Science.gov

Sample records for 1s0 transition probability

  1. Studies of Yb ^1S0 -- ^3P0 clock transitions

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    2005-05-01

    We are exploring two quite different methods for observing the ultra-sharp 6s^2 ^1S0 -- 6s6p ^3P0 optical interval in atomic Yb, which is considered a primary candidate for future optical frequency standards [1].In the first method, we observe the 578 nm single photon transition allowed in the odd isotopes through internal hyperfine coupling of the nuclear spin.† We shine a 578 nm laser beam on cold Yb atoms held in a magneto-optical trap (MOT), and detect a decrease in MOT fluorescence when the laser is resonant with the clock transition.† Our second approach is to use the even Yb isotopes, connecting the ^1S0 and ^3P0 states† by† a multi- photon transition [2]. Sharp electromagnetically induced transparency and absorption (EITA) resonance features appear when the photon frequencies combine to equal† the ^1S0 -- ^3P0 clock interval.† We will describe our initial studies of† 2 and 3 photon resonances in Yb, including Doppler-free 3 photon EITA. [1]S. G.† Porsev, A. Derevianko, E. N. Fortson, Phys. Rev. A 69, 021403(R)† (2004); H. Katori, in Proc. 6th Symposium Frequency Standards and Metrology, edited by P. Gill (World Scienti.c, Singapore, 2002), pp. 323-330 [2]Tao Hong, Claire Cramer, Warren Nagourney, E. N. Fortson, physics/0409051 and to be published in Phys. Rev. Lett.; Robin Santra, Ennio Arimondo, Tetsuya Ido, Crhis H. Greene, Jun Ye, physics/0411197

  2. Spectroscopy of 1S0- 3P1 transition of magnesium atom in an external absorption cell

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Baraulya, V. I.; Bonert, A. E.; Goncharov, A. N.; Seydaliev, M. R.

    2001-09-01

    The results of saturated absorption spectroscopy of the intercombination 1S0- 3P1 transition of magnesium atoms at 457 nm in an external absorption cell are presented. A laser system based on a Ti:Sa laser with frequency doubling in a LBO nonlinear crystal was used in these experiments. Saturated absorption resonances of magnesium in an external cell at the 1S0- 3P1 transition have been obtained for the first time. Pressure broadening of resonances equal to 12.5±1.5 kHz/mTorr has been measured.

  3. Spectroscopy of the forbidden 1S0 -->3P0 transition on ultra-cold ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Dareau, Alexandre; Scholl, Matthias; Beaufils, Quentin; Döring, Daniel; Beugnon, Jérôme; Gerbier, Fabrice

    2015-05-01

    Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping. Ytterbium, with its long lived metastable state (3P0), is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground (1S0) and meta-stable (3P0) states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity. I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the 1S0 -->3P0 transition of an ytterbium BEC.

  4. Photoassociation spectroscopy of 174 Yb Bose-Einstein Condensate using the 1 S0<-->3 P1 transition

    NASA Astrophysics Data System (ADS)

    Mun, Jongchul; Lee, Jeongwon; Lee, Jae Hoon; Kim, Min-Seok; Shin, Yong-Il

    2016-05-01

    We studied the photoassociation spectrum of 174 Yb Bose-Einstein condensate (BEC) using an optical Feshbach resonance near the intercombination transition (1 S0 -3 P1, 578 nm). The optical length lopt, which characterize the interaction strength of optical Feshbach resonances, of four least-bound molecular levels (ν' = - 1 ~ - 4) were precisely determined by measuring the two-body loss rate at various optical powers. We also found the parameter η =Γspon /Γmol , which characterizes the enhancement of molecular loss, to be > 1 as in the previous studies. Our BEC apparatus and experimental scheme are also introduced in this presentation. This work was supported by KRISS creative research initiative.

  5. Fast relaxation of the metastable helium state 2 1 S 0 in collisions with molecules and collisional lasing on the He (2 1 P 1 0 -2 1 S 0 ) transition

    NASA Astrophysics Data System (ADS)

    Belskaya, E. V.; Bokhan, P. A.; Zakrevsky, Dm. E.; Lavrukhin, M. A.

    2011-09-01

    In the present study, the laser absorption method was used to measure the rates of quenching of the metastable state He(2 1S0), the lower laser level in the self-terminating helium laser, with H2O, NH3, N2O, and CO2 molecules. For the above molecules, the quenching rate constants were found to equal (1.2 ± 0.3)10 - 9 , (0.8 ± 0.2)10 - 9 , (1.9 ± 0.2)10 - 9 and (2.2 ± 0.4)10 - 9 cm 3 s - 1 . Under excitation with long (up to 750 ns) open discharge generated electron beam pulses, lasing on the transition He (2 1P10-2 1S0) was examined. In the mixtures He-H2O and He-NH3, lasing durations almost equal to the pump-pulse duration were obtained. In the mixtures of He with CO2 and N2O, no lasing prolonged in comparison with pure helium was found. The data obtained were explained considering two quenching mechanisms for the state He(2 1S0): in collisions with molecules and in collisions with plasma electrons having low energies due to fast relaxation of the vibrational states of H2O and NH3 molecules.

  6. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.

    PubMed

    Hoyt, C W; Barber, Z W; Oates, C W; Fortier, T M; Diddams, S A; Hollberg, L

    2005-08-19

    We report the direct excitation of the highly forbidden (6s2) 1S0 <--> (6s6p) 3P0 optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at approximately 70 microK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,591.6 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,847.6 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10(6)-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be approximately 10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. PMID:16196856

  7. Optimization of Doppler-free magnetically induced dichroic locking spectroscopy on the 1S0-3P1 transition of a neutral mercury atom

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Yin, Shiqi; Qian, Jun; Xu, Zhen; Wang, Yuzhu

    2013-04-01

    Doppler-free dichroic locking (DFDL) spectroscopy on the 1S0-3P1 transition of neutral mercury (Hg) atoms is observed in a 5 mm long vapour cell. The performance of the DFDL signal, such as its slope and amplitude, is investigated in detail. The optimal axial magnetic field and cell temperature (optical depth) for the observed seven transitions are also highlighted. We also demonstrate an important application of DFDL spectroscopy in the frequency stabilization of an ultraviolet laser on the transition of 200Hg.

  8. Absolute frequency measurement of the ^1S0<->^3P0 clock transition at 578.4 nm in ytterbium

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad; Barber, Zeb; Oates, Chris; Fortier, Tara; Diddams, Scott

    2005-05-01

    We report the first precision absolute frequency measurements of the highly forbidden (6s^2)^1S0<->(6s6p)^3P0 optical clock transition at 578.4 nm in two odd isotopes of ytterbium. Atoms are cooled to tens of microkelvins in two successive stages of laser cooling and magneto-optical trapping that use transitions at 398.9 nm and 555.8 nm, respectively. The resulting trapped atomic cloud is irradiated with excitation light at 578.4 nm and absorption is detected by monitoring trapped atom depletion. With the laser on resonance, we demonstrate trap depletions of more than 80 % relative to the off-resonance case. Absolute frequency measurements are made for ^171Yb (I=1/2) and ^173Yb (I=5/2) with an uncertainty of 4.4 kHz using a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock. The natural linewidth of these J=0 to J=0 transitions is ˜10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. Lattice-based optical clocks have the potential to surpass the performance of the best current atomic clocks by orders of magnitude. The accurate ytterbium frequency knowledge presented here (nearly a million-fold reduction in uncertainty) will greatly expedite Doppler- and recoil-free lattice spectroscopy.

  9. A Posteriori Transit Probabilities

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Gaudi, B. Scott

    2013-08-01

    Given the radial velocity (RV) detection of an unseen companion, it is often of interest to estimate the probability that the companion also transits the primary star. Typically, one assumes a uniform distribution for the cosine of the inclination angle i of the companion's orbit. This yields the familiar estimate for the prior transit probability of ~Rlowast/a, given the primary radius Rlowast and orbital semimajor axis a, and assuming small companions and a circular orbit. However, the posterior transit probability depends not only on the prior probability distribution of i but also on the prior probability distribution of the companion mass Mc, given a measurement of the product of the two (the minimum mass Mc sin i) from an RV signal. In general, the posterior can be larger or smaller than the prior transit probability. We derive analytic expressions for the posterior transit probability assuming a power-law form for the distribution of true masses, dΓ/dMcvpropMcα, for integer values -3 <= α <= 3. We show that for low transit probabilities, these probabilities reduce to a constant multiplicative factor fα of the corresponding prior transit probability, where fα in general depends on α and an assumed upper limit on the true mass. The prior and posterior probabilities are equal for α = -1. The posterior transit probability is ~1.5 times larger than the prior for α = -3 and is ~4/π times larger for α = -2, but is less than the prior for α>=0, and can be arbitrarily small for α > 1. We also calculate the posterior transit probability in different mass regimes for two physically-motivated mass distributions of companions around Sun-like stars. We find that for Jupiter-mass planets, the posterior transit probability is roughly equal to the prior probability, whereas the posterior is likely higher for Super-Earths and Neptunes (10 M⊕ - 30 M⊕) and Super-Jupiters (3 MJup - 10 MJup), owing to the predicted steep rise in the mass function toward smaller

  10. Absolute frequency measurement of the 7s2 1S0-7s7p 1P1 transition in Ra225

    NASA Astrophysics Data System (ADS)

    Santra, B.; Dammalapati, U.; Groot, A.; Jungmann, K.; Willmann, L.

    2014-10-01

    Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te2 molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb clock by means of an optical frequency comb. The 7s21S0(F=1/2)-7s7p1P1(F =3/2) transition in Ra225 was determined to be 621042124(2)MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.

  11. Towards a Mg Lattice Clock: Observation of the 1S0-3P0 Transition and Determination of the Magic Wavelength

    NASA Astrophysics Data System (ADS)

    Kulosa, A. P.; Fim, D.; Zipfel, K. H.; Rühmann, S.; Sauer, S.; Jha, N.; Gibble, K.; Ertmer, W.; Rasel, E. M.; Safronova, M. S.; Safronova, U. I.; Porsev, S. G.

    2015-12-01

    We optically excite the electronic state 3 s 3 p 3P0 in 24Mg atoms, laser cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift, and the transition frequency to be 468.46(21) nm, -206.6 (2.0 ) MHz /T2 , and 655 058 646 691(101) kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also develop a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift, and discuss a clock based on bosonic magnesium.

  12. Absolute frequency and isotope shift of the magnesium (3 s2) 1S0→(3 s 3 d ) 1D2 two-photon transition by direct frequency-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Peters, E.; Reinhardt, S.; Hänsch, Th. W.; Udem, Th.

    2015-12-01

    We use a picosecond frequency-doubled mode-locked titanium sapphire laser to generate a frequency comb at 431 nm in order to probe the (3 s2) 1S0 →(3 s 3 d ) 1D2 transition in atomic magnesium. Using a second, self-referenced femtosecond frequency comb, the absolute transition frequency and the 24Mg and 26Mg isotope shift is determined relative to a global-positioning-system-referenced hydrogen maser. Our result for the transition frequency of the main isotope 24Mg of 1 391 128 606.14 (12 ) MHz agrees with previous measurements and reduces its uncertainty by four orders of magnitude. For the isotope shift we find δ ν26 ,24=3915.13 (39 ) MHz. Accurate values for transition frequencies in Mg are relevant in astrophysics and to test atomic structure calculations.

  13. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  14. Transition probabilities of Br II

    NASA Technical Reports Server (NTRS)

    Bengtson, R. D.; Miller, M. H.

    1976-01-01

    Absolute transition probabilities of the three most prominent visible Br II lines are measured in emission. Results compare well with Coulomb approximations and with line strengths extrapolated from trends in homologous atoms.

  15. ESTIMATION OF AGE TRANSITION PROBABILITIES.

    ERIC Educational Resources Information Center

    ZINTER, JUDITH R.

    THIS NOTE DESCRIBES THE PROCEDURES USED IN DETERMINING DYNAMOD II AGE TRANSITION MATRICES. A SEPARATE MATRIX FOR EACH SEX-RACE GROUP IS DEVELOPED. THESE MATRICES WILL BE USED AS AN AID IN ESTIMATING THE TRANSITION PROBABILITIES IN THE LARGER DYNAMOD II MATRIX RELATING AGE TO OCCUPATIONAL CATEGORIES. THREE STEPS WERE USED IN THE PROCEDURE--(1)…

  16. Absolute frequency measurement of 1S0(F = 1/2)-3P0(F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS

    NASA Astrophysics Data System (ADS)

    Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kim, Eok Bong; Lee, Sun Kyung; Cho, Jun Woo; Yoon, Tai Hyun; Mun, Jongchul; Jong Park, Sung; Kwon, Taeg Yong; Lee, Sang-Bum

    2013-04-01

    We measured the absolute frequency of the optical clock transition 1S0(F = 1/2)-3P0(F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.

  17. Relative transition probabilities of cobalt

    NASA Technical Reports Server (NTRS)

    Roig, R. A.; Miller, M. H.

    1974-01-01

    Results of determinations of neutral-cobalt transition probabilities measured relative to Co I 4150.43 A and Co II 4145.15 A, using a gas-driven shock tube as the spectroscopic light source. Results are presented for 139 Co I lines in the range from 3940 to 6640 A and 11 Co II lines in the range from 3840 to 4730 A, which are estimated to have reliabilities ranging from 8 to 50%.

  18. Transition probability of the Al II 2669 intersystem line

    NASA Technical Reports Server (NTRS)

    Johnson, B. C.; Smith, P. L.; Parkinson, W. H.

    1986-01-01

    Time-resolved observations of the spin-changing, or 'intersystem' emission at 2669.157 A obtained by the ion storage technique are used to measure the transition probability of the 3s2 1S0 - 3s3p 3P1 exp 0 line in Al II. A laser-generated plasma was used as the source of the metastable Al(+) ions. The A-value result obtained for the intersystem transition is 3.33 + or - 0.23 x 10 to the 3rd/sec at the 90-percent confidence level; this value is used to derive two line-intensity ratios which involve the intersystem line as a function of electron density and temperature.

  19. Transition Probability and the ESR Experiment

    ERIC Educational Resources Information Center

    McBrierty, Vincent J.

    1974-01-01

    Discusses the use of a modified electron spin resonance apparatus to demonstrate some features of the expression for the transition probability per second between two energy levels. Applications to the third year laboratory program are suggested. (CC)

  20. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  1. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. R.; Petrosky, V. E.

    1973-01-01

    The technique of photoelectron spectroscopy was used to obtain the relative continuum transition probabilities of atomic oxygen at 584 A for transitions from 3P ground state into the 4S, D2, and P2 states of the ion. Transition probability ratios for the D2 and P2 states relative to the S4 state of the ion are 1.57 + or - 0.14 and 0.82 + or - 0.07, respectively. In addition, transitions from excited O2(a 1 Delta g) state into the O2(+)(2 Phi u and 2 Delta g) were observed. The adiabatic ionization potential of O2(+)(2 Delta g) was measured as 18.803 + or - 0.006 eV.

  2. Calculation of radiative transition probabilities and lifetimes

    NASA Technical Reports Server (NTRS)

    Zemke, W. T.; Verma, K. K.; Stwalley, W. C.

    1982-01-01

    Procedures for calculating bound-bound and bound-continuum (free) radiative transition probabilities and radiative lifetimes are summarized. Calculations include rotational dependence and R-dependent electronic transition moments (no Franck-Condon or R-centroid approximation). Detailed comparisons of theoretical results with experimental measurements are made for bound-bound transitions in the A-X systems of LiH and Na2. New bound-free results are presented for LiH. New bound-free results and comparisons with very recent fluorescence experiments are presented for Na2.

  3. Estimation of transition probabilities of credit ratings

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2015-12-01

    The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.

  4. Properties of atoms in molecules: Transition probabilities

    NASA Astrophysics Data System (ADS)

    Bader, R. F. W.; Bayles, D.; Heard, G. L.

    2000-06-01

    The transition probability for electric dipole transitions is a measurable property of a system and is therefore, partitionable into atomic contributions using the physics of a proper open system. The derivation of the dressed property density, whose averaging over an atomic basin yields the atomic contribution to a given oscillator strength, is achieved through the development of perturbation theory for an open system. A dressed density describes the local contribution resulting from the interaction of a single electron at some position r, as determined by the relevant observable, averaged over the motions of all of the remaining particles in the system. In the present work, the transition probability density expressed in terms of the relevant transition density, yields a local measure of the associated oscillator strength resulting from the interaction of the entire molecule with a radiation field. The definition of the atomic contributions to the oscillator strength enables one to determine the extent to which a given electronic or vibrational transition is spatially localized to a given atom or functional group. The concepts introduced in this article are applied to the Rydberg-type transitions observed in the electronic excitation of a nonbonding electron in formaldehyde and ammonia. The atomic partitioning of the molecular density distribution and of the molecular properties by surfaces of zero flux in the gradient vector field of the electron density, the boundary condition defining the physics of a proper open system, is found to apply to the density distributions of the excited, Rydberg states.

  5. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  6. Augmenting Transition Probabilities for Neutral Atomic Nitrogen

    NASA Technical Reports Server (NTRS)

    Terrazas-Salines, Imelda; Park, Chul; Strawa, Anthony W.; Hartman, G. Joseph (Technical Monitor)

    1996-01-01

    The transition probability values for a number of neutral atomic nitrogen (NI) lines in the visible wavelength range are determined in order to augment those given in the National Bureau of Standards Tables. These values are determined from experimentation as well as by using the published results of other investigators. The experimental determination of the lines in the 410 to 430 nm range was made from the observation of the emission from the arc column of an arc-heated wind tunnel. The transition probability values of these NI lines are determined to an accuracy of +/- 30% by comparison of their measured intensities with those of the atomic oxygen (OI) multiplet at around 615 nm. The temperature of the emitting medium is determined both using a multiple-layer model, based on a theoretical model of the flow in the arc column, and an empirical single-layer model. The results show that the two models lead to the same values of transition probabilities for the NI lines.

  7. Transition probabilities and static moments in transitional nuclei

    SciTech Connect

    Wolf, A.; Casten, R.F.

    1988-01-01

    Electromagnetic transition probabilities and static moments of excited nuclear states are known to be good probes of nuclear structure. Therefore, a systematic analysis of the large amount of existing experimental data for these observables is expected to provide valuable information about the respective isotopes. It is the purpose of this talk to show that a combined analysis of static magnetic moments of 2/sub 1//sup +/ states and B(E2) transition probabilities for even-even nuclei can be used to obtain effective numbers of valence nucleons. This kind of information is of particular interest in cases where subshell closures are found. For example, it is well known that for the transitional nuclei in the A = 150 region the Z = 64 subshell is active when the number of neutrons N < 90, but disappears for N greater than or equal to 90. A similar situation exists in the A = 100 region, where the Z = 38 subshell is active for N less than or equal to 58. In the following sections we present the method by which effective numbers of valence protons and neutrons can be deduced from B(E2) and g-factor data, and show applications of this method to the A = 150 and A = 100 transitional regions. Part of these results were recently published.

  8. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  9. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  10. Ultraviolet transition probabilities in N II

    NASA Technical Reports Server (NTRS)

    Ellis, David G.

    1993-01-01

    Oscillator strengths were calculated for the ultraviolet transition array 2p sup 2 - 2p3s in the N II spectrum. Results obtained confirm that the 748 A intercombination line is usually strong as predicted by Fawcett (1987). The results of theoretical weighted oscillator strengths are considered to be reliable.

  11. TRANSIT PROBABILITIES FOR STARS WITH STELLAR INCLINATION CONSTRAINTS

    SciTech Connect

    Beatty, Thomas G.; Seager, Sara

    2010-04-01

    The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints, considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.

  12. Measurement of the transition probability of the C III 190.9 nanometer intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.

    1993-01-01

    A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.

  13. Transition Probabilities of the Rare Earth Neutral Lanthanum

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawler, James E.; Den Hartog, Elizabeth

    2015-01-01

    In continuation of a long-standing project to measure transition probabilities for rare earth elements, La i is currently being studied. Transition probabilities of the rare earths and other elements are determined in order to assist astronomers in making stellar spectroscopy more quantitative. Atomic spectroscopy is a key tool for astronomers as it provides nearly all the details about the physics and chemistry of the universe outside of our solar system. Rare earth elements tend to have complex electronic structure due to their open 4f, 5d, 6s, and 6p shells. This leads to a rich spectrum throughout the ultraviolet, visible and near-infrared, making them very accessible elements for study in stellar photospheric spectra. A transition probability is the probability per unit time for a transition to occur between an upper level and a lower level. The process for measuring transition probabilities is by using the well-established technique of time-resolved laser-induced fluorescence to measure the radiative lifetimes for each upper level. This is then combined with branching fractions measured using a 1m high-resolution Fourier Transform Spectrometer. Radiative lifetimes for ~70 upper levels of neutral La along with their associated branching fractions will be reported, resulting in the determination of several hundred new transition probabilities. These transition probabilities will assist astronomers in analyzing the chemical compositions of older, cooler stars which give insight into the origins of the chemical elements.This work supported by by NSF grant AST-1211055 (JEL & EDH) and by the NSF REU program (AJP).

  14. Kr II transition probability measurements for the UV spectral region

    NASA Astrophysics Data System (ADS)

    Belmonte, M. T.; Gavanski, L.; Peláez, R. J.; Aparicio, J. A.; Djurović, S.; Mar, S.

    2016-02-01

    The determination of radiative transition probabilities or oscillator strengths is of common interest in astrophysics. The analysis of the high-resolution stellar spectra is now available in order to estimate the stellar abundances. In this paper, 93 experimentally obtained transition probability values (Aki) for singly ionized krypton spectral lines belonging to the ultraviolet (UV) wavelength region (208-360) nm are presented. These data, expressed in absolute units, were derived from the measurements of relative spectral line intensities and the values of transition probability data taken from the literature. The results obtained extend considerably the transition probability data base. As a light source, a plasma from a low-pressure pulsed arc was used. Its electron density was in the range of (1.5-3.4) × 1022 m-3, while the temperature was between 28 000 and 35 000 K. A detailed analysis of the results is also given. Only a few relative and a few absolute transition probabilities from other authors, for the mentioned spectral region, are available in the literature.

  15. Advances in the Measurement of Atomic Transition Probabilities

    NASA Astrophysics Data System (ADS)

    O'Brian, Thomas Raymond

    The technology for measuring absolute atomic transition probabilities is extended. Radiative lifetimes are measured by time-resolved laser-induced fluorescence on a slow atomic beam generated by a versatile hollow cathode discharge source. The radiative lifetimes are free from systematic error at the five percent level. Combined with branching fractions measured with emission or absorption sources, the lifetimes result in absolute transition probabilities usually accurate to 5-10 %. Three new developments in the lifetime and branching fraction technique are reported. Radiative lifetimes for 186 levels in neutral iron are measured, with the energy of the upper levels densely spanning the entire excitation range of neutral iron. Combined with branching fractions measured in emission with Fourier transform spectrophotometry, the level lifetimes directly yield absolute transition probabilities for 1174 transitions. An additional 640 transition probabilities are determined by interpolating level populations in an emission source. The dense energy spacing of the levels with directly measured lifetimes permits accurate population interpolation despite departures from local thermodynamic equilibrium. This technique has the potential to permit accurate absolute transition probability measurements for essentially every classified line in a spectrum. Radiative lifetime measurements are extended into the vacuum ultraviolet with a continuously tunable vacuum ultraviolet laser based on stimulated anti-Stokes Raman scattering. When used with the hollow cathode atomic beam source, accurate lifetimes are measured for 47 levels in neutral silicon and 8 levels in neutral boron, primarily in the vacuum ultraviolet spectral region. Transition probabilities are reported for many lines connected to these upper levels, using previously measured or calculated branching fractions. The hollow cathode beam source is developed for use with refractory non-metals. Intense atomic beams of boron

  16. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    SciTech Connect

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of the technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.

  17. Transition Probabilities for Spectral Lines in Co I

    NASA Astrophysics Data System (ADS)

    Nitz, D. E.; Wilson, K. L.; Lentz, L. R.

    1996-05-01

    We are in the process of determining transition probabilities for visible and uv lines in Co I from Fourier transform spectra recorded at Kitt Peak and made available to us by Prof. W. Whaling. Normalization of relative transition probabilities obtained from these spectra is achieved using recently-measured Co I lifetimes.(D. E. Nitz, S. D. Bergeson, and J. E. Lawler, J. Opt. Soc. Am. B 12, 377 (1995).) To date we have obtained preliminary results for 240 lines having branch fractions > 1

  18. Transition probability data for seven band systems of C2

    NASA Technical Reports Server (NTRS)

    Coo, D. M.; Nicholls, R. W.

    1976-01-01

    Absolute transition-probability parameters are reported for seven band systems of the C2 molecule. These include all the known C2 band systems in the spectral region between 0.2 and 1.2 microns with the exception of the Messerle-Krauss system. To obtain the data, absolute intensities of selected spectral regions were measured behind the incident shock wave in a combustion-driven shock tube containing 85% Ar and 15% C2H2. These measurements were converted into electronic transition moments by a synthetic spectrum analysis. The electronic transition moments were then used to determine extensive tables of the transition-probability parameters for each of the band systems measured.

  19. Collision strengths and transition probabilities for Co III forbidden lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha

    2016-07-01

    In this paper we compute the collision strengths and their thermally averaged Maxwellian values for electron transitions between the 15 lowest levels of doubly ionized cobalt, Co2+, which give rise to forbidden emission lines in the visible and infrared region of spectrum. The calculations also include transition probabilities and predicted relative line emissivities. The data are particularly useful for analysing the thermodynamic conditions of supernova ejecta.

  20. Transitional Probability Analysis of Two Child Behavior Analytic Therapy Cases

    ERIC Educational Resources Information Center

    Xavier, Rodrigo Nunes; Kanter, Jonathan William; Meyer, Sonia Beatriz

    2012-01-01

    This paper aimed to highlight the process of therapist direct contingent responding to shape client behavior in two Child Behavior Analytic Therapy (CBAT) cases using transitional probabilities. The Functional Analytic Psychotherapy Rating Scale (FAPRS) was used to code client behaviors and the Multidimensional System for Coding Behaviors in…

  1. Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Gao, Feng; Ye-Bing, Wang; Xiao, Tian; Jie, Ren; Ben-Quan, Lu; Qin-Fang, Xu; Yu-Lin, Xie; Hong, Chang

    2015-01-01

    We report on frequency measurement of the intercombination (5s2)1S0-(5s5p)3P1 transition of the four natural isotopes of strontium, including 88Sr (82.58%), 87Sr (7.0%), 86Sr (9.86%), and 84Sr (0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion (ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator (AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely. The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works. Project supported by the National Natural Science Foundation of China (Grant No. 61127901) and the Key Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  2. Executable Code Recognition in Network Flows Using Instruction Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Kim, Ikkyun; Kang, Koohong; Choi, Yangseo; Kim, Daewon; Oh, Jintae; Jang, Jongsoo; Han, Kijun

    The ability to recognize quickly inside network flows to be executable is prerequisite for malware detection. For this purpose, we introduce an instruction transition probability matrix (ITPX) which is comprised of the IA-32 instruction sets and reveals the characteristics of executable code's instruction transition patterns. And then, we propose a simple algorithm to detect executable code inside network flows using a reference ITPX which is learned from the known Windows Portable Executable files. We have tested the algorithm with more than thousands of executable and non-executable codes. The results show that it is very promising enough to use in real world.

  3. Transition probability of the Si III 189.2-nm intersystem line

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Johnson, B. C.; Smith, P. L.; Parkinson, W. H.

    1983-01-01

    Measurement of the lifetime of the metastable 3s3p(3)P(0)1 level of Si(2+) (Si III), which decays by photon emission at 189.2 nm to the 3s2(1)S0 state, is reported. The data were taken from spontaneous emission from metastable Si III stored in an RF ion trap. The Si III ions were produced through electron bombardment of SiH4 and SiF4 at pressures of 1/100,000,000-1/10,000,000 Torr. A photomultiplier was employed to count the photon emissions from the transitions. A total of 11 decay curves were generated for analysis, with Poisson statistics used to set the uncertainties at within 8 pct. Significant systematic effects were controlled, and the lifetime was found to be within 3.6 microsec of 59.9 microsec. The method used is concluded valid for determining the lifetimes of metastable levels of low-Z ions with low charge, and thereby the transition probabilities.

  4. Camera-Model Identification Using Markovian Transition Probability Matrix

    NASA Astrophysics Data System (ADS)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  5. Estimating transition probabilities in unmarked populations --entropy revisited

    USGS Publications Warehouse

    Cooch, E.G.; Link, W.A.

    1999-01-01

    The probability of surviving and moving between 'states' is of great interest to biologists. Robust estimation of these transitions using multiple observations of individually identifiable marked individuals has received considerable attention in recent years. However, in some situations, individuals are not identifiable (or have a very low recapture rate), although all individuals in a sample can be assigned to a particular state (e.g. breeding or non-breeding) without error. In such cases, only aggregate data (number of individuals in a given state at each occasion) are available. If the underlying matrix of transition probabilities does not vary through time and aggregate data are available for several time periods, then it is possible to estimate these parameters using least-squares methods. Even when such data are available, this assumption of stationarity will usually be deemed overly restrictive and, frequently, data will only be available for two time periods. In these cases, the problem reduces to estimating the most likely matrix (or matrices) leading to the observed frequency distribution of individuals in each state. An entropy maximization approach has been previously suggested. In this paper, we show that the entropy approach rests on a particular limiting assumption, and does not provide estimates of latent population parameters (the transition probabilities), but rather predictions of realized rates.

  6. Transition probabilities and radiative lifetimes of Mg III

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.; Moreno-Díaz, C.

    2015-03-01

    There have been calculated transition probabilities for 365 lines arising from 2p5 n s(n = 3 , 4 , 5) , 2p5 n p(n = 3 , 4) , 2p5 n d(n = 3 , 4) , 2p5 n f(n = 4 , 5) and 2p5 5g configurations of Mg III and radiative lifetimes corresponding to 89 levels. These values were obtained in intermediate coupling (IC) by using ab initio relativistic Hartree-Fock (HFR) calculations. Later, we use the standard method of least square fitting of experimental energy levels for the IC calculations by means of Cowan's computer codes. The vast majority of the calculated transition probabilities correspond to lines lying in the ultraviolet range (UV) which are of high interest in astrophysics. Our results are compared to those previously reported in the literature. Furthermore, the values of transition probabilities of configuration levels 2p5 4d, 2p5 n f(n = 4 , 5) and 2p5 5g are presented for the first time. In light of these findings, it is possible to extend the range of wavelengths which allows us to estimate the temperature in plasma diagnostic. In addition, our results for radiative lifetimes have been compared to the available experimental values.

  7. Estimating transition probabilities among everglades wetland communities using multistate models

    USGS Publications Warehouse

    Hotaling, A.S.; Martin, J.; Kitchens, W.M.

    2009-01-01

    In this study we were able to provide the first estimates of transition probabilities of wet prairie and slough vegetative communities in Water Conservation Area 3A (WCA3A) of the Florida Everglades and to identify the hydrologic variables that determine these transitions. These estimates can be used in management models aimed at restoring proportions of wet prairie and slough habitats to historical levels in the Everglades. To determine what was driving the transitions between wet prairie and slough communities we evaluated three hypotheses: seasonality, impoundment, and wet and dry year cycles using likelihood-based multistate models to determine the main driver of wet prairie conversion in WCA3A. The most parsimonious model included the effect of wet and dry year cycles on vegetative community conversions. Several ecologists have noted wet prairie conversion in southern WCA3A but these are the first estimates of transition probabilities among these community types. In addition, to being useful for management of the Everglades we believe that our framework can be used to address management questions in other ecosystems. ?? 2009 The Society of Wetland Scientists.

  8. Recursive recovery of Markov transition probabilities from boundary value data

    SciTech Connect

    Patch, S.K.

    1994-04-01

    In an effort to mathematically describe the anisotropic diffusion of infrared radiation in biological tissue Gruenbaum posed an anisotropic diffusion boundary value problem in 1989. In order to accommodate anisotropy, he discretized the temporal as well as the spatial domain. The probabilistic interpretation of the diffusion equation is retained; radiation is assumed to travel according to a random walk (of sorts). In this random walk the probabilities with which photons change direction depend upon their previous as well as present location. The forward problem gives boundary value data as a function of the Markov transition probabilities. The inverse problem requires finding the transition probabilities from boundary value data. Problems in the plane are studied carefully in this thesis. Consistency conditions amongst the data are derived. These conditions have two effects: they prohibit inversion of the forward map but permit smoothing of noisy data. Next, a recursive algorithm which yields a family of solutions to the inverse problem is detailed. This algorithm takes advantage of all independent data and generates a system of highly nonlinear algebraic equations. Pluecker-Grassmann relations are instrumental in simplifying the equations. The algorithm is used to solve the 4 {times} 4 problem. Finally, the smallest nontrivial problem in three dimensions, the 2 {times} 2 {times} 2 problem, is solved.

