (TRPES) resulting from ionization with ultraviolet light, the excited wave packet can be tracked with state specificity. If the nuclear motion is dominated by a limited number of degrees of freedom, the TRPES also yields information about the molecular geometry. Even with limited temporal resolution, the onset times of the signal at different photoelectron energies can lead to few-femtosecond sensitivity. Applying this technique to ethylene (C2 H4) excited to the ππ* state, ultrafast motion along the twist coordinate is observed along with transient population to the π 3 s state through non-adiabatic coupling. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Divison under Contract No. DE-AC02-05CH11231.

  2. Vibrationally resolved O 1s core-excitation spectra of CO and NO

    SciTech Connect

    Puettner, R.; Domke, M.; Kaindl, G.; Dominguez, I.; Rotenberg, E.; Warwick, T.; Schlachter, A.S.; Morgan, T.J.; Cisneros, C.; Fink, R.F.

    1999-05-01

    High-resolution photoabsorption spectra of CO and NO below the O 1s ionization threshold are presented. The vibrational fine structure of the O 1s{r_arrow}{pi}{sup {asterisk}} and O 1s{sup {minus}1} Rydberg excitations could be resolved for both molecules, allowing a determination of the vibrational energies and intramolecular distances of the core-excitation states in CO and NO from Franck-Condon analyses. {ital Ab initio} calculations are performed for the O 1s{r_arrow}{pi}{sup {asterisk}} excitation in CO to give an independent confirmation of the spectroscopic parameters derived from the Franck-Condon analysis. The spectral features of the O 1s{sup {minus}1} Rydberg region in CO are reassigned on the basis of the experimental results. The results obtained for the O 1s{sup {minus}1}3s Rydberg state in NO support the idea of a weakening of the molecular bond upon an O 1s{sup {minus}1} ionization process. thinsp thinsp {copyright} {ital 1999} {ital The American Physical Society}

  3. Photoelectron spectra of some important biological molecules: symmetry-adapted-cluster configuration interaction study.

    PubMed

    Farrokhpour, Hossein; Ghandehari, Maryam

    2013-05-23

    In this work, the valence vertical ionization energies (up to 5) of some important biologically active molecules including 2,4-dinitrophenol, 2,4-dinitroanisole, nicotinic acid, nicotinic acid methyl ester, nicotinamide, N,N-diethylnicotinamide, barbituric acid, uric acid, cytosine, β-carotene, and menadione were calculated in the gas phase and compared with the experimental data reported in the literature. The symmetry-adapted-cluster configuration interaction (SAC-CI) general-R method was used to calculate the ionization energies. The intensity of each ionization band was evaluated using the monopole approximation. Comparison of the calculated photoelectron spectrum of each molecule with its corresponding experimental spectra allowed for assigning the photoelectron bands by natural bonding orbital (NBO) calculations even though some of the associated bands were significantly overlapped for some molecules. Among the considered molecules, there was no agreement between the experimental and calculated photoelectron spectrum of β-carotene. The reason for this disagreement was theoretically investigated and attributed to the degradation and decomposition of β-carotene. The calculated first ionization energies of the considered molecules were correlated with their Hückel k-index to obtain Coulomb (α) and resonance (β) integrals of the Hückel molecular orbital theory for the biomolecules considered in this study. A linear correlation was found between the first ionization energy and the Hückel k-index. PMID:23659524

  4. Simulation of time resolved photoelectron spectra with Stieltjes imaging illustrated on ultrafast internal conversion in pyrazine

    NASA Astrophysics Data System (ADS)

    Werner, Ute; Mitrić, Roland; Bonačić-Koutecký, Vlasta

    2010-05-01

    We present an approach for the simulation of time resolved photoelectron spectra based on the combination of the ab initio nonadiabatic molecular dynamics "on the fly" with the Stieltjes imaging method utilizing discrete neutral states above the ionization limit for the approximate description of the ionization continuum. Our approach has been implemented in the framework of the time-dependent density functional theory and has been applied to interrogate the ultrafast internal conversion between the S2 and S1 states in pyrazine. The simulations reveal that, parallel to the S2→S1 internal conversion, a change in the dominant ionization process (S2→D1 versus S1→D0) occurs on the time scale of 20 fs such that no significant change in the photoelectron kinetic energy distribution is observed. The presented results are in full agreement with the experimental results presented in the accompanying paper [Suzuki et al., J. Chem. Phys. 132, 174302 (2010)] and provide an insight into the interplay between the nonradiative relaxation and the photoionization process in pyrazine as reflected in the time resolved photoelectron spectrum. Our approach represents a general tool for the investigation of ultrafast photoionization processes in complex systems and thus can be used to investigate the ultrafast femtochemistry of complex molecular systems including all degrees of freedom.

  5. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    SciTech Connect

    Grell, Gilbert; Bokarev, Sergey I. Kühn, Oliver; Winter, Bernd; Seidel, Robert; Aziz, Emad F.; Aziz, Saadullah G.

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  6. Valence photoelectron spectra of an electron-beam-irradiated C{sub 60} film

    SciTech Connect

    Onoe, Jun; Nakao, Aiko; Hida, Akira

    2004-10-04

    Valence photoelectron spectra of an electron-beam (EB) irradiated C{sub 60} film, which exhibited metallic electron-transport properties in air at room temperature, are presented. The electronic structure of the C{sub 60} film became closer to that of graphite as the EB-irradiation time increased, and its density of states around the Fermi level was eventually greater than for the graphite. This suggests that the electronic structure of the C{sub 60} film changed from a semiconductor to a semimetal and/or metal by EB irradiation. Interestingly, the electronic structure remained metallic even after five days of air exposure, which is the reason for the metallic electron-transport property in our previous report [Appl. Phys. Lett. 82, 595 (2003)].

  7. Theoretical study of IR and photoelectron spectra of small gallium-arsenide clusters

    SciTech Connect

    Pouchan, Claude; Marchal, Rémi; Hayashi, Shinsuke

    2015-01-22

    Relative stabilities of small Ga{sub n}As{sub m} clusters, as well as their structural electronic and vibrational properties, were computed and analysed using a CCSD(T) reference method since experimental data in this area are sparse or unknown. With the aim of investigating larger clusters, we explored several DFT functionals and basis sets able to mimic the reliable CCSD(T) approach. Among them, the PBE0/SBKJC+sp,d appears as the most efficient to describe the structural and vibrational properties since average differences of about 0.042Å and 5.1cm{sup −1} were obtained for bond lengths and fundamental vibrational frequencies, respectively for the first small clusters [1] of the series found from our GSAM method [2]. As further test, this model is used in order to investigate and revisit an experimental IR spectrum of Ga{sub n}As{sub m} mixture previously published by Li et al. [3]. More complicated is the difficulty which arises in the electronic description due to the presence of numerous low lying electronic states nearly degenerated to correctly describe the electronic structure. The case of Ga{sub 2}As will be discussed and the photoelectron spectra of the Ga{sub 2}As anion reanalyzed on the ground of our calculations [4] comparatively to the experimental spectra obtained by Neumark and co-workers [5].

  8. On background subtraction for quantitative analysis of X-ray photoelectron spectra of rare earth fluorides

    NASA Astrophysics Data System (ADS)

    Schnellbügel, A.; Anton, R.

    2001-10-01

    The applicability of Tougaard's method of a "universal" form of background correction in photoelectron spectra was investigated for thin films of the wide gap insulators YbF x, DyF x, SmF x, and YF x. These films were produced by ion assisted deposition with varying fluorine content x⩽3, caused by preferential sputtering. For YbF x, in particular, acceptable accuracy was obtained for x⩾2.4 by shifting the universal background function by the band gap energy, while for x<2.4, no reasonable fit of the experimental background could be obtained. More realistic profiles of the inelastic scattering background were calculated on the basis of published fast-electron energy-loss data of DyF 3, which yielded highly accurate quantification of spectra of YbF x in the whole range of x between 2 and 3. This was confirmed by measurements of the intensity ratios of the 4f peaks of Yb 2+ and Yb 3+, representing valence states 2 and 3, respectively, which are directly correlated with the fluorine content. Stoichiometry values from XPS data were compared with Rutherford backscattering analysis and yielded good agreement.

  9. Photoelectron spectra of CeO{sup −} and Ce(OH){sub 2}{sup −}

    SciTech Connect

    Ray, Manisha; Felton, Jeremy A.; Kafader, Jared O.; Topolski, Josey E.; Jarrold, Caroline Chick

    2015-02-14

    The photoelectron spectrum of CeO{sup −} exhibits what appears to be a single predominant electronic transition over an energy range in which numerous close-lying electronic states of CeO neutral are well known. The photoelectron spectrum of Ce(OH){sub 2}{sup −}, a molecule in which the Ce atom shares the same formal oxidation state as the Ce atom in CeO{sup −}, also exhibits what appears to be a single transition. From the spectra, the adiabatic electron affinities of CeO and Ce(OH){sub 2} are determined to be 0.936 ± 0.007 eV and 0.69 ± 0.03 eV, respectively. From the electron affinity of CeO, the CeO{sup −} bond dissociation energy was determined to be 7.7 eV, 0.5 eV lower than the neutral bond dissociation energy. The ground state orbital occupancies of both CeO{sup −} and Ce(OH){sub 2}{sup −} are calculated to have 4f 6s{sup 2} Ce{sup +} superconfigurations, with open-shell states having 4f5d6s superconfiguration predicted to be over 1 eV higher in energy. Low-intensity transitions observed at higher electron binding energies in the spectrum of CeO{sup −} are tentatively assigned to the {sup 1}Σ{sup +} (Ω = 0) state of CeO with the Ce{sup +2}⍰6s{sup 2} superconfiguration.

  10. Frequency-resolved photoelectron spectra of two-photon ionization of He by an attosecond pulse train

    NASA Astrophysics Data System (ADS)

    Benis, E. P.; Tzallas, P.; Nikolopoulos, L. A. A.; Kovacev, M.; Kalpouzos, C.; Charalambidis, D.; Tsakiris, G. D.

    2006-06-01

    We present measured and calculated energy-resolved photoelectron spectra obtained through two-photon ionization of He induced by a superposition from the 9th to the 15th harmonic of a Ti:Sapph laser forming an attosecond (asec) pulse train. The reported measured spectra are a decisive step towards frequency-resolved two-XUV-photon ionization-based second-order autocorrelation (AC) of asec pulse trains, and thus towards a complete reconstruction of asec pulses.

  11. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  12. X-ray photoelectron spectra structure and chemical bond nature in NpO2

    NASA Astrophysics Data System (ADS)

    Teterin, Yu. A.; Teterin, A. Yu.; Ivanov, K. E.; Ryzhkov, M. V.; Maslakov, K. I.; Kalmykov, St. N.; Petrov, V. G.; Enina, D. A.

    2014-01-01

    Quantitative analysis was done of the x-ray photoelectron spectra structure in the binding energy (BE) range of 0 to ˜35 eV for neptunium dioxide (NpO2) valence electrons. The BEs and structure of the core electronic shells (˜35-1250 eV) as well as the relativistic discrete variation calculation results for the finite fragment of the NpO2 lattice and the data of other authors were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-˜15 eV) and the inner (˜15-˜35 eV) valence molecular orbitals (OVMO and IVMO, respectively). The filled Np 5f electronic states were shown to form in the NpO2 valence band. The Np 6p electrons participate in formation of both the IVMO and the OVMO (bands). The filled Np 6p3/2 and the O 2s electronic shells were found to take the maximum part in the IVMO formation. The MO composition and the sequence order in the BE range 0-˜35 eV in NpO2 were established. The experimental and theoretical data allowed a quantitative MO scheme for NpO2, which is fundamental for both understanding the chemical bond nature in neptunium dioxide and the interpretation of other x-ray spectra of NpO2.

  13. Above-threshold ionization and photoelectron spectra in atomic systems driven by strong laser fields

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Ciappina, Marcelo F.; Biegert, Jens; Lewenstein, Maciej

    2015-12-01

    Above-threshold ionization (ATI) results from strong-field laser-matter interaction and it is one of the fundamental processes that may be used to extract electron structural and dynamical information about the atomic or molecular target. Moreover, it can also be used to characterize the laser field itself. Here we develop an analytical description of ATI, which extends the theoretical strong-field approximation (SFA), for both the direct and rescattering transition amplitudes in atoms. From a nonlocal, but separable potential, the bound-free dipole and the rescattering transition matrix elements are analytically computed. In comparison with the standard approaches to the ATI process, our analytical derivation of the rescattering matrix elements allows us to study directly how the rescattering process depends on the atomic target and laser-pulse features; we can turn on and off contributions having different physical origins or corresponding to different physical mechanisms. We compare SFA results with the full numerical solutions of the time-dependent Schrödinger equation (TDSE) within the few-cycle pulse regime. Good agreement between our SFA and TDSE model is found for the ATI spectrum. Our model captures also the strong dependence of the photoelectron spectra on the carrier envelope phase of the laser field.

  14. Assignment of photoelectron spectra of halide-water clusters: Contrasting patterns of delocalization in Dyson orbitals

    NASA Astrophysics Data System (ADS)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2013-04-01

    Ab initio electron propagator calculations in various self-energy approximations provide accurate assignments of peaks observed in the photoelectron spectra of complexes that comprise a fluoride or chloride anion and two or three water molecules. More than one minimum structure is found in all four cases. When the halide anion is Cl-, the first three final states may be described as quasi-degenerate 2P chlorine atoms coordinated to water molecules. Higher final states consist of a chloride anion juxtaposed to a positive charge that is delocalized over the water molecules. For the clusters with fluoride anions, most of the final states correspond to Dyson orbitals that are delocalized over the F and O nuclei. A variety of F-O σ and π bonding and antibonding patterns are evident in the Dyson orbitals. The assignment of low-lying spectral peaks to halide p orbital vacancies or to delocalized solvent orbitals is more valid for the chloride clusters than for the fluoride clusters, where a delocalized picture arises from strong bonding interactions between F 2p and H2O 1b1 orbitals.

  15. Vibrationally high-resolved electronic spectra of MCl2 (M=C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2(.).

    PubMed

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. PMID:27280730

  16. The C 1s and N 1s near edge x-ray absorption fine structure spectra of five azabenzenes in the gas phase.

    PubMed

    Vall-llosera, G; Gao, B; Kivimäki, A; Coreno, M; Alvarez Ruiz, J; de Simone, M; Agren, H; Rachlew, E

    2008-01-28

    Near edge x-ray absorption fine structure spectra have been measured and interpreted by means of density functional theory for five different azabenzenes (pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine) in the gas phase. The experimental and theoretical spectra at the N 1s and C 1s edges show a strong resonance assigned to the transition of the 1s electron in the respective N or C atoms to the lowest unoccupied molecular orbital with pi(*) symmetry. As opposed to the N 1s edge, at the C 1s edge this resonance is split due to the different environments of the core hole atom in the molecule. The shift in atomic core-level energy due to a specific chemical environment is explained with the higher electronegativity of the N atom compared to the C atom. The remaining resonances below the ionization potential (IP) are assigned to sigma or pi [corrected] orbitals with mixed valence/Rydberg [corrected] character. Upon N addition, a reduction of intensity is observed in the Rydberg region at both edges as compared to the intensity in the continuum. Above the IP one or more resonances are seen and ascribed here to transitions to sigma(*) orbitals. Calculating the experimental and theoretical Delta(pi) term values at both edges, we observe that they are almost the same within +/-1 eV as expected for isoelectronic bonded pairs. The term values of the pi(*) and sigma(*) resonances are discussed in terms of the total Z number of the atoms participating in the bond. PMID:18247958

  17. On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia.

    PubMed

    Wehrle, Marius; Oberli, Solène; Vaníček, Jiří

    2015-06-01

    We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of floppy molecules, whose potential energy surfaces display strong anharmonicity. We show that despite complications due to the presence of large amplitude motion, the main features of the spectra are captured by the OTF-AI-TGA, which—by definition—does not require any a priori knowledge of the potential energy surface. Moreover, the computed spectra are significantly better than those based on the popular global harmonic approximation. Finally, we probe the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required. PMID:25928833

  18. Role of nuclear dynamics in the Asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO{sub 2}

    SciTech Connect

    Miyabe, Shungo; Haxton, Dan; Rescigno, Tom; McCurdy, Bill

    2010-11-30

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} measured with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  19. Photoelectron energy spectra from elastic rescattering in ultrastrong laser fields: A relativistic extension of the three-step model

    NASA Astrophysics Data System (ADS)

    Luo, S. S.; Grugan, P. D.; Walker, B. C.

    2015-03-01

    Using a relativistic adaptation of a three-step recollision model we calculate photoelectron energy spectra for ionization with elastic scattering in ultrastrong laser fields up to 24 a.u. (2 ×1019 W/cm 2) . Hydrogenlike and noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering beyond 6 ×1016 W/cm 2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 ×1018 W/cm 2, commensurate with the relativistic motion of a classical electron in a single field cycle. The noble gas results are compared with available experiments. The theory approach is well suited to modeling scattering in the ultrastrong intensity regime that lies between traditional strong fields and extreme relativistic interactions.

  20. Measurement of magnetic field aligned potential differences using high resolution conjugate photoelectron energy spectra

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Doering, J. P.; Potemra, T. A.; Bostrom, C. O.; Brace, L. H.; Heelis, R. A.; Hanson, W. B.

    1977-01-01

    Simultaneous high-resolution observations of a distinctive feature in the energy spectrum of conjugate photoelectrons and spacecraft potential relative to the local ionosphere have allowed the net potential difference between magnetic conjugate points at latitudes below the region of low-energy (i.e., lower than 100 eV) auroral electron precipitation to be determined. Measurements made at 300 km from Atmosphere Explorer C show that there is normally no net potential difference between hemispheres in this region, which extended up to invariant latitudes as high as 74 deg. Two types of apparently related anomalous behavior were infrequently observed at high latitudes. During these periods the incident flux of conjugate photoelectrons was either decelerated by about 3 eV or was not detected.

  1. Exploring Ultrafast Molecular Dynamics using Photoelectron Spectra from UV/XUV Pump-Probe Experiments

    NASA Astrophysics Data System (ADS)

    Champenois, Elio; Cryan, James; Shivaram, Niranjan; Wright, Travis; Belkacem, Ali

    2015-05-01

    The motion of atoms in molecules can drive electron dynamics via non-adiabatic couplings. In small molecules such as Ethylene, Carbon Dioxide, and Nitrophenol, this can lead to isomerization, electronic relaxation, or other time-dependent effects following excitation from a bonding to an anti-bonding molecular orbital. To study these mechanisms, we use ultraviolet photons of various energies from a bright High Harmonic Generation source to first initiate dynamics and subsequently probe the system through ionization. We record the kinetic energy and angular distribution of the resultant photoelectrons using a Velocity Map Imaging spectrometer, allowing us to track the evolution of the electronic state.

  2. Vibronic coupling in C60- anion revisited: Derivations from photoelectron spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Iwahara, Naoya; Sato, Tohru; Tanaka, Kazuyoshi; Chibotaru, Liviu F.

    2010-12-01

    The vibronic coupling constants of C60- are derived from the photoelectron spectrum measured by Wang [J. Chem. Phys. 123, 051106 (2005)]10.1063/1.1998787 at low temperature with high resolutions. We find that the couplings of the Jahn-Teller modes of C60- are weaker than the couplings reported by Gunnarsson [Phys. Rev. Lett. 74, 1875 (1995)10.1103/PhysRevLett.74.1875]. The total stabilization energy after hg and ag modes is reduced with respect to the previous derivation of Gunnarsson by 30%. The computed vibronic coupling constants using density-functional theory with B3LYP functional agree well with the new experimental constants, so the discrepancy between theory and experiment persistent in the previous studies is basically solved.

  3. Laser fields at flat interfaces: II. Plasmon resonances in aluminium photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Raşeev, G.

    2012-07-01

    Using the model derived in paper I [G. Raşeev, Eur. Phys. J. D 66, 167 (2012)], this work presents calculations of the photoelectron spectrum (PES) of low index aluminium surfaces in the 10-30 eV region. The laser is p or transverse magnetic linearly polarized incident on a flat structureless surface and its fields are modeled in I using the vector potential in the temporal gauge. This model uses a tensor and non-local isotropic (TNLI) susceptibility and solves the classical Ampère-Maxwell equation through the use of the vector potential from the electron density-coupled integro-differential equations (VPED-CIDE). The PE cross sections are the squares of the PE transition moments calculated using the VPED-CIDE vector potential function of the penetration coordinate. The PES is obtained in a one step model using either the Fermi golden rule or the Weisskopf-Wigner (WW) expressions. The WW cross section PES compares favorably with the experimental angle and energy resolved photoelectron yield (AERPY) spectrum of Levinson et al. [Phys. Rev. Lett. 43, 952 (1979)], Levinson and Plummer [Phys. Rev. B 24, 628 (1981)] for Al(001) and of Barman et al. [Phys. Rev. B 58, R4285 (1998)], Barman [Curr. Sci. 88, 54 (2005)] for Al(111) surfaces. As in the experiment, our theoretical AERPY displays the multipole surface plasmon resonance at 11.32/12.75 eV for Al(001)/Al(111), mainly due to the surface contribution |⟨ψf|p·A|ψi⟩|2, the bulk plasmon minimum at 15 eV and the two single particle excitation resonances at about 16 and 22 eV. The nature of the plasmon resonances of the PES is analyzed using the reflectance, the electron density induced by the laser and Feibelman's parameter d⊥ all introduced in paper I.

  4. Photoelectron spectra and structure of the Mn{sub n}{sup −} anions (n = 2–16)

    SciTech Connect

    Gutsev, G. L. Weatherford, C. A.; Ramachandran, B. R.; Gutsev, L. G.; Zheng, W.-J.; Thomas, O. C.; Bowen, Kit H.

    2015-07-28

    Photoelectron spectra of the Mn{sub n}{sup −} anion clusters (n = 2–16) are obtained by anion photoelectron spectroscopy. The electronic and geometrical structures of the anions are computed using density functional theory with generalized gradient approximation and a basis set of triple-ζ quality. The electronic and geometrical structures of the neutral Mn{sub n} clusters have also been computed to estimate the adiabatic electron affinities. The average absolute difference between the computed and experimental vertical detachment energies of an extra electron is about 0.2 eV. Beginning with n = 6, all lowest total energy states of the Mn{sub n}{sup −} anions are ferrimagnetic with the spin multiplicities which do not exceed 8. The computed ionization energies of the neutral Mn{sub n} clusters are in good agreement with previously obtained experimental data. According to the results of our computations, the binding energies of Mn atoms are nearly independent on the cluster charge for n > 6 and possess prominent peaks at Mn{sub 13} and Mn{sub 13}{sup −} in the neutral and anionic series, respectively. The density of states obtained from the results of our computations for the Mn{sub n}{sup −} anion clusters show the metallic character of the anion electronic structures.

  5. Line shapes and satellites in high-resolution x-ray photoelectron spectra of large pi-conjugated organic molecules.

    PubMed

    Schöll, A; Zou, Y; Jung, M; Schmidt, Th; Fink, R; Umbach, E

    2004-11-22

    We present a high-resolution C1s and O1 s x-ray photoemission (XPS) study for condensed films of pi-conjugated organic molecules, namely, of the anhydrides 3,4,9,10-perylene-tetracarboxylic acid dianhydride, 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 1,8-naphthalene dicarboxylic acid anhydride, and benzoperylene-(1,8)-dicarboxylic acid anhydride as well as the quinoic acenaphthenequinone. Although the functional groups are identical for the anhydrides, the molecules show very different photoemission fine structure thus providing a detailed fingerprint. A simultaneous peak fit analysis of the XPS spectra of all molecules allows to consistently determine the ionization potentials of all chemically different carbon and oxygen atoms. Additional structures in the C1s and O1s spectra are interpreted as shakeup satellites and assigned with the help of singles and doubles configuration interaction calculations. These satellites provide further information on multielectron excitations and must be taken into account for quantitative investigations. PMID:15549902

  6. Calculation of X-ray photoelectron spectra with the use of the normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Klooster, Rob; Broer, Ria; Filatov, Michael

    2012-02-01

    A method for the calculation of X-ray photoelectron spectra (XPS) based on the use of the normalized elimination of the small component (NESC) formalism combined with the restricted active space state interaction (RASSI) approach with atomic mean field integrals (AMFI) is developed. Benchmark calculations carried out for the 4f XPS of U5+show that the NESC/RASSI/AMFI method is capable of reproducing the results of the full 4-component relativistic calculations with excellent accuracy. The NESC/RASSI/AMFI method is applied to study the 4p and 5p XPS of ytterbium phosphide YbP. The results of the calculations suggest an alternative interpretation of the satellite peaks in the 4p XPS of YbP.

  7. Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    The focus of the present article is on understanding the insight that X-ray photoelectron spectroscopy (XPS) measurements can provide when studying self-assembled monolayers. Comparing density functional theory calculations to experimental data on deliberately chosen model systems, we show that both the chemical environment and electrostatic effects arising from a superposition of molecular dipoles influence the measured core-level binding energies to a significant degree. The crucial role of the often overlooked electrostatic effects in polar self-assembled monolayers (SAMs) is unambiguously demonstrated by changing the dipole density through varying the SAM coverage. As a consequence of this effect, care has to be taken when extracting chemical information from the XP spectra of ordered organic adsorbate layers. Our results, furthermore, imply that XPS is a powerful tool for probing local variations in the electrostatic energy in nanoscopic systems, especially in SAMs. PMID:26937264

  8. Intra Atomic Many-Body Effects in P-shell Photoelectron Spectra of Cr3+ Ions

    SciTech Connect

    Ilton, Eugene S.; De Jong, Wibe A.; Bagus, Paul S.

    2003-09-15

    A strict ab initio model of the many body effects for the free Cr3+ ion is developed in order to provide a new benchmark for intra-atomic effects in the XP spectra of Cr3+ compounds. The model contains no empirical fits or assumptions and incorporates all inter and intra shell couplings and recouplings, relativistic orbitals, spin-orbital coupling , the core hole, and Boltzmann weighted averages for initial state spin-orbit split levels. Synthetic Cr2p and 3p XP spectra are compared to an experimental spectrum of a-Cr2O3. The theory for the free Cr ion accounts for important features of the experimental Cr2p spectrum, including the spin-orbital splitting energy and the Cr2p3/2 doublet. In contrast, the theory only accounts for the grossest features of the experimental Cr3p spectrum. Comparing experiment with theory highlights the importance of both intra- and inter atomic effects on the XP spectra of Cr3+ compounds.

  9. The optical spectra of matrix-isolated palladium-nitrogen complexes: An investigation by absorption, emission, and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schrittenlacher, W.; Schroeder, W.; Rotermund, H. H.; Wiggenhauser, H.; Grinter, R.; Kolb, D. M.

    1986-08-01

    The optical spectra of palladium in neon and argon matrices containing up to 100% dinitrogen have been studied. Beside the known bands of isolated Pd atoms new strong bands assigned to weakly bonded Pd(N2)m (m=1, 2) complexes appear. The bands are attributed to three different types of transition. The dominant lines are essentially due to transitions localized at the Pd atom but strongly perturbed by a ``crystal field'' due to the weakly bonded N2 molecules. Secondly, a vibrational progression at lower energies is assigned to a Pd to N2 charge transfer transition and thirdly, at high energies, a vibrational progression assigned to a locally excited state of an N2 molecule perturbed by weak bonding to Pd is observed. No evidence has been found for the presence of Pd(N2)3. Photoelectron spectra of the Pd(N2)m complexes in neon have been observed. The Pd 4d photoemission peak is shifted with respect to the Pd atom in Ne by ˜1.1 eV to higher binding energies.

  10. Indication of single-crystal PuO2 oxidation from O 1s x-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Modin, A.; Yun, Y.; Suzuki, M.-T.; Vegelius, J.; Werme, L.; Nordgren, J.; Oppeneer, P. M.; Butorin, S. M.

    2011-02-01

    The electronic structure of single-crystal PuO2 is studied using O 1s x-ray absorption (XA) and x-ray emission. Interpretation of the experimental data is supported by extensive first-principles calculations on the basis of the densityfunctionaltheory+U approach. The measured XA spectra show a significant difference in intensity for the first two peaks between different spots or areas on the single crystal. Our theoretical simulations show that the first peak, at ~531 eV, can be attributed to O 2p-Pu 5f hybridization, while the second peak, at ~533.4 eV, is due to hybridization of O 2p with Pu d states. The reasons for the observed differences in the O 1s XA spectra are explored by calculating a number of defect structures PuO2±x as well as by simulating the existence of Pu(V) sites. Our results indicate the presence of oxidation states higher than Pu(IV) in some areas of the single crystal. The findings also suggest that plutonium oxide with a Pu fraction in an oxidation state higher than Pu(IV) consists of inequivalent Pu sites with Pu(IV)O2 and Pu(V)O2 rather than representing a system where the Pu oxidation state is constantly fluctuating between Pu(IV) and Pu(V).

  11. Rotationally resolved photoelectron spectra in resonance enhanced multiphoton ionization of HCl via the F 1Δ2 Rydberg state

    NASA Astrophysics Data System (ADS)

    Wang, Kwanghsi; McKoy, V.

    1991-12-01

    Results of studies of rotational ion distributions in the X 2Π3/2 and X 2Π1/2 spin-orbit states of HCl+ resulting from (2+1') resonance enhanced multiphoton ionization (REMPI) via the S(0) branch of the F 1Δ2 Rydberg state are reported and compared with measured threshold-field-ionization zero-kinetic-energy spectra reported recently [K. S. Haber, Y. Jiang, G. Bryant, H. Lefebvre-Brion, and E. R. Grant, Phys. Rev. A (in press)]. These results show comparable intensities for J+=3/2 of the X 2Π3/2 ion and J+=1/2 of the X 2Π1/2 ion. Both transitions require an angular momentum change of ΔN=-1 upon photoionization. To provide further insight into the near-threshold dynamics of this process, we also show rotationally resolved photoelectron angular distributions, alignment of the ion rotational levels, and rotational distributions for the parity components of the ion rotational levels. About 18% population is predicted to occur in the (+) parity component, which would arise from odd partial-wave contributions to the photoelectron matrix element. This behavior is similar to that in (2+1) REMPI via the S(2) branch of the F 1Δ2 state of HBr and was shown to arise from significant l mixing in the electronic continuum due to the nonspherical molecular ion potential. Rotational ion distributions resulting from (2+1) REMPI via the S(10) branch of the F 1Δ2 state are also shown.

  12. Manifestation of auger processes in C1 s-satellite spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M. M.; Pesin, L. A.; Morilova, V. M.; Baitinger, E. M.

    2012-09-01

    Using the equipment of the Russian-German beamline of the synchrotron radiation at the BESSY II electron storage ring, satellite spectra accompanying the C1 s core lines in the cases of single-walled carbon nanotubes and highly ordered pyrolytic graphite have been measured with a high energy resolution. The Auger spectra corresponding to shaking of the valence system of carbon by the core vacancy have been found and investigated. The Auger spectra of the studied single-walled carbon nanotubes and highly ordered pyrolytic graphite are caused by annihilation of the excited π* electron with a hole in the π subband. It has been established that the electron states in the conduction band have 3π* (gT, K, M) symmetry; i.e., they correspond to flat 3π* subband, which is localized by 12-13 eV above the Fermi level. It has been revealed that the general regularities of the distribution of electron states in the valence system insignificantly change during its shake-up by the excited core.

  13. Electronic structure and photoelectron spectra of nickel (II) acetylacetonate and its thio- and amino-substituted analogues

    NASA Astrophysics Data System (ADS)

    Vovna, Vitaliy V.; Korochentsev, Vladimir V.; Komissarov, Aleksandr A.; L'vov, Igor B.; Myshakina, Nataliya S.

    2015-11-01

    Using ultraviolet photoelectron spectroscopy and electron density functional theory (DFT), we investigated the electronic structure of the d8 complex acetylacetonate Ni(a\\scsim a\\scsim)2 and its NH, S and NCH2-substitutes: nickel bis(acetylacetoneiminate) (Ni(acim)2), Ni(Sacac)2 and nickel N,N‧-Ethylene-bis(acetylacetoneiminate) (NiEcim), respectively. Based on the spectral regularities and calculated results for these four compounds, we interpreted the PE spectra to approximate the extended Koopmans' theorem IEi = -ɛi + δi using the δi relationship to the molecular orbital type, which differs substantially from earlier published interpretations. We determined the vertical ionization energies for the four pairs of ligand n- and π-levels and four d-type orbitals for the metal. We further discussed the regularities established both experimentally and theoretically for the influence that substituting S, NH and NCH2- for O exerted on the electronic and spatial structure of the complexes, effective atomic charges and intra-complex coordinate bonds.

  14. Two-center interference in molecular photoelectron energy spectra with intense attosecond circularly polarized XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bian, Xue-Bin; Bandrauk, André D.

    2014-08-01

    We study two-center electron interference in molecular photoionization processes by intense attosecond circularly polarized extreme ultraviolet (XUV) laser pulses in both symmetric H2+ and nonsymmetric HHe2+ one-electron diatomic systems. Simulations from numerical solutions of time-dependent Schrödinger equations for the oriented symmetric molecular ion H2+ exhibit a signature of interference with double peaks (minima) in molecular attosecond photoelectron energy spectra (MAPES) at critical angles ϑc between the continuum electron momentum pe and the molecular internuclear R axis. The interference patterns are shown to be influenced by the molecular Coulomb potential, leading to a shift of the critical angle ϑc. Dependence of the two-center interference on the pulse ellipticity is also investigated. Furthermore, it is found that the interference phenomena are critically sensitive to the molecular orbital symmetry. For the nonsymmetric molecular ion HHe2+, such double peaks in MAPES also occur, thus suggesting a method for imaging orbitals in molecules by intense ultrashort circularly polarized XUV pulses on the attosecond time scale.

  15. Theoretical and experimental investigation of bonding of simple ligands to metal complexes as reflected in their photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Loubriel, G. M.

    1980-03-01

    The interaction between small molecules and transition metal atoms is investigated. Nitric oxide adsorbed on clean metal surfaces and transition metal complexes like Cr(NO)4, Cr(CO)6 and Ni(CO)4 were studied. The approach used was to learn as much as possible about the electronic structure and bonding in carbonyls and nitrosyls where the atomic positions were known and use this knowledge to help determine the bonding geometry of NO adsorbed on Ni(100). In addition to the analysis of photoemission, theoretical calculations of electronic structure via the self-consistent field X alpha multiple scattering technique were performed. The bonding of NO to transition metal atoms occurs mainly through the interaction of the levels of the metal atom and the 2 pi level of NO. In Cr(NO)4 this bonding is reflected in a charge transfer of about half an electron into the 2 pi level of each one of the NO molecules. The results of first principles calculations of shakeup energies and shakeup intensities for the photo-electron spectra of carbonyls and nitrosyls are reported. The mechanisms by which core holes produced by the photo-excitation are screened are discussed. The results for Ni(CO)4 and Cr(NO)4 are in excellent agreement with experiment.

  16. Sample-morphology effects on x-ray photoelectron peak intensities. III. Simulated spectra of model core–shell nanoparticles

    SciTech Connect

    Powell, Cedric J.; Chudzicki, Maksymilian; Werner, Wolfgang S. M.; Smekal, Werner

    2015-09-15

    The National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis has been used to simulate Cu 2p photoelectron spectra for four types of spherical copper–gold nanoparticles (NPs). These simulations were made to extend the work of Tougaard [J. Vac. Sci. Technol. A 14, 1415 (1996)] and of Powell et al. [J. Vac. Sci. Technol. A 31, 021402 (2013)] who performed similar simulations for four types of planar copper–gold films. The Cu 2p spectra for the NPs were compared and contrasted with analogous results for the planar films and the effects of elastic scattering were investigated. The new simulations were made for a monolayer of three types of Cu/Au core–shell NPs on a Si substrate: (1) an Au shell of variable thickness on a Cu core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; (2) a Cu shell of variable thickness on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; and (3) an Au shell of variable thickness on a 1 nm Cu shell on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. For these three morphologies, the outer-shell thickness was varied until the Cu 2p{sub 3/2} peak intensity was the same (within 2%) as that found in our previous work with planar Cu/Au morphologies. The authors also performed similar simulations for a monolayer of spherical NPs consisting of a CuAu{sub x} alloy (also on a Si substrate) with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. In the latter simulations, the relative Au concentration (x) was varied to give the same Cu 2p{sub 3/2} peak intensity (within 2%) as that found previously. For each morphology, the authors performed simulations with elastic scattering switched on and off. The authors found that elastic-scattering effects were generally strong for the Cu-core/Au-shell and weak for the Au-core/Cu-shell NPs; intermediate elastic-scattering effects were found for the Au-core/Cu-shell/Au-shell NPs. The shell thicknesses required to give

  17. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    SciTech Connect

    Palmer, Michael H. Ridley, Trevor E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Hoffmann, Søren Vrønning E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it Jones, Nykola C. E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Coreno, Marcello E-mail: vronning@phys.au.dk E-mail: marcello.coreno@elettra.eu E-mail: malgorzata.biczysko@sns.it; Grazioli, Cesare; Zhang, Teng; and others

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  18. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-01

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of 1A1 (higher oscillator strength) and 1B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 22B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.

  19. Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations.

    PubMed

    Palmer, Michael H; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk

    2015-10-28

    New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of (1)A1 (higher oscillator strength) and (1)B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2(2)B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures. PMID:26520509

  20. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    SciTech Connect

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  1. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  2. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  3. A four-component Fock-space coupled cluster investigation of the HM(CO)5, (M = Mn, Re) photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Nikoobakht, Behnam; Siebert, Max; Pernpointner, Markus

    2015-11-01

    In this work, we readdress the photoelectron spectra of the HM(CO)5, (M=Mn, Re) carbonyl complexes by applying four-component Fock-space coupled cluster (FSCC) methods for their calculation in order to extend earlier studies based on less demanding approaches. The final-state characterisation was based on group theoretical considerations of the contributing orbitals and allowed for an unambiguous assignment. Energy level diagrams show the effect of spin-orbit (SO) coupling starting from scalar relativistic results and for the heavy representative HRe(CO)5 nonadditivity effects of SO and electron correlation can be observed requiring a consistent treatment of both contributions.

  4. He I photoelectron spectra and gas-phase electronic structures of end-functionalized [3]- and [5]-ladderanes.

    PubMed

    Friscić, Tomislav; Klasinc, Leo; Kovac, Branka; Macgillivray, Leonard R

    2008-02-21

    [3]- and [5]-ladderanes obtained by way of template-controlled syntheses conducted in the organic solid state have been characterized via He I photoelectron (PE) spectroscopy. The results provide a first correlation with X-ray crystallographic structure data and establish the reliability of quantum chemical DFT (B3LYP/6-31G*) and ab initio HF calculations in predicting geometrical and electronic structures of molecular ladder frameworks. PMID:18225866

  5. Size- and intensity-dependent photoelectron spectra from gas-phase gold nanoparticles irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Powell, J.; Robatjazi, S. J.; Makhija, V.; Vajdi, A.; Li, X.; Malakar, Y.; Pearson, W. L.; Rudenko, A.; Sorensen, C.; Stierle, J.; Kling, M. F.

    2016-05-01

    Nanoparticles bridge the gap between atomic/molecular and bulk matter offering unique opportunities to study light interactions with complex systems, in particular, near-field enhancements and excitation of plasmons. Here we report on a systematic study of photoelectron emission from isolated gold nanoparticles irradiated by 800 nm, 25 fs laser pulses at 10-50 TW/ cm2 peak intensities. A combination of an aerodynamic lens nanoparticle injector, high-energy velocity-map imaging spectrometer and a high-speed, single-shot camera is employed to record shot by shot photoelectron emission patterns from individual particles. By sorting the recorded images according to the number of emitted electrons, we select the events from the regions of particular laser intensities within the laser focus, thus, essentially avoiding focal volume averaging. Using this approach, we study the intensity- and size-dependence of photoelectron energy and angular distributions for particle sizes ranging from 5 nm to 400 nm. This work is supported by NSF Award No. IIA-143049. JRML operations and personal are supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of BES, Office of Science, U. S. DOE.

  6. Quantum chemical study of the geometrical and electronic structures of ScSi3 (-/0) clusters and assignment of the anion photoelectron spectra.

    PubMed

    Tran, Quoc Tri; Tran, Van Tan

    2016-06-01

    The geometrical and electronic structures of ScSi3 (-/0) clusters have been studied with the B3LYP, CCSD(T), and CASPT2 methods. The ground state of the anionic cluster was evaluated to be the (1)A1 of rhombic η(2)-(Si3)Sc(-) isomer, whereas that of the neutral cluster was computed to be the (2)A1 of the same isomer. All features in the 266 and 193 nm photoelectron spectra of ScSi3 (-) cluster were interpreted by the one- and two-electron detachments from the (1)A1 of rhombic η(2)-(Si3)Sc(-) isomer. The Franck-Condon factor simulation results show that the first broad band starting at 1.78 eV in the spectra comprises several vibrational progression peaks of two totally symmetric modes with the corresponding frequencies of 296 and 354 cm(-1). PMID:27276955

  7. Photoelectron spectra and structures of three cyclic dipeptides: PhePhe, TyrPro, and HisGly

    NASA Astrophysics Data System (ADS)

    Wickrama Arachchilage, Anoja P.; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C.

    2012-03-01

    We have investigated the electronic structure of three cyclic dipeptides: cyclo(Histidyl-Glycyl) (cHisGly), cyclo(Tyrosyl-Prolyl) (cTyrPro), and cyclo(Phenylalanyl-Phenylalanyl) (cPhePhe) in the vapor phase, by means of photoemission spectroscopy and theoretical modeling. The last compound was evaporated from the solid linear dipeptide, but cyclised, losing water to form cPhePhe in the gas phase. The results are compared with our previous studies of three other cyclopeptides. Experimental valence and core level spectra have been interpreted in the light of calculations to identify the basic chemical properties associated with the central diketopiperazine ring, and with the additional functional groups. The valence spectra are generally characterized by a restricted set of outer valence orbitals separated by a gap from most other valence orbitals. The theoretically simulated core and valence spectra of all three cyclic dipeptides agree reasonably well with the experimental spectra. The central ring and the side chains act as independent chromophores whose spectra do not influence one another, except for prolyl dipeptides, where the pyrrole ring is fused with the central ring. In this case, significant changes in the valence and core level spectra were observed, and explained by stronger hybridization of the valence orbitals.

  8. Metal-ion Complexation Effects in C 1s-NEXAFS Spectra of Carboxylic Acids—Evidence by Quantum Chemical Calculations

    SciTech Connect

    Armbruster, M.; Schimmelpfennig, B; Plaschke, M; Rothe, J; Denecke, M; Klenze, R

    2009-01-01

    Previous systematic C 1s-NEXAFS studies carried out for humic acid (HA) loaded with polyvalent metal cations (Mn+) reveal spectral features which were postulated to result from metal ion complexation: a strong decrease of the C 1s (COO-) ? p*Cdouble bond; length as m-dashO transition intensity and the appearance of a new absorption feature at slightly lower energy adjacent to the carboxyl resonance. Although spectroscopic results for the Mn+-PAA (polyacrylic acid) system (selected as model for structurally ill-defined HA) reveal the same spectral features, evidence by an independent approach for interpretation of these features is desirable. It is well established that quantum chemical calculations are capable of reproducing transition features in C 1s core excitation spectra of small organic molecules, e.g., acetate, which is chosen here as a fragment containing the complexing group to model the macromolecular HA and PAA systems. In this study, the RI-ADC(2) approach, as implemented in the TURBOMOLE program package, is applied to calculate vertical core excitation spectra of various metal acetates and the acetate anion. An energy shift (?f) between the C 1s (COO-) ? p*Cdouble bond; length as m-dashO transition of the acetate anion and various metal cation acetates is established. Calculated shifts are very similar to the experimentally observed values for the energy difference between the C 1s (COO-) ? p*Cdouble bond; length as m-dashO peak and the absorption feature appearing after metal ion complexation in Mn+-PAA/PAA. According to our computations, structural changes of the acetate complexes (e.g., the O-CeO bond angle) compared to the free acetate anion are predominantly responsible for the spectral changes observed upon metal ion complexation.

  9. The Role of Spin-Orbit Coupling in the Double-Ionization Photoelectron Spectra of XCN(2+) (X = Cl, Br, and I).

    PubMed

    Manna, Soumitra; Mishra, Sabyashachi

    2016-03-10

    The photoelectron spectra of XCN(2+) (X = Cl, Br, and I) were calculated employing ab initio electronic structure methods with high-level electron correlation and explicit treatment of spin-orbit coupling. Twelve scalar-relativistic excited states of the dicationic systems, calculated from state-averaged CASSCF/MRCI calculations, were used as the electronic basis to evaluate spin-orbit eigenstates. While the spin-orbit effects in ClCN(2+) are found to be negligible, the electronic spectroscopy of BrCN(2+) and ICN(2+) is significantly influenced by interstate spin-orbit coupling. Several electronic degeneracies are lifted, and many unexpected accidental degeneracies occurred due to the spin-orbit coupling. In particular, the spin-orbit interactions between X̃ (3)Σ(-)-b̃ (1)Σ(+), Ã (3)Π-c̃ (1)Π, B̃ (3)Δ-ã (1)Δ, and C̃ (3)Σ(+)-d̃ (1)Σ(-) are found to be strong in BrCN(2+) and ICN(2+). By careful analysis of the effect of spin-orbit coupling parameters and the spin-orbit eigenstate composition, an assignment of the hitherto unidentified experimental photoelectron bands of BrCN(2+) and ICN(2+) is presented. PMID:26881722

  10. Interference effects in Auger resonant Raman spectra of CO via selective vibrational excitations across the O 1s{yields}2{pi} resonance

    SciTech Connect

    Tanaka, T.; Shindo, H.; Kitajima, M.; Tanaka, H.; Makochekanwa, C.; De Fanis, A.; Tamenori, Y.; Okada, K.; Feifel, R.; Sorensen, S.; Kukk, E.; Ueda, K.