  9. Determination of transition probability for the 655-nm Tl line.

    NASA Astrophysics Data System (ADS)

    Karabourniotis, D.; Couris, S.; Damelincourt, J. J.

    Studies of high-pressure Hg-Tl I a.c. (50 Hz) arc plasmas have been used to verify the validity of Boltzmann statistics at the moment of maximum electron density (5 ms) by applying LTE criteria. For a known plasma temperature, the transition probability of the optically-thin 655-nm line of Tl was derived from emission measurements by using the self-reversed 535-nm line of Tl as reference [A655 = (3.74±0.37)×106s-1].

  10. Oscillator strengths and transition probabilities for the W xlv ion

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Hibbert, A.; Ramsbottom, C. A.

    2014-12-01

    In this paper we present oscillator strengths and transition probabilities for W xlv transitions between levels arising from configurations 3d104s2,4p2,4d2, 3d104k4l (k = s,p,d,f and l = p,d,f), 3d94s24l (l = p,d,f) and 3d94s4p2. The model used to calculate these contained all configurations which can be constructed from the available orbitals (up to n = 4), with either a 3d10 or 3d9 core. The calculations were performed with the configuration interaction CIV3 program with the inclusion of relativistic effects achieved through the use of the Breit-Pauli approximation. We compare our ab initio energy levels, oscillator strengths and transition rates with other experimental and theoretical values available in the literature. There is generally good agreement when only levels with 3d10 cores are considered. The literature is sparse for levels in which the 3d-subshell is opened: for the majority of the fine-structure lines considered, there is either no comparison data available or substantial differences are found. This paper also investigates how the inclusion of relativistic effects can result in a significant redistribution of the oscillator strength from the LS calculations.

  11. Theoretical electric quadrupole transition probabilities for Ca, Sr and Ba

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Jaffe, R. L.; Partridge, H.

    1984-01-01

    The 1D-1S quadrupole transition probabilities for Ca, Sr and Ba have been computed using extended GTO and STO valence basis sets and configuration-interaction wavefunctions that include the important core-valence correlation effects. For Ba and Sr, the relativistic contraction of the core orbitals was accounted for in the GTO calculations by a relativistic effective-core potential. The computed Einstein coefficient for Ca of 39.6/s is in excellent agreement with the recent experimental value of 40 + or - 8/s. The best Einstein coefficients for Sr (44.7/s) and Ba (2.98/s) imply increasing quadrupole line strengths down the column. Relativistic effects substantially increase the quadrupole Einstein coefficient for Ba.

  12. E2 Transition Probabilities in 114Te: a Conundrum

    SciTech Connect

    Moller, O; Warr, N; Jolie, J; Dewald, A; Fitzler, A; Linnemann, A; Zell, K O; Garrett, P E; Yates, S W

    2005-05-13

    Lifetimes in {sup 114}Te were determined using the recoil distance Doppler-shift technique with a plunger device coupled to five HP Ge detectors enhanced by one Euroball Cluster detector. The experiment was carried out at the Cologne FN Tandem facility using the {sup 93}Nb({sup 24}Mg,p2n) reaction at 90 MeV. The differential decay curve method in coincidence mode was employed to derive lifetimes for seven excited states, while the lifetime of an isomeric state was obtained in singles mode. The resulting E2 transition probabilities are shown to be very anomalous in comparison with the vibrational energy spacings of the ground state band.

  13. E2 transition probabilities in {sup 114}Te: A conundrum

    SciTech Connect

    Moeller, O.; Warr, N.; Jolie, J.; Dewald, A.; Fitzler, A.; Linnemann, A.; Zell, K.O.; Garrett, P.E.; Yates, S.W.

    2005-06-01

    Lifetimes in {sup 114}Te were determined using the recoil distance Doppler-shift technique with a plunger device coupled to five HP Ge detectors enhanced by one Euroball cluster detector. The experiment was carried out at the Cologne FN Tandem facility using the {sup 93}Nb({sup 24}Mg,p2n) reaction at 90 MeV. The differential decay curve method in coincidence mode was employed to derive lifetimes for seven excited states, whereas the lifetime of an isomeric state was obtained in singles mode. The resulting E2 transition probabilities are shown to be very anomalous in comparison with the vibrational energy spacings of the ground-state band.

  14. Radiative lifetimes and transition probabilities of neutral lanthanum

    NASA Astrophysics Data System (ADS)

    Den Hartog, E. A.; Palmer, A. J.; Lawler, J. E.

    2015-08-01

    The radiative lifetimes of 72 odd-parity levels of neutral lanthanum are measured to ±5% accuracy using time-resolved laser-induced fluorescence on a slow atomic beam. The levels range in energy from 15031 to 32140 cm-1. Branching fraction measurements using Fourier-transform spectroscopy are attempted and completed for all of the 72 levels. The branching fractions, when combined with the radiative lifetimes, yield new transition probabilities for 315 lines of the first spectrum of lanthanum (La i ). This study is part of a larger body of work on the radiative properties of rare earth neutral atoms, and is motivated by research needs in lighting science and astrophysics.

  15. Transition probabilities in neutron-rich Se,8684

    NASA Astrophysics Data System (ADS)

    Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.

    2015-12-01

    Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .

  16. Matter-enhanced transition probabilities in quantum field theory

    SciTech Connect

    Ishikawa, Kenzo Tobita, Yutaka

    2014-05-15

    The relativistic quantum field theory is the unique theory that combines the relativity and quantum theory and is invariant under the Poincaré transformation. The ground state, vacuum, is singlet and one particle states are transformed as elements of irreducible representation of the group. The covariant one particles are momentum eigenstates expressed by plane waves and extended in space. Although the S-matrix defined with initial and final states of these states hold the symmetries and are applied to isolated states, out-going states for the amplitude of the event that they are detected at a finite-time interval T in experiments are expressed by microscopic states that they interact with, and are surrounded by matters in detectors and are not plane waves. These matter-induced effects modify the probabilities observed in realistic situations. The transition amplitudes and probabilities of the events are studied with the S-matrix, S[T], that satisfies the boundary condition at T. Using S[T], the finite-size corrections of the form of 1/T are found. The corrections to Fermi’s golden rule become larger than the original values in some situations for light particles. They break Lorentz invariance even in high energy region of short de Broglie wave lengths. -- Highlights: •S-matrix S[T] for the finite-time interval in relativistic field theory. •S[T] satisfies the boundary condition and gives correction of 1/T . •The large corrections for light particles breaks Lorentz invariance. •The corrections have implications to neutrino experiments.

  17. Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant

    NASA Astrophysics Data System (ADS)

    Sargsyan, Armen; Tonoyan, Ara; Hakhumyan, Grant; Papoyan, Aram; Mariotti, Emilio; Sarkisyan, David

    2014-05-01

    The magnetic field-induced giant modification of probabilities for seven components of 6S1/2, Fg = 3 → 6P3/2, Fe = 5 transition of the Cs D2 line, forbidden by selection rules, is observed experimentally for the first time. For the case of excitation with circularly polarized laser radiation, the probability of a Fg = 3, mF = -3 → Fe = 5, mF = -2 transition becomes the largest of 25 transitions of the Fg = 3 → Fe = 2,3,4,5 group in a wide-range magnetic field of 200-3200 G. Moreover, the modification is the largest among D2 lines of alkali metals. A half-wave-thick cell (the length along the beam propagation axis L = 426 nm) filled with Cs has been used in order to achieve sub-Doppler resolution, which allows the large number of atomic transitions that appear in the absorption spectrum to be separated when an external magnetic field is applied. For B > 3000 G the group of seven transitions Fg = 3 → Fe = 5 is completely resolved and is located at the high frequency level of Fg= 3 → Fe = 2,3,4 transitions. The applied theoretical model describes very well the experimental curves.

  18. Broken scaling laws of the transition probabilities from jj to LS coupling transitions

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Han, Xiao-Ying; Zeng, De-Ling; Jin, Rui; Li, Jia-Ming

    2014-04-01

    Accurate electromagnetic transition rates between the ground electronic configurations are important in diagnostic studies of planetary nebulae. Based on a "quasi-complete basis" set, we present large-scale multi-configuration Dirac-Fock calculations of the forbidden transition rates within the ground electronic configuration along the nitrogen-like isoelectronic sequence. The broken scaling laws of the transition probabilities from jj to LS coupling transitions are elucidated and found to be extensions of the well-known scaling laws discussed in the single electron case. The equivalent oscillator strength is very large for ions in high-Z regions and should play a crucial role in the cooling mechanism in astrophysics.

  19. TRANSITION PROBABILITIES FOR STUDENT-TEACHER POPULATION GROWTH MODEL (DYNAMOD II).

    ERIC Educational Resources Information Center

    ZINTER, JUDITH R.

    THIS NOTE PRESENTS THE TRANSITION PROBABILITIES CURRENTLY IN USE IN DYNAMOD II. THE ESTIMATING PROCEDURES USED TO DERIVE THESE PROBABILITIES WERE DISCUSSED IN THESE RELATED DOCUMENTS--EA 001 016, EA 001 017, EA 001 018, AND EA 001 063. THE TRANSIT ON PROBABILITIES FOR FOUR SEX-RACE GROUPS ARE SHOWN ALONG WITH THE DONOR-RECEIVER CODES TO WHICH THEY…

  20. CYCLIC TRANSIT PROBABILITIES OF LONG-PERIOD ECCENTRIC PLANETS DUE TO PERIASTRON PRECESSION

    SciTech Connect

    Kane, Stephen R.; Von Braun, Kaspar; Horner, Jonathan

    2012-09-20

    The observed properties of transiting exoplanets are an exceptionally rich source of information that allows us to understand and characterize their physical properties. Unfortunately, only a relatively small fraction of the known exoplanets discovered using the radial velocity technique are known to transit their host due to the stringent orbital geometry requirements. For each target, the transit probability and predicted transit time can be calculated to great accuracy with refinement of the orbital parameters. However, the transit probability of short period and eccentric orbits can have a reasonable time dependence due to the effects of apsidal and nodal precession, thus altering their transit potential and predicted transit time. Here we investigate the magnitude of these precession effects on transit probabilities and apply this to the known radial velocity exoplanets. We assess the refinement of orbital parameters as a path to measuring these precessions and cyclic transit probabilities.

  1. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  2. 1S0 nucleon-nucleon scattering in the modified Weinberg approach

    NASA Astrophysics Data System (ADS)

    Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.

    2015-06-01

    Nucleon-nucleon scattering in the 1 S 0 partial wave is considered in chiral effective field theory within the renormalizable formulation of a previous work (Phys. Lett. B 716, 338 (2012)) beyond the leading-order approximation. By applying subtractive renormalization, the subleading contact interaction in this channel is taken into account non-perturbatively. For a proper choice of renormalization conditions, the predicted energy dependence of the phase shift and the coefficients in the effective range expansion are found to be in a good agreement with the results of the Nijmegen partial wave analysis.

  3. Quantum chaos in ultracold collisions between Yb(1S0) and Yb(3P2)

    NASA Astrophysics Data System (ADS)

    Green, Dermot G.; Vaillant, Christophe L.; Frye, Matthew D.; Morita, Masato; Hutson, Jeremy M.

    2016-02-01

    We calculate and analyze Feshbach resonance spectra for ultracold Yb (1S0) +Yb (3P2) collisions as a function of an interatomic potential scaling factor λ and external magnetic field. We show that, at zero field, the resonances are distributed randomly in λ , but that signatures of quantum chaos emerge as a field is applied. The random zero-field distribution arises from superposition of structured spectra associated with individual total angular momenta. In addition, we show that the resonances with respect to magnetic field in the experimentally accessible range of 400 to 2000 G are chaotically distributed, with strong level repulsion that is characteristic of quantum chaos.

  4. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  5. Radiative transition probabilities in the O-like sequence

    NASA Astrophysics Data System (ADS)

    Landi, E.

    2005-04-01

    In the present work a complete set of radiative transition rates is calculated for all for the O-like ions with Z=11{-}30. Energy levels, oscillator strengths and A values are computed for all transitions within the n=2 complex and are compared with previous calculations, where available. Calculations are carried out using the Superstructure code. The present work provides for the first time a self-consistent, complete set of A values necessary for the calculation of line emissivities and synthetic spectra for all the ions considered, filling several gaps in the existing literature. The present data are especially suited for the analysis of spectral lines emitted by the less-abundant elements in the universe, for which few if any data were available in the literature.

  6. Transition Probabilities And Chiral Symmetry In 134Pr

    SciTech Connect

    Tonev, D.; De Angelis, G.; Gadea, A.; Axiotis, M.; Marginean, N.; Martines, T.; Napoli, D.R.; Prete, G.; Behera, B.R.; Rusu, C.; Petkov, P.; Dewald, A.; Pejovic, P.; Fitzler, A.; Moeller, O.; Zell, K.O.; Balabanski, D.; Bednarczyk, P.; Camera, F.; Paleni, A.

    2005-04-05

    Lifetime measurements in 134Pr were performed by means of the Recoil distance Doppler-shift and Doppler-shift attenuation methods using the multidetector array EUROBALL, in conjunction with the inner BGO ball. The derived B(E2) transition strengths within the two bands candidates for chiral partners behave differently with increasing spin while the corresponding B(M1) values have a similar behaviour within the experimental uncertainties.

  7. Transition probability functions for applications of inelastic electron scattering.

    PubMed

    Löffler, Stefan; Schattschneider, Peter

    2012-09-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  8. Oscillator strengths and transition probabilities for allowed and forbidden transitions in Fe XIX

    SciTech Connect

    Nahar, Sultana N.

    2011-07-15

    An extensive set of oscillator strengths, line strengths, and radiative decay rates for the allowed and forbidden transitions in Fe XIX is presented. They correspond to 1626 fine structure levels of total angular momenta 0{<=}J{<=}8 of even and odd parities with 2{<=}n{<=}10, 0{<=}l{<=}9, 0{<=}L{<=}10, and (2S+1)=1, 3, 5. In contrast, the compiled table of the National Institute for Standards and Technology (NIST) lists only 63 observed levels. A total of 289,291 electric dipole allowed transitions are presented. They were obtained in the close coupling approximation using the relativistic Breit-Pauli R-matrix method. The wavefunction expansion included 15 levels of the configurations 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, and 2p{sup 5} of the Fe XX core. The calculated fine structure levels are assigned with spectroscopic identifications using quantum defect analysis. Comparison with the observed energies shows very good agreement, the largest difference being less than 4%. The transitions also compare well with the compiled data by NIST and recent calculations. The forbidden transitions of the electric quadrupole and octupole, and magnetic dipole and quadrupole, type are presented for the 379 levels of the configurations 2s{sup 2}2p{sup 4}, 2s2p{sup 5}, 2p{sup 6}, 2s{sup 2}2p{sup 3}3s, 2s{sup 2}2p{sup 3}3p, 2s{sup 2}2p{sup 3}3d, 2s{sup 2}2p{sup 3}4s, 2s{sup 2}2p{sup 3}4p, 2s{sup 2}2p{sup 3}4d, 2s{sup 2}2p{sup 3}4f, 2s2p{sup 4}3s, 2s2p{sup 4}3p, 2s2p{sup 4}3d, 2s2p{sup 4}4s, 2s2p{sup 4}4p, and 2s{sup 2}2p{sup 2}3s{sup 2} of Fe XIX. They correspond to a total of 66,619 transitions. These results have been obtained from relativistic Breit-Pauli atomic structure calculations using the program SUPERSTRUCTURE. The forbidden transition probabilities show very good agreement with those compiled by NIST. - Highlights: {yields} Presents the most complete (n up to 10) set of transitions for Fe XIX. {yields} Considers both allowed and forbidden transitions. {yields} Large number

  9. Exact transition probabilities in a 6-state Landau-Zener system with path interference

    NASA Astrophysics Data System (ADS)

    Sinitsyn, N. A.

    2015-05-01

    We identify a nontrivial multistate Landau-Zener (LZ) model for which transition probabilities between any pair of diabatic states can be determined analytically and exactly. In the semiclassical picture, this model features the possibility of interference of different trajectories that connect the same initial and final states. Hence, transition probabilities are generally not described by the incoherent successive application of the LZ formula. We discuss reasons for integrability of this system and provide numerical tests of the suggested expression for the transition probability matrix.

  10. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    NASA Technical Reports Server (NTRS)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  11. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  12. The Effects of a High-Probability Request Sequencing Technique in Enhancing Transition Behaviors

    ERIC Educational Resources Information Center

    Banda, Devender R.; Kubina, Richard M., Jr.

    2006-01-01

    In this study, an autism support teacher used a high-probability request sequencing technique to help a middle-school student with autism engage in three transition behaviors. High probability request sequencing refers to a procedure in which 2 to 3 preferred questions, highly associated with compliance, are rapidly given before presenting a low…

  13. Radiative transition probabilities and recombination coefficients of the ion C IV.

    NASA Technical Reports Server (NTRS)

    Leibowitz, E. M.

    1972-01-01

    Bound-bound and bound-free radiative transition probabilities, as well as radiative recombination coefficients of the ion C IV, are computed with a semi-empirical polarization potential method. The nonhydrogenic probabilities and coefficients are given for all bound states of the ion up to the principal quantum number n = 7.

  14. VizieR Online Data Catalog: KOI transit probabilities of multi-planet syst. (Brakensiek+, 2016)

    NASA Astrophysics Data System (ADS)

    Brakensiek, J.; Ragozzine, D.

    2016-06-01

    Using CORBITS, we computed the transit probabilities of all the KOIs with at least three candidate or confirmed transiting planets and report the results in Table 2 for a variety of inclination distributions. See section 4.6. (1 data file).

  15. Tracking move-stop-move targets with state-dependent mode transition probabilities

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bar-Shalom, Yaakov

    2009-08-01

    This paper presents a novel method for tracking ground moving targets with a GMTI radar. To avoid detection by the GMTI radar, targets can deliberately stop for some time before moving again. The GMTI radar does not detect a target when the radial velocity (along the line-of-sight from the sensor) falls below a certain minimum detectable velocity (MDV). We develop a new approach by using state-dependent mode transition probabilities to track move-stop-move targets. Since in a real scenario, the maximum deceleration is always limited, a target can not switch to the stopped-target model from a high speed. Therefore, with the use of the stopped-target model, the Markov chain of the mode switching has jump probabilities that depend on the target's kinematic state. A mode transition matrix with zero jump probabilities to the stopped-target mode is used when the speed is above a certain "stopping" limit (above which the target cannot stop in one sampling interval, designated as "fast stage") and another transition matrix with non-zero jump probabilities to the stopped-target mode is used when the speed is below this limit (designated as "slow stage"). The stage probabilities are calculated using the kinematic state statistics from the IMM estimator and then used to combine the state-dependent mode transition probabilities (SDP) in the two different transition matrices. The experimental results show that the proposed algorithm outperforms previous methods.

  16. Calculation of rotational transition probabilities in molecular collisions - Application to N2 + N2

    NASA Technical Reports Server (NTRS)

    Itikawa, Y.

    1975-01-01

    A computational method is proposed to obtain rotational transition probabilities in collisions between two diatomic molecules. The potential method of Rabitz and an exponential approximation are used to solve the semiclassical coupled equations without invoking any perturbational technique. The collision trajectory is determined in the classical modified-wave-number approximation. The method can treat systems involving strong interactions and provide probabilities for transitions even with a multiquantum jump. A simultaneous transition in the rotational states of both molecules, i.e., the rotational-rotational energy transfer, is taken into account. An application to the system N2 + N2 is presented.

  17. Semiclassical vibration-rotation transition probabilities for motion in molecular state averaged potentials.

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1971-01-01

    Collision-induced vibration-rotation transition probabilities are calculated from a semiclassical three-dimensional model, in which the collision trajectory is determined by the classical motion in the interaction potential that is averaged over the molecular rotational state, and compared with those for which the motion is governed by a spherically averaged potential. For molecules that are in highly excited rotational states, thus dominating the vibrational relaxation rate at high temperature, it is found that the transition probability for rotational state averaging is smaller than that for spherical averaging. For typical collisions, the transition cross section is decreased by a factor of about 1.5 to 2.

  18. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  19. Efficient Geometric Probabilities of Multi-Transiting Exoplanetary Systems from CORBITS

    NASA Astrophysics Data System (ADS)

    Brakensiek, Joshua; Ragozzine, Darin

    2016-04-01

    NASA’s Kepler Space Telescope has successfully discovered thousands of exoplanet candidates using the transit method, including hundreds of stars with multiple transiting planets. In order to estimate the frequency of these valuable systems, it is essential to account for the unique geometric probabilities of detecting multiple transiting extrasolar planets around the same parent star. In order to improve on previous studies that used numerical methods, we have constructed an efficient, semi-analytical algorithm called the Computed Occurrence of Revolving Bodies for the Investigation of Transiting Systems (CORBITS), which, given a collection of conjectured exoplanets orbiting a star, computes the probability that any particular group of exoplanets can be observed to transit. The algorithm applies theorems of elementary differential geometry to compute the areas bounded by circular curves on the surface of a sphere. The implemented algorithm is more accurate and orders of magnitude faster than previous algorithms, based on comparisons with Monte Carlo simulations. We use CORBITS to show that the present solar system would only show a maximum of three transiting planets, but that this varies over time due to dynamical evolution. We also used CORBITS to geometrically debias the period ratio and mutual Hill sphere distributions of Kepler's multi-transiting planet candidates, which results in shifting these distributions toward slightly larger values. In an Appendix, we present additional semi-analytical methods for determining the frequency of exoplanet mutual events, i.e., the geometric probability that two planets will transit each other (planet–planet occultation, relevant to transiting circumbinary planets) and the probability that this transit occurs simultaneously as they transit their star. The CORBITS algorithms and several worked examples are publicly available.

  20. Reliability analysis of redundant systems. [a method to compute transition probabilities

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1974-01-01

    A method is proposed to compute the transition probability (the probability of partial or total failure) of parallel redundant system. The effect of geometry of the system, the direction of load, and the degree of redundancy on the probability of complete survival of parachute-like system are also studied. The results show that the probability of complete survival of three-member parachute-like system is very sensitive to the variation of horizontal angle of the load. However, it becomes very insignificant as the degree of redundancy increases.

  1. Transition probability, dynamic regimes, and the critical point of financial crisis

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2015-07-01

    An empirical and theoretical analysis of financial crises is conducted based on statistical mechanics in non-equilibrium physics. The transition probability provides a new tool for diagnosing a changing market. Both calm and turbulent markets can be described by the birth-death process for price movements driven by identical agents. The transition probability in a time window can be estimated from stock market indexes. Positive and negative feedback trading behaviors can be revealed by the upper and lower curves in transition probability. Three dynamic regimes are discovered from two time periods including linear, quasi-linear, and nonlinear patterns. There is a clear link between liberalization policy and market nonlinearity. Numerical estimation of a market turning point is close to the historical event of the US 2008 financial crisis.

  2. Tables of stark level transition probabilities and branching ratios in hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The transition probabilities which are given in terms of n prime k prime and n k are tabulated. No additional summing or averaging is necessary. The electric quantum number k plays the role of the angular momentum quantum number l in the presence of an electric field. The branching ratios between stark levels are also tabulated. Necessary formulas for the transition probabilities and branching ratios are given. Symmetries are discussed and selection rules are given. Some disagreements for some branching ratios are found between the present calculation and the measurement of Mark and Wierl. The transition probability multiplied by the statistical weight of the initial state is called the static intensity J sub S, while the branching ratios are called the dynamic intensity J sub D.

  3. Analysis of a semiclassical model for rotational transition probabilities. [in highly nonequilibrium flow of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Deiwert, G. S.; Yoshikawa, K. K.

    1975-01-01

    A semiclassical model proposed by Pearson and Hansen (1974) for computing collision-induced transition probabilities in diatomic molecules is tested by the direct-simulation Monte Carlo method. Specifically, this model is described by point centers of repulsion for collision dynamics, and the resulting classical trajectories are used in conjunction with the Schroedinger equation for a rigid-rotator harmonic oscillator to compute the rotational energy transition probabilities necessary to evaluate the rotation-translation exchange phenomena. It is assumed that a single, average energy spacing exists between the initial state and possible final states for a given collision.

  4. H∞ filtering of Markov jump linear systems with general transition probabilities and output quantization.

    PubMed

    Shen, Mouquan; Park, Ju H

    2016-07-01

    This paper addresses the H∞ filtering of continuous Markov jump linear systems with general transition probabilities and output quantization. S-procedure is employed to handle the adverse influence of the quantization and a new approach is developed to conquer the nonlinearity induced by uncertain and unknown transition probabilities. Then, sufficient conditions are presented to ensure the filtering error system to be stochastically stable with the prescribed performance requirement. Without specified structure imposed on introduced slack variables, a flexible filter design method is established in terms of linear matrix inequalities. The effectiveness of the proposed method is validated by a numerical example. PMID:27129765

  5. Learning in reverse: 8-month-old infants track backward transitional probabilities

    PubMed Central

    Pelucchi, Bruna; Hay, Jessica F.; Saffran, Jenny R.

    2009-01-01

    Numerous recent studies suggest that human learners, including both infants and adults, readily track sequential statistics computed between adjacent elements. One such statistic, transitional probability, is typically calculated as the likelihood that one element predicts another. However, little is known about whether listeners are sensitive to the directionality of this computation. To address this issue, we tested 8-month-old infants in a word segmentation task, using fluent speech drawn from an unfamiliar natural language. Critically, test items were distinguished solely by their backward transitional probabilities. The results provide the first evidence that infants track backward statistics in fluent speech. PMID:19717144

  6. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  7. Corrections to vibrational transition probabilities calculated from a three-dimensional model.

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1972-01-01

    Corrections to the collision-induced vibration transition probability calculated by Hansen and Pearson from a three-dimensional semiclassical model are examined. These corrections come from the retention of higher order terms in the expansion of the interaction potential and the use of the actual value of the deflection angle in the calculation of the transition probability. It is found that the contribution to the transition cross section from previously neglected potential terms can be significant for short range potentials and for the large relative collision velocities encountered at high temperatures. The correction to the transition cross section obtained from the use of actual deflection angles will not be appreciable unless the change in the rotational quantum number is large.

  8. Transition probabilities and Franck-Condon factors for the second negative band system of O2(+)

    NASA Technical Reports Server (NTRS)

    Fox, J. L.; Dalgarno, A.

    1990-01-01

    Transition probabilities for the second negative band system of O2(+) are computed using the dipole transition moment presented by Wetmore et al. (1984). Vibrational levels v double prime = 0 - 54 of the X2Pi(g) ground state and v prime = - 33 of the excited A2Pi(u) state are included. Franck-Condon factors for ionization-excitation of O2 to O2(+) are also presented.

  9. Transition probability of the 5971-A line in neutral uranium from collision-induced fluorescence spectroscopy

    SciTech Connect

    Gagne, J.M.; Mongeau, B.; Demers, Y.; Pianarosa, P.

    1981-09-01

    From collision-induced fluorescence spectroscopy measurements, we have determined the transition probability Aof the 5971-A transition in neutral uranium. Our value, A/sub 5971/ = (5.9 +- 1.8) x 10/sup 5/ sec/sup -1/, is, within experimental error, in good agreement with the previous determination of Corliss, A/sub 5971/ = (7.3 +- 3.0) x 10/sup 5/ sec/sup -1/ (J. Res. Nat. Bur. Stand. Sect. A 80,1 (1976)).

  10. Orientational invariance of the rotational transition probability in the sudden approximation. [atom-molecule collisions

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    Semiclassical collisions of an atom with a rigid-rotor molecule are examined in the sudden approximation. The rotational transition probability is shown to be invariant with respect to the choice of orientation for the molecular coordinate system; this fact contradicts recently reported results of a computer analysis. The present analysis may lead to an improved interpretation of recent molecular beam measurements.

  11. A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events

    ERIC Educational Resources Information Center

    Rasanen, Okko

    2011-01-01

    Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this…

  12. Effects of Contextual Predictability and Transitional Probability on Eye Movements During Reading

    ERIC Educational Resources Information Center

    Frisson, Steven; Rayner, Keith; Pickering, Martin J.

    2005-01-01

    In 2 eye-movement experiments, the authors tested whether transitional probability (the statistical likelihood that a word precedes or follows another word) affects reading times and whether this occurs independently from contextual predictability effects. Experiment 1 showed early effects of predictability, replicating S. A. McDonald and R. C.…

  13. Implicit Segmentation of a Stream of Syllables Based on Transitional Probabilities: An MEG Study

    ERIC Educational Resources Information Center

    Teinonen, Tuomas; Huotilainen, Minna

    2012-01-01

    Statistical segmentation of continuous speech, i.e., the ability to utilise transitional probabilities between syllables in order to detect word boundaries, is reflected in the brain's auditory event-related potentials (ERPs). The N1 and N400 ERP components are typically enhanced for word onsets compared to random syllables during active…

  14. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  15. Effects of tensor couplings of ω and ρ mesons on 1S0 nucleon superfluidity in neutron star matter

    NASA Astrophysics Data System (ADS)

    Huang, Xiu-Lin; Xu, Yan; Liu, Cheng-Zhi; Liu, Guang-Zhou

    2016-03-01

    The 1S 0 nucleon superfluidity in neutron star matter was investigated in the framework of relativistic σ-ω-π-ρ model with the tensor couplings of ω and ρ mesons using the relativistic Hartree-Fock (RHF) approximation. It was found that the tensor couplings of ω and ρ mesons lead to a clear growth of the 1S 0 neutron pairing gap in the density range where there exists 1S 0 neutron superfluidity. The 1S 0 pairing gap of proton with the tensor couplings of ω and ρ mesons in the density range of ρB = 0.0-0.079fm-3 is lower and then in the density range of ρB = 0.079-0.383fm-3 higher than the corresponding value without the tensor couplings of ω and ρ mesons. Our results provide a basic to understand the influence of the tensor couplings of ω and ρ mesons on the cooling properties of neutron star.

  16. Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium

    SciTech Connect

    Hori, Masaki; Korobov, Vladimir I.

    2010-06-15

    Numerical ab initio variational calculations of the transition probabilities and ac Stark shifts in two-photon transitions of antiprotonic helium atoms driven by two counter-propagating laser beams are presented. We found that sub-Doppler spectroscopy is, in principle, possible by exciting transitions of the type (n,L){yields}(n-2,L-2) between antiprotonic states of principal and angular momentum quantum numbers n{approx}L-1{approx}35, first by using highly monochromatic, nanosecond laser beams of intensities 10{sup 4}-10{sup 5} W/cm{sup 2}, and then by tuning the virtual intermediate state close (e.g., within 10-20 GHz) to the real state (n-1,L-1) to enhance the nonlinear transition probability. We expect that ac Stark shifts of a few MHz or more will become an important source of systematic error at fractional precisions of better than a few parts in 10{sup 9}. These shifts can, in principle, be minimized and even canceled by selecting an optimum combination of laser intensities and frequencies. We simulated the resonance profiles of some two-photon transitions in the regions n=30-40 of the p{sup 4}He{sup +} and p{sup 3}He{sup +} isotopes to find the best conditions that would allow this.

  17. Estimating transition probabilities for stage-based population projection matrices using capture-recapture data

    USGS Publications Warehouse

    Nichols, J.D.; Sauer, J.R.; Pollock, K.H.; Hestbeck, J.B.

    1992-01-01

    In stage-based demography, animals are often categorized into size (or mass) classes, and size-based probabilities of surviving and changing mass classes must be estimated before demographic analyses can be conducted. In this paper, we develop two procedures for the estimation of mass transition probabilities from capture-recapture data. The first approach uses a multistate capture-recapture model that is parameterized directly with the transition probabilities of interest. Maximum likelihood estimates are then obtained numerically using program SURVIV. The second approach involves a modification of Pollock's robust design. Estimation proceeds by conditioning on animals caught in a particualr class at time i, and then using closed models to estimate the number of these that are alive in other classes at i + 1. Both methods are illustrated by application to meadow vole, Microtus pennsylvanicus, capture-recapture data. The two methods produced reasonable estimates that were similar. Advantages of these two approaches include the directness of estimation, the absence of need for restrictive assumptions about the independence of survival and growth, the testability of assumptions, and the testability of related hypotheses of ecological interest (e.g., the hypothesis of temporal variation in transition probabilities).

  18. The FERRUM Project: Experimental Transition Probabilities of [Fe II] and Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Hartman, H.; Derkatch, A.; Donnelly, M. P.; Gull, T.; Hibbert, A.; Johannsson, S.; Lundberg, H.; Mannervik, S.; Norlin, L. -O.; Rostohar, D.