    2005-08-15

    The Auger resonant Raman spectra of CO, arising from the transitions to the X and A final electronic states of CO{sup +}, have been recorded at photon energies corresponding to the vibrational excitations v{sup '}=3,5, and 8 in the O 1s{yields}2{pi} resonance. The spectra are simulated within the model that takes into account both the lifetime-vibrational interference (LVI) and interference with the nonresonant photoemission. The spectroscopic parameters, {omega}{sub e}, {omega}{sub e}x{sub e}, {gamma} and r{sub e}, of the O 1s{sup -1}2{pi} core-excited state, necessary for the simulation, have been derived by fitting the Franck-Condon simulation to the total ion yield spectrum, assuming a Morse potential for the O 1s{sup -1}2{pi} state. Not only the LVI but also the interference with the nonresonant photoemission turn out to be significant.

  11. Structural investigation on Ge{sub x}Sb{sub 10}Se{sub 90−x} glasses using x-ray photoelectron spectra

    SciTech Connect

    Wei, Wen-Hou; Xiang, Shen; Xu, Si-Wei; Wang, Rong-Ping; Fang, Liang

    2014-05-14

    The structure of Ge{sub x}Sb{sub 10}Se{sub 90−x} glasses (x = 7.5, 10, 15, 20, 25, 27.5, 30, and 32.5 at. %) has been investigated by x-ray photoelectron spectroscopy (XPS). Different structural units have been extracted and characterized by decomposing XPS core level spectra, the evolution of the relative concentration of each structural unit indicates that, the relative contributions of Se-trimers and Se-Se-Ge(Sb) structure decrease with increasing Ge content until they become zero at chemically stoichiometric glasses of Ge{sub 25}Sb{sub 10}Se{sub 65}, and then the homopolar bonds like Ge-Ge and Sb-Sb begin to appear in the spectra. Increase of homopolar bonds will extend band-tails into the gap and narrow the optical band gap. Thus, the glass with a stoichiometric composition generally has fewer defective bonds and larger optical bandgap.

  12. Temperature dependent structural variations of OH(-)(H2O)n, n = 4-7: effects on vibrational and photoelectron spectra.

    PubMed

    Lin, Ren-Jie; Nguyen, Quoc Chinh; Ong, Yew-Soon; Takahashi, Kaito; Kuo, Jer-Lai

    2015-07-15

    In this work, we identified a large number of structurally distinct isomers of midsized deprotonated water clusters, OH(-)(H2O)n=4-7, using first-principles methods. The temperature dependence of the structural variation in the solvation shell of OH(-) for these clusters was examined under the harmonic superposition approximation. We simulated the vibrational and photoelectron spectra based on these thermodynamic calculations. We found that the isomers with 3-coordinated hydroxide dominate the population in these midsized clusters. Furthermore, an increase in temperature causes a topological change from compact isomers with many intermolecular hydrogen bonds to open isomers with fewer but more directional intermolecular hydrogen bonds. We showed that this evolution in structure can be observed through the change in the vibrational spectra at 3200-3400 cm(-1). In addition, the increase in directional hydrogen bonded isomers, which have outer hydration shell with OH bonds pointing to the hydroxide, causes the vertical detachment energy to increase at higher temperatures. Lastly, we also performed studies to understand the variation in the aforementioned spectral quantities with the variation in the coordination number of the hydroxide. PMID:26134890

  13. The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited

    NASA Astrophysics Data System (ADS)

    Tuckett, Richard; Harvey, Jonelle; Hemberger, Patrick; Bodi, Andras

    2015-09-01

    The threshold photoelectron spectrum (TPES) of difluoromethane and dichloromethane has been recorded at the Swiss Light Source with a resolution of 2 meV or 16 cm-1. Electronic and vibronic transitions are simulated and assigned with the help of Franck-Condon (FC) calculations based on coupled cluster electronic structure calculations for the equilibrium geometries and harmonic vibrational frequencies of the neutrals, and of the ground and excited electronic states of the cations. Notwithstanding a high-resolution pulsed-field ionisation study on CH2F2 (Forysinski et al., 2010) in which a number of transitions to the X∼+ state have been recorded with unprecedented accuracy, we report the first complete vibrationally resolved overview of the low-lying electronic states of CH2X2+, X = F or Cl. Hydrogen atom loss from CH2F2+ occurs at low energy, making the ground state rather anharmonic and interpretation of the X∼+ band challenging in the harmonic approximation. By Franck-Condon fits, the adiabatic ionisation energies to the A∼+ 2B2, C∼+ 2A2 and D∼+ 2B2 states have been determined as 14.3 ± 0.1, 15.57 ± 0.01 and 18.0 ± 0.1 eV, respectively. The first band in the CH2Cl2 TPES is complex for a different reason, as it is the result of two overlapping ionic states, X∼+ 2B2 and A∼+ 2B1, with derived ionisation energies of 11.0 ± 0.2 and 11.317 ± 0.006 eV, and dominated by an extended progression in the CCl2 bend (in X∼+) and a short progression in the CCl2 symmetric stretch (in A∼+), respectively. Furthermore, even though Koopmans' approximation holds for the vertical ionisations, the X∼+ state of CH2Cl2+ is stabilized by geometry relaxation and corresponds to ionisation from the (HOMO-1) orbital. That is, the first two vertical ionisation energies are in the same order as the negative of the orbital energies of the highest occupied orbitals, but the adiabatic ionisation energy corresponding to electron removal from the (HOMO-1) is lower than the

  14. From photoelectron detachment spectra of BrHBr-, BrDBr- and IHI-, IDI- to vibrational bonding of BrMuBr and IMuI

    NASA Astrophysics Data System (ADS)

    Manz, Jörn; Sato, Kazuma; Takayanagi, Toshiyuki; Yoshida, Takahiko

    2015-04-01

    Photoelectron detachment XLX-(0000) + hν → XLX(vib) + e- + KER (X = Br or I, L = H or D) at sufficiently low temperatures photoionizes linear dihalogen anions XLX- in the vibrational ground state (v1v2lv3 = 0000) and prepares the neutral radicals XLX(vib) in vibrational states (vib). At the same time, part of the photon energy (hν) is converted into kinetic energy release (KER) of the electron [R. B. Metz, S. E. Bradforth, and D. M. Neumark, Adv. Chem. Phys. 81, 1 (1992)]. The process may be described approximately in terms of a Franck-Condon type transfer of the vibrational wavefunction representing XLX-(0000) from the domain close to the minimum of its potential energy surface (PES) to the domain close to the linear transition state of the PES of the neutral XLX. As a consequence, prominent peaks of the photoelectron detachment spectra (pds) correlate with the vibrational energies EXLX,vib of states XLX(vib) which are centered at linear transition state. The corresponding vibrational quantum numbers may be labeled vib = (v1v2lv3) = (000v3). Accordingly, the related most prominent peaks in the pds are labeled v3. We construct a model PES which mimics the "true" PES in the domain of transition state such that it supports vibrational states with energies EXLX,pds,000v3 close to the peaks of the pds labeled v3 = 0, 2, and 4. Subsequently, the same model PES is also used to calculate approximate values of the energies EXMuX,0000 of the isotopomers XMuX(0000). For the heavy isotopomers XHX and XDX, it turns out that all energies EXLX,000v3 are above the threshold for dissociation, which means that all heavy XLX(000v3) with wavefunctions centered at the transition state are unstable resonances with finite lifetimes. Turning the table, bound states of the heavy XLX are van der Waals (vdW) bonded. In contrast, the energies EXMuX,0000 of the light isotopomers XMuX(0000) are below the threshold for dissociation, with wavefunctions centered at the transition state. This

  15. From photoelectron detachment spectra of BrHBr(-), BrDBr(-) and IHI(-), IDI(-) to vibrational bonding of BrMuBr and IMuI.

    PubMed

    Manz, Jörn; Sato, Kazuma; Takayanagi, Toshiyuki; Yoshida, Takahiko

    2015-04-28

    Photoelectron detachment XLX(-)(00(0)0) + hν → XLX(vib) + e(-) + KER (X = Br or I, L = H or D) at sufficiently low temperatures photoionizes linear dihalogen anions XLX(-) in the vibrational ground state (v1v2 (l)v3 = 00(0)0) and prepares the neutral radicals XLX(vib) in vibrational states (vib). At the same time, part of the photon energy (hν) is converted into kinetic energy release (KER) of the electron [R. B. Metz, S. E. Bradforth, and D. M. Neumark, Adv. Chem. Phys. 81, 1 (1992)]. The process may be described approximately in terms of a Franck-Condon type transfer of the vibrational wavefunction representing XLX(-)(00(0)0) from the domain close to the minimum of its potential energy surface (PES) to the domain close to the linear transition state of the PES of the neutral XLX. As a consequence, prominent peaks of the photoelectron detachment spectra (pds) correlate with the vibrational energies EXLX,vib of states XLX(vib) which are centered at linear transition state. The corresponding vibrational quantum numbers may be labeled vib = (v1v2 (l)v3) = (00(0)v3). Accordingly, the related most prominent peaks in the pds are labeled v3. We construct a model PES which mimics the "true" PES in the domain of transition state such that it supports vibrational states with energies EXLX,pds,00(0)v3 close to the peaks of the pds labeled v3 = 0, 2, and 4. Subsequently, the same model PES is also used to calculate approximate values of the energies EXMuX,00(0)0 of the isotopomers XMuX(00(0)0). For the heavy isotopomers XHX and XDX, it turns out that all energies EXLX,00(0)v3 are above the threshold for dissociation, which means that all heavy XLX(00(0)v3) with wavefunctions centered at the transition state are unstable resonances with finite lifetimes. Turning the table, bound states of the heavy XLX are van der Waals (vdW) bonded. In contrast, the energies EXMuX,00(0)0 of the light isotopomers XMuX(00(0)0) are below the threshold for dissociation, with wavefunctions

  16. Interference effects during the Auger decay of the C*O 1s{sup -1}pi* resonance studied by angular distribution of the CO{sup +}(A) photoelectrons and polarization analysis of the CO{sup +}(A-X) fluorescence

    SciTech Connect

    Demekhin, Ph. V.; Kielich, W.; Reiss, P.; Hentges, R.; Haar, I.; Ehresmann, A.; Petrov, I. D.; Sukhorukov, V. L.; Schmoranzer, H.

    2009-12-15

    Angular distributions of the CO{sup +}(A {sup 2}PI) photoelectrons and of the CO{sup +}(A {sup 2}PI->X {sup 2}SIGMA{sup +}) fluorescence are computed in the vicinity of the 1s{sup -1}pi* resonant excitation of the C*O molecule. In the calculations, lifetime vibrational interference and the direct transition amplitude for population of the A {sup 2}PI(v{sup '}) states were taken into account ab initio. The weak direct photoionization channel induces broad exciting-photon energy range dispersions of the angular distribution parameters beta{sub A}{sup e}(omega) and beta2{sub A}{sup X}(omega), and the nuclear vibrational motion causes variations of the computed parameters across the positions of the C*O(v{sub r}) vibronic states. Present calculations are in good agreement with available vibrationally and angularly resolved resonant Auger spectra. Theoretical beta2{sub A}{sup X}(omega) parameters are in agreement with the experimental results from the polarization analysis of the CO{sup +}(A-X) fluorescence induced by linearly polarized synchrotron radiation.

  17. Rotationally resolved vibrational spectra of AsH3 (+)X̃(2)A2 (″): Tunneling splittings studied by zero-kinetic-energy photoelectron spectroscopy.

    PubMed

    Sun, Wei; Dai, Zuyang; Wang, Jia; Mo, Yuxiang

    2016-06-21

    The rotationally resolved vibrational spectra of AsH3 (+)X̃(2)A2 (″) have been measured for the first time with vibrational energies up to 6000 cm(-1) above the ground state using the zero-kinetic-energy photoelectron method. The symmetric inversion vibrational energy levels (v2 (+)) and the corresponding rotational constants for v2 (+)=0-15 have been determined. The tunneling splittings of the inversion vibration energy levels have been observed and are 0.8 and 37.7 (±0.5) cm(-1) for the ground and the first excited vibrational states, respectively. The first adiabatic ionization energy for AsH3 was determined as 79 243.3 ± 1 cm(-1). The geometric parameters of AsH3 (+)X̃(2)A2 (″) as a function of inversion vibrational numbers have been determined, indicating that the geometric structure of the cation changes from near-planar to pyramidal with increasing inversion vibrational excitation. In addition to the experimental measurements, a two-dimensional theoretical calculation considering the two symmetric vibrational modes was performed to determine the energy levels of the symmetric inversion, which are in good agreement with the experimental results. The inversion vibrational energy levels of SbH3 (+)X̃(2)A2 (″) have also been calculated and are found to have much smaller energy splittings than those of AsH3 (+)X̃(2)A2 (″). PMID:27334168

  18. Theoretical studies on the electronic structures and photoelectron spectra of tri-rhenium oxide clusters: Re3On- and Re3On (n = 1-6)

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Gong, Wei-Chao; Xie, Lu; Zheng, Cun-Gong; Zhang, Wei; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2014-01-01

    Density functional theory (DFT) calculations are performed to study the structural and electronic properties of tri-rhenium oxide clusters Re3On-/0 (n = 1-6). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level are carried out to search for the global minima for both the anions and the neutrals. For the anions, the first two O atoms prefer the same corner position of a Re3 triangle. Whereas, Re3O3- possesses a C2v symmetry with one bridging and two terminal O atoms. The next three O atoms (n = 4-6) are adding sequentially on the basis of Re3O3- motif, i.e., adding one terminal O atom for Re3O4-, one terminal and one bridging O atoms for Re3O5-, and one terminal and two bridging O atoms for Re3O6-, respectively. Their corresponding neutral species are similar to the anions in geometry except Re3O4 and Re3O5. Molecular orbital analyses are employed to investigate the chemical bonding and structural evolution in these tri-rhenium oxide clusters.

  19. Rotationally resolved vibrational spectra of AsH3 + (" separators=" X ˜ 2 A2 ″) : Tunneling splittings studied by zero-kinetic-energy photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Dai, Zuyang; Wang, Jia; Mo, Yuxiang

    2016-06-01

    The rotationally resolved vibrational spectra of AsH3 + (" separators=" X ˜ 2 A2 ″) have been measured for the first time with vibrational energies up to 6000 cm-1 above the ground state using the zero-kinetic-energy photoelectron method. The symmetric inversion vibrational energy levels ( v2 +) and the corresponding rotational constants for v2 + = 0 -15 have been determined. The tunneling splittings of the inversion vibration energy levels have been observed and are 0.8 and 37.7 (±0.5) cm-1 for the ground and the first excited vibrational states, respectively. The first adiabatic ionization energy for AsH3 was determined as 79 243.3 ± 1 cm-1. The geometric parameters of AsH3 + (" separators=" X ˜ 2 A2 ″) as a function of inversion vibrational numbers have been determined, indicating that the geometric structure of the cation changes from near-planar to pyramidal with increasing inversion vibrational excitation. In addition to the experimental measurements, a two-dimensional theoretical calculation considering the two symmetric vibrational modes was performed to determine the energy levels of the symmetric inversion, which are in good agreement with the experimental results. The inversion vibrational energy levels of SbH3 + (" separators=" X ˜ 2 A2 ″) have also been calculated and are found to have much smaller energy splittings than those of AsH3 + (" separators=" X ˜ 2 A2 ″) .

  20. Computational study on the molecular structures and photoelectron spectra of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta).

    PubMed

    Chen, Wen-Jie; Zhang, Chang-Fu; Zhang, Xian-Hui; Zhang, Yong-Fan; Huang, Xin

    2013-05-15

    Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are carried out to investigate the electronic and structural properties of a series of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level yield singlet and doublet ground states for the bimetallic anionic and neutral clusters, respectively. All the clusters present the six-membered ring structures with different symmetries, except that the TaW2O9(-) cluster shows a chained style with a penta-coordinated tantalum atom. Spin density analyses reveal oxygen radical species in all neutral clusters, consistent with their structural characteristics. Moreover, additional calculations are performed to study the oxidation reaction of CO molecule with the W3O9(+) cation and the isoelectronic VW2O9 cluster, and results indicate that the introduction of vanadium at tungsten site can efficiently improve the oxidation reactivity. PMID:23523755

  1. Computational study on the molecular structures and photoelectron spectra of bimetallic oxide clusters MWO9-/0 (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Jie; Zhang, Chang-Fu; Zhang, Xian-Hui; Zhang, Yong-Fan; Huang, Xin

    2013-05-01

    Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are carried out to investigate the electronic and structural properties of a series of bimetallic oxide clusters MWO9-/0 (M = V, Nb, Ta). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level yield singlet and doublet ground states for the bimetallic anionic and neutral clusters, respectively. All the clusters present the six-membered ring structures with different symmetries, except that the TaWO9- cluster shows a chained style with a penta-coordinated tantalum atom. Spin density analyses reveal oxygen radical species in all neutral clusters, consistent with their structural characteristics. Moreover, additional calculations are performed to study the oxidation reaction of CO molecule with the WO9+ cation and the isoelectronic VW2O9 cluster, and results indicate that the introduction of vanadium at tungsten site can efficiently improve the oxidation reactivity.

  2. Interpretation of photoelectron spectra in Cu{sub {ital n}}{sup {minus}} clusters including thermal and final-state effects: The case of Cu{sub 7}{sup {minus}}

    SciTech Connect

    Massobrio, C.; Pasquarello, A.; Car, R.

    1996-09-01

    We introduce an approach to investigate thermal effects on the photoelectron spectra of small clusters. By combining first-principles molecular dynamics and a simplified scheme to account for final-state relaxation effects, we obtain averaged excitation spectra at finite temperature. We apply our approach to the case of Cu{sub 7}{sup {minus}}, in which two isomers are found very close in energy at {ital T}=0 K. At {ital T}=400 K, the isomer of {ital D}{sub 5{ital h}} symmetry transforms into one of {ital C}{sub 3{ital v}} symmetry. This behavior is in accord with the observed photoelectron spectra in which the predominant features can be associated with the {ital C}{sub 3{ital v}} isomer. The averaged spectrum at {ital T}=400 K for this isomer suggests that the splitting observed in the peak at lowest excitation energies is a thermal effect. {copyright} {ital 1996 The American Physical Society.}

  3. Direct determination of the band offset in atomic layer deposited ZnO/hydrogenated amorphous silicon heterojunctions from X-ray photoelectron spectroscopy valence band spectra

    SciTech Connect

    Korte, L. Rößler, R.; Pettenkofer, C.

    2014-05-28

    The chemical composition and band alignment at the heterointerface between atomic layer deposition-grown zinc oxide (ZnO) and hydrogenated amorphous silicon (a-Si:H) is investigated using monochromatized X-ray photoelectron spectroscopy. A new approach for obtaining the valence band offset ΔE{sub V} is developed, which consists in fitting the valence band (VB) spectrum obtained for a-Si:H with a thin ZnO overlayer as the sum of experimentally obtained VB spectra of a bulk a-Si:H film and a thick ZnO film. This approach allows obtaining ΔE{sub V} = 2.71 ± 0.15 eV with a minimum of assumptions, and also yields information on the change in band bending of both substrate and ZnO film. The band offset results are compared to values obtained using the usual approach of comparing valence band edge-to-core level energy differences, ΔE{sub B,CL} − ΔE{sub B,VB}. Furthermore, a theoretical value for the VB offset is calculated from the concept of charge neutrality level line-up, using literature data for the charge neutrality levels and the experimentally determined ZnO/a-Si:H interface dipole. The thus obtained value of ΔE{sub V}{sup CNL} = 2.65 ± 0.3 eV agrees well with the experimental ΔE{sub V}.

  4. Photoelectron Spectroscopy of Doped Helium Nanodroplets

    SciTech Connect

    Loginov, Evgeniy; Rossi, Dominic; Drabbels, Marcel

    2005-10-14

    The photoionization dynamics of aniline doped helium droplets has been investigated by photoelectron spectroscopy. The photoelectron spectra resemble closely that of gas phase aniline, except for a droplet-size-dependent shift. This shift is caused by lowering of the ionization threshold upon solvation and can be readily estimated. The individual peaks in the photoelectron spectrum are broadened towards lower kinetic energy which is attributed to the relaxation of the photoelectrons as they pass through the helium droplet.

  5. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  6. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Högström, Jonas; Fredriksson, Wendy; Edstrom, Kristina; Björefors, Fredrik; Nyholm, Leif; Olsson, Claes-Olof A.

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H2SO4 and acetic acid diluted with 0.02 M Na2B4O7 · 10H2O and 1 M H2O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  7. H2CN+ and H2CNH+: New insight into the structure and dynamics from mass-selected threshold photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Holzmeier, Fabian; Lang, Melanie; Hader, Kilian; Hemberger, Patrick; Fischer, Ingo

    2013-06-01

    In this paper, we reinvestigate the photoionization of nitrogen containing reactive intermediates of the composition H2CN and H2CNH, molecules of importance in astrochemistry and biofuel combustion. In particular, H2CN is also of considerable interest to theory, because of its complicated potential energy surface. The species were generated by flash pyrolysis, ionized with vacuum ultraviolet synchrotron radiation, and studied by mass-selected threshold photoelectron (TPE) spectroscopy. In the mass-selected TPE-spectrum of m/z = 28, contributions of all four isomers of H2CN were identified. The excitation energy to the triplet cation of the methylene amidogen radical H2CN was determined to be 12.32 eV. Considerable activity in the C-N mode of the cation is visible. Furthermore, we derived values for excitation into the triplet cations of 11.72 eV for cis-HCNH, 12.65 eV for trans-HCNH, and 11.21 eV for H2NC. The latter values are probably accurate to within one vibrational quantum. The spectrum features an additional peak at 10.43 eV that corresponds to excitation into the C2v-symmetric H2CN+. As this structure constitutes a saddle point, the peak is assigned to an activated complex on the singlet potential energy surface of the cation, corresponding to a hydrogen atom migration. For methanimine, H2CNH, the adiabatic ionization energy IEad was determined to be 9.99 eV and the vibrational structure of the spectrum was analyzed in detail. The uncertainty of earlier values that simply assigned the signal onset to the IEad is thus considerably reduced. The spectrum is dominated by the H-N-C bending mode ν1+ and the rocking mode ν3+. All experimental data were supported by calculations and Franck-Condon simulations.

  8. Photoelectronic characterization of heterointerfaces.

    SciTech Connect

    Brumbach, Michael Todd

    2012-02-01

    In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

  9. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    SciTech Connect

    Wang, Jing; Liang, Le; Zhang, Lanting E-mail: lmsun@sjtu.edu.cn; Sun, Limin E-mail: lmsun@sjtu.edu.cn; Hirano, Shinichi

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearly determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.

  10. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  11. From photoelectron detachment spectra of BrHBr{sup −}, BrDBr{sup −} and IHI{sup −}, IDI{sup −} to vibrational bonding of BrMuBr and IMuI

    SciTech Connect

    Manz, Jörn; Sato, Kazuma; Takayanagi, Toshiyuki Yoshida, Takahiko

    2015-04-28

    Photoelectron detachment XLX{sup −}(00{sup 0}0) + hν → XLX(vib) + e{sup −} + KER (X = Br or I, L = H or D) at sufficiently low temperatures photoionizes linear dihalogen anions XLX{sup −} in the vibrational ground state (v{sub 1}v{sub 2}{sup l}v{sub 3} = 00{sup 0}0) and prepares the neutral radicals XLX(vib) in vibrational states (vib). At the same time, part of the photon energy (hν) is converted into kinetic energy release (KER) of the electron [R. B. Metz, S. E. Bradforth, and D. M. Neumark, Adv. Chem. Phys. 81, 1 (1992)]. The process may be described approximately in terms of a Franck-Condon type transfer of the vibrational wavefunction representing XLX{sup −}(00{sup 0}0) from the domain close to the minimum of its potential energy surface (PES) to the domain close to the linear transition state of the PES of the neutral XLX. As a consequence, prominent peaks of the photoelectron detachment spectra (pds) correlate with the vibrational energies E{sub XLX,vib} of states XLX(vib) which are centered at linear transition state. The corresponding vibrational quantum numbers may be labeled vib = (v{sub 1}v{sub 2}{sup l}v{sub 3}) = (00{sup 0}v{sub 3}). Accordingly, the related most prominent peaks in the pds are labeled v{sub 3}. We construct a model PES which mimics the “true” PES in the domain of transition state such that it supports vibrational states with energies E{sub XLX,pds,00{sup 0}v{sub 3}} close to the peaks of the pds labeled v{sub 3} = 0, 2, and 4. Subsequently, the same model PES is also used to calculate approximate values of the energies E{sub XMuX,00{sup 0}0} of the isotopomers XMuX(00{sup 0}0). For the heavy isotopomers XHX and XDX, it turns out that all energies E{sub XLX,00{sup 0}v{sub 3}} are above the threshold for dissociation, which means that all heavy XLX(00{sup 0}v{sub 3}) with wavefunctions centered at the transition state are unstable resonances with finite lifetimes. Turning the table, bound states of the heavy XLX are van

  12. Theoretical Studies on the Photoelectron and Absorption Spectra of MnO 4 and TcO 4

    SciTech Connect

    Su, Jing; Xu, Wen-Hua; Xu, Chao-Fei; Schwarz, W. H. E.; Li, Jun

    2013-09-03

    The tetraoxo pertechnetate anion (TcO4-) is of great interest for nuclear waste management and radiopharmceuticals. To elucidate its electronic structure and to compare with that of its lighter congener MnO4-, the photoelectron and electronic absorption spectra of MnO4 - and TcO4 - are investigated with density functional theory (DFT) and ab initio wave function theory (WFT). The vertical electron detachment energies (VDEs) of MnO4 - obtained with the CR-EOM-CCSD(T) method are in good agreement with the lowest two experimental VDEs; the differences are less than 0.1 eV, representing a significant improvement over the IP-EOMCCSD(T) result in the literature. Combining our CCSD(T) and CR-EOMCCSD( T) results, the first five VDEs of TcO4 - are estimated between 5 and 10 eV with an estimated accuracy of about ±0.2 eV. The vertical excitation energies are determined by using TD-DFT, CR-EOM-CCSD(T), and RASPT2 methods. The excitation energies and the assignments of the spectra are analyzed and partly improved. They are compared with reported SAC-CI results and available experimental data. Both dynamic and nondynamic electron correlations are important in the ground and excited states of MnO4 - and TcO4 -. Nondynamical correlations are particularly relevant in TcO4 - for reliable prediction of excitation energies. In TcO4 - one Rydberg state interlaces but does not mix with the valence excited states, and it disappears in the condensed phase.

  13. Theoretical studies on the electronic structures and photoelectron spectra of tri-rhenium oxide clusters: Re3O(n)(-) and Re3O(n) (n=1-6).

    PubMed

    Zhou, Qi; Gong, Wei-Chao; Xie, Lu; Zheng, Cun-Gong; Zhang, Wei; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2014-01-01

    Density functional theory (DFT) calculations are performed to study the structural and electronic properties of tri-rhenium oxide clusters Re3On(-/0) (n=1-6). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level are carried out to search for the global minima for both the anions and the neutrals. For the anions, the first two O atoms prefer the same corner position of a Re3 triangle. Whereas, Re3O3(-) possesses a C2v symmetry with one bridging and two terminal O atoms. The next three O atoms (n=4-6) are adding sequentially on the basis of Re3O3(-) motif, i.e., adding one terminal O atom for Re3O4(-), one terminal and one bridging O atoms for Re3O5(-), and one terminal and two bridging O atoms for Re3O6(-), respectively. Their corresponding neutral species are similar to the anions in geometry except Re3O4 and Re3O5. Molecular orbital analyses are employed to investigate the chemical bonding and structural evolution in these tri-rhenium oxide clusters. PMID:24121651

  14. X-ray induced damage in DNA monitored by X-ray photoelectron spectroscopy

    SciTech Connect

    Ptasinska, Sylwia; Stypczynska, Agnieszka; Nixon, Tony; Mason, Nigel J.; Klyachko, Dimitri V.; Sanche, Leon

    2008-08-14

    In this work, the chemical changes in calf thymus DNA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The DNA samples were irradiated for over 5 h and spectra were taken repeatedly every 30 min. In this approach the X-ray beam both damages and probes the samples. In most cases, XPS spectra have complex shapes due to contributions of C, N, and O atoms bonded at several different sites. We show that from a comparative analysis of the modification in XPS line shapes of the C 1s, O 1s, N 1s, and P 2p peaks, one can gain insight into a number of reaction pathways leading to radiation damage to DNA.

  15. Carbon 1s core-hole lifetime in CO2

    NASA Astrophysics Data System (ADS)

    Carroll, T. X.; Hahne, J.; Thomas, T. D.; Sæthre, L. J.; Berrah, N.; Bozek, J.; Kukk, E.

    2000-04-01

    The carbon 1s photoelectron spectrum has been measured for CO2 at photon energies of 308, 320, and 330 eV with an instrumental resolution about half the natural linewidth. These spectra have been analyzed to obtain vibrational spacings, vibrational intensities, and the lifetime, τ, of the carbon 1s core-hole state. Theoretical calculation of the lifetime width, ħ/τ, using a one-center model, which assumes that only the valence electrons localized on the atom with the core hole can participate in Auger deexcitation of the core hole, predicts a value of 66 meV, considerably smaller than that predicted for CH4 (96 meV). Experimental measurements indicate, however, that the CO2 carbon 1s width is, in fact, much larger than expected-99+/-2 meV-and is approximately the same as that found experimentally for CH4 (95+/-2 meV). This result indicates that valence electrons on the oxygen atoms may play a role in the Auger decay the carbon 1s core hole in CO2, and, hence, that a multicenter model may be necessary to describe the Auger process.

  16. Laser photoelectron spectroscopy of ions

    SciTech Connect

    Ellison, G.B.

    1992-01-16

    This enterprise uses photoelectron spectroscopy to study the properties of negative ions and radicals. The essence of our experiment is to cross a 0.6 keV mass-selected ion beam (M{sup {minus}}) with the output of a CW laser, {Dirac h}{omega}{sub o}. The resultant detached photoelectrons with kinetic energy, KE, are energy analyzed by means of a set of electrostatic hemispherical analyzers. Analysis of the photoelectron spectra enables us to extract molecular electron affinities, vibrational frequencies and electronic splittings of the final radical, M, as well as the relative molecular geometries of ions (M{sup {minus}}) and radicals (M). We have scrutinized the two simplest nitrenes: methylnitrene (CH{sub 3}N) and phenylnitrene (C{sub 6}H{sub 5}N). By preparing the corresponding anions, CH{sub 3}N{sup {minus}} and C{sub 6}H{sub 5}N{sup {minus}}, we have studied these nitrene biradicals. Singlet methylnitrene is especially interesting since it is formally a transition state.''

  17. Hydrogenation and dehydrogenation of nitrogen-doped graphene investigated by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Späth, F.; Zhao, W.; Gleichweit, C.; Gotterbarm, K.; Bauer, U.; Höfert, O.; Steinrück, H.-P.; Papp, C.

    2015-04-01

    We studied the hydrogenation and dehydrogenation of nitrogen-doped graphene (NDG) by in situ high-resolution X-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS (TPXPS). Nitrogen-doped graphene was prepared by low energy nitrogen implantation in pristine graphene on Ni(111). Hydrogenation of NDG was performed by exposure to atomic hydrogen. Upon hydrogenation the XP spectra in the C 1s region reveal one new peak, shifted to lower binding energies as compared to graphene, which is associated with newly formed CH groups. In the N 1s region two new peaks, shifted to higher binding energies are observed; these are associated with hydrogenated pyridinic and graphitic nitrogen. TPXPS spectra reveal a different thermal stability of the two hydrogenated nitrogen species, while the C-H groups of graphene show no significant changes compared to undoped hydrogenated graphene.

  18. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    SciTech Connect

    Powell, C.J.; Smekal, W.; Werner, W.S.M.

    2005-09-09

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.

  19. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Smekal, W.; Werner, W. S. M.

    2005-09-01

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.

  20. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    SciTech Connect

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  1. Photoelectron spectroscopy of natural products: terpenes

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kovač, Branka

    2005-01-01

    HeI photoelectron spectra of three terpenes: α-pinene, pulegone and cembrene have been measured. The analysis of their electronic structure is based on the comparison of measured spectra with those of related compounds and on the comparison with molecular structures of studied compounds. We discuss changes in ionization energies of C-C double bonds which are situated at different positions along the rings.

  2. The C1s core line in irradiated graphite

    SciTech Connect

    Speranza, Giorgio; Minati, Luca; Anderle, Mariano

    2007-08-15

    Recently, plasma deposited amorphous carbon films have been the subject of extensive experimental and theoretical investigations aimed at correlating their electronic, structural, and mechanical properties to growth parameters. To investigate these properties, different spectral parameters reflecting the electronic structure of carbon-based materials are proposed in literature. The effects of various electronic configurations on the carbon photoelectron spectra are analyzed here with particular attention to C1s core line with the aim to better interpret its structure. The latter is commonly fitted under the assumption that it can be described by using just two spectral components related to sp{sup 2} and sp{sup 3} hybrids. Their relative intensities are then used to estimate the sp{sup 2} and sp{sup 3} phases. We show that, in the presence of an amorphous network, the C1s line shape is the result of a more complex mixture of electronic states. Ar{sup +} irradiated graphite and successive oxidation was used to identify spectral features to better describe the C1s line shape.

  3. Thermal degradation analysis of deuterium-ion-implanted V25Cr40Ti35 using synchrotron radiation photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tode, Mayumi; Harries, James R.; Teraoka, Yuden; Yoshigoe, Akitaka

    The thermal degradation of a native oxide layer on the hydrogen storage alloy V25Cr40Ti35 and the thermal desorption property of deuterium molecules were studied by synchrotron radiation soft X-ray photoelectron spectroscopy and thermal desorption mass spectrometry. Photoelectron spectra of O-1s, C-1s, V-2p, Cr-2p, and Ti-2p were observed for an as-received sample and a deuterium-ion-implanted one. Although the oxide layer changed dramatically by thermal annealing between 373 K and 473 K for the un-implanted sample, the change of the deuterium-ion-implanted sample was lying between 473 K and 573 K corresponding to D2 desorption. The implantation of deuterium resulted in the stabilization of the surface oxide layer by approximately 100 deg.

  4. Uracil on Cu(110): A quantitative structure determination by energy-scanned photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Duncan, D. A.; Unterberger, W.; Kreikemeyer-Lorenzo, D.; Woodruff, D. P.

    2011-07-01

    The local adsorption site of the nucleobase uracil on Cu(110) has been determined quantitatively by energy-scanned photoelectron diffraction (PhD). Qualitative inspection of the O 1s and N 1s soft x-ray photoelectron spectra, PhD modulation spectra, and O K-edge near-edge x-ray adsorption fine structure indicate that uracil bonds to the surface through its nitrogen and oxygen constituent atoms, each in near atop sites, with the molecular plane essentially perpendicular to surface and aligned along the close packed [1overline 1 0] azimuth. Multiple scattering simulations of the PhD spectra confirm and refine this geometry. The Cu-N bondlength is 1.96 ± 0.04 Å, while the Cu-O bondlengths of the two inequivalent O atoms are 1.93 ± 0.04 Å and 1.96 ± 0.04 Å, respectively. The molecule is twisted out of the [1overline 1 0]direction by 11 ± 5°.

  5. Angle resolved photoelectron spectroscopy of two-color XUV–NIR ionization with polarization control

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Hartmann, G.; Babies, F.; Beckmann, A.; Brenner, G.; Buck, J.; Costello, J.; Dammann, L.; De Fanis, A.; Geßler, P.; Glaser, L.; Ilchen, M.; Johnsson, P.; Kazansky, A. K.; Kelly, T. J.; Mazza, T.; Meyer, M.; Nosik, V. L.; Sazhina, I. P.; Scholz, F.; Seltmann, J.; Sotoudi, H.; Viefhaus, J.; Kabachnik, N. M.

    2016-08-01

    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime.

  6. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    SciTech Connect

    D.W. Lynch

    2004-09-30

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals.

  7. Photoionization and photoelectron spectroscopy of doped helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2006-03-01

    Photoionization and photoelectron spectra for helium nanodroplets doped with rare gas atoms and SF6 will be reported. The experiments were conducted using tunable synchrotron radiation at the Advanced Light Source in the photon energy range of 14-26 eV. Time-of-flight mass spectra will be presented, along with photoion and photoelectron images. The results will be compared to previous electron impact ionization data.

  8. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  9. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    NASA Astrophysics Data System (ADS)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  10. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    SciTech Connect

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  11. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases.

    PubMed

    Jordan, I; Huppert, M; Brown, M A; van Bokhoven, J A; Wörner, H J

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup. PMID:26724045

  12. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    SciTech Connect

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H. E-mail: kiran@mcneese.edu; Li, Xiang; Kiran, Boggavarapu E-mail: kiran@mcneese.edu; Kandalam, Anil K.

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  13. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    NASA Astrophysics Data System (ADS)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H.; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K.

    2014-04-01

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz-, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  14. Photoelectron spectroscopy of boron aluminum hydride cluster anions.

    PubMed

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz(-), were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms. PMID:24784280

  15. Anion photoelectron spectroscopy of radicals and clusters

    SciTech Connect

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  16. Photoelectron Imaging of Nitroethane, Nitropropane and Nitrobutane

    NASA Astrophysics Data System (ADS)

    Adams, Christopher L.; Knurr, Benjamin J.; Weber, J. Mathias

    2011-06-01

    We will show high resolution, low-energy photoelectron imaging data on nitroethane, nitropropane, 2-nitropropane and nitrobutane. We obtain new values for the adiabatic electron affinities of these nitroalkanes by comparison of the spectra of bare anions with the spectra of Ar solvated anions, where hot bands are strongly suppressed. For nitroethane, we can quantitatively recover the photoelectron spectrum using Franck-Condon calculations and find an adiabatic electron affinity of (192 ± 6) meV. Similar to the case of nitromethane, the main contributions to the Franck-Condon profile come from the vibrational modes involving the nitro group. For nitropropane and nitrobutane, electron affinities are tentatively 223 meV and 238 meV, respectively.

  17. High-kinetic-energy photoemission spectroscopy of Ni at 1s : 6-eV satellite at 4 eV

    NASA Astrophysics Data System (ADS)

    Karis, O.; Svensson, S.; Rusz, J.; Oppeneer, P. M.; Gorgoi, M.; Schäfers, F.; Braun, W.; Eberhardt, W.; Mårtensson, N.

    2008-12-01

    Electron correlations are responsible for many profound phenomena in solid-state physics. A classical example is the 6-eV satellite in the photoelectron spectrum of Ni. Until now the satellite structure has only been investigated at the L shell and more shallow levels. Here we report a high-kinetic-energy photoemission spectroscopy (HIKE) investigation of Ni metal. We present 1s and 2p photoelectron spectra, obtained using excitation energies up to 12.6 keV. Our investigation demonstrates that the energy position of the satellite relative to the main line is different for the 1s and the 2p levels. In combination with electronic structure calculations, we show that this energy shift is attributed to unique differences in the core-valence coupling for the K and L2,3 shells in 3d transition metals, resulting in different screening of the core holes.

  18. X-ray photoelectron spectroscopy study of chemically-etched Nd-Ce-Cu-O surfaces

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Gupta, A.; Kussmaul, A.

    1991-01-01

    Acetic acid, Br2, and HCl solutions are investigated for removing insulating species from Nd(1.85)Ce(0.15)CuO(4-delta) (NCCO) thin film surfaces. X-ray photoelectron spectroscopy (XPS) shows that the HCl etch is most effective, yielding O 1s spectra comparable to those obtained from samples cleaned in vacuum and a clear Fermi edge in the valence band region. Reduction and oxidation reversibly induces and eliminates, respectively, Fermi level states for undoped samples, but has no clearly observable effect on the XPS spectra for doped samples. Reactivity to air is much less for NCCO compared to hole superconductors, which is attributed to the lack of reactive alkaline earth elements in NCCO.

  19. Electronic and Photoelectron Spectroscopy of Toluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tame-Reyes, Victor; Wright, Timothy G.

    2012-06-01

    Electronic and photoelectron spectra of toluene are presented and discussed. The utilization of a recently reported scheme for assigning the normal vibrations of substituted benzenes allows these spectra to be compared to those of other molecules with unprecedented clarity. Changes in vibrational activity within a series of substituted benzene molecules will be discussed, specifically the increased rate of intramolecular vibrational energy redistribution observed in molecules where the substituent is a methyl group. A. M. Gardner and T. G. Wright, J. Chem. Phys., 135, 114305 (2011)

  20. Interfacial atomic site characterization by photoelectron diffraction for 4H-AlN/4H-SiC(11\\bar{2}0) heterojunction

    NASA Astrophysics Data System (ADS)

    Maejima, Naoyuki; Horita, Masahiro; Matsui, Hirosuke; Matsushita, Tomohiro; Daimon, Hiroshi; Matsui, Fumihiko

    2016-08-01

    The interfacial atomic structure of an AlN thin film on a nonpolar 4H-SiC(11\\bar{2}0) substrate grown by atomic Al and N plasma deposition was studied by photoelectron diffraction and spectroscopy. The epitaxial growth of the thin film was confirmed by the comparison of element-specific photoelectron intensity angular distributions (PIADs). Depth profiles were analyzed by angle-resolved constant-final-state-mode X-ray photoelectron spectroscopy (AR-XPS). No polar angular dependence was observed in Al 2p spectra, while an additional intermixing component was found in interface-sensitive N 1s spectra. The site-specific N 1s PIADs for the AlN film and an intermixing component were derived from two N 1s PIADs with different binding energies. We attributed the intermixing component to SiN interfacial layer sites. In order to prevent SiN growth at the interface, we deposited Al on the SiC(11\\bar{2}0) substrate prior to the AlN growth. A significant reduction in the amount of intermixing components at the AlN/SiC interface was confirmed by AR-XPS.

  1. X-ray photoelectron spectroscopy studies of MgB 2 for valence state of Mg

    NASA Astrophysics Data System (ADS)

    A. Talapatra; Bandyopadhyay, S. K.; Sen, Pintu; Barat, P.; Mukherjee, S.; Mukherjee, M.

    2005-03-01

    Core level X-ray photoelectron spectroscopy (XPS) studies have been carried out on polycrystalline MgB 2 pellets over the whole binding energy range with a view to having an idea of the charge state of magnesium (Mg). We observe three distinct peaks in Mg 2p spectra at 49.3 eV (trace), 51.3 eV (major) and 54.0 eV (trace), corresponding to metallic Mg, MgB 2 and MgCO 3 or, divalent Mg species, respectively. Similar trend has been noticed in Mg 2s spectra. The binding energy of Mg in MgB 2 is lower than that corresponding to Mg(2+), indicative of the fact that the charge state of Mg in MgB 2 is less than (2+). Lowering of the formal charge of Mg promotes the σ → π electron transfer in boron (B) giving rise to holes on the top of the σ-band which are involved in coupling with B E 2g phonons for superconductivity. Through this charge transfer, Mg plays a positive role in hole superconductivity. B 1s spectra consist of three peaks corresponding to MgB 2, boron and B 2O 3. There is also evidence of MgO due to surface oxidation as seen from O 1s spectra.

  2. Site-specific Auger electron spectra of ethyl trifluoroacelate molecules studied by magnetic bottle electron spectrometer

    NASA Astrophysics Data System (ADS)

    Iwayama, Hiroshi; Shigemasa, Eiji; Hikosaka, Yasumasa; Nakano, Motoyoshi; Ito, Kenji; Lablanquie, Pascal; Penet, Francis; Andric, Lidija; Selles, Patricia

    2012-11-01

    We performed multielectron coincidence measurements for inner-shell photoionizations of ethyl trifluoroacelate molecules (C4H5F3O2) using a magnetic bottle electron spectrometer. From a two dimensional coincidence map between a photoelectron and Auger electron for C 1s ionizations, we extracted site-specific Auger electron spectra for each carbon site and corresponding binding energy of doubly charged states.

  3. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  4. Photoelectron Spectroscopy of U Oxide at LLNL

    SciTech Connect

    Tobin, J G; Yu, S; Chung, B W; Waddill, G D

    2010-03-02

    In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.

  5. Quenching and restoring of the A {sup 2}{pi} cationic state in resonant Auger electron spectra of CO in the vicinity of the O 1s{yields}2{pi} resonance

    SciTech Connect

    Feifel, R.; Tanaka, T.; Hoshino, M.; Tanaka, H.; Tamenori, Y.; Carravetta, V.; Ueda, K.

    2006-12-15

    The evolution of the vibrational intensity distribution of the singly ionized A {sup 2}{pi} state in CO is experimentally examined for photon energy detunings below the adiabatic 0-0 transition of the O 1s{yields}2{pi} resonance. We have found a strong suppression of the entire vibrational fine structure of this state, leading to its almost complete quenching for certain excitation energies, followed by a partial restoring for larger values of negative photon energy detuning. Our observation, that cannot be rationalized by the known model of a vibrational collapse for energy detuning, may be explained in terms of a Fano interference between the direct and resonant photoionization channels in the presence of strong lifetime vibrational interference.

  6. Temporal and spectral variations of the photoelectron flux and solar irradiance during an X class solar flare

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Chamberlin, P. C.; Woods, T. N.; Richards, P. G.

    2008-06-01

    Photoelectrons are the main energy source of airglow used to diagnose the state of the ionosphere-thermosphere system. Because of measurement uncertainties and substantial gaps in the historical record, parameterized models of the EUV irradiance and photoelectron flux are generally used to estimate airglow intensities. This paper compares observed and modeled photoelectron spectra from an X3 class flare that occurred on July 15, 2002. The photoelectron data were obtained from the FAST satellite. Model photoelectron spectra were obtained from the Field Line Inter-hemispheric Plasma (FLIP) model using 10 s cadence solar spectra at 1 nm resolution from the Flare Irradiance Spectral Model (FISM). The observed and modeled spectra agree well temporally and spectrally within the uncertainties of the models and data. Systematic differences found between observed and modeled photoelectron spectra suggest that the solar irradiance from FISM could be improved at wavelengths shortward of 17 nm.