    2002-01-01

    We report on experimental transition probabilities for thirteen forbidden [Fe II] lines originating from three different metastable Fe II levels. Radiative lifetimes have been measured of two metastable states by applying a laser probing technique on a stored ion beam. Branching ratios for the radiative decay channels, i.e. M1 and E2 transitions, are derived from observed intensity ratios of forbidden lines in astrophysical spectra and compared with theoretical data. The lifetimes and branching ratios are combined to derive absolute transition probabilities, A-values. We present the first experimental lifetime values for the two Fe II levels a(sup 4)G(sub 9/2) and b(sup 2)H(sub 11/2) and A-values for 13 forbidden transitions from a(sup 6)S(sub 5/2), a(sup 4)G(sub 9/2) and b(sup 4)D(sub 7/2) in the optical region. A discrepancy between the measured and calculated values of the lifetime for the b(sup 2)H(sub 11/2) level is discussed in terms of level mixing. We have used the code CIV3 to calculate transition probabilities of the a(sup 6)D-a(sup 6)S transitions. We have also studied observational branching ratios for lines from 5 other metastable Fe II levels and compared them to calculated values. A consistency in the deviation between calibrated observational intensity ratios and theoretical branching ratios for lines in a wider wavelength region supports the use of [Fe II] lines for determination of reddening.

  19. Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom

    NASA Astrophysics Data System (ADS)

    Tian Yi, Zhang; Neng Wu, Zheng

    2009-08-01

    Full Text PDF Though the electrons configuration for boron atom is simple and boron atom has long been of interest for many researchers, the theoretical studies for properties of BI are not systematic, there are only few results reported on energy levels of high excited states of boron, and transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provided only multiplet results, values for transitions between high excited states are seldom performed. In this article, by using the scheme of the weakest bound electron potential model theory calculations for energy levels of five series are performed and with the same method we give the transition probabilities between excited states with considering fine structure effects. The comprehensive set of calculations attempted in this paper could be of some value to workers in the field because of the lack of published calculations for the BI systems. The perturbations coming from foreign perturbers are taken into account in studying the energy levels. Good agreement between our results and the accepted values taken from NIST has been obtained. We also reported some values of energy levels and transition probabilities not existing on the NIST data bases.

  20. Restoring detailed balance in the Landau-Teller probabilities for collision-induced vibrational transitions.

    PubMed

    Nikitin, E E; Troe, J

    2006-05-01

    The general quasi-classical treatment for collision-induced vibrational transitions in diatomic molecules, under near-adiabatic conditions, is used to derive quantum corrections for probabilities, calculated in the external field approximation originally used by Landau and Teller. The quantum corrections are expressed through the Landau-Teller classical collision time. The first-order correction to the classical exponent restores detailed balance for up- and down-transitions and does not depend on the properties of the bath except for its temperature. The limits of applicability of the first-order correction are discussed. PMID:16633688

  1. Effective transition probability for the Faraday effect of lanthanide(III) ion solutions.

    PubMed

    Miyamoto, Kayoko; Isai, Kento; Suwa, Masayori; Watarai, Hitoshi

    2009-05-13

    The Faraday effects of 14 lanthanide(III) ion solutions were systematically analyzed on the basis of the Faraday C term. The effective transition probability, K, which measures the magneto-optical contribution of the 4f(n) --> 4f(n-1)5d transition to the molar Verdet constant, was determined. Linear correlations between K and the square root of the molar magnetic susceptibility of the lanthanide(III) ions, chi(m)(1/2), were obtained. From the observed new regularity, K for promethium(III) was estimated. PMID:19378955

  2. Determination of transition probabilities for the 3p → 3s transition array in neon using laser induced breakdown spectroscopy

    SciTech Connect

    Asghar, Haroon; Ali, Raheel; Baig, M. Aslam

    2013-12-15

    We present here a study of the optical emission spectra of the laser produced neon plasma generated by a Nd:YAG laser at 1064 nm. The spectra were recorded using the laser induced breakdown spectroscopy 2000 detection system comprising of five spectrometers covering the entire visible region. The observed spectra yield all the optically allowed transitions between the 2p{sup 5}3p upper and 2p{sup 5}3s lower configurations based levels. The relative line strengths of all the dipole allowed transitions have been determined using the intensity ratios and compared with the J-file sum rule. The absolute transition probabilities have been calculated by using the lifetimes of the upper levels and the intensities of the observed spectral lines and show good agreement with the literature values.

  3. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset

    PubMed Central

    Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users’ privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  4. Location Prediction Based on Transition Probability Matrices Constructing from Sequential Rules for Spatial-Temporal K-Anonymity Dataset.

    PubMed

    Zhang, Haitao; Chen, Zewei; Liu, Zhao; Zhu, Yunhong; Wu, Chenxue

    2016-01-01

    Spatial-temporal k-anonymity has become a mainstream approach among techniques for protection of users' privacy in location-based services (LBS) applications, and has been applied to several variants such as LBS snapshot queries and continuous queries. Analyzing large-scale spatial-temporal anonymity sets may benefit several LBS applications. In this paper, we propose two location prediction methods based on transition probability matrices constructing from sequential rules for spatial-temporal k-anonymity dataset. First, we define single-step sequential rules mined from sequential spatial-temporal k-anonymity datasets generated from continuous LBS queries for multiple users. We then construct transition probability matrices from mined single-step sequential rules, and normalize the transition probabilities in the transition matrices. Next, we regard a mobility model for an LBS requester as a stationary stochastic process and compute the n-step transition probability matrices by raising the normalized transition probability matrices to the power n. Furthermore, we propose two location prediction methods: rough prediction and accurate prediction. The former achieves the probabilities of arriving at target locations along simple paths those include only current locations, target locations and transition steps. By iteratively combining the probabilities for simple paths with n steps and the probabilities for detailed paths with n-1 steps, the latter method calculates transition probabilities for detailed paths with n steps from current locations to target locations. Finally, we conduct extensive experiments, and correctness and flexibility of our proposed algorithm have been verified. PMID:27508502

  5. Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities.

    PubMed

    Bogaerts, Louisa; Siegelman, Noam; Frost, Ram

    2016-08-01

    What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed. PMID:26743060

  6. Some results on the dynamics and transition probabilities for non self-adjoint hamiltonians

    SciTech Connect

    Bagarello, F.

    2015-05-15

    We discuss systematically several possible inequivalent ways to describe the dynamics and the transition probabilities of a quantum system when its hamiltonian is not self-adjoint. In order to simplify the treatment, we mainly restrict our analysis to finite dimensional Hilbert spaces. In particular, we propose some experiments which could discriminate between the various possibilities considered in the paper. An example taken from the literature is discussed in detail.

  7. Some Results on the Analysis of Stochastic Processes with Uncertain Transition Probabilities and Robust Optimal Control

    SciTech Connect

    Keyong Li; Seong-Cheol Kang; I. Ch. Paschalidis

    2007-09-01

    This paper investigates stochastic processes that are modeled by a finite number of states but whose transition probabilities are uncertain and possibly time-varying. The treatment of uncertain transition probabilities is important because there appears to be a disconnection between the practice and theory of stochastic processes due to the difficulty of assigning exact probabilities to real-world events. Also, when the finite-state process comes as a reduced model of one that is more complicated in nature (possibly in a continuous state space), existing results do not facilitate rigorous analysis. Two approaches are introduced here. The first focuses on processes with one terminal state and the properties that affect their convergence rates. When a process is on a complicated graph, the bound of the convergence rate is not trivially related to that of the probabilities of individual transitions. Discovering the connection between the two led us to define two concepts which we call 'progressivity' and 'sortedness', and to a new comparison theorem for stochastic processes. An optimality criterion for robust optimal control also derives from this comparison theorem. In addition, this result is applied to the case of mission-oriented autonomous robot control to produce performance estimate within a control framework that we propose. The second approach is in the MDP frame work. We will introduce our preliminary work on optimistic robust optimization, which aims at finding solutions that guarantee the upper bounds of the accumulative discounted cost with prescribed probabilities. The motivation here is to address the issue that the standard robust optimal solution tends to be overly conservative.

  8. Analytic solution of relaxation in a system with exponential transition probabilities. III. Macroscopic disequilibrium

    NASA Astrophysics Data System (ADS)

    Forst, Wendell

    1984-03-01

    The exponential transition probability, in the version that permits an analytical solution of the relaxation problem, is used to compute a number of macroscopic (bulk) observables for a model system based on multiphoton excitation of SF6 coupled to a rare-gas heat bath. Two extreme cases are considered: Initial excitation as a delta function, or as a Poisson distribution. It turns out that regardless of initial conditions, all macroscopic observables are functions of time, including the relaxation time, so that the system does not undergo simple exponential decay. This is because the first moment of the exponential transition probability does not satisfy the linear ``sum rule.'' The exponential transition probability causes the overall (or bulk) average of energy transferred (<<ΔE>>) to be constrained to a maximum which is independent of the nature and level of initial excitation, thus producing a bottleneck in the macroscopic relaxation process when excitation is sufficiently high. The consequence is that the initially more highly excited system takes longer to reach steady state, with a relaxation time that is initially nearly proportional to initial excitation and which decreases as the system approaches steady state. It is only in the immediate vicinity of steady state that simple exponential relaxation takes place, with the shortest relaxation time. Several consequences of this, particularly the population distribution as a function of time, are illustrated and discussed.

  9. Tables of Transition Probabilities and Branching Ratios for Electric Dipole Transitions Between Arbitrary Levels of Hydrogen-Like Atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Branching ratios in hydrogen-like atoms due to electric-dipole transitions are tabulated for the initial principal and angular momentum quantum number n, lambda, and final principal and angular momentum quantum numbers n, lambda. In table 1, transition probabilities are given for transitions n, lambda, yields n, where sums have been made with respect to lambda. In this table, 2 or = n' or = 10, o or = lambda' or = n'-1, and 1 or = n or = n'-1. In addition, averages with respect to lambda' and sums with respect to n, and lifetimes are given. In table 2, branching ratios are given for transitions n' lambda' yields ni, where sums have been made with respect to lambda. In these tables, 2 or = n' or = 10, 0 or = lambda', n'-1, and 1 or = n or = n'-1. Averages with respect to lambda' are also given. In table 3, branching ratios are given for transitions n' lambda' yields in lambda, where 1 or = n or = 5, 0 or = lambda or = n-1, n n' or = 15, and 0 or = lambda' or = n(s), where n(s), is the smaller of the two numbers n'-1 and 6. Averages with respect to lambda' are given.

  10. Laser-excitation technique for the measurement of absolute transition probabilities of weak atomic lines

    NASA Technical Reports Server (NTRS)

    Kwong, H. S.; Smith, P. L.; Parkinson, W. H.

    1982-01-01

    A new technique is presented for the measurement of transition probabilities for weak allowed, intersystem, and forbidden lines. The method exploits the fact that oscillator strength is proportional to the number of stimulated absorptions and emissions produced by a narrow-band laser pulse of known energy which is in resonance with an atomic transition. The method is tested for a particular transition of Mg I with a known oscillator strength value and of appropriate magnitude. The number densities are measured using a Mach-Zehnder interferometer and the hook method for the lower level population and by measuring an absorption-equivalent width for the other. The apparatus consisted of a high-power tunable laser and a magnesium oven to produce excited Mg vapor, and a laser-plasma background continuum. The results are in good agreement with theoretical and other experimental data.

  11. New Critical Compilations of Atomic Transition Probabilities for Neutral and Singly Ionized Carbon, Nitrogen, and Iron

    NASA Technical Reports Server (NTRS)

    Wiese, Wolfgang L.; Fuhr, J. R.

    2006-01-01

    We have undertaken new critical assessments and tabulations of the transition probabilities of important lines of these spectra. For Fe I and Fe II, we have carried out a complete re-assessment and update, and we have relied almost exclusively on the literature of the last 15 years. Our updates for C I, C II and N I, N II primarily address the persistent lower transitions as well as a greatly expanded number of forbidden lines (M1, M2, and E2). For these transitions, sophisticated multiconfiguration Hartree-Fock (MCHF) calculations have been recently carried out, which have yielded data considerably improved and often appreciably different from our 1996 NIST compilation.

  12. Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p6 1S0) thermal collision pairs

    NASA Astrophysics Data System (ADS)

    Galvin, T. C.; Wagner, C. J.; Eden, J. G.

    2016-06-01

    The diatomic collisional intermediate responsible for the formation of an electronically excited molecule by teratomic recombination has been observed in both the spectral and temporal domains by laser spectroscopy. We report experiments demonstrating thermal Xe(6s[3/2]2)-Xe(5p6 1S0) atomic collision pairs to be the immediate precursor to the formation of Xe 2∗ ( a 3 Σu + , A 1 Σu +) by the three body process: Xe∗(6s) + 2Xe ⟶ Xe 2∗ + Xe, where the asterisk denotes an excited electronic state. Photoassociating Xe(6s)-Xe atomic pairs by free ⟵ free transitions of the collision complex interrupts the production of the electronically excited Xe dimer, thereby suppressing Xe2 spontaneous emission in the vacuum ultraviolet (VUV, λ ˜ 172 nm, A 1 Σu + → X 1 Σg +). Intercepting Xe(6s)-Xe pairs before the complex is stabilized by the arrival of the third atom in the teratomic collision process selectively depletes the pair population in a specific Franck-Condon region determined by the probe laser wavelength (λ). Measurements of the variation of VUV emission suppression with λ provide a spectral signature of the [Xe(6s[3/2]2) - Xe(1S0)]∗ complex and map the probe laser wavelength onto the thermal energy (ɛ″) of the incoming collision pairs.

  13. Forbidden transition probabilities for ground terms of ions with p or p5 configurations. [for solar atmosphere

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1976-01-01

    Forbidden transition probabilities are given for ground term transitions of ions in the isoelectronic sequences with outer configurations 2s2 2p (B I), 2p5 (F I), 3s2 3p (Al I), and 3p5 (Cl I). Tables give, for each ion, the ground term interval, the associated wavelength, the quadrupole radial integral, the electric quadrupole transition probability, and the magnetic dipole transition probability. Coronal lines due to some of these ions have been observed, while others are yet to be observed. The tales for the Al I and Cl I sequences include elements up to germanium.

  14. Estimating state-transition probabilities for unobservable states using capture-recapture/resighting data

    USGS Publications Warehouse

    Kendall, W.L.; Nichols, J.D.

    2002-01-01

    Temporary emigration was identified some time ago as causing potential problems in capture-recapture studies, and in the last five years approaches have been developed for dealing with special cases of this general problem. Temporary emigration can be viewed more generally as involving transitions to and from an unobservable state, and frequently the state itself is one of biological interest (e.g., 'nonbreeder'). Development of models that permit estimation of relevant parameters in the presence of an unobservable state requires either extra information (e.g., as supplied by Pollock's robust design) or the following classes of model constraints: reducing the order of Markovian transition probabilities, imposing a degree of determinism on transition probabilities, removing state specificity of survival probabilities, and imposing temporal constancy of parameters. The objective of the work described in this paper is to investigate estimability of model parameters under a variety of models that include an unobservable state. Beginning with a very general model and no extra information, we used numerical methods to systematically investigate the use of ancillary information and constraints to yield models that are useful for estimation. The result is a catalog of models for which estimation is possible. An example analysis of sea turtle capture-recapture data under two different models showed similar point estimates but increased precision for the model that incorporated ancillary data (the robust design) when compared to the model with deterministic transitions only. This comparison and the results of our numerical investigation of model structures lead to design suggestions for capture-recapture studies in the presence of an unobservable state.

  15. Estimation of drought transition probabilities in Sicily making use of exogenous variables

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; di Mauro, Giuseppe; Cancelliere, Antonino; Rossi, Giuseppe

    2010-05-01

    Drought monitoring and forecasting play a very important role for an effective drought management. A timely monitoring of drought features and/or forecasting of an incoming drought do make possible an effective mitigation of its impacts, more than in the case of other natural disasters (e.g. floods, earthquakes, hurricanes, etc.). An accurate selection of indices, able to monitor the main characteristics of droughts, is essential to help decision makers to implement appropriate preparedness and mitigation measures. Among the several proposed indices for drought monitoring, the Standardized Precipitation Index (SPI) has found widespread use to monitor dry and wet periods of precipitation aggregated at different time scales. Recently, some efforts have been made to analyze the role of SPI for drought forecasting, as well as to estimate transition probabilities between drought classes. In the present work, a model able to estimate transition probabilities from a current SPI drought class or from a current SPI value to future classes, corresponding to droughts of different severities, is presented and extended in order to include information provided by an exogenous variable, such as a large scale climatic index as the North Atlantic Oscillation Index (NAO). The model has been preliminarily applied and tested with reference to SPI series computed on average areal precipitation in Sicily island, Italy, making use of NAO as exogenous variable. Results seem to indicate that winter drought transition probabilities in Sicily are generally affected by NAO index. Furthermore, the statistical significance of such influence has been tested by means of a Montecarlo analysis, which indicates that the effect of NAO on drought transition in Sicily should be considered significant.

  16. Reconstructing the Most Probable Folding Transition Path from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Jimenez-Cruz, Camilo Andres; Garcia, Angel E

    2013-08-13

    The characterization of transition pathways between long-lived states, and the identification of the corresponding transition state ensembles are useful tools in the study of rare events such as protein folding. In this work we demonstrate how the most probable transition path between metastable states can be recovered from replica exchange molecular dynamic simulation data by using the dynamic string method. The local drift vector in collective variables is determined via short continuous trajectories between replica exchanges at a given temperature, and points along the string are updated based on this drift vector to produce reaction pathways between the folded and unfolded state. The method is applied to a designed beta hairpin-forming peptide to obtain information on the folding mechanism and transition state using different sets of collective variables at various temperatures. Two main folding pathways differing in the order of events are found and discussed, and the relative free energy differences for each path estimated. Finally, the structures near the transition state are found and described. PMID:26584126

  17. Assessing Uncertainties of Theoretical Atomic Transition Probabilities with Monte Carlo Random Trials

    PubMed Central

    Kramida, Alexander

    2016-01-01

    This paper suggests a method of evaluation of uncertainties in calculated transition probabilities by randomly varying parameters of an atomic code and comparing the results. A control code has been written to randomly vary the input parameters with a normal statistical distribution around initial values with a certain standard deviation. For this particular implementation, Cowan’s suite of atomic codes (R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley, CA: University of California Press, 1981) was used to calculate radiative rates of magnetic-dipole and electric-quadrupole transitions within the ground configuration of titanium-like iron, Fe V. The Slater parameters used in the calculations were adjusted to fit experimental energy levels with Cowan’s least-squares fitting program, RCE. The standard deviations of the fitted parameters were used as input of the control code providing the distribution widths of random trials for these parameters. Propagation of errors through the matrix diagonalization and summation of basis state expansions leads to significant variations in the resulting transition rates. These variations vastly differ in their magnitude for different transitions, depending on their sensitivity to errors in parameters. With this method, the rate uncertainty can be individually assessed for each calculated transition. PMID:27274981

  18. K-LL Auger transition probabilities for elements with low and intermediate atomic numbers

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.

    1973-01-01

    Radiationless K-LL transition probabilities have been calculated nonrelativistically in j-j coupling and in intermediate coupling, without and with configuration interaction, for elements with atomic numbers from 13 to 47. The system is treated as a coupled two-hole configuration. The single-particle radial wave functions required in the calculation of radial matrix elements, and in the calculation of mixing coefficients in the intermediate-coupling scheme, were obtained from Green's atomic independent-particle model. Comparison with previous theoretical work and with experimental data is made. The effects of intermediate coupling, configuration interaction, and relativity are noted.

  19. Radiative transition probabilities for all vibrational levels in the X 1Sigma(+) state of HF

    NASA Technical Reports Server (NTRS)

    Zemke, Warren T.; Stwalley, William C.; Langhoff, Stephen R.; Valderrama, Giuseppe L.; Berry, Michael J.

    1991-01-01

    Recent analyses have led to an experimentally-based potential energy curve for the ground state of HF which includes nonadiabatic corrections and which joins smoothly to the long-range potential at an accurately determined dissociation limit. Using this potential curve and a new ab initio dipole moment function, accurate radiative transition probabilities among all vibrational levels of the ground state of HF have been calculated for selected rotational quantum numbers. Comparisons of Einstein A spontaneous emission coefficients, dipole moment absorption matrix elements, and Herman-Wallis factors for absorption bands are presented.

  20. Experimental transition probabilities and Stark-broadening parameters of neutral and single ionized tin

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1979-01-01

    Strengths and Stark-effect widths of the Sn I and Sn II lines prominent between 3200 and 7900 A are measured with a spectroscopic shock tube. Absolute strengths of 17 ionic lines are obtained with estimated (22-50)% accuracy and conform to appropriate quantum-mechanical sum rules. Relative transition probabilities for nine prominent neutral tin lines, normalized to radiative-lifetime data, are compared with other experiments and theoretical predictions. Parameters for Stark-effect broadening are measured over a range of plasma electron densities. Broadening data (with accuracies of 15-35%) for one neutral and ten ionic lines of tin are compared to theoretical predictions.

  1. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    SciTech Connect

    Alonso-Medina, A.; Colon, C.; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.

  2. Solution to a gene divergence problem under arbitrary stable nucleotide transition probabilities

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1976-01-01

    A nucleic acid chain, L nucleotides in length, with the specific base sequence B(1)B(2) ... B(L) is defined by the L-dimensional vector B = (B(1), B(2), ..., B(L)). For twelve given constant non-negative transition probabilities that, in a specified position, the base B is replaced by the base B' in a single step, an exact analytical expression is derived for the probability that the position goes from base B to B' in X steps. Assuming that each base mutates independently of the others, an exact expression is derived for the probability that the initial gene sequence B goes to a sequence B' = (B'(1), B'(2), ..., B'(L)) after X = (X(1), X(2), ..., X(L)) base replacements. The resulting equations allow a more precise accounting for the effects of Darwinian natural selection in molecular evolution than does the idealized (biologically less accurate) assumption that each of the four nucleotides is equally likely to mutate to and be fixed as one of the other three. Illustrative applications of the theory to some problems of biological evolution are given.

  3. The Neutron-Neutron ^1S0 Scattering Length via the Reaction π^-d→γ nn

    NASA Astrophysics Data System (ADS)

    Saliba, M. A.; Measday, D. F.; Stocki, T. J.; Christy, M. E.; Doyle, B. C.; Gorringe, T. P.; Jiang, C.; Kovash, M. A.; Liu, K.; Bassalleck, B.; Stasko, J.; Wolfe, D.; Korkmaz, E.; Opper, A.; Sim, K.; Fischer, H.; Ottewell, D.

    1997-10-01

    A measurement of the ^1S0 neutron-neutron scattering length, a quantity crucial to the discussion of charge symmetry breaking in the NN interaction, has been carried out at TRIUMF by studying the shape of the photon energy spectrum from the reaction π^-d→γ nn in the region near the endpoint. A 40.5 MeV pion beam was degraded and stopped in a liquid deuterium target and all three final state particles from the reaction were detected in triple coincidence. The experimental photon energy spectrum was reconstructed from the measured momenta of the two neutrons, and contains 133,000 counts in the top 450 keV region near the endpoint. The experimental resolution was taken into account using Monte Carlo techniques. The data were analyzed using a model of this reaction based on a half off-shell NN T matrix and the elementary γπ operator due to Lee and Nozawa.

  4. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    SciTech Connect

    Korhonen, Marko; Lee, Eunghyun

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  5. Effect of external electric field on the probability of optical transitions in InGaAs/GaAs quantum wells

    SciTech Connect

    Pikhtin, A. N. Komkov, O. S.; Bazarov, K. V.

    2006-05-15

    The effect of external electric field on interband optical transitions in single In{sub x}Ga{sub 1-x}As/GaAs quantum wells is studied by electroreflectance spectroscopy. A procedure is suggested for separating the contribution of particular exciton transitions to the complicated modulation spectrum. Nontrivial field dependences of the probability of optical transitions forbidden by the symmetry are observed experimentally. The data are compared with the corresponding theoretical dependences. The strength of the internal electric field in the region of the quantum well is determined from Frantz-Keldysh's oscillations. Under certain electric fields, the probability of transitions forbidden with no field is higher than the probability of transitions allowed by the symmetry.

  6. Absorption coefficient, transition probability, and collision-broadening frequency of dimethylether at He-Xe laser 3.51-micron wavelength

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Wang, S. C.

    1970-01-01

    Absorptivity, transition probability and collision broadening frequency of dimethylether at 3.51 micron He-Xe laser wavelength, noting pressure dependence, transition lifetime and saturation intensity

  7. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    SciTech Connect

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.

    2015-10-21

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional “abnormal” intensities are found at n = 14 and 23. Criteria for the appearance of such “anomalies” are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  8. Peculiarities of high-overtone transition probabilities in carbon monoxide revealed by high-precision calculation

    NASA Astrophysics Data System (ADS)

    Medvedev, Emile S.; Meshkov, Vladimir V.; Stolyarov, Andrey V.; Gordon, Iouli E.

    2015-10-01

    In the recent work devoted to the calculation of the rovibrational line list of the CO molecule [G. Li et al., Astrophys. J., Suppl. Ser. 216, 15 (2015)], rigorous validation of the calculated parameters including intensities was carried out. In particular, the Normal Intensity Distribution Law (NIDL) [E. S. Medvedev, J. Chem. Phys. 137, 174307 (2012)] was employed for the validation purposes, and it was found that, in the original CO line list calculated for large changes of the vibrational quantum number up to Δn = 41, intensities with Δn > 11 were unphysical. Therefore, very high overtone transitions were removed from the published list in Li et al. Here, we show how this type of validation is carried out and prove that the quadruple precision is indispensably required to predict the reliable intensities using the conventional 32-bit computers. Based on these calculations, the NIDL is shown to hold up for the 0 → n transitions till the dissociation limit around n = 83, covering 45 orders of magnitude in the intensity. The low-intensity 0 → n transition predicted in the work of Medvedev [Determination of a new molecular constant for diatomic systems. Normal intensity distribution law for overtone spectra of diatomic and polyatomic molecules and anomalies in overtone absorption spectra of diatomic molecules, Institute of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 1984] at n = 5 is confirmed, and two additional "abnormal" intensities are found at n = 14 and 23. Criteria for the appearance of such "anomalies" are formulated. The results could be useful to revise the high-overtone molecular transition probabilities provided in spectroscopic databases.

  9. DROPOUT AND RETENTION RATE METHODOLOGY USED TO ESTIMATE FIRST-STAGE ELEMENTS OF THE TRANSITION PROBABILITY MATRICES FOR DYNAMOD II.

    ERIC Educational Resources Information Center

    HUDMAN, JOHN T.; ZABROWSKI, EDWARD K.

    EQUATIONS FOR SYSTEM INTAKE, DROPOUT, AND RETENTION RATE CALCULATIONS ARE DERIVED FOR ELEMENTARY SCHOOLS, SECONDARY SCHOOLS, AND COLLEGES. THE PROCEDURES DESCRIBED WERE FOLLOWED IN DEVELOPING ESTIMATES OF SELECTED ELEMENTS OF THE TRANSITION PROBABILITY MATRICES USED IN DYNAMOD II. THE PROBABILITY MATRIX CELLS ESTIMATED BY THE PROCEDURES DESCRIBED…

  10. Charge exchange transition probability for collisions between unlike ions and atoms within the adiabatic approximation

    NASA Technical Reports Server (NTRS)

    Xu, Y. J.; Khandelwal, G. S.; Wilson, John W.

    1989-01-01

    A simple formula for the transition probability for electron exchange between unlike ions and atoms is established within the adiabatic approximation by employing the Linear Combination of Atomic Orbitals (LCAO) method. The formula also involves an adiabatic parameter, introduced by Massey, and thus the difficulties arising from the internal energy defect and the adiabatic approximation are avoided. Specific reactions Li(+++) + H to Li(++) + H(+) and Be(4+) + H to Be(3+) + H(+) are considered as examples. The calculated capture cross section results of the present work are compared with the experimental data and with the calculation of other authors over the velocity range of 10(7) cm/sec to 10(8) cm/sec.

  11. Statistical simulation of internal energy exchange in shock waves using explicit transition probabilities

    NASA Astrophysics Data System (ADS)

    Torres, Erik; Magin, Thierry

    2012-11-01

    A statistical model originally developed for electronic-translational energy transfer in atoms having multiple electronic states (Anderson et al, RGD15, 1986) is applied to the study of internal energy exchange in a polyatomic gas. The model is well-suited for gas kinetic simulations, because it provides an explicit expression for the transition probabilities between internal energy levels. All molecules possessing a given internal energy level are treated as a separate chemical species and all collisions involving exchange of internal energy thus become pseudo-chemical reactions. Post-collision energy levels of the two partners are determined by conserving the total energy of the collision pair and taking into account detailed balance. In the present work, DSMC simulations of relaxation in a stationary gas are performed and compared to those obtained by Anderson et al. Additionally, we apply the model to the simulation of rotational relaxation behind a normal shock wave.

  12. Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.

    2016-08-01

    This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.

  13. Transition probabilities of PrII-lines emitted from a ferroelectric plasma source

    NASA Astrophysics Data System (ADS)

    Goly, A.; Kusz, J.; Quang, B. Nguyen; Weniger, S.

    1991-03-01

    An argon-praseodymium plasma was generated under atmospheric pressure between a ceramic ferroelectric plate and a praseodymium plate. The system of plates was connected to an acoustic frequency supply. The plasma radiation was analyzed in the spectral range from 2000 to 7000 A by using a grating spectrograph with a linear dispersion near 1 mm/A, adopted to photoelectric measurements. The emission spectrum of praseodymium was recorded, and the intensities of a few hundred lines were measured. Transition probabilities were determined for 62 PrII-lines, using available lifetime data for excited levels and measured branching ratios of the corresponding lines. Reasonable agreement has been found between the experimental data of Lage and Whaling (1976) and some of the present results.

  14. The k-sample problem in a multi-state model and testing transition probability matrices.

    PubMed

    Tattar, Prabhanjan N; Vaman, H J

    2014-07-01

    The choice of multi-state models is natural in analysis of survival data, e.g., when the subjects in a study pass through different states like 'healthy', 'in a state of remission', 'relapse' or 'dead' in a health related quality of life study. Competing risks is another common instance of the use of multi-state models. Statistical inference for such event history data can be carried out by assuming a stochastic process model. Under such a setting, comparison of the event history data generated by two different treatments calls for testing equality of the corresponding transition probability matrices. The present paper proposes solution to this class of problems by assuming a non-homogeneous Markov process to describe the transitions among the health states. A class of test statistics are derived for comparison of [Formula: see text] treatments by using a 'weight process'. This class, in particular, yields generalisations of the log-rank, Gehan, Peto-Peto and Harrington-Fleming tests. For an intrinsic comparison of the treatments, the 'leave-one-out' jackknife method is employed for identifying influential observations. The proposed methods are then used to develop the Kolmogorov-Smirnov type supremum tests corresponding to the various extended tests. To demonstrate the usefulness of the test procedures developed, a simulation study was carried out and an application to the Trial V data provided by International Breast Cancer Study Group is discussed. PMID:23722306

  15. Delineation of an Optimal Location for Oil Sand Exploration through Transition Probabilities of Composing Lithology

    NASA Astrophysics Data System (ADS)

    Kwon, M.; Jeong, J.; Park, E.; Han, W. S.; Kim, K. Y.

    2014-12-01

    Three-dimensional geostatistical studies of delineating an optimal exploitation location for oil sand in McMurray Formation, Athabasca, Canada were carried out. The area is mainly composed of unconsolidated to semi-consolidated sand where breccia, mud, clay, etc. are associated as alternating layers. For the prediction of the optimal location of steam assisted gravity drainage (SAGD) technique, the conventional approach of cumulating the predicted thickness of the media with higher bitumen bearing possibility (i.e. Breccia and Sand) was pursued. As an alternative measure, mean vertical extension of the permeable media was also assessed based on vertical transition rate of each media and the corresponding optimal location was decided. For the both predictions, 110 borehole data acquired from the study area were analyzed under Markovian transition probability (TP) framework and three-dimensional distributions of the composing media were predicted stochastically through an existing TP based geostatistical model. The effectiveness of the two competing measures (cumulative thickness and mean vertical extension) for SAGD applications was verified through two-dimensional dual-phase flow simulations where high temperature steam was injected in the delineated reservoirs, and the size of steam chamber was compared. The results of the two-dimensional SAGD simulation has shown that the geologic formation containing the highest mean vertical extension of permeable media is more suitable for the development of the oil sand by developing larger size of steam chamber compared to that from the highest cumulative thickness. Given those two-dimensional results, the cumulative thickness alone may not be a sufficient criterion for an optimal SAGD site and the mean vertical extension of the permeable media needs to be jointly considered for the sound selections.

  16. Calculations of hydrogen atom multiphoton energy level shifts, transition amplitudes and ionization probabilities

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Chang, C. S.