  7. X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling

    SciTech Connect

    Black, Leon . E-mail: l.black@shu.ac.uk; Garbev, Krassimir; Beuchle, Guenter; Stemmermann, Peter; Schild, Dieter

    2006-06-15

    X-ray photoelectron spectroscopy (XPS) has been used to analyse a series of mechanochemically synthesised, nanocrystalline calcium silicate hydrates (C-S-H). The samples, with Ca/Si ratios of 0.2 to 1.5, showed structural features of C-S-H(I). XPS analysis revealed changes in the extent of silicate polymerisation. Si 2p, Ca 2p and O 1s spectra showed that, unlike for the crystalline calcium silicate hydrate phases studied previously, there was no evidence of silicate sheets (Q{sup 3}) at low Ca/Si ratios. Si 2p and O 1s spectra indicated silicate depolymerisation, expressed by decreasing silicate chain length, with increasing C/S. In all spectra, peak narrowing was observed with increasing Ca/Si, indicating increased structural ordering. The rapid changes of the slope of FWHM of Si 2p, {delta} {sub Ca-Si} and {delta} {sub NBO-BO} as function of C/S ratio indicated a possible miscibility gap in the C-S-H-solid solution series between C/S 5/6 and 1. The modified Auger parameter ({alpha}') of nanocrystalline C-S-H decreased with increasing silicate polymerisation, a trend already observed studying crystalline C-S-H. Absolute values of {alpha}' were shifted about - 0.7 eV with respect to crystalline phases of equal C/S ratio, due to reduced crystallinity.

  8. Development of a new photoelectron spectroscopy instrument combining an electrospray ion source and photoelectron imaging

    SciTech Connect

    McKay, A. R.; Sanz, M. E.; Mooney, C. R. S.; Minns, R. S.; Gill, E. M.; Fielding, H. H.

    2010-12-15

    A new apparatus has been constructed that combines electrospray ionization with a quadrupole mass filter, hexapole ion trap, and velocity-map imaging. The purpose is to record photoelectron images of isolated chromophore anions. To demonstrate the capability of our instrument we have recorded the photodetachment spectra of isolated deprotonated phenol and indole anions. To our knowledge, this is the first time that the photodetachment energy of the deprotonated indole anion has been recorded.

  9. Intensity oscillations in the carbon 1s ionization cross sections of 2-butyne

    SciTech Connect

    Carroll, Thomas X.; Zahl, Maria G.; Borve, Knut J.; Saethre, Leif J.; Decleva, Piero; Ponzi, Aurora; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Thomas, T. Darrah

    2013-06-21

    Carbon 1s photoelectron spectra for 2-butyne (CH{sub 3}C{identical_to}CCH{sub 3}) measured in the photon energy range from threshold to 150 eV above threshold show oscillations in the intensity ratio C2,3/C1,4. Similar oscillations have been seen in chloroethanes, where the effect has been attributed to EXAFS-type scattering from the substituent chlorine atoms. In 2-butyne, however, there is no high-Z atom to provide a scattering center and, hence, oscillations of the magnitude observed are surprising. The results have been analyzed in terms of two different theoretical models: a density-functional model with B-spline atom-centered functions to represent the continuum electrons and a multiple-scattering model using muffin-tin potentials to represent the scattering centers. Both methods give a reasonable description of the energy dependence of the intensity ratios.

  10. Threshold photoelectron spectroscopy of vibrationally excited nitrogen

    NASA Astrophysics Data System (ADS)

    Innocenti, Fabrizio; Eypper, Marie; Stranges, Stefano; West, John B.; King, George C.; Dyke, John M.

    2013-02-01

    Threshold photoelectron spectroscopy (TPES) has been used to study flowing nitrogen subjected to a microwave discharge. The first three photoelectron (PE) bands of nitrogen corresponding to the ionizations N2+ (X2Σ+g) v+ ← N2 (X1Σ+g) v″, N2+ (A2Πu) v+ ← N2 (X1Σ+g) v″ and N2 + (B2Σ+u) v+ ← N2 (X1Σ+g) v″ were investigated. An analysis of the vibrationally resolved threshold photoelectron (TPE) spectra shows evidence of population of the vibrational levels v″ = 0-5 in the N2 X1Σ+g neutral state. By a comparison with the PE spectrum recorded under the same conditions, use of computed Franck-Condon factors for each ionization and evidence from vacuum ultraviolet absorption spectroscopy, the relative intensities of vibrational components in a TPE band can be qualitatively explained using the Franck-Condon factors for each ionization as well as the gain in intensity from autoionization from Rydberg states that are degenerate with an ionization threshold or lie just above a threshold. The enhancement in intensity obtained in the TPE spectra, relative to the intensity in a PE spectrum recorded under the same conditions, was estimated as at least one order of magnitude. The first band of atomic nitrogen was also observed in the discharge-on TPE spectra. The experimental resolution was sufficiently good to allow the three ionizations N+(3P0,1,2) ← N(4S3/2) to be resolved and their relative component intensities were measured as 1: 0.95 ± 0.10: 0.70 ± 0.10. The complementary nature of the TPES and PES techniques has been outlined and the extra information obtained from studying a vibrationally excited small molecule such as N2 with these methods has been demonstrated.

  11. Laser photoelectron spectroscopy of ions. Progress report

    SciTech Connect

    Ellison, G.B.

    1992-01-16

    This enterprise uses photoelectron spectroscopy to study the properties of negative ions and radicals. The essence of our experiment is to cross a 0.6 keV mass-selected ion beam (M{sup {minus}}) with the output of a CW laser, {Dirac_h}{omega}{sub o}. The resultant detached photoelectrons with kinetic energy, KE, are energy analyzed by means of a set of electrostatic hemispherical analyzers. Analysis of the photoelectron spectra enables us to extract molecular electron affinities, vibrational frequencies and electronic splittings of the final radical, M, as well as the relative molecular geometries of ions (M{sup {minus}}) and radicals (M). We have scrutinized the two simplest nitrenes: methylnitrene (CH{sub 3}N) and phenylnitrene (C{sub 6}H{sub 5}N). By preparing the corresponding anions, CH{sub 3}N{sup {minus}} and C{sub 6}H{sub 5}N{sup {minus}}, we have studied these nitrene biradicals. Singlet methylnitrene is especially interesting since it is formally a ``transition state.``

  12. Quasi-in-situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction.

    PubMed

    Bocchetta, Patrizia; Amati, Matteo; Bozzini, Benedetto; Catalano, Massimo; Gianoncelli, Alessandra; Gregoratti, Luca; Taurino, Antonietta; Kiskinova, Maya

    2014-11-26

    This paper reports an investigation into the aging of pyrolyzed cobalt/polypyrrole (Co/PPy) oxygen reduction reaction (ORR) electrocatalysts, based on quasi-in-situ photoelectron microspectroscopy. The catalyst precursor was prepared by potentiostatic reverse-pulse coelectrodeposition from an acetonitrile solution on graphite. Accelerated aging was obtained by quasi-in-situ voltammetric cycling in an acidic electrolyte. Using photoelectron imaging and microspectroscopy of single Co/PPy grains at a resolution of 100 nm, we tracked the ORR-induced changes in the morphology and chemical state of the pristine material, consisting of uniformly distributed ∼20 nm nanoparticles, initially consisting of a mixture of Co(II) and Co(III) oxidation states in almost equal amounts. The evolution of the Co 2p, O 1s, and N 1s spectra revealed that the main effects of aging are a gradual loss of the Co present at the surface and the reduction of Co(III) to Co(II), accompanied by the emergence and growth of a N 1s signal, corresponding to electrocatalytically active C-N sites. PMID:25369153

  13. A versatile photoelectron spectrometer for pressures up to 30 mbar

    NASA Astrophysics Data System (ADS)

    Eriksson, Susanna K.; Hahlin, Maria; Kahk, Juhan Matthias; Villar-Garcia, Ignacio J.; Webb, Matthew J.; Grennberg, Helena; Yakimova, Rositza; Rensmo, Hâkan; Edström, Kristina; Hagfeldt, Anders; Siegbahn, Hans; Edwards, Mârten O. M.; Karlsson, Patrik G.; Backlund, Klas; Åhlund, John; Payne, David J.

    2014-07-01

    High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al Kα X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.

  14. A versatile photoelectron spectrometer for pressures up to 30 mbar

    SciTech Connect

    Eriksson, Susanna K.; Edström, Kristina; Hagfeldt, Anders; Hahlin, Maria; Rensmo, Håkan; Siegbahn, Hans; Kahk, Juhan Matthias; Villar-Garcia, Ignacio J.; Payne, David J.; Webb, Matthew J.; Grennberg, Helena; Yakimova, Rositza; Edwards, Mårten O. M.; Karlsson, Patrik G.; Backlund, Klas; Åhlund, John

    2014-07-15

    High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al Kα X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.

  15. Optical and x-ray photoelectron spectroscopy studies of α-Al2O3

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Kumar, Sandeep; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2016-05-01

    α-Al2O3 powder sample was synthesized at 550 °C via solution combustion synthesis (SCS) method using urea as an organic fuel. The sample was characterized by X-ray diffraction (XRD), Optical spectroscopy and X-ray photoelectron spectroscopy (XPS) without any further thermal treatment. XRD study reveals that the powder crystallized directly in the hexagons α-Al2O3 phase. A band gap of 5.7 eV was estimated using diffuse reflectance spectra. For surface investigation X-ray photo electron spectroscopy (XPS) was carried out. The XPS survey scan study of α-Al2O3 powder reveals that the sample is free from impurity. The core levels of Al-2s and O-1s are also reported.

  16. Vibrational intensity distributions in the photoelectron spectrum of hydrogen

    NASA Technical Reports Server (NTRS)

    Gardner, J. L.; Samson, J. A. R.

    1975-01-01

    The intensity distribution over the H2(+) vibrational levels up to a quantum number of 15 was measured for H2 photoelectron spectra at a photon wavelength of 584 A. The data show reasonable agreement with recent calculations only in the quantum number of 0 through 8. The higher levels are populated significantly lower than predicted by theory.

  17. Enantioselective femtosecond laser photoionization spectrometry of limonene using photoelectron circular dichroism.

    PubMed

    Rafiee Fanood, Mohammad M; Janssen, Maurice H M; Powis, Ivan

    2015-04-14

    Limonene is ionized by circularly polarized 420 nm femtosecond laser pulses. Ion mass and photoelectron energy spectra identify the dominant (2 + 1) multiphoton ionization mechanism, aided by TDDFT calculations of the Rydberg excitations. Photoelectron circular dichroism measurements on pure enantiomers reveal a chiral asymmetry of ±4 %. PMID:25744283

  18. Development of a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA), and its application to Auger photoelectron coincidence spectroscopy (APECS)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Eiichi; Seo, Junya; Nambu, Akira; Mase, Kazuhiko

    2007-09-01

    We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be E/Δ E = 20. This value is better than that of the miniature single-pass CMA ( E/Δ E = 12) that was used in the previous APECS analyzer.

  19. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  20. Energetic (above 60 eV) atmospheric photoelectrons

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Decker, D. T.; Kozyra, J. U.; Nagy, A. F.; Jasperse, J. R.

    1989-01-01

    Data from low altitude plasma instrument (LAPI) on Dynamics Explorer 2 document a population of high-energy (up to 800 eV) atmospheric photoelectrons that has not been reported in the published literature. The source of these photoelectrons is postulated to be the soft X-ray portion of the whole sun spectrum. This conclusion is supported by sunrise-sunset characteristics that track those of the classical (below 60 eV) EUV-produced photoelectrons, and theoretical results from two models that incorporate the soft X-ray portion of the solar spectrum. The models include K-shell ionization effects and predict peaks in the photoelectron spectrum due to Auger electrons emitted from oxygen and nitrogen. The peak for nitrogen is observed as predicted, but the peak for oxygen is barely observable. Excellent quantitative agreement is achieved between theory and experiment by using reasonable adjustments to the few published soft X-ray spectra based on solar activity. The upflowing energetic photoelectrons provide a heretofore unknown source of electrons to the magnetosphere. They occur whenever and wherever the sun is up, that is, at all invariant latitudes. Their density is low, but they are steady and ubiquitous. If scattering and trapping occur on closed field lines, then photoelectrons could contribute as a significant particle source and thus represent a new facet of magnetosphere-ionosphere coupling.

  1. X-ray photoelectron spectroscopy study of thin TiO2 films cosputtered with Al

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Cherng; Wang, Paul W.; Lee, Cheng-Chung

    2006-06-01

    In this study, titanium dioxide (TiO2) films were fabricated by cosputtering of a titanium (Ti) target and an aluminum (Al) slice in a smaller area by an ion-beam sputtering deposition method. The sputtered films were postannealed at 450 °C. The x-ray photoelectron spectroscopy spectra were categorized by their oxygen bonding variations, which include high-binding-energy oxygen, (HBO), bridging oxygen, low-binding-energy oxygen, and shifts of the binding energies (BEs) of oxygen (O) and Ti signals. The enhancement of HBO and higher BE shifts of the O 1s spectra as a function of cosputtered Al in the film imply the formation of an Al—O—Ti linkage. Corresponding changes in the Ti 2p spectra further confirm the modification of properties of the cosputtered film that results from the variation of the chemical bonding environment. An observed correlation between the chemical structure and optical absorption of the Al cosputtered films can be used to modify the optical properties of the film.

  2. O1s photoionization dynamics in oriented NO2

    NASA Astrophysics Data System (ADS)

    Stener, Mauro; Decleva, Piero; Yamazaki, Masakazu; Adachi, Jun-ichi; Yagishita, Akira

    2011-05-01

    We have performed extensive density functional theory (DFT) calculations, partial cross sections, dipole prepared continuum orbitals, dipole amplitudes and phase shifts, asymmetry parameters β, and molecular frame photoelectron angular distributions, to elucidate the O1s photoionization dynamics of NO2 molecule with emphasis on the shape resonances in the O1s ionization continuum. In the shape resonance region, the β parameters and photoelectron angular distributions have been compared with our experimental results. Fairly good agreement between the theory and experiment has confirmed that the DFT level calculations can well describe the photoionization dynamics of the simple molecule such as NO2. Interference due to equivalent atom photoionization is theoretically considered, and the possibility of detection of the effect in the two degenerate channels with different combinations of light polarization and photoemission direction is discussed.

  3. Understanding the role of buried interface charges in a metal-oxide-semiconductor stack of Ti/Al{sub 2}O{sub 3}/Si using hard x-ray photoelectron spectroscopy

    SciTech Connect

    Church, J. R.; Opila, R. L.; Weiland, C.

    2015-04-27

    Hard X-ray photoelectron spectroscopy (HAXPES) analyses were carried out on metal-oxide-semiconductor (MOS) samples consisting of Si, thick and thin Al{sub 2}O{sub 3}, and a Ti metal cap. Using Si 1s and C 1s core levels for an energy reference, the Al 1s and Si 1s spectra were analyzed to reveal information about the location and roles of charges throughout the MOS layers. With different oxide thicknesses (2 nm and 23 nm), the depth sensitivity of HAXPES is exploited to probe different regions in the MOS structure. Post Ti deposition results indicated unexpected band alignment values between the thin and thick films, which are explained by the behavior of mobile charge within the Al{sub 2}O{sub 3} layer.

  4. Oxygen species on the silver surface oxidized by MW-discharge: Study by photoelectron spectroscopy and DFT model calculations

    NASA Astrophysics Data System (ADS)

    Kibis, Lidiya S.; Avdeev, Vasilii I.; Koscheev, Sergei V.; Boronin, Andrei I.

    2010-07-01

    A polycrystalline silver surface has been studied by synchrotron radiation photoelectron spectroscopy after deep oxidation by microwave discharge in an O 2 atmosphere. Oxidized structures with high oxygen content, AgO x with x > 1, have been found on the silver surface after oxidation at 300-400 K. The line shapes observed in the O1s spectra were decomposed into five components and indicated that complex oxidized species were formed. An analysis of the oxidized structures with binding energies, Еb(O1s), greater than 530 eV pointed to the presence of both Ag-O and O-O bonds. We have carried out a detailed experimental study of the valence band spectra in a wide spectral range (up to 35 eV), which has allowed us to register the multicomponent structure of spectra below Ag4d band. These features were assigned to the formation of Ag-O and O-O bonds composed of molecular (associative) oxygen species. DFT model calculations showed that saturation of the defect oxidized silver surface with oxygen leads to the formation of associative oxygen species, such as superoxides, with electrophilic properties and covalent bonding. The high stability of oxygen-rich silver structures, AgO x, can be explained by the formation of small silver particles during the intensive MW oxidation, which can stabilize such oxygen species.

  5. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  6. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy.

    PubMed

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E

    2016-05-27

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway. PMID:27023757

  7. On Interpreting the Photoelectron Spectra of MgO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    2001-01-01

    The (sup 2)Sigma(+) and (sup 2)Pi states of MgO(-) and the (sup 1)Sigma(+), (sup 1)Pi, and (sup 3)Pi states of MgO are studied using the averaged coupled-pair functional (ACPF) approach. The computed spectroscopic constants are in good agreement with the available experimental data. The computed Franck-Condon factors and photodetachment overlaps are compared with experiment.

  8. Versatile cluster based photoelectron spectrometer

    SciTech Connect

    Knappenberger, K. L. Jr.; Jones, C. E. Jr.; Sobhy, M. A.; Castleman, A. W. Jr.

    2006-12-15

    A recently constructed cluster based photoelectron spectrometer is described. This instrumentation is unique in that it enables the kinetic energy analysis of electrons ejected from both anions and neutral clusters. This capability permits the investigation of discrete electronic levels in all charge states (anionic, neutral, and cationic). A laser vaporization plasma reactor cluster source affixed with a sublimation cell is employed to produce a variety of metal clusters, and the resulting cluster distributions are analyzed with time-of-flight mass spectrometry. The corresponding electronic structure is analyzed with a 'magnetic bottle' photoelectron spectrometer. Examples of instrument performance operating in both anion photodetachment and neutral multiphoton ionization (MPI) modes are provided. In the case of neutral MPI, the corresponding product distribution is collected with a Wiley-McLaren [Rev. Sci. Instrum. 26, 1150 (1955)] mass spectrometer mounted perpendicular to the magnetic bottle photoelectron spectrometer.

  9. Slow photoelectron spectroscopy of 3-hydroxyisoquinoline.

    PubMed

    Pan, Yi; Lau, Kai-Chung; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Hochlaf, Majdi

    2013-08-29

    We studied the single photon ionization of gas phase 3-hydroxyisoquinoline by means of VUV synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer. Near the ionization thresholds of 3-hydroxyisoquinoline, the photoionization is found to occur mainly via a direct process. The spectra are assigned with the help of theoretical calculations on the equilibrium geometries, electronic states patterns, harmonic and anharmonic wavenumbers of the lactim and lactam forms of 3-hydroxyisoquinoline and their cations. The slow photoelectron spectrum (SPES) of this lactim is dominated by vibrational transitions to the X̃ state of the cation. In addition, several weaker and complex bands are observed, corresponding to the population of the vibrational bands (pure or combination) of the à electronically excited state of the cation. The adiabatic ionization energy of 3-hydroxyisoquinoline and the lowest electronic state energetics of the lactim and lactam cationic forms are determined. PMID:23360492

  10. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  11. Angular-resolved photoelectron spectroscopy of corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Olejnik, K.; Zemek, J.; Werner, W. S. M.

    2005-12-01

    The influence of surface roughness on angle-resolved photoelectron intensities has been studied by means of a semiempirical method and experimentally. The full three-dimensional information about the surface roughness of real samples measured by atomic force microscopy (AFM) was used as an input for the calculations of the so-called tilt-angle histograms. Both effects of surface roughness, shadowing of photoelectrons and differences between microscopic and macroscopic signal electron emission geometry (true emission angles), are taken into account. Photoelectron current is then calculated using a common formalism XPS/AES valid for ideally flat surfaces, i.e. analytically by the straight-line approximation (SLA) or by Monte Carlo calculations. The approach which can be applied for an arbitrary type of surface roughness is verified on angular-resolved Si 2p photoelectron spectra recorded from model silicon samples with different artificially modified surface roughness, covered by a thin silicon oxide film and a surface contamination. The effect of surface roughness on the Si 2p photoelectron intensities was found to be quite prevalent over electron elastic scattering or surface contamination effects. The so-called magic angle depended on a character of surface roughness.

  12. Ultrafast dynamics in thiophene investigated by femtosecond pump probe photoelectron spectroscopy and theory.

    PubMed

    Weinkauf, R; Lehr, L; Schlag, E W; Salzmann, S; Marian, C M

    2008-01-21

    A hybrid of a time-of-flight mass spectrometer and a time-of-flight "magnetic-bottle type" photoelectron (PE) spectrometer is used for fs pump-probe investigations of the excited state dynamics of thiophene. A resonant two-photon ionization spectrum of the onset of the excited states has been recorded with a tunable UV laser of 190 fs pulse width. With the pump laser set to the first intense transition we find by UV probe ionization first a small time shift of the maxima in the PE spectrum and then a fast decay to a low constant intensity level. The fitted time constants are 80+/-10 fs, and 25+/-10 fs, respectively. Theoretical calculations show that upon geometry relaxation the electronic state order changes and conical intersections between excited states exist. We use the vertical state order S1, S2, S3 to define the terms S1, S2, and S3 for the characterization of the electron configuration of these states. On the basis of our theoretical result we discuss the electronic state order in the UV spectra and identify in the photoelectron spectrum the origin of the first cation excited state D1. The fast excited state dynamics agrees best with a vibrational dynamics in the photo-excited S1 (80+/-10 fs) and an ultrafast decay via a conical intersection, presumably a ring opening to the S3 state (25+/-10 fs). The subsequently observed weak constant signal is taken as an indication, that in the gas phase the ring-closure to S0 is slower than 50 ps. An ultrafast equilibrium between S1 and S2 before ring opening is not supported by our data. PMID:18174981

  13. Surface structure of human mucin using X-ray photoelectron spectroscopy.

    PubMed

    Russell, B G; Moddeman, W E; Birkbeck, J C; Wright, S E; Millington, D S; Stevens, R D; Dombrowski, K E

    1998-01-01

    X-ray photoelectron spectroscopy (XPS) is a surface sensitive analytical technique that measures the binding energy of electrons in atoms and molecules on the surface of a material. XPS was used to determine the distribution of the oligosaccharide side chains in the glycoprotein, MUC1 mucin. Low-resolution XPS spectra provided elemental composition of MUC1 mucin (fully glycosylated), mucin polypeptide (nonglycosylated), and carbohydrates found in mucin. The nitrogen content of MUC1 mucin was determined to be intermediate between the mucin polypeptide and the carbohydrates. Assuming a uniform distribution of carbohydrate on MUC1 mucin, the average thickness of the carbohydrate layer was calculated to be 4.9 nm using the low-resolution N 1s signals. High-resolution XPS spectra give detailed information about the chemical bonding of the surface molecules. Calculations based on the high-resolution O 1s spectra showed a carbohydrate thickness of 6.6 nm. These experimentally determined values agree reasonably well with an estimated 5 nm of carbohydrate thickness from a simple model which assume that the core protein is a rodlike molecule approximately 5 nm in diameter. Although the carbohydrate coating on the MUC1 mucin appears to be thick enough to cover the core protein entirely, fully glycosylated breast milk MUC1 mucin is susceptible to proteolytic digestion without removal of any oligosaccharide side chain, suggesting areas of exposed core protein. A possible explanation is that the oligosaccharide side chains may form patches of carbohydrate along the core protein with regions of exposed core protein. PMID:9706384

  14. Time-Resolved Photoelectron Spectroscopy of Coupled Nuclear-Electronic Dynamics

    NASA Astrophysics Data System (ADS)

    Falge, M.; Engel, V.; Gräfe, S.

    2013-03-01

    We study the effect of nuclear-electron coupling on time-resolved photo-electron spectra, employing a model system which allows to directly comparing spectra resulting from the adiabatic approximation with those obtained within a non-Born-Oppenheimer description.

  15. The combined use of a singly charged ion beam and undulator radiation for photoelectron spectrometry studies on atomic ions

    NASA Astrophysics Data System (ADS)

    Bizau, J. M.; Cubaynes, D.; Richter, M.; Wuilleumier, F.; Obert, J.; Putaux, J. C.

    1992-01-01

    We present the first photoelectron spectrometry experiment on a singly charged ion beam. Taking advantage of the high photon flux emitted in the undulator SU6 of Super-ACO, we have measured photoelectron spectra produced in the resonant photoionization of Ca+ ions at 33.2-eV photon energy. The success of this experiment depended strongly on the photon flux available. We demonstrate the capability of photoelectron spectrometry to precisely calibrate the photon spectrum emitted in the undulator.

  16. X-ray photoelectron spectroscopic and Raman analysis of silk fibroin-Cu(II) films.

    PubMed

    Zhou, Li; Chen, Xin; Dai, Weilin; Shao, Zhengzhong

    2006-06-01

    There is evidence to suggest that Cu(II) is involved in the natural spinning process of a silkworm helping to convert the concentrated silk fibroin (SF) solution (or dope) into tough insoluble threads. To investigate the interaction between SF and Cu(II), a series of regenerated SF (RSF) films with different mass ratios of Cu(II) to SF were prepared. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical interaction between Cu(II) and SF in these Cu(II)-RSF films. A significant change in the binding energy of Cu 2p(3/2) demonstrated that the chemical state of Cu(II) in the Cu(II)-RSF films was affected by the interaction between Cu(II) and SF. Moreover, chemical shifts of N 1s and O 1s of SF were also detected, implying that Cu(II) may coordinate with both N and O atoms in the SF. In addition, Raman spectra of the same series of Cu(II)-RSF films recorded the conformation transition of SF that may occur by the coordination of Cu(II) and SF macromolecular chains. PMID:16463361

  17. Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Matsushita, Tomohiro; Koh, Shinji; Daimon, Hiroshi

    2013-11-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions.

  18. Thickness determination of molecularly thin lubricant films by angle-dependent X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Chongjun; Bai, Mingwu

    2007-03-01

    An angle-dependent X-ray photoelectron spectroscopy (XPS) method used to measure the thickness of molecularly thin lubricants was developed. The method was built based on an island model of patched overlayer on a flat substrate by using the photoemission signal solely from the lubricant film. Typical molecularly thin Zdol films on the CHx overcoat of unused commercial magnetic disks were measured to verify the metrology. The lubricant thickness determined by the metrology was equal to the recent result by thermostatic high vacuum atomic force microscopy. The measured deduction in the thickness of the molecularly thin lubricant films, successively irradiated by the monochromatic source operated at 14 kV/250 W, was as low as 1 Ǻ during the first irradiation hour. XPS spectra showed that no hydrocarbons, water or oxygen were adsorbed over the Zdol outer surfaces in the tested XPS conditions. The inelastic mean free path (IMFP) of C 1s in Zdol or in CHx was found to be independent of take off angle (TOA) when TOA < 40°. The IMFP of C 1s in Zdol was ˜63.5 Ǻ and the lubricant island thickness was ˜35 Ǻ.

  19. High-Resolution Threshold Photoionization and Photoelectron Spectroscopy of Propene and 2-BUTYNE

    NASA Astrophysics Data System (ADS)

    Michaud, Julie M.; Vasilatou, Konstantina; Merkt, Frédéric

    2009-06-01

    The high-resolution photoionization and pulsed-field ionization zero-kinetic energy (PFI-ZEKE) photoelectron spectra of propene and 2-butyne and their perdeuterated isotopologues have been recorded in the vicinity of the first adiabatic ionization energy following single-photon excitation from the neutral ground state using a narrowband vacuum ultraviolet laser system. The spectral resolution of better than 0.1 cm^{-1} achieved in these spectra has enabled us to partially resolve the rotational structure of the photoelectron spectra and to obtain information on the internal rotation/torsional vibration of the methyl groups in the cationic ground state. The intensity distributions observed in the photoelectron spectra will be discussed in terms of rovibronic photoionization selection rules and Franck-Condon factors for transitions between the neutral and ionized molecules.

  20. Negative ion photoelectron spectroscopy of bare transition metal dimers

    NASA Astrophysics Data System (ADS)

    Barker, Beau J.

    This thesis contains gas phase negative ion photoelectron spectra of Mo2, MoV, CrCu, MoCu and Cu2. Spectra were taken with 488 nm and 514 nm light at a resolution of 4-5 meV. Information such as electron affinities, vibrational frequencies, anharmonicities and bond dissociation energies are reported for the ground and excited electronic states of both the anion and neutral species. Theoretical calculations at the density functional level are also reported for these species. Experiment and theory are used to analyze the bonding in these bare transition metal dimers.

  1. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  2. Photoelectron diffraction and holography: Present status and future prospects

    SciTech Connect

    Fadley, C.S. |; Thevuthasan, S.; Kaduwela, A.P.

    1993-07-01

    Photoelectron diffraction and photoelectron holography, a newly developed variant of it, can provide a rich range of information concerning surface structure. These methods are sensitive to atomic type, chemical state, and spin state. The theoretical prediction of diffraction patterns is also well developed at both the single scattering and multiple scattering levels, and quantitative fits of experiment to theory can lead to structures with accuracies in the {plus_minus}0.03 {Angstrom} range. Direct structural information can also be derived from forward scattering in scanned-angle measurements at higher energies, path length differences contained in scanned-energy data at lower energies, and holographic inversions of data sets spanning some region in angle and energy space. Diffraction can also affect average photoelectron emission depths. Circular dichroism in core-level emission can be fruitfully interpreted in terms of photoelectron diffraction theory, as can measurements with spin-resolved core-spectra, and studies of surface magnetic structures and phase transitions should be possible with these methods. Synchrotron radiation is a key element of fully utilizing these techniques.

  3. Chemical bonding and electronic structures of microcline, orthoclase and the plagioclase series by X-ray photoelectron spectroscopy.

    PubMed

    Kloprogge, J Theo; Wood, Barry J

    2015-02-25

    A detailed analysis was undertaken of the X-ray photoelectron spectra obtained from microcline, orthoclase and several samples of plagioclase with varying Na/Ca ratio. Comparison of the spectra was made based on the chemical bonding and structural differences in the Al- and Si-coordination within each specimen. The spectra for Si 2p and Al 2p vary with the change in symmetry between microcline and orthoclase, while in plagioclase an increase in Al-O-Si linkages results in a small but observable decrease in binding energy. The overall shapes of the O 1s peaks observed in all spectra are similar and show shifts similar to those observed for Si 2p and Al 2p. The lower-VB spectra for microcline and orthoclase are similar intermediate between α-SiO2 and α-Al2O3 in terms of binding energies. In the plagioclase series increasing coupled substitution of Na and Si for Ca and Al results in a change of the overall shape of the spectra, showing a distinct broadening associated with the presence of two separate but overlapping bands similar to the 21 eV band observed for quartz and the 23 eV band observed for corundum. The bonding character for microcline and orthoclase is more covalent than that of α-Al2O3, but less than that of α-SiO2. In contrast, the plagioclase samples show two distinct bonding characters that are comparable with those of α-SiO2 and α-Al2O3. PMID:25261735

  4. Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study

    NASA Astrophysics Data System (ADS)

    Cockett, Martin C. R.; Ozeki, Hiroyuki; Okuyama, Katsuhiko; Kimura, Katsumi

    1993-05-01

    The two-color (1+1') threshold photoelectron spectra of naphthalene in a supersonic free jet have been recorded via nine vibronic levels of the S1 electronic state up to about 1420 cm-1 above the S1 band origin. The threshold photoelectron spectra recorded via the S1 band origin and via totally symmetric ag vibronic levels show significant intensity in Δν=+1 transitions in nontotally symmetric vibrations having b1g symmetry indicating that the ionization transition gains significant intensity through a vibronic coupling mechanism between the two lowest doublet cationic states. The strongest departure from the expected Δν=0 propensity in the threshold photoelectron spectra occurs through excitation of the totally symmetric 8 mode having ag symmetry indicating that a considerable displacement occurs along the normal coordinate of this 8 mode upon ionization from the S1 state. The superior resolution of the threshold photoelectron technique over conventional photoelectron methods has allowed accurate values for the fundamental vibrational frequencies of naphthalene in its ground cationic state to be determined and it has also allowed a more rigorous investigation of the vibronic coupling mechanism that occurs between the two lowest doublet cationic states. Moreover, an improved value for the adiabatic ionization energy of naphthalene of 65 687±7 cm-1 (8.1442±0.0009 eV) has been determined.

  5. Photoelectrons as a tool to evaluate spectral and temporal variations of solar EUV and XUV irradiance models over solar rotation and solar cycle time scales

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Woods, T. N.; Fontenla, J. M.; Richards, P. G.; Tobiska, W.; Solomon, S. C.; Warren, H. P.

    2010-12-01

    Solar radiation below 50 nm produces a substantial portion of the F region ionization and most of the E region ionization that drives chemical reactions in the thermosphere. Because of a lack of high temporal and spectral resolution Solar EUV and XUV observations, particularly below 27 nm, various solar irradiance models have been developed. We have developed a technique to use observations of escaping photoelectron fluxes from the FAST satellite and two different photoelectron production codes driven by model solar irradiance values to systematically examine differences between observed and calculated escaping photoelectron fluxes. We have compared modeled and observed photoelectron fluxes from the start of TIMED/SEE data availability (2002) to the end of FAST photoelectron observations (2009). Solar irradiance inputs included TIMED/SEE data, which is derived from a model below 27 nm, and the FISM Version 1, the SRPM predictive model based on solar observation, HEUVAC, S2000, and NRL, solar irradiance models. We used the GLOW and FLIP photoelectron production codes. We find that model photoelectron spectra generated using the HEUVAC solar irradiance model have the best overall agreement with observations. Photoelectron spectra generated with the the TIMED/SEE based FISM model best agree with the observations on solar cycle time scales. Below ~27 nm all but the HEUVAC solar irradiance model produces photoelectron fluxes that are systematically below observations. We also noted systematic differences in the photoelectron energy spectra below 25 eV produced by the GLOW and FLIP photoelectron production codes for all solar irradiance inputs.

  6. X‐ray Photoelectron Spectroscopy of Pyridinium‐Based Ionic Liquids: Comparison to Imidazolium‐ and Pyrrolidinium‐Based Analogues

    PubMed Central

    Mitchell, Daniel S.; Lovelock, Kevin R. J.

    2015-01-01

    Abstract We investigate eight 1‐alkylpyridinium‐based ionic liquids of the form [CnPy][A] by using X‐ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake‐up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic‐liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8Py][A] and analogues including 1‐octyl‐1‐methylpyrrolidinium‐ ([C8C1Pyrr][A]), and 1‐octyl‐3‐methylimidazolium‐ ([C8C1Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131

  7. X-ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues.

    PubMed

    Men, Shuang; Mitchell, Daniel S; Lovelock, Kevin R J; Licence, Peter

    2015-07-20

    We investigate eight 1-alkylpyridinium-based ionic liquids of the form [Cn Py][A] by using X-ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake-up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic-liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8 Py][A] and analogues including 1-octyl-1-methylpyrrolidinium- ([C8 C1 Pyrr][A]), and 1-octyl-3-methylimidazolium- ([C8 C1 Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131

  8. Angle-resolved photoelectron spectroscopy study of initial stage of thermal oxidation on 4H-SiC(0001)

    NASA Astrophysics Data System (ADS)

    Arai, Hitoshi; Nohira, Hiroshi

    2016-04-01

    A key to improving the performance of SiC MOSFETs is to clarify the SiO2/SiC interface structure formed by thermal oxidation. We have investigated the initial stage of thermal oxidation on 4H-SiC(0001) by angle-resolved photoelectron spectroscopy. From the changes in the Si 2p3/2 and C 1s photoelectron spectra, the changes in the chemical bonding state of the SiO2/SiC structure with the progress of thermal oxidation were observed. We also found that the intensity of C-O bonds in the case of 4H-SiC(0001) was smaller than that in the case of 4H-SiC(000\\bar{1}) with the same oxide thickness and that the oxidation rate of 4H-SiC(0001) is already slower than that of 4H-SiC(000\\bar{1}) in the early stage of oxidation.

  9. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  10. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  11. Investigation of photoelectron spectroscopy. [for obtaining branching ratios

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1973-01-01

    The problem of obtaining true and meaningful branching ratios from the photoelectron spectra is investigated. The problem consists of understanding the transmission of an electron energy analyzer for electrons with different energies, understanding the effects of using partially polarized radiation from different vacuum monochromators, and in understanding the effects of the angular distribution of photoelectrons ejected from different orbitals. An analysis of the degree of polarization of monochromatic radiation and of the problem of varying angular distributions led to the construction of a cylindrical mirror electron energy analyzer set at the special angle of 54 deg 44 min so that no discrimination would occur for electrons of different angular distributions. With the analyzer properly calibrated for transmission of electrons of different energies, data were taken at several wavelengths and for several atmospheric gases.

  12. Ar2 photoelectron spectroscopy mediated by autoionizing states.

    PubMed

    Briant, Marc; Poisson, Lionel; Hochlaf, Majdi; de Pujo, Patrick; Gaveau, Marc-André; Soep, Benoît

    2012-11-01

    This experimental work focuses on the complex autoionization dynamics of Ar(2) clusters below the first ionization energy of the argon atom. Ar(2) is submitted to vacuum ultraviolet radiation, and the photoelectron spectra are collected in coincidence with the cluster ions. The ionization dynamics is revealed by the dependence on the photon energy. We applied a new experimental method which we developed to analyze the photoelectron signal. Thus, we were able (i) to get the complete vibrational progression of Ar(2)(+) that was never observed up to now, especially identifying the 0-0 transition overcoming the usual Franck-Condon limitations during single photoionization, and (ii) to obtain the projections of the vibrational wave functions of the autoionizing states over the Ar(2)(+) functions. This method provides a powerful tool to test the potential energy curves computed by high level theoretical calculations on Rydberg states. PMID:23215381

  13. Accuracy of Calculated Chemical Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density Functional Theory.

    PubMed

    Holme, Alf; Børve, Knut J; Sæthre, Leif J; Thomas, T Darrah

    2011-12-13

    A database of 77 adiabatic carbon 1s ionization energies has been prepared, covering linear and cyclic alkanes and alkenes, linear alkynes, and methyl- or fluoro-substituted benzenes. Individual entries are believed to carry uncertainties of less than 30 meV in ionization energies and less than 20 meV for shifts in ionization energies. The database provides an unprecedented opportunity for assessing the accuracy of theoretical schemes for computing inner-shell ionization energies and their corresponding chemical shifts. Chemical shifts in carbon 1s ionization energies have been computed for all molecules in the database using Hartree-Fock, Møller-Plesset (MP) many-body perturbation theory of order 2 and 3 as well as various approximations to full MP4, and the coupled-cluster approximation with single- and double-excitation operators (CCSD) and also including a perturbational estimate of the energy effect of triple-excitation operators (CCSD(T)). Moreover, a wide range of contemporary density functional theory (DFT) methods are also evaluated with respect to computing experimental shifts in C1s ionization energies. Whereas the top ab initio methods reproduce the observed shifts almost to within the experimental uncertainty, even the best-performing DFT approaches meet with twice the root-mean-squared error and thrice the maximum error compared to CCSD(T). However, a number of different density energy functionals still afford sufficient accuracy to become tools in the analysis of complex C1s photoelectron spectra. PMID:26598356

  14. The nonresonant two-photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S

    NASA Astrophysics Data System (ADS)

    Fischer, Ingo; Lochschmidt, Andreas; Strobel, Andreas; Niedner-Schatteburg, Gereon; Mueller-Dethlefs, Klaus; Bondybey, Vladimir E.

    1993-03-01

    Zero kinetic energy photoelectron spectra from the electronic ground state of hydrogen sulfide are obtained via nonresonant two-photon ionization with complete rotational resolution in the ion. The two-photon spectra are compared with those recently obtained via one-photon VUV photoionization. The spectra show a close similarity, but type a transitions in the two-photon spectra are twice as intense.

  15. Photoion-photoelectron coincidence studies clusters and transient molecules

    SciTech Connect

    Norwood, K.

    1990-11-16

    Experimental photoion-photoelectron coincidence (PIPECO) spectra have been obtained at different nozzle stagnation pressures for Ar, Kr, Xe, and CO dimers and trimers in the wavelength regions corresponding to the respective ground states through all states accessible with a photon energy of 20 eV. Ionization energies for all ground states were measured and agree well with previously reported values. The formation of stable dimer ions from fragmentation of larger cluster ions initially produced by photoionization is efficient. For nozzle expansion conditions which minimize the formation of clusters larger than dimers, the intensities of the excited PIPECO bands for all clusters, except Ar{sub 2}{sup +} and Ar{sub 3}{sup +}, are found to be negligible with respect to the ground state PIPECO bands. The PIPECO technique has been used successfully to obtain the mass-selected threshold photoelectron spectra of the SO and S{sub 2}O transient molecules formed from a microwave discharge, effusive beam source. Analysis of the PIPECO spectra of all the clusters and transient molecules are presented. 177 refs., 32 figs., 6 tabs.

  16. Femtosecond photoelectron point projection microscope

    SciTech Connect

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  17. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  18. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGESBeta

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  19. X-Ray Photoelectron Spectroscopy Investigation of the Nitrogen Species in Photoactive Perfluorophenylazide-Modified Surfaces

    PubMed Central

    Zorn, Gilad; Liu, Li-Hong; Árnadóttir, Líney; Wang, Hui; Gamble, Lara J.; Castner, David G.; Yan, Mingdi

    2014-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to characterize the nitrogen species in perfluorophenylazide (PFPA) self-assembled monolayers. PFPA chemistry is a novel immobilization method for tailoring the surface properties of materials. It is a simple route for the efficient immobilization of graphene, proteins, carbohydrates and synthetic polymers onto a variety of surfaces. Upon light irradiation, the azido group in PFPA is converted to a highly reactive singlet nitrene species that readily undergoes CH insertion and C=C addition reactions. Here, the challenge of characterizing the PFPA modified surfaces was addressed by detailed XPS experimental analyses. The three nitrogen peaks detected in the XPS N1s spectra were assigned to amine/amide (400.5 eV) and azide (402.1 and 405.6 eV) species. The observed 2:1 ratio of the areas from the 402.1 eV to 405.6 eV peaks suggests the assignment of the peak at 402.1 eV to the two outer nitrogen atoms in the azido group and assignment of the peak at 405.6 eV to the central nitrogen atom in the azido group. The azide decomposition as the function of x-ray exposure was also determined. Finally, XPS analyses were conducted on patterned graphene to investigate the covalent bond formation between the PFPA and graphene. This study provides strong evidence for the formation of covalent bonds during the PFPA photocoupling process. PMID:24535931

  20. Total reflection X-ray photoelectron spectroscopy as a semiconductor lubricant elemental analysis method

    NASA Astrophysics Data System (ADS)

    Alshehabi, Abbas; Sasaki, Nobuharu; Kawai, Jun

    2015-12-01

    Photoelectron spectra from a typical hard disk storage media device (HDD) were measured at total reflection and non-total reflection at unburnished, acetone-cleaned, and argon-sputtered conditions. F, O, N, and C usually making the upper layer of a typical hard disk medium were detected. Enhancement of the photoelectron emission of the fluorocarbon lubricant was observed at total reflection. Pt and Co were only found by non-total X-ray photoelectron spectroscopy (XPS) because they are constituents of a deeper region than the top and interface regions. Argon-sputtered, ultrasonic acetone-cleaned, and unburnished top layers were compared at total and non-total reflection conditions. Total reflection X-ray photoelectron spectroscopy (TRXPS) is demonstrated to be a powerful tool for storage media lubrication layer chemical state analysis, reliable for industrial quality control application , and reproducible.

  1. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    SciTech Connect

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  2. N1s and O1s double ionization of the NO and N2O molecules

    NASA Astrophysics Data System (ADS)

    Hedin, L.; Tashiro, M.; Linusson, P.; Eland, J. H. D.; Ehara, M.; Ueda, K.; Zhaunerchyk, V.; Karlsson, L.; Pernestâl, K.; Feifel, R.

    2014-01-01

    Single-site N1s and O1s double core ionisation of the NO and N2O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s-2) and 1179.4 eV (O1s-2). The corresponding energies obtained for N2O are 896.9 eV (terminal N1s-2), 906.5 eV (central N1s-2), and 1174.1 eV (O1s-2). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N2O, associated with the decay of the terminal and central N1s-2 as well as with the O1s-2 dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10-3 for nitrogen at 1100 eV and as 1.3 × 10-3 for oxygen at 1300 eV.

  3. N1s and O1s double ionization of the NO and N{sub 2}O molecules

    SciTech Connect

    Hedin, L.; Zhaunerchyk, V.; Karlsson, L.; Pernestål, K.; Feifel, R.; Tashiro, M.; Ehara, M.; Linusson, P.; Eland, J. H. D.; Ueda, K.

    2014-01-28

    Single-site N1s and O1s double core ionisation of the NO and N{sub 2}O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s{sup −2}) and 1179.4 eV (O1s{sup −2}). The corresponding energies obtained for N{sub 2}O are 896.9 eV (terminal N1s{sup −2}), 906.5 eV (central N1s{sup −2}), and 1174.1 eV (O1s{sup −2}). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N{sub 2}O, associated with the decay of the terminal and central N1s{sup −2} as well as with the O1s{sup −2} dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10{sup −3} for nitrogen at 1100 eV and as 1.3 × 10{sup −3} for oxygen at 1300 eV.

  4. N1s and O1s double ionization of the NO and N2O molecules.

    PubMed

    Hedin, L; Tashiro, M; Linusson, P; Eland, J H D; Ehara, M; Ueda, K; Zhaunerchyk, V; Karlsson, L; Pernestål, K; Feifel, R

    2014-01-28

    Single-site N1s and O1s double core ionisation of the NO and N2O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s(-2)) and 1179.4 eV (O1s(-2)). The corresponding energies obtained for N2O are 896.9 eV (terminal N1s(-2)), 906.5 eV (central N1s(-2)), and 1174.1 eV (O1s(-2)). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N2O, associated with the decay of the terminal and central N1s(-2) as well as with the O1s(-2) dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10(-3) for nitrogen at 1100 eV and as 1.3 × 10(-3) for oxygen at 1300 eV. PMID:25669525

  5. High-resolution threshold photoelectron spectrum of molecular oxygen

    NASA Astrophysics Data System (ADS)

    Merkt, F.; Guyon, P. M.; Hepburn, J.

    1993-07-01

    The threshold TPE photoelectron spectrum of molecular oxygen has been reinvestigated using a partially cooled effusive molecular jet and the monochromatised VUV synchrotron radiation from super-ACO in Orsay. Three vibrational progressions are identified. One of them corresponds to and confirms that observed recently by Baltzer et al. (Phys. Rev. A 45 (1992) 4374), the two other ones are observed for the first time in TPE spectroscopy. Possible assignments for these progressions are discussed. The vibrational progression in the X 2Π g state has been seen up to v+=26 and the two spin-orbit components 2Π 1/2 and 2Π 3/2) are for the first time fully resolved in TPES. High-lying vibrational levels with v+ >20 of the X state are seen to overlap with the a state levels. The relative contribution of both states is obtained through a deconvolution procedure. The vibrational progression in the b 4Σ -g is extended to v+=18. The threshold photoelectron spectrum around 20 eV shows a particularly high density of lines. Possible assignments of these lines to new progressions are discussed with the help of a series of time-of-flight photoelectron spectra (TOF-PES) measured at a series of excitation energies between 18 and 20 eV.