    2008-07-01

    Analyses of the resonant multiphoton ionization of atoms require knowledge of ac Stark energy shifts and of multiphoton, bound-to-bound state, transition amplitudes. In this paper, we consider the three-photon photoionization of hydrogen atoms at frequencies that are at and surrounding the two-photon 1s to 2s resonance. AC energy shift sums of both the 1s and 2s states are calculated as a function of the laser frequency along with two-photon 1s → 2s resonant transition amplitude sums. These quantities are calculated using an extended version of a method, which has often been employed in a variety of ways, of calculating these sums by expressing them in terms of solutions to a variety of differential equations that are derived from the different sums being evaluated. We demonstrate how exact solutions are obtained to these differential equations, which lead to exact evaluations of the corresponding sums. A variety of different cases are analysed, some involving analytic continuation, some involving real number analysis and some involving complex number analysis. A dc Stark sum calculation of the 2s state is carried out to illustrate the case where analytic continuation, pole isolation and pole subtraction are required and where the calculation can be carried out analytically; the 2s state, ac Stark shift sum calculations involve a case where no analytic continuation is required, but where the solution to the differential equation produces complex numbers owing to the finite photoionization lifetime of the 2s state. Results from these calculations are then used to calculate three-photon ionization probabilities of relevance to an analysis of the multiphoton ionization data published by Kyrala and Nichols (1991 Phys. Rev. A 44, R1450).

  17. Under the hood of statistical learning: A statistical MMN reflects the magnitude of transitional probabilities in auditory sequences

    PubMed Central

    Koelsch, Stefan; Busch, Tobias; Jentschke, Sebastian; Rohrmeier, Martin

    2016-01-01

    Within the framework of statistical learning, many behavioural studies investigated the processing of unpredicted events. However, surprisingly few neurophysiological studies are available on this topic, and no statistical learning experiment has investigated electroencephalographic (EEG) correlates of processing events with different transition probabilities. We carried out an EEG study with a novel variant of the established statistical learning paradigm. Timbres were presented in isochronous sequences of triplets. The first two sounds of all triplets were equiprobable, while the third sound occurred with either low (10%), intermediate (30%), or high (60%) probability. Thus, the occurrence probability of the third item of each triplet (given the first two items) was varied. Compared to high-probability triplet endings, endings with low and intermediate probability elicited an early anterior negativity that had an onset around 100 ms and was maximal at around 180 ms. This effect was larger for events with low than for events with intermediate probability. Our results reveal that, when predictions are based on statistical learning, events that do not match a prediction evoke an early anterior negativity, with the amplitude of this mismatch response being inversely related to the probability of such events. Thus, we report a statistical mismatch negativity (sMMN) that reflects statistical learning of transitional probability distributions that go beyond auditory sensory memory capabilities. PMID:26830652

  18. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGESBeta

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; et al

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  19. An exacting transition probability measurement - a direct test of atomic many-body theories

    PubMed Central

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  20. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  1. Transition probabilities for the UV0.01 multiplet in N III

    NASA Technical Reports Server (NTRS)

    Brage, Tomas; Fischer, Charlotte Froese; Judge, Philip G.

    1995-01-01

    We report on large-scale ab initio multiconfiguration Hartree-Fock calculations for the UV0.01 multiplet, 2s(sup 2)2p(sup 2)P(sub J) - 2s2p(sup 2 4)P(sub J prime), in N III. The resulting transition probabilities agree very well with recent semiempirical calculations, and the lifetimes for two of the three upper levels agree with experiments. The deviation for the third level is discussed. Comparisons made with the highest quality IUE echelle spectra available -- those of RR Tel and V1016 Cyg (both photoionized sources with electron densities below 10(exp 8)/cu cm) -- show that computed branching ratios of lines sharing a common upper level are in agreement with observations to within uncertainties of +/- 10%. High-quality solar limb data or stellar data from the Hubble Space Telescope (HST) could, in principle, be used to determine whether the theoretical or measured lifetimes for the discrepant level are in error. Unfortunately, stellar data for high-density plasmas (N(sub e) greater than 10(exp 11)/cu cm are needed) do not yet exist, and existing solar data lack the photometric precision to address this problem.

  2. Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework

    USGS Publications Warehouse

    Engdahl, N.B.; Vogler, E.T.; Weissmann, G.S.

    2010-01-01

    River-aquifer exchange is considered within a transition probability framework along the Rio Grande in Albuquerque, New Mexico, to provide a stochastic estimate of aquifer heterogeneity and river loss. Six plausible hydrofacies configurations were determined using categorized drill core and wetland survey data processed through the TPROGS geostatistical package. A base case homogeneous model was also constructed for comparison. River loss was simulated for low, moderate, and high Rio Grande stages and several different riverside drain stage configurations. Heterogeneity effects were quantified by determining the mean and variance of the K field for each realization compared to the root-mean-square (RMS) error of the observed groundwater head data. Simulation results showed that the heterogeneous models produced smaller estimates of loss than the homogeneous approximation. Differences between heterogeneous and homogeneous model results indicate that the use of a homogeneous K in a regional-scale model may result in an overestimation of loss but comparable RMS error. We find that the simulated river loss is dependent on the aquifer structure and is most sensitive to the volumetric proportion of fines within the river channel. Copyright 2010 by the American Geophysical Union.

  3. An exacting transition probability measurement - a direct test of atomic many-body theories

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; de Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-07-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.

  4. An exacting transition probability measurement - a direct test of atomic many-body theories.

    PubMed

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-01-01

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734

  5. Magnetic-dipole transition probabilities in B-like and Be-like ions

    SciTech Connect

    Tupitsyn, I. I.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.; Crespo Lopez-Urrutia, J. R.; Lapierre, A.; Ullrich, J.

    2005-12-15

    The magnetic-dipole transition probabilities between the fine-structure levels (1s{sup 2}2s{sup 2}2p) {sup 2}P{sub 1/2}-{sup 2}P{sub 3/2} for B-like ions and (1s{sup 2}2s2p) {sup 3}P{sub 1}-{sup 3}P{sub 2} for Be-like ions are calculated. The configuration-interaction method in the Dirac-Fock-Sturm basis is employed for the evaluation of the interelectronic-interaction correction with negative-continuum spectrum being taken into account. The 1/Z interelectronic-interaction contribution is derived within a rigorous QED approach employing the two-time Green function method. The one-electron QED correction is evaluated within framework of the anomalous magnetic-moment approximation. A comparison with the theoretical results of other authors and with available experimental data is presented.

  6. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    SciTech Connect

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; Wrzesiński, J.; Chiara, C. J.; Carpenter, M. P.; Fornal, B.; Hoteling, N.; Kondev, F. G.; Królas, W.; Lauritsen, T.; Pawłat, T.; Seweryniak, D.; Stefanescu, I.; Walters, W. B.; Zhu, S.

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudes for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.

  7. Analytical results for state-to-state transition probabilities in the multistate Landau-Zener model by nonstationary perturbation theory

    SciTech Connect

    Volkov, M. V.; Ostrovsky, V. N.

    2007-02-15

    Multistate generalizations of Landau-Zener model are studied by summing entire series of perturbation theory. A technique for analysis of the series is developed. Analytical expressions for probabilities of survival at the diabatic potential curves with extreme slope are proved. Degenerate situations are considered when there are several potential curves with extreme slope. Expressions for some state-to-state transition probabilities are derived in degenerate cases.

  8. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    SciTech Connect

    Ghumman, S. S.

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  9. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  10. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    SciTech Connect

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce new formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].

  11. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    PubMed

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. PMID:26210982

  12. QED calculations of three-photon transition probabilities in H-like ions with arbitrary nuclear charge

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.

    2016-03-01

    The quantum electrodynamical theory of three-photon transitions in hydrogen-like ions is presented. Emission probabilities of various three-photon decay channels for 2{p}3/2, 2{p}1/2 and 2{s}1/2 states are calculated for Z, the nuclear charge value, 1≤slant Z≤slant 95. The results are given in two different gauges. The fully relativistic three-photon decay rates of hydrogen-like ions with half-integer nuclear spin are given for transitions between fine structure components. The results can be applied to the Bose-Einstein statistics tests for multiphoton systems.

  13. Probabilities for nonradiative intermultiplet transitions in the holmium ion in lithium-yttrium double fluoride crystals and stimulated emission

    SciTech Connect

    Tkachuk, A.M.; Khilko, A.V.; Petrov, M.V.

    1985-02-01

    Nonradiative transition probabilities have been studied as functions of the energy difference between the closest-lying multiplets of the Ho/sup 3 +/ ion in the LiYF/sub 4/ crystal. The efficiencies of emission from terms of the holmium ion have been determined. The cross sections for stimulated emission for emission lines corresponding to the transition /sup 5/S/sub 2/ ..-->.. /sup 5/I/sub 7/ have also been determined. Some characteristics of the stimulated emission of LiYF/sub 4/:Ho/sup 3 +/ crystals are reported for several wavelengths in the 0.75--3.9-..mu..m spectral interval.

  14. Dipole and quadrupole integrals for the C I, N I, and O I sequences. [electron transition probabilities computation

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Wade, C.

    1974-01-01

    The Coulomb approximation tables of Oertel and Shomo, together with binding-energy values obtained by a screening approximation, have been used to produce values of the dipole and quadrupole radial integrals needed in obtaining transition probabilities for ions of six, seven, and eight electrons. Some comparisons with more rigorously calculated values show that the present values are quite accurate, especially for ions of higher atomic number.

  15. Wavelengths and transition probabilities for n = 4 {sup {yields}} n' = 4 transitions in heavy Cu-like ions (70 {<=} Z {<=} 92)

    SciTech Connect

    Palmeri, P. . E-mail: palmeri@umh.ac.be; Quinet, P.; Biemont, E.; Traebert, E.

    2007-05-15

    Wavelengths and transition probabilities have been calculated for the n = 4 {sup {yields}} n' = 4 allowed transitions in the heavy Cu-like ions with Z = 70-92. Fully relativistic multiconfiguration Dirac-Fock (MCDF) calculations were carried out. They take into account the correlations within the n = 4 complex, the core-valence n = 3 {sup {yields}} n' = 4 virtual excitations, and quantum electrodynamics effects. The present results are compared to and agree well with recent electron-beam ion-trap (EBIT) measurements in ytterbium, tungsten, osmium, gold, lead, bismuth, thorium, and uranium.

  16. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  17. Theoretical transition probabilities between the lowest 2S, 2P and 2D states of Na, K, Rb and Cs

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1985-01-01

    Theoretical transition probabilities between the lowest 2S, 2P and 2D states of the alkali atoms Na through Cs have been computed using near Hartree-Fock quality Slater basis sets. The important core-valence correlation effects are incorporated explicitly by a configuration-interaction procedure. For Cs, the calculations were repeated using a Gaussian basis set so that relativistic effects could be incorporated through an effective core potential procedure. The best calculated electric quadrupole Einstein coefficients are Na(196.3/s), K(103.6/s), Rb(72.4/s) and Cs(19.7/s). Core-valence effects become increasingly important down the column, and reduce the quadrupole transition strengths to about the same degree as for the 2P-2S and 2D-2P dipole-allowed transitions. Relativistic effects increase the quadrupole moment of Cs, but less so than in Ba, presumably because the alkali 2D states are more diffuse.

  18. Extensive computation of allowed and forbidden transition probabilities in the potassium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Deshmukh, Pranawa C.; Manson, Steven T.; Majumder, Sonjoy

    2007-06-01

    Our primary aim in this work is to present both allowed and forbidden transition amplitudes and corresponding wavelengths and oscillator strengths for a few ions in the 19-electron potassium isoelectronic sequence. All of these ions have the configuration [Ar] 3^2D3/2 as their ground state, except in the case of K and Ca^+, where it is [Ar] 4^2S1/2.This difference in ground state configuration arises due to strong contributions of correlation effects in the energy levels of these systems [1]. Allowed and forbidden transitions in these systems are of great importance in astrophysics [2] and in laboratory plasma research [3]. We apply in the present work the relativistic coupled-cluster (RCC) theory [4] to evaluate the energy levels and wave functions of these systems and study amplitudes for electric and magnetic dipole transition amplitudes and also the electric quadrupole transition amplitudes. The contributions of various electron correlation effects to the transition amplitudes are estimated in some detail using the RCC theory. [1] Gopal Dixit et al., Astrophys. J (submitted); arXiv.org: physics/0702066. [2] C. R. Cowley and G. M. Wahlgern, Astronomy & Astrophysics, 447, 681 (2002). [3] J. E. Vernazza, E. M. Reeves, Astrophys. J. Suppl. 37, 485 (1978) [4] I. Lindgren, Physics Scripta, 36, 591 (1987).

  19. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  20. Improvement of HMM-based action classification by using state transition probability

    NASA Astrophysics Data System (ADS)

    Kitamura, Yuka; Aruga, Haruki; Hashimoto, Manabu

    2015-04-01

    We propose a method to classify multiple similar actions which are contained in human behaviors by considering a weak-constrained order of "actions". The proposed method regards the human behavior as a combination of "action" patterns which have order constrained weakly. In this method, actions are classified by using not only image features but also consistency of transitions between an action and next action. By considering such an action transition, our method can recognize human behavior even if image features of different action are similar to each other. Based on this idea, we have improved the previous HMM-based algorithm effectively. Through some experiments using test image sequences of human behavior appeared in a bathroom, we have confirmed that the average classification success rate is 97 %, which is about 53 % higher than the previous method.

  1. Patient Education and Support During CKD Transitions: When the Possible Becomes Probable.

    PubMed

    Green, Jamie A; Boulware, L Ebony

    2016-07-01

    Patients transitioning from kidney disease to kidney failure require comprehensive patient-centered education and support. Efforts to prepare patients for this transition often fail to meet patients' needs due to uncertainty about which patients will progress to kidney failure, nonindividualized patient education programs, inadequate psychosocial support, or lack of assistance to guide patients through complex treatment plans. Resources are available to help overcome barriers to providing optimal care during this time, including prognostic tools, educational lesson plans, decision aids, communication skills training, peer support, and patient navigation programs. New models are being studied to comprehensively address patients' needs and improve the lives of kidney patients during this high-risk time. PMID:27324676

  2. Local neighborhood transition probability estimation and its use in contextual classification

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of incorporating spatial or contextual information into classifications is considered. A simple model that describes the spatial dependencies between the neighboring pixels with a single parameter, Theta, is presented. Expressions are derived for updating the posteriori probabilities of the states of nature of the pattern under consideration using information from the neighboring patterns, both for spatially uniform context and for Markov dependencies in terms of Theta. Techniques for obtaining the optimal value of the parameter Theta as a maximum likelihood estimate from the local neighborhood of the pattern under consideration are developed.

  3. Evaluation of the Time-Derivative Coupling for Accurate Electronic State Transition Probabilities from Numerical Simulations.

    PubMed

    Meek, Garrett A; Levine, Benjamin G

    2014-07-01

    Spikes in the time-derivative coupling (TDC) near surface crossings make the accurate integration of the time-dependent Schrödinger equation in nonadiabatic molecular dynamics simulations a challenge. To address this issue, we present an approximation to the TDC based on a norm-preserving interpolation (NPI) of the adiabatic electronic wave functions within each time step. We apply NPI and two other schemes for computing the TDC in numerical simulations of the Landau-Zener model, comparing the simulated transfer probabilities to the exact solution. Though NPI does not require the analytical calculation of nonadiabatic coupling matrix elements, it consistently yields unsigned population transfer probability errors of ∼0.001, whereas analytical calculation of the TDC yields errors of 0.0-1.0 depending on the time step, the offset of the maximum in the TDC from the beginning of the time step, and the coupling strength. The approximation of Hammes-Schiffer and Tully yields errors intermediate between NPI and the analytical scheme. PMID:26279558

  4. Measurement of the 1s2s 1S0-1s2p 3P1 intercombination interval in helium-like silicon.

    PubMed

    Redshaw, M; Myers, E G

    2002-01-14

    Using Doppler-tuned fast-beam laser spectroscopy the 1s2s 1S0-1s2p 3P1 intercombination interval in 28Si12+ has been measured to be 7230.5(2) cm(-1). The experiment made use of a single-frequency Nd:YAG (1.319 microm) laser and a high-finesse optical buildup cavity. The result provides a precision test of modern relativistic and QED atomic theory. PMID:11801009

  5. Energy levels and transition probabilities in the neutron-rich lanthanide nucleus sup 156 Sm

    SciTech Connect

    Hellstroem, M.; Fogelberg, B.; Spanier, L.; Mach, H. )

    1990-05-01

    The decay of {sup 156}Pm has been studied resulting in the first detailed information on the excited states of {sup 156}Sm. About 25 levels were found, of which two were {gamma}-decaying isomers. The expected low-lying quadrupole vibrational levels could not be identified. The observed decay rates for {beta} and {gamma} transitions have enabled the classification of some levels, including the {beta}-decaying ground state of {sup 156}Pm, in terms of specific two-quasiparticle states. The total beta-decay energy of {sup 156}Pm was obtained as 5.155(35) MeV.

  6. The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees.

    PubMed

    Dehaene, Stanislas; Meyniel, Florent; Wacongne, Catherine; Wang, Liping; Pallier, Christophe

    2015-10-01

    A sequence of images, sounds, or words can be stored at several levels of detail, from specific items and their timing to abstract structure. We propose a taxonomy of five distinct cerebral mechanisms for sequence coding: transitions and timing knowledge, chunking, ordinal knowledge, algebraic patterns, and nested tree structures. In each case, we review the available experimental paradigms and list the behavioral and neural signatures of the systems involved. Tree structures require a specific recursive neural code, as yet unidentified by electrophysiology, possibly unique to humans, and which may explain the singularity of human language and cognition. PMID:26447569

  7. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II

    PubMed Central

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag+ ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm−1, equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given. PMID:26401429

  8. A simple protocol for the probability weights of the simulated tempering algorithm: Applications to first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; da Luz, M. G. E.

    2010-12-01

    The simulated tempering (ST) is an important method to deal with systems whose phase spaces are hard to sample ergodically. However, it uses accepting probabilities weights, which often demand involving and time consuming calculations. Here it is shown that such weights are quite accurately obtained from the largest eigenvalue of the transfer matrix—a quantity straightforward to compute from direct Monte Carlo simulations—thus simplifying the algorithm implementation. As tests, different systems are considered, namely, Ising, Blume-Capel, Blume-Emery-Griffiths, and Bell-Lavis liquid water models. In particular, we address first-order phase transition at low temperatures, a regime notoriously difficulty to simulate because the large free-energy barriers. The good results found (when compared with other well established approaches) suggest that the ST can be a valuable tool to address strong first-order phase transitions, a possibility still not well explored in the literature.

  9. Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study.

    PubMed

    de Uña-Álvarez, Jacobo; Meira-Machado, Luís

    2015-06-01

    Multi-state models are often used for modeling complex event history data. In these models the estimation of the transition probabilities is of particular interest, since they allow for long-term predictions of the process. These quantities have been traditionally estimated by the Aalen-Johansen estimator, which is consistent if the process is Markov. Several non-Markov estimators have been proposed in the recent literature, and their superiority with respect to the Aalen-Johansen estimator has been proved in situations in which the Markov condition is strongly violated. However, the existing estimators have the drawback of requiring that the support of the censoring distribution contains the support of the lifetime distribution, which is not often the case. In this article, we propose two new methods for estimating the transition probabilities in the progressive illness-death model. Some asymptotic results are derived. The proposed estimators are consistent regardless the Markov condition and the referred assumption about the censoring support. We explore the finite sample behavior of the estimators through simulations. The main conclusion of this piece of research is that the proposed estimators are much more efficient than the existing non-Markov estimators in most cases. An application to a clinical trial on colon cancer is included. Extensions to progressive processes beyond the three-state illness-death model are discussed. PMID:25735883

  10. Measurements of transition probabilities for spin-changing lines of atomic ions used in diagnostics of astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Johnson, B. C.; Kwong, H. S.; Parkinson, W. H.; Knight, R. D.

    1984-01-01

    The intensities of ultraviolet, spin-changing, 'intersystem' lines of low-Z atomic ions are frequently used in determinations of electron densities and temperatures in astrophysical plasmas as well as in measurements of element abundances in the interstellar gas. The transition probabilities (A-values) of these lines, which are about five orders of magnitude weaker than allowed lines, have not been measured heretofore and various calculations produce A-values for these lines that differ by as much as 50 percent A radio-frequency ion trap has been used for the first measurements of transition probabilities for intersystem lines seen in astronomical spectra. The measurement procedure is discussed and results for Si III, O III, N II, and C III are reviewed and compared to calculated values. Discrepancies exist; these indicate that some of the calculated A-values may be less reliable than has been beleived and that revisions to the electron densities determined for some astrophysical plasmas may be required.

  11. Effect of magnetic field on electron spectrum and probabilities of intraband quantum transitions in spherical quantum-dot-quantum-well

    NASA Astrophysics Data System (ADS)

    Holovatsky, V.; Bernik, I.; Yakhnevych, M.

    2016-09-01

    The effect of magnetic field on electron energy spectrum, wave functions and probabilities of intraband quantum transitions in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. The wave functions are expanded over the complete basis of functions obtained as exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field. It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and changes the localization of electron in the nanostructure. The field stronger effects on the spherically-symmetric states, especially in the case of electron location in the outer potential well. The magnetic field changes more the radial distribution of probability of electron location in QDQW than the angular one. The oscillator strengths of intraband quantum transitions are calculated as functions of the magnetic field induction and their selection rules are established.

  12. Bayesian Estimates of Transition Probabilities in Seven Small Lithophytic Orchid Populations: Maximizing Data Availability from Many Small Samples

    PubMed Central

    Tremblay, Raymond L.; McCarthy, Michael A.

    2014-01-01

    Predicting population dynamics for rare species is of paramount importance in order to evaluate the likelihood of extinction and planning conservation strategies. However, evaluating and predicting population viability can be hindered from a lack of data. Rare species frequently have small populations, so estimates of vital rates are often very uncertain due to lack of data. We evaluated the vital rates of seven small populations from two watersheds with varying light environment of a common epiphytic orchid using Bayesian methods of parameter estimation. From the Lefkovitch matrices we predicted the deterministic population growth rates, elasticities, stable stage distributions and the credible intervals of the statistics. Populations were surveyed on a monthly basis between 18–34 months. In some of the populations few or no transitions in some of the vital rates were observed throughout the sampling period, however, we were able to predict the most likely vital rates using a Bayesian model that incorporated the transitions rates from the other populations. Asymptotic population growth rate varied among the seven orchid populations. There was little difference in population growth rate among watersheds even though it was expected because of physical differences as a result of differing canopy cover and watershed width. Elasticity analyses of Lepanthes rupestris suggest that growth rate is more sensitive to survival followed by growth, shrinking and the reproductive rates. The Bayesian approach helped to estimate transition probabilities that were uncommon or variable in some populations. Moreover, it increased the precision of the parameter estimates as compared to traditional approaches. PMID:25068598

  13. Low-lying electronic states of the OH radical: Potential energy curves, dipole moment functions, and transition probabilities

    NASA Astrophysics Data System (ADS)

    Qin, X.; Zhang, S. D.

    2014-12-01

    The six doublet and the two quartet electronic states (2Σ+(2), 2Σ-, 2Π(2), 2Δ, 4Σ-, and 4Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X2Π and A2Σ+ of OH are predicted by numerical solving the radial Schrödinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X2Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A2Σ+-X2Π transition are discussed and compared with existing experimental values.

  14. Improved measurement of the 1s2s 1S0-1s2p 3P1 interval in heliumlike silicon.

    PubMed

    DeVore, Thomas R; Crosby, David N; Myers, Edmund G

    2008-06-20

    Using colinear fast-beam laser spectroscopy with copropagating and counter-propagating beams we have measured the 1s2s 1S0-1s2p 3P1 intercombination interval in 28Si12+ with the result 7230.585(6) cm{-1}. The experiment made use of a dual-wavelength, high-finesse, power build-up cavity excited by single-frequency lasers at 1319 and 1450 nm. The result will provide a precision test of ab initio relativistic many-body atomic theory at moderate Z. PMID:18643579

  15. Time varying moments, regime switch, and crisis warning: The birth-death process with changing transition probability

    NASA Astrophysics Data System (ADS)

    Tang, Yinan; Chen, Ping

    2014-06-01

    The sub-prime crisis in the U.S. reveals the limitation of diversification strategy based on mean-variance analysis. A regime switch and a turning point can be observed using a high moment representation and time-dependent transition probability. Up-down price movements are induced by interactions among agents, which can be described by the birth-death (BD) process. Financial instability is visible by dramatically increasing 3rd to 5th moments one-quarter before and during the crisis. The sudden rising high moments provide effective warning signals of a regime-switch or a coming crisis. The critical condition of a market breakdown can be identified from nonlinear stochastic dynamics. The master equation approach of population dynamics provides a unified theory of a calm and turbulent market.

  16. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  17. Energy levels, wavelengths, and radiative transition probabilities for the Na-like ions with 38 [le] Z [le] 45

    SciTech Connect

    Ying Zhang; Qiren Zhu; Shoufu Pan )

    1992-11-01

    The investigation by Z.-Q Zhang et al. (Acta Optica Sinica 11, 193, 1991) shows that it is possible to realize soft X-ray lasing in the water window 23.3-43.8 [Angstrom] with the Na-like recombination scheme, which requires a lower pumping power at a high-power laser facility than that with other schemes. The fine-structure levels with n [le] 15 and l [le] 6 in Na-like ions with 38 [le] Z [le] 45 and the probabilities for radiative transitions between these levels are calculated using the multiconfiguration Dirac-Fock approach. The calculations show that the wavelengths of the anticipated laser transitions 6 f-4d and 6g-4f in the Na-like ions with 38 [le] Z [le] 43 and 5f-4d and 5g-4f in the Na-like ions with 40 [le] Z [le] 45 lie in the region of the water window.

  18. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    NASA Astrophysics Data System (ADS)

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S. H.

    2014-05-01

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s23p4, 3s3p5, 3s23p33d, 3s23p34s, 3s23p34p, and 3s23p34d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit-Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin-orbit, spin-other-orbit, and spin-spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications.

  19. Strong laser-induced coupling between autoionizing states: the case of the four-photon-excited 3p2 1S0 state of magnesium

    NASA Astrophysics Data System (ADS)

    Dimitriou, A.; Cohen, S.; Lyras, A.; Liontos, I.

    2012-10-01

    We investigate the interaction of ground-state Mg atoms with tuneable laser radiation of ˜5 ns duration and moderate intensity (≤1012 W cm-2), capable of exciting the 3p2 1S0 autoionizing state by four photons. For the corresponding photon energy range, this level is strongly one-photon coupled both with bound (third photon) and, primarily, a multitude of other autoionizing states (fifth photon). The coupling is strong enough to induce the absorption of up to six photons before the atom is ionized, creating thus population into the first excited 3pj Mg+ levels which subsequently decay radiatively to the 3s1/2 ionic ground state. The earlier studies devoted to this excitation scheme were thorough but partial. Particularly, the issues concerning the five-photon excited levels were not addressed. In this work, the examined wavelength range is greatly extended to include these states. Moreover, the interaction is characterized in more detail by employing an array of experimental techniques, namely Mg+ ion and photoelectron spectroscopy (including photoelectron angular distributions (PADs) from four- and five-photon ionization) as well as fluorescence spectroscopy where the 3pj→3s1/2 decay is monitored. The experimental data show that most of these five-photon excited levels undergo blue ac Stark shifts which are occasionally nonlinear with respect to the laser intensity and comparable to or even larger in magnitude than the large redshift of the 3p2 1S0 state itself. Finally, for the latter state, the wavelength dependence of four-photon PAD measurements is suggestive of a situation reminiscent of an ac Stark splitting picture.

  20. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  1. The FERRUM project: Experimental lifetimes and transition probabilities from highly excited even 4d levels in Fe ii

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Nilsson, H.; Engström, L.; Lundberg, H.

    2015-12-01

    We report lifetime measurements of the 6 levels in the 3d6(5D)4d e6G term in Fe ii at an energy of 10.4 eV, and f-values for 14 transitions from the investigated levels. The lifetimes were measured using time-resolved laser-induced fluorescence on ions in a laser-produced plasma. The high excitation energy, and the fact that the levels have the same parity as the the low-lying states directly populated in the plasma, necessitated the use of a two-photon excitation scheme. The probability for this process is greatly enhanced by the presence of the 3d6(5D)4p z6F levels at roughly half the energy difference. The f-values are obtained by combining the experimental lifetimes with branching fractions derived using relative intensities from a hollow cathode discharge lamp recorded with a Fourier transform spectrometer. The data is important for benchmarking atomic calculations of astrophysically important quantities and useful for spectroscopy of hot stars.

  2. Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities.

    PubMed

    Zimmer, Christoph; Sahle, Sven

    2015-10-01

    Estimating model parameters from experimental data is a crucial technique for working with computational models in systems biology. Since stochastic models are increasingly important, parameter estimation methods for stochastic modelling are also of increasing interest. This study presents an extension to the 'multiple shooting for stochastic systems (MSS)' method for parameter estimation. The transition probabilities of the likelihood function are approximated with normal distributions. Means and variances are calculated with a linear noise approximation on the interval between succeeding measurements. The fact that the system is only approximated on intervals which are short in comparison with the total observation horizon allows to deal with effects of the intrinsic stochasticity. The study presents scenarios in which the extension is essential for successfully estimating the parameters and scenarios in which the extension is of modest benefit. Furthermore, it compares the estimation results with reversible jump techniques showing that the approximation does not lead to a loss of accuracy. Since the method is not based on stochastic simulations or approximative sampling of distributions, its computational speed is comparable with conventional least-squares parameter estimation methods. PMID:26405142

  3. Configuration-interaction plus many-body-perturbation-theory calculations of Si i transition probabilities, oscillator strengths, and lifetimes

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.

    2016-02-01

    The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.

  4. Inversion of the relative probabilities of the f- f and f- d transitions in the Ln3+ lanthanide ions at their radio- and sonoexcitation as compared to photoexcitation

    NASA Astrophysics Data System (ADS)

    Sharipov, G. L.

    2007-07-01

    The results of measuring the efficiencies of the formation of electronically excited states of the Ln3+ lanthanide ions in aqueous solutions in the processes of radioluminescence and multibubble sonoluminescence are analyzed. In both cases, electronic excitation occurs due to inelastic collisions of Ln3+ ions with (for radioluminescence) charged ionizing particles in liquid and (for multibubble sonoluminescence) high-energy particles, primarily electrons, in the gas phase of cavitation bubbles. In both processes, the efficiencies of exciting ions whose luminescence states appear in the 4 f-5 d transitions (Ce3+ and Pr3+) are significantly lower (by an order of magnitude or larger) than the efficiencies of exciting ions whose luminescence states appear in the 4 f-4 f transitions (Gd3+ and Tb3+). Therefore, the probability of the f- d transitions is lower than the probability of the f- f transitions in lanthanide ions excited by collisions with the charged particles and the relative probabilities of these transitions are inverted in these processes as compared to photoexcitation.

  5. Dipole moments and transition probabilities of the a 3Sigma(+)g - b 3Sigma(+)u system of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Guberman, S.; Dalgarno, A.; Posen, A.; Kwok, T. L.

    1986-01-01

    Multiconfiguration variational calculations of the electronic wave functions of the a 3Sigma(+)g and b 3Sigma(+)u states of molecular hydrogen are presented, and the electric dipole transition moment between them (of interest in connection with stellar atmospheres and the UV spectrum of the Jovian planets) is obtained. The dipole moment is used to calculate the probabilities of radiative transitions from the discrete vibrational levels of the a 3Sigma(+)g state to the vibrational continuum of the repulsive b 3Sigma(+)u state as functions of the wavelength of the emitted photons. The total transition probabilities and radiative lifetimes of the levels v prime = 0-20 are presented.

  6. Transition probabilities for the Au ((2)S, (2)D, and (2)P) with SiH(4) reaction.

    PubMed

    Pacheco-Sánchez, J H; Luna-García, H M; García-Cruz, L M; Novaro, O

    2010-01-28

    Transition probabilities on the interaction of the ground and the lowest excited states of gold Au ((2)S:5d(10)6s(1), (2)D:5d(9)6s(2), and (2)P:5d(10)6p(1)) with silane (SiH(4)) are studied through ab initio Hartree-Fock self-consistent field calculations, where the atom's core is represented by relativistic effective core potentials. These calculations are followed by a multiconfigurational self-consistent field study. The correlation energy is accounted for through extensive variational and perturbative second order multireference Moller-Plesset configuration interaction analysis of selected perturbations obtained by iterative process calculations using the CIPSI program package. It is found that the Au atom in the ((2)P:5d(10)6p(1)) state inserts in the Si-H bond. In this interaction its corresponding D (2)A(') potential energy surface is initially attractive and only becomes repulsive after encountering an avoided crossing with the initially repulsive C (2)A(') surface linked to the Au((2)D:5d(9)6s(2))-SiH(4) fragments. The A, B, and C (2)A(') curves derived from the Au((2)D:5d(9)6s(2)) atom interaction with silane are initially repulsive, each one of them showing two avoided crossings, while the A (2)A(') curve goes sharply downwards until it meets the X (2)A(') curve interacting adiabatically, which is linked with the Au((2)S:5d(10)6s(1))-SiH(4) moieties. The A (2)A(') curve becomes repulsive after the avoided crossing with the X (2)A('), curve. The lowest-lying X (2)A(') potential leads to the HAuSiH(3) X (2)A(') intermediate molecule. This intermediate molecule, diabatically correlated with the Au((2)P:5d(10)6p(1))+SiH(4) system which lies 3.34 kcal/mol above the ground state reactants, has been carefully characterized as have the dissociation channels leading to the AuH+SiH(3) and H+AuSiH(3) products. These products are reached from the HAuSiH(3) intermediate without any activation barrier. The Au-SiH(4) calculation results are successfully compared to

  7. Transition probabilities of the B-prime 1Sigma(u)(+) to X 1Sigma(g)(+) system of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Kwok, T. L.; Dalgarno, A.; Posen, A.