  6. PCI effects and the gradual formation of Rydberg series due to photoelectron recapture, in the Auger satellite lines upon Xe 4d-15/2 photoionization

    NASA Astrophysics Data System (ADS)

    Kosugi, Satoshi; Iizawa, Masatomi; Kawarai, Yu; Kuriyama, Yosuke; Kilcoyne, A. L. David; Koike, Fumihiro; Kuze, Nobuhiko; Slaughter, Daniel S.; Azuma, Yoshiro

    2015-06-01

    The Xe (N5O2,3O2,3) Auger electron spectra originating from 4d-15/2 inner-shell photoionization were measured, with photon energy tuned close to the ionization threshold. As the photon energy approaches the threshold from above the 4d-15/2 photoionization threshold, Rydberg series structures are formed within the Auger electron peak by the recapture of the photoelectron into high-lying ion orbitals. They emerge in the tail on the higher energy side of the post-collision interaction (PCI) profile of the Auger electron. Discrete Rydberg peaks replace the continuous PCI tail and gradually form a series with intensity distribution emulating the intensity profile of the continuous tail. Structures due to the Xe+5p4(1S0, 1D2, 3P2,1,0) ml series were observed and assigned.

  7. X-ray photoelectron spectroscopy characterization of a nonsuperconducting Y-Ba-Cu-O superconductor-normal-metal-superconductor barrier material

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1992-01-01

    A film of a novel nonsuperconducting Y-Ba-Cu-O (YBCO) barrier material was grown using conditions similar to those reported by Agostinelli et al. (1991) for forming a cubic semiconducting (c-YBCO) phase, and the material was characterized using X-ray photoelectron spectroscopy (XPS). A comparison of the XPS spectra of this material to those obtained from the orthorhombic and tetragonal phases of YBCO (o-YBCO and t-YBCO, respectively) showed that the barrier material had spectral characteristics different from those of o-YBCO and t-YBCO, particularly in the O 1s region. Features associated with the Cu-O chain and surface-reconstructed Cu-O planes were absent, consistent with expectations for the simple perovskite crystal structure of c-YBCO proposed by Agostinelli et al.

  8. X-ray photoelectron spectroscopy analysis of boron defects in silicon crystal: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji

    2016-05-01

    We carried out a comprehensive study on the B 1s core-level X-ray photoelectron spectroscopy (XPS) binding energies and formation energies for boron defects in crystalline silicon by first-principles calculation with careful evaluation of the local potential boundary condition for the model system using the supercell corresponding to 1000 Si atoms. It is reconfirmed that the cubo-octahedral B12 cluster in silicon crystal is unstable and exists at the saddle point decaying to the icosahedral and S4 B12 clusters. The electrically active clusters without any postannealing of ion-implanted Si are identified as icosahedral B12 clusters. The experimentally proposed threefold coordinated B is also identified as a ⟨ 001 ⟩ B - Si defect. For an as-doped sample prepared by plasma doping, the calculated XPS spectra for complexes consisting of vacancies and substitutional B atoms are consistent with the experimental spectra. It is proposed that, assuming that the XPS peak at 187.1 eV is due to substitutional B (Bs), the experimental XPS peaks at 187.9 and 186.7 eV correspond to interstitial B at the H-site and ⟨ 001 ⟩ B - Si defects, respectively. In the annealed samples, the complex of Bs and interstitial Si near the T-site is proposed as a candidate for the experimental XPS peak at 188.3 eV.

  9. Boronyl Mimics Gold: a Photoelectron Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Jian, Tian; Lopez, Gary; Wang, Lai-Sheng

    2015-06-01

    Previous studies have found that gold atom and boronyl bear similarities in bonding in many gas phase clusters. B10(BO), B12(BO), B3(BO)n (n=1, 2) were found to possess similar bonding and structures to B10Au, B12Au, B3Aun (n=1, 2), respectively. During the recent photoelectron spectroscopy experiments, the spectra of BiBO- and BiAu- clusters are found to exhibit similar patterns, hinting that they possess similar geometric structures. While BiAu- is a linear molecule, BiBO- is also linear. The similarity in bonding between BiBO- and BiAu- is owing to the fact that Au and BO are monovalent σ ligands. The electron affinities are measured to be 1.79±0.04eV for BiBO- and 1.36±0.02eV for BiAu-. The current results provide new examples for the BO/Au isolobal analogy and enrich the chemistry of boronyl and gold. H.-J. Zhai, C.-Q. Miao, S.-D. Li, L.-S. Wang, J. Phys. Chem. A 2010, 114, 12155-1216 Q. Chen, H. Bai, H.-J. Zhai, S.-D. Li, L.-S. Wang, J. Chem. Phys. 2013, 139, 044308 H. Bai, H.-J. Zhai, S.-D. Li, L.-S. Wang, Phys. Chem. Chem. Phys., 2013, 15, 9646-9653 H.-J. Zhai, Q. Chen, H. Bai, S.-D. Li, L.-S. Wang, Acc. Chem. Res. 2014, 47, 2435-2445

  10. Zero kinetic energy photoelectron spectroscopy of triphenylene

    NASA Astrophysics Data System (ADS)

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-01

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm-1. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  11. High resolution photoelectron spectroscopy of clusters of Group V elements

    SciTech Connect

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580{angstrom}) photoelectron spectra of As{sub 2}, As{sub 4}, and P{sub 4} were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the {sup 2}E and {sup 2}T{sub 2} states of P{sub 4}{sup +} and As{sub 4}{sup +}. As a result of the Jahn-Teller effect, the {sup 2}E state splits into two bands, and the {sup 2}T{sub 2} state splits into three bands, in combination with the spin-orbit effect. It was observed that the {nu}{sub 2} normal vibrational mode was involved in the vibronic interaction of the {sup 2}E state, while both the {nu}{sub 2} and {nu}{sub 3} modes were active in the {sup 2}T{sub 2} state. 26 refs., 5 figs., 3 tabs.

  12. Photoionization of iodine atoms: Rydberg series which converge to the I{sup +}({sup 1}S{sub 0})<-I({sup 2}P{sub 3/2}) threshold

    SciTech Connect

    Eypper, Marie; Innocenti, Fabrizio; Morris, Alan; Dyke, John M.; Stranges, Stefano; West, John B.; King, George C.

    2010-06-28

    Relative partial photoionization cross sections and angular distribution parameters {beta} have been measured for the first and fourth (5p){sup -1} photoelectron (PE) bands of atomic iodine by performing angle-resolved constant-ionic-state (CIS) measurements on these PE bands between the {sup 1}D{sub 2} and {sup 1}S{sub 0} (5p){sup -1} ionic thresholds in the photon energy region of 12.9-14.1 eV. Rydberg series arising from the 5p{yields}ns and 5p{yields}nd excitations are observed in both the first PE band, I{sup +}({sup 3}P{sub 2})<-I({sup 2}P{sub 3/2}), and the fourth PE band, I{sup +}({sup 1}D{sub 2})<-I({sup 2}P{sub 3/2}), CIS spectra. For each Rydberg state, the resonance energy, quantum defect, linewidth, line shape, and photoelectron angular distribution parameter {beta} have been determined. For the {beta}-plots for each PE band, only resonances corresponding to 5p{yields}nd excitations are observed; no resonances were seen at photon energies corresponding to the 5p{yields}ns resonances in the CIS spectra. The {beta}-plots are interpreted in terms of the parity unfavored channel with j{sub t}=4 being the major contributor at the 5p{yields}nd resonance positions, where j{sub t} is the quantum number for angular momentum transferred between the molecule, and the ion and photoelectron. Comparison of the results obtained with those published for bromine shows reasonably good agreement for the CIS spectra but poor agreement for the {beta}-plots. It appears that parity unfavored channels are playing a greater role in the valence (np){sup -1} ionization of atomic iodine than in the corresponding ionization of atomic bromine.

  13. Resonant photoelectron spectroscopy of Au{sub 2}{sup −} via a Feshbach state using high-resolution photoelectron imaging

    SciTech Connect

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-11-21

    Photodetachment cross sections are measured across the detachment threshold of Au{sub 2}{sup −} between 1.90 and 2.02 eV using a tunable laser. In addition to obtaining a more accurate electron affinity for Au{sub 2} (1.9393 ± 0.0003 eV), we observe eight resonances above the detachment threshold, corresponding to excitations from the vibrational levels of the Au{sub 2}{sup −} ground state (X {sup 2}Σ{sub u}{sup +}) to those of a metastable excited state of Au{sub 2}{sup −} (or Feshbach resonances) at an excitation energy of 1.9717 ± 0.0003 eV and a vibrational frequency of 129.1 ± 1.5 cm{sup −1}. High-resolution photoelectron spectra of Au{sub 2}{sup −} are obtained using photoelectron imaging to follow the autodetachment processes by tuning the detachment laser to all the eight Feshbach resonances. We observe significant non-Franck-Condon behaviors in the resonant photoelectron spectra due to autodetachment from a given vibrational level of the Feshbach state to selective vibrational levels of the neutral final state. Using the spectroscopic data for the ground states of Au{sub 2}{sup −} (X {sup 2}Σ{sub u}{sup +}) and Au{sub 2} (X {sup 1}Σ{sub g}{sup +}), we estimate an equilibrium bond distance of 2.53 ± 0.02 Å for the Feshbach state of Au{sub 2}{sup −} by simulating the Franck-Condon factors for the resonant excitation and autodetachment processes.

  14. Extracting Electron-Ion Differential Scattering Cross Sections for Partially Aligned Molecules by Laser-Induced Rescattering Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Okunishi, Misaki; Niikura, Hiromichi; Lucchese, R. R.; Morishita, Toru; Ueda, Kiyoshi

    2011-02-01

    We extract large-angle elastic differential cross sections (DCSs) for electrons scattering from partially aligned O2+ and CO2+ molecules using rescattering photoelectrons generated by infrared laser pulses. The extracted DCSs are in good agreement with those calculated theoretically, demonstrating that accurate DCSs for electron-ion scattering can be extracted from the laser-induced rescattering spectra, thus paving the way for dynamic imaging of chemical reactions by rescattering photoelectron spectroscopy.

  15. Probing the electronic and vibrational structure of Au2Al2(-) and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging.

    PubMed

    Lopez, Gary V; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2(-) at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm(-1). Hot bands transitions yield two vibrational frequencies for Au2Al2(-) at 57 ± 10 and 144 ± 12 cm(-1). The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2(-) and Au2Al2 possess C2v tetrahedral structures. PMID:25494751

  16. Probing the electronic and vibrational structure of Au2Al2- and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-01

    The electronic and vibrational structures of Au2Al2- and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2- at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm-1. Hot bands transitions yield two vibrational frequencies for Au2Al2- at 57 ± 10 and 144 ± 12 cm-1. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2- and Au2Al2 possess C2v tetrahedral structures.

  17. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  18. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  19. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments.

    PubMed

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6(1) and 6(1)1(1) vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62,271 ± 3 cm(-1)). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique. PMID:26133827

  20. Near threshold studies of photoelectron satellites

    SciTech Connect

    Heimann, P.A.

    1986-11-01

    Photoelectron spectroscopy and synchrotron radiation have been used to study correlation effects in the rare gases: He, Ne, Ar, Kr, and Xe. Two kinds of time-of-flight electron analyzers were employed to examine photoionization very close to threshold and at higher kinetic energies. Partial cross sections and angular distributions have been measured for a number of photoelectron satellites. The shake-off probability has been determined at some inner-shell resonances. 121 refs., 28 figs., 13 tabs.

  1. Energetic photoelectrons and the polar rain

    NASA Technical Reports Server (NTRS)

    Decker, Dwight T.; Jasperse, J. R.; Winningham, J. D.

    1990-01-01

    In the daytime midlatitudes, the Low Altitude Plasma Instrument (LAPI) on board the Dynamics Explorer 2 satellite has observed photoelectrons with energies as high as 850 eV. These energetic photoelectrons are an extension of the 'classical' photoelectrons (less than 60 eV) and result from photoionization of neutrals by soft solar X-rays. Since these photoelectrons are produced wherever the solar flux is incident on the earth's atmosphere, they should be present in sunlit polar cap. But in the polar cap, over these same energies, there is a well-known electron population: the polar rain, a low intensity electron flux of magnetospheric origin. Thus, in the sunlit polar cap, an energetic population of electrons should consist of both an ionospheric (photoelectron) and a magnetospheric (polar rain) component. Using numerical solutions of an electron transport equation with appropriate boundary conditions and sunlit polar cap LAPI data, it is shown that the two populations (photoelectron and polar rain) are indeed present and are both needed to explain polar cap observations.

  2. Investigations on surface chemical analysis using X-ray photoelectron spectroscopy and optical properties of Dy3+-doped LiNa3P2O7 phosphor

    NASA Astrophysics Data System (ADS)

    Munirathnam, K.; Dillip, G. R.; Chaurasia, Shivanand; Joo, S. W.; Deva Prasad Raju, B.; John Sushma, N.

    2016-08-01

    Near white-light emitting LiNa3P2O7:Dy3+ phosphors were prepared by a conventional solid-state reaction method. The orthorhombic crystal structure of the phosphors was confirmed using X-ray diffraction (XRD), and the valence states of the surface elements were determined from the binding energies of Li 1s, O 1s, Na 1s, P 2p, and Dy 3d by X-ray photoelectron spectroscopy (XPS). Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy was employed to identify the pyrophosphate groups in the phosphors. Diffuse reflectance spectra (DRS) show the absorption bands of the Dy3+ ions in the host material. Intense blue (481 nm) and yellow (575 nm) emissions were obtained at an excitation wavelength of 351 nm and are attributed to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The combination of these two intense bands generates light emission in the near-white region of the chromaticity diagram.

  3. Surface characterization of 7S and 11S globulin powders from soy protein examined by X-ray photoelectron spectroscopy and scanning electron microscopy.

    PubMed

    Zhao, Xiaoyan; Chen, Jun; Zhu, Qingjun; Du, Fangling; Ao, Qiang; Liu, Jie

    2011-09-01

    In this study the surface composition of 7S and 11S globulin powders from soybean proteins by aqueous buffer and reverse micelle extractions had been examined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Analysis by XPS revealed that the O and N atomic percentage of 7S and 11S globulin surfaces from bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelle was higher than from aqueous buffer, but the C atomic percentage was lower. The O/C ratio of the 7S globulin powder from aqueous buffer and reverse micelle was similar while significant differences were obtained in the O/C ratio of the 11S globulin powder, N/C atom ratios of the 7S and 11S globulin powders and high-resolution XPS C 1s, N 1s, O 1s spectra. Powder microstructure after reverse micelle treatment showed the presence of small pores, indicating the effect of reverse micelle on the 7S and 11S globulin structure. The obtained results indicated that the reverse micelle could affect the C, O and N components on the surface of soybean proteins. PMID:21555209

  4. Photoelectron spectroscopy of metallocarbohedrenes M8C12- (M=Ti, V, Cr, ZR, NB)

    SciTech Connect

    Li, San; Wu, Hongbin; Li, Xi; Ding, Chuanfan

    1997-12-31

    Photoelectron spectroscopy experiments have been performed on five metallocarbohedrene (met-car) anions, Ti8C12-, V8C12-, Cr8C12-, Zr8C12-, Nb8C12-. These met-car anions were produced by two different methods. We found that the Ti and Zr met-cars show unusually low electron affinities (EAs) and the EAs increase from Ti to Cr met-cars. The observed photoelectron spectra and the electronic structure of the met-cars are interpreted using existing theoretical calculations.

  5. Determination of protein orientation on surfaces with X-ray photoelectron spectroscopy.

    PubMed

    Margalit, R; Vasquez, R P

    1990-02-01

    The use of X-ray photoelectron spectroscopy (XPS) for determination of the preferred orientation of proteins on metal surfaces is demonstrated. A myoglobin derivative in which a pentaamineruthenium (III) group is attached to a specific histidine (residue 81) is used for this purpose, with the Ru and Fe acting as a double marker. The relative intensities of the XPS photoelectron spectra for these two markers are shown to be a sensitive measure of orientation of the protein film. On both aluminum and indium-tin-oxide surfaces, XPS indicates that the Ru-Fe axis of the myoglobin derivative is preferentially oriented with the Ru furthest from the substrate. PMID:2340069

  6. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    NASA Astrophysics Data System (ADS)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  7. Transport of Photoelectrons in the Nightside Magnetosphere

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.

    2002-01-01

    Kinetic modeling results are analyzed to examine the transport of photoelectrons through the nightside inner magnetosphere. Two sources are considered, those on the dayside from direct solar illumination and those across the nightside from light scattered by the upper atmosphere and geocorona. A natural filter exists on the nightside for the dayside photoelectrons. Coulomb collisions erode the distribution at low energies and low L shells, and magnetospheric convection compresses the electrons as they drift toward dawn. It is shown that for low-activity levels a band of photoelectrons forms between L = 4 and 6 that extends throughout the nightside local times and into the morning sector. For the scattered light photoelectrons the trapped zone throughout the nightside is populated with electrons of E less than 30 eV. At high L shells near dawn, convective compression on the nightside yields an accelerated population with electrons at energies up to twice the ionospheric energy maximum (that is, roughly 1200 eV for dayside photoelectrons and 60 eV for scattered light electrons). Modeled energy and pitch angle distributions are presented to show the features of these populations.

  8. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-01-01

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. PMID:24906107

  9. Photoelectron Emission Studies in CsBr at 257 nm

    SciTech Connect

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.; /Stanford U., Elect. Eng. Dept. /SLAC, SSRL

    2006-09-28

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films.

  10. Photoelectron diffraction of magnetic ultrathin films: Fe/Cu(001)

    SciTech Connect

    Tobin, J.G. ); Wagner, M.K. . Dept. of Chemistry); Guo, X.Q.; Tong, S.Y. . Dept. of Physics)

    1991-01-03

    The preliminary results of an ongoing investigation of Fe/Cu(001) are presented here. Energy dependent photoelectron diffraction, including the spin-dependent variant using the multiplet split Fe3s state, is being used to investigate the nanoscale structures formed by near-monolayer deposits of Fe onto Cu(001). Core-level photoemission from the Fe3p and Fe3s states has been generated using synchrotron radiation as the tunable excitation source. Tentatively, a comparison of the experimental Fe3p cross section measurements with multiple scattering calculations indicates that the Fe is in a fourfold hollow site with a spacing of 3.6{Angstrom} between it and the atom directly beneath it, in the third layer. This is consistent with an FCC structure. The possibility of utilizing spin-dependent photoelectron diffraction to investigate magnetic ultrathin films will be demonstrated, using our preliminary spectra of the multiplet-split Fe3s os near-monolayer Fe/Cu(001). 18 refs., 10 figs.

  11. Probing solvation effects at conical intersections by ultrafast photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Soep, Benoit; Poisson, Lionel; Raffael, Kevin; Mestdagh, Jean Michel

    2007-03-01

    The electronic excitation of polyatomic molecules is generally followed by relaxation of the electronic energy to the ground state or to metastable, low lying states such as triplet states in hydrocarbons. It can be extremely rapid whenever conical intersections between the surfaces are at play, owing to their structural changes. Since, in general, relaxation is observed in condensed phases, it is essential to conduct the relevant experiments in the presence of a perturbing medium, here the surface of an argon cluster. We address the coupling of two excited configurations in a molecule possessing charge transfer intermediates thus prone to medium effects. We shall compare here the observation of the free and deposited molecule at the surface of argon clusters. The effect of the cluster and the possibility to record significant photoelectron spectra is thus described that represents an innovation for large systems. We made use of the anisotropy of the photoelectron angular distribution of the electrons to unravel the dynamics of the several excited configurations that are traversed during the electronic relaxation.

  12. Zero Kinetic Energy Photoelectron Spectroscopy of Benzo[h]quinoline.

    PubMed

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2015-12-17

    We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[h]quinoline (BhQ) via resonantly enhanced multiphoton ionization (REMPI) through the first electronically excited state S1. From the simulated REMPI spectra with and without Herzberg-Teller coupling, we conclude that vibronic coupling plays a minor but observable role in the electronic excitation to the S1 state. We further compare the S1 state of BhQ with the first two electronically excited states of phenanthrene, noticing a similarity of the S1 state of BhQ with the second electronically excited state S2 of phenanthrene. In the ZEKE spectra of BhQ, the vibrational frequencies of the cationic state D0 are consistently higher than those of the intermediate neutral state, indicating enhanced bonding upon ionization. The sparse ZEKE spectra, compared with the spectrum of phenanthrene containing rich vibronic activities, further imply that the nitrogen atom has attenuated the structural change between S1 and D0 states. We speculate that the nitrogen atom can withdraw an electron in the S1 state and donate an electron in the D0 state, thereby minimizing the structural change during ionization. The origin of the first electronically excited state is determined to be 29,410 ± 5 cm(-1), and the adiabatic ionization potential is determined to be 65,064 ± 7 cm(-1). PMID:26039927

  13. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  14. Acid generation efficiency: EUV photons versus photoelectrons

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Afzali-Ardakani, Ali; Glodde, Martin

    2016-03-01

    EUV photoacid generation efficiency has been described primarily in terms of the EUV photon absorption by the PAG or the resist matrix and the production of low energy photoelectrons, which are reported as being ultimately responsible for the high quantum efficiencies reported in EUV resists (<1). Such observation led to a number of recent studies on PAGs with variable electron affinity (EA) and reduction potential (Ered) presumably conducive to a differential EUV photoelectron harvesting efficiency. However, such studies either did not disclose the PAG chemical structures, replaced the EUV source with an e-beam source, or lacked a fundamental discussion of the underlying physical mechanisms behind EUV PAG decomposition. In this work, we report the EUV photospeed of a methacrylatebased resist formulated with a battery of openly disclosed isostructural sulfonium PAGs covering a wide range of EA's and Ered's, to unveil any preferential photoelectron scavenging effect. In parallel, several iodonium PAGs are also tested in order to compare the direct EUV photon absorption route to the photoelectron-based decomposition path. Contrarily to what has been widely reported, we have found no direct correlation whatsoever between photospeed and the calculated EA's or experimental Ered's for the isostructural sulfonium PAGs studied. Instead, we found that iodonium PAGs make more efficient use of the available EUV power due to their higher photoabsorption cross-section. Additionally, we determined a cation size effect for both PAG groups, which is able to further modulate the acid generation efficiency. Finally, we present a formal explanation for the unselective response towards photoelectron harvesting based on the stabilization of the PAG cation by bulky substituent groups, the spatial and temporal range of the transient photoelectron and the differences in electron transfer processes for the different systems studied.

  15. C 1s and N 1s core excitation of aniline: Experiment by electron impact and ab initio calculations

    SciTech Connect

    Duflot, D.; Flament, J.-P.; Giuliani, A.; Heinesch, J.; Grogna, M.; Hubin-Franskin, M.-J.

    2007-05-15

    Core shell excitation spectra of aniline at the carbon and nitrogen 1s edges have been obtained by inner-shell electron energy-loss spectroscopy recorded under scattering conditions where electric dipolar conditions dominate, with higher resolution than in the previous studies. They are interpreted with the aid of ab initio configuration interaction calculations. The spectrum at the C 1s edge is dominated by an intense {pi}{sup *} band. The calculated chemical shift due to the different chemical environment at the carbon 1s edge calculated is in agreement with the experimental observations within a few tenths of an eV. The transition energies of the most intense bands in the C 1s excitation spectrum are discussed at different levels of calculations. In the nitrogen 1s excitation spectrum the most intense bands are due to Rydberg-valence transitions involving the {sigma}{sup *}-type molecular orbitals, in agreement with the experiment. This assignment is different from that of extended Hueckel molecular orbital calculations. The geometries of the core excited states have been calculated and compared to their equivalent core molecules and benzene.

  16. Fourier transform photoelectron diffraction and its application to molecular orbitals and surface structure

    SciTech Connect

    Zhou, Xin

    1998-11-30

    Photoemission intensities from the molecular orbitals of c(2x2)CO/Pt(111) over a wide photon energy range were measured and analyzed by the same methods developed for structural studies using core levels. The 4{sigma} orbital center of gravity is found to be concentrated between the C and O atoms, while that of the 5{sigma} orbital lies between the C atom and the Pt surface. The C 1s photoelectron diffraction was used to determine the adsorption geometry. The earlier ambiguity that multiple scattering is needed to correctly model a {chi} curve while single scattering is sufficient for understanding major peaks in the ARPEFS-FTS is clarified by studying the clean Ni(111) surface. In the normal emission case, several different combinations of scattering events have similar path length differences (PLDs), and can either cancel each other or enhance the corresponding FT peak. In the off-normal case the degeneracy is greatly reduced due to the lower degree of symmetry. In normal emission AR PEFS, up to third order multiple scattering is needed to describe fully both the {chi} curve and its FT spectrum. To improve the spectral resolution in the ARPEFS-FT analysis, several new spectral analysis methods are introduced. With both autocorrelation autoregression (ACAR) and autocorrelation eigenvector (ACE), we can produce a reliable power spectrum by following the order-closing procedure. The best spectra are usually obtained when the autocorrelation sequence is computed with lags up to half the data range. A simple way of determining surface adsorption sites is proposed as follows: First use a single scattering cluster for possible adsorption sites to construct the geometrical PLDs from the strong backscattering events; then compare these PLDs with those obtained from the ARPEFS-FT analysis of the experimental data. After the preferred adsorption site is determined, fine tune the interlayer distances according to the positional R-factor.

  17. X-ray Photoelectron Spectroscopy Study of Argon-Plasma-Treated Fluoropolymers

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1994-01-01

    Films of poly(tetrafluoroethylene) (PTFE) and of a tetrafluoroethylene-perfluoroalkyl vinyl ether (approximately 49:1) copolymer (PFA) were exposed to a radio-frequency argon plasma and then examined by X-ray photoelectron spectroscopy (XPS). The use of fluoropolymer films nearly free of surface hydrocarbon contamination as well as the use of a monochromatized X-ray source for XPS removed two factors contributing to conflicting reports on the effect of exposure time on the fluorine-to-carbon (F/C) and oxygen-to-carbon (O/C) ratios for several Ar-plasma-treated fluoropolymers. Contrary to literature indications, a common pattern was found for PTFE and PFA: a moderate decrease in F/C ratio (from 1.99 to 1.40, and from 1.97 to 1.57, respectively), together with a moderate increase in O/C ratio (from negligible to about 0.10, and from 0.012 to about O.10, respectively) at very short exposures, after which the F/C ratios remained essentially constant on prolonged exposures, while the O/C ratios for PTFE and PFA leveled off at 0.11 and 0.15, respectively. The XPS C(sub 1s), spectra for these polymers exposed to the Ar plasma for 20 min were similar and presented, besides a prominent peak at 292.0 eV (CF2,) and a minor peak at 294.0 or 294.1 eV (CF3), a composite band of four curve-resolved peaks (approximately 285-290 eV) representing various CH, CC, CO, CN, and CF functionalities.

  18. Screening-Constant-by-Unit-Nuclear-Charge method investigations of high lying ({sup 1}D{sub 2},{sup 1}S{sub 0}) ns, nd Rydberg series in the photoionization spectra of the halogen-like ion Kr{sup +}

    SciTech Connect

    Sakho, I.

    2014-01-15

    Energy positions and quantum defects of the 4s{sup 2}4p{sup 4} ({sup 1}D{sub 2},{sup 1}S{sub 0}) ns, nd Rydberg series originating from the 4s{sup 2}4p{sup 52}P{sub 3/2}{sup ∘} ground state and from the 4s{sup 2}4p{sup 52}P{sub 1/2}{sup ∘} metastable state of Kr{sup +} are reported. Calculations are performed using the Screening Constant by Unit Nuclear Charge (SCUNC) method. The results obtained are in suitable agreement with recent experimental data from the combined ASTRID merged-beam set up and Fourier Transform Ion Cyclotron Resonance device (Bizau et al., 2011), ALS measurements (Hinojosa et al., 2012), and multi-channel R-matrix eigenphase derivative calculations (McLaughlin and Balance, 2012). In addition, analysis of the 4s{sup 2}4p{sup 4}({sup 1}D{sub 2})nd and the 4s{sup 2}4p{sup 4}({sup 1}S{sub 0})nd resonances is given via the SCUNC procedure. The excellent results obtained from our work point out that the SCUNC formalism may be used to confirm the results of the analysis from the standard quantum-defect expansion formulas. Eventual errors occurring in the analysis can then be automatically detected and corrected via the SCUNC procedure.

  19. Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument.

    PubMed

    Vonderach, Matthias; Ehrler, Oli T; Weis, Patrick; Kappes, Manfred M

    2011-02-01

    We have developed a novel instrument that combines ion mobility spectrometry, mass spectro-metry, and photoelectron spectroscopy. The instrument couples an electrospray ion source, a high-transmission ion mobility cell based on ion funnels, a quadrupole mass filter, and a time-of-flight (magnetic bottle) photoelectron spectrometer operated with a pulsed detachment laser. We show that the instrument can resolve highly structured anion arrival time distributions and at the same time provide corresponding photoelectron spectra-using the DNA oligonucleotide ion [dC(6) - 5H](5-) as a test case. For this multianion we find at least four different, noninterconverting isomers (conformers) simultaneously present in the gas phase at room temperature. For each of these we record well-resolved and remarkably different photoelectron spectra at each of three different detachment laser wavelengths. Two-dimensional ion mobility/electron binding energy plots can be acquired with an automated data collection procedure. We expect that this kind of instrument will significantly improve the capabilities for structure determination of (bio)molecular anions in the gas phase. PMID:21214198

  20. Photoelectron spectroscopic investigation of transformation of trifluoroacetate precursors into superconducting YBa 2Cu 3O 7- δ films

    NASA Astrophysics Data System (ADS)

    Su, J. H.; Joshi, P. P.; Chintamaneni, V.; Mukhopadhyay, S. M.

    2007-03-01

    X-ray photoelectron spectroscopy (XPS) has been used to investigate the evolution of surface chemistry of YBa 2Cu 3O 7- δ (Y123) films prepared by the metalorganic deposition (MOD) process using trifluoroacetate (TFA) precursors. Detailed XPS core-level spectra obtained from the samples quenched from various points during the calcining and firing stages have been reported for the first time and are used to identify surface species. The XPS data show evidence of formation of intermediate phases such as Y-O-F, BaF 2, and CuO during the calcining process, which are the decomposition products of yttrium, barium, and copper trifluoroacetates, respectively. The TFA precursors are completely decomposed at the end of calcination. The change of binding energies for Y 3d 5/2, Ba 3d 5/2, and O 1s during the firing process indicates that Y123 starts to form at 800 °C after 0.5 h firing. Based on the experimental results, an alternative mechanism of the chemical evolution from precursor to final film in the TFA-MOD process is proposed.

  1. Photoelectron spectroscopy study of AlN films grown on n-type 6H-SiC by MOCVD

    NASA Astrophysics Data System (ADS)

    Liang, F.; Chen, P.; Zhao, D. G.; Jiang, D. S.; Zhao, Z. J.; Liu, Z. S.; Zhu, J. J.; Yang, J.; Liu, W.; He, X. G.; Li, X. J.; Li, X.; Liu, S. T.; Yang, H.; Liu, J. P.; Zhang, L. Q.; Zhang, Y. T.; Du, G. T.

    2016-09-01

    Photoelectron spectroscopy has been employed to analyze the content and chemical states of the elements on the surface of AlN films with different thickness, which are synthesized by metalorganic chemical vapor deposition on the n-type SiC substrates under low pressure. It is found that, besides the carbon and gallium on the AlN surface, the atom percentage of surface oxygen increases from 4.9 to 8.4, and the electron affinity also increases from 0.36 to 0.97 eV, when the thickness of AlN films increase from 50 to 400 nm. Furthermore, accompanying with the high-resolution XPS spectra of the O 1s, it is speculated that surface oxygen may be the major influence on the electron affinity, where the surface oxygen changes the surface chemical states through replacing N to form Al-O bond and Ga-O bond, although there are also a few of Ga and C contaminations in the chemical sate of Ga-O and C-C, respectively.

  2. Photoelectron imaging as a probe of the repulsive Coulomb barrier in the photodetachment of antimony tartrate dianions

    NASA Astrophysics Data System (ADS)

    West, Christopher W.; Bull, James N.; Woods, David A.; Verlet, Jan R. R.

    2016-02-01

    A photoelectron imaging study of the text-book antimony tartrate dianion is presented. The vertical and adiabatic detachment energies are determined to be 2.5 ± 0.1 eV and 2.1 ± 0.2 eV, respectively. The photoelectron spectra exhibit a typical cut-off due to the presence of the repulsive Coulomb barrier (RCB) and the photoelectron images are highly anisotropic. Using a simple model for the RCB combined with classical molecular dynamics simulations, the photoelectron images were calculated and compared with experiment. Very good overall agreement between the simulations and experiments was achieved when the photodetachment occurs along a specific molecular axis.

  3. Study of low-lying electronic states of ozone by anion photoelectron spectroscopy of O - 3

    NASA Astrophysics Data System (ADS)

    Arnold, Don W.; Xu, Cangshan; Kim, Eun H.; Neumark, Daniel M.

    1994-07-01

    The low-lying electronic states of ozone are studied using anion photoelectron spectroscopy of O-3. The spectra show photodetachment transitions from O-3 to the X˜ 1A1 ground state and to the five lowest lying electronic states of the ozone molecule, namely the 3A2, 3B2, 1A2, 3B1, and 1B1 states. The geometry of the ozonide anion determined from a Franck-Condon analysis of the O3 X 1A1 ground state spectrum agrees reasonably well with previous work. The excited state spectra are dominated by bending vibrational progressions which, for some states, extend well above the dissociation asymptote without noticeable lifetime broadening effects. Preliminary assignments are based upon photoelectron angular distributions and comparison with ab initio calculations. None of the excited states observed lies below the ground state dissociation limit of O3 as suggested by previous experimental and theoretical results.

  4. Instrumentation for the Atmospheric Explorer photoelectron spectrometer

    NASA Technical Reports Server (NTRS)

    Peletier, D. P.

    1973-01-01

    The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

  5. Photoelectrons in the plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Wellbrock, A.; Jones, G. H.; Young, D. T.; Arridge, C. S.

    2012-09-01

    The E19 encounter on 2 May 2012 executed a sideways trajectory through the Enceladus plume with a closest approach of 65km. The CAPS field of view was oriented well away from the spacecraft ram direction, allowing different populations than cluster ions (Coates et al., 2010) or charged nanograins (Jones et al., 2009, Hill et al., 2012) to be distinguished. During the energetic particle shadow, when particles from Saturn's radiation belts are shielded by Enceladus itself, a low energy magnetospheric electron population was observed with a short reduced density interval very near to closest approach, possibly associated with flow stagnation (Tokar et al., 2009) or with ice grain charging. In addition to this population, a distinctive photoelectron peak was observed, similar to those seen in Saturn's ring environment (Coates et al., 2005 and references therein), at Titan (Coates et al., 2007, 2012, Wellbrock et al., 2012) and in the magnetosphere near Enceladus (Schippers et al., 2009) as well as at Mars and Venus (Coates et al., 2008, 2011 and references therein). We interpret these as photoelectrons from ionization of the gas and dust species in Enceladus' plume ionosphere. We will compare the observations of ionospheric photoelectrons at different locations within the Saturn system, as well as with models for photoelectrons produced in the plume region (Ozak et al., 2012).

  6. Vacuum photoelectronic devices for measuring pulsed radiation

    NASA Astrophysics Data System (ADS)

    Berkovskii, A. G.; Veretennikov, A. I.; Kozlov, O. V.

    The design of these devices is discussed, and data are presented on their characteristics. These vacuum photoelectronic devices comprise photocells, photomultipliers, and electrooptical transducers designed for measuring pulsed radiation of nanosecond and subnanosecond duration. The fluctuation characteristics of the devices are examined, and their use in detectors of pulsed luminous and ionizing radiation is considered.

  7. Photoelectron Spectroscopy in Advanced Placement Chemistry

    ERIC Educational Resources Information Center

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  8. Calculation of Ar photoelectron satellites in the hard-x-ray region

    NASA Astrophysics Data System (ADS)

    Yarzhemsky, V. G.; Amusia, M. Ya.

    2016-06-01

    The intensities of photoelectron satellite lines, corresponding to the double core hole (DCH) states of Ar 1 s ionization by hard x rays, are calculated using the many-body perturbation theory. Calculations support the interpretation of the most intense lines as the shake-up excitations 2 p →4 p . It is demonstrated that the intensities of the spectrum lines corresponding to 4 s (and 3 d ) excited states in the DCH field can be explained only taking into account the knock-up process 2 p →3 d along with the shake-up process 1 s →4 s that accompanies 2 p photoionization.

  9. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  10. Photoelectron Experiments and Studies of X-Ray Absorption Near Edge Structure in Alkaline-Earth and Rare - Fluorides.

    NASA Astrophysics Data System (ADS)

    Gao, Yuan

    of multi-electron excitations being responsible for higher energy features in the XANES was investigated by comparing the energy loss satellites in the fluorine 1s x-ray photoelectron spectra with features at corresponding energies in the fluorine K edge absorption spectra. Finally the fluorine K edges in the rare-earth trifluorides LaF_3, CeF _3, NdF_3, SmF _3, EuF_3, DyF _3 and YbF_3 were explored for the first time with the high resolution x -ray absorption spectroscopy. The near edge part of the fluorine K edges in all seven rare-earth trifluorides was found not to be dominated by the Bragg peaks because of the short life time of the photoelectron and the low crystal symmetry.

  11. Analytic cross sections for 1 1S, to 1 1S to 2 1S, 1 1S to 2 1P transitions in helium by electron impact

    NASA Technical Reports Server (NTRS)

    Sukumar, C. V.; Faisal, F. H. M.

    1971-01-01

    The 1 1s yields 1 1s elastic and 1 1s yields 2 1s and 1 1s yields 2 excitation cross sections of Helium atoms by collision with a charged particle are obtained as analytic functions of incident velocity. The first order time dependent scattering theory is used. Numerical values of electron -He cross sections are obtained for incident energies in the range 30 eV to 800 eV and compared with earlier Born approximation calculations and with available experimental data. It is found that at 100 eV and above, the present results are in good agreement with the experimental results. They are also closer to the experimental results than the corresponding Born calculations.

  12. Rotationally resolved photoelectron spectroscopy of a triatomic molecule: Photoionization of the C (0.0.0) state of water

    SciTech Connect

    Glab, W.L.; Glynn, P.T.; Dehmer, P.M.; Dehmer, J.L.

    1996-05-01

    The authors have used a magnetic bottle photoelectron spectrometer to study the distribution of ion rotational states following photoionization of selected rotational states of the {tilde C}(0,0,0) state of water by 355 nm light. The spectrometer`s kinetic energy resolution of about 4 meV was sufficient to yield rotationally resolved time-of-flight photoelectron spectra. Comparison of the measured and calculated photoelectron spectra is encouraging and reveals unusual photoionization dynamics due to very nonatomic-like behavior in the photoionization continuum and to the presence of Cooper minima. This is the first time that such a test of photoionization theory for a polyatomic molecule at finite kinetic energy has been possible.

  13. Vibrations of acrylonitrile in N 1s excited states

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D.; Ilakovac, A.

    2008-01-01

    The N 1s near edge x-ray absorption fine structure spectra of acrylonitrile gas are accurately reproduced by a complete ab initio multidimensional vibrational analysis. The role of π∗ -orbital localization and hybridization on vibrations accompanying core excitation is discussed. Transition to the π⊥∗(C=C-C≡N) delocalized orbital excites mostly stretching vibrations of the whole spinal column of the molecule. Promoting a core electron to the localized π∥∗(C≡N) produces C≡N stretching vibration combined with two strong bending modes of the C-C≡N end of the molecule, related to the change of carbon hybridization.

  14. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets

    NASA Astrophysics Data System (ADS)

    Faubel, Manfred; Steiner, Björn; Toennies, J. Peter

    1997-06-01

    The recently developed technique of accessing volatile liquids in a high vacuum environment by using a very thin liquid jet is implemented to carry out the first measurements of photoelectron spectra of pure liquid water, methanol, ethanol, 1-propanol, 1-butanol, and benzyl alcohol as well as of liquid n-nonane. The apparatus, which consists of a commercial hemispherical (10 cm mean radius) electron analyzer and a hollow cathode discharge He I light source is described in detail and the problems of the sampling of the photoelectrons in such an environment are discussed. For water and most of the alcohols up to six different electronic bands could be resolved. The spectra of 1-butanol and n-nonane show two weakly discernable peaks from which the threshold ionization potential could be determined. A deconvolution of the photoelectron spectra is used to extract ionization potentials of individual molecular bands of molecules near the surface of the liquid and shifts of the order of 1 eV compared to the gas phase are observed. A molecular orientation for water molecules at the surface of liquid water is inferred from a comparison of the relative band strengths with the gas phase. Similar effects are also observed for some of the alcohols. The results are discussed in terms of a simple "Born-solvation" model.

  15. Integrated X-ray photoelectron spectroscopy and DFT characterization of benzene adsorption on Pt(111), Pt(355) and Pt(322) surfaces.

    PubMed

    Zhang, Renqin; Hensley, Alyssa J; McEwen, Jean-Sabin; Wickert, Sandra; Darlatt, Erik; Fischer, Kristina; Schöppke, Matthias; Denecke, Reinhard; Streber, Regine; Lorenz, Michael; Papp, Christian; Steinrück, Hans-Peter

    2013-12-21

    We systematically investigate the adsorption of benzene on Pt(111), Pt(355) and Pt(322) surfaces by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principle calculations based on density functional theory (DFT), including van der Waals corrections. By comparing the adsorption energies at 1/9, 1/16 and 1/25 ML on Pt(111), we find significant lateral interactions exist between the benzene molecules at 1/9 ML. The adsorption behavior on Pt(355) and Pt(322) is very different. While on Pt(355) a step species is clearly identified in the C 1s spectra at low coverages followed by occupation of a terrace species at high coverages, no evidence for a step species is found on Pt(322). These different adsorption sites are confirmed by extensive DFT calculations, where the most favorable adsorption configurations on Pt(355) and Pt(322) are also found to vary: a highly distorted across the step molecule is found on Pt(355) while a less distorted configuration adjacent to the step molecule is deduced for Pt(322). The theoretically proposed C 1s core level binding energy shifts between these most favorable configurations and the terrace species are found to correlate well with experiment: for Pt(355), two adsorbate states are found, separated by ~0.4 eV in XPS and 0.3 eV in the calculations, in contrast to only one state on Pt(322). PMID:24189500

  16. Angular distributions of molecular Auger electrons: The case of C 1s Auger emission in CO

    SciTech Connect

    Semenov, S. K.; Kuznetsov, V. V.; Cherepkov, N. A.; Bolognesi, P.; Feyer, V.; Lahmam-Bennani, A.; Casagrande, M. E. Staicu; Avaldi, L.

    2007-03-15

    The results of a study of the Auger-electron-photoelectron angular correlations in the case of the C 1s ionization of the CO molecule are presented and compared with theoretical calculations in the Hartree-Fock approximation based on the two-step model. The measurements have been performed at two photon energies, 305 and 318 eV, respectively, and at three angles of photoelectron emission relative to the light polarization vector: namely, 0 degree sign , 30 degree sign , and 60 degree sign . A general agreement is found between theory and experiment for the coincidence angular distributions and the relative magnitudes of the Auger-electron-photoelectron angular correlations. However, both experiment and theory show that the Auger-electron-photoelectron angular correlations are not sufficiently sensitive to the details of the Auger-electron wave function to allow a 'complete' Auger experiment in molecules. On the other hand, our calculations demonstrate that the Auger-electron angular distribution measured in the molecular frame is very sensitive to the individual contributions of different partial waves of the Auger electron. Therefore we conclude that the complete experiment for the Auger decay in molecules can be realized only measuring the Auger-electron angular distributions in the molecular frame.

  17. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  18. Photoelectron diffraction and holography: Some new directions

    SciTech Connect

    Fadley, C.S. |

    1993-08-01

    Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions for the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.

  19. Theory of photoelectron production, transport and energy loss

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.

    1974-01-01

    Current understanding of the theory of ionospheric photoelectron production, transport and energy loss is summarized. The various approaches used in the theoretical calculations of photoelectron fluxes appear to be self consistent and sound; improved values for a number of input parameters are needed now in order to achieve significant improvements and more confidence in the results. The major remaining problem in the present day theory of photoelectron transport and energy loss is centered around the calculations of photoelectron transit through the protonosphere.

  20. Time-resolved photoelectron spectroscopy of liquids

    NASA Astrophysics Data System (ADS)

    Buchner, Franziska; Lübcke, Andrea; Heine, Nadja; Schultz, Thomas

    2010-11-01

    We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids.

  1. Time-resolved photoelectron spectroscopy of liquids.

    PubMed

    Buchner, Franziska; Lübcke, Andrea; Heine, Nadja; Schultz, Thomas

    2010-11-01

    We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids. PMID:21133461

  2. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  3. Effects of rare-earth substitution in the oxyarsenides REFeAsO (RE=Ce, Pr, Nd, Sm, Gd) and CeNiAsO by X-ray photoelectron and absorption spectroscopy

    SciTech Connect

    Blanchard, Peter E.R.; Cavell, Ronald G.; Mar, Arthur

    2010-08-16

    X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) have been applied to examine the electronic structure of the rare-earth transition-metal oxyarsenides REFeAsO (RE=Ce, Pr, Nd, Sm, Gd) and CeNiAsO. Within the metal-arsenic layer [MAs], the bonding character is predominantly covalent and the As atoms are anionic, as implied by the small energy shifts in the M 2p and As 3d XPS spectra. Within the rare-earth-oxygen layer [REO], the bonding character is predominantly ionic, as implied by the similarity of the O 1s binding energies to those in highly ionic oxides. Substitution with a smaller RE element increases the O 1s binding energy, a result of an enhanced Madelung potential. The Ce 3d XPS and Ce L{sub 3}-edge XANES spectra have lineshapes and energies that confirm the presence of trivalent cerium in CeFeAsO and CeNiAsO. A population analysis of the valence band spectrum of CeNiAsO supports the formal charge assignment [Ce{sup 3+}O{sup 2-}][Ni{sup 2+}As{sup 3-}].