    1985-01-01

    From published potential energy curves and transition dipole moments, there are obtained by numerical integration of the equations of nuclear motion the vibrational eigenfunctions of the X 1Sigma(g)(+) and B-prime 1Sigma(u)(+) states of H2. The probabilities of radiative transitions from the discrete vibrational levels of the excited B-prime 1Sigma(u)(+) electronic state of H2 to the discrete and continuum vibrational levels of the ground X 1Sigma(g)(+) electronic state are calculated. The Franck-Condon factors are also presented.

  8. New experimental limits on the probabilities of pauli-forbidden transitions in the {sup 12}C nucleus from data obtained with the borexino detector

    SciTech Connect

    Derbin, A. V.; Fomenko, K. A.

    2010-12-15

    The Pauli exclusion principle was tested for nucleons in the {sup 12}C nucleus by using data from the Borexino detector. The approach used consisted in seeking photons, neutrons, and protons, as well as electrons and positrons, emitted in the Pauli-forbidden transitions of nucleons from the 1P{sub 3/2} shell to the filled 1S{sub 1/2} shell. Owing to a uniquely low background level in the Borexino detector and its large mass, the currently most stringent experimental limits were obtained for the probabilities and relative intensities of Pauli-forbidden transitions for the electromagnetic, strong, and weak channels.

  9. Rotationally resolved S1<--S0 electronic spectra of fluorene, carbazole, and dibenzofuran: Evidence for Herzberg-Teller coupling with the S2 state

    NASA Astrophysics Data System (ADS)

    Yi, John T.; Alvarez-Valtierra, Leonardo; Pratt, David W.

    2006-06-01

    Rotationally resolved fluorescence excitation spectra of the S1←S0 origin bands and higher vibronic bands of fluorene (FLU), carbazole (CAR), and dibenzofuran (DBF) have been observed and assigned. Analyses of these data show that replacement of the CH2 group in FLU with a NH group in CAR and an O atom in DBF produces only localized changes in structure, in the ground state. But the three molecules exhibit different changes in geometry when they are excited by light. The S1 states of the three molecules also are electronically very different. The S1←S0 transition moments of CAR and DBF are parallel to the C2 symmetry axis whereas the corresponding transition moment in FLU is perpendicular to this axis. Herzberg-Teller coupling involving the S2 state also has been observed in the spectra of higher vibronic bands of CAR and DBF. Possible reasons for these behaviors are discussed.

  10. Vibration-rotation line shifts for 1 sigma g + H2/V,J/-1S/0/ He computed via close coupling - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.; Chackerian, C., Jr.

    1980-01-01

    The density shifting of vibration-rotation transitions of H2 perturbed by He was computed (as a function of temperature) with no adjustable parameters. The calculation was carried out using the framework of the impact theory of Baranger with S-matrix elements obtained via close coupling calculations which incorporated the ab initio H2-H2 system potential of Tsapline et al.(1977). Vibrational and rotational inelasticity were neglected in the calculations; nevertheless good agreement with experimental data was obtained, up to moderate temperatures, for the density shift. A much poorer comparison was obtained for the density broadening.

  11. Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV

    SciTech Connect

    Nahar, Sultana N.

    2014-09-15

    The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.

  12. On Probability Domains III

    NASA Astrophysics Data System (ADS)

    Frič, Roman; Papčo, Martin

    2015-12-01

    Domains of generalized probability have been introduced in order to provide a general construction of random events, observables and states. It is based on the notion of a cogenerator and the properties of product. We continue our previous study and show how some other quantum structures fit our categorical approach. We discuss how various epireflections implicitly used in the classical probability theory are related to the transition to fuzzy probability theory and describe the latter probability theory as a genuine categorical extension of the former. We show that the IF-probability can be studied via the fuzzy probability theory. We outline a "tensor modification" of the fuzzy probability theory.

  13. Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bai, C. L.; Colò, G.

    2016-08-01

    We review several experimental and theoretical advances that emphasize common aspects of the study of spin-singlet, T = 1, and spin-triplet, T = 0, pairing correlations in nuclei. We first discuss various empirical evidence of the special role played by the T = 1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low-density regime, and possible outcomes such as the BCS–BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T = 1 and T = 0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N = Z odd-odd nuclei by using a three-body model; in this case, it is shown that the inversion of the {J}π ={0}+ and {J}π ={1}+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T = 0 pairing correlations in these nuclei. The effect of T = 0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow–Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent Hartree–Fock–Bogoliubov (HFB) plus quasiparticle random-phase approximation calculations in which the T = 0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T = 0 interaction. Pair transfer reactions are eventually discussed. While two-neutron transfer has long been proposed as a tool to measure the T = 1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest for revealing effects coming from both T = 1 and T = 0 interactions. We also point out that the reaction mechanism may mask the strong pair transfer amplitudes predicted

  14. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    NASA Technical Reports Server (NTRS)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  15. Estimating the Transitional Probabilities of Smoking Stages with Cross-sectional Data and 10-Year Projection for Smoking Behavior in Iranian Adolescents

    PubMed Central

    Khosravi, Ahmad; Mansournia, Mohammad Ali; Mahmoodi, Mahmood; Pouyan, Ali Akbar; Holakouie-Naieni, Kourosh

    2016-01-01

    Background: Cigarette smoking is one of the most important health-related risk factors in terms of morbidity and mortality. In this study, we introduced a new method for deriving the transitional probabilities of smoking stages from a cross-sectional study and simulated a long-term smoking behavior for adolescents. Methods: In this study in 2010, a total of 4853 high school students were randomly selected and were completed a self-administered questionnaire about cigarette smoking. We used smoothed age- and sex-specific prevalence of smoking stages in a probabilistic discrete event system for estimating of transitional probabilities. A nonhomogenous discrete time Markov chain analysis was used to model the progression of the smoking in 10 years ahead in the same population. The mean age of the students was 15.69 ± 0.73 years (range: 14–19). Results: The smoothed prevalence proportion of current smoking varies between 3.58 and 26.14%. The age-adjusted odds of initiation in boys is 8.9 (95% confidence interval [CI]: 7.9–10.0) times of the odds of initiation of smoking in girls. Our study predicted that the prevalence proportion of current smokers increased from 7.55% in 2010 to 20.31% (95% CI: 19.44–21.37) for 2019. Conclusions: The present study showed a moderately but concerning prevalence of current smoking in Iranian adolescents and introduced a novel method for estimation of transitional probabilities from a cross-sectional study. The increasing trend of cigarette use among adolescents indicated the necessity of paying more attention to this group. PMID:27625766

  16. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect

    Schmidt, W.; Niemeyer, J. C.; Ciaraldi-Schoolmann, F.; Roepke, F. K.; Hillebrandt, W.

    2010-02-20

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  17. Transition probabilities of HER2-positive and HER2-negative breast cancer patients treated with Trastuzumab obtained from a clinical cancer registry dataset

    PubMed Central

    Pobiruchin, Monika; Bochum, Sylvia; Martens, Uwe M.; Kieser, Meinhard; Schramm, Wendelin

    2016-01-01

    Records of female breast cancer patients were selected from a clinical cancer registry and separated into three cohorts according to HER2-status (human epidermal growth factor receptor 2) and treatment with or without Trastuzumab (a humanized monoclonal antibody). Propensity score matching was used to balance the cohorts. Afterwards, documented information about disease events (recurrence of cancer, metastases, remission of local/regional recurrences, remission of metastases and death) found in the dataset was leveraged to calculate the annual transition probabilities for every cohort. PMID:27054173

  18. Transition probabilities of HER2-positive and HER2-negative breast cancer patients treated with Trastuzumab obtained from a clinical cancer registry dataset.

    PubMed

    Pobiruchin, Monika; Bochum, Sylvia; Martens, Uwe M; Kieser, Meinhard; Schramm, Wendelin

    2016-06-01

    Records of female breast cancer patients were selected from a clinical cancer registry and separated into three cohorts according to HER2-status (human epidermal growth factor receptor 2) and treatment with or without Trastuzumab (a humanized monoclonal antibody). Propensity score matching was used to balance the cohorts. Afterwards, documented information about disease events (recurrence of cancer, metastases, remission of local/regional recurrences, remission of metastases and death) found in the dataset was leveraged to calculate the annual transition probabilities for every cohort. PMID:27054173

  19. Transition probabilities in OH A 2 sigma + - X 2 pi i: Bands with v prime = 0 and 1, v double prime = 0 to 4

    NASA Technical Reports Server (NTRS)

    Copeland, Richard A.; Jeffries, Jay B.; Crosley, David R.

    1986-01-01

    Experimental results for relative vibrational band transition probabilities for v prime = 0 and 1, and v double prime = 0 to 4 in the A-X electronic system of OH are presented. The measurements, part of a larger set involving v prime = 0 to 4 and v double prime = 0 to 6, were made using spectrally dispersed laser-induced fluorescence (LIF) in the burnt gases of a flame. These Einstein coefficients will be useful in dynamics experiments for quantitative LIF determinations of OH radical concentrations in high v double prime.

  20. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  1. Effect of H2 binding on the nonadiabatic transition probability between singlet and triplet states of the [NiFe]-hydrogenase active site.

    PubMed

    Kaliakin, Danil S; Zaari, Ryan R; Varganov, Sergey A

    2015-02-12

    We investigate the effect of H2 binding on the spin-forbidden nonadiabatic transition probability between the lowest energy singlet and triplet electronic states of [NiFe]-hydrogenase active site model, using a velocity averaged Landau-Zener theory. Density functional and multireference perturbation theories were used to provide parameters for the Landau-Zener calculations. It was found that variation of the torsion angle between the terminal thiolate ligands around the Ni center induces an intersystem crossing between the lowest energy singlet and triplet electronic states in the bare active site and in the active site with bound H2. Potential energy curves between the singlet and triplet minima along the torsion angle and H2 binding energies to the two spin states were calculated. Upon H2 binding to the active site, there is a decrease in the torsion angle at the minimum energy crossing point between the singlet and triplet states. The probability of nonadiabatic transitions at temperatures between 270 and 370 K ranges from 35% to 32% for the active site with bound H2 and from 42% to 38% for the bare active site, thus indicating the importance of spin-forbidden nonadiabatic pathways for H2 binding on the [NiFe]-hydrogenase active site. PMID:25603170

  2. Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions

    NASA Astrophysics Data System (ADS)

    Salajegheh, Nima

    The mechanical alloying and casting processes used to make polycrystalline metallic materials often introduce undesirable non-metallic inclusions and pores. These are often the dominant sites of fatigue failure origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack initiation is more than 106. HCF and VHCF experiments on some advanced metallic alloys, such as powder metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that the critical inclusions and pores can appear on the surface as well as in the bulk of the specimen. Fatigue lives have been much higher for specimens that fail from a bulk site. The relative number of bulk initiations increases as the stress amplitude decreases such that just below the traditional HCF limit, fatigue life data appears to be evenly scattered between two datasets corresponding to surface and bulk initiations. This is often referred to as surface to bulk transition in the VHCF regime. Below this transition stress, the likelihood of surface versus bulk initiation significantly impacts the low failure probability estimate of fatigue life. Under these circumstances, a large number of very costly experiments need to be conducted to obtain a statistically representative distribution of fatigue life and to predict the surface versus bulk initiation probability. In this thesis, we pursue a simulation-based approach whereby microstructure-sensitive finite element simulations are performed within a statistical construct to examine the VHCF life variability and assess the surface initiation probability. The methodology introduced in this thesis lends itself as a cost-effective platform for development of microstructure-property relations to support design of new or modified alloys, or to more efficiently predict the properties of existing alloys.

  3. Regulation of human fibroblast growth rate by both noncycling cell fraction transition probability is shown by growth in 5-bromodeoxyuridine followed by Hoechst 33258 flow cytometry.

    PubMed Central

    Rabinovitch, P S

    1983-01-01

    Growth of human diploid fibroblasts in the presence of 5-bromodeoxyuridine, followed by flow cytometric analysis of DNA-specific fluorescence with Hoechst 33258 dye, allows quantitation of the proportion of cells that have not cycled, as well as those in G1 and G2 of two subsequent cell cycles. This technique allows rapid and accurate quantitation of the growth fraction and G1/S transition rate of these cells. The cell cycle kinetics of human diploid fibroblasts at all population doubling levels reveal two components: cycling cells showing a probabilistic rate of G1/S transition, and a variable proportion of noncycling cells. Both the transition probability (rate of exit from G1) and the noncycling proportion of cells change systematically as a function of serum concentration and as a function of population doubling level. The data suggest the existence of an underlying heterogeneity in the population of human diploid fibroblasts with respect to the capacity to divide in the presence of a given concentration of mitogen. Models of cell cycle kinetics must be modified to include regulation of growth by changes in the fraction of cycling cells, as well as by changes in the rate of exit from G1. PMID:6190165

  4. Electron impact excitation of Mg VIII . Collision strengths, transition probabilities and theoretical EUV and soft X-ray line intensities for Mg VIII

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Keenan, F. P.

    2013-08-01

    Context. Mg viii emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg viii emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics. Aims: Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg viii ion. The 125 levels arise from the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, 2s23d, 2s2p3s, 2s2p3p, 2s2p3d, 2p23s, 2p23p and 2p23d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg viii models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 Å, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 Å) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data. Methods: The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg viii models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas. Results: The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the

  5. Radiative transition probabilities, lifetimes and dipole moments for the vibrational levels of the X1Sigma+ ground state of 39K85Rb.

    PubMed

    Zemke, Warren T; Stwalley, William C

    2004-01-01

    Using a potential energy curve (based primarily on the RKR potential of Amiot and Verges [J. Chem. Phys. 112, 7068 (2000)]) and a dipole moment function (based primarily on ab initio calculations of Park et al. [Chem. Phys. 257, 135 (2000)]), we have calculated radiative transition probabilities (Einstein A coefficients), radiative lifetimes, and dipole moment expectation values involving all vibrational levels (for several rotational quantum numbers) of the X1Sigma+ ground state of 39K85Rb. We observe that the radiative lifetimes of vibrationally excited levels, in particular, are approximately 10(3)-10(6) seconds, far too long to be significant in most ultracold experiments involving 39K85Rb or its isotopomers. Comparison with other molecules (LiH and HF) suggests that simple scaling (A approximately mu2nu3 approximately tau(-1)) will predict similarly long lifetimes for many other heteronuclear molecules, e.g., RbCs. PMID:15267264

  6. Radiative transition probabilities, lifetimes and dipole moments for the vibrational levels of the X 1Σ+ ground state of 39K85Rb

    NASA Astrophysics Data System (ADS)

    Zemke, Warren T.; Stwalley, William C.

    2004-01-01

    Using a potential energy curve (based primarily on the RKR potential of Amiot and Vergès [J. Chem. Phys. 112, 7068 (2000)]) and a dipole moment function (based primarily on ab initio calculations of Park et al. [Chem. Phys. 257, 135 (2000)]), we have calculated radiative transition probabilities (Einstein A coefficients), radiative lifetimes, and dipole moment expectation values involving all vibrational levels (for several rotational quantum numbers) of the X 1Σ+ ground state of 39K85Rb. We observe that the radiative lifetimes of vibrationally excited levels, in particular, are ˜103-106 seconds, far too long to be significant in most ultracold experiments involving 39K85Rb or its isotopomers. Comparison with other molecules (LiH and HF) suggests that simple scaling (A˜μ2ν3˜τ-1) will predict similarly long lifetimes for many other heteronuclear molecules, e.g., RbCs.

  7. The Neolithic Demographic Transition in Europe: Correlation with Juvenility Index Supports Interpretation of the Summed Calibrated Radiocarbon Date Probability Distribution (SCDPD) as a Valid Demographic Proxy

    PubMed Central

    Downey, Sean S.; Bocaege, Emmy; Kerig, Tim; Edinborough, Kevan; Shennan, Stephen

    2014-01-01

    Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture. PMID:25153481

  8. Energy levels, oscillator strengths and transition probabilities for Si-like P II, S III, Cl IV, Ar V and K VI

    SciTech Connect

    Abou El-Maaref, A.; Uosif, M.A.M.; Allam, S.H.; El-Sherbini, Th.M.

    2012-07-15

    Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, 3s{sup 2}3p5s and 3s{sup 2}3p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.

  9. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  10. Relative transition probabilities for krypton.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1972-01-01

    First experimental line strength data for the visible Kr II lines and for several of the more prominent Kr I lines are given. The spectroscopic light source used is the thermal plasma behind the reflected shock wave in a gas-driven shock tube. A 3/4-m spectrograph and a 1-m spectrograph were employed simultaneously to provide redundant photometry. The data are compared with other measurements and with theoretical calculations.

  11. Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations

    NASA Astrophysics Data System (ADS)

    Shimada, Mitsuhiro; Watanabe, Shin; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu

    2016-06-01

    We perform simultaneous analysis of (1) matter radii, (2) B (E 2 ;0+→2+) transition probabilities, and (3) excitation energies, E (2+) and E (4+) , for Mg-4024 by using the beyond-mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric β2 deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for rm,B (E 2 ) , and E (2+) and E (4+) , indicating that it is quite useful for data analysis; particularly for low-lying states. We also discuss the absolute value of the deformation parameter β2 deduced from measured values of B (E 2 ) and rm. This framework makes it possible to investigate the effects of β2 deformation, the change in β2 due to restoration of rotational symmetry, β2 configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation, we clarify which effect is important for each of the three measurements and propose the kinds of BMF calculations that are practical for each of the three kinds of observables.

  12. A differential equation for the transition probability B(E2)↑ and the resulting recursion relations connecting even-even nuclei

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Nayak, R. C.

    2014-04-01

    We obtain here a new relation for the reduced electric quadrupole transition probability B(E2)↑ of a given nucleus in terms of its derivatives with respect to neutron and proton numbers based on a similar local energy relation in the Infinite Nuclear Matter (INM) model of atomic nuclei, which is essentially built on the foundation of the Hugenholtz-Van Hove (HVH) theorem of many-body theory. Obviously, such a relation in the form of a differential equation is expected to be more powerful than the usual algebraic difference equations. Although the relation for B(E2)↑ has been perceived simply on the basis of a corresponding differential equation for the local energy in the INM model, its theoretical foundation otherwise has been clearly demonstrated. We further exploit the differential equation in using the very definitions of the derivatives to obtain two different recursion relations for B(E2)↑, connecting in each case three neighboring even-even nuclei from lower to higher mass numbers and vice versa. We demonstrate their numerical validity using available data throughout the nuclear chart and also explore their possible utility in predicting B(E2)↑ values.

  13. First-principles relativistic calculations of the fine-structure intervals and magnetic dipole transition probabilities in the 1 s sup 2 2 p configuration of the lithium isoelectric sequence

    SciTech Connect

    Das, B.P.; Venugopal, E.P. ); Idrees, M. )

    1990-12-01

    We present the results of our first-principles relativistic calculations of the fine-structure intervals and magnetic dipole transition probabilities for the 1{ital s}{sup 2}2{ital p} configuration of the lithium isoelectronic sequence using a variational approach. The contributions of the Breit interaction and approximate Lamb-shift corrections are incorporated via first-order perturbation theory. Our results of the fine-structure intervals are in good agreement with experiment, but experimental data for the magnetic dipole transition probabilities are not available for comparison with our calculations.

  14. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  15. Why Probability?

    ERIC Educational Resources Information Center

    Weatherly, Myra S.

    1984-01-01

    Instruction in mathematical probability to enhance higher levels of critical and creative thinking with gifted students is described. Among thinking skills developed by such an approach are analysis, synthesis, evaluation, fluency, and complexity. (CL)

  16. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  17. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  18. VESPA: False positive probabilities calculator

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.

    2015-03-01

    Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA) calculates false positive probabilities and statistically validates transiting exoplanets. Written in Python, it uses isochrones [ascl:1503.010] and the package simpledist.

  19. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  20. Spin-statistic selection rules for multiphoton transitions: Application to helium atoms

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.; Plunien, G.

    2016-01-01

    A theoretical investigation of the three-photon transition rates 2 1P1→2 1S0,1 1S0 and 2 3P2→2 1S0,1 1S0 for the helium atom is presented. Photon energy distributions and precise values of the nonrelativistic transition rates are obtained with employment of correlated wave functions of the Hylleraas type. The possible experiments for the tests of the Bose-Einstein statistics for multiphoton systems are discussed.

  1. K{beta}/K{alpha} X-Ray Transition-Probability Ratios for 8 Elements in the range 69 {<=} Z {<=} 76

    SciTech Connect

    Kaya, N.; Tirasoglu, E.; Aylikci, V.; Cengiz, E.

    2007-04-23

    K{beta}/K{alpha} X-ray transition-probabilitiy ratios for 8 elements in the range 69 {<=} Z {<=} 76 were measured with an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. The characteristic K X-rays were produced by a 25 mCi 57Co annular source. Experimental results have been compared with theoretically calculated values and other available experimental results.

  2. The role of the transition state in polyatomic reactions: Initial state-selected reaction probabilities of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction

    SciTech Connect

    Welsch, Ralph Manthe, Uwe

    2014-11-07

    Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H–H–CH{sub 3}-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

  3. Measurement of the O{sub 2} (b{sup 1{Sigma}}{sub g}{sup +} {yields} a{sup 1{Delta}}{sub g}) transition probability by the method of intracavity laser spectroscopy

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Podmar'kov, Yu P; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P

    2005-04-30

    The method of intracavity laser spectroscopy using a Co:MgF{sub 2} laser is applied to record the absorption spectra from the first excited a{sup 1{Delta}}{sub g} state of gaseous molecular oxygen at the a{sup 1{Delta}}{sub g} {yields} b{sup 1{Sigma}}{sub g}{sup +} transition at 1.91 {mu}m. The gas flow from a chemical singlet oxygen generator with a known concentration of singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g}) was supplied to the cavity of the Co:MgF{sub 2} laser. The absorption line intensities are measured for five spectral lines of the Q-branch of the 0-0 vibrational band for the a{sup 1{Delta}}{sub g} {yields} b{sup 1{Sigma}}{sub g}{sup +} transition. The O{sub 2} (b{sup 1{Sigma}}{sub g}{sup +} {yields} a{sup 1{Delta}}{sub g}) transition probability calculated from these data was (1.20 {+-} 0.25) x 10{sup -3} s{sup -1}. (laser applications and other topics in quantum electronics)

  4. Stretching Probability Explorations with Geoboards

    ERIC Educational Resources Information Center

    Wheeler, Ann; Champion, Joe

    2016-01-01

    Students are faced with many transitions in their middle school mathematics classes. To build knowledge, skills, and confidence in the key areas of algebra and geometry, students often need to practice using numbers and polygons in a variety of contexts. Teachers also want students to explore ideas from probability and statistics. Teachers know…

  5. Effect of the Framework Convention on Tobacco Control and Voluntary Industry Health Warning Labels on Passage of Mandated Cigarette Warning Labels From 1965 to 2012: Transition Probability and Event History Analyses

    PubMed Central

    Sanders-Jackson, Ashley N.; Song, Anna V.; Hiilamo, Heikki

    2013-01-01

    Objectives. We quantified the pattern and passage rate of cigarette package health warning labels (HWLs), including the effect of the Framework Convention on Tobacco Control (FCTC) and HWLs voluntarily implemented by tobacco companies. Methods. We used transition probability matrices to describe the pattern of HWL passage and change rate in 4 periods. We used event history analysis to estimate the effect of the FCTC on adoption and to compare that effect between countries with voluntary and mandatory HWLs. Results. The number of HWLs passed during each period accelerated, from a transition rate among countries that changed from 2.42 per year in 1965–1977 to 6.71 in 1977–1984, 8.42 in 1984–2003, and 22.33 in 2003–2012. The FCTC significantly accelerated passage of FCTC-compliant HWLs for countries with initially mandatory policies with a hazard of 1.27 per year (95% confidence interval = 1.11, 1.45), but only marginally increased the hazard for countries that had an industry voluntary HWL of 1.68 per year (95% confidence interval = 0.95, 2.97). Conclusions. Passage of HWLs is accelerating, and the FCTC is associated with further acceleration. Industry voluntary HWLs slowed mandated HWLs. PMID:24028248

  6. Infants Segment Continuous Events Using Transitional Probabilities

    ERIC Educational Resources Information Center

    Stahl, Aimee E.; Romberg, Alexa R.; Roseberry, Sarah; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Throughout their 1st year, infants adeptly detect statistical structure in their environment. However, little is known about whether statistical learning is a primary mechanism for event segmentation. This study directly tests whether statistical learning alone is sufficient to segment continuous events. Twenty-eight 7- to 9-month-old infants…

  7. Probability 1/e

    ERIC Educational Resources Information Center

    Koo, Reginald; Jones, Martin L.

    2011-01-01

    Quite a number of interesting problems in probability feature an event with probability equal to 1/e. This article discusses three such problems and attempts to explain why this probability occurs with such frequency.

  8. IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce II, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY

    SciTech Connect

    Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J.; Ivans, I. I. E-mail: eadenhar@wisc.edu E-mail: cowan@nhn.ou.edu

    2009-05-15

    Recent radiative lifetime measurements accurate to {+-}5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log {epsilon} = 1.61 {+-} 0.01 ({sigma} = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log {epsilon} = 1.61 {+-} 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17{sup 0}3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of {+-}0.01 dex similar to the solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process-only model predictions for solar system material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretation for Pr, Dy, and Tm.

  9. Probability and Relative Frequency

    NASA Astrophysics Data System (ADS)

    Drieschner, Michael

    2016-01-01

    The concept of probability seems to have been inexplicable since its invention in the seventeenth century. In its use in science, probability is closely related with relative frequency. So the task seems to be interpreting that relation. In this paper, we start with predicted relative frequency and show that its structure is the same as that of probability. I propose to call that the `prediction interpretation' of probability. The consequences of that definition are discussed. The "ladder"-structure of the probability calculus is analyzed. The expectation of the relative frequency is shown to be equal to the predicted relative frequency. Probability is shown to be the most general empirically testable prediction.

  10. Evolution and Probability.

    ERIC Educational Resources Information Center

    Bailey, David H.

    2000-01-01

    Some of the most impressive-sounding criticisms of the conventional theory of biological evolution involve probability. Presents a few examples of how probability should and should not be used in discussing evolution. (ASK)

  11. BIODEGRADATION PROBABILITY PROGRAM (BIODEG)

    EPA Science Inventory

    The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...

  12. Probability on a Budget.

    ERIC Educational Resources Information Center

    Ewbank, William A.; Ginther, John L.

    2002-01-01

    Describes how to use common dice numbered 1-6 for simple mathematical situations including probability. Presents a lesson using regular dice and specially marked dice to explore some of the concepts of probability. (KHR)

  13. Dependent Probability Spaces

    ERIC Educational Resources Information Center

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  14. Searching with probabilities

    SciTech Connect

    Palay, A.J.

    1985-01-01

    This book examines how probability distributions can be used as a knowledge representation technique. It presents a mechanism that can be used to guide a selective search algorithm to solve a variety of tactical chess problems. Topics covered include probabilities and searching the B algorithm and chess probabilities - in practice, examples, results, and future work.

  15. Dipole moments and transition probabilities of the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u systems of molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Dalgarno, A.

    1992-01-01

    Bonn-Oppenheimer-based ab initio calculations of dipole moments from the i 3Pi sub g-b 3Sigma(+) sub u, c 3Pi sub u-a 3Sigma(+) sub g, and i 3Pi sub g-c 3Pi sub u transitions of H2 have been conducted, to yield a tabulation of the dipole transition probabilities and Franck-Condon factors. These factors are given for transitions originating in the lowest vibrational level of the ground X 1Sigma(+) sub g state.

  16. The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer's disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore.

    PubMed

    Toglia, Patrick; Ullah, Ghanim

    2016-07-01

    Mutants in presenilins (PS1 or PS2) are the major cause of familial Alzheimer's disease (FAD). They affect intracellular Ca(2+) homeostasis by increasing the open probability (Po) of inositol 1,4,5-trisposphate (IP3) receptor (IP3R) Ca(2+) release channel located on the endoplasmic reticulum (ER) leading to exaggerated Ca(2+) release into a cytoplasmic microdomain formed by neighboring cluster of a few IP3R channels and mitochondrial Ca(2+) uniporter (MCU). Ca(2+) concentration in the microdomain ( [Formula: see text] ) depends on the distance between the cluster and MCU (r); the number of IP3R in the cluster releasing Ca(2+) to the cytoplasm ( [Formula: see text] ), and Po of IP3R. Using experimental whole-cell IP3R-mediated cytosolic Ca(2+) data, in conjunction with a computational model of cell bioenergetics, a data-driven Markov chain model for IP3R gating, and a model for the dynamics of the mitochondrial permeability transition pore (PTP), we explore differences in mitochondrial Ca(2+) uptake in cells expressing wild type (PS1-WT) and FAD-causing mutant (PS1-M146L) PS. We find that increased mitochondrial [Formula: see text] due to the gain-of-function enhancement of IP3R channels in the cells expressing PS1-M146L leads to the opening of PTP in high conductance state (PTPh), where the latency of opening is inversely correlated with r and proportional to [Formula: see text] . Furthermore, we observe diminished inner mitochondrial membrane potential (ΔΨm), [NADH], [Formula: see text] , and [ATP] when PTP opens. Additionally, we explore how parameters such as the pH gradient, inorganic phosphate concentration, and the rate of the Na(+)/Ca(2+)-exchanger affect the latency of PTP to open in PTPh. PMID:27184076

  17. In All Probability, Probability is not All

    ERIC Educational Resources Information Center

    Helman, Danny

    2004-01-01

    The national lottery is often portrayed as a game of pure chance with no room for strategy. This misperception seems to stem from the application of probability instead of expectancy considerations, and can be utilized to introduce the statistical concept of expectation.

  18. Derivation of quantum probability from measurement

    NASA Astrophysics Data System (ADS)

    Herbut, Fedor

    2016-05-01

    To begin with, it is pointed out that the form of the quantum probability formula originates in the very initial state of the object system as seen when the state is expanded with the eigenprojectors of the measured observable. Making use of the probability reproducibility condition, which is a key concept in unitary measurement theory, one obtains the relevant coherent distribution of the complete-measurement results in the final unitary-measurement state in agreement with the mentioned probability formula. Treating the transition from the final unitary, or premeasurement, state, where all possible results are present, to one complete-measurement result sketchily in the usual way, the well-known probability formula is derived. In conclusion it is pointed out that the entire argument is only formal unless one makes it physical assuming that the quantum probability law is valid in the extreme case of probability-one (certain) events (projectors).

  19. Cumulative reaction probabilities and transition state properties: A study of the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} proton exchange reactions

    SciTech Connect

    Jambrina, P. G.; Aoiz, F. J.; Eyles, C. J.; Herrero, V. J.; Saez Rabanos, V.

    2009-05-14

    Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H{sup +}+H{sub 2} and H{sup +}+D{sub 2} reactions at collision energies up to 1.2 eV and total angular momentum J=0-4. A marked resonance structure is found in the QM CRP, most especially for the H{sub 3}{sup +} system and J=0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H{sup +}+D{sub 2} isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H{sup +}+D{sub 2} reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by

  20. Single-case probabilities

    NASA Astrophysics Data System (ADS)

    Miller, David

    1991-12-01

    The propensity interpretation of probability, bred by Popper in 1957 (K. R. Popper, in Observation and Interpretation in the Philosophy of Physics, S. Körner, ed. (Butterworth, London, 1957, and Dover, New York, 1962), p. 65; reprinted in Popper Selections, D. W. Miller, ed. (Princeton University Press, Princeton, 1985), p. 199) from pure frequency stock, is the only extant objectivist account that provides any proper understanding of single-case probabilities as well as of probabilities in ensembles and in the long run. In Sec. 1 of this paper I recall salient points of the frequency interpretations of von Mises and of Popper himself, and in Sec. 2 I filter out from Popper's numerous expositions of the propensity interpretation its most interesting and fertile strain. I then go on to assess it. First I defend it, in Sec. 3, against recent criticisms (P. Humphreys, Philos. Rev. 94, 557 (1985); P. Milne, Erkenntnis 25, 129 (1986)) to the effect that conditional [or relative] probabilities, unlike absolute probabilities, can only rarely be made sense of as propensities. I then challenge its predominance, in Sec. 4, by outlining a rival theory: an irreproachably objectivist theory of probability, fully applicable to the single case, that interprets physical probabilities as instantaneous frequencies.

  1. Probability with Roulette

    ERIC Educational Resources Information Center

    Marshall, Jennings B.

    2007-01-01

    This article describes how roulette can be used to teach basic concepts of probability. Various bets are used to illustrate the computation of expected value. A betting system shows variations in patterns that often appear in random events.

  2. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  3. Experimental Probability in Elementary School

    ERIC Educational Resources Information Center

    Andrew, Lane

    2009-01-01

    Concepts in probability can be more readily understood if students are first exposed to probability via experiment. Performing probability experiments encourages students to develop understandings of probability grounded in real events, as opposed to merely computing answers based on formulae.

  4. Acceptance, values, and probability.

    PubMed

    Steel, Daniel

    2015-10-01

    This essay makes a case for regarding personal probabilities used in Bayesian analyses of confirmation as objects of acceptance and rejection. That in turn entails that personal probabilities are subject to the argument from inductive risk, which aims to show non-epistemic values can legitimately influence scientific decisions about which hypotheses to accept. In a Bayesian context, the argument from inductive risk suggests that value judgments can influence decisions about which probability models to accept for likelihoods and priors. As a consequence, if the argument from inductive risk is sound, then non-epistemic values can affect not only the level of evidence deemed necessary to accept a hypothesis but also degrees of confirmation themselves. PMID:26386533

  5. Approximating Integrals Using Probability

    ERIC Educational Resources Information Center

    Maruszewski, Richard F., Jr.; Caudle, Kyle A.

    2005-01-01

    As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…

  6. Varga: On Probability.

    ERIC Educational Resources Information Center

    Varga, Tamas

    This booklet resulted from a 1980 visit by the author, a Hungarian mathematics educator, to the Teachers' Center Project at Southern Illinois University at Edwardsville. Included are activities and problems that make probablility concepts accessible to young children. The topics considered are: two probability games; choosing two beads; matching…

  7. Application of Quantum Probability

    NASA Astrophysics Data System (ADS)

    Bohdalová, Mária; Kalina, Martin; Nánásiová, Ol'ga

    2009-03-01

    This is the first attempt to smooth time series using estimators with applying quantum probability with causality (non-commutative s-maps on an othomodular lattice). In this context it means that we use non-symmetric covariance matrix to construction of our estimator.

  8. Univariate Probability Distributions

    ERIC Educational Resources Information Center

    Leemis, Lawrence M.; Luckett, Daniel J.; Powell, Austin G.; Vermeer, Peter E.

    2012-01-01

    We describe a web-based interactive graphic that can be used as a resource in introductory classes in mathematical statistics. This interactive graphic presents 76 common univariate distributions and gives details on (a) various features of the distribution such as the functional form of the probability density function and cumulative distribution…

  9. Waste Package Misload Probability

    SciTech Connect

    J.K. Knudsen

    2001-11-20

    The objective of this calculation is to calculate the probability of occurrence for fuel assembly (FA) misloads (i.e., Fa placed in the wrong location) and FA damage during FA movements. The scope of this calculation is provided by the information obtained from the Framatome ANP 2001a report. The first step in this calculation is to categorize each fuel-handling events that occurred at nuclear power plants. The different categories are based on FAs being damaged or misloaded. The next step is to determine the total number of FAs involved in the event. Using the information, a probability of occurrence will be calculated for FA misload and FA damage events. This calculation is an expansion of preliminary work performed by Framatome ANP 2001a.

  10. Effects of Neutrino Decay on Oscillation Probabilities

    NASA Astrophysics Data System (ADS)

    Leonard, Kayla; de Gouvêa, André

    2016-01-01

    It is now well accepted that neutrinos oscillate as a quantum mechanical result of a misalignment between their mass-eigenstates and the flavor-eigenstates. We study neutrino decay—the idea that there may be new, light states that the three Standard Model flavors may be able to decay into. We consider what effects this neutrino decay would have on the observed oscillation probabilities.The Hamiltonian governs how the states change with time, so we use it to calculate an oscillation amplitude, and from that, the oscillation probability. We simplify the theoretical probabilities using results from experimental data, such as the neutrino mixing angles and mass differences. By exploring what values of the decay parameters are physically allowable, we can begin to understand just how large the decay parameters can be. We compare the probabilities in the case of no neutrino decay and in the case of maximum neutrino decay to determine how much of an effect neutrino decay could have on observations, and discuss the ability of future experiments to detect these differences.We also examine neutrino decay in the realm of CP invariance, and found that it is a new source of CP violation. Our work indicates that there is a difference in the oscillation probabilities between particle transitions and their corresponding antiparticle transitions. If neutrino decay were proven true, it could be an important factor in understanding leptogenesis and the particle-antiparticle asymmetry present in our Universe.

  11. Probability mapping of contaminants

    SciTech Connect

    Rautman, C.A.; Kaplan, P.G.; McGraw, M.A.; Istok, J.D.; Sigda, J.M.

    1994-04-01

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).

  12. Measurement Uncertainty and Probability

    NASA Astrophysics Data System (ADS)

    Willink, Robin

    2013-02-01

    Part I. Principles: 1. Introduction; 2. Foundational ideas in measurement; 3. Components of error or uncertainty; 4. Foundational ideas in probability and statistics; 5. The randomization of systematic errors; 6. Beyond the standard confidence interval; Part II. Evaluation of Uncertainty: 7. Final preparation; 8. Evaluation using the linear approximation; 9. Evaluation without the linear approximations; 10. Uncertainty information fit for purpose; Part III. Related Topics: 11. Measurement of vectors and functions; 12. Why take part in a measurement comparison?; 13. Other philosophies; 14. An assessment of objective Bayesian methods; 15. A guide to the expression of uncertainty in measurement; 16. Measurement near a limit - an insoluble problem?; References; Index.

  13. [On Atomic Nuclear Fusion Processes at Low-Temperatures. An Enhancement of the Probability of Transition through a Potential Barrier Due to the So-Called Barrier Anti-Zeno Effect].

    PubMed

    Namiot, V A

    2016-01-01

    It is known that in quantum mechanics the act of observing the experiment can affect the experimental findings in some cases. In particular, it happens under the so-called Zeno effect. In this work it is shown that in contrast to the "standard" Zeno-effect where the act of observing a process reduces the probability of its reality, an inverse situation when a particle transmits through a potential barrier (a so-called barrier anti-Zeno effect) can be observed, the observation of the particle essentially increases the probability of its transmission through the barrier. The possibility of using the barrier anti-Zeno effect is discussed to explain paradoxical results of experiments on "cold nuclear fusion" observed in various systems including biological ones. (According to the observers who performed the observations, the energy generation, which could not be explained by any chemical processes, as well as the change in the isotope and even element composition of the studied object may occur in these systems. PMID:27192844

  14. The cumulative reaction probability as eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe; Miller, William H.

    1993-09-01

    It is shown that the cumulative reaction probability for a chemical reaction can be expressed (absolutely rigorously) as N(E)=∑kpk(E), where {pk} are the eigenvalues of a certain Hermitian matrix (or operator). The eigenvalues {pk} all lie between 0 and 1 and thus have the interpretation as probabilities, eigenreaction probabilities which may be thought of as the rigorous generalization of the transmission coefficients for the various states of the activated complex in transition state theory. The eigenreaction probabilities {pk} can be determined by diagonalizing a matrix that is directly available from the Hamiltonian matrix itself. It is also shown how a very efficient iterative method can be used to determine the eigenreaction probabilities for problems that are too large for a direct diagonalization to be possible. The number of iterations required is much smaller than that of previous methods, approximately the number of eigenreaction probabilities that are significantly different from zero. All of these new ideas are illustrated by application to three model problems—transmission through a one-dimensional (Eckart potential) barrier, the collinear H+H2→H2+H reaction, and the three-dimensional version of this reaction for total angular momentum J=0.

  15. Emptiness Formation Probability

    NASA Astrophysics Data System (ADS)

    Crawford, Nicholas; Ng, Stephen; Starr, Shannon

    2016-08-01

    We present rigorous upper and lower bounds on the emptiness formation probability for the ground state of a spin-1/2 Heisenberg XXZ quantum spin system. For a d-dimensional system we find a rate of decay of the order {exp(-c L^{d+1})} where L is the sidelength of the box in which we ask for the emptiness formation event to occur. In the {d=1} case this confirms previous predictions made in the integrable systems community, though our bounds do not achieve the precision predicted by Bethe ansatz calculations. On the other hand, our bounds in the case {d ≥ 2} are new. The main tools we use are reflection positivity and a rigorous path integral expansion, which is a variation on those previously introduced by Toth, Aizenman-Nachtergaele and Ueltschi.

  16. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  17. Classical and Quantum Probability for Biologists - Introduction

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei.

    2010-01-01

    The aim of this review (oriented to biologists looking for applications of QM) is to provide a detailed comparative analysis of classical (Kolmogorovian) and quantum (Dirac-von Neumann) models. We will stress differences in the definition of conditional probability and as a consequence in the structures of matrices of transition probabilities, especially the condition of double stochasticity which arises naturally in QM. One of the most fundamental differences between two models is deformation of the classical formula of total probability (FTP) which plays an important role in statistics and decision making. An additional term appears in the QM-version of FTP - so called interference term. Finally, we discuss Bell's inequality and show that the common viewpoint that its violation induces either nonlocality or "death of realism" has not been completely justified. For us it is merely a sign of non-Kolmogorovianity of probabilistic data collected in a few experiments with incompatible setups of measurement devices.

  18. A Tale of Two Probabilities

    ERIC Educational Resources Information Center

    Falk, Ruma; Kendig, Keith

    2013-01-01

    Two contestants debate the notorious probability problem of the sex of the second child. The conclusions boil down to explication of the underlying scenarios and assumptions. Basic principles of probability theory are highlighted.

  19. The Probability of Causal Conditionals

    ERIC Educational Resources Information Center

    Over, David E.; Hadjichristidis, Constantinos; Evans, Jonathan St. B. T.; Handley, Simon J.; Sloman, Steven A.

    2007-01-01

    Conditionals in natural language are central to reasoning and decision making. A theoretical proposal called the Ramsey test implies the conditional probability hypothesis: that the subjective probability of a natural language conditional, P(if p then q), is the conditional subjective probability, P(q [such that] p). We report three experiments on…

  20. Quantum probability and many worlds

    NASA Astrophysics Data System (ADS)

    Hemmo, Meir; Pitowsky, Itamar

    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the non-probabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability rule in the many worlds theory. Our conclusion is that the many worlds theory fails to account for the probabilistic statements of standard (collapse) quantum mechanics.

  1. Probability workshop to be better in probability topic

    NASA Astrophysics Data System (ADS)

    Asmat, Aszila; Ujang, Suriyati; Wahid, Sharifah Norhuda Syed

    2015-02-01

    The purpose of the present study was to examine whether statistics anxiety and attitudes towards probability topic among students in higher education level have an effect on their performance. 62 fourth semester science students were given statistics anxiety questionnaires about their perception towards probability topic. Result indicated that students' performance in probability topic is not related to anxiety level, which means that the higher level in statistics anxiety will not cause lower score in probability topic performance. The study also revealed that motivated students gained from probability workshop ensure that their performance in probability topic shows a positive improvement compared before the workshop. In addition there exists a significance difference in students' performance between genders with better achievement among female students compared to male students. Thus, more initiatives in learning programs with different teaching approaches is needed to provide useful information in improving student learning outcome in higher learning institution.

  2. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  3. Integrated analysis of incidence, progression, regression and disappearance probabilities

    PubMed Central

    Huang, Guan-Hua

    2008-01-01

    Background Age-related maculopathy (ARM) is a leading cause of vision loss in people aged 65 or older. ARM is distinctive in that it is a disease which can transition through incidence, progression, regression and disappearance. The purpose of this study is to develop methodologies for studying the relationship of risk factors with different transition probabilities. Methods Our framework for studying this relationship includes two different analytical approaches. In the first approach, one can define, model and estimate the relationship between each transition probability and risk factors separately. This approach is similar to constraining a population to a certain disease status at the baseline, and then analyzing the probability of the constrained population to develop a different status. While this approach is intuitive, one risks losing available information while at the same time running into the problem of insufficient sample size. The second approach specifies a transition model for analyzing such a disease. This model provides the conditional probability of a current disease status based upon a previous status, and can therefore jointly analyze all transition probabilities. Throughout the paper, an analysis to determine the birth cohort effect on ARM is used as an illustration. Results and conclusion This study has found parallel separate and joint analyses to be more enlightening than any analysis in isolation. By implementing both approaches, one can obtain more reliable and more efficient results. PMID:18577235

  4. PROBABILITY SURVEYS, CONDITIONAL PROBABILITIES, AND ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as U.S. Environmental Protection Agency's (U.S. EPA) Environmental Monitoring and Asscssment Program EMAP) can be analyzed with a conditional probability analysis (CPA) to conduct quantitative probabi...

  5. Probability Surveys, Conditional Probability, and Ecological Risk Assessment

    EPA Science Inventory

    We show that probability-based environmental resource monitoring programs, such as the U.S. Environmental Protection Agency’s (U.S. EPA) Environmental Monitoring and Assessment Program, and conditional probability analysis can serve as a basis for estimating ecological risk over ...

  6. The relationship between species detection probability and local extinction probability

    USGS Publications Warehouse

    Alpizar-Jara, R.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Pollock, K.H.; Rosenberry, C.S.

    2004-01-01

    In community-level ecological studies, generally not all species present in sampled areas are detected. Many authors have proposed the use of estimation methods that allow detection probabilities that are <1 and that are heterogeneous among species. These methods can also be used to estimate community-dynamic parameters such as species local extinction probability and turnover rates (Nichols et al. Ecol Appl 8:1213-1225; Conserv Biol 12:1390-1398). Here, we present an ad hoc approach to estimating community-level vital rates in the presence of joint heterogeneity of detection probabilities and vital rates. The method consists of partitioning the number of species into two groups using the detection frequencies and then estimating vital rates (e.g., local extinction probabilities) for each group. Estimators from each group are combined in a weighted estimator of vital rates that accounts for the effect of heterogeneity. Using data from the North American Breeding Bird Survey, we computed such estimates and tested the hypothesis that detection probabilities and local extinction probabilities were negatively related. Our analyses support the hypothesis that species detection probability covaries negatively with local probability of extinction and turnover rates. A simulation study was conducted to assess the performance of vital parameter estimators as well as other estimators relevant to questions about heterogeneity, such as coefficient of variation of detection probabilities and proportion of species in each group. Both the weighted estimator suggested in this paper and the original unweighted estimator for local extinction probability performed fairly well and provided no basis for preferring one to the other.

  7. The Probabilities of Conditionals Revisited

    ERIC Educational Resources Information Center

    Douven, Igor; Verbrugge, Sara

    2013-01-01

    According to what is now commonly referred to as "the Equation" in the literature on indicative conditionals, the probability of any indicative conditional equals the probability of its consequent of the conditional given the antecedent of the conditional. Philosophers widely agree in their assessment that the triviality arguments of…

  8. Minimizing the probable maximum flood

    SciTech Connect

    Woodbury, M.S.; Pansic, N. ); Eberlein, D.T. )

    1994-06-01

    This article examines Wisconsin Electric Power Company's efforts to determine an economical way to comply with Federal Energy Regulatory Commission requirements at two hydroelectric developments on the Michigamme River. Their efforts included refinement of the area's probable maximum flood model based, in part, on a newly developed probable maximum precipitation estimate.

  9. Decision analysis with approximate probabilities

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas

    1992-01-01

    This paper concerns decisions under uncertainty in which the probabilities of the states of nature are only approximately known. Decision problems involving three states of nature are studied. This is due to the fact that some key issues do not arise in two-state problems, while probability spaces with more than three states of nature are essentially impossible to graph. The primary focus is on two levels of probabilistic information. In one level, the three probabilities are separately rounded to the nearest tenth. This can lead to sets of rounded probabilities which add up to 0.9, 1.0, or 1.1. In the other level, probabilities are rounded to the nearest tenth in such a way that the rounded probabilities are forced to sum to 1.0. For comparison, six additional levels of probabilistic information, previously analyzed, were also included in the present analysis. A simulation experiment compared four criteria for decisionmaking using linearly constrained probabilities (Maximin, Midpoint, Standard Laplace, and Extended Laplace) under the eight different levels of information about probability. The Extended Laplace criterion, which uses a second order maximum entropy principle, performed best overall.

  10. Probability of sea level rise

    SciTech Connect

    Titus, J.G.; Narayanan, V.K.

    1995-10-01

    The report develops probability-based projections that can be added to local tide-gage trends to estimate future sea level at particular locations. It uses the same models employed by previous assessments of sea level rise. The key coefficients in those models are based on subjective probability distributions supplied by a cross-section of climatologists, oceanographers, and glaciologists.

  11. Computation of Most Probable Numbers

    PubMed Central

    Russek, Estelle; Colwell, Rita R.

    1983-01-01

    A rapid computational method for maximum likelihood estimation of most-probable-number values, incorporating a modified Newton-Raphson method, is presented. The method offers a much greater reliability for the most-probable-number estimate of total viable bacteria, i.e., those capable of growth in laboratory media. PMID:6870242

  12. Theoretical transition probabilities for the OH Meinel system

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Werner, H.-J.; Rosmus, P.

    1986-01-01

    An electric dipole moment function (EDMF) for the X 2Pi ground state of OH, based on the complete active-space self-consistent field plus a multireference singles-plus-double excitation configuration-interaction procedure (using an extended Slater basis) is reported. Two theoretical EDMFS are considered: the MCSCF (7)-SCEP EDMF of Werner et al., (1983) and a previously unpublished EDMF based on the MCSCF multireference CI(SD) procedure using a large Slater basis. The theoretical treatment follows that of Mies (1974), except that the Hill and Van Vleck (1928) approximation to intermediate coupling is used. This approximation is shown to be accurate to better than 5 percent for the six principal branches of the OH Meinel system.

  13. Transition Probabilities and Different Levels of Prominence in Segmentation

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2013-01-01

    A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…

  14. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy; Loschetter, Annick

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value and to the one of high probability value: the latter value generally supports the call for evacuation. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to >70% could be identified up 4 hours in advance, ~2.5 days before the evacuation call (decided for an eruption probability >80% during the MESIMEX exercise). This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  15. Probability currents and entropy production in nonequilibrium lattice systems

    NASA Astrophysics Data System (ADS)

    Szabó, György; Tomé, Tânia; Borsos, István

    2010-07-01

    The structure of probability currents is studied for the dynamical network after consecutive contraction on two-state, nonequilibrium lattice systems. This procedure allows us to investigate the transition rates between configurations on small clusters and highlights some relevant effects of lattice symmetries on the elementary transitions that are responsible for entropy production. A method is suggested to estimate the entropy production for different levels of approximations (cluster sizes) as demonstrated in the two-dimensional contact process with mutation.

  16. The probabilities of unique events.

    PubMed

    Khemlani, Sangeet S; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  17. The Probabilities of Unique Events

    PubMed Central

    Khemlani, Sangeet S.; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  18. Dinosaurs, Dinosaur Eggs, and Probability.

    ERIC Educational Resources Information Center

    Teppo, Anne R.; Hodgson, Ted

    2001-01-01

    Outlines several recommendations for teaching probability in the secondary school. Offers an activity that employs simulation by hand and using a programmable calculator in which geometry, analytical geometry, and discrete mathematics are explored. (KHR)

  19. Joint probabilities and quantum cognition

    SciTech Connect

    Acacio de Barros, J.

    2012-12-18

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  20. Joint probabilities and quantum cognition

    NASA Astrophysics Data System (ADS)

    de Barros, J. Acacio

    2012-12-01

    In this paper we discuss the existence of joint probability distributions for quantumlike response computations in the brain. We do so by focusing on a contextual neural-oscillator model shown to reproduce the main features of behavioral stimulus-response theory. We then exhibit a simple example of contextual random variables not having a joint probability distribution, and describe how such variables can be obtained from neural oscillators, but not from a quantum observable algebra.

  1. Evaluation of microbial release probabilities

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work undertaken to improve the estimation of the probability of release of microorganisms from unmanned Martian landing spacecraft is summarized. An analytical model is described for the development of numerical values for release parameters and release mechanisms applicable to flight missions are defined. Laboratory test data are used to evolve parameter values for use by flight projects in estimating numerical values for release probabilities. The analysis treats microbial burden located on spacecraft surfaces, between mated surfaces, and encapsulated within materials.

  2. Investigation of Flood Inundation Probability in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Ho; Lai, Yen-Wei; Chang, Tsang-Jung

    2010-05-01

    Taiwan is located at a special point, which is in the path of typhoons from northeast Pacific Ocean. Taiwan is also situated in a tropical-subtropical transition zone. As a result, rainfall is abundant all the year round, especially in summer and autumn. For flood inundation analysis in Taiwan, there exist a lot of uncertainties in hydrological, hydraulic and land-surface topography characteristics, which can change flood inundation characteristics. According to the 7th work item of article 22 in Disaster Prevention and Protection Act in Taiwan, for preventing flood disaster being deteriorating, investigation analysis of disaster potentials, hazardous degree and situation simulation must be proceeded with scientific approaches. However, the flood potential analysis uses a deterministic approach to define flood inundation without considering data uncertainties. This research combines data uncertainty concept in flood inundation maps for showing flood probabilities in each grid. It can be an emergency evacuation basis as typhoons come and extremely torrential rain begin. The research selects Hebauyu watershed of Chiayi County as the demonstration area. Owing to uncertainties of data used, sensitivity analysis is first conducted by using Latin Hypercube sampling (LHS). LHS data sets are next input into an integrated numerical model, which is herein developed to assess flood inundation hazards in coastal lowlands, base on the extension of the 1-D river routing model and the 2-D inundation routing model. Finally, the probability of flood inundation simulation is calculated, and the flood inundation probability maps are obtained. Flood Inundation probability maps can be an alternative of the old flood potential maps for being a regard of building new hydraulic infrastructure in the future.

  3. Joint probability distributions for projection probabilities of random orthonormal states

    NASA Astrophysics Data System (ADS)

    Alonso, L.; Gorin, T.

    2016-04-01

    The quantum chaos conjecture applied to a finite dimensional quantum system implies that such a system has eigenstates that show similar statistical properties as the column vectors of random orthogonal or unitary matrices. Here, we consider the different probabilities for obtaining a specific outcome in a projective measurement, provided the system is in one of its eigenstates. We then give analytic expressions for the joint probability density for these probabilities, with respect to the ensemble of random matrices. In the case of the unitary group, our results can be applied, also, to the phenomenon of universal conductance fluctuations, where the same mathematical quantities describe partial conductances in a two-terminal mesoscopic scattering problem with a finite number of modes in each terminal.

  4. Reference free, high-precision measurements of transition energies in few electron argon ions

    NASA Astrophysics Data System (ADS)

    Szabo, Csilla I.; Amaro, Pedro; Guerra, Mauro; Schlesser, Sophie; Gumberidze, Alexander; Santos, José Paulo; Indelicato, Paul

    2013-04-01

    The use of a vacuum double crystal spectrometer, coupled to an electron-cyclotron resonance ion source (ECRIS), allows to measure low-energy x-ray transitions energies in highly-charged ions with accuracies of the order of a few parts per million. We have used this installation to measure the 1s2p 1 P1 → 1s2 1 S0 diagram line and the 1s2s 3 S1 → 1s2 1 S0 forbidden M1 transition energies in helium-like argon, the 1s2s2p 2 Pj → 1s2 2s 2 S1/2 transitions in lithium-like argon and the 1s2s2 2p 1 P1 → 1s2 2s2 1 S0 transition in beryllium-like argon. These transition measurements have accuracies between 2 and 4 ppm depending on the line intensity. Thanks to the excellent agreement between the simulations and the measurements, we were also able to measure the transition width of all the allowed transitions. The results are compared to recent QED and relativistic many-body calculations.

  5. Imprecise probabilities in engineering analyses

    NASA Astrophysics Data System (ADS)

    Beer, Michael; Ferson, Scott; Kreinovich, Vladik

    2013-05-01

    Probabilistic uncertainty and imprecision in structural parameters and in environmental conditions and loads are challenging phenomena in engineering analyses. They require appropriate mathematical modeling and quantification to obtain realistic results when predicting the behavior and reliability of engineering structures and systems. But the modeling and quantification is complicated by the characteristics of the available information, which involves, for example, sparse data, poor measurements and subjective information. This raises the question whether the available information is sufficient for probabilistic modeling or rather suggests a set-theoretical approach. The framework of imprecise probabilities provides a mathematical basis to deal with these problems which involve both probabilistic and non-probabilistic information. A common feature of the various concepts of imprecise probabilities is the consideration of an entire set of probabilistic models in one analysis. The theoretical differences between the concepts mainly concern the mathematical description of the set of probabilistic models and the connection to the probabilistic models involved. This paper provides an overview on developments which involve imprecise probabilities for the solution of engineering problems. Evidence theory, probability bounds analysis with p-boxes, and fuzzy probabilities are discussed with emphasis on their key features and on their relationships to one another. This paper was especially prepared for this special issue and reflects, in various ways, the thinking and presentation preferences of the authors, who are also the guest editors for this special issue.

  6. Measure and probability in cosmology

    NASA Astrophysics Data System (ADS)

    Schiffrin, Joshua S.; Wald, Robert M.

    2012-07-01

    General relativity has a Hamiltonian formulation, which formally provides a canonical (Liouville) measure on the space of solutions. In ordinary statistical physics, the Liouville measure is used to compute probabilities of macrostates, and it would seem natural to use the similar measure arising in general relativity to compute probabilities in cosmology, such as the probability that the Universe underwent an era of inflation. Indeed, a number of authors have used the restriction of this measure to the space of homogeneous and isotropic universes with scalar field matter (minisuperspace)—namely, the Gibbons-Hawking-Stewart measure—to make arguments about the likelihood of inflation. We argue here that there are at least four major difficulties with using the measure of general relativity to make probability arguments in cosmology: (1) Equilibration does not occur on cosmological length scales. (2) Even in the minisuperspace case, the measure of phase space is infinite and the computation of probabilities depends very strongly on how the infinity is regulated. (3) The inhomogeneous degrees of freedom must be taken into account (we illustrate how) even if one is interested only in universes that are very nearly homogeneous. The measure depends upon how the infinite number of degrees of freedom are truncated, and how one defines “nearly homogeneous.” (4) In a Universe where the second law of thermodynamics holds, one cannot make use of our knowledge of the present state of the Universe to retrodict the likelihood of past conditions.

  7. Calculations of Cascade Decay Processes Using Rudimentary Probability Theory.

    ERIC Educational Resources Information Center

    Zivitz, Maury

    1979-01-01

    Presents a new derivation based on simple theorems of probability theory for the established system of equations describing successive decay transitions of quantum systems. It is indicated that this derivation that has a quantum-mechanical foundation might be more appealing to applied physicists than other derivations. (HM)

  8. Anticipating abrupt shifts in temporal evolution of probability of eruption

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Loschetter, A.

    2016-04-01

    Estimating the probability of eruption by jointly accounting for different sources of monitoring parameters over time is a key component for volcano risk management. In the present study, we are interested in the transition from a state of low-to-moderate probability value to a state of high probability value. By using the data of MESIMEX exercise at the Vesuvius volcano, we investigated the potential for time-varying indicators related to the correlation structure or to the variability of the probability time series for detecting in advance this critical transition. We found that changes in the power spectra and in the standard deviation estimated over a rolling time window both present an abrupt increase, which marks the approaching shift. Our numerical experiments revealed that the transition from an eruption probability of 10-15% to > 70% could be identified up to 1-3 h in advance. This additional lead time could be useful to place different key services (e.g., emergency services for vulnerable groups, commandeering additional transportation means, etc.) on a higher level of alert before the actual call for evacuation.

  9. Flood hazard probability mapping method

    NASA Astrophysics Data System (ADS)

    Kalantari, Zahra; Lyon, Steve; Folkeson, Lennart

    2015-04-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. Factors such as topography, land use, soil data and other PCDs were analysed in terms of their relative importance for flood generation. The specific objective was to test the methodology using statistical methods to identify factors having a significant role on controlling flooding. A second objective was to generate an index quantifying flood probability value for each cell, based on different weighted factors, in order to provide a more accurate analysis of potential high flood hazards than can be obtained using just a single variable. The ability of indicator covariance to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. By using PCD data, realistic representations of high probability flood regions was made, despite the magnitude of rain events. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  10. Interference of probabilities in dynamics

    SciTech Connect

    Zak, Michail

    2014-08-15

    A new class of dynamical systems with a preset type of interference of probabilities is introduced. It is obtained from the extension of the Madelung equation by replacing the quantum potential with a specially selected feedback from the Liouville equation. It has been proved that these systems are different from both Newtonian and quantum systems, but they can be useful for modeling spontaneous collective novelty phenomena when emerging outputs are qualitatively different from the weighted sum of individual inputs. Formation of language and fast decision-making process as potential applications of the probability interference is discussed.

  11. Probability as a Physical Motive

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    2007-06-01

    Recent theoretical progress in nonequilibrium thermodynamics, linking thephysical principle of Maximum Entropy Production (“MEP”) to the information-theoretical“MaxEnt” principle of scientific inference, together with conjectures from theoreticalphysics that there may be no fundamental causal laws but only probabilities for physicalprocesses, and from evolutionary theory that biological systems expand “the adjacentpossible” as rapidly as possible, all lend credence to the proposition that probability shouldbe recognized as a fundamental physical motive. It is further proposed that spatial order andtemporal order are two aspects of the same thing, and that this is the essence of the secondlaw of thermodynamics.

  12. Knowledge typology for imprecise probabilities.

    SciTech Connect

    Wilson, G. D.; Zucker, L. J.

    2002-01-01

    When characterizing the reliability of a complex system there are often gaps in the data available for specific subsystems or other factors influencing total system reliability. At Los Alamos National Laboratory we employ ethnographic methods to elicit expert knowledge when traditional data is scarce. Typically, we elicit expert knowledge in probabilistic terms. This paper will explore how we might approach elicitation if methods other than probability (i.e., Dempster-Shafer, or fuzzy sets) prove more useful for quantifying certain types of expert knowledge. Specifically, we will consider if experts have different types of knowledge that may be better characterized in ways other than standard probability theory.

  13. Critical Probabilities and Convergence Time of Percolation Probabilistic Cellular Automata

    NASA Astrophysics Data System (ADS)

    Taggi, Lorenzo

    2015-05-01

    This paper considers a class of probabilistic cellular automata undergoing a phase transition with an absorbing state. Denoting by the neighbourhood of site , the transition probability is if or otherwise, . For any there exists a non-trivial critical probability that separates a phase with an absorbing state from a fluctuating phase. This paper studies how the neighbourhood affects the value of and provides lower bounds for . Furthermore, by using dynamic renormalization techniques, we prove that the expected convergence time of the processes on a finite space with periodic boundaries grows exponentially (resp. logarithmically) with the system size if (resp. ). This provides a partial answer to an open problem in Toom et al. (Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis, pp. 1-182. Manchester University Press, Manchester, 1990; Topics in Contemporary Probability and its Applications, pp. 117-157. CRC Press, Boca Raton, 1995).

  14. Probability Simulation in Middle School.

    ERIC Educational Resources Information Center

    Lappan, Glenda; Winter, M. J.

    1980-01-01

    Two simulations designed to teach probability to middle-school age pupils are presented. The first simulates the one-on-one foul shot simulation in basketball; the second deals with collecting a set of six cereal box prizes by buying boxes containing one toy each. (MP)

  15. Some Surprising Probabilities from Bingo.

    ERIC Educational Resources Information Center

    Mercer, Joseph O.

    1993-01-01

    Investigates the probability of winning the largest prize at Bingo through a series of five simpler problems. Investigations are conducted with the aid of either BASIC computer programs, spreadsheets, or a computer algebra system such as Mathematica. Provides sample data tables to illustrate findings. (MDH)

  16. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  17. Conditional Independence in Applied Probability.

    ERIC Educational Resources Information Center

    Pfeiffer, Paul E.

    This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…

  18. Dynamic SEP event probability forecasts

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Ling, A.

    2015-10-01

    The forecasting of solar energetic particle (SEP) event probabilities at Earth has been based primarily on the estimates of magnetic free energy in active regions and on the observations of peak fluxes and fluences of large (≥ M2) solar X-ray flares. These forecasts are typically issued for the next 24 h or with no definite expiration time, which can be deficient for time-critical operations when no SEP event appears following a large X-ray flare. It is therefore important to decrease the event probability forecast with time as a SEP event fails to appear. We use the NOAA listing of major (≥10 pfu) SEP events from 1976 to 2014 to plot the delay times from X-ray peaks to SEP threshold onsets as a function of solar source longitude. An algorithm is derived to decrease the SEP event probabilities with time when no event is observed to reach the 10 pfu threshold. In addition, we use known SEP event size distributions to modify probability forecasts when SEP intensity increases occur below the 10 pfu event threshold. An algorithm to provide a dynamic SEP event forecast, Pd, for both situations of SEP intensities following a large flare is derived.

  19. Probability densities in strong turbulence

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor

    2006-03-01

    In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.