  4. Decomposition of diazomeldrum's acid: a threshold photoelectron spectroscopy study.

    PubMed

    Lang, Melanie; Holzmeier, Fabian; Fischer, Ingo; Hemberger, Patrick

    2014-11-26

    Derivatives of meldrum's acid are known precursors for a number of reactive intermediates. Therefore, we investigate diazomeldrum's acid (DMA) and its pyrolysis products by photoionization using vacuum ultraviolet (VUV) synchrotron radiation. The threshold photoelectron spectrum of DMA yields an ionization energy (IE) of 9.68 eV. Several channels for dissociative photoionization are observed. The first one is associated with loss of CH3, leading to a daughter ion with m/z = 155. Its appearance energy AE0K was determined to be 10.65 eV by fitting the experimental data using statistical theory. A second parallel channel leads to m/z = 69, corresponding to N2CHCO, with an AE0K of 10.72 eV. Several other channels open up at higher energy, among them the formation of acetone cation, a channel expected to be the result of a Wolff-rearrangement (WR) in the cation. When diazomeldrum's acid is heated in a pyrolysis reactor, three thermal decomposition pathways are observed. The major one is well-known and yields acetone, N2 and CO as consequence of the WR. However, two further channels were identified: The formation of 2-diazoethenone, NNCCO, together with acetone and CO2 as the second channel and E-formylketene (OCCHCHCO), propyne, N2 and O2 as a third one. 2-Diazoethenone and E-formylketene were identified based on their threshold photoelectron spectra and accurate ionization energies could be determined. Ionization energies for several isomers of both molecules were also computed. One of the key findings of this study is that acetone is observed upon decomposition of DMA in the neutral as well as in the ion and both point to a Wolff rearrangement to occur. However, the ion is subject to other decomposition channels favored at lower internal energies. PMID:25369422

  5. Anion Photoelectron Spectroscopy of NbW- and W2-

    NASA Astrophysics Data System (ADS)

    Schnepper, D. Alex; Baudhuin, Melissa A.; Leopold, Doreen; Casey, Sean M.

    2015-06-01

    The 488 nm vibrationally-resolved photoelectron spectra of NbW- and W2- are reported. The electron affinity of W2 ( 1σg+ ← 2σu+ ) is found to be 1.118 ± 0.007 eV, which differs from the value reported in a previous anion photoelectron spectroscopic study of W2- (1.46 eV), but was accurately predicted by density functional calculations (1.12 eV). The fundamental vibrational frequency of W2 is measured to be 345 ± 15 wn, in agreement with the value previously reported in matrix resonance Raman studies (337 wn). The W2- anion is measured to have a fundamental frequency of 320 ± 15 wn. Several weak transitions to excited electronic states are seen and tentatively assigned based on calculated energies. NbW has an electron affinity of 0.856 ± 0.007 eV. Vibrational frequencies are found, by Franck-Condon fitting of overlapping transitions, to be 365 ± 20 cm-1 for NbW- and 410 ± 20 cm-1 for NbW. This increase in vibrational frequency upon photodetachment suggests that the extra electron is in an antibonding orbital, leading to ground state assignments of 3Δ and 2Δ for the anion and neutral, respectively. These results are compared to those obtained for other Group V and Group VI transition metal dimers and trends are discussed. H. Weidele et al., Chem. Phys. Lett. 237 (1995) 425-431 Z. J. Wu, X. F. Ma, Chem. Phys. Lett. 371 (2003) 35-39 Z. Hu, J.-G. Dong, J. R. Lombardi, D. M. Lindsay, J. Chem. Phys. 97 (1992) 8811-8812

  6. Probing neutral atmospheric collision complexes with anion photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Jarrold, Caroline

    Photodetachment of anionic precursors of neutral collision complexes offers a way to probe the effects of symmetry-breaking collision events on the electronic structure of normally transparent molecules. We have measured the anion photoelectron imaging (PEI) spectra of a series of O2- X complexes, where X is a volatile organic molecule with atmospheric relevance, to determine how the electronic properties of various X molecules affect the low-lying electronic structure of neutral O2 undergoing O2 - X collisons. The study was motivated by the catalog of vibrational and electronic absorption lines induced by O2 - O2, O2 - N2, and other collisions. The energies of electronic features observed in the anion PEI spectra of O2- X (X = hexane, hexene, isoprene and benzene) relative to O2- PEI spectroscopic features indicate that photodetachment of the anion does indeed access a repulsive part of the O2 - X potential. In addition, the spectra of the various complexes show an interesting variation in the intensities of transitions to the excited O2(1Δg) . X and O2(1Σg+) . X states relative to the ground O2(3Σg-) . X state. With X = non-polar species such as hexane, the relative intensities of transitions to the triplet and singlet states of O2 . X are very similar to those of isolated O2, while the relative intensity of the singlet band decreases and becomes lower in energy relative to the triplet band for X = polar molecules. A significant enhancement in the intensities of the singlet bands is observed for complexes with X = isoprene and benzene, both of which have low-lying triplet states. The role of the triplet states in isoprene and benzene, and the implications for induced electronic absorption in O2 undergoing collisions with these molecules, are explored. National Science Foundation NSF CHE 1265991.

  7. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.; Powis, Ivan

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  8. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    NASA Astrophysics Data System (ADS)

    Lehmann, C. Stefan; Ram, N. Bhargava; Powis, Ivan; Janssen, Maurice H. M.

    2013-12-01

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  9. Satellite spectra of heliumlike nickel

    SciTech Connect

    Hsuan, H.; Bitter, M.; Hill, K.W.; von Goeler, S. Grek, B.; Johnson, D.; Johnson, L.C.; Sesnic, S.; Bhalla, C.P.; Karim, K.R.

    1987-02-01

    Spectra of heliumlike nickel, NiXXVII, have been observed from Tokamak Fusion Test Reactor (TFTR) plasmas with a high resolution crystal spectrometer. The experimental arrangement permits simultaneous observation of the heliumlike resonance line, the intercombination and forbidden lines, and all the associated satellites due to transitions 1s/sup 2/nl - 1s2l'nl'' with N greater than or equal to 2. Relative wavelengths and line intensities can thus be determined very accurately. The observed spectral data are in good agreement with results from the present Hartree-Fock-Slater atomic model calculations and predictions from the Z-expansion method.

  10. Photoelectron fluxes observed by FAST compared with model predictions incorporating SNOE observations of the solar soft X-ray irradiance

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Peterson, W. K.; Solomon, S. C.; Carlson, C. W.; McFadden, J. P.

    2001-12-01

    Photoelectrons are those electrons produced when atoms or molecules in the upper atmosphere are photoionized. These electrons carry the excess energy of the photon remaining from the ionization and can have energies up to and greater than 1 keV. Photoelectrons are important in that they play a significant role in the energetics of the upper atmosphere, resulting in ionization, dissociation, and excitation of atoms and molecules. There have been long standing issues with regard to understanding the magnitude of the terrestrial photoelectron flux as models have not been able to reproduce the observations without scaling the solar soft X-ray irradiance by factors of two to four. The Fast Auroral Snapshot (FAST) spacecraft was launched in August of 1996. While its primary goals focus on the study of auroral energetic particles, in January of 1999 it began making low-latitude observations. From measurements by the FAST energetic electron sensor, upward flowing photoelectron fluxes in the energy range of 50 eV to 1 keV have been obtained. These measurements are in agreement with earlier measurements of the terrestrial photoelectron flux. The Student Nitric Oxide Explorer (SNOE) spacecraft was launched in February of 1998. Since then it has been making daily observations of the solar soft X-ray irradiance in bandpasses of 2 - 7, 6 - 19, and 17 - 20 nm. SNOE observes larger values of the solar soft X-ray irradiance than reported by earlier observations or predicted by empirical models; however, the SNOE observations are in agreement with many suggestions of the solar soft X-ray irradiance obtained from geophysical observations such as airglow and electron densities. These irradiance measurements are used in a photoelectron model that includes transport. Observations of photoelectron fluxes for the first solar rotation of 1999 are modeled. The model photoelectron spectra are in good agreement with the observed photoelectron spectra over most of the 50 eV to 1 keV energy

  11. Photoelectron Spectroscopy of Alkali-Halide Cluster Anions Containing Excess Electrons

    NASA Astrophysics Data System (ADS)

    Fatemi, Darius James

    1995-01-01

    We have obtained photoelectron spectra for alkali -halide clusters containing excess electrons. These measurements demonstrate that the mode of electron accommodation and the cluster configuration depend on the sizes of the atomic ions comprising the aggregate. We also report on the role of the source temperature in determining the structures observed for a cluster. Photoelectron measurements of metal-rich alkali -halide clusters (MX)_{n}M _{m}^-(m >=q 2) suggest that the metallic and ionic components within each of these systems are separated from each other. This behavior is evident for n = 3,5 in clusters of cesium chloride and for n = 3,7,8,9 for sodium iodide clusters. We also studied the mixed species (NaI) _{n}Na_{m} OH^- and(NaI)_ {n}H_2O ^-. The (NaI)_{n} Na_{m}OH ^- clusters appear to contain the OH ^- ion in the same way a halogen anion would be accommodated. Photoelectron spectra of(NaI) _{n}H_2O ^- are consistent with adsorption of a water molecule on an edge of an ionic lattice.

  12. Observation of Dipole-Bound State and High-Resolution Photoelectron Imaging of Cold Acetate Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2015-06-01

    We report the observation of a dipole-bound state and a high-resolution photoelectron imaging study of cryogenically cooled acetate anions (CH3COO-). Both high-resolution non-resonant and resonant photoelectron spectra via the dipole-bound state of CH3COO- are obtained. The binding energy of the dipole-bound state relative to the detachment threshold is determined to be 53 ±{8} wn. The electron affinity of the CH_3COObullet neutral radical is measured accurately as 26 236 ±{8} wn (3.2528 ±{ 0.0010} eV) using high-resolution photoelectron imaging. This accurate electron affinity is validated by observation of autodetachment from two vibrational levels of the dipole-bound state of CH3COO-. Excitation spectra to the dipole-bound states yield rotational profiles, allowing the rotational temperature of the trapped CH3COO- anions to be evaluated 1. [1] D. L. Huang, G. Z. Zhu and L. S. Wang, J. Chem. Phys., 2015, 142, 091103

  13. Attosecond angle-resolved photoelectron spectroscopy.

    PubMed

    Aseyev, S A; Ni, Y; Frasinski, L J; Muller, H G; Vrakking, M J J

    2003-11-28

    We report experiments on the characterization of a train of attosecond pulses obtained by high-harmonic generation, using mixed-color (XUV+IR) atomic two-photon ionization and electron detection on a velocity map imaging detector. We demonstrate that the relative phase of the harmonics is encoded both in the photoelectron yield and the angular distribution as a function of XUV-IR time delay, thus making the technique suitable for the detection of single attosecond pulses. The timing of the attosecond pulse with respect to the field oscillation of the driving laser critically depends on the target gas used to generate the harmonics. PMID:14683238

  14. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    SciTech Connect

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  15. Electron Localization in Dissociating H_{2}^{+} by Retroaction of a Photoelectron onto Its Source.

    PubMed

    Waitz, M; Aslitürk, D; Wechselberger, N; Gill, H K; Rist, J; Wiegandt, F; Goihl, C; Kastirke, G; Weller, M; Bauer, T; Metz, D; Sturm, F P; Voigtsberger, J; Zeller, S; Trinter, F; Schiwietz, G; Weber, T; Williams, J B; Schöffler, M S; Schmidt, L Ph H; Jahnke, T; Dörner, R

    2016-01-29

    We investigate the dissociation of H_{2}^{+} into a proton and a H^{0} after single ionization with photons of an energy close to the threshold. We find that the p^{+} and the H^{0} do not emerge symmetrically in the case of the H_{2}^{+} dissociating along the 1sσ_{g} ground state. Instead, a preference for the ejection of the p^{+} in the direction of the escaping photoelectron can be observed. This symmetry breaking is strongest for very small electron energies. Our experiment is consistent with a recent prediction by Serov and Kheifets [Phys. Rev. A 89, 031402 (2014)]. In their model, which treats the photoelectron classically, the symmetry breaking is induced by the retroaction of the long-range Coulomb potential onto the dissociating H_{2}^{+}. PMID:26871325

  16. The ionisation energy of cyclopentadienone: a photoelectron-photoion coincidence study

    NASA Astrophysics Data System (ADS)

    Ormond, Thomas K.; Hemberger, Patrick; Troy, Tyler P.; Ahmed, Musahid; Stanton, John F.; Ellison, G. Barney

    2015-08-01

    Imaging photoelectron photoion coincidence (iPEPICO) spectra of cyclopentadienone (C5H4=O and C5D4=O) have been measured at the Swiss Light Source Synchrotron (Paul Scherrer Institute, Villigen, Switzerland) at the Vacuum Ultraviolet (VUV) Beamline. Complementary to the photoelectron spectra, photoionisation efficiency curves were measured with tunable VUV radiation at the Chemical Dynamics Beamline at the Advanced Light Source Synchrotron (Lawrence Berkeley National Laboratory, Berkeley, CA, USA). For both experiments, molecular beams diluted in argon and helium were generated from the vacuum flash pyrolysis of o-phenylene sulphite in a resistively heated microtubular SiC flow reactor. The Franck-Condon profiles and ionisation energies were calculated at the CCSD(T) level of theory, and are in excellent agreement with the observed iPEPICO spectra. The ionisation energies of both cyclopentadienone-d0, IE(C5H4=O), and cyclopentadienone-d4, IE(C5D4=O), were observed to be the same: 9.41 ± 0.01 eV. The mass-selected threshold photoelectron spectrum (ms-TPES) of cyclopentadienone reveals that the C=C stretch in the ground state of the cation is excited upon ionisation, supporting computational evidence that the ground state of the cation is ? 2A2, and is in agreement with previous studies. However, the previously reported ionisation potential has been improved considerably in this work. In addition, since o-benzoquinone (o-O=C6H4=O and o-O=C6D4=O) is also produced in this process, its ms-TPES has been recorded. From the iPEPICO and photoionisation efficiency spectra, we infer an adiabatic ionisation energy of IE(o-O=C6H4=O) = 9.3 ± 0.1 eV, but the rather structureless spectrum indicates a strong change in geometry upon ionisation making this value less reliable.

  17. Ionic thermal effects on photo-electron emission within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Gao, Cong-Zhang; Dinh, Phuong Mai; Reinhard, Paul-Gerhard; Suraud, Eric

    2016-02-01

    We study the impact of thermal fluctuations of cluster/molecule shape on photo-electron spectra (PES) and photo-electron angular distributions (PAD) using a detailed time-dependent simulation of the emission dynamics and thermal ionic motion. Basis of the description is time-dependent density-functional theory (TDDFT) coupled to molecular dynamics for ionic motion. Test cases are small Na clusters and the C3 molecule. For Na clusters, we find that PES signals are rather robust for one-photon processes while large smearing of the pattern are observed at lower frequencies in multi-photon processes. This effect can be related to the typical spectral response of the metal clusters. PAD are generally much more robust than PES. The C3 molecule produces a greater variety of thermal response. This happens because this molecule has eigenmodes with much different softness.

  18. Vibrational fine structure of C5 via anion slow photoelectron velocity-map imaging

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Kim, Jongjin B.; Neumark, Daniel M.

    2013-10-01

    High-resolution anion photoelectron spectra of cryogenically cooled C_5^ - clusters are reported using slow photoelectron velocity-map imaging spectroscopy. We resolve vibronic transitions to the ν2 stretching mode and multiply excited ν5, ν6, and ν7 bending modes of neutral C5 with significantly higher accuracy than previous experiments. Weak transitions to Franck-Condon (FC) forbidden singly excited bending modes are made possible by Herzberg-Teller coupling between electronic states of the neutral cluster. In addition, we resolve vibrational fine structure corresponding to different angular momentum states of multiply excited bending modes. The observation of this multiplet structure, some of which is FC forbidden, is attributed to Renner-Teller coupling between vibrational levels in the C_5^ - ground electronic state.

  19. Sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) of thiol and thioether compounds

    SciTech Connect

    Beyhan, Shirin; Urquhart, Stephen G.; Hu Yongfeng

    2011-06-28

    The speciation and quantification of sulfur species based on sulfur K-edge x-ray absorption spectroscopy is of wide interest, particularly for biological and petroleum science. These tasks require a firm understanding of the sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of relevant species. To this end, we have examined the gas phase sulfur 1s NEXAFS spectra of a group of simple thiol and thioether compounds. These high-resolution gas phase spectra are free of solid-state broadening, charging, and saturation effects common in the NEXAFS spectra of solids. These experimental data have been further analyzed with the aid of improved virtual orbital Hartree-Fock ab initio calculations. The experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve assignment of spectroscopic features relevant for the speciation and quantification of the sulfur compounds.

  20. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    SciTech Connect

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-11

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  1. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-01

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis. PMID:27082434

  2. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  3. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  4. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions.

    PubMed

    Olivieri, Giorgia; Parry, Krista M; Powell, Cedric J; Tobias, Douglas J; Brown, Matthew A

    2016-04-21

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy(XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyteinterface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquidinterface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquidinterfaces are discussed. PMID:27389231

  5. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  6. X-ray photoelectron spectroscopy of copper(II), copper(I), and mixed valence systems.

    PubMed

    Rupp, H; Weser, U

    1976-01-01

    X-ray photoelectron spectroscopy using copper(II), copper(I) and the mixed valence Cu(II)/Cu(I) compounds was employed as a means of studying electron transfer reactions in copper proteins. The X-ray photoelectron spectra of copper(II) compounds display characteristic satellites of both variable size and resolution. Some of these satellites could be assigned to specific ligand interactions. Unlike electron paramagnetic resonance spectroscopy, the X-ray photoelectron spectroscopic measurements of copper(I) compounds allowed the unequivocal assignment of this oxidation state. No satellites at all could be detected in the Cu(I) spectra. Furthermore, established mixed valence Cu(II)/Cu(I) complexes including Cu2SO3-CuSO3-2H2O and Cu4Cl5 (ethylenediamine)2 proved essentially a mixture of distinct portions of Cu(I) and Cu(II). This indicates that both oxidation states of copper survive in such complexes. In contrast, all Cu X-ray photoelectron signals of the more tentatively described mixed valence complexes Na2Cu3S3 and the mineral covellite, CuI4CuII2(S2)2S2, could be attributed exclusively to Cu(I). In view of the known binding of copper with sulfur in many copper proteins, it was of utmost importance to study the copper-sulfur interactions. We have demonstrated the absence of Cu(II) in CuS. This indicates strong metal-induced polarization of sulfur resulting in electron transfer to copper to yield Cu(I). PMID:953045

  7. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  8. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  9. CRAY-1S integer vector utility library

    SciTech Connect

    Rogers, J.N.; Tooman, T.P.

    1982-06-01

    This report describes thirty-five integer or packed vector utility routines, and documents their testing. These routines perform various vector searches, linear algebra functions, memory resets, and vector boolean operations. They are written in CAL, the assembly language on the CRAY-1S computer. By utilizing the vector processing features of that machine, they are optimized in terms of run time. Each routine has been extensively tested.

  10. Ionization and Fragmentation of DCOOD Induced by Synchrotron Radiation at the Oxygen 1s Edge: The Role of Dimer Formation.

    PubMed

    Arruda, Manuela S; Medina, Aline; Sousa, Josenilton N; Mendes, Luiz A V; Marinho, Ricardo R T; Prudente, Frederico V

    2016-07-14

    The ionization and photofragmentation of molecules in the core region has been widely investigated for monomers and dimers of organic molecules in the gas phase. In this study, we used synchrotron radiation to excite electrons of the oxygen K-edge in an effusive molecular beam of doubly deuterated formic acid. We used time-of-flight mass spectrometry and employed the spectroscopic techniques photoelectron-photoion coincidence and photoelectron photoion-photoion coincidence to obtain spectra of single and double coincidences at different pressures. Our results indicate the presence of ions and ion pairs that have charge-to-mass ratio higher than the monomer DCOOD, as the (DCOOD)·D(+), and pairs (DCO(+), DCO(+)) and (CO(+), DCO(+)). Comparing the spectra obtained for different pressures we can ascertain that these ions are formed by the fragmentation of DCOOD dimers. PMID:27116397

  11. Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility.

    PubMed

    Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya

    2014-01-01

    In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system's design enables it to be controlled by an external trigger signal for single-shot pump-probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in 'single-shot image', 'shot-to-shot image (image-to-image storage or block storage)' and `shot-to-shot sweep' modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in `ordinary sweep' mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL. PMID:24365935

  12. Probing the electronic and vibrational structure of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} using photoelectron spectroscopy and high resolution photoelectron imaging

    SciTech Connect

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au{sub 2}Al{sub 2}. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au{sub 2}Al{sub 2}{sup −} at various photon energies (670.55−843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au{sub 2}Al{sub 2} neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm{sup −1}. Hot bands transitions yield two vibrational frequencies for Au{sub 2}Al{sub 2}{sup −} at 57 ± 10 and 144 ± 12 cm{sup −1}. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au{sub 2}Al{sub 2}{sup −} and Au{sub 2}Al{sub 2} possess C{sub 2v} tetrahedral structures.

  13. Surface composition analysis of HF vapour cleaned silicon by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermolieff, A.; Martin, F.; Amouroux, A.; Marthon, S.; Westendorp, J. F. M.

    1991-06-01

    X-ray photoelectron spectroscopy (XPS) measurements on silicon surfaces treated by HF gaseous cleaning are described. Various cleaning recipes, which essentially differ by the amount of water present during the reaction were studied; the composition of the silicon surface was measured in terms of monolayer coverage of oxygen, fluorine and carbon. These gaseous cleaned surfaces are compared with those of commonly deglazed silicon samples by using an aqueous HF bath. The F(1s), O(1s), Si(2p), C(1s) photoelectron lines were monitored, and concentrations determined as usual by integration of the lines after removal of the non-linear backgroune. The F(1s), C(1s) and Si(2p) lines were decomposed into several components corresponding to different chemical bonds. The results show that the amount of fluorine is directly correlated with the amount of oxygen: the higher the oxygen level on the sample, the more important is the fluorine content till 0.7 ML, essentially in a O sbnd Si sbnd F bonding state. For more aggresive etching leaving less than one monolayer of oxygen, the Si sbnd F bond becomes predominant. The ratio of the SiF to OSiF concentrations is a significant signature of the deoxidation state of the surface. Hydrophobicity of the water appears in the range of 25% Si sbnd F bonds. With very aggresive etching processes, 67% Si sbnd F bonds and 33% O sbnd Si sbnd F bonds are reached and the total amount of fluoride drops below 0.3 ML. For comparison, only Si sbnd F bonds are observed after a wet etching in a dilute HF bath without a rinse with a much lower fluorine concentration. The balance between Si sbnd F and O sbnd Si sbnd F remains stable and seems to be representative of the surface states provided by the etching process.

  14. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  15. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    SciTech Connect

    Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-09

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  16. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    NASA Astrophysics Data System (ADS)

    Hikosaka, Y.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Soejima, K.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-01

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne3+ in the 1s2s22p4 configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  17. Energy correlation among three photoelectrons emitted in core-valence-valence triple photoionization of Ne.

    PubMed

    Hikosaka, Y; Lablanquie, P; Penent, F; Palaudoux, J; Andric, L; Soejima, K; Shigemasa, E; Suzuki, I H; Nakano, M; Ito, K

    2011-09-01

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne3+ in the 1s 2s2 2p4 configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons. PMID:22026663

  18. Eclipse and noneclipse differential photoelectron flux.

    NASA Technical Reports Server (NTRS)

    Knudsen, W. C.; Sharp, G. W.

    1972-01-01

    Differential photoelectron flux in the energy range of 3 to 50 eV has been measured in the lower ionosphere both during the March 7, 1970, solar eclipse and during a period 24 hours earlier. The two measurements were made with identical retarding potential analyzers carried on Nike-Apache rocket flights to a peak altitude of approximately 180 km. The differential electron flux spectrum within totality on the eclipse flight had the same shape but was a factor of 10 smaller in magnitude than that measured on the control day at altitudes between 120 and 180 km, an expected result for an eclipse function decreasing to 1/10 at totality. The differential flux spectrum measured in full sun has the same general energy dependence as that reported by Doering et al. (1970) but is larger by a factor of 2 to 10, depending on altitude.

  19. Autoionization of OCS by threshold photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Guyon, Paul-Marie; Nenner, Irène

    1981-04-01

    Autoionization of carbonyl sulfide between 12 and 16 eV has been investigated by photoionization using the pulsed synchrotron radiation from ACO Orsay's storage ring. The threshold photoelectron spectrum and the total photoionization spectrum of carbonyl sulfide have been recorded at high resolution in the wavelength range between 112.0 and 65.0 nm (11-19 eV). Threshold energy electrons are observed in specific wavelength regions: (i) at excitation energies where the X˜, Ã, B˜, and C˜ ionic states are formed by a direct process; (ii) in the à state region where resonant autoionization to à can be understood classically within the Franck-Condon approximation; (iii) in the ÖX˜ Franck-Condon gap between 90 and 110 nm, where resonant autoionization leads to very sharp electron energy distribution strongly peaked at zero energy. Here the mechanism must be more complex.

  20. Photoelectron spectroscopy of PbO -

    NASA Astrophysics Data System (ADS)

    Polak, Mark L.; Gilles, Mary K.; Gunion, Robert F.; Lineberger, W. C.

    1993-07-01

    The 351 nm photoelectron spectrum pf PbO - has been recorded with 9 meV resolution. Transitions from the 2Π 1/2 PbO - ground state anion to the X 1Σ + neutral ground state and three excited states (a 1, b 0 -. and A 0 + are observed. The adiabatic electron affinity of PbO is determined to be 0.722(6) eV. From a Franck—Condon simulation of the spectrum we obtain re(PbO - = 1.995(15) Å, and observation of vibrational hot bands enables measurement of ω e(PbO -) = 588 (15) cm -1. Electronic energies of the excited states are reported, and our results identify a new excited state while suggesting a corrected term energy for the b0 - state.

  1. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  2. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    SciTech Connect

    Toomes, R.; Booth, N.A.; Woodruff, D.P.

    1997-04-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an `image` of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems.

  3. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene

    SciTech Connect

    Fronzoni, Giovanna; Baseggio, Oscar; Stener, Mauro; Hua, Weijie; Tian, Guangjun; Luo, Yi; Apicella, Barbara; Alfé, Michela; Simone, Monica de; Kivimäki, Antti; Coreno, Marcello

    2014-07-28

    We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 − n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.

  4. Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap

    SciTech Connect

    Wang Xuebin; Wang Laisheng

    2008-07-15

    The ability to control ion temperatures is critical for gas phase spectroscopy and has been a challenge in chemical physics. A low-temperature photoelectron spectroscopy instrument has been developed for the investigation of complex anions in the gas phase, including multiply charged anions, solvated species, and biological molecules. The new apparatus consists of an electrospray ionization source, a three dimensional (3D) Paul trap for ion accumulation and cooling, a time-of-flight mass spectrometer, and a magnetic-bottle photoelectron analyzer. A key feature of the new instrument is the capability to cool and tune ion temperatures from 10 to 350 K in the 3D Paul trap, which is attached to the cold head of a closed cycle helium refrigerator. Ion cooling is accomplished in the Paul trap via collisions with a background gas and has been demonstrated by observation of complete elimination of vibrational hot bands in photoelectron spectra of various anions ranging from small molecules to complex species. Further evidence of ion cooling is shown by the observation of H{sub 2}-physisorbed anions at low temperatures. Cold anions result in better resolved photoelectron spectra due to the elimination of vibrational hot bands and yield more accurate energetic and spectroscopic information. Temperature-dependent studies are made possible for weakly bonded molecular and solvated clusters, allowing thermodynamic information to be obtained.

  5. Development of a Low-Temperature Photoelectron Spectroscopy Instrument Using an Electrospray Ion Source and a Cryogenically Controlled Ion Trap

    SciTech Connect

    Wang, Xue B.; Wang, Lai S.

    2008-07-01

    The ability to control ion temperatures is critical for gas phase spectroscopy and has been a challenge in chemical physics. A low-temperature photoelectron spectroscopy instrument has been developed for the investigation of complex anions in the gas phase, including multiply charged anions, solvated species, and biological molecules. The new apparatus consists of an electrospray ionization source, a 3D Paul trap for ion accumulation and cooling, a time-of-flight mass spectrometer, and a magnetic-bottle photoelectron analyzer. A key feature of the new instrument is the capability to cool and tune ion temperatures from 10 to 350 K in the 3D Paul trap, which is attached to the cold head of a closed-cycle helium refrigerator. Ion cooling is accomplished in the Paul trap via collisions with a background gas and has been demonstrated by observation of complete elimination of vibrational hot bands in photoelectron spectra of various anions ranging from small molecules to complex species. Further evidence of ion cooling is shown by the observation of H2 physisorbed anions at low temperatures. Cold anions result in better resolved photoelectron spectra due to the elimination of vibrational hot bands and yield more accurate energetic and spectroscopic information. Temperature-dependent studies are made possible for weakly-bonded molecular and solvated clusters, allowing thermodynamic information to be obtained.

  6. Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap.

    PubMed

    Wang, Xue-Bin; Wang, Lai-Sheng

    2008-07-01

    The ability to control ion temperatures is critical for gas phase spectroscopy and has been a challenge in chemical physics. A low-temperature photoelectron spectroscopy instrument has been developed for the investigation of complex anions in the gas phase, including multiply charged anions, solvated species, and biological molecules. The new apparatus consists of an electrospray ionization source, a three dimensional (3D) Paul trap for ion accumulation and cooling, a time-of-flight mass spectrometer, and a magnetic-bottle photoelectron analyzer. A key feature of the new instrument is the capability to cool and tune ion temperatures from 10 to 350 K in the 3D Paul trap, which is attached to the cold head of a closed cycle helium refrigerator. Ion cooling is accomplished in the Paul trap via collisions with a background gas and has been demonstrated by observation of complete elimination of vibrational hot bands in photoelectron spectra of various anions ranging from small molecules to complex species. Further evidence of ion cooling is shown by the observation of H2-physisorbed anions at low temperatures. Cold anions result in better resolved photoelectron spectra due to the elimination of vibrational hot bands and yield more accurate energetic and spectroscopic information. Temperature-dependent studies are made possible for weakly bonded molecular and solvated clusters, allowing thermodynamic information to be obtained. PMID:18681692

  7. Applications of X-Ray Photoelectron Spectroscopy. Part I. High T(c) Superconductors. Part II. Polymer Degradation.

    NASA Astrophysics Data System (ADS)

    Allan, Kristi Ann

    1990-08-01

    using X-ray photoelectron and transmission infra-red (IR) spectroscopies. While the -CH_2 group was stable, the alcoholic -COH moiety was unstable under the X-ray beam (Mg Kalpha radiation: 1253.6 eV) and reacted continuously to produce three new C (1s) peaks assignable to carbonyl C=O (oxidation), carboxylate -COO (oxidative chain scission) and ether C-O-C linkages (crosslinking, dehydroxylation). Transmission FT-IR spectra of X-ray treated films showed the carbonyl stretch at 1700 cm ^{-1} and a loss of intensity in the O-H stretching mode near 3340 cm^{ -1}. The results indicate that degradation occurs throughout the polymer bulk and is caused either directly, by X-ray photons, or by the secondary electrons generated within the polymer.

  8. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    SciTech Connect

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  9. Photoelectron momentum distributions of the hydrogen atom driven by multicycle elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2016-02-01

    Photoelectron momentum distributions (PMDs) of the hydrogen atom driven by multicycle elliptically polarized strong laser fields are studied in detail, based on the numerical solution of the time-dependent Schrödinger equation and the Volkov wave propagation. Both short and long driving pulses of the 800-nm field are considered, as well as the ellipticity dependence, to describe the mechanism of symmetry breaking in the hydrogen-atom PMD. Moreover, we demonstrate that the value of a retardation angle in the longitudinal PMD can depend on the order of above-threshold ionization spectra.

  10. Coupled-cluster interpretation of the photoelectron spectrum of Ag3 (.).

    PubMed

    Bauman, Nicholas P; Hansen, Jared A; Piecuch, Piotr

    2016-08-28

    We use the scalar relativistic ionized equation-of-motion coupled-cluster (IP-EOMCC) approaches to investigate the photoelectron spectrum of Ag3 (-), examining the effects of basis set, number of correlated electrons, level of applied theory including up to 3-hole-2-particle terms, and geometry relaxation. By employing an IP-EOMCC-based extrapolation scheme, we are able to provide an accurate interpretation and complete assignment of peaks and other key features in the experimentally observed spectra, including electron binding energies as high as about 6.5 eV. PMID:27586921

  11. Distinct and dramatic water dissociation on GaP(111) tracked by near-ambient pressure X-ray photoelectron spectroscopy.

    PubMed

    Zhang, Xueqiang; Ptasinska, Sylwia

    2015-02-01

    Water adsorption and dissociation on a GaP(111) crystal surface are investigated using near-ambient pressure X-ray photoelectron spectroscopy (NAP XPS) in a wide range of pressures (∼10(-10)-5 mbar) and temperatures (∼300-773 K). Dynamic changes in chemical evolution at the H2O/GaP(111) interface are reflected in Ga 2p3/2, O 1s, and P 2p spectra. In the pressure-dependent study performed at room temperature, an enhancement of surface Ga hydroxylation and oxidation with an increase in H2O pressure is observed. In the temperature-dependent study performed at elevated pressures, two distinct regions can be defined in which drastic changes occur in the surface chemistry. Below 673 K, the surface Ga hydroxylation and oxidation progress continuously. However, above 673 K, a large-scale conversion of surface O-Ga-OH species into non-stoichiometric Ga hydroxide along with oxidation of surface P atoms occurs through an intermediate state. The NAP XPS technique enabled us to experimentally track the chemistry at the H2O/GaP interface under near-realistic conditions, thereby providing evidence to compare with recent theoretical efforts to improve the understanding of water-splitting mechanisms and photo-corrosion on semiconductor surfaces. PMID:25559043

  12. Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis.

    PubMed

    Brender, Patrice; Gadiou, Roger; Rietsch, Jean-Christophe; Fioux, Philippe; Dentzer, Joseph; Ponche, Arnaud; Vix-Guterl, Cathie

    2012-03-01

    The analysis of the surface chemistry of carbon materials is of prime importance in numerous applications, but it is still a challenge to identify and quantify the surface functional groups which are present on a given carbon. Temperature programmed desorption with mass spectrometry analysis (TPD-MS) and X-ray photoelectron spectroscopy with an in situ heating device (TPD-XPS) were combined in order to improve the characterization of carbon surface chemistry. TPD-MS analysis allowed the quantitative analysis of the released gases as a function of temperature, while the use of a TPD device inside the XPS setup enabled the determination of the functional groups that remain on the surface at the same temperatures. TPD-MS results were then used to add constraints on the deconvolution of the O1s envelope of the XPS spectra. Furthermore, a better knowledge of the evolution of oxygen functional groups with temperature during a thermal treatment could be obtained. Hence, we show here that the combination of these two methods allows to increase the reliability of the analysis of the surface chemistry of carbon materials. PMID:22242697

  13. Auger and X-ray PhotoelectronSpectroscopy Study of the Density ofOxygen States in Bismuth, Aluminum, Silicon, and Uranium Oxides

    SciTech Connect

    Teterin, Yu A.; Ivanov, K.E.; Teterin, A. Yu; Lebedev, A.M.; Utkin, I.O.; Vukchevich, L.

    1998-08-03

    The correlation of relative partial electron density at the oxygen ions with the intensity of Auger O KLL lines in Bi2O3, Al2O3, SiO2 and UO2 has been determined by Auger and X-ray photoelectron spectroscopic methods. The dependence of the relative intensities of Auger O KL2-3L2-3 and O KL1L2-3-lines was characterized from the binding energy of O 1s electrons. The electron density of the outer valence levels of oxygen increases as the relative intensities of Anger OKL2-3L2-3 and O KL1L2-3-lines increase. The fine structure observed in the O KL1L2-3 Auger and the O 2s XPS spectra has been explained by the formation of inner valence molecular orbitals (IVMO) from the interaction of electrons of the O 2s and filled metal ns shells.

  14. Vibrational state-selective autodetachment photoelectron spectroscopy from dipole-bound states of cold 2-hydroxyphenoxide: o - HO(C6H4)O-

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Wang, Lai-Sheng

    2015-03-01

    We report a photodetachment and high-resolution photoelectron imaging study of cold 2-hydroxyphenoxide anion, o - HO(C6H4)O-, cooled in a cryogenic ion trap. Photodetachment spectroscopy revealed a dipole-bound state (DBS) of the anion, 25 ± 5 cm-1, below the detachment threshold of 18ߙ784 ± 5 cm-1 (2.3289 ± 0.0006 eV ), i.e., the electron affinity of the 2-hydroxyphenoxy radical o - HO(C6H4)Oṡ. Twenty-two vibrational levels of the DBS are observed as resonances in the photodetachment spectrum. By tuning the detachment laser to these DBS vibrational levels, we obtain 22 high-resolution resonant photoelectron spectra, which are highly non-Franck-Condon due to mode-selective autodetachment and the Δv = - 1 propensity rule. Numerous Franck-Condon inactive vibrational modes are observed in the resonant photoelectron spectra, significantly expanding the vibrational information that is available in traditional high-resolution photoelectron spectroscopy. A total of 15 fundamental vibrational frequencies are obtained for the o - HO(C6H4)Oṡ radical from both the photodetachment spectrum and the resonant photoelectron spectra, including six symmetry-forbidden out-of-plane modes as a result of resonant enhancement.

  15. Valence-band spectra of BEDT-TTF and TTF-based magnetic charge-transfer salts

    NASA Astrophysics Data System (ADS)

    Kurmaev, E. Z.; Moewes, A.; Chiuzbian, S. G.; Finkelstein, L. D.; Neumann, M.; Turner, S. S.; Day, P.

    2002-06-01

    The electronic structure of BEDT-TTF bis(ethylenedithio)tetrathiafulvalene, and TTF, tetrathiafulvalene, based ferrimagnetic insulating and paramagnetic semiconducting charge-transfer salts have been studied by x-ray emission spectroscopy (XES) and photoelectron spectroscopy (XPS). The counterions for the salts are the d-transition-metal complex anions [Cr(NCS)4(phen)]-, [Cr(NCS)4(Me2phen)]- and [Cr(NCS)4(isoq)2]- where Me2phen=4, 7-dimethyl-1, 10-phenanthroline, phen=1, 10-phenanthroline), and isoq=isoquinoline=C9H7N. The distribution of partial and total density of states was determined by comparing the XES spectra of the constituents (carbon and nitrogen Kα and Cr L2,3) with XPS valence-band spectra on the binding-energy scale. Splitting in the XPS N 1s and S 2p spectra was attributed to contributions from nonequivalent atoms, i.e., N in the NCS and phen based ligands, S in NCS and BEDT-TTF. Cr L-XES measured at the L2-threshold display an unusually high L2 to L3 intensity ratio, which is discussed in terms of Coster-Kronig transitions and a different excitation of L3 and L2 levels at the L2 threshold.

  16. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    NASA Astrophysics Data System (ADS)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-01

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ- ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  17. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    DOE PAGESBeta

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ– ground state of the OH+ and OD+ cations have been extractedmore » and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.« less

  18. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean-Christophe

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  19. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    SciTech Connect

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean -Francois; Nahon, Laurent; Ward, Michael; Batut, Sebastien; Fittschen, Christa; Taatjes, Craig A.; Osborn, David L.; Loison, Jean -Christophe

    2015-04-23

    In this study, we present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X3Σ ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  20. Characterization of acidity in ZSM-5 zeolites: An x-ray photoelectron and IR spectroscopy study

    SciTech Connect

    Borade, R.; Sayari, A.; Adnot, A.; Kaliaguine, S. )

    1990-07-26

    An x-ray photoelectron spectroscopic (XPS) method is proposed for the identification and quantitation of Broensted and Lewis acid sites in ZSM-5 zeolites. The method consists of deconvoluting the N{sub 1s}XPS level of chemisorbed pyridine and measuring the relative intensities of the peak components. It was found that pyridine is chemisorbed in three different states on ZSM-5 zeolites corresponding to N{sub 1s} binding energy of 398.7, 400.0, and 401.8 eV, respectively. The first peak at 398.7 eV was assigned to N{sub 1s} level of pyridine adsorbed on Lewis sites, while the second and third were assigned to N{sub 1s} levels of pyridine adsorbed on relatively weak and strong Broensted acid sites, respectively. Comparison of the concentrations of the various acid sites as determined from the relative intensities of the N{sub 1s} components with IR spectroscopic data showed that XPS has potential applications in the identification and the quantitative determination of Broensted and Lewis acid sites in zeolites.

  1. Angular distribution of photoelectrons at 584A using polarized radiation

    NASA Technical Reports Server (NTRS)

    Hancock, W. H.; Samson, J. A. R.

    1975-01-01

    Photoelectron angular distributions for Ar, Xe, N2, O2, CO, CO2, and NH3 were obtained at 584 A by observing the photoelectrons at a fixed angle and simply rotating the plane of polarization of a highly polarized photon source. The radiation from a helium dc glow discharge source was polarized (84%) using a reflection type polarizer.

  2. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  3. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  4. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  5. Photoelectron distribution function over the illuminated part of the Moon

    NASA Astrophysics Data System (ADS)

    Popel, Sergey I.; Golub', Anatoly; Zelenyi, Lev

    2014-09-01

    Photoelectron distribution functions in the near-surface layer over the lunar surface are obtained on the basis of the kinetic approach. The results are shown to depend strongly on the quantum yield of lunar regolith. It is demonstrated that photoelectrons with energies of about both 1 eV and 0.1 eV should be observed in the corresponding measurements.

  6. Photoelectron Velocity Map Imaging Spectroscopy of Lead Tetracarbonyl-Iron Anion PbFe(CO)4(.).

    PubMed

    Liu, Zhiling; Zou, Jinghan; Qin, Zhengbo; Xie, Hua; Fan, Hongjun; Tang, Zichao

    2016-05-26

    Joint research of photoelectron velocity map imaging spectroscopy and density functional theory has been performed to probe the geometrical structures and electronic properties for heterodinuclear iron-lead carbonyl cluster PbFe(CO)4(-), which serves as a monomer of the metal-metal bonded oligomer. The photoelectron detachment of PbFe(CO)4(-) is recorded at two different photon energies with rich spectral features. The ground-state transition obtained at 532 nm reveals a broad vibrationally resolved spectral band, which corresponds to the lead-iron stretching, while the 355 nm spectrum displays many more transitions on the higher-energy side, which correspond to the electronic excited states of PbFe(CO)4. Theoretical calculations at the B3LYP level are performed to explore the ground states of both the anionic and neutral PbFe(CO)4 and to support spectral identification of the fine resolved photoelectron spectra. Moreover, the unique chemical bonding between lead and iron in PbFe(CO)4 is discussed with the aid of natural bond orbital analyses. PMID:27152488

  7. Molecular-frame photoelectron angular distributions Molecular-frame photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Lucchese, Robert R.; Stolow, Albert

    2012-10-01

    Angle-resolved photoelectron measurements in molecular ionization continue to grow in importance due to their sensitivity to molecular dynamics combined with their avoidance of deleterious averaging over molecular orientation. This special issue contains only regularly refereed articles and provides an account of current experimental and theoretical studies of such molecular-frame photoelectron angular distributions (MFPADs). Recent experimental activity in this field has been stimulated by advances in light sources such as x-ray free electron lasers, attosecond XUV laser pulses and phase-stable ultrashort strong laser fields. This effort is further amplified by recent developments in coincidence detection and molecular-frame alignment/orientation techniques. Beyond perturbative light-matter interactions, strong field processes such as tunnel ionization, above threshold ionization and rescattering phenomena such as high harmonic generation and laser-induced electron diffraction are beginning to probe molecular-frame photoelectron-molecule scattering dynamics. Theoretical developments are playing an equally important role in furthering molecular-frame photoelectron science. This issue contains several purely theoretical papers that aim to provide insight into possible schemes for using MFPADs in the study of molecular dynamics. Because the details of the electron-molecule scattering dynamics are important to the interpretation of experimental data, significant progress is made by a close collaboration between theory and experiment. There are a number of such contributions in this issue that combine theory and experiment to obtain a detailed understanding of the observed processes. One recurring theme is the use of measured MFPADs as probes of the molecular state and to uncover information about the dynamics of molecular systems. Contributions in this issue consider using MFPADs to investigate molecular geometry or the rotational, vibrational or electronic state of a

  8. Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.

  9. Origin of Unexpected Low Energy Structure in Photoelectron Spectra Induced by Midinfrared Strong Laser Fields

    SciTech Connect

    Liu Chengpu; Hatsagortsyan, Karen Z.

    2010-09-10

    Using a semiclassical model which incorporates tunneling and Coulomb field effects, the origin of the low-energy structure (LES) in the above-threshold ionization spectrum observed in recent experiments [Blaga et al., Nature Phys. 5, 335 (2009); Quan et al., Phys. Rev. Lett. 103, 093001 (2009).] is identified. We show that the LES arises due to an interplay between multiple forward scattering of an ionized electron and the electron momentum disturbance by the Coulomb field immediately after the ionization. The multiple forward scattering is mainly responsible for the appearance of LES, while the initial disturbance mainly determines the position of the LES peaks. The scaling laws for the LES parameters, such as the contrast ratio and the maximal energy, versus the laser intensity and wavelength are deduced.

  10. Photoelectron momentum spectra for multiphoton ionization of Hydrogen atoms by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Serge; Macek, Joseph

    2007-06-01

    Full three-dimensional electron momentum distribution for multiphoton ionization of Hydrogen atoms by intense laser pulses are calculated by solving the time-dependent solutions of Schr"odinger equation on a three-dimensional lattice in a scaled coordinate representation (CSLTDSE). This approach allows one to circumvent many difficulties related to the propagation of wave function to macroscopic distances.

  11. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  12. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy.

    PubMed

    Nakada, Hiroshi; Sakae, Toshiro; Tanimoto, Yasuhiro; Teranishi, Mari; Kato, Takao; Watanabe, Takehiro; Saeki, Hiroyuki; Kawai, Yasuhiko; Legeros, Racquel Z

    2012-01-01

    The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance. PMID:22778740

  13. Insights into the Photoelectron Spectroscopy of Chlorofluoroethenes Studied by Density-Functional and Coupled-Cluster Theories.