  20. Probability, Information and Statistical Physics

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2016-03-01

    In this short survey review we discuss foundational issues of the probabilistic approach to information theory and statistical mechanics from a unified standpoint. Emphasis is on the inter-relations between theories. The basic aim is tutorial, i.e. to carry out a basic introduction to the analysis and applications of probabilistic concepts to the description of various aspects of complexity and stochasticity. We consider probability as a foundational concept in statistical mechanics and review selected advances in the theoretical understanding of interrelation of the probability, information and statistical description with regard to basic notions of statistical mechanics of complex systems. It includes also a synthesis of past and present researches and a survey of methodology. The purpose of this terse overview is to discuss and partially describe those probabilistic methods and approaches that are used in statistical mechanics with the purpose of making these ideas easier to understanding and to apply.

  1. Probability for primordial black holes

    NASA Astrophysics Data System (ADS)

    Bousso, R.; Hawking, S. W.

    1995-11-01

    We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.

  2. ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES

    SciTech Connect

    Morton, Timothy D.; Johnson, John Asher E-mail: johnjohn@astro.caltech.edu

    2011-09-10

    We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5 R{sub +} < R{sub p} < 20 R{sub +}. Nearly 90% of the 1235 candidates have FPP <10%, and over half have FPP <5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal-deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.

  3. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  4. Probability of Detection Demonstration Transferability

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    2008-01-01

    The ongoing Mars Science Laboratory (MSL) Propellant Tank Penetrant Nondestructive Evaluation (NDE) Probability of Detection (POD) Assessment (NESC activity) has surfaced several issues associated with liquid penetrant POD demonstration testing. This presentation lists factors that may influence the transferability of POD demonstration tests. Initial testing will address the liquid penetrant inspection technique. Some of the factors to be considered in this task are crack aspect ratio, the extent of the crack opening, the material and the distance between the inspection surface and the inspector's eye.

  5. Probability, statistics, and computational science.

    PubMed

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters. PMID:22407706

  6. Lectures on probability and statistics

    SciTech Connect

    Yost, G.P.

    1984-09-01

    These notes are based on a set of statistics lectures delivered at Imperial College to the first-year postgraduate students in High Energy Physics. They are designed for the professional experimental scientist. We begin with the fundamentals of probability theory, in which one makes statements about the set of possible outcomes of an experiment, based upon a complete a priori understanding of the experiment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each die is equally likely to turn up. From that, we can calculate the probability of any specified outcome. We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature which gave those data (e.g., the likelihood of seeing any given side of any given die turn up). This is a much more difficult problem, of course, and one's solutions often turn out to be unsatisfactory in one respect or another.

  7. Measure and Probability in Cosmology

    NASA Astrophysics Data System (ADS)

    Schiffrin, Joshua; Wald, Robert

    2012-03-01

    General relativity has a Hamiltonian formulation, which formally provides a canonical (Liouville) measure on the space of solutions. A number of authors have used the restriction of this measure to the space of homogeneous and isotropic universes with scalar field matter (minisuperspace)---namely, the Gibbons-Hawking-Stewart measure---to make arguments about the likelihood of inflation. We argue here that there are at least four major difficulties with using the measure of general relativity to make probability arguments in cosmology: (1) Equilibration does not occur on cosmological length scales. (2) Even in the minisuperspace case, the measure of phase space is infinite and the computation of probabilities depends very strongly on how the infinity is regulated. (3) The inhomogeneous degrees of freedom must be taken into account even if one is interested only in universes that are very nearly homogeneous. The measure depends upon how the infinite number of degrees of freedom are truncated, and how one defines ``nearly homogeneous''. (4) In a universe where the second law of thermodynamics holds, one cannot make use of our knowledge of the present state of the universe to ``retrodict'' the likelihood of past conditions.

  8. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  9. Magnetic dipole transitions in the hydrogen molecule

    SciTech Connect

    Pachucki, Krzysztof; Komasa, Jacek

    2011-03-15

    In homonuclear molecules, such as H{sub 2}, the electric dipole transitions are strongly forbidden, and the transitions between rovibrational states are of the electric quadrupole type. We show, however, that magnetic dipole transitions also take place, although they are significantly weaker. We evaluate the probabilities of such transitions between several of the lowest rotational states and compare them with those of the corresponding electric quadrupole transitions.

  10. MSPI False Indication Probability Simulations

    SciTech Connect

    Dana Kelly; Kurt Vedros; Robert Youngblood

    2011-03-01

    This paper examines false indication probabilities in the context of the Mitigating System Performance Index (MSPI), in order to investigate the pros and cons of different approaches to resolving two coupled issues: (1) sensitivity to the prior distribution used in calculating the Bayesian-corrected unreliability contribution to the MSPI, and (2) whether (in a particular plant configuration) to model the fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel generator (EDG). False indication probabilities were calculated for the following situations: (1) all component reliability parameters at their baseline values, so that the true indication is green, meaning that an indication of white or above would be false positive; (2) one or more components degraded to the extent that the true indication would be (mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key respects, this was the approach taken in NUREG-1753. The prior distributions examined were the constrained noninformative (CNI) prior used currently by the MSPI, a mixture of conjugate priors, the Jeffreys noninformative prior, a nonconjugate log(istic)-normal prior, and the minimally informative prior investigated in (Kelly et al., 2010). The mid-white performance state was set at ?CDF = ?10 ? 10-6/yr. For each simulated time history, a check is made of whether the calculated ?CDF is above or below 10-6/yr. If the parameters were at their baseline values, and ?CDF > 10-6/yr, this is counted as a false positive. Conversely, if one or all of the parameters are set to values corresponding to ?CDF > 10-6/yr but that time history’s ?CDF < 10-6/yr, this is counted as a false negative indication. The false indication (positive or negative) probability is then estimated as the number of false positive or negative counts divided by the number of time histories (100,000). Results are presented for a set of base case parameter values

  11. Associativity and normative credal probability.

    PubMed

    Snow, P

    2002-01-01

    Cox's Theorem is a widely cited motivation for probabilistic models of uncertain belief. The theorem relates the associativity of the logical connectives to that of the arithmetic operations of probability. Recent questions about the correctness of Cox's Theorem have been resolved, but there are new questions about one functional equation used by Cox in 1946. This equation is missing from his later work. Advances in knowledge since 1946 and changes in Cox's research interests explain the equation's disappearance. Other associativity-based motivations avoid functional equations altogether, and so may be more transparently applied to finite domains and discrete beliefs. A discrete counterpart of Cox's Theorem can be assembled from results that have been in the literature since 1959. PMID:18238098

  12. Imprecise probability for non-commuting observables

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.

    2015-08-01

    It is known that non-commuting observables in quantum mechanics do not have joint probability. This statement refers to the precise (additive) probability model. I show that the joint distribution of any non-commuting pair of variables can be quantified via upper and lower probabilities, i.e. the joint probability is described by an interval instead of a number (imprecise probability). I propose transparent axioms from which the upper and lower probability operators follow. The imprecise probability depend on the non-commuting observables, is linear over the state (density matrix) and reverts to the usual expression for commuting observables.

  13. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  14. Direct loading of a large Yb MOT on the {}^{1}{{\\rm{S}}}_{0}\\;\\to {}^{3}{{\\rm{P}}}_{1} transition

    NASA Astrophysics Data System (ADS)

    Guttridge, A.; Hopkins, S. A.; Kemp, S. L.; Boddy, D.; Freytag, R.; Jones, M. P. A.; Tarbutt, M. R.; Hinds, E. A.; Cornish, S. L.

    2016-07-01

    We report a robust technique for laser frequency stabilisation that enables the reproducible loading of in excess of 109 Yb atoms from a Zeeman slower directly into a magneto-optical trap (MOT) operating on the {}1{{{S}}}0\\to {}3{{{P}}}1 transition, without the need for a first stage MOT on the {}1{{{S}}}0\\to {}1{{{P}}}1 transition. We use a simple atomic beam apparatus to generate narrow fluorescence signals on both the 399 nm {}1{{{S}}}0\\to {}1{{{P}}}1 transition used for the Zeeman slower and the 556 nm {}1{{{S}}}0\\to {}3{{{P}}}1 transition. We present in detail the methods for obtaining spectra with a high signal-to-noise ratio and demonstrate error signals suitable for robust frequency stabilisation. Finally we demonstrate the stability and precision of our technique through sensitive measurements of the gravitational sag of the Yb MOT as a function of the intensity of the laser cooling beams, which are in good agreement with theory. These results will be important for efficient loading of the atoms into an optical dipole trap.

  15. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  16. Exploring the Overestimation of Conjunctive Probabilities

    PubMed Central

    Nilsson, Håkan; Rieskamp, Jörg; Jenny, Mirjam A.

    2013-01-01

    People often overestimate probabilities of conjunctive events. The authors explored whether the accuracy of conjunctive probability estimates can be improved by increased experience with relevant constituent events and by using memory aids. The first experiment showed that increased experience with constituent events increased the correlation between the estimated and the objective conjunctive probabilities, but that it did not reduce overestimation of conjunctive probabilities. The second experiment showed that reducing cognitive load with memory aids for the constituent probabilities led to improved estimates of the conjunctive probabilities and to decreased overestimation of conjunctive probabilities. To explain the cognitive process underlying people’s probability estimates, the configural weighted average model was tested against the normative multiplicative model. The configural weighted average model generates conjunctive probabilities that systematically overestimate objective probabilities although the generated probabilities still correlate strongly with the objective probabilities. For the majority of participants this model was better than the multiplicative model in predicting the probability estimates. However, when memory aids were provided, the predictive accuracy of the multiplicative model increased. In sum, memory tools can improve people’s conjunctive probability estimates. PMID:23460026

  17. Direct probability mapping of contaminants

    SciTech Connect

    Rautman, C.A.

    1993-09-17

    Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. Geostatistical simulation provides powerful tools for investigating contaminant levels, and in particular, for identifying and using the spatial interrelationships among a set of isolated sample values. This additional information can be used to assess the likelihood of encountering contamination at unsampled locations and to evaluate the risk associated with decisions to remediate or not to remediate specific regions within a site. Past operation of the DOE Feed Materials Production Center has contaminated a site near Fernald, Ohio, with natural uranium. Soil geochemical data have been collected as part of the Uranium-in-Soils Integrated Demonstration Project. These data have been used to construct a number of stochastic images of potential contamination for parcels approximately the size of a selective remediation unit. Each such image accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely, statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination. Evaluation of the geostatistical simulations can yield maps representing the expected magnitude of the contamination for various regions and other information that may be important in determining a suitable remediation process or in sizing equipment to accomplish the restoration.

  18. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy. PMID:11461383

  19. Trajectory versus probability density entropy

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Grigolini, Paolo; Karagiorgis, Markos; Rosa, Angelo

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  20. Probability distributions of turbulent energy.

    PubMed

    Momeni, Mahdi; Müller, Wolf-Christian

    2008-05-01

    Probability density functions (PDFs) of scale-dependent energy fluctuations, P[deltaE(l)] , are studied in high-resolution direct numerical simulations of Navier-Stokes and incompressible magnetohydrodynamic (MHD) turbulence. MHD flows with and without a strong mean magnetic field are considered. For all three systems it is found that the PDFs of inertial range energy fluctuations exhibit self-similarity and monoscaling in agreement with recent solar-wind measurements [Hnat, Geophys. Res. Lett. 29, 86 (2002)]. Furthermore, the energy PDFs exhibit similarity over all scales of the turbulent system showing no substantial qualitative change of shape as the scale of the fluctuations varies. This is in contrast to the well-known behavior of PDFs of turbulent velocity fluctuations. In all three cases under consideration the P[deltaE(l)] resemble Lévy-type gamma distributions approximately Delta;{-1} exp(-|deltaE|/Delta)|deltaE|;{-gamma} The observed gamma distributions exhibit a scale-dependent width Delta(l) and a system-dependent gamma . The monoscaling property reflects the inertial-range scaling of the Elsässer-field fluctuations due to lacking Galilei invariance of deltaE . The appearance of Lévy distributions is made plausible by a simple model of energy transfer. PMID:18643170

  1. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  2. The Black Hole Formation Probability

    NASA Astrophysics Data System (ADS)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH(M ZAMS). Although we find that it is difficult to derive a unique P BH(M ZAMS) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH(M ZAMS) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH(M ZAMS) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  3. Extrasolar Planetary Transits

    NASA Astrophysics Data System (ADS)

    Cameron, Andrew Collier

    An extrasolar planet will transit the visible hemisphere of its host star if its orbital plane lies sufficiently close to the observer's line of sight. The resulting periodic dips in stellar flux reveal key system parameters, including the density of the host star and, if radial-velocity observations are available, the surface gravitational acceleration of the planet. In this chapter I present the essential methodology for modelling the time-dependent flux variation during a transit, and its use in determining the posterior probability distribution for the physical parameters of the system. Large-scale searches for transiting systems are an efficient way of discovering planets whose bulk densities, and hence compositions, can be accessed if their masses can also be determined. I present algorithms for detrending large ensembles of light curves, for searching for transit-like signals among them. I also discuss methods for identifying diluted stellar eclipsing binaries mimicking planetary transit signals, and validation of transit candidates too faint for radial-velocity follow-up. I review the use of time-resolved spectrophotometry and high-resolution spectroscopy during transits to identify the molecular constituents of exoplanetary atmospheres.

  4. The Probability Distribution for a Biased Spinner

    ERIC Educational Resources Information Center

    Foster, Colin

    2012-01-01

    This article advocates biased spinners as an engaging context for statistics students. Calculating the probability of a biased spinner landing on a particular side makes valuable connections between probability and other areas of mathematics. (Contains 2 figures and 1 table.)

  5. Subjective and objective probabilities in quantum mechanics

    SciTech Connect

    Srednicki, Mark

    2005-05-15

    We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss the problem of choosing a noninformative prior for a density matrix.

  6. Using Playing Cards to Differentiate Probability Interpretations

    ERIC Educational Resources Information Center

    López Puga, Jorge

    2014-01-01

    The aprioristic (classical, naïve and symmetric) and frequentist interpretations of probability are commonly known. Bayesian or subjective interpretation of probability is receiving increasing attention. This paper describes an activity to help students differentiate between the three types of probability interpretations.

  7. Illustrating Basic Probability Calculations Using "Craps"

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    Instructors may use the gambling game of craps to illustrate the use of a number of fundamental probability identities. For the "pass-line" bet we focus on the chance of winning and the expected game length. To compute these, probabilities of unions of disjoint events, probabilities of intersections of independent events, conditional probabilities…

  8. Pre-Service Teachers' Conceptions of Probability

    ERIC Educational Resources Information Center

    Odafe, Victor U.

    2011-01-01

    Probability knowledge and skills are needed in science and in making daily decisions that are sometimes made under uncertain conditions. Hence, there is the need to ensure that the pre-service teachers of our children are well prepared to teach probability. Pre-service teachers' conceptions of probability are identified, and ways of helping them…

  9. Teaching Probabilities and Statistics to Preschool Children

    ERIC Educational Resources Information Center

    Pange, Jenny

    2003-01-01

    This study considers the teaching of probabilities and statistics to a group of preschool children using traditional classroom activities and Internet games. It was clear from this study that children can show a high level of understanding of probabilities and statistics, and demonstrate high performance in probability games. The use of Internet…

  10. The Cognitive Substrate of Subjective Probability

    ERIC Educational Resources Information Center

    Nilsson, Hakan; Olsson, Henrik; Juslin, Peter

    2005-01-01

    The prominent cognitive theories of probability judgment were primarily developed to explain cognitive biases rather than to account for the cognitive processes in probability judgment. In this article the authors compare 3 major theories of the processes and representations in probability judgment: the representativeness heuristic, implemented as…

  11. OBSERVATIONAL WINDOW FUNCTIONS IN PLANET TRANSIT SURVEYS

    SciTech Connect

    Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David R. E-mail: skane@ipac.caltech.edu

    2009-09-01

    The probability that an existing planetary transit is detectable in one's data is sensitively dependent upon the window function of the observations. We quantitatively characterize and provide visualizations of the dependence of this probability as a function of orbital period upon several observing strategy and astrophysical parameters, such as length of observing run, observing cadence, length of night, transit duration and depth, and the minimum number of sampled transits. The ability to detect a transit is directly related to the intrinsic noise of the observations. In our simulations of observational window functions, we explicitly address noncorrelated (Gaussian or white) noise and correlated (red) noise and discuss how these two noise components affect transit detectability in fundamentally different manners, especially for long periods and/or small transit depths. We furthermore discuss the consequence of competing effects on transit detectability, elaborate on measures of observing strategies, and examine the projected efficiency of different transit survey scenarios with respect to certain regions of parameter space.

  12. Diffusion along the Splitting/Commitment Probability Reaction Coordinate

    PubMed Central

    Berezhkovskii, Alexander M.; Szabo, Attila

    2016-01-01

    The splitting or commitment probabilities of states in the region of configuration space that separates reactants and products play an important role in the theory of chemical reactions. Assuming that the splitting probability changes more slowly than any other coordinate, we project multidimensional diffusive dynamics onto it. The resulting one-dimensional diffusion equation is not exact because the assumed separation of time scales does not hold in general. Nevertheless, this equation has the remarkable property that it always predicts the exact value of the number of transitions between reactants and products per unit time at equilibrium and hence the exact reaction rate. In the special case of two deep basins separated by a harmonic saddle, this equation is equivalent to the one that describes diffusion along a coordinate perpendicular to the transition state, defined as the surface starting from which reactants and products are reached with equal probability. ∇·D(x)e-βU(x)∇ϕ(x)=0,J=∫I∇ϕ(x)·D(x)peq(x)∇ϕ(x)dx,∂p(ϕ,t)∂t=J∂2∂ϕ2p(ϕ,t)peq(ϕ). PMID:23777371

  13. Theoretical Studies of Atomic Transitions

    SciTech Connect

    Charlotte Froese Fischer

    2005-07-08

    Atomic structure calculations were performed for properties such as energy levels, binding energies, transition probabilities, lifetimes, hyperfine structure, and isotope shifts. Accurate computational procedures were devised so that properties could be predicted even when they could not be obtained from experiment, and to assist in the identification of observed data. The method used was the multiconfiguration Hartree-Fock (MCHF) method, optionally corrected for relativistic effects in the Breit-Pauli approximation. Fully relativistic Dirac-Fock calculations also were performed using the GRASP code A database of energy levels, lifetimes, and transition probabilities was designed and implemented and, at present, includes many results for Be-like to Ar-like.

  14. Bell Could Become the Copernicus of Probability

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-07-01

    Our aim is to emphasize the role of mathematical models in physics, especially models of geometry and probability. We briefly compare developments of geometry and probability by pointing to similarities and differences: from Euclid to Lobachevsky and from Kolmogorov to Bell. In probability, Bell could play the same role as Lobachevsky in geometry. In fact, violation of Bell’s inequality can be treated as implying the impossibility to apply the classical probability model of Kolmogorov (1933) to quantum phenomena. Thus the quantum probabilistic model (based on Born’s rule) can be considered as the concrete example of the non-Kolmogorovian model of probability, similarly to the Lobachevskian model — the first example of the non-Euclidean model of geometry. This is the “probability model” interpretation of the violation of Bell’s inequality. We also criticize the standard interpretation—an attempt to add to rigorous mathematical probability models additional elements such as (non)locality and (un)realism. Finally, we compare embeddings of non-Euclidean geometries into the Euclidean space with embeddings of the non-Kolmogorovian probabilities (in particular, quantum probability) into the Kolmogorov probability space. As an example, we consider the CHSH-test.

  15. Geomagnetic polarity transitions

    NASA Astrophysics Data System (ADS)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    reasonable to draw the following conclusions with varying degrees of confidence. There appears to be a substantial decrease in the mean intensity of the dipole field during a transition to ˜25% of its usual value. The duration of an average geomagnetic polarity transition is not well known but probably lies between 1000 and 8000 years. Values outside these bounds have been reported, but we give reasons as to why such outliers are likely to be artifacts. The reversal process is probably longer than the manifestation of the reversal at Earth's surface as recorded in paleomagnetic directional data. Convection hiatus during a geomagnetic polarity transition seems unlikely, and free-decay models for reversals appear to be generally incompatible with the data. This implies that certain theorems in dynamo theory, such as Cowling's theorem, should not be invoked to explain the origin of reversals. Unfortunately, the detailed description of directional changes during transitions remains controversial. Contrary to common belief, certain low-degree nondipole fields can produce significant longitudinal confinement of virtual geomagnetic poles (VGP) during a transition. The data are currently inadequate to refute or verify claims of longitudinal dipole confinement, VGP clustering, or other systematics during polarity transitions.

  16. Probability and Quantum Paradigms: the Interplay

    SciTech Connect

    Kracklauer, A. F.

    2007-12-03

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  17. Experience Matters: Information Acquisition Optimizes Probability Gain

    PubMed Central

    Nelson, Jonathan D.; McKenzie, Craig R.M.; Cottrell, Garrison W.; Sejnowski, Terrence J.

    2010-01-01

    Deciding which piece of information to acquire or attend to is fundamental to perception, categorization, medical diagnosis, and scientific inference. Four statistical theories of the value of information—information gain, Kullback-Liebler distance, probability gain (error minimization), and impact—are equally consistent with extant data on human information acquisition. Three experiments, designed via computer optimization to be maximally informative, tested which of these theories best describes human information search. Experiment 1, which used natural sampling and experience-based learning to convey environmental probabilities, found that probability gain explained subjects’ information search better than the other statistical theories or the probability-of-certainty heuristic. Experiments 1 and 2 found that subjects behaved differently when the standard method of verbally presented summary statistics (rather than experience-based learning) was used to convey environmental probabilities. Experiment 3 found that subjects’ preference for probability gain is robust, suggesting that the other models contribute little to subjects’ search behavior. PMID:20525915

  18. Experience matters: information acquisition optimizes probability gain.

    PubMed

    Nelson, Jonathan D; McKenzie, Craig R M; Cottrell, Garrison W; Sejnowski, Terrence J

    2010-07-01

    Deciding which piece of information to acquire or attend to is fundamental to perception, categorization, medical diagnosis, and scientific inference. Four statistical theories of the value of information-information gain, Kullback-Liebler distance, probability gain (error minimization), and impact-are equally consistent with extant data on human information acquisition. Three experiments, designed via computer optimization to be maximally informative, tested which of these theories best describes human information search. Experiment 1, which used natural sampling and experience-based learning to convey environmental probabilities, found that probability gain explained subjects' information search better than the other statistical theories or the probability-of-certainty heuristic. Experiments 1 and 2 found that subjects behaved differently when the standard method of verbally presented summary statistics (rather than experience-based learning) was used to convey environmental probabilities. Experiment 3 found that subjects' preference for probability gain is robust, suggesting that the other models contribute little to subjects' search behavior. PMID:20525915

  19. Probability and Quantum Paradigms: the Interplay

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2007-12-01

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  20. Dynamic probability estimator for machine learning.

    PubMed

    Starzyk, Janusz A; Wang, Feng

    2004-03-01

    An efficient algorithm for dynamic estimation of probabilities without division on unlimited number of input data is presented. The method estimates probabilities of the sampled data from the raw sample count, while keeping the total count value constant. Accuracy of the estimate depends on the counter size, rather than on the total number of data points. Estimator follows variations of the incoming data probability within a fixed window size, without explicit implementation of the windowing technique. Total design area is very small and all probabilities are estimated concurrently. Dynamic probability estimator was implemented using a programmable gate array from Xilinx. The performance of this implementation is evaluated in terms of the area efficiency and execution time. This method is suitable for the highly integrated design of artificial neural networks where a large number of dynamic probability estimators can work concurrently. PMID:15384523

  1. Entropy analysis of systems exhibiting negative probabilities

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2016-07-01

    This paper addresses the concept of negative probability and its impact upon entropy. An analogy between the probability generating functions, in the scope of quasiprobability distributions, and the Grünwald-Letnikov definition of fractional derivatives, is explored. Two distinct cases producing negative probabilities are formulated and their distinct meaning clarified. Numerical calculations using the Shannon entropy characterize further the characteristics of the two limit cases.

  2. Calculating the CEP (Circular Error Probable)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report compares the probability contained in the Circular Error Probable associated with an Elliptical Error Probable to that of the EEP at a given confidence level. The levels examined are 50 percent and 95 percent. The CEP is found to be both more conservative and less conservative than the associated EEP, depending on the eccentricity of the ellipse. The formulas used are derived in the appendix.

  3. Predicting accurate probabilities with a ranking loss

    PubMed Central

    Menon, Aditya Krishna; Jiang, Xiaoqian J; Vembu, Shankar; Elkan, Charles; Ohno-Machado, Lucila

    2013-01-01

    In many real-world applications of machine learning classifiers, it is essential to predict the probability of an example belonging to a particular class. This paper proposes a simple technique for predicting probabilities based on optimizing a ranking loss, followed by isotonic regression. This semi-parametric technique offers both good ranking and regression performance, and models a richer set of probability distributions than statistical workhorses such as logistic regression. We provide experimental results that show the effectiveness of this technique on real-world applications of probability prediction. PMID:25285328

  4. Psychophysics of the probability weighting function

    NASA Astrophysics Data System (ADS)

    Takahashi, Taiki

    2011-03-01

    A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (0<α<1 and w(0)=1,w(1e)=1e,w(1)=1), which has extensively been studied in behavioral neuroeconomics. The present study utilizes psychophysical theory to derive Prelec's probability weighting function from psychophysical laws of perceived waiting time in probabilistic choices. Also, the relations between the parameters in the probability weighting function and the probability discounting function in behavioral psychology are derived. Future directions in the application of the psychophysical theory of the probability weighting function in econophysics and neuroeconomics are discussed.

  5. The origin of life: self-replicating asymmetrical frozen probability.

    PubMed

    Glassman, M L; Hochberg, A

    1998-01-01

    Within each of us, as within each living or extinct creature, is a broad piece from the story of life and creation. Both the evolution of the universe and the emergence of life on Earth can be considered as being the result of critical events, such as phase transitions, that occur with a certain probability and are characterized by a sudden breakage of prior symmetry. These in turn result in self-perpetuating conditions that are responsible for what we know and perceive today. PMID:9488186

  6. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  7. Correlation as Probability of Common Descent.

    ERIC Educational Resources Information Center

    Falk, Ruma; Well, Arnold D.

    1996-01-01

    One interpretation of the Pearson product-moment correlation ("r"), correlation as the probability of originating from common descent, important to the genetic measurement of inbreeding, is examined. The conditions under which "r" can be interpreted as the probability of "identity by descent" are specified, and the possibility of generalizing this…

  8. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a)...

  9. Teaching Probability: A Socio-Constructivist Perspective

    ERIC Educational Resources Information Center

    Sharma, Sashi

    2015-01-01

    There is a considerable and rich literature on students' misconceptions in probability. However, less attention has been paid to the development of students' probabilistic thinking in the classroom. This paper offers a sequence, grounded in socio-constructivist perspective for teaching probability.

  10. Teaching Statistics and Probability: 1981 Yearbook.

    ERIC Educational Resources Information Center

    Shulte, Albert P., Ed.; Smart, James R., Ed.

    This 1981 yearbook of the National Council of Teachers of Mathematics (NCTM) offers classroom ideas for teaching statistics and probability, viewed as important topics in the school mathematics curriculum. Statistics and probability are seen as appropriate because they: (1) provide meaningful applications of mathematics at all levels; (2) provide…

  11. Phonotactic Probabilities in Young Children's Speech Production

    ERIC Educational Resources Information Center

    Zamuner, Tania S.; Gerken, Louann; Hammond, Michael

    2004-01-01

    This research explores the role of phonotactic probability in two-year-olds' production of coda consonants. Twenty-nine children were asked to repeat CVC non-words that were used as labels for pictures of imaginary animals. The CVC non-words were controlled for their phonotactic probabilities, neighbourhood densities, word-likelihood ratings, and…

  12. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall...

  13. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall...

  14. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a)...

  15. 47 CFR 1.1623 - Probability calculation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Probability calculation. 1.1623 Section 1.1623 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Random Selection Procedures for Mass Media Services General Procedures § 1.1623 Probability calculation. (a)...

  16. Average Transmission Probability of a Random Stack

    ERIC Educational Resources Information Center

    Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg

    2010-01-01

    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…

  17. Probability Simulations by Non-Lipschitz Chaos

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-Lipschitz dynamics, without utilization of any man-made devices. Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  18. Probability: A Matter of Life and Death

    ERIC Educational Resources Information Center

    Hassani, Mehdi; Kippen, Rebecca; Mills, Terence

    2016-01-01

    Life tables are mathematical tables that document probabilities of dying and life expectancies at different ages in a society. Thus, the life table contains some essential features of the health of a population. Probability is often regarded as a difficult branch of mathematics. Life tables provide an interesting approach to introducing concepts…

  19. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  20. Laboratory-Tutorial Activities for Teaching Probability

    ERIC Educational Resources Information Center

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-01-01

    We report on the development of students' ideas of probability and probability density in a University of Maine laboratory-based general education physics course called "Intuitive Quantum Physics". Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We describe a…

  1. Probability Issues in without Replacement Sampling

    ERIC Educational Resources Information Center

    Joarder, A. H.; Al-Sabah, W. S.

    2007-01-01

    Sampling without replacement is an important aspect in teaching conditional probabilities in elementary statistics courses. Different methods proposed in different texts for calculating probabilities of events in this context are reviewed and their relative merits and limitations in applications are pinpointed. An alternative representation of…

  2. Assessment of the probability of contaminating Mars

    NASA Technical Reports Server (NTRS)

    Judd, B. R.; North, D. W.; Pezier, J. P.

    1974-01-01

    New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth.

  3. Quantum probability assignment limited by relativistic causality.

    PubMed

    Han, Yeong Deok; Choi, Taeseung

    2016-01-01

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717

  4. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  5. Quantum probability assignment limited by relativistic causality

    PubMed Central

    Han, Yeong Deok; Choi, Taeseung

    2016-01-01

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717

  6. Quantum probabilities of composite events in quantum measurements with multimode states

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Sornette, D.

    2013-10-01

    The problem of defining quantum probabilities of composite events is considered. This problem is of great importance for the theory of quantum measurements and for quantum decision theory, which is a part of measurement theory. We show that the Lüders probability of consecutive measurements is a transition probability between two quantum states and that this probability cannot be treated as a quantum extension of the classical conditional probability. The Wigner distribution is shown to be a weighted transition probability that cannot be accepted as a quantum extension of the classical joint probability. We suggest the definition of quantum joint probabilities by introducing composite events in multichannel measurements. The notion of measurements under uncertainty is defined. We demonstrate that the necessary condition for mode interference is the entanglement of the composite prospect together with the entanglement of the composite statistical state. As an illustration, we consider an example of a quantum game. Special attention is paid to the application of the approach to systems with multimode states, such as atoms, molecules, quantum dots, or trapped Bose-condensed atoms with several coherent modes.

  7. American Higher Education in Transition

    ERIC Educational Resources Information Center

    Ehrenberg, Ronald G.

    2011-01-01

    American higher education is in transition and if there ever was a "golden age" for faculty, it probably is behind us. The best historical data on the composition of faculty is collected annually by the American Mathematical Society. Between 1967 and 2009, the share of full-time faculty with PhDs remained constant at about 90 percent at doctoral…

  8. Survival probability in patients with liver trauma.

    PubMed

    Buci, Skender; Kukeli, Agim

    2016-08-01

    Purpose - The purpose of this paper is to assess the survival probability among patients with liver trauma injury using the anatomical and psychological scores of conditions, characteristics and treatment modes. Design/methodology/approach - A logistic model is used to estimate 173 patients' survival probability. Data are taken from patient records. Only emergency room patients admitted to University Hospital of Trauma (former Military Hospital) in Tirana are included. Data are recorded anonymously, preserving the patients' privacy. Findings - When correctly predicted, the logistic models show that survival probability varies from 70.5 percent up to 95.4 percent. The degree of trauma injury, trauma with liver and other organs, total days the patient was hospitalized, and treatment method (conservative vs intervention) are statistically important in explaining survival probability. Practical implications - The study gives patients, their relatives and physicians ample and sound information they can use to predict survival chances, the best treatment and resource management. Originality/value - This study, which has not been done previously, explores survival probability, success probability for conservative and non-conservative treatment, and success probability for single vs multiple injuries from liver trauma. PMID:27477933

  9. Seismicity alert probabilities at Parkfield, California, revisited

    USGS Publications Warehouse

    Michael, A.J.; Jones, L.M.

    1998-01-01

    For a decade, the US Geological Survey has used the Parkfield Earthquake Prediction Experiment scenario document to estimate the probability that earthquakes observed on the San Andreas fault near Parkfield will turn out to be foreshocks followed by the expected magnitude six mainshock. During this time, we have learned much about the seismogenic process at Parkfield, about the long-term probability of the Parkfield mainshock, and about the estimation of these types of probabilities. The probabilities for potential foreshocks at Parkfield are reexamined and revised in light of these advances. As part of this process, we have confirmed both the rate of foreshocks before strike-slip earthquakes in the San Andreas physiographic province and the uniform distribution of foreshocks with magnitude proposed by earlier studies. Compared to the earlier assessment, these new estimates of the long-term probability of the Parkfield mainshock are lower, our estimate of the rate of background seismicity is higher, and we find that the assumption that foreshocks at Parkfield occur in a unique way is not statistically significant at the 95% confidence level. While the exact numbers vary depending on the assumptions that are made, the new alert probabilities are lower than previously estimated. Considering the various assumptions and the statistical uncertainties in the input parameters, we also compute a plausible range for the probabilities. The range is large, partly due to the extra knowledge that exists for the Parkfield segment, making us question the usefulness of these numbers.

  10. Liquefaction probability curves for surficial geologic deposits

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2011-01-01

    Liquefaction probability curves that predict the probability of surface manifestations of earthquake-induced liquefaction are developed for 14 different types of surficial geologic units. The units consist of alluvial fan, beach ridge, river delta topset and foreset beds, eolian dune, point bar, flood basin, natural river and alluvial fan levees, abandoned river channel, deep-water lake, lagoonal, sandy artificial fill, and valley train deposits. Probability is conditioned on earthquake magnitude and peak ground acceleration. Curves are developed for water table depths of 1.5 and 5.0 m. Probabilities are derived from complementary cumulative frequency distributions of the liquefaction potential index (LPI) that were computed from 927 cone penetration tests. For natural deposits with a water table at 1.5 m and subjected to a M7.5 earthquake with peak ground acceleration (PGA)  =  0.25g, probabilities range from 0.5 for beach ridge, point bar, and deltaic deposits. The curves also were used to assign ranges of liquefaction probabilities to the susceptibility categories proposed previously for different geologic deposits. For the earthquake described here, probabilities for susceptibility categories have ranges of 0–0.08 for low, 0.09–0.30 for moderate, 0.31–0.62 for high, and 0.63–1.00 for very high. Retrospective predictions of liquefaction during historical earthquakes based on the curves compare favorably to observations.

  11. Semigroups of tomographic probabilities and quantum correlations

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.

    2008-08-01

    Semigroups of stochastic and bistochastic matrices constructed by means of spin tomograms or tomographic probabilities and their relations to the problem of Bell's inequalities and entanglement are reviewed. The probability determining the quantum state of spins and the probability densities determining the quantum states of particles with continuous variables are considered. Entropies for semigroups of stochastic and bisctochastic matrices are studied, in view of both the Shannon information entropy and its generalization like Rényi entropy. Qubit portraits of qudit states are discussed in the connection with the problem of Bell's inequality violation for entangled states.

  12. Probability distributions for a surjective unimodal map

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan; Wang, Long

    1996-04-01

    In this paper we show that the probability distributions for a surjective unimodal map can be classified into three types, δ function, asymmetric and symmetric type; by identifying the binary structures of its initial values. The Borel's normal number theorem is equivalent or prior to the Frobenius-Perron operator in analyzing the probability distributions for this kind of maps, and in particular we can constitute a multifractal probability distribution from the surjective tent map by selecting a non- Borel's normal number as the initial value.

  13. Dynamics of a Quantum Phase Transition

    SciTech Connect

    Zurek, Wojciech H.; Dorner, Uwe; Zoller, Peter

    2005-09-02

    We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising model. One follows the standard treatment of thermodynamic second order phase transitions but applies it to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for transition probabilities in avoided level crossings. We show that predictions of the two approaches of how the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the dynamics of quantum phase transitions.

  14. Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takumi; Akamatsu, Daisuke; Hosaka, Kazumoto; Inaba, Hajime; Okubo, Sho; Tanabe, Takehiko; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2016-04-01

    We report absolute frequency measurements of 81 hyperfine components of the rovibrational transitions of molecular iodine at 578 nm using the second harmonic generation of an 1156-nm external-cavity diode laser and a fiber-based optical frequency comb. The relative uncertainties of the measured absolute frequencies are typically $1.4\\times10^{-11}$. Accurate hyperfine constants of four rovibrational transitions are obtained by fitting the measured hyperfine splittings to a four-term effective Hamiltonian including the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions. The observed transitions can be good frequency references at 578 nm, and are especially useful for research using atomic ytterbium since the transitions are close to the $^{1}S_{0}-^{3}P_{0}$ clock transition of ytterbium.

  15. Characteristic length of the knotting probability revisited

    NASA Astrophysics Data System (ADS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-09-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(-N/NK), where the estimates of parameter NK are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius rex, i.e. the screening length of double-stranded DNA.

  16. Inclusion probability with dropout: an operational formula.

    PubMed

    Milot, E; Courteau, J; Crispino, F; Mailly, F

    2015-05-01

    In forensic genetics, a mixture of two or more contributors to a DNA profile is often interpreted using the inclusion probabilities theory. In this paper, we present a general formula for estimating the probability of inclusion (PI, also known as the RMNE probability) from a subset of visible alleles when dropouts are possible. This one-locus formula can easily be extended to multiple loci using the cumulative probability of inclusion. We show that an exact formulation requires fixing the number of contributors, hence to slightly modify the classic interpretation of the PI. We discuss the implications of our results for the enduring debate over the use of PI vs likelihood ratio approaches within the context of low template amplifications. PMID:25559642

  17. A Survey of Tables of Probability Distributions

    PubMed Central

    Kacker, Raghu; Olkin, Ingram

    2005-01-01

    This article is a survey of the tables of probability distributions published about or after the publication in 1964 of the Handbook of Mathematical Functions, edited by Abramowitz and Stegun PMID:27308104

  18. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  19. On Convergent Probability of a Random Walk

    ERIC Educational Resources Information Center

    Lee, Y.-F.; Ching, W.-K.

    2006-01-01

    This note introduces an interesting random walk on a straight path with cards of random numbers. The method of recurrent relations is used to obtain the convergent probability of the random walk with different initial positions.

  20. Determining Probabilities by Examining Underlying Structure.

    ERIC Educational Resources Information Center

    Norton, Robert M.

    2001-01-01

    Discusses how dice games pose fairness issues that appeal to students and examines a structure for three games involving two dice in a way that leads directly to the theoretical probabilities for all possible outcomes. (YDS)

  1. Neutron initiation probability in fast burst reactor

    SciTech Connect

    Liu, X.; Du, J.; Xie, Q.; Fan, X.

    2012-07-01

    Based on the probability balance of neutron random events in multiply system, the four random process of neutron in prompt super-critical is described and then the equation of neutron initiation probability W(r,E,{Omega},t) is deduced. On the assumption of static, slightly prompt super-critical and the two factorial approximation, the formula of the average probability of 'one' neutron is derived which is the same with the result derived from the point model. The MC simulation using point model is applied in Godiva- II and CFBR-II, and the simulation result of one neutron initiation is well consistent with the theory that the initiation probability of Godiva- II inverted commas CFBR-II burst reactor are 0.00032, 0.00027 respectively on the ordinary burst operation. (authors)

  2. Probability tree algorithm for general diffusion processes

    NASA Astrophysics Data System (ADS)

    Ingber, Lester; Chen, Colleen; Mondescu, Radu Paul; Muzzall, David; Renedo, Marco

    2001-11-01

    Motivated by path-integral numerical solutions of diffusion processes, PATHINT, we present a tree algorithm, PATHTREE, which permits extremely fast accurate computation of probability distributions of a large class of general nonlinear diffusion processes.

  3. Analysis of Nuclear Quantum Phase Transitions

    SciTech Connect

    Li, Z. P.; Meng, J.; Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.

    2009-08-26

    A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.

  4. Systematic Study of the ^87Sr Clock Transition in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Boyd, Martin; Ludlow, Andrew; Zelevinsky, Tanya; Foreman, Seth; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye, Jun

    2006-05-01

    The ^1S0-^3P0 transition in ^87Sr is studied for the realization of an optical atomic clock, using μK atoms in a magic wavelength optical lattice [1]. The probe laser frequency is measured with an octave-spanning fs comb, which is referenced to a hydrogen maser (directly calibrated by the NIST primary Cs fountain clock) allowing high precision evaluation of potential systematic frequency shifts . By varying the lattice wavelength and trapping depth we find that the magic wavelength for the clock transition is 813.418(10) with a clock sensitivity to lattice deviations of ˜2 mHz/MHz for lattice intensities of 10 kW/cm^2. To explore the effect of atomic collisions on the clock frequency we varied the atomic density by a factor of 50 and did not find any shifts at the 3 x10-14 level. Dependence of the clock transition on magnetic fields has been examined as the hyperfine interaction (I = 9/2), which provides the small transition moment for the doubly forbidden clock transition, also results in a differential g factor of the ^3P0 and ^1S0 levels. We will report the latest results of this optical clock system. [1] A.D. Ludlow et al., Phys Rev Lett 96, 033003 (2006).

  5. Non-Gaussian Photon Probability Distribution

    NASA Astrophysics Data System (ADS)

    Solomon, Benjamin T.

    2010-01-01

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mΓ distribution (whose parameters are α = r, βr/√u ) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact Pi, the probabilistic function and the ability to interact Ai, the electromagnetic function. Splitting the probability function Pi from the electromagnetic function Ai enables the investigation of the photon behavior from a purely probabilistic Pi perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function Pi and the ability to interact Ai, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon Pi of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al. (2006) microwave cloaking, and Oulton et al. (2008) sub wavelength confinement; thereby providing a strong case that

  6. Robust satisficing and the probability of survival

    NASA Astrophysics Data System (ADS)

    Ben-Haim, Yakov

    2014-01-01

    Concepts of robustness are sometimes employed when decisions under uncertainty are made without probabilistic information. We present a theorem that establishes necessary and sufficient conditions for non-probabilistic robustness to be equivalent to the probability of satisfying the specified outcome requirements. When this holds, probability is enhanced (or maximised) by enhancing (or maximising) robustness. Two further theorems establish important special cases. These theorems have implications for success or survival under uncertainty. Applications to foraging and finance are discussed.

  7. The spline probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Sithiravel, Rajiv; Tharmarasa, Ratnasingham; McDonald, Mike; Pelletier, Michel; Kirubarajan, Thiagalingam

    2012-06-01

    The Probability Hypothesis Density Filter (PHD) is a multitarget tracker for recursively estimating the number of targets and their state vectors from a set of observations. The PHD filter is capable of working well in scenarios with false alarms and missed detections. Two distinct PHD filter implementations are available in the literature: the Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) and the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filters. The SMC-PHD filter uses particles to provide target state estimates, which can lead to a high computational load, whereas the GM-PHD filter does not use particles, but restricts to linear Gaussian mixture models. The SMC-PHD filter technique provides only weighted samples at discrete points in the state space instead of a continuous estimate of the probability density function of the system state and thus suffers from the well-known degeneracy problem. This paper proposes a B-Spline based Probability Hypothesis Density (S-PHD) filter, which has the capability to model any arbitrary probability density function. The resulting algorithm can handle linear, non-linear, Gaussian, and non-Gaussian models and the S-PHD filter can also provide continuous estimates of the probability density function of the system state. In addition, by moving the knots dynamically, the S-PHD filter ensures that the splines cover only the region where the probability of the system state is significant, hence the high efficiency of the S-PHD filter is maintained at all times. Also, unlike the SMC-PHD filter, the S-PHD filter is immune to the degeneracy problem due to its continuous nature. The S-PHD filter derivations and simulations are provided in this paper.

  8. Shell transitions between metastable states of Yukawa balls

    SciTech Connect

    Kaeding, S.; Melzer, A.; Block, D.; Piel, A.; Kaehlert, H.; Ludwig, P.; Bonitz, M.

    2008-07-15

    Spherical dust clusters composed of several concentric shells are experimentally investigated with particular interest on transitions between different configurations and transitions of particles between different shells. Transitions between different ground and metastable configurations are frequently observed. The experimental analysis allows us to derive the energy differences of different configurations from particles traveling between shells. The observed transitions and transition probabilities are compared to molecular dynamics simulations.

  9. Multiple Dynamic Transitions in Nonequilibrium Work Fluctuations

    NASA Astrophysics Data System (ADS)

    Noh, Jae Dong; Kwon, Chulan; Park, Hyunggyu

    2013-09-01

    The time-dependent work probability distribution function P(W) is investigated analytically for a diffusing particle trapped by an anisotropic harmonic potential and driven by a nonconservative drift force in two dimensions. We find that the exponential tail shape of P(W) characterizing rare-event probabilities undergoes a sequence of dynamic transitions in time. These remarkable locking-unlocking type transitions result from an intricate interplay between a rotational mode induced by the nonconservative force and an anisotropic decaying mode due to the conservative attractive force. We expect that most of the high-dimensional dynamical systems should exhibit similar multiple dynamic transitions.

  10. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  11. Familiarity and preference for pitch probability profiles.

    PubMed

    Cui, Anja-Xiaoxing; Collett, Meghan J; Troje, Niko F; Cuddy, Lola L

    2015-05-01

    We investigated familiarity and preference judgments of participants toward a novel musical system. We exposed participants to tone sequences generated from a novel pitch probability profile. Afterward, we either asked participants to identify more familiar or we asked participants to identify preferred tone sequences in a two-alternative forced-choice task. The task paired a tone sequence generated from the pitch probability profile they had been exposed to and a tone sequence generated from another pitch probability profile at three levels of distinctiveness. We found that participants identified tone sequences as more familiar if they were generated from the same pitch probability profile which they had been exposed to. However, participants did not prefer these tone sequences. We interpret this relationship between familiarity and preference to be consistent with an inverted U-shaped relationship between knowledge and affect. The fact that participants identified tone sequences as even more familiar if they were generated from the more distinctive (caricatured) version of the pitch probability profile which they had been exposed to suggests that the statistical learning of the pitch probability profile is involved in gaining of musical knowledge. PMID:25838257

  12. Pattern formation, logistics, and maximum path probability

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  13. The Estimation of Tree Posterior Probabilities Using Conditional Clade Probability Distributions

    PubMed Central

    Larget, Bret

    2013-01-01

    In this article I introduce the idea of conditional independence of separated subtrees as a principle by which to estimate the posterior probability of trees using conditional clade probability distributions rather than simple sample relative frequencies. I describe an algorithm for these calculations and software which implements these ideas. I show that these alternative calculations are very similar to simple sample relative frequencies for high probability trees but are substantially more accurate for relatively low probability trees. The method allows the posterior probability of unsampled trees to be calculated when these trees contain only clades that are in other sampled trees. Furthermore, the method can be used to estimate the total probability of the set of sampled trees which provides a measure of the thoroughness of a posterior sample. [Bayesian phylogenetics; conditional clade distributions; improved accuracy; posterior probabilities of trees.] PMID:23479066

  14. The absolute frequency of the 87Sr optical clock transition

    NASA Astrophysics Data System (ADS)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian; Thomsen, Jan W.; Martin, Michael J.; de Miranda, Marcio H. G.; Zelevinsky, Tanya; Boyd, Martin M.; Ye, Jun; Diddams, Scott A.; Heavner, Thomas P.; Parker, Thomas E.; Jefferts, Steven R.

    2008-10-01

    The absolute frequency of the 1S0-3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10-16, the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals.

  15. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non

  16. The Theoretical Transition Probabilities Between the B(sup 3)Pi(sub g) and the A(sup 3)Sigma(Sup +, sub u), W(sup 3)Delta(sub u), B'(sup 3)Sigma(sup -, sub u) States of N2

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Partridge, Harry; Huo, Winifred M.; Langhoff, Stephen (Technical Monitor)

    1995-01-01

    The electronic transition moment functions between the B(sup 3)Pi(sub g) and the A(sup 3)Sigma(sup +, sub u), W(sup 3)Delta(sub u), B'(sup 3)Sigma(sup -, sub u) states of N2 are studied using the internally contracted multireference configuration interaction (ICMRCI) method based upon complete active space SCF (CASSCF) reference wave-functions. The dependence of the moments on both the one and n-particle basis sets has been investigated in detail. The calculated radiative lifetimes for the vibrational levels of B(sup 3)Pi(sub g) are in excellent agreement with the most recent measurement of Euler and Pipkin (1983)

  17. The role of probabilities in physics.

    PubMed

    Le Bellac, Michel

    2012-09-01

    Although modern physics was born in the XVIIth century as a fully deterministic theory in the form of Newtonian mechanics, the use of probabilistic arguments turned out later on to be unavoidable. Three main situations can be distinguished. (1) When the number of degrees of freedom is very large, on the order of Avogadro's number, a detailed dynamical description is not possible, and in fact not useful: we do not care about the velocity of a particular molecule in a gas, all we need is the probability distribution of the velocities. This statistical description introduced by Maxwell and Boltzmann allows us to recover equilibrium thermodynamics, gives a microscopic interpretation of entropy and underlies our understanding of irreversibility. (2) Even when the number of degrees of freedom is small (but larger than three) sensitivity to initial conditions of chaotic dynamics makes determinism irrelevant in practice, because we cannot control the initial conditions with infinite accuracy. Although die tossing is in principle predictable, the approach to chaotic dynamics in some limit implies that our ignorance of initial conditions is translated into a probabilistic description: each face comes up with probability 1/6. (3) As is well-known, quantum mechanics is incompatible with determinism. However, quantum probabilities differ in an essential way from the probabilities introduced previously: it has been shown from the work of John Bell that quantum probabilities are intrinsic and cannot be given an ignorance interpretation based on a hypothetical deeper level of description. PMID:22609725

  18. Laboratory-tutorial activities for teaching probability

    NASA Astrophysics Data System (ADS)

    Wittmann, Michael C.; Morgan, Jeffrey T.; Feeley, Roger E.

    2006-12-01

    We report on the development of students’ ideas of probability and probability density in a University of Maine laboratory-based general education physics course called Intuitive Quantum Physics. Students in the course are generally math phobic with unfavorable expectations about the nature of physics and their ability to do it. We describe a set of activities used to teach concepts of probability and probability density. Rudimentary knowledge of mechanics is needed for one activity, but otherwise the material requires no additional preparation. Extensions of the activities include relating probability density to potential energy graphs for certain “touchstone” examples. Students have difficulties learning the target concepts, such as comparing the ratio of time in a region to total time in all regions. Instead, they often focus on edge effects, pattern match to previously studied situations, reason about necessary but incomplete macroscopic elements of the system, use the gambler’s fallacy, and use expectations about ensemble results rather than expectation values to predict future events. We map the development of their thinking to provide examples of problems rather than evidence of a curriculum’s success.

  19. Approximation of Failure Probability Using Conditional Sampling

    NASA Technical Reports Server (NTRS)

    Giesy. Daniel P.; Crespo, Luis G.; Kenney, Sean P.

    2008-01-01

    In analyzing systems which depend on uncertain parameters, one technique is to partition the uncertain parameter domain into a failure set and its complement, and judge the quality of the system by estimating the probability of failure. If this is done by a sampling technique such as Monte Carlo and the probability of failure is small, accurate approximation can require so many sample points that the computational expense is prohibitive. Previous work of the authors has shown how to bound the failure event by sets of such simple geometry that their probabilities can be calculated analytically. In this paper, it is shown how to make use of these failure bounding sets and conditional sampling within them to substantially reduce the computational burden of approximating failure probability. It is also shown how the use of these sampling techniques improves the confidence intervals for the failure probability estimate for a given number of sample points and how they reduce the number of sample point analyses needed to achieve a given level of confidence.

  20. Computing Earthquake Probabilities on Global Scales

    NASA Astrophysics Data System (ADS)

    Holliday, James R.; Graves, William R.; Rundle, John B.; Turcotte, Donald L.

    2016-03-01

    Large devastating events in systems such as earthquakes, typhoons, market crashes, electricity grid blackouts, floods, droughts, wars and conflicts, and landslides can be unexpected and devastating. Events in many of these systems display frequency-size statistics that are power laws. Previously, we presented a new method for calculating probabilities for large events in systems such as these. This method counts the number of small events since the last large event and then converts this count into a probability by using a Weibull probability law. We applied this method to the calculation of large earthquake probabilities in California-Nevada, USA. In that study, we considered a fixed geographic region and assumed that all earthquakes within that region, large magnitudes as well as small, were perfectly correlated. In the present article, we extend this model to systems in which the events have a finite correlation length. We modify our previous results by employing the correlation function for near mean field systems having long-range interactions, an example of which is earthquakes and elastic interactions. We then construct an application of the method and show examples of computed earthquake probabilities.

  1. Reconstructing the prior probabilities of allelic phylogenies.

    PubMed Central

    Golding, G Brian

    2002-01-01

    In general when a phylogeny is reconstructed from DNA or protein sequence data, it makes use only of the probabilities of obtaining some phylogeny given a collection of data. It is also possible to determine the prior probabilities of different phylogenies. This information can be of use in analyzing the biological causes for the observed divergence of sampled taxa. Unusually "rare" topologies for a given data set may be indicative of different biological forces acting. A recursive algorithm is presented that calculates the prior probabilities of a phylogeny for different allelic samples and for different phylogenies. This method is a straightforward extension of Ewens' sample distribution. The probability of obtaining each possible sample according to Ewens' distribution is further subdivided into each of the possible phylogenetic topologies. These probabilities depend not only on the identity of the alleles and on 4N(mu) (four times the effective population size times the neutral mutation rate) but also on the phylogenetic relationships among the alleles. Illustrations of the algorithm are given to demonstrate how different phylogenies are favored under different conditions. PMID:12072482

  2. ON THE TRANSIT POTENTIAL OF THE PLANET ORBITING IOTA DRACONIS

    SciTech Connect

    Kane, Stephen R.; Reffert, Sabine; Schwab, Christian; Bergmann, Christoph; Henry, Gregory W.; Fischer, Debra; Clubb, Kelsey I.

    2010-09-10

    Most of the known transiting exoplanets are in short-period orbits, largely due to the bias inherent in detecting planets through the transit technique. However, the eccentricity distribution of the known radial velocity planets results in many of those planets having a non-negligible transit probability. One such case is the massive planet orbiting the giant star iota Draconis, a situation where both the orientation of the planet's eccentric orbit and the size of the host star inflate the transit probability to a much higher value than for a typical hot Jupiter. Here we present a revised fit of the radial velocity data with new measurements and a photometric analysis of the stellar variability. We provide a revised transit probability, an improved transit ephemeris, and discuss the prospects for observing a transit of this planet from both ground and space.

  3. Detection probability of EBPSK-MODEM system

    NASA Astrophysics Data System (ADS)

    Yao, Yu; Wu, Lenan

    2016-07-01

    Since the impacting filter-based receiver is able to transform phase modulation into amplitude peak, a simple threshold decision can detect the Extend-Binary Phase Shift Keying (EBPSK) modulated ranging signal in noise environment. In this paper, an analysis of the EBPSK-MODEM system output gives the probability density function for EBPSK modulated signals plus noise. The equation of detection probability (pd) for fluctuating and non-fluctuating targets has been deduced. Also, a comparison of the pd for the EBPSK-MODEM system and pulse radar receiver is made, and some results are plotted. Moreover, the probability curves of such system with several modulation parameters are analysed. When modulation parameter is not smaller than 6, the detection performance of EBPSK-MODEM system is more excellent than traditional radar system. In addition to theoretical considerations, computer simulations are provided for illustrating the performance.

  4. Pointwise probability reinforcements for robust statistical inference.

    PubMed

    Frénay, Benoît; Verleysen, Michel

    2014-02-01

    Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. PMID:24300550

  5. Local Directed Percolation Probability in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Konno, Norio; Komatsu, Genichi; Kameoka, Koichi

    1998-01-01

    Using the series expansion method and Monte Carlo simulation,we study the directed percolation probability on the square lattice Vn0=\\{ (x,y) \\in {Z}2:x+y=even, 0 ≤ y ≤ n, - y ≤ x ≤ y \\}.We calculate the local percolationprobability Pnl defined as the connection probability between theorigin and a site (0,n). The critical behavior of P∞lis clearly different from the global percolation probability P∞g characterized by a critical exponent βg.An analysis based on the Padé approximants shows βl=2βg.In addition, we find that the series expansion of P2nl can be expressed as a function of Png.

  6. Sampling Quantum Nonlocal Correlations with High Probability

    NASA Astrophysics Data System (ADS)

    González-Guillén, C. E.; Jiménez, C. H.; Palazuelos, C.; Villanueva, I.

    2016-05-01

    It is well known that quantum correlations for bipartite dichotomic measurements are those of the form {γ=(< u_i,v_jrangle)_{i,j=1}^n}, where the vectors u i and v j are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of {α=m/n}, where the previous vectors are sampled according to the Haar measure in the unit sphere of {R^m}. In particular, we prove the existence of an {α_0 > 0} such that if {α≤ α_0}, {γ} is nonlocal with probability tending to 1 as {n→ ∞}, while for {α > 2}, {γ} is local with probability tending to 1 as {n→ ∞}.

  7. Explosion probability of unexploded ordnance: expert beliefs.

    PubMed

    MacDonald, Jacqueline Anne; Small, Mitchell J; Morgan, M G

    2008-08-01

    This article reports on a study to quantify expert beliefs about the explosion probability of unexploded ordnance (UXO). Some 1,976 sites at closed military bases in the United States are contaminated with UXO and are slated for cleanup, at an estimated cost of $15-140 billion. Because no available technology can guarantee 100% removal of UXO, information about explosion probability is needed to assess the residual risks of civilian reuse of closed military bases and to make decisions about how much to invest in cleanup. This study elicited probability distributions for the chance of UXO explosion from 25 experts in explosive ordnance disposal, all of whom have had field experience in UXO identification and deactivation. The study considered six different scenarios: three different types of UXO handled in two different ways (one involving children and the other involving construction workers). We also asked the experts to rank by sensitivity to explosion 20 different kinds of UXO found at a case study site at Fort Ord, California. We found that the experts do not agree about the probability of UXO explosion, with significant differences among experts in their mean estimates of explosion probabilities and in the amount of uncertainty that they express in their estimates. In three of the six scenarios, the divergence was so great that the average of all the expert probability distributions was statistically indistinguishable from a uniform (0, 1) distribution-suggesting that the sum of expert opinion provides no information at all about the explosion risk. The experts' opinions on the relative sensitivity to explosion of the 20 UXO items also diverged. The average correlation between rankings of any pair of experts was 0.41, which, statistically, is barely significant (p= 0.049) at the 95% confidence level. Thus, one expert's rankings provide little predictive information about another's rankings. The lack of consensus among experts suggests that empirical studies

  8. Monte Carlo simulation of scenario probability distributions

    SciTech Connect

    Glaser, R.

    1996-10-23

    Suppose a scenario of interest can be represented as a series of events. A final result R may be viewed then as the intersection of three events, A, B, and C. The probability of the result P(R) in this case is the product P(R) = P(A) P(B {vert_bar} A) P(C {vert_bar} A {intersection} B). An expert may be reluctant to estimate P(R) as a whole yet agree to supply his notions of the component probabilities in the form of prior distributions. Each component prior distribution may be viewed as the stochastic characterization of the expert`s uncertainty regarding the true value of the component probability. Mathematically, the component probabilities are treated as independent random variables and P(R) as their product; the induced prior distribution for P(R) is determined which characterizes the expert`s uncertainty regarding P(R). It may be both convenient and adequate to approximate the desired distribution by Monte Carlo simulation. Software has been written for this task that allows a variety of component priors that experts with good engineering judgment might feel comfortable with. The priors are mostly based on so-called likelihood classes. The software permits an expert to choose for a given component event probability one of six types of prior distributions, and the expert specifies the parameter value(s) for that prior. Each prior is unimodal. The expert essentially decides where the mode is, how the probability is distributed in the vicinity of the mode, and how rapidly it attenuates away. Limiting and degenerate applications allow the expert to be vague or precise.

  9. Non-Gaussian Photon Probability Distribution

    SciTech Connect

    Solomon, Benjamin T.

    2010-01-28

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mGAMMA distribution (whose parameters are alpha = r, betar/sq root(u)) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact P{sub i}, the probabilistic function and the ability to interact A{sub i}, the electromagnetic function. Splitting the probability function P{sub i} from the electromagnetic function A{sub i} enables the investigation of the photon behavior from a purely probabilistic P{sub i} perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function P{sub i} and the ability to interact A{sub i}, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon P{sub i} of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al.(2006) microwave cloaking, and Oulton et al.(2008) sub

  10. Quantum probability and quantum decision-making.

    PubMed

    Yukalov, V I; Sornette, D

    2016-01-13

    A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. PMID:26621989

  11. Steering in spin tomographic probability representation

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2016-09-01

    The steering property known for two-qubit state in terms of specific inequalities for the correlation function is translated for the state of qudit with the spin j = 3 / 2. Since most steering detection inequalities are based on the correlation functions we introduce analogs of such functions for the single qudit systems. The tomographic probability representation for the qudit states is applied. The connection between the correlation function in the two-qubit system and the single qudit is presented in an integral form with an intertwining kernel calculated explicitly in tomographic probability terms.

  12. Practical algorithmic probability: an image inpainting example

    NASA Astrophysics Data System (ADS)

    Potapov, Alexey; Scherbakov, Oleg; Zhdanov, Innokentii

    2013-12-01

    Possibility of practical application of algorithmic probability is analyzed on an example of image inpainting problem that precisely corresponds to the prediction problem. Such consideration is fruitful both for the theory of universal prediction and practical image inpaiting methods. Efficient application of algorithmic probability implies that its computation is essentially optimized for some specific data representation. In this paper, we considered one image representation, namely spectral representation, for which an image inpainting algorithm is proposed based on the spectrum entropy criterion. This algorithm showed promising results in spite of very simple representation. The same approach can be used for introducing ALP-based criterion for more powerful image representations.

  13. Flood frequency: expected and unexpected probabilities

    USGS Publications Warehouse

    Thomas, D.M.

    1976-01-01

    Flood-frequency curves may be defined either with or without an ' expeced probability ' adustment; and the two curves differ in the way that they attempt to average the time-sampling uncertainties. A curve with no adustment is shown to estimate a median value of both discharge and frequency of occurrence, while an expected probability curve is shown to estimate a mean frequency of flood years. The attributes and constraints of the two types of curves for various uses are discussed. 

  14. Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2014-08-01

    The orthocomplemented modular lattice of subspaces L[H(d)], of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)]). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator {{D}}(H_1, H_2), which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors {{P}}(H_1), {{P}}(H_2), to the subspaces H1, H2. As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities.

  15. Quantum probabilities as Dempster-Shafer probabilities in the lattice of subspaces

    SciTech Connect

    Vourdas, A.

    2014-08-15

    The orthocomplemented modular lattice of subspaces L[H(d)], of a quantum system with d-dimensional Hilbert space H(d), is considered. A generalized additivity relation which holds for Kolmogorov probabilities is violated by quantum probabilities in the full lattice L[H(d)] (it is only valid within the Boolean subalgebras of L[H(d)]). This suggests the use of more general (than Kolmogorov) probability theories, and here the Dempster-Shafer probability theory is adopted. An operator D(H{sub 1},H{sub 2}), which quantifies deviations from Kolmogorov probability theory is introduced, and it is shown to be intimately related to the commutator of the projectors P(H{sub 1}),P(H{sub 2}), to the subspaces H{sub 1}, H{sub 2}. As an application, it is shown that the proof of the inequalities of Clauser, Horne, Shimony, and Holt for a system of two spin 1/2 particles is valid for Kolmogorov probabilities, but it is not valid for Dempster-Shafer probabilities. The violation of these inequalities in experiments supports the interpretation of quantum probabilities as Dempster-Shafer probabilities.

  16. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios. PMID:12513129

  17. Spectroscopy of the 199Hg Optical Clock Transition at 265.5 nm

    NASA Astrophysics Data System (ADS)

    Lytle, Christian; Paul, Justin; Jones, R.

    2013-05-01

    Neutral Hg is an excellent candidate for a stable and accurate atomic clock. The doubly-forbidden clock transition at 265.5 nm can provide an extremely high-quality resonance factor (Q) when confined in an optical lattice at the Stark-shift free ``magic'' wavelength. A key feature of the Hg system is the expected reduced uncertainty of black-body radiation induced Stark shifts compared to other optically-based neutral atom clocks. We demonstrate precision spectroscopy of the 1S0 - 3P0 clock transition in 199Hg in a MOT. The MOT population of 106 atoms was depleted by over 70% using 3 mW from a cavity-stabilized probe laser tuned to the clock transition. We present our characterization of the transition and efforts to implement a stable Hg clock system.

  18. Technique for Evaluating Multiple Probability Occurrences /TEMPO/

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1970-01-01

    Technique is described for adjustment of engineering response information by broadening the application of statistical subjective stimuli theory. The study is specifically concerned with a mathematical evaluation of the expected probability of relative occurrence which can be identified by comparison rating techniques.

  19. Spatial Probability Cuing and Right Hemisphere Damage

    ERIC Educational Resources Information Center

    Shaqiri, Albulena; Anderson, Britt

    2012-01-01

    In this experiment we studied statistical learning, inter-trial priming, and visual attention. We assessed healthy controls and right brain damaged (RBD) patients with and without neglect, on a simple visual discrimination task designed to measure priming effects and probability learning