    PubMed

    Huang, Cyong-Huei; Chou, Shang-Yi; Jang, Shiu-Bau; Lin, Yu-Chieh; Li, Chien-En; Chen, Chiing-Chang; Chang, Jia-Lin

    2016-03-01

    The first two ionic states of chlorofluoroethenes were studied by using both time-independent and time-dependent density-functional theories. We calculated the equilibrium geometries and harmonic vibrational frequencies of 1,1-, cis-, and trans-C2H2FCl and their cations by using the B3LYP and B3PW91 functionals together with the cc-pVTZ and aug-cc-pVTZ basis sets. Franck-Condon factors were computed by the method developed in our group, in which the Duschinsky effect was treated explicitly. A new technique, named alignment transformation, followed by Euler transformations was developed to achieve the Eckart conditions. The adiabatic ionization energies were calculated by the CCSD(T) method extrapolated to the complete basis set limit. Insights into the simulated photoelectron spectra of C2H2FCl indicate that the resolutions of recent threshold photoelectron experiments are not high enough to detect individual transitions. The high-resolution photoelectron spectra of C2H2FCl are predicted for future reference. The computed adiabatic ionization energies of the three isomers of C2H2FCl are in accord with the experiments with the absolute deviations ranging from 0.004 to 0.021 eV. We suggest that the agreement between experimental and theoretical spectra should be a key criterion to judge whether a spectral assignment is reasonable. PMID:26884146

  14. Practical scaling law for photoelectron angular distributions

    SciTech Connect

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-10-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u{sub p}{identical_to}U{sub p}/({Dirac_h}/2{pi}){omega}, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) {epsilon}{sub b}{identical_to}E{sub b}/({Dirac_h}/2{pi}){omega}, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested.

  15. Zero-kinetic-energy photoelectron spectroscopy of the hydrogen-bonded phenol-water complex

    NASA Astrophysics Data System (ADS)

    Dopfer, Otto; Reiser, Georg; Müller-Dethlefs, Klaus; Schlag, Edward W.; Colson, Steven D.

    1994-07-01

    Two-photon, two-color (1+1') zero-kinetic-energy (ZEKE) photoelectron spectra are presented for the 1:1 phenol-water complex, a prototype system for hydrogen bonding between an aromatic molecule and a simple solvent. ZEKE spectra via different (intermolecular) vibrational intermediate S1 levels of the fully protonated complex (C6H5OH-H2O, h3) as well as the ZEKE spectrum via the vibrationless S1 state of the threefold deuterated complex (C6H5OD-D2O, d3) have been recorded. The spectra are rich in structure, which is mainly attributable to intermolecular vibrations of the ionic complex. Progressions of the intermolecular stretch vibration (240 cm-1) in combination with different intermolecular and intramolecular vibrational levels are the dominant feature of all ZEKE spectra obtained and indicate a large change in the complex geometry along the hydrogen-bond coordinate on ionization. Comparison between the spectrum of the d3 complex and the spectra via different intermediate intermolecular levels of the h3 complex has allowed a more detailed analysis of the intermolecular features compared to previously reported results. Finally, the vibrational assignments obtained are compared with ab initio results for the phenol-water cation reported in the following paper in this issue.

  16. Evaluation of polymeric standard reference materials for monitoring the performance of X-ray photoelectron spectrometers

    NASA Astrophysics Data System (ADS)

    Strohmeier, Brian R.

    1991-04-01

    The use of standard reference materials is a common practice in X-ray photoelectron spectroscopy (XPS or ESCA). Recently, several polymeric standard reference materials have become available for monitoring various performance aspects of ESCA spectrometers. These reference materials include polyethylene (PE), polyethylene glycol (PEG), polytetrafluoroethylene (PTFE) and dimethyl silicon (DMS). The advantages and disadvantages encountered when using these materials as standards were investigated in this study. Results indicated that PEG, PTFE and DMS are useful standards for checking or determining relative elemental sensitivity factors for C, O, F and/or Si. These three materials can also be used for monitoring the linearity and stability of the instrumental binding energy scale. However, in general, metallic standards such as gold, silver and/or copper are superior to the polymeric standards for this purpose, because their photoelectron lines cover a wider binding energy range and their respective peak positions are much better known. Although PE exhibits a fairly narrow C1s line that can be used to monitor variations in the instrumental energy resolution, the FWHM observed for the C1s line is much broader that the FWHM values obtained from the appropriate lines of sputtered-cleaned metals. Results also indicated that the use of PTFE as a standard reference material must be done with caution, because PTFE readily degrades with time under X-ray exposure.

  17. Al capping layers for nondestructive x-ray photoelectron spectroscopy analyses of transition-metal nitride thin films

    SciTech Connect

    Greczynski, Grzegorz Hultman, Lars; Petrov, Ivan; Greene, J. E.

    2015-09-15

    X-ray photoelectron spectroscopy (XPS) compositional analyses of materials that have been air exposed typically require ion etching in order to remove contaminated surface layers. However, the etching step can lead to changes in sample surface and near-surface compositions due to preferential elemental sputter ejection and forward recoil implantation; this is a particular problem for metal/gas compounds and alloys such as nitrides and oxides. Here, the authors use TiN as a model system and compare XPS analysis results from three sets of polycrystalline TiN/Si(001) films deposited by reactive magnetron sputtering in a separate vacuum chamber. The films are either (1) air-exposed for ≤10 min prior to insertion into the ultrahigh-vacuum (UHV) XPS system; (2) air-exposed and subject to ion etching, using different ion energies and beam incidence angles, in the XPS chamber prior to analysis; or (3) Al-capped in-situ in the deposition system prior to air-exposure and loading into the XPS instrument. The authors show that thin, 1.5–6.0 nm, Al capping layers provide effective barriers to oxidation and contamination of TiN surfaces, thus allowing nondestructive acquisition of high-resolution core-level spectra representative of clean samples, and, hence, correct bonding assignments. The Ti 2p and N 1s satellite features, which are sensitive to ion bombardment, exhibit high intensities comparable to those obtained from single-crystal TiN/MgO(001) films grown and analyzed in-situ in a UHV XPS system and there is no indication of Al/TiN interfacial reactions. XPS-determined N/Ti concentrations acquired from Al/TiN samples agree very well with Rutherford backscattering and elastic recoil analysis results while ion-etched air-exposed samples exhibit strong N loss due to preferential resputtering. The intensities and shapes of the Ti 2p and N 1s core level signals from Al/TiN/Si(001) samples do not change following long-term (up to 70 days) exposure to ambient conditions

  18. Photoelectron Spectroscopy of cis-Nitrous Acid Anion (cis-HONO(-)).

    PubMed

    Oliveira, Allan M; Lehman, Julia H; McCoy, Anne B; Lineberger, W Carl

    2016-03-17

    We report photoelectron spectra of cis-HONO(-) formed from an association reaction of OH(-) and NO in a pulsed, plasma-entrainment ion source. The experimental data are assigned to the cis-HONO(-) isomer, which is predicted to be the global minimum on the anion potential energy surface. We do not find evidence for a significant contribution from trans-HONO(-). Electron photodetachment of cis-HONO(-) with 1613, 1064, 532, 355, and 301 nm photons accesses the ground X̃ (1)A' (S0) and excited ã (3)A″ (T1) states of neutral HONO. The photoelectron spectrum resulting from detachment forming cis-HONO (S0) exhibits a long vibrational progression, dominated by overtones and combination bands involving the central O-N stretching and ONO bending vibrations. This indicates that there is a significant change in the central O-N bond length between cis-HONO(-) and cis-HONO (S0). The electron affinity (EA) of cis-HONO is determined to be 0.356(8) eV. We also report the dissociation energy (D0) of cis-HONO(-), forming OH(-) + NO, as 0.594(9) eV, which is a factor of 4 decrease in the central O-N bond strength compared to neutral cis-HONO. The T1 state of cis-HONO is shown to be ∼2.3 eV higher in energy than cis-HONO (S0). Electron photodetachment to form cis-HONO (T1) accesses a transition state along the HO-NO bond dissociation coordinate. The resulting photoelectron spectrum exhibits broad peaks spaced by the terminal N═O stretching frequency. Electronic structure calculations and photoelectron spectrum simulations reported here show very good agreement with the experimental data. PMID:26886478

  19. Anion Photoelectron Spectroscopy of Mo-V Binary Transition Metal Suboxide Clusters

    NASA Astrophysics Data System (ADS)

    Jarrold, Caroline Chick; Mann, Jennifer E.; Waller, Sarah E.; Rothgeb, David W.

    2010-06-01

    Vibrationally-resolved photoelectron spectra of molybdenum vanadium oxo cluster anions with 2 to 5 oxygen atoms and measured using 2.33 eV, 3.49 eV and 4.66 eV photon energies generally exhibit broad and overlapping electronic states. The adiabatic electron affinities for the series are 1.68(3) eV, 1.73(3) eV, 2.89(1) eV, and 3.4(1) eV for two through five oxygen atoms, respectively. Vibrational structure observed in the spectra can be reconciled with the lowest energy structural isomers of the anions determined in DFT calculations: The lowest energy isomers have low symmetry, with the Mo center in a higher oxidation state than the V center, and high spin states are favored.

  20. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual

  1. X-ray photoelectron spectroscopy and structural analysis of amorphous SiOxNy films deposited at low temperatures

    NASA Astrophysics Data System (ADS)

    Cova, P.; Poulin, S.; Masut, R. A.

    2005-11-01

    We establish, using a tetrahedral model, the bonding properties of amorphous silicon oxynitride (a-SiOxNy) films deposited at low temperatures (LTs) by electron-cyclotron resonance chemical-vapor deposition (ECRCVD) on several substrates and under various conditions of gas flows and total gas pressure in a dilute mixture of SiH4+N2 in Ar. The atomic percentage of each tetrahedral unit incorporated in the film network is calculated from the deconvolution of the high-resolution x-ray photoelectron spectroscopy (XPS) spectra in the Si 2p3/2 region and corroborated by the results obtained from both survey scans and the high-resolution XPS spectra in the N 1s region. The Si3N4 phase is the most important one and the only bonding unit which is incorporated in all our LT ECRCVD SiOxNy films. The incorporation of all the other component tetrahedrons depends strongly on growth conditions. The threshold values of the N/Si atomic ratio for which intrinsic defects, such as Si-Si bonds, are not incorporated in the network depend on the O/Si ratio incorporated in the films, mainly due to the competition between oxygen and nitrogen atoms in their reaction with silicon dangling bonds. The effect of the total gas pressure on the atomic percentages of the oxidation states present in the LT ECRCVD SiOxNy films is qualitatively similar to the effect of the ion bombarding energy or the plasma density. O-N bonds are present only in samples having high amount of oxygen and nitrogen in their networks. For these films, our results show unambiguously the presence of the N-Si2O tetrahedron and suggest that N-Si3-νOν tetrahedrons with ν>=2 are not incorporated in their networks. A correlation is observed between the N-Si2O and the Si-O3(ON) tetrahedrons whose component peak is localized at (104.0+/-0.2) eV in the Si 2p3/2 region of the XPS data, which suggests that both bonding units coexist in these films as some sort of complex bonding configuration.

  2. High-resolution pulsed-field ionization photoelectron study of O{sub 2}

    SciTech Connect

    Hsu, C.W.; Evans, M.; Stimson, S.

    1997-04-01

    There have been numerous photoionization studies of O{sub 2} over the past 10 years. Using the pulsed field ionization (PFI) photoelectron spectroscopy (PES) technique, the electronic ground state of O{sub 2}{sup +} (X{sup 2}{Pi}{sub g}{sup {minus}}) has been well studied on the rotationally resolved level by several groups. However, due to the difficulty of producing photon energies above 18 eV using the tunable lasers, the electronic excited states of O{sub 2}{sup +} have been mostly studied on the vibrationally resolved level using the threshold photoelectron spectroscopy (TPES) and the synchrotron radiation. Recently, the authors developed a new technique for performing the PFI-PE experiments using multi-bunch synchrotron radiation at the Chemical Dynamics Beamline of the Advanced Light Source (ALS). Using the high resolution VUV light from the ALS, they have obtained the PFI-PE spectra of O{sub 2} between 12 and 24 eV. In this abstract, the authors report for the first time the rotationally resolved spectra of O{sub 2}{sup +} (b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0).

  3. The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

    SciTech Connect

    Richings, Gareth W.; Worth, Graham A.

    2014-12-28

    A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.

  4. Rovibronically Selected and Resolved Laser Photoionization and Photoelectron Studies of Transition Metal Carbides, Nitrides, and Oxides.

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Chang, Yih-Chung; Huang, Huang; Ng, Cheuk-Yiu

    2014-06-01

    Transition metal (M) carbides, nitrides, and oxides (MX, X = C, N, and O) are important molecules in astrophysics, catalysis, and organometallic chemistry. The measurements of the ionization energies (IEs), bond energies, and spectroscopic constants for MX/MX+ in the gas phase by high-resolution photoelectron methods represent challenging but profitable approaches to gain fundamental understandings of the electronic structures and bonding properties of these compounds and their cations. We have developed a two-color laser excitation scheme for high-resolution pulse field ionization photoelectron (PFI-PE) measurements of MX species. By exciting the neutral MX species to a single rovibronic state using a visible laser prior to photoionization by a UV laser, we have obtained fully rotational resolved PFI-PE spectra for TiC+, TiO+, VCH+, VN+, CoC+, ZrO+, and NbC+. The unambiguous rotational assignments of these spectra have provided highly accurate IE values for TiC, TiO, VCH, VN, CoC, ZrO, and NbC, and spectroscopic constants for their cations.

  5. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions.

    PubMed

    Wang, Lai-Sheng

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES. PMID:26233095

  6. Photoelectron Spectroscopy and Electronic Structures of Fullerene Oxides: C60Ox- (x=1-3)

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Kiran, Boggavarapu; Wang, Lai S.

    2005-12-15

    We report a photoelectron spectroscopy (PES) study on a series of fullerene oxides, C600x- (x = 1-3). The PES spectra reveal one isomer for C600x-, two isomers for C6002-, and multiple isomers for C6003-. Compared to C60, the electronic structures of C600x are only slightly perturbed, resulting in similar anion photoelectron spectra. The electron affinity of C600x was observed to increase only marginally with the number of oxygen atoms, x, from 2.683 eV for C60, to 2.745 eV for C600, and 2.785 eV/2.820 eV for C6002 (two isomers). We also carried out theoretical calculations, which confirmed the observed isomers and showed that all the fullerene oxides are in the form of epoxide. The PES and theoretical calculations, as well as molecular orbital analysis, indicate that addition of oxygen atoms to the C60 cage only modifies the local carbon network and leave the rest of the fullerene cage largely intact geometrically and electronically.

  7. Monte Carlo simulation of photoelectron energization in parallel electric fields: Electroglow on Uranus

    SciTech Connect

    Singhal, R.P.; Bhardwaj, A. )

    1991-09-01

    A Monte Carlo simulation of photoelectron energization and energy degradation in H{sub 2} gas in the presence of parallel electric fields has been carried out. Numerical yield spectra which contain information about the electron energy degradation process and can be used to calculate the yield for any inelastic event are obtained. The variation of yield spectra with incident electron energy, electric field, pitch angle, and cutoff limit has been studied. The yield function is employed to determine the photoelectron fluxes. H{sub 2} Lyman and Werner band excitation rates and integrated column intensity are computed for three different electric field profiles taking various low-energy cutoff limits. It is found that an electric field profile with peak value of 4 mV/m at neutral number density of 3{times}10{sup 10} cm{sup {minus}3} produces enhanced volume emission rates of H{sub 2} bands ({lambda} < 1100 {angstrom}) explaining about 20% of the observed electroglow emission on Uranus. The effect of solar zenith angle and solar cycle variation on peak excitation rate is discussed.

  8. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    SciTech Connect

    Wang, Lai-Sheng

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.

  9. Martian high-altitude photoelectrons independent of solar zenith angle

    NASA Astrophysics Data System (ADS)

    Xu, Shaosui; Liemohn, Michael; Bougher, Stephen; Mitchell, David

    2016-04-01

    Many aspects of the Martian upper atmosphere are known to vary with solar zenith angle (SZA). One would assume that dayside photoelectron fluxes are also SZA dependent, especially when transport along a semivertical magnetic field line is significant. However, our investigation presented here of the observed Martian high-altitude (˜400 km) photoelectron fluxes by the magnetometer/electron reflectometer (MAG/ER) instruments on board Mars Global Surveyor (MGS) shows that the photoelectron fluxes are better correlated with just the solar irradiance, without SZA factored in, and also that the median photoelectron fluxes are independent of SZA, especially for high energies (above 100 eV). For lower energies (below 70 eV), the observed fluxes tend to vary to some degree with SZA. Such counterintuitive results are due to the existence of a photoelectron exobase, only above which the photoelectrons are able to transport and escape to high altitudes. Two methods are used here to determine the altitude range of this exobase, which varies between 145 km and 165 km depending on the atmosphere and SZA. Through our SuperThermal Electron Transport (STET) model, we found that the integral of the production rate above the photoelectron exobase, and therefore the high-altitude photoelectron fluxes, is rather independent of SZA. Such an independent relationship concerns energy redistribution in the Martian upper atmosphere, using photoelectrons to map magnetic topology and connectivity, as well as ion escape. This finding can also be carefully adapted to other solar bodies with semivertical magnetic fields at ionospheric altitudes, such as Earth, Jupiter, and Saturn.

  10. Photoelectron Spectroscopy of Aluminum Doped Boron Clusters

    NASA Astrophysics Data System (ADS)

    Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng

    2012-06-01

    Anionic boron clusters have been shown to be planar or quasi-planar up to B21- from a series of combined photoelectron spectroscopy and theoretical studies. All these boron clusters consist of a peripheral ring characterized by strong two-center-two-electron (2c-2e) B-B bonds and one or more interior atoms. The propensity for planarity is due to σ - and π -electron delocalizations throughout the molecular plane, giving rise to concepts of σ - and π -aromaticity. The quasi-planarity, on the other hand, can be mechanical in nature - the circumference of the cluster is too small to fit the inner atoms - even for doubly aromatic clusters. Two questions arise: firstly, can isoelectronic substitution by a single aluminum atom on the outer ring enhance the planarity of quasi-planar structures, and, secondly, can the interior boron atoms be replaced by aluminum? A series of aluminum isoelectronic substitution of boron clusters have been investigated ranging from B7- to B12-. Aluminum turns out to avoid the central position in the all these clusters and enhance the planarity of AlB6- and AlB11- clusters by expanding the peripheral ring. References: [1] C. Romanescu, A. P. Sergeeva, W. L. Li, A. I. Boldyrev and L. S. Wang, {J. Am. Chem. Soc}. {133} (22), 8646-8653 (2011) [2] T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang and A. I. Boldyrev, {J. Chem. Phys.} {135}, (8) 104301 (2011) [3] W. L. Li, C. Romanescu, T. R. Galeev, L. S. Wang and A. I. Boldyrev, {J. Phys. Chem. A} {115} (38), 10391-10397 (2011)

  11. Negatively charged subnanometer-sized silicon clusters and their reversible migration into AFI zeolite pores studied with X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo, Cheow-keong; Sakamoto, Takashi; Tanaka, Katsumi; Nakata, Ryouhei; Asakawa, Tetsuo

    1999-02-01

    Subnanometer sized silicon clusters were deposited on AFI zeolite (AlPO 4-5: one-dimensional channel diameter <0.73 nm) by pulsed laser ablation of silicon wafer. Their electronic structures were elucidated in situ by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Core level Si 2p spectra were analyzed into five components, Si(I) to Si(V). Si(I) and Si(II) species selectively increased with a constant ratio during pulsed laser silicon ablation. Their binding energies (BEs) were below 99.5 eV implying negatively charged states. Charge transfer occurred between silicon clusters and framework oxygen and phosphor ions. It was interpreted that the stability of negative charge is due to large electron affinity of silicon clusters. The intensity of XPS signals decreased as a function of time and at the same time the channels were blocked. These results were interpreted due to migration of silicon clusters into zeolite pores. The estimated activation energy (57 kJ/mol) suggests that rate-determining step of the migration is reflected by a weak adsorbed state of silicon clusters similar to physisorbed state. The silicon clusters were partially oxidized at 573 K, which was interpreted as a driving force of backward migration from zeolite pores to the external surface. The composition of silicon cluster was discussed based on homogeneous dispersion of single species.

  12. Surface state photoelectrons in topological insulators: Green's function approach.

    PubMed

    Schmeltzer, D; Saxena, A

    2015-12-01

    We compute the photoemission intensity and polarization for the surface states in topological insulators. Due to the chirality and linear energy dispersion the effective electron-photon coupling is normalized by the tunneling amplitude (τ) into the vacuum. We investigate a chiral Dirac Hamiltonian for different cases: helical, Zeeman and warping, allowing us to study spin textures. Using the Green's function formalism we obtain exact results for the emitted photoelectrons to second order in the laser field. The number of emitted photoelectrons is sensitive to the laser coherent state intensity whereas the photoelectron polarization is sensitive to the surface topology of electronic states and incoming photon polarization. PMID:26565417

  13. Observation of Strong Resonant Behavior in the Inverse Photoelectron Spectroscopy of Ce Oxide

    SciTech Connect

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Damian, E; Duda, L; Nordgren, J

    2009-12-15

    these experiments, the La and Ce metallic samples were attached to the anode of an x-ray tube and the x-ray emission characteristics were measured using a two crystal monochromator. The pressure in the x-ray tube was quoted as being below 2 x 10{sup -8} Torr. They did indeed observed resonant behavior at the M{alpha} (3d{sub 5/2}) and M{beta} (3d{sub 3/2}) thresholds. In fact, our results here will confirm the measurements made upon the Ce based sample used in by Liefeld et al. However, the state of the Ce sample surface and near surface regions are quite undefined in the study in Ref 9. For example, the authors suggest that they are probing Ce metal, since they cannot see any evidence of an OK{alpha} (1s) XES line. However, they do report the observation of FK{alpha} (1s) line, possibly due to the utilization of cerium fluoride in the sample preparation. Later, they tried to address these issues in a new ultrahigh vacuum system. Based upon our results, it is clear that their original sample surface was oxidized, using the word here in its more general context as in having lost electrons to the oxidizing agent, although whether the structure is an oxide or fluoride remains unclear. In any case, the primacy of Liefeld and coworkers in these measurements should be noted. Cerium and cerium oxide have been studied with a variety of spectroscopic techniques under UHV conditions. This includes Bremstrahlung Isochromat Spectroscopy or BIS, Photoelectron Spectroscopy, X-ray Absorption Spectroscopy, Electron Energy Loss Spectroscopy and Resonant XES, to name just a few. We will compare our results to those of other spectroscopies.

  14. Effects of applying bias voltage on metal-coated pentacene films on SiO2 studied by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirosawa, Ichiro; Watanabe, Takeshi; Oji, Hiroshi; Yasuno, Satoshi; Koganezawa, Tomoyuki; Tada, Keisuke; Yoshimoto, Noriyuki

    2016-03-01

    The effects of bias voltage application on C 1s photoelectron kinetic energies in Au- and Ag-coated pentacene films on SiO2 were studied by hard X-ray photoelectron spectroscopy. It was observed that the kinetic energies of C 1s were smaller in shallow regions in contact with metals than in mid regions of the pentacene films. The differences in C 1s kinetic energy between the shallow and mid regions of the Ag-coated pentacene films were slightly larger than those of the Au-coated films. The differences in the kinetic energies were decreased by applying negative voltages. The larger effect of voltage application was observed in the Ag-coated film than in the Au-coated film. In addition, partially reduced Si atoms in SiO2 were found at the interface to the pentacene film.

  15. Quantum chaos in ultracold collisions between Yb(1S0) and Yb(3P2)

    NASA Astrophysics Data System (ADS)

    Green, Dermot G.; Vaillant, Christophe L.; Frye, Matthew D.; Morita, Masato; Hutson, Jeremy M.

    2016-02-01

    We calculate and analyze Feshbach resonance spectra for ultracold Yb (1S0) +Yb (3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ , but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.

  16. Photoelectrons Escaping the Ionosphere During the WHI: An Alternative Method to Validate the Temporal and Spectral Variation of the Solar Irradiance in the 1-50 nm Range.

    NASA Astrophysics Data System (ADS)

    Peterson, W.; Stavros, E.; Richards, P.; Chamberlin, P.; Woods, T.

    2008-12-01

    We report observations of 10 eV to 1 keV photoelectrons produced by 1-50 nm solar irradiance during the Whole Heliosphere Interval (WHI). The observations were made from the FAST satellite at ~ 3,000 km. From March 20 to April 16, 2008 we found minimal (ie ~10%) variation in photoelectron flux at 25 eV, generated by EUV irradiance in the 27-31 nm range and large (i.e. >200%) variation in the photoelectron flux at 360 ev, generated by EUV irradiance in the 3 nm range. These variations are comparable to those found under more active solar conditions. We also compared the average photoelectron spectrum observed on April 14 with the solar irradiance observed from a rocket carrying a prototype of the SDO/EVE instrument on that day. The comparison was made using photoelectron fluxes calculated from the Field Line Interhemispheric Plasma (FLIP) code with the rocket spectrum as input. We found that the observed and calculated photoelectron spectra agree within 30% over all energies. This is a significant improvement from previous comparisons.

  17. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump-probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump-probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S2 state to the vibrationally hot S1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  18. Study of the oxidation of W(110) by full-solid-angle photoelectron diffraction with chemical state and time resolution

    SciTech Connect

    Ynzunza, R. X.; Palomares, F. J.; Tober, E. D.; Wang, Z.; Morais, J.; Denecke, R.; Daimon, H.; Chen, Y.; Hussain, Z; Liesengang, J.; Van Hove, M. A.; Fadley, C. S.

    1997-04-01

    The brightness of third-generation synchrotron radiation from beamline 9.3.2 at the Advanced Light Source has been combined with the high-intensities and energy resolutions possible with its advanced photoelectron spectrometer/diffractometer experimental station in order to study the time dependence of the oxidation of the W(110) surface. This has been done via chemical-state-resolved core-level photoelectron spectroscopy and diffraction. This system has been studied previously by other methods such as LEED and STM, but several questions remain as to the basic kinetics of oxidation and the precise adsorption structures involved. By studying the decay and growth with time of various peaks in the W 4f{sub 7/2} photoelectron spectra, it should be possible to draw quantitative conclusions concerning the reaction kinetics involved. The authors have also measured full-solid-angle photoelectron diffraction patterns for the two oxygen-induced W states, and these should permit fully defining the different structures involved in this oxidation process.

  19. Photoelectron diffraction k-space volumes of the c(2x2) Mn/Ni(100) structure

    SciTech Connect

    Banerjee, S.; Denlinger, J.; Chen, X.

    1997-04-01

    Traditionally, x-ray photoelectron diffraction (XPD) studies have either been done by scanning the diffraction angle for fixed kinetic energy (ADPD), or scanning the kinetic energy at fixed exit angle (EDPD). Both of these methods collect subsets of the full diffraction pattern, or volume, which is the intensity of photoemission as a function of momentum direction and magnitude. With the high density available at the Spectromicroscopy Facility (BL 7.0) {open_quotes}ultraESCA{close_quotes} station, the authors are able to completely characterize the photoelectron diffraction patterns of surface structures, up to several hundred electron volts kinetic energy. This large diffraction `volume` can then be analyzed in many ways. The k-space volume contains as a subset the energy dependent photoelectron diffraction spectra along all emission angles. It also contains individual, hemispherical, diffraction patterns at specific kinetic energies. Other `cuts` through the data set are also possible, revealing new ways of viewing photoelectron diffraction data, and potentially new information about the surface structure being studied. In this article the authors report a brief summary of a structural study being done on the c(2x2) Mn/Ni(100) surface alloy. This system is interesting for both structural and magnetic reasons. Magnetically, the Mn/Ni(100) surface alloy exhibits parallel coupling of the Mn and Ni moments, which is opposite to the reported coupling for the bulk, disordered, alloy. Structurally, the Mn atoms are believed to lie well above the surface plane.

  20. Heating of the Sunlit Polar Cap Ionosphere by Reflected Photoelectrons

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Solomon, S. C.; Nicolls, M. J.

    2014-12-01

    Photoelectrons escape from the ionosphere on sunlit polar cap field lines. In order for those field lines to carry zero current without significant heavy ion outflow or cold electron inflow, field-aligned potential drops must form to reflect a portion of the escaping photoelectron population back to the ionosphere. Using a 1-D ionosphere-polar wind model and measurements from the Resolute Bay Incoherent Scatter Radar (RISR-N), this paper shows that these reflected photoelectrons are a significant source of heat for the sunlit polar cap ionosphere. The model includes a kinetic suprathermal electron transport solver, and it allows energy input from the upper boundary in three different ways: thermal conduction, soft precipitation, and potentials that reflect photoelectrons. The simulations confirm that reflection potentials of several 10s of eV are required to prevent cold electron inflow and demonstrate that the flux tube integrated change in electron heating rate (FTICEHR) associated with reflected photoelectrons can reach 109 eV cm-2s-1. Soft precipitation can produce FTICEHR of comparable magnitudes, but this extra heating is divided among more electrons as a result of electron impact ionization. Simulations with no reflected photoelectrons and with downward field-aligned currents (FAC) primarily carried by the escaping photoelectrons have electron temperatures which are ~250-500 K lower than the RISR-N measurements in the 300-600 km region; however, simulations with reflected photoelectrons, zero FAC, and no other form of heat flux through the upper boundary can satisfactorily reproduce the RISR-N data.

  1. Heating of the sunlit polar cap ionosphere by reflected photoelectrons

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Solomon, S. C.; Nicolls, M. J.

    2014-10-01

    Photoelectrons escape from the ionosphere on sunlit polar cap field lines. In order for those field lines to carry zero current without significant heavy ion outflow or cold electron inflow, field-aligned potential drops must form to reflect a portion of the escaping photoelectron population back to the ionosphere. Using a 1-D ionosphere-polar wind model and measurements from the Resolute Bay Incoherent Scatter Radar (RISR-N), this paper shows that these reflected photoelectrons are a significant source of heat for the sunlit polar cap ionosphere. The model includes a kinetic suprathermal electron transport solver, and it allows energy input from the upper boundary in three different ways: thermal conduction, soft precipitation, and potentials that reflect photoelectrons. The simulations confirm that reflection potentials of several tens of eV are required to prevent cold electron inflow and demonstrate that the flux tube integrated change in electron heating rate (FTICEHR) associated with reflected photoelectrons can reach 109eV cm-2s-1. Soft precipitation can produce FTICEHR of comparable magnitudes, but this extra heating is divided among more electrons as a result of electron impact ionization. Simulations with no reflected photoelectrons and with downward field-aligned currents (FAC) primarily carried by the escaping photoelectrons have electron temperatures which are ˜250-500 K lower than the RISR-N measurements in the 300-600 km region; however, simulations with reflected photoelectrons, zero FAC, and no other form of heat flux through the upper boundary can satisfactorily reproduce the RISR-N data.

  2. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  3. Photoelectron imaging of cells: photoconductivity extends the range of applicability.

    PubMed Central

    Habliston, D L; Hedberg, K K; Birrell, G B; Rempfer, G F; Griffith, O H

    1995-01-01

    Photoelectron imaging is a sensitive surface technique in which photons are used to excite electron emission. This novel method has been applied successfully in studies of relatively flat cultured cells, viruses, and protein-DNA complexes. However, rounded-up cell types such as tumor cells frequently are more difficult to image. By comparing photoelectron images of uncoated and metal-coated MCF-7 human breast carcinoma cells, it is shown that the problem is specimen charging rather than a fundamental limitation of the electron imaging process. This is confirmed by emission current measurements on uncoated monolayers of MCF-7 carcinoma cells and flatter, normal Wi-38 fibroblasts. We report here that sample charging in photoelectron microscopy can be eliminated in most specimens by simultaneous use of two light sources--the standard UV excitation source (e.g., 254 nm) and a longer wavelength light source (e.g., 325 nm). The reduction in sample charging results largely from enhanced photoconduction in the bulk sample and greatly extends the range of cells that can be examined by photoelectron imaging. The contributions of photoconductivity, the electric field of the imaging system, and the short escape depths of the photoelectrons combine to make photoelectron imaging a uniquely sensitive technique for the study of biological surfaces. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8534832

  4. Investigation on the neutral and anionic BxAlyH2 (x + y = 7, 8, 9) clusters using density functional theory combined with photoelectron spectroscopy.

    PubMed

    Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Ding, Lei; Yuan, Tao Li

    2016-08-17

    The structure and bonding nature of neutral and negatively charged BxAlyH2 (x + y = 7, 8, 9) clusters are investigated with the aid of previously published experimental photoelectron spectra combined with the present density functional theory calculations. The comparison between the experimental photoelectron spectra and theoretical simulated spectra helps to identify the ground state structures. The accuracy of the obtained ground state structures is further verified by calculating their adiabatic electron affinities and vertical detachment energies and comparing them against available experimental data. The results show that the structures of BxAlyH2 transform from three-dimensional to planar structures as the number of boron atoms increases. Moreover, boron atoms tend to bind together forming Bn units. The hydrogen atoms prefer to bind with boron atoms rather than aluminum atoms. The analyses of the molecular orbital on the ground state structures further support the abovementioned results. PMID:27499430

  5. Photoelectron imaging and photodissociation of ozonide in O3(-)⋅(O2)n (n = 1-4) clusters.

    PubMed

    Mann, Jennifer E; Troyer, Mary E; Jarrold, Caroline Chick

    2015-03-28

    The photoelectron images of O3 (-) and O3 (-) ⋅ (O2)n (n = 1-4) have been measured using 3.49 eV photon energy. The spectra exhibit several processes, including direct photodetachment and photodissociation with photodetachment of O(-) photofragments. Several spectra also exhibit autodetachment of vibrationally excited O2 (-) photofragments. Comparison of the bare O3 (-) photoelectron spectra to that of the complexes shows that the O3 (-) core is preserved upon clustering with several O2 molecules, though subtle changes in the Franck-Condon profile of the ground state photodetachment transition suggest some charge transfer from O3 (-) to the O2 molecules. The electron affinities of the complexes increase by less than 0.1 eV with each additional O2 molecule, which is comparable to the corresponding binding energy [K. Hiraoka, Chem. Phys. 125, 439-444 (1988)]. The relative intensity of the photofragment O(-) detachment signal to the O3 (-) ⋅ (O2)n direct detachment signal increases with cluster size. O2 (-) autodetachment signal is only observed in the O3 (-), O3 (-) ⋅ (O2)3, and O3 (-) ⋅ (O2)4 spectra, suggesting that the energy of the dissociative state also varies with the number of O2 molecules present in the cluster. PMID:25833577

  6. Photoelectron imaging and photodissociation of ozonide in O3- ṡ (O2)n (n = 1-4) clusters

    NASA Astrophysics Data System (ADS)

    Mann, Jennifer E.; Troyer, Mary E.; Jarrold, Caroline Chick

    2015-03-01

    The photoelectron images of O3- and O3- ṡ (O2)n (n = 1-4) have been measured using 3.49 eV photon energy. The spectra exhibit several processes, including direct photodetachment and photodissociation with photodetachment of O- photofragments. Several spectra also exhibit autodetachment of vibrationally excited O2- photofragments. Comparison of the bare O3- photoelectron spectra to that of the complexes shows that the O3- core is preserved upon clustering with several O2 molecules, though subtle changes in the Franck-Condon profile of the ground state photodetachment transition suggest some charge transfer from O3- to the O2 molecules. The electron affinities of the complexes increase by less than 0.1 eV with each additional O2 molecule, which is comparable to the corresponding binding energy [K. Hiraoka, Chem. Phys. 125, 439-444 (1988)]. The relative intensity of the photofragment O- detachment signal to the O3- ṡ (O2)n direct detachment signal increases with cluster size. O2- autodetachment signal is only observed in the O3-, O3- ṡ (O2)3, and O3- ṡ (O2)4 spectra, suggesting that the energy of the dissociative state also varies with the number of O2 molecules present in the cluster.

  7. Prevailing Features of X-Ray-Induced Molecular Electron Spectra Revealed with Fullerenes

    NASA Astrophysics Data System (ADS)

    Camacho Garibay, Abraham; Saalmann, Ulf; Rost, Jan M.

    2014-08-01

    X-ray photoabsorption from intense short pulses by a molecule triggers complicated electron and subsequently ion dynamics, leading to photoelectron spectra, which are difficult to interpret. Illuminating fullerenes offers a way to separate out the electron dynamics since the cage structure confines spatially the origin of photo- and Auger electrons. Together with the sequential nature of the photoprocesses at intensities available at x-ray free-electron lasers, this allows for a remarkably detailed interpretation of the photoelectron spectra, as we will demonstrate. The general features derived can serve as a paradigm for less well-defined situations in other large molecules or clusters.

  8. FAST TRACK COMMUNICATION: Photoelectron spectroscopy of sequential three-photon double ionization of Ar irradiated by EUV free-electron laser pulses

    NASA Astrophysics Data System (ADS)

    Fukuzawa, H.; Gryzlova, E. V.; Motomura, K.; Yamada, A.; Ueda, K.; Grum-Grzhimailo, A. N.; Strakhova, S. I.; Nagaya, K.; Sugishima, A.; Mizoguchi, Y.; Iwayama, H.; Yao, M.; Saito, N.; Piseri, P.; Mazza, T.; Devetta, M.; Coreno, M.; Nagasono, M.; Tono, K.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.; Togashi, T.; Senba, Y.

    2010-06-01

    We have investigated the ionization of the Ar atom by 51 nm extreme-ultraviolet light pulses at the free-electron laser facility, SPring-8 Compact SASE Source test accelerator, in Japan. The angle-resolved photoelectron spectra contain lines due to sequential three-photon double ionization with the second ionization step proceeding via the resonantly enhanced two-photon absorption. The relative intensities of the corresponding photoelectron peaks and their angular dependence are explained in the framework of a three-step model of the process.

  9. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  10. Communication: Observation of dipole-bound state and high-resolution photoelectron imaging of cold acetate anions

    SciTech Connect

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-03-07

    We report the observation of a dipole-bound state and a high-resolution photoelectron imaging study of cryogenically cooled acetate anions (CH{sub 3}COO{sup −}). Both high-resolution non-resonant and resonant photoelectron spectra via the dipole-bound state of CH{sub 3}COO{sup −} are obtained. The binding energy of the dipole-bound state relative to the detachment threshold is determined to be 53 ± 8 cm{sup −1}. The electron affinity of the CH{sub 3}COO neutral radical is measured accurately as 26 236 ± 8 cm{sup −1} (3.2528 ± 0.0010 eV) using high-resolution photoelectron imaging. This accurate electron affinity is validated by observation of autodetachment from two vibrational levels of the dipole-bound state of CH{sub 3}COO{sup −}. Excitation spectra to the dipole-bound states yield rotational profiles, allowing the rotational temperature of the trapped CH{sub 3}COO{sup −} anions to be evaluated.

  11. High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-

    SciTech Connect

    Wang, Xue B.; Matheis, Katerina; Ioffe, Ilya N.; Goryunkov, Alexey A.; Yang, Jie; Kappes, Manfred M.; Wang, Lai S.

    2008-03-21

    C120O comprises two C60 cages linked by a furan ring and is formed by reactions of C60O and C60. We have produced doubly-charged anions of this fullerene dimer (C120O2–) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C120O was measured to be 1.02 ± 0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C120O2– on the basis of the observed repulsive Coulomb barrier. A low-lying excited state (2B1) was also observed for C120O– at 0.09 eV above the ground state (2A1). The C120O2– dianion can be viewed as a single electron on each C60 ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C120O2– are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C60-O-C602–, was also observed with a higher electron binding energy of 1.54 eV.

  12. Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study

    SciTech Connect

    Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui E-mail: chenh@iccas.ac.cn; Hu, Lianrui; Chen, Hui E-mail: chenh@iccas.ac.cn; Ning, Chuan-Gang; Ma, Jia-Bi

    2015-04-28

    The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360  ±  0.003 eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.

  13. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  14. Rotationally resolved state-to-state photoelectron study of niobium carbide radical

    SciTech Connect

    Luo, Zhihong; Huang, Huang; Zhang, Zheng; Chang, Yih-Chung; Ng, C. Y.

    2014-07-14

    By employing the two-color visible (VIS)-ultraviolet (UV) laser photoexcitation scheme and the pulsed field ionization-photoelectron (PFI-PE) detection, we have obtained rovibronically selected and resolved photoelectron spectra for niobium carbide cation (NbC{sup +}). The fully rotationally resolved state-to-state VIS-UV-PFI-PE spectra thus obtained allow the unambiguous assignments of rotational photoionization transitions, indicating that the electronic configuration and term symmetry of NbC{sup +}(X{sup ~}) ground state are …10σ{sup 2} 5π{sup 4} 11σ{sup 2} (X{sup ~1}Σ{sup +}). Furthermore, the rotational analysis of these spectra yields the ionization energy of NbC [IE(NbC)] to be 56 369.2 ± 0.8 cm{sup −1} (6.9889 ± 0.0001 eV) and the rotation constant B{sub 0}{sup +} = 0.5681 ± 0.0007 cm{sup −1}. The latter value allows the determination of the bond distance r{sub 0}{sup +} = 1.671 ± 0.001 Å for NbC{sup +}(X{sup ~1}Σ{sup +}). Based on conservation of energy, the IE(NbC) determined in the present study along with the known IE(Nb) gives the difference of 0 K bond dissociation energies (D{sub 0}’s) for NbC{sup +} and NbC, D{sub 0}(NbC{sup +}) − D{sub 0}(NbC) = −1855.4 ± 0.9 cm{sup −1} (−0.2300 ± 0.0001 eV). The energetic values and the B{sub 0}{sup +} constant determined in this work are valuable for benchmarking state-of-the-art ab initio quantum calculations of 4d transition metal-containing molecules.

  15. Oxygen-induced changes in electron-energy-loss spectra for Al, Be and Ni. [Al; Be; Ni

    SciTech Connect

    Madden, H.H.; Landers, R.; Kleiman, G.G. , 13081-970 Campinas, Sao Paulo, Brasil); Zehner, D.M. )

    1999-09-01

    Electron-energy-loss spectroscopy (EELS) data are presented to illustrate line shape changes that occur as a result of oxygen interaction with metal surfaces. The metals were aluminum, beryllium and nickel. Core-level EELS data were taken for excitations from Al(2p), Be(1s), Ni(3p/3s) and O(1s) levels to the conduction band (CB) density of states (DOS) of the materials. The primary beam energies for the spectra were 300, 450, 300, and 1135 eV, respectively. The data are presented in both the (as measured) first-derivative and the integral forms. The integral spectra were corrected for coherent background losses and analyzed for CB DOS information. These spectra were found to be in qualitative agreement with published experimental and theoretical studies of these materials. One peak in the spectra for Al oxide is analyzed for its correlation with excitonic screening of the Al(2p) core hole. Similar evidence for exciton formation is found in the Ni(3p) spectra for Ni oxide. Data are also presented showing oxygen-induced changes in the lower-loss-energy EELS curves that, in the pure metal, are dominated by plasmon-loss and interband-transition signals. Single-scattering loss profiles in the integral form of the data were calculated using a procedure of Tougaard and Chorkendorff [S. Tougaard and I. Chorkendorff, Phys. Rev. B. [bold 35], 6570 (1987)]. For all three oxides these profiles are dominated by a feature with a loss energy of around 20[endash]25 eV. Although this feature has been ascribed by other researchers as due to bulk plasmon losses in the oxide, an alternative explanation is that the feature is simply due to O(2s)-to-CB-level excitations. An even stronger feature is found at 7 eV loss energy for Ni oxide. Speculation is given as to its source. The line shapes in both the core-level and noncore-level spectra can also be used simply as [open quotes]fingerprints[close quotes] of the surface chemistry of the materials. Our data were taken using commercially

  16. Shape resonant features in the photoionization spectra of NO

    SciTech Connect

    Wallace, Scott; Dill, Dan; Dehmer, Joseph L.

    1982-01-01

    Calculations of core and valence level photoionization spectra of NO are presented and compared with available experimental data. A low-lying continuum shape resonance is identified in the sigma photoionization channel, which is the analog of similar states found in other first-row diatomic molecules. Both partial cross sections and photoelectron angular distributions are discussed, and the effect of nuclear motion on these observables is treated.

  17. PHOTOELECTRON SPECTROSCOPY OF SUPERSONIC MOLECULAR BEAMS

    SciTech Connect

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-06-01

    We report the development of an instrument for gas-phase ultraviolet photoelectron spectroscopy which opens several new areas for study through use of the supersonic molecular beam technique. The key features in which we have sought an improvement on earlier spectrometer designs are (1) the optimization of electron energy resolution and sensitivity, (2) vacuum isolation, and (3) the capability for mass spectrometric analysis. Our principal interests are in the high resolution spectroscopy of small molecules and in studies of weakly bound complexes formed under collisionless conditions. As shown in Fig. 1 the apparatus is essentially a molecular beam chamber with allowance for access by a beam source, an electron energy analyzer, and a quadrupole mass spectrometer. These three plug-in units are equipped with individual differential pumping systems. The photon source is a rare-gas resonance lamp which may be directed toward the molecular beam either 90{sup o} or 54.7{sup o} from the direction of electron collection. Electrons which pass through entrance aperture are transported by a series of electrostatic lenses to a 90{sup o} spherical sector pre-analyzer (R{sub 0} = 3.8 cm) and then on to a 180{sup o} hemispherical analyzer (R{sub 0} = 10.2 cm). The detector consists of a microchannel plate electron multiplier (40 mm diam.) with a resistive-anode position encoder. The function of the pre-analyzer is to improve the signal-to-noise ratio by reducing the background of scattered electrons incident upon the microchannel plate. The electron optical system is designed such that the energy bandpass (FWHN) leaving the pre-analyzer just fills the energy window presented by the multichannel detector. The multichannel capability of this analyzer is very advantageous for working with the rather low number density (< 10{sup 13} cm{sup -3}) of molecular beam samples, since the data collection rate is improved by more than an order of magnitude over single channel operation. To

  18. Measurement of the 1s2s 1S0-1s2p 3P1 intercombination interval in helium-like silicon.

    PubMed

    Redshaw, M; Myers, E G

    2002-01-14

    Using Doppler-tuned fast-beam laser spectroscopy the 1s2s 1S0-1s2p 3P1 intercombination interval in 28Si12+ has been measured to be 7230.5(2) cm(-1). The experiment made use of a single-frequency Nd:YAG (1.319 microm) laser and a high-finesse optical buildup cavity. The result provides a precision test of modern relativistic and QED atomic theory. PMID:11801009

  19. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  20. Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J. J.; Kornilov, Oleg

    2016-04-01

    Autoionizing Rydberg states of molecular N2 are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14 ±1 fs , while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  1. Synchrotron radiation photoelectron spectroscopy study of metal-oxide thin film catalysts: Pt-CeO2 coated CNTs

    NASA Astrophysics Data System (ADS)

    Matolínová, I.; Fiala, R.; Khalakhan, I.; Vorokhta, M.; Sofer, Z.; Yoshikawa, H.; Kobayashi, K.; Matolín, V.

    2012-01-01

    The interaction of Pt with CeO2 layers was investigated by using high resolution hard X-ray photoelectron spectroscopy. Pt doped CeO2 layers were deposited simultaneously by rf-magnetron sputtering on a SiO2/Si substrate and carbon nanotubes (CNTs) grown on a carbon diffusion layer of a polymer membrane fuel cell. In the case of the CNT support photoelectron spectra showed the formation of ionic platinum rich cerium oxide with Pt2+,4+ species, and with the Pt2+/Pt4+ ratio strongly dependent on the amount of platinum. Ce reveals 4+/3+ mixed valent character with Ce3+ concentration increasing with Pt content. In the case of the SiO2/Si substrate the film revealed Ce4+ and Pt4+ species only.

  2. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance. PMID:27152799

  3. Site-dependent Si KL{sub 23}L{sub 23} resonant Auger electron spectra following inner-shell excitation of Cl{sub 3}SiSi(CH{sub 3}){sub 3}

    SciTech Connect

    Suzuki, Isao H.; Endo, Hikari; Nagai, Kanae; Nagaoka, Shin-ichi; Takahashi, Osamu; Tamenori, Yusuke

    2013-11-07

    Spectator resonant Auger electron spectra with the Si 1s photoexcitation of Cl{sub 3}SiSi(CH{sub 3}){sub 3} have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a Si 1s electron on the Cl-side into a vacant valence orbital, generates the resonant Auger decay in which the excited electron remains in this valence orbital. Photoexcitation of 1s electrons into some Rydberg orbitals induces Auger shake-down transitions, because higher-lying Rydberg orbitals in the two Si atoms closely positioned hold spatially overlapping considerably. A broad TIY peak slightly above the 1s ionization thresholds appreciably yields resonant Auger decays in which a slow photoelectron is re-captured into a higher-lying Rydberg orbital. The normal Auger peak shape at this photon energy is distorted due to a post-collision interaction effect. These findings provide a clear understanding on properties of the excited orbitals which are ambiguous in the measurement of the TIY only.

  4. Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Renault, O.; Zborowski, C.; Risterucci, P.; Wiemann, C.; Grenet, G.; Schneider, C. M.; Tougaard, S.

    2016-07-01

    We demonstrate quantitative, highly bulk-sensitive x-ray photoelectron emission microscopy by analysis of inelastically scattered photoelectrons in the hard X-ray range, enabling elemental depth distribution analysis in deeply buried layers. We show results on patterned structures used in electrical testing of high electron mobility power transistor devices with an epitaxial Al0.25Ga0.75N channel and a Ti/Al metal contact. From the image series taken over an energy range of up to 120 eV in the Ti 1s loss feature region and over a typical 100 μm field of view, one can accurately retrieve, using background analysis together with an optimized scattering cross-section, the Ti depth distribution from 14 nm up to 25 nm below the surface. The method paves the way to multi-elemental, bulk-sensitive 3D imaging and investigation of phenomena at deeply buried interfaces and microscopic scales by photoemission.

  5. Global, Collisional Model of High-Energy Photoelectrons

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Moore, T. E.; Liemohn, M. W.; Jordanova, V. K.; Fok, M.-C.

    1996-01-01

    A previously-developed colissional, interhemispheric flux tube model for photoelectrons (PE) has been extended to three dimensions by including transport due to vector E x vector B and magnetic gradient-curvature drifts. Using this model, initial calculations of the high-energy (greater then 50 eV) PE distribution as a function of time, energy, pitch angle, and spatial location in the equatorial plane, are reported for conditions of low geomagnetic activity. To explore both the dynamic and steady behaviors of the model, the simulation starts with the abrupt onset of photoelectron excitation, and is followed to steady state conditions. The results illustrate several features of the interaction of photoelectrons with typical magnetospheric plasmas and fields, including collisional diffusion of photoelectrons in pitch angle with flux tube filling, diurnal intensity and pitch angle asymmetries introduced by directional sunlight, and energization of the photoelectron distribution in the evening sector. Cross-field drift is shown to have a long time scale, taking 12 to 24 hours to reach a steady state distribution. Future applications of the model are briefly outlined.

  6. Photodetachment photoelectron spectroscopy of multiply charged anions using electrospray ionization

    SciTech Connect

    Wang, L.; Ding, C.; Wang, X. |; Barlow, S.E.

    1999-04-01

    A magnetic-bottle time-of-flight (TOF) photoelectron spectrometer, coupled with an electrospray ionization source, has been developed for the investigation of multiply charged anions in the gas phase. Anions formed in the electrospray source are guided by a radio-frequency quadrupole ion guide into a quadrupole ion trap, where the ions are accumulated. A unique feature of this apparatus involves the coupling of a TOF mass spectrometer to the ion trap with perpendicular ion extraction. The ion trap significantly improves the duty cycle of the experiments and allows photodetachment experiments to be performed with low repetition-rate lasers (10{endash}20 Hz). This novel combination makes the photodetachment photoelectron spectroscopy studies of multiply charged anions possible for the first time. Furthermore, the perpendicular extraction of ions, pulsed out of the ion trap, to the TOF mass spectrometer allows the ion energies to be conveniently referenced to ground, simplifying the configuration of the TOF mass spectrometer and the subsequent magnetic-bottle TOF photoelectron spectrometer. The mass resolution (M/{Delta}M) achieved is about 800 for smaller ions. The magnetic-bottle photoelectron spectrometer resolution is about 11 meV full width at half maximum for 0.5 eV photoelectrons with an overall resolution of {Delta}E/E{approximately}2{percent}. The detailed design, construction, and operation of the new apparatus are presented. {copyright} {ital 1999 American Institute of Physics.}

  7. Is CO Carbon KVV Auger Electron Emission Affected by the Photoelectron?

    SciTech Connect

    Pruemper, G.; Fukuzawa, H.; Sakai, K.; Ueda, K.; Rolles, D.; Prince, K. C.; Harries, J. R.; Tamenori, Y.; Berrah, N.

    2008-12-05

    Angular distributions (ADs) of O{sup +} fragments from C 1s photoexcited CO detected in coincidence with carbon KVV Auger electrons emitted in the horizontal direction were measured at photon energies of 298, 305, 320, and 450 eV. At 450 eV, the ADs are polarization-independent and coincide with the molecular-frame Auger electron angular distribution. All measured ADs can be rationalized as a product of the same molecular-frame Auger electron angular distribution and the axial selectivity in the photoionization process. Thus the interaction between the photoelectron and the Auger electron for the normal Auger decay of CO can be neglected, and the two-step model is a good approximation.

  8. In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces

    SciTech Connect

    Salmeron, Miquel; Ketteler, Guido; Ashby, Paul; Mun, B.S.; Ratera, I.; Bluhm, Hendrik; Kasemo, B.; Salmeron, Miquel

    2007-07-10

    Using in situ photoelectron spectroscopy at near ambient conditions, we compare the interaction of water with four different model biomaterial surfaces: self-assembled thiol monolayers on Au(111) that are functionalized with methyl, hydroxyl, and carboxyl groups, and phosphatidylcholine (POPC) lipid films on Silicon. We show that the interaction of water with biomaterial surfaces is mediated by polar functional groups that interact strongly with water molecules through hydrogen bonding, resulting in adsorption of 0.2-0.3 ML water on the polar thiol films in 700 mTorr water pressure and resulting in characteristic N1s and P2p shifts for the POPC films. Provided that beam damage is carefully controlled, in situ electron spectroscopy can give valuable information about water adsorption which is not accessible under ultra-high vacuum conditions.

  9. X-Ray Photoelectron Spectroscopy (XPS) of Bacteriorhodopsin Analogues Synthesized from Fluorophenyl Retinals

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Takahashi, Takashi; Tokunaga, Fumio; Murano, Kentaro; Tsujimoto, Kazuo; Sagawa, Takasi

    1984-04-01

    The two external point-charge (TEPC) model for bacteriorhodopsin (bR) has been examined by X-ray photoelectron spectroscopy (XPS) and CNDO/S molecular orbital calculations. A main concern was given to a point charge near the β-ionone ring. XPS measurements were carried out on fluorophenyl retinal (F-ret) and their derivatives (Schiff base, protonated Schiff base and bacteriorhodopsin analogues (F-bR)), paying close attention to the chemical shift of the F 1s core level. No meaningful differences were observed among these species although numerical calculations on an assumption of the TEPC model have predicted the chemical shift of about 3 eV between F-ret and F-bR. This fact has arisen a serious question to the validity of the TEPC model. The same conclusion has been reached by the present study of absorption maxima of F-ret and their derivatives.

  10. Spatial-temporal control of interferences of multiple tunneling photoelectron wave packets

    NASA Astrophysics Data System (ADS)

    Li, Min; Geng, Ji-Wei; Liu, Ming-Ming; Zheng, Xu; Peng, Liang-You; Gong, Qihuang; Liu, Yunquan

    2015-07-01

    We theoretically study the control of the interferences of multiple tunneling photoelectron wave packets in both temporal and spatial domains by an orthogonally polarized two-color laser pulse. Profound carpetlike and stripelike interference patterns can be turned on or off in the momentum spectra using a weak streaking field at half the frequency of a strong fundamental field. The modulations of the interference patterns with respect to the relative phase between the two frequency components are well recaptured by both a semiclassical interference model and an ab initio simulation with numerically solving the time-dependent Schrödinger equation. We highlight the importance of the ionic Coulomb potential on the photoelectron angular distributions of atoms in the orthogonally polarized two-color pulses. It is shown that the interference induced by the forward rescattering trajectories is enhanced while the contribution of the direct trajectories is suppressed. This study offers alternative routes toward probing and controlling the ultrafast ionization dynamics of atoms and molecules.

  11. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    SciTech Connect

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  12. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24- cluster

    NASA Astrophysics Data System (ADS)

    Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Wang, Lai-Sheng; Boldyrev, Alexander I.

    2013-10-01

    The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24- possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moiety is puckered out of plane by 0.9 Å, reminiscent of the six-atom pentagonal caps of the well-known B12 icosahedral unit. The next closest isomer at the ROCCSD(T) level of theory has a tubular double-ring structure. Comparison of the simulated spectra with the experimental data shows that the global minimum quasi-planar B24- isomer is the major contributor to the observed photoelectron spectrum, while the tubular isomer has no contribution to the experiment. Chemical bonding analyses reveal that the periphery of the quasi-planar B24 constitutes 15 classical 2c-2e B-B σ-bonds, whereas delocalized σ- and π-bonds are found in the interior of the cluster with one unique 6c-2e π-bond responsible for bonding in the B-centered pentagon. The current work suggests that the 24-atom boron cluster continues to be quasi-2D, albeit the tendency to form filled pentagonal units, characteristic of 3D cage-like structures of bulk boron, is observed.

  13. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    SciTech Connect

    Oßwald, P.; Köhler, M.; Hemberger, P.; Bodi, A.; Gerber, T.; Bierkandt, T.; Akyildiz, E.; Kasper, T.

    2014-02-15

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  14. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

    PubMed Central

    Pichler, Thomas; Ayala, Paola

    2015-01-01

    Summary X-ray photoelectron spectroscopy (XPS) is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS. PMID:25671162

  15. X-ray photoelectron spectroscopy characterization of the {omega} phase in water quenched Ti-5553 alloy

    SciTech Connect

    Qin, Dongyang; Lu, Yafeng; Zhang, Kong; Liu, Qian; Zhou, Lian

    2012-11-15

    X-ray photoelectron spectroscopy was used to investigate the {omega} phase in water quenched Ti-5553 alloy with a nominal composition of Ti-5Al-5V-5Mo-3Cr (wt.%), and the {omega} and the {beta} phase were distinguished by deconvoluting the XPS spectra of Al2p, V2p and Cr2p core level regions. In addition, it is found that the binding energy of core level electron of alloying elements shifts comparing with that of pure metals, and the fact was interpreted by charge redistribution model. X-ray photoelectron spectroscopy technique could be used to characterize the nano-scale {omega} phase in {beta} alloys. - Highlights: Black-Right-Pointing-Pointer We characterize the {omega} phase in Ti-5553 alloy by XPS. Black-Right-Pointing-Pointer Binding energy of Al2p, V2p and Cr2p electron are different in the {omega} and {beta} phase. Black-Right-Pointing-Pointer Structural difference leads to the binding energy gap.

  16. Examining the structural evolution of bicarbonate-water clusters: insights from photoelectron spectroscopy, basin-hopping structural search, and comparison with available IR spectral studies.

    PubMed

    Wen, Hui; Hou, Gao-Lei; Liu, Yi-Rong; Wang, Xue-Bin; Huang, Wei

    2016-07-14

    Bicarbonate plays a crucial biochemical role in the physiological pH buffering system and also has important atmospheric implications. In the current study, HCO3(-)(H2O)n (n = 0-13) clusters were successfully produced via electrospray ionization of the corresponding bulk salt solution, and were characterized by negative ion photoelectron spectroscopy and theoretical calculations. Photoelectron spectra reveal that the electron binding energy monotonically increases with the cluster size up to n = 10 and remains largely the same after n > 10. The photo-detaching feature of the solute HCO3(-) itself, which dominates in the small clusters, diminishes with the increase of water coverage. Based on the charge distribution and molecular orbital analyses, the universal high electron binding energy tail that dominates in the larger clusters can be attributed to the ionization of water. Thus, the transition of ionization from the solute to the solvent at a size larger than n = 10 has been observed. Extensive theoretical structural search based on the basin-hopping unbiased method was carried out, and a plethora of low energy isomers have been obtained for each medium and large-sized cluster. By comparing the simulated photoelectron spectra and calculated electron binding energies with the experiments, as well as by comparing the simulated infrared spectra with previously reported IR spectra, the best fit structures and the structural evolutionary routes are presented. The nature of bicarbonate-water interactions is mainly electrostatic as implied by electron localization function (ELF) analysis. PMID:27302736

  17. Auger, zero-energy photoelectron, coincidence spectroscopy (AZEPECO): Chemical-site-selective Auger electron spectroscopy

    SciTech Connect

    Lee, K.; Ji, D.; Hanson, D.M.; Hulbert, S.L.; Kuiper, P.

    1993-12-31

    The Auger electron spectrum associated with decay of a core-hole on the terminal nitrogen and that associated with the central nitrogen of nitrous oxide, N{sub 2}O, are obtained individually through the use of a coincidence technique. Specifically, each of the two Auger electron spectra is obtained by detection of Auger electrons in coincidence with near zero energy (threshold) photoelectrons at the respective ionization thresholds. These zero energy electrons serve to identify the core-ionization continuum associated with the different Auger electrons. The salient features of the experimental spectra are in good agreement with theoretical calculations. The low counting rate generally associated with coincidence experiments, especially in the gas phase, is not encountered because the low energy electrons are collected over a 4{pi} solid angle. Also, velocity discrimination is accomplished by a spatial filter rather than by time-of-flight to utilize the maximum duty cycle of the synchrotron source. These data are believed to be the first examples of chemical-site-selective molecular Auger spectra.

  18. Collision-induced dissociation reactions and pulsed field ionization photoelectron

    SciTech Connect

    Stimson, S.

    1999-02-12

    This report summarized the four parts of the research study and describes the general conclusions. Individual chapters have been removed for separate processing. The chapter titles are: A study of the dissociation of CH{sub 3}SH{sup +} by collisional activation: Observation of non-statistical behavior; High resolution vacuum ultraviolet pulsed field ionization photoelectron band for OCS{sup +}(X{sup 2}{Pi}): An experimental and theoretical study; Rotationally resolved pulsed field ionization photoelectron bands of H{sub 2}{sup +} ({Chi}{sup 2}{Sigma}{sup +}{sub g}, v{sup +} = 0--18); and Rotationally resolved pulsed field ionization photoelectron bands of HD{sup +} ({Chi}{sup 2}{Sigma}{sup +}, v{sup +} = 0--21).

  19. Model insights into energetic photoelectrons measured at Mars by MAVEN

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Rahmati, Ali; Mitchell, David L.; Cravens, Thomas E.; Bougher, Stephen W.; Mazelle, Christian; Peterson, W. K.; Eparvier, Francis G.; Fontenla, Juan M.; Jakosky, Bruce M.

    2015-11-01

    Photoelectrons are important for heating, ionization, and airglow production in planetary atmospheres. Measured electron fluxes provide insight into the sources and sinks of energy in the Martian upper atmosphere. The Solar Wind Electron Analyzer instrument on board the MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft measured photoelectrons including Auger electrons with 500 eV energies. A two-stream electron transport code was used to interpret the observations, including Auger electrons associated with K shell ionization of carbon, oxygen, and nitrogen. It explains the processes that control the photoelectron spectrum, such as the solar irradiance at different wavelengths, external electron fluxes from the Martian magnetosheath or tail, and the structure of the upper atmosphere (e.g., the thermal electron density). Our understanding of the complex processes related to the conversion of solar irradiances to thermal energy in the Martian ionosphere will be advanced by model comparisons with measurements of suprathermal electrons by MAVEN.

  20. Photoelectron anticorrelations and sub-Poisson statistics in scintillation detectors.

    PubMed

    Bousselham, Abdelkader; Barrett, Harrison H; Bora, Vaibhav; Shah, Kanai

    2010-08-01

    The performance of scintillation detectors for x rays and gamma rays is limited fundamentally by the statistics of the scintillation light and the resulting photoelectrons. This paper presents a new experimental approach to studying these statistics by observing correlations in the signals from two photodetectors. It is shown that the Fano factors (ratios of variance to mean), both for the number the photoelectrons produced on the photocathode of the photomultiplier and for the underlying number of scintillation photons, can be deduced from these correlations. For LaBr(3)(Ce) and 662 keV gamma rays, the photopeak signals obtained by photomultipliers on opposite faces of a thin sample are negatively correlated, and the Fano factor for the photoelectrons is significantly less than one. The inferred Fano factor for the optical photons is very small, indistinguishable from zero within experimental error. PMID:20725609

  1. Photoelectron anticorrelations and sub-Poisson statistics in scintillation detectors

    PubMed Central

    Bousselham, Abdelkader; Barrett, Harrison H.; Bora, Vaibhav; Shah, Kanai

    2010-01-01

    The performance of scintillation detectors for x rays and gamma rays is limited fundamentally by the statistics of the scintillation light and the resulting photoelectrons. This paper presents a new experimental approach to studying these statistics by observing correlations in the signals from two photodetectors. It is shown that the Fano factors (ratios of variance to mean), both for the number the photoelectrons produced on the photocathode of the photomultiplier and for the underlying number of scintillation photons, can be deduced from these correlations. For LaBr3(Ce) and 662 keV gamma rays, the photopeak signals obtained by photomultipliers on opposite faces of a thin sample are negatively correlated, and the Fano factor for the photoelectrons is significantly less than one. The inferred Fano factor for the optical photons is very small, indistinguishable from zero within experimental error. PMID:20725609

  2. Excitation and Ionization in H(1s)-H(1s) Collisions

    SciTech Connect

    Riley, Merle E.; Ritchie, A. Burke

    1999-07-15

    Hydrogen atom - hydrogen atom scattering is a prototype for many of the fundamental principles of atomic collisions. In this work we present an approximation to the H+H system for scattering in the intermediate energy regime of 1 to 100 keV. The approximation ignores electron exchange and two-electron excitation by assuming that one of the atoms is frozen in the 1s state. We allow for the evolution of the active electron by numerically solving the 3D Schroedinger equation. The results capture many features of the problem and are in harmony with recent theoretical studies. Excitation and ionization cross sections are computed and compared to other theory and experiment. New insight into the mechanism of excitation and ionization is inferred from the solutions.

  3. Ratios of photoelectron to EUV ionization rates for aeronomic studies

    SciTech Connect

    Richards, P.G.; Torr, D.G. )

    1988-05-01

    This study reveals that the ratios of the photoelectron to EUV ionization rates are not constant but depend on the degree of attenuation of the solar EUV flux and on the transport of photoelectrons. At high altitudes in the absence of photoelectron transport, the O{sup +} and N{sub 2}{sup +} ionization rate ratios are about 0.35, but they increase with increasing optical depth to such an extent that in the vicinity of the ionization peak, photoelectron impact ionization is as important as photoionization for O{sup +} and N{sub 2}{sup +}. The O{sub 2}{sup +} ratio is about half that of O{sup +} at high altitudes adn also increases with increasing optical depth but reaches a peak of about 0.4. The authors present simple formulae which mimic the attenuation behavior of the ionization ratios. Transport effects become important above about 250 km where the ratios vary by a factor of 2 depending on the presence or absence of photoelectrons from the conjugate ionosphere. In addition to the photoelectron to EUV ionization ratios, they present photodissociative branching ratios for O{sub 2} and N{sub 2}. These photodissociative ratios are also a function of the degree of attenuation of the EUV flux. In the region where attenuation is not important, the N{sup +} to N{sub 2}{sup +} ratio is 0.14, and the O{sup +} to O{sub 2}{sup +} ratio is 0.22. There is a factor of 2 uncertainty in our calculated ratios on account of uncertainties in the solar EUV flux spectrum and also uncertainties in the electron impact cross sections.

  4. Critical evaluation of attosecond time delays retrieved from photoelectron streaking measurements

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Morishita, Toru; Lin, C. D.

    2016-05-01

    A photoelectron streaking experiment which was conceived as a means to extract the electron wave packet of single-photon ionization has also been employed to retrieve time delays in the fundamental photoemission processes. The discrepancies between the time delays thus measured and those from many sophisticated theoretical calculations have generated a great deal of controversy in recent years. Here we present a careful examination of the methods that were used to retrieve the time delays and demonstrate the difficulty of achieving an accuracy of the retrieved time delays of a few to tens of attoseconds in typical streaking measurements. The difficulty owes more to the lower sensitivity of the streaking spectra to the phase of the photoionization transition dipole than to the spectral phase of the attosecond light pulse in the experiment. The retrieved time delay contains extra errors when the attochirp of the attosecond pulse is large so that the dipole phase becomes negligible compared to it.

  5. Methyliminopropadienone CH3-N═C═C═C═O: photoelectron spectrum and electronic structure.

    PubMed

    Chrostowska, Anna; Dargelos, Alain; Khayar, Saïd; Wentrup, Curt

    2012-09-20

    N-Methyliminopropadienone MeN═C═C═C═O 1a was generated by flash vacuum thermolysis of three 5-(aminomethylene)-1,3-dioxane-4,6-diones (Meldrum's acid derivatives). Online monitoring of the reactions permitted the recording of the UV-photoelectron spectra and the determination of the first two ionization energies of 1a as 9.0 and 12.4 eV. The first ionization energy (and the calculated highest occupied molecular orbital energy) of 1a are more comparable with those of N-methylketenimine than with ketene. In contrast, the calculated lowest unoccupied molecular orbital energy is significantly lower than those of both ketene and N-methylketenimine, thereby making iminopropadienones powerful electrophiles. Calculated charge densities indicate that electrophiles should attack at C3 or O and nucleophiles at C2 or C4 in broad agreement with experimental observations. PMID:22934652

  6. Effect of X-ray spot size on liquid jet photoelectron spectroscopy

    PubMed Central

    Olivieri, Giorgia; Goel, Alok; Kleibert, Armin; Brown, Matthew A.

    2015-01-01

    A 30 µm pinhole is introduced in the intermediate focus of the SIM beamline at the Swiss Light Source to improve the spot size at the second downstream focus, which is used here for liquid jet X-ray photoelectron spectroscopy experiments. The 30 µm pinhole reduces the beam dimensions from 250 (v) × 100 (h) µm to 75 × 45 µm for a vertical exit slit of 100 µm. The smaller X-ray spot results in a substantial decrease in the gas-phase contribution of the spectra from 40% down to 20% and will help to simplify the interpretation and peak assignments of future experiments. PMID:26524318

  7. Relaxation of Cs atomic polarization at surface coatings characterized by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kushida, Kotaro; Niwano, Toshihiro; Moriya, Takemasa; Shimizu, Tomohito; Meguro, Kazuki; Nakazawa, Hideki; Hatakeyama, Atsushi

    2015-06-01

    Paraffin coatings on glass slides were investigated through both X-ray photoelectron spectroscopy (XPS) and spin relaxation measurement for cesium (Cs) vapor. The components of the glass substrate, such as silicon and oxygen, existed in the XPS spectra of the coated slides, indicating the imperfection of the prepared paraffin coatings. The substrate was not observed after the annealing of the coatings in Cs vapor, which is known as a “ripening” process for spin relaxation measurement. We found a general trend that effective anti-spin relaxation performance requires high paraffin and low Cs coverage on the surface. We also examined a type of diamond-like carbon film, anticipating the effect of anti-spin relaxation; our attempts have failed to date.

  8. The threshold photoelectron spectrum of cyanovinylacetylene leads to an upward revision of the ionization energy

    NASA Astrophysics Data System (ADS)

    Holzmeier, Fabian; Lang, Melanie; Fischer, Ingo; Hemberger, Patrick

    2015-10-01

    Cyanovinylacetylene C5H3N was investigated by threshold photoelectron spectroscopy. The ionization energy (IE) was determined to be 10.04 eV. This value constitutes an upward revision of the earlier value of 9.33 eV. For both stereoisomers (trans and cis) computations predict very similar IEs and spectra. At 11.08 eV and 11.17 eV excited cationic states are observed. For the precursor 3-bromopyridine an IE of 9.34 eV was obtained. The appearance energy AE0K (3-bromopyridine, 3-pyridyl+) was determined to be 11.71 eV and a bond dissociation energy of the Csbnd Br bond in the 3-bromopyridine cation of 229 kJ mol-1 was derived.

  9. An investigation into low-lying electronic states of HCS{sub 2} via threshold photoelectron imaging

    SciTech Connect

    Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao E-mail: fanhj@dicp.ac.cn; Fan, Hongjun E-mail: fanhj@dicp.ac.cn

    2014-06-07

    Low-energy photoelectron imaging spectra of HCS{sub 2}{sup −} are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS{sub 2}{sup −} to the ground state and low-lying excited states of HCS{sub 2} are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS{sub 2} radical in the gaseous phase. The ground state and two low-lying excited states of HCS{sub 2} radical are assigned as {sup 2}B{sub 2}, {sup 2}A{sub 2}, and {sup 2}A{sub 1} states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T{sub 0} = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

  10. Interpretation of nanoparticle X-ray photoelectron intensities

    SciTech Connect

    Werner, Wolfgang S. M. Chudzicki, Maksymillian; Smekal, Werner; Powell, Cedric J.

    2014-06-16

    X-ray photoelectron (XPS) intensities have been simulated for spherical core-shell nanoparticles (NPs) in different geometrical arrangements in order to investigate the validity of commonly made assumptions for the interpretation of XPS NP intensities. The single-sphere approximation is valid for a powder sample when all spatial coordinates of the NP positions are uncorrelated. Correlations along either the depth coordinate or the lateral coordinates lead to features in the angular distribution that provide information on these correlations. The XPS intensity is proportional to the surface-to-volume ratio of nanoparticles but only for NP sizes exceeding the inelastic mean free path of the photoelectrons.

  11. Probing deeper by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Risterucci, P.; Renault, O. Martinez, E.; Delaye, V.; Detlefs, B.; Zegenhagen, J.; Gaumer, C.; Grenet, G.; Tougaard, S.

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  12. Improved measurement of the 1s2s 1S0-1s2p 3P1 interval in heliumlike silicon.

    PubMed

    DeVore, Thomas R; Crosby, David N; Myers, Edmund G

    2008-06-20

    Using colinear fast-beam laser spectroscopy with copropagating and counter-propagating beams we have measured the 1s2s 1S0-1s2p 3P1 intercombination interval in 28Si12+ with the result 7230.585(6) cm{-1}. The experiment made use of a dual-wavelength, high-finesse, power build-up cavity excited by single-frequency lasers at 1319 and 1450 nm. The result will provide a precision test of ab initio relativistic many-body atomic theory at moderate Z. PMID:18643579

  13. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    NASA Astrophysics Data System (ADS)

    Salaita, Ghaleb N.; Ma, Frank M. S.; Parker, Trudy C.; Hoflund, Gar B.

    2008-04-01

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS™, PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 °C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 °C during the dark cycle to 35 °C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as ?, ?, C dbnd O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties.

  14. X-ray photoelectron spectroscopy study of high-k CeO{sub 2}/La{sub 2}O{sub 3} stacked dielectrics

    SciTech Connect

    Zhang, Jieqiong; Wong, Hei; Yu, Danqun; Kakushima, Kuniyuki; Iwai, Hiroshi

    2014-11-15

    This work presents a detailed study on the chemical composition and bond structures of CeO{sub 2}/La{sub 2}O{sub 3} stacked gate dielectrics based on x-ray photoelectron spectroscopy (XPS) measurements at different depths. The chemical bonding structures in the interfacial layers were revealed by Gaussian decompositions of Ce 3d, La 3d, Si 2s, and O 1s photoemission spectra at different depths. We found that La atoms can diffuse into the CeO{sub 2} layer and a cerium-lanthanum complex oxide was formed in between the CeO{sub 2} and La{sub 2}O{sub 3} films. Ce{sup 3+} and Ce{sup 4+} states always coexist in the as-deposited CeO{sub 2} film. Quantitative analyses were also conducted. The amount of CeO{sub 2} phase decreases by about 8% as approaching the CeO{sub 2}/La{sub 2}O{sub 3} interface. In addition, as compared with the single layer La{sub 2}O{sub 3} sample, the CeO{sub 2}/La{sub 2}O{sub 3} stack exhibits a larger extent of silicon oxidation at the La{sub 2}O{sub 3}/Si interface. For the CeO{sub 2}/La{sub 2}O{sub 3} gate stack, the out-diffused lanthanum atoms can promote the reduction of CeO{sub 2} which produce more atomic oxygen. This result confirms the significant improvement of electrical properties of CeO{sub 2}/La{sub 2}O{sub 3} gated devices as the excess oxygen would help to reduce the oxygen vacancies in the film and would suppress the formation of interfacial La-silicide also.

  15. X-ray photoelectron spectroscopy of potential technetium-based organ imaging agents

    SciTech Connect

    Thompson, M.; Nunn, A.D.; Treher, E.N.

    1986-12-01

    Technetium-99 3d binding energies were measured for a set of 12 compounds which included model species and several potential radiopharmaceuticals. The range of compounds from the free metal to the technetium(VII) valence state gave a span of 4.9 eV. Anionic and coordinated halogen was distinguished in the chlorine 2p and bromine 3d spectra of a number of phosphine complexes. Similar spectra of two dioxime complexes indicated significantly more electron density on the halogen than is the case for a coordinated species. The result is indicative of weakening of the metal-chlorine bond. Analogous spectra were obtained when bromine was substituted for chlorine. The boron 1s binding energy for boronic acid present in the dioxime complexes was in agreement with the proposed oxygen population on the boron atom.

  16. Measurements of the ambient photoelectron spectrum from Atmosphere Explorer. I - AE-E measurements below 300 km during solar minimum conditions. II - AE-E measurements from 300 to 1000 km during solar minimum conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Doering, J. P.; Potemra, T. A.; Brace, L. H.

    1980-01-01

    A study is presented of the ambient photoelectron spectrum below 300 km which includes 500 AE-E orbits observed from Dec. 13, 1975 to Feb. 24, 1976. The daytime photoelectron spectrum from 1 to 100 eV was illustrated by several spectra; high resolution 10-32 eV spectra show the widths of the photoelectron lines and the variation of the linewidth and intensity with altitude. The photoelectron flux below 300 km is constant over a period of several months; the photoelectron lines between 20 and 30 eV are very sharp when the total plasma density is low, but broaden at high altitudes as the plasma density builds up during the day. The photo-electron flux above 300 km had an intensity and energy spectrum characteristic of the 250-300 km region only in the presence of low plasma density at the satellite altitude. The flux at high altitudes was extremely variable 3 h after sunrise as a result of attenuation and energy loss to thermal plasma along the path of escaping electrons.

  17. The influence of the bromine atom Cooper minimum on the photoelectron angular distributions and branching ratios of the four outermost bands of bromobenzene

    NASA Astrophysics Data System (ADS)

    Powis, I.; Holland, D. M. P.; Antonsson, E.; Patanen, M.; Nicolas, C.; Miron, C.; Schneider, M.; Soshnikov, D. Yu.; Dreuw, A.; Trofimov, A. B.

    2015-10-01

    Angle resolved photoelectron spectra of the X ˜ 2 B 1 , A ˜ 2 A 2 , B ˜ 2 B 2 , and C ˜ 2 B 1 states of bromobenzene have been recorded over the excitation range 20.5-94 eV using linearly polarized synchrotron radiation. The photoelectron anisotropy parameters and electronic branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that ionization from the 8b2 orbital and, to a lesser extent, the 4b1 orbital is influenced by the Cooper minimum associated with the bromine atom. The 8b2 and 4b1 orbitals are nominally bromine lone-pairs, but the latter orbital interacts strongly with the π-orbitals in the benzene ring and this leads to a reduced atomic character. Simulations of the X ˜ 2 B 1 , B ˜ 2 B 2 , and C ˜ 2 B 1 state photoelectron bands have enabled most of the vibrational structures appearing in the experimental spectra to be assigned. Many of the photoelectron peaks exhibit an asymmetric shape with a tail towards low binding energy. This asymmetry has been examined in the simulations of the vibrationally unexcited peak, due mainly to the adiabatic transition, in the X ˜ 2 B 1 state photoelectron band. The simulations show that the asymmetric profile arises from hot-band transitions. The inclusion of transitions originating from thermally populated levels results in a satisfactory agreement between the experimental and simulated peak shapes.

  18. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  19. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  20. Electronic Structure of EuAl4 Studied by Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kobata, Masaaki; Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Kobayashi, Keisuke; Yamagami, Hiroshi; Nakamura, Ai; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2016-09-01

    The electronic structure of the divalent Eu compound EuAl4, which shows a charge density wave transition at TCDW = 140 K, was studied by hard X-ray angle-integrated photoelectron spectroscopy (HAXPES) and soft X-ray angle-resolved photoelectron spectroscopy (ARPES). The valence band and core-level spectra obtained by HAXPES are consistent with the divalent nature of Eu atoms in EuAl4. From the ARPES results, the Fermi surface as well as band structure in the vicinity of the Fermi energy (EF) of EuAl4 are very similar to those of its isostructural divalent Sr compound SrAl4, which has no 4f electrons. This suggests that the Eu atoms are divalent in EuAl4, and the 4f electrons are localized below 1.8 eV with the Eu 4f7 electronic configuration in the ground state. The ARPES spectra measured along the Γ-(Σ)-Z high-symmetry line did not show significant temperature dependences above and below TCDW within the energy resolution of 80-90 meV. Moreover, the Fermi surface mapping along the kz direction showed that both EuAl4 and SrAl4 have mostly three-dimensional electronic structures, suggesting that the nesting of the Fermi surface is not simple. The Fermi surface and the band structure of EuAl4 were well explained by the band-structure calculation of SrAl4 based on the local density approximation.

  1. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    SciTech Connect

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O{sub 3}{sup {minus}}. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO{sub 2}, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO{sub 2} molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO{sub 2} reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C{sub 2}{sup {minus}} {minus} C{sub 11}{sup {minus}}), and van der Waals clusters (X{sup {minus}}(CO{sub 2}){sub n}, X = I, Br, Cl; n {le} 13 and I{sup {minus}} (N{sub 2}O){sub n=1--11}). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X{sup {minus}}(CO{sub 2})n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  2. UV-Photoelectron Spectroscopy of BN Indoles: Experimental and Computational Electronic Structure Analysis

    PubMed Central

    2015-01-01

    We present a comprehensive electronic structure analysis of two BN isosteres of indole using a combined UV-photoelectron spectroscopy (UV-PES)/computational chemistry approach. Gas-phase He I photoelectron spectra of external BN indole I and fused BN indole II have been recorded, assessed by density functional theory calculations, and compared with natural indole. The first ionization energies of these indoles are natural indole (7.9 eV), external BN indole I (7.9 eV), and fused BN indole II (8.05 eV). The computationally determined molecular dipole moments are in the order: natural indole (2.177 D) > fused BN indole II (1.512 D) > external BN indole I (0.543 D). The λmax in the UV–vis absorption spectra are in the order: fused BN indole II (292 nm) > external BN indole I (282 nm) > natural indole (270 nm). The observed relative electrophilic aromatic substitution reactivity of the investigated indoles with dimethyliminium chloride as the electrophile is as follows: fused BN indole II > natural indole > external BN indole I, and this trend correlates with the π-orbital coefficient at the 3-position. Nucleus-independent chemical shifts calculations show that the introduction of boron into an aromatic 6π-electron system leads to a reduction in aromaticity, presumably due to a stronger bond localization. Trends and conclusions from BN isosteres of simple monocyclic aromatic systems such as benzene and toluene are not necessarily translated to the bicyclic indole core. Thus, electronic structure consequences resulting from BN/CC isosterism will need to be evaluated individually from system to system. PMID:25089659

  3. Theory of probing attosecond electron wave packets via two-path interference of angle-resolved photoelectrons

    SciTech Connect

    Choi, N. N.; Jiang, T. F.; Morishita, T.; Lee, M.-H.; Lin, C. D.

    2010-07-15

    We study theoretically the electron wave packet generated by an attosecond pulse train (APT) which is probed with a time-delayed infrared (IR) laser pulse. The APT creates an excited state and a continuum electron wave packet. By ionizing the excited state with an IR, a delayed new continuum electron wave packet is created. The interference of the wave packets from the two paths, as reflected in angle-resolved photoelectron spectra, is analyzed analytically. Using the analytical expressions, we examine the possibility of retrieving information on the electron wave packet generated by the APT.

  4. Application of maximum-entropy spectral estimation to deconvolution of XPS data. [X-ray Photoelectron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Klein, J. D.; Barton, J. J.; Grunthaner, F. J.

    1981-01-01

    A comparison is made between maximum-entropy spectral estimation and traditional methods of deconvolution used in electron spectroscopy. The maximum-entropy method is found to have higher resolution-enhancement capabilities and, if the broadening function is known, can be used with no adjustable parameters with a high degree of reliability. The method and its use in practice are briefly described, and a criterion is given for choosing the optimal order for the prediction filter based on the prediction-error power sequence. The method is demonstrated on a test case and applied to X-ray photoelectron spectra.

  5. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  6. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  7. Vibrational state-selective autodetachment photoelectron spectroscopy from dipole-bound states of cold 2-hydroxyphenoxide: o − HO(C{sub 6}H{sub 4})O{sup −}

    SciTech Connect

    Huang, Dao-Ling; Wang, Lai-Sheng; Liu, Hong-Tao; Ning, Chuan-Gang

    2015-03-28

    We report a photodetachment and high-resolution photoelectron imaging study of cold 2-hydroxyphenoxide anion, o − HO(C{sub 6}H{sub 4})O{sup −}, cooled in a cryogenic ion trap. Photodetachment spectroscopy revealed a dipole-bound state (DBS) of the anion, 25 ± 5 cm{sup −1}, below the detachment threshold of 18784 ± 5 cm{sup −1} (2.3289 ± 0.0006 eV ), i.e., the electron affinity of the 2-hydroxyphenoxy radical o − HO(C{sub 6}H{sub 4})O{sup ⋅}. Twenty-two vibrational levels of the DBS are observed as resonances in the photodetachment spectrum. By tuning the detachment laser to these DBS vibrational levels, we obtain 22 high-resolution resonant photoelectron spectra, which are highly non-Franck-Condon due to mode-selective autodetachment and the Δv = − 1 propensity rule. Numerous Franck-Condon inactive vibrational modes are observed in the resonant photoelectron spectra, significantly expanding the vibrational information that is available in traditional high-resolution photoelectron spectroscopy. A total of 15 fundamental vibrational frequencies are obtained for the o − HO(C{sub 6}H{sub 4})O{sup ⋅}  radical from both the photodetachment spectrum and the resonant photoelectron spectra, including six symmetry-forbidden out-of-plane modes as a result of resonant enhancement.

  8. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  9. Photoelectron spectroscopy in heavy fermions: Inconsistencies with the Kondo model

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Blyth, R.R.; Canfield, P.C.; Thompson, J.D.; Bartlett, R.J.; Fisk, Z.; Lawrence, J.; Tang, J.; Riseborough, P.

    1992-09-01

    We have investigated a number of Ce and Yb heavy fermion compounds via photoelectron spectroscopy and compared the results to the predictions of the Imurity Anderson Hamiltonian within the Gunnarson-Schonhammer approach. For the low T{sub K} materials investigated we find little or no correlation with T{sub K}, the only parameter that can be determined independent of photoemission.

  10. Surface Reactions Studied by Synchrotron Based Photoelectron Spectroscopy

    SciTech Connect

    Hrbek, J.

    1998-11-03

    The goal of this article is to illustrate the use of synchrotron radiation for investigating surface chemical reactions by photoelectron spectroscopy. A brief introduction and background information is followed by examples of layer resolved spectroscopy, oxidation and sulfidation of metallic, semiconducting and oxide surfaces.

  11. [Study on pollution for the photoelectronic material InP].

    PubMed

    Xu, Jian-cheng; Ding, Xiao-ping; Chen, Ding-qin

    2002-08-01

    The mass spectrum analysis of crystal face (100) and (111) and the photoluminescence analysis of crystal face (100) in the photoelectronic material InP were given. The Hall coefficient, charge carrier concentration and Hall mobility were determined. Experimental results indicate that the pollution of silicon is predominant. PMID:12938361

  12. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  13. A Search for Invisible Decays of the Upsilon(1S)

    SciTech Connect

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-10-17

    We search for invisible decays of the {Upsilon}(1S) meson using a sample of 91.4 x 10{sup 6} {Upsilon}(3S) mesons collected at the BABAR/PEP-II B Factory. We select events containing the decay {Upsilon}(3S) {yields} {pi}{sup +}{pi}{sup -} {Upsilon}(1S) and search for evidence of an undetectable {Upsilon}(1S) decay recoiling against the dipion system. We set an upper limit on the branching fraction {Beta}({Upsilon}(1S) {yields} invisible) < 3.0 x 10{sup ?4} at the 90% confidence level.

  14. Search for invisible decays of the Upsilon(1S).

    PubMed

    Aubert, B; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Martinelli, M; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Battaglia, M; Brown, D N; Hooberman, B; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Asgeirsson, D J; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Randle-Conde, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Yasin, Z; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wang, L; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Ongmongkolkul, P; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Wilson, R J; Feltresi, E; Hauke, A; Jasper, H; Karbach, T M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Nogowski, R; Schubert, K R; Schwierz, R; Bernard, D; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Fioravanti, E; Franchini, P; Luppi, E; Munerato, M; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Bernlochner, F U; Klose, V; Lacker, H M; Lueck, T; Volk, A; Bard, D J; Dauncey, P D; Tibbetts, M; Behera, P K; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Derkach, D; Firmino da Costa, J; Grosdidier, G; Le Diberder, F; Lepeltier, V; Lutz, A M; Malaescu, B; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Paramesvaran, S; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Alwyn, K E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Salvati, E; Cowan, R; Dujmic, D; Fisher, P H; Henderson, S W; Sciolla, G; Spitznagel, M; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Schram, M; Biassoni, P; Lazzaro, A; Lombardo, V; Palombo, F; Stracka, S; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Zhao, H W; Simard, M; Taras, P; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Bonneaud, G R; Briand, H; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Esteve, L; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Allen, M T; Aston, D; Bartoldus, R; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Franco Sevilla, M; Fulsom, B G; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Young, C C; Ziegler, V; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Bellis, M; Burchat, P R; Edwards, A J; Miyashita, T S; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Soffer, A; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Puccio, E M T; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Prepost, R; Vuosalo, C O; Wu, S L

    2009-12-18

    We search for invisible decays of the Upsilon(1S) meson using a sample of 91.4 x 10(6) Upsilon(3S) mesons collected at the BABAR/PEP-II B factory. We select events containing the decay Upsilon(3S) --> pi(+)pi(-)Upsilon(1S) and search for evidence of an undetectable Upsilon(1S) decay recoiling against the dipion system. We set an upper limit on the branching fraction B(Upsilon(1S) --> invisible) < 3.0 x 10(-4) at the 90% confidence level. PMID:20366249

  15. Search for Invisible Decays of the Υ(1S)

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2009-12-01

    We search for invisible decays of the Υ(1S) meson using a sample of 91.4×106 Υ(3S) mesons collected at the BABAR/PEP-II B factory. We select events containing the decay Υ(3S)→π+π-Υ(1S) and search for evidence of an undetectable Υ(1S) decay recoiling against the dipion system. We set an upper limit on the branching fraction B(Υ(1S)→invisible)<3.0×10-4 at the 90% confidence level.

  16. Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA)

    National Institute of Standards and Technology Data Gateway

    SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase)   This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.

  17. Prediction of earthquake response spectra

    USGS Publications Warehouse

    Joyner, W.B.; Boore, David M.

    1982-01-01

    We have developed empirical equations for predicting earthquake response spectra in terms of magnitude, distance, and site conditions, using a two-stage regression method similar to the one we used previously for peak horizontal acceleration and velocity. We analyzed horizontal pseudo-velocity response at 5 percent damping for 64 records of 12 shallow earthquakes in Western North America, including the recent Coyote Lake and Imperial Valley, California, earthquakes. We developed predictive equations for 12 different periods between 0.1 and 4.0 s, both for the larger of two horizontal components and for the random horizontal component. The resulting spectra show amplification at soil sites compared to rock sites for periods greater than or equal to 0.3 s, with maximum amplification exceeding a factor of 2 at 2.0 s. For periods less than 0.3 s there is slight deamplification at the soil sites. These results are generally consistent with those of several earlier studies. A particularly significant aspect of the predicted spectra is the change of shape with magnitude (confirming earlier results by McGuire and by Irifunac and Anderson). This result indicates that the conventional practice of scaling a constant spectral shape by peak acceleration will not give accurate answers. The Newmark and Hall method of spectral scaling, using both peak acceleration and peak velocity, largely avoids this error. Comparison of our spectra with the Nuclear Regulatory Commission's Regulatory Guide 1.60 spectrum anchored at the same value at 0.1 s shows that the Regulatory Guide 1.60 spectrum is exceeded at soil sites for a magnitude of 7.5 at all distances for periods greater than about 0.5 s. Comparison of our spectra for soil sites with the corresponding ATC-3 curve of lateral design force coefficient for the highest seismic zone indicates that the ATC-3 curve is exceeded within about 7 km of a magnitude 6.5 earthquake and within about 15 km of a magnitude 7.5 event. The amount by

  18. Oxidation half-reaction of aqueous nucleosides and nucleotides via photoelectron spectroscopy augmented by ab initio calculations.

    PubMed

    Schroeder, Christi A; Pluhařová, Eva; Seidel, Robert; Schroeder, William P; Faubel, Manfred; Slavíček, Petr; Winter, Bernd; Jungwirth, Pavel; Bradforth, Stephen E

    2015-01-14

    Oxidative damage to DNA and hole transport between nucleobases in oxidized DNA are important processes in lesion formation for which surprisingly poor thermodynamic data exist, the relative ease of oxidizing the four nucleobases being one such example. Theoretical simulations of radiation damage and charge transport in DNA depend on accurate values for vertical ionization energies (VIEs), reorganization energies, and standard reduction potentials. Liquid-jet photoelectron spectroscopy can be used to directly study the oxidation half-reaction. The VIEs of nucleic acid building blocks are measured in their native buffered aqueous environment. The experimental investigation of purine and pyrimidine nucleotides, nucleosides, pentose sugars, and inorganic phosphate demonstrates that photoelectron spectra of nucleotides arise as a spectral sum over their individual chemical components; that is, the electronic interactions between each component are effectively screened from one another by water. Electronic structure theory affords the assignment of the lowest energy photoelectron band in all investigated nucleosides and nucleotides to a single ionizing transition centered solely on the nucleobase. Thus, combining the measured VIEs with theoretically determined reorganization energies allows for the spectroscopic determination of the one-electron redox potentials that have been difficult to establish via electrochemistry. PMID:25551179

  19. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    NASA Astrophysics Data System (ADS)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  20. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Oloff, L.-P.; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K.

    2016-06-01

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  1. Fast Inversion of Solar Ca II Spectra

    NASA Astrophysics Data System (ADS)

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-01

    We present a fast (Lt1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ~ -3 and increases to values of 2.5 and 4 at log τ = -6 in the quiet Sun and the umbra, respectively.

  2. Characterizing reactions to fabricate thin films of charge transfer complexes by synchrotron photoelectron spectroscopy: A case study of DCNQI-Cu

    NASA Astrophysics Data System (ADS)

    Shimada, Toshihiro; Mochida, Michihiro; Koma, Atsushi

    1997-04-01

    Ultraviolet photoelectron spectroscopy with various photon energies using synchrotron radiation was used to characterize chemical reactions associated with thin film growth of organic charge transfer complex (DMe-DCNQI) 2Cu. Other molecular systems H 2Pc, CuPc and C 60 were also studied to clarify the origin of the systematic relation between the spectra and the incident photon energy. Characteristic photon energy dependence of the photo-ionization cross section of molecular orbitals is useful to analyze the intermolecular reactions.

  3. Light-induced changes in an alkali metal atomic vapor cell coating studied by X-ray photoelectron spectroscopy

    SciTech Connect

    Hibberd, A. M.; Bernasek, S. L.; Seltzer, S. J.; Balabas, M. V.; Morse, M.; Budker, D.

    2013-09-07

    The light-induced desorption of Rb atoms from a paraffin coating is studied with depth-profiling X-ray photoelectron spectroscopy (XPS) using tunable synchrotron radiation. Following Rb exposure, shifts of the C1s signal to higher binding energies, as well as the appearance of lower binding energy components in the O1s region, were observed. These effects were diminished after irradiation with desorbing light. Additionally, following desorbing-light irradiation, changes in the depth-dependent concentration of carbon were observed. These observations offer an insight into the microscopic changes that occur during light-induced atomic desorption and demonstrate the utility of XPS in understanding atom-coating interactions.

  4. Photoelectron spectroscopic studies of polyatomic molecules: Degree of orientation and ionization of rotationally state selected, oriented molecules

    NASA Astrophysics Data System (ADS)

    Chandra, N.; Chakraborty, M.

    1991-11-01

    In this paper we report theoretical studies of angle-resolved photoelectron spectroscopy (ARPES) and of circular dichroism in photoelectron angular distribution (CDAD) for ionization in molecules oriented in a single ‖JKJMJ> rotational eigenstate. These processes have been investigated also as two of the possible alternatives to photodissociation to determine orientational distribution function of rotationally state selected, oriented molecules. Expressions are derived which can be used to calculate ARPES and CDAD for such molecular species from ab initio methods or to analyze these experimentally observed spectra for extracting information about the degree of orientation of the molecular framework. These formulas are put in their simplest possible forms using the transformation properties of the molecular point group to their full advantage. The ionization amplitude is thus shown to decompose into a sum of transitions each involving the final state wave function belonging to an irreducible representation of the point group of the target molecule. It is found that, similar to the case of photodissociation, one can determine the rotational quantum number J purely from experimental photoionization data. Expressions developed herein are used to study ARPES and CDAD for ionization in a1 orbital of those rotationally state selected and oriented spherical top molecules which transform according to the Td point symmetry group. In this case, the detection-integrated cross section, singly differential in molecular orientation, is found to be independent of the photoionization dynamics and directly gives the molecular orientational function. The other ARPES and CDAD formulas are shown to depend upon the dynamics through the integrated partial cross section σ¯, the angularly asymmetry parameter β¯, the phase shift of the continuum waves representing the photoelectron, and the phase of the dipole transition amplitudes. The formulation presented in this paper sets a

  5. Compact solid-state laser source for 1S-2S spectroscopy in atomic hydrogen

    SciTech Connect

    Kolachevsky, N.; Alnis, J.; Bergeson, S. D.; Haensch, T. W.

    2006-02-15

    We demonstrate a compact solid-state laser source for high-resolution two-photon spectroscopy of the 1S-2S transition in atomic hydrogen. The source emits up to 20 mW at 243 nm and consists of a 972 nm diode laser, a tapered amplifier, and two doubling stages. The diode laser is actively stabilized to a high-finesse cavity. We compare the new source to the stable 486 nm dye laser used in previous experiments and record 1S-2S spectra using both systems. With the solid-state laser system, we demonstrate a resolution of the hydrogen spectrometer of 6x10{sup 11}, which is promising for a number of high-precision measurements in hydrogenlike systems.

  6. Long-range properties of 1 S bottomonium states

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Krein, Gastão; Tarrús Castellà, Jaume; Vairo, Antonio

    2016-03-01

    In the framework of weakly coupled potential nonrelativistic QCD, we derive, first, an analytical expression for the chromopolarizability of 1 S bottomonium states in agreement with previous determinations. Then we use the QCD trace anomaly to obtain the two-pion production amplitude for the chromopolarizability operator and match the result to a chiral effective field theory with 1 S bottomonium states and pions as degrees of freedom. In this chiral effective field theory we compute some long-range properties of the 1 S bottomonium generated by the pion coupling such as the leading chiral logarithm to the 1 S bottomonium mass and the van der Waals potential between two 1 S bottomonium states. Both results improve on previously known expressions.

  7. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  8. A photoelectron spectroscopy study of the electronic structure evolution in CuInSe2-related compounds at changing copper content

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. V.; Grebennikov, V. I.; Zhao, H.; Derks, C.; Taubitz, C.; Neumann, M.; Persson, C.; Kuznetsov, M. V.; Bodnar, I. V.; Martin, R. W.; Yakushev, M. V.

    2012-09-01

    Evolution of the valence-band structure at gradually increasing copper content has been analysed by x-ray photoelectron spectroscopy (XPS) in In2Se3, CuIn5Se8, CuIn3Se5, and CuInSe2 single crystals. A comparison of these spectra with calculated total and angular-momentum resolved density-of-states (DOS) revealed the main trends of this evolution. The formation of the theoretically predicted gap between the bonding and non-bonding states has been observed in both experimental XPS spectra and theoretical DOS.

  9. A photoelectron spectroscopy study of the electronic structure evolution in CuInSe{sub 2}-related compounds at changing copper content

    SciTech Connect

    Kuznetsova, T. V.; Grebennikov, V. I.; Zhao, H.; Derks, C.; Taubitz, C.; Neumann, M.; Persson, C.; Kuznetsov, M. V.; Bodnar, I. V.; Martin, R. W.; Yakushev, M. V.

    2012-09-10

    Evolution of the valence-band structure at gradually increasing copper content has been analysed by x-ray photoelectron spectroscopy (XPS) in In{sub 2}Se{sub 3}, CuIn{sub 5}Se{sub 8}, CuIn{sub 3}Se{sub 5}, and CuInSe{sub 2} single crystals. A comparison of these spectra with calculated total and angular-momentum resolved density-of-states (DOS) revealed the main trends of this evolution. The formation of the theoretically predicted gap between the bonding and non-bonding states has been observed in both experimental XPS spectra and theoretical DOS.

  10. Angle-resolved photoelectron spectroscopy of sequential three-photon triple ionization of neon at 90.5 eV photon energy

    SciTech Connect

    Rouzee, A.; Siu, W.; Huismans, Y.; Johnsson, P.; Gryzlova, E. V.; Fukuzawa, H.; Yamada, A.; Ueda, K.; Louis, E.; Bijkerk, F.; Holland, D. M. P.; Grum-Grzhimailo, A. N.; Kabachnik, N. M.; Vrakking, M. J. J.

    2011-03-15

    Multiple photoionization of neon atoms by a strong 13.7 nm (90.5 eV) laser pulse has been studied at the FLASH free electron laser in Hamburg. A velocity map imaging spectrometer was used to record angle-resolved photoelectron spectra on a single-shot basis. Analysis of the evolution of the spectra with the FEL pulse energy in combination with extensive theoretical calculations allows the ionization pathways that contribute to be assigned, revealing the occurrence of sequential three-photon triple ionization.

  11. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    SciTech Connect

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  12. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-01

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si2+ and Al2+ cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  13. Effects of air exposure and vacuum storage on Li0.4WO3 studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, A.; Lefeld, N.; Rahman, M. S.; Gesing, Th. M.; Murshed, M. M.

    2015-12-01

    A powder sample of Li0.4WO3 was studied after exposure to air in steps up to a total exposure time of 71 days. Over this period, XPS spectra of the W 4f, O 1s and C 1s level were recorded. The spectra reveal the formation of a OH/CO3 layer rendering the powder insulating. Careful evaluation of the W 4f spectra suggests a single initial state picture in which the electron donated by Li is shared between W ions. We demonstrate how the loss of charge carriers by aging in air can be followed by the fitting parameters. Additionally, the effects of vacuum storage, inducing oxygen vacancies, and subsequent treatment with molecular oxygen are considered.

  14. X-ray photoelectron spectroscopy and structural analysis of amorphous SiO{sub x}N{sub y} films deposited at low temperatures

    SciTech Connect

    Cova, P.; Poulin, S.; Masut, R.A.

    2005-11-01

    We establish, using a tetrahedral model, the bonding properties of amorphous silicon oxynitride (a-SiO{sub x}N{sub y}) films deposited at low temperatures (LTs) by electron-cyclotron resonance chemical-vapor deposition (ECRCVD) on several substrates and under various conditions of gas flows and total gas pressure in a dilute mixture of SiH{sub 4}+N{sub 2} in Ar. The atomic percentage of each tetrahedral unit incorporated in the film network is calculated from the deconvolution of the high-resolution x-ray photoelectron spectroscopy (XPS) spectra in the Si 2p{sub 3/2} region and corroborated by the results obtained from both survey scans and the high-resolution XPS spectra in the N 1s region. The Si{sub 3}N{sub 4} phase is the most important one and the only bonding unit which is incorporated in all our LT ECRCVD SiO{sub x}N{sub y} films. The incorporation of all the other component tetrahedrons depends strongly on growth conditions. The threshold values of the N/Si atomic ratio for which intrinsic defects, such as Si-Si bonds, are not incorporated in the network depend on the O/Si ratio incorporated in the films, mainly due to the competition between oxygen and nitrogen atoms in their reaction with silicon dangling bonds. The effect of the total gas pressure on the atomic percentages of the oxidation states present in the LT ECRCVD SiO{sub x}N{sub y} films is qualitatively similar to the effect of the ion bombarding energy or the plasma density. O-N bonds are present only in samples having high amount of oxygen and nitrogen in their networks. For these films, our results show unambiguously the presence of the N-Si{sub 2}O tetrahedron and suggest that N-Si{sub 3-{nu}}O{sub {nu}} tetrahedrons with {nu}{>=}2 are not incorporated in their networks. A correlation is observed between the N-Si{sub 2}O and the Si-O{sub 3}(ON) tetrahedrons whose component peak is localized at (104.0{+-}0.2) eV in the Si 2p{sub 3/2} region of the XPS data, which suggests that both bonding

  15. On the photoelectron velocity-map imaging of lutetium monoxide anion LuO{sup −}

    SciTech Connect

    Liu, Zhiling; Xie, Hua; Qin, Zhengbo; Cong, Ran; Wu, Xia; Tang, Zichao Fan, Hongjun; Li, Quanjiang

    2014-01-21

    We report a combined photoelectron velocity-map imaging spectroscopy and density functional theory investigation on lutetium monoxide anion. Transition between the X {sup 1}Σ{sup +} anion electronic ground state and the neutral X {sup 2}Σ{sup +} electronic ground state is observed. Vibrationally resolved spectra were obtained at four different photon energies, providing a wealth of spectroscopic information for the electronic ground states of the anionic lutetium monoxide and corresponding neutral species. Franck-Condon simulations of the ground-state transition are performed to assign vibrational structure in the spectra and to assist in identifying the observed spectral bands. The electronic ground state of LuO{sup −} is found to have a vibrational frequency of 743 ± 10 cm{sup −1} and an equilibrium bond length of 1.841 Å. The electron affinity of LuO is measured to be 1.624 ± 0.002 eV. The fundamental frequency of ground-state LuO is estimated to be 839 ± 10 cm{sup −1}.

  16. X-ray photoelectron spectroscopy surface analysis of aluminum ion stress in barley roots. [Hordeum vulgare

    SciTech Connect

    Millard, M.M.; Foy, C.D.; Coradetti, C.A.; Reinsel, M.D. )

    1990-06-01

    X-ray photoelectron spectroscopy (XPS) has been used to analyze root surface changes when Dayton barley (Hordeum vulgare) (Al tolerant) and Kearney barley (Al sensitive) seedlings were grown in nutrient solution in the presence and absence of 37.0 micromolar Al. The electron spectra from root surfaces contained strong lines in order of decreasing intensity from organic forms of carbon, oxygen, and nitrogen and weak lines due to inorganic elements in the form of anions and cations on the surface. The surface composition of root tips from Kearney was C, 65.6%; 0, 26.8%; N, 4.4% and tips from Dayton was C, 72.7%; O, 23.6%; N, 1.9%, grown in the absence of aluminum. Electron lines characteristic of nitrate, potassium, chloride, phosphate were also present in the spectra from those roots. Dayton roots grown in the presence of 37.0 micromolar aluminum contained 2.1% aluminum while Kearney contained 1.3% aluminum. The ratio of aluminum to phosphate was close to 1.0. Dayton roots usually contained twice as much aluminum phosphate in the surface region as Kearney. Dayton may be less susceptible to Al toxic effects by accumulation of aluminum phosphate on the root surface which then acts as a barrier to the transport of aluminum into the interior of the roots.

  17. Vibrationally resolved photoelectron imaging of platinum carbonyl anion Pt(CO)n- (n = 1-3): Experiment and theory

    NASA Astrophysics Data System (ADS)

    Liu, Zhiling; Xie, Hua; Qin, Zhengbo; Cong, Ran; Wu, Xia; Tang, Zichao; Lu, Xin; He, Jian

    2012-11-01

    Photodetachment of platinum carbonyl anions Pt(CO)n- (n = 1, 3) had been previously investigated using traditional photoelectron spectroscopy (PES) [G. S. Icking-Konert, H. Handschuh, G. Ganteför, and W. Eberhardt, Phys. Rev. Lett. 76, 1047 (1996), 10.1103/PhysRevLett.76.1047; B. Chatterjee, F. A. Akin, C. C. Jarrold, and K. Raghavachari, J. Chem. Phys. 119, 10591 (2003)], 10.1063/1.1619131. Here, we studied Pt(CO)n- (n = 1-3) using photoelectron velocity-map imaging method and extensive theoretical calculations. Vibrationally resolved spectra from photoelectron imaging experiments allow determination of the electron affinities of Pt(CO)n, which are 1.196 ± 0.034, 0.930 ± 0.042, and 1.253 ± 0.032 eV for n = 1, 2, and 3, respectively. Two vibrational progressions are resolved for the ground states of Pt(CO) and Pt(CO)3, while only one is resolved for that of Pt(CO)2. The frequencies are determined to be 2089 ± 91 and 581 ± 21 cm-1 for Pt(CO), 2173 ± 115 cm-1 for Pt(CO)2 and 2119 ± 88 and 444 ± 18 cm-1 for Pt(CO)3. Results from density functional theory and ab initio calculations agreed well with the experimental observations. The spectra were well reproduced by Franck-Condon fitting on the basis of the optimized geometries and the theoretical frequencies. The well-resolved PES also provided valuable benchmarks for various density functionals (B3LYP, BP86, and PW91PW91) for the platinum carbonyls.

  18. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging

    PubMed Central

    DeVine, Jessalyn A.; Levine, Daniel S.; Kim, Jongjin B.; Neumark, Daniel M.

    2016-01-01

    Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. Here, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C14H9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm−1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excited states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data. PMID:26792521

  19. The Vitamin E Radical Probed by Anion Photoelectron Imaging.

    PubMed

    Anstöter, Cate S; West, Christopher W; Bull, James N; Verlet, Jan R R

    2016-07-28

    The biological antioxidant activity of vitamin E has been related to the stability of the tocopheroxyl radical. Using anion photoelectron imaging and electronic structure calculations, the four tocopheroxyl components of vitamin E have been studied in the gas phase and have yielded the adiabatic electron affinity of the α-, β/γ-, and δ-tocopheroxyl radicals. Using these values, the bond dissociation enthalpy of the O-H bond of tocopherol has been estimated and is consistent with previous studies and with the trends in biological activity. Differences in the photoelectron angular distributions have been interpreted to result from changes in the symmetry of the molecular orbitals from which the electron was detached. PMID:27367260

  20. Theoretical scheme for simultaneously observing forward-backward photoelectron holography.

    PubMed

    Du, Hongchuan; Wu, Hongmei; Wang, Huiqiao; Yue, Shengjun; Hu, Bitao

    2016-02-15

    Photoelectron angular momentum distribution of He+ driven by a few-cycle laser is investigated numerically. We simultaneously observe two dominant interference patterns with one shot of lasers by solving the 3D time-dependent Schrodinger equation. Analysis of a semiclassical model identifies these two interference patterns as two types of photoelectron holography. The interference pattern with Pz0 is a type of forward rescattering holography, which comes from the interference between direct (reference) and rescattered (signal) forward electrons ionized in the same quarter-cycle. The interference pattern with Pz<0 is a type of backward rescattering holography, which comes from the interference between a direct electron ionized in the third quarter-cycle and rescattered backward electron ionized in the first quarter-cycle. Moreover, we propose a method to distinguish this backward rescattering holography and intracycle interference patterns of direct electrons. PMID:26872166

  1. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    SciTech Connect

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  2. Operational Experience with the Nb/Pb SRF Photoelectron Gun

    SciTech Connect

    Kamps, T; Barday, R; Jankowiak, A; Knoblock, J; Kugeler, O; Matveenko, A N; Neumann, A; Quast, T; Rudolph, J; Schubert, S G; Volker, J; Kneisel, P; Nietubyc, R; Sekutowicz, J K; Smedley, J; Teichert, J; Volkov, V; Will, I

    2012-07-01

    SRF photoelectron guns offer the promise of high brightness, high average current beam production for the next generation of accelerator driven light sources such as free electron lasers, THz radiation sources or energy-recovery linac driven synchrotron radiation sources. In a first step a fully superconducting RF (SRF) photoelectron gun is under development by a collaboration between HZB, DESY, JLAB, BNL and NCBJ. The aim of the experiment is to understand and improve the performance of a Nb SRF gun cavity coated with a small metallic Pb cathode film on the cavity backplane. This paper describes the highlights from the commissioning and beam parameter measurements. The main focus is on lessons learned from operation of the SRF gun.

  3. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  4. Polarity-dependent photoemission spectra of wurtzite-type zinc oxide

    SciTech Connect

    Williams, Jesse; Yoshikawa, Hideki; Ueda, Shigenori; Yamashita, Yoshiyuki; Kobayashi, Keisuke; Adachi, Yutaka; Ohashi, Naoki; Haneda, Hajime; Ohgaki, Takeshi; Miyazaki, Hiroki; Ishigaki, Takamasa

    2012-01-30

    The polar surfaces of wurtzite-type zinc oxide (ZnO) were characterized by x-ray photoemission spectroscopy to identify the origin of the polarity dependence of the valence band spectra. A characteristic sub-peak always appeared in the valence band spectra of the (0001) face regardless of the surface preparation conditions. It also appeared in the valence band spectra of the (1012) face, but only when the photoelectron take-off angle was parallel to the c-axis of ZnO. Our analysis demonstrates that this take-off angle dependency originates not from the surface state, photoelectron diffraction, or the presence of surfactants but from the crystal polarity.

  5. Theoretical Study of FH2– Electron Photodetachment Spectra on New Ab Initio Potential Energy Surfaces.

    PubMed

    Yu, Dequan; Chen, Jun; Cong, Shulin; Sun, Zhigang

    2015-12-17

    The FH2– anion has a stable structure that resembles a configuration in the vicinity of the transition state for neutral reaction F + H2 → HF + H. Electron photodetachment spectra of the FH2– anion reveal the neutral reaction dynamics in the critical transition-state region. Accurate quantum dynamics simulations of the photodetachment spectra using highly accurate new ab initio potential energy surfaces for both anionic and neutral FH2 are performed and compared with all available experimental results. The results provide reliable interpretations for the experimental observations of FH2– photoelectron detachment and reveal a detailed picture of the molecular dynamics around the transition state of the F + H2 reaction. The latest high-resolution photoelectron detachment spectra [Kim et al. Science, 2015, 349, 510-513] confirm the high accuracy of our new potential energy surface for describing the resonance-enhanced reactivity of the neutral F + H2 reaction. PMID:26550683

  6. Operation of a Langmuir Probe in a Photoelectron Plasma

    SciTech Connect

    Dove, Adrienne; Robertson, Scott; Horanyi, Mihaly; Poppe, Andrew; Wang Xu

    2011-11-29

    Dust transport on the lunar surface is likely facilitated by the variable electric fields that are generated by changing plasma conditions. We have developed an experimental apparatus to study lunar photoelectric phenomena and gain a better understanding of the conditions controlling dust transport. As an initial step, Langmuir probe measurements are used to characterize the photoelectron plasma produced above a Zr surface, and these techniques will be extended to CeO{sub 2} and lunar simulant surfaces.

  7. Vacuum ultraviolet photoelectron spectroscopy of atoms and molecules

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    For a complete study of the photoionization of atoms and molecules it is essential to make use of the technique of Photoelectron Spectroscopy and the continuum characteristics of synchrotron radiation. A brief review is given of the application of the above techniques in measuring partial photoionization cross sections and the angular distribution assymetry parameter beta. Selected results are given, which are compared to theoretical values.

  8. Photoelectron spectroscopy of non-steroidal anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; Chong, Delano P.; McGlynn, Sean P.

    2013-08-01

    The electronic structures of eight non-steroidal anti-inflammatory drugs (NSAIDs) had been studied by UV photoelectron spectroscopy (UPS) and high-level Green's function (GF) calculations. Our UPS data show that the electronic structure influences the measured biological activity of NSAID, but that it is not the dominating factor. The role of electronic structure needs to be considered in conjunction with other factors like steric properties of the COX active site and orientation of relevant residues in the same site.

  9. Photoelectron escape fluxes over the equatorial and midlatitude regions

    NASA Technical Reports Server (NTRS)

    Narasingarao, B. C.; Singh, R. N.; Maier, E. J.

    1972-01-01

    Satellite measurements of photoelectron escape flux around noontime made by Explorer 31 in 600-800 km altitude range are reported for the equatorial and midlatitude regions. The pitch angle distributions and the spectral distributions are derived from the data. Analyzed data show that the flux for equatorial regions is lower by a factor 2 to 3 in comparison to that of midlatitude regions. Theoretical calculations are also made to compare with observed escape fluxes.

  10. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    NASA Astrophysics Data System (ADS)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  11. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    SciTech Connect

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-03-15

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm{sup -1} field, which enables the direct measurement of rate constants in the 10{sup 3}-10{sup 7} s{sup -1} range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  12. ILC1s in Tissue Inflammation and Infection

    PubMed Central

    Fuchs, Anja

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that provide an early source of cytokines to initiate and tailor the immune response to the type of the encountered pathogen or insult. The group 1 ILCs are comprised of conventional natural killer (cNK) cells and subsets of “unconventional NK cells,” termed ILC1s. Although cNK cells and ILC1s share many features, such as certain phenotypic markers and the ability to produce IFN-γ upon activation, it is now becoming apparent that these two subsets develop from different progenitors and show unique tissue distribution and functional characteristics. Recent studies have aimed at elucidating the individual contributions of cNK cells and ILC1s during protective host responses as well as during chronic inflammation. This review provides an overview of the current knowledge of the developmental origins as well as of the phenotypic and functional characteristics of ILC1s. PMID:27047491

  13. 1. S. Lucas, Photographer, 1934. HISTORIC AMERICAN BUILDINGS SURVEY. WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. S. Lucas, Photographer, 1934. HISTORIC AMERICAN BUILDINGS SURVEY. WEST SIDE JUDGE WILSON HOUSE, ANN ARBOR, MICH. - Judge R. S. Wilson House, East Ann & North Division Streets, Ann Arbor, Washtenaw County, MI

  14. Electronic Structures of Uranium Compounds Studied by Soft X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2016-06-01

    The electronic structures of uranium-based compounds have been studied by photoelectron spectroscopy with soft X-ray synchrotron radiation. Angle-resolved photoelectron spectroscopy with soft X-rays has made it possible to directly observe their bulk band structures and Fermi surfaces. It has been shown that the band structures and Fermi surfaces of itinerant compounds such as UB2, UN, and UFeGa5 are quantitatively described by a band-structure calculation treating all U 5f electrons as itinerant. Furthermore, the overall electronic structures of heavy-fermion compounds such as UPd2Al3, UNi2Al3, and URu2Si2 are also explained by a band-structure calculation, although some disagreements exist, which might originate from the electron correlation effect. This suggests that the itinerant description of U 5f states is an appropriate starting point for the description of their electronic structures. The situation is similar for ferromagnetic superconductors such as UGe2, URhGe, UCoGe, and UIr, although the complications from their low-symmetry crystal structures make it more difficult to describe their detailed electronic structures. The local electronic structures of the uranium site have been probed by core-level photoelectron spectroscopy with soft X-rays. The comparisons of core-level spectra of heavy-fermion compounds with typical itinerant and localized compounds suggest that the local electronic structures of most itinerant and heavy-fermion compounds are close to the U 5f3 configuration except for UPd2Al3 and UPt3. The core-level spectrum of UPd2Al3 has similarities to those of both itinerant and localized compounds, suggesting that it is located at the boundary between the itinerant and localized states. Moreover, the spectrum of UPt3 is very close to that of the localized compound UPd3, suggesting that it is nearly localized, although there are narrow quasi-particle bands in the vicinity of EF.

  15. A photoelectron spectroscopic study of monovanadium oxide anions (VOx-, x=1-4)

    NASA Astrophysics Data System (ADS)

    Wu, Hongbin; Wang, Lai-Sheng

    1998-04-01

    We report on a photoelectron spectroscopic study of monovanadium oxides, VOx- (x=1-4), at four photon energies: 532, 355, 266, and 193 nm. Vibrationally resolved spectra are obtained for VO- at 532 and 355 nm detachment photon energies. Two new low-lying excited states are observed for VO at 5630 and 14 920 cm-1 above the ground state. These states are assigned to two doublet states, 2Σ- and 2Φ, respectively. The 532 and 355 nm spectra of VO2- reveal a single vibrational progression for the ground state with a frequency of 970 cm-1 (ν1). Three electronic excited states are observed for VO2 in the 193 nm spectrum. For VO3-, three surprisingly sharp detachment transitions are observed at 193 nm. The two excited states of VO3 are measured to be 0.59 and 0.79 eV above the ground state. The spectra of VO2- and VO3- are interpreted using the molecular-orbital schemes obtained in a recent ab initio theoretical study [Knight, Jr. et al., J. Chem. Phys. 105, 10237 (1996)], which predicts that both VO2 and VO3 neutrals are of C2v symmetry with a doublet ground state. The spectrum of VO4- is obtained at 193 nm, showing features similar to that of VO3-, but much more broadened. The adiabatic electron affinities of VO, VO2, VO3, and VO4 are measured to be 1.229 (8), 2.03 (1), 4.36 (5), and 4.0 (1) eV, respectively, with a significant increase from VO2 to VO3. The electronic and geometrical structures of the series of monovanadium oxide species are discussed based on the current observation and previous spectroscopic and theoretical results.

  16. Evidence for the eta_b(1S) in the Decay Upsilon(2S)-> gamma eta_b(1S)

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Karlsruhe U., EKP /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-12-14

    We have performed a search for the {eta}{sub b}(1S) meson in the radiative decay of the {Upsilon}(2S) resonance using a sample of 91.6 million {Upsilon}(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E{sub {gamma}} = 610.5{sub -4.3}{sup +4.5}(stat) {+-} 1.8(syst) MeV, corresponding to an {eta}{sub b}(1S) mass of 9392.9{sub -4.8}{sup +4.6}(stat) {+-} 1.9(syst) MeV/c{sup 2}. The branching fraction for the decay {Upsilon}(2S) {yields} {gamma}{eta}{sub b}(1S) is determined to be (4.2{sub -1.0}{sup +1.1}(stat) {+-} 0.9(syst)) x 10{sup -4}. The ratio {Beta}({Upsilon}(2S) {yields} {gamma}{eta}{sub b}(1S))/{Beta}({Upsilon}(3S) {yields} {gamma}{eta}{sub b}(1S)) = 0.89{sub -0.23}{sup +0.25}(stat){sub -0.16}{sup +0.12}(syst) is consistent with the ratio expected for magnetic dipole transitions to the {eta}{sub b}(1S) meson.

  17. Vibrational and VCD spectra of poly(menthyl vinyl ether)

    NASA Astrophysics Data System (ADS)

    McCann, J. L.; Bour, P.; Wieser, H.

    1998-06-01

    The detailed assignments are reported for the vibrational and VCD spectra of (1S,2R,5S)-(+)-menthol. Energy minimized geometries, harmonic force fields, and atomic polar tensors were calculated at the Becke3LYP/6-31G** level, and atomic axial tensors with the vibronic coupling theory at the HF/6-31G level. The spectra consist of contributions mainly from two isomers (70%) distinguished only by conformation of the OH group. An attempt was made to simulate the absorption and VCD spectra of poly(methyl vinyl ether) using a component approach and invoking the excitation scheme with promising though not conclusive results at this stage.

  18. Cassini UVIS observations of Titan nightglow spectra

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; McClintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-12-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron-excited glow that persists with solar depression angle up to 25-30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000-1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range.

  19. High resolution photoelectron imaging of UO- and UO2- and the low-lying electronic states and vibrational frequencies of UO and UO2

    NASA Astrophysics Data System (ADS)

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-01

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO- and UO2-. The spectra for UO2- are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  20. High resolution photoelectron imaging of UO(-) and UO2(-) and the low-lying electronic states and vibrational frequencies of UO and UO2.

    PubMed

    Czekner, Joseph; Lopez, Gary V; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO(-) and UO2(-). The spectra for UO2(-) are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species. PMID:25554146

  1. H{sub 2} and D{sub 2} in intense sub-picosecond laser pulses: Photoelectron spectroscopy at 1053 and 527 nm

    SciTech Connect

    Rottke, H.; Ludwig, J.; Sandner, W.

    1996-09-01

    We report multiphoton ionization experiments on H{sub 2} and D{sub 2} molecules at 1053- and 526.5-nm excitation wavelengths in the intensity range 5{times}10{sup 13}{endash}5{times}10{sup 14} W/cm{sup 2}. The intensity dependence of the total ion yield, the dissociation fraction, and the photoelectron spectrum is investigated. At 1053 nm we find a strong isotope effect in the dissociation fraction, whereas at 526.5 nm no such effect is observed. Up to 1{times}10{sup 14} W/cm{sup 2} the photoelectron spectrum at 526.5 nm is dominated by resonant ionization processes via Rydberg states of the molecules. They are shifted into resonance at intensities above {approximately}10{sup 13} W/cm{sup 2}. The spectra show that the potential energy curves of the resonant states must have a shape very similar to the corresponding ionic ones. They are therefore mainly determined by the dipole coupling between the ion core orbitals 1{ital s}{sigma}{sub {ital g}} and 2{ital p}{sigma}{sub {ital u}}. At 1053 nm two photoionization regimes are observed: the multiphoton regime with Keldysh parameter {gamma}{gt}1 showing resonance ionization structures, and the tunnel regime ({gamma}{lt}1) at high intensity. The isotope effect in the dissociation fraction at 1053 nm has no influence on the shape of the corresponding photoelectron spectra at this wavelength. {copyright} {ital 1996 The American Physical Society.}

  2. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure.

    PubMed

    Bergeard, N; Silly, M G; Krizmancic, D; Chauvet, C; Guzzo, M; Ricaud, J P; Izquierdo, M; Stebel, L; Pittana, P; Sergo, R; Cautero, G; Dufour, G; Rochet, F; Sirotti, F

    2011-03-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. PMID:21335912

  3. Surface structure determination of black phosphorus using photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    de Lima, Luis Henrique; Barreto, Lucas; Landers, Richard; de Siervo, Abner

    2016-01-01

    The atomic structure of single-crystalline black phosphorus is studied using high-resolution synchrotron-based photoelectron diffraction (XPD). The results show that the topmost phosphorene layer in the black phosphorus is slightly displaced compared to the bulk structure and presents a small contraction in the direction perpendicular to the surface. Furthermore, the XPD results show the presence of a small buckling among the surface atoms, in agreement with previously reported scanning tunneling microscopy results. The contraction of the surface layer added to the presence of the buckling indicates a uniformity in the size of the s p3 bonds between P atoms at the surface.

  4. Photoelectron spectroscopic study of the ethyl cyanoacrylate anion

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Tang, Xin; Bowen, Kit

    2013-09-01

    Anion photoelectron spectroscopy and density functional theory have been utilized to study the parent, ethyl cyanoacrylate molecular anion, ECA-. The measured electron affinity (0.9 ± 0.2 eV), vertical detachment energy (1.3 ± 0.1 eV), and anion-to-triplet neutral, photodetachment transition energies (4.0 ± 0.1 eV and 4.5 ± 0.1 eV) all compare well with their calculated values. The relatively high electron affinity of the ECA monomer is responsible for the fact that its “anionic” polymerization mechanism proceeds even with weak nucleophiles, such as water.

  5. Anion Photoelectron Angular Distributions: Electron Scattering Resonances in Photodetachment

    NASA Astrophysics Data System (ADS)

    Mabbs, Richard

    2012-06-01

    To a large degree the photoelectron angular distributions (PAD) of anionic species represent signatures of the bound parent orbital. However, these angular distributions are also influenced by interaction of the outgoing electron with the neutral (atomic, molecular or cluster) residue. The electron kinetic energy evolution (eKE) of the PAD is presented for a number of different species (from molecular to cluster anion), showing the often striking effect of excitation of temporary excited anionic states. These cases highlight the influence of different types of electron-molecule scattering resonances in photodetachment dynamics. Additionally, the possibility of using the eKE evolution of the PAD for structural elucidation is discussed.

  6. Single-photoelectron noise reduction in scintillation detectors

    SciTech Connect

    Marvin, T.P.; The SLAC mQ Collaboration

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 {times} 21 {times} 130-cm{sup 3} Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 {mu}s) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures.

  7. Following the molecular motion of near-resonant excited CO on Pt(111): A simulated x-ray photoelectron diffraction study based on molecular dynamics calculations

    PubMed Central

    Greif, Michael; Nagy, Tibor; Soloviov, Maksym; Castiglioni, Luca; Hengsberger, Matthias; Meuwly, Markus; Osterwalder, Jürg

    2015-01-01

    A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron diffraction (XPD) patterns record the coherent vibrational motion of carbon monoxide molecules adsorbed on a Pt(111) surface. Using molecular dynamics simulations, the excitation of frustrated wagging-type motion of the CO molecules by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates, the time-resolved XPD patterns of the C 1s core level photoelectrons are generated. Due to the direct structural information in these data provided by the forward scattering maximum along the carbon-oxygen direction, the sequence of these patterns represents the equivalent of a molecular movie. PMID:26798798

  8. X-ray Photoelectron Spectroscopy Study of Al- and N- Co-Doped p-Type ZnO Thin Films

    SciTech Connect

    Yuan, G. D.; Ye, Z. Z.; Huang, J. Y.; Zhu, L. P.; Perkins, C. L.; Zhang, S. B.

    2009-01-01

    The chemical state of nitrogen, aluminum, oxygen and zinc in Al-N co-doped p-type ZnO thin films was investigated by X-ray photoelectron spectroscopy (XPS). N{sub 1s} peak were detected in both the two p-type ZnO thin films, showing two components. The higher binding energy peak may be due to the Al-No-H species, and the lower one perhaps derive from the (NH{sub 2}){sup -} cluster for the ammonia introduction. These two peaks both contribute to the p-type behavior in the ZnO films. A symmetry 74.4 eV binding energy in Al{sub 2p3/2} photoelectron peaks revealed an Al-N bonding state, a key factor to the co-doping method.

  9. Polarity of semipolar wurtzite crystals: X-ray photoelectron diffraction from GaN(101⁻1) and GaN(202⁻1) surfaces

    SciTech Connect

    Romanyuk, O. Jiříček, P.; Bartoš, I.; Paskova, T.

    2014-09-14

    Polarity of semipolar GaN(101⁻1) (101⁻1⁻) and GaN(202⁻1) (202⁻1⁻) surfaces was determined with X-ray photoelectron diffraction (XPD) using a standard MgKα source. The photoelectron emission from N 1s core level measured in the a-plane of the crystals shows significant differences for the two crystal orientations within the polar angle range of 80–100° from the (0001) normal. It was demonstrated that XPD polar plots recorded in the a-plane are similar for each polarity of the GaN(101⁻1) and GaN(202⁻1) crystals if referred to (0001) crystal axes. For polarity determinations of all important GaN(h0h⁻l) semipolar surfaces, the above given polar angle range is suitable.

  10. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  11. Scattering Spectra of Single Gold Nanoshells

    NASA Astrophysics Data System (ADS)

    Hafner, Jason H.; Nehl, Colleen L.; Goodrich, Glenn P.; Tam, Felicia; Halas, Naomi J.

    2004-03-01

    Gold nanoshells are metal coated silica nanoparticles whose plasmon resonances vary from the visible to IR depending on their core to shell thickness ratio. Monodisperse nanoshell solutions can be synthesized such that their absorbance spectra match the calculated extinction spectra for the corresponding nanoshell structure. Using transmitted light dark field illumination and high numerical aperture optics, we have studied the scattering spectra of single gold nanoshells supported on ITO substrates in an optically homogeneous medium. With the aid of alignment marks, the same nanoshell can then be structurally characterized by electron microscopy. We have used this system to investigate the lineshape of single nanoshell scattering spectra to further elucidate the relative contributions of retardation, electron-interface scattering, and structural inhomogeneity. [1] Single particle measurements also facilitate the observation subtle interparticle and particle-substrate hybridization effects. [2] [1] S. L. Westcott, J. B. Jackson, C. Radloff, N. J. Halas, Phys. Rev. B 66, 155431 (2002). [2] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 302, 419-422 (2003).

  12. C 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) of substituted benzoic acids: a theoretical and experimental study

    SciTech Connect

    Baldea,I.; Schimmelpfennig, B.; Plaschke, M.; Rothe, J.; Schirmer, J.; Trofimov, A.; Fanghaenel, T.

    2007-01-01

    Ab initio calculations are performed to explain the discrete transitions in experimental C 1s-NEXAFS (near edge X-ray absorption fine structure) spectra of various benzoic acid derivates. Transition energies and oscillator strengths of the contributing C 1s-{pi}* excitations are computed using the ADC(2) (second-order algebraic-diagrammatic construction) method. This method is demonstrated to be well suited for the finite electronic systems represented by these simple organic acids. There is good agreement between experiment and theory reproducing all the relevant spectral features. Some transitions can only be assigned based on a theoretical foundation. Remaining discrepancies between experimental and computed spectra are discussed.

  13. Photoelectron spectroscopy and ab initio calculations of small Si{sub n}S{sub m}{sup −} (n = 1,2; m = 1–4) clusters

    SciTech Connect

    Xu, Xi-Ling; Deng, Xiao-Jiao; Xu, Hong-Guang; Zheng, Wei-Jun

    2014-09-28

    Binary cluster anions composed of silicon and sulfur elements, Si{sub n}S{sub m}{sup −} (n = 1,2; m = 1-4), were investigated by using photoelectron spectroscopy and ab initio calculations. The vertical detachment energies and the adiabatic detachment energies of these clusters were obtained from their photoelectron spectra. The electron affinity of SiS molecule is determined to be 0.477 ± 0.040 eV. The results show that the most stable structures of the anionic and neutral Si{sub n}S{sub m} (n = 1,2; m = 1-4) clusters prefer to adopt planar configurations except that the structures of Si{sub 2}S{sub 4}{sup −} and Si{sub 2}S{sub 2} are slightly bent.

  14. Probing the structures and chemical bonding of boron-boronyl clusters using photoelectron spectroscopy and computational chemistry: B4(BO)(n)- (n = 1-3).

    PubMed

    Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2012-07-28

    The electronic and structural properties of a series of boron oxide clusters, B(5)O(-), B(6)O(2)(-), and B(7)O(3)(-), are studied using photoelectron spectroscopy and density functional calculations. Vibrationally resolved photoelectron spectra are obtained, yielding electron affinities of 3.45, 3.54, and 4.94 eV for the corresponding neutrals, B(5)O, B(6)O(2), and B(7)O(3), respectively. Structural optimizations show that these oxide clusters can be formulated as B(4)(BO)(n)(-) (n = 1-3), which involve boronyls coordinated to a planar rhombic B(4) cluster. Chemical bonding analyses indicate that the B(4)(BO)(n)(-) clusters are all aromatic species with two π electrons. PMID:22852618

  15. 26 CFR 1.1361-1 - S corporation defined.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false S corporation defined. 1.1361-1 Section 1.1361-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1361-1 S corporation defined. (a) In general. For purposes...

  16. 26 CFR 1.1361-1 - S corporation defined.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false S corporation defined. 1.1361-1 Section 1.1361-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1361-1 S corporation defined. (a) In general. For purposes...

  17. 26 CFR 1.1361-1 - S corporation defined.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false S corporation defined. 1.1361-1 Section 1.1361-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1361-1 S corporation defined. (a) In general. For purposes...

  18. 26 CFR 1.1361-1 - S corporation defined.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false S corporation defined. 1.1361-1 Section 1.1361-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Small Business Corporations and Their Shareholders § 1.1361-1 S corporation defined. (a) In general. For purposes...

  19. Photoelectron imaging spectroscopy of niobium mononitride anion NbN-

    NASA Astrophysics Data System (ADS)

    Berkdemir, Cuneyt; Gunaratne, K. Don Dasitha; Cheng, Shi-Bo; Castleman, A. W.

    2016-07-01

    In this gas-phase photoelectron spectroscopy study, we present the electron binding energy spectrum and photoelectron angular distributions of NbN- by the velocity-map imaging technique. The electron binding energy of NbN- is measured to be 1.42 ± 0.02 eV from the X band maximum which defines the 0-0 transition between ground states of anion and neutral. Theoretical binding energies which are the vertical and adiabatic detachment energies are computed by density functional theory to compare them with experiment. The ground state of NbN- is assigned to the 2Δ3/2 state and then the electronic transitions originating from this state into X3ΔΩ (Ω = 1-3), a1Δ2, A3Σ1-, and b1Σ0+ states of NbN are reported to interpret the spectral features. As a prospective study for catalytic materials, spectral features of NbN- are compared with those of isovalent ZrO- and Pd-.

  20. Photoelectron imaging spectroscopy of niobium mononitride anion NbN(.).

    PubMed

    Berkdemir, Cuneyt; Gunaratne, K Don Dasitha; Cheng, Shi-Bo; Castleman, A W

    2016-07-21

    In this gas-phase photoelectron spectroscopy study, we present the electron binding energy spectrum and photoelectron angular distributions of NbN(-) by the velocity-map imaging technique. The electron binding energy of NbN(-) is measured to be 1.42 ± 0.02 eV from the X band maximum which defines the 0-0 transition between ground states of anion and neutral. Theoretical binding energies which are the vertical and adiabatic detachment energies are computed by density functional theory to compare them with experiment. The ground state of NbN(-) is assigned to the (2)Δ3/2 state and then the electronic transitions originating from this state into X(3)ΔΩ (Ω = 1-3), a(1)Δ2, A(3)Σ1 (-), and b(1)Σ0 (+) states of NbN are reported to interpret the spectral features. As a prospective study for catalytic materials, spectral features of NbN(-) are compared with those of isovalent ZrO(-) and Pd(-). PMID:27448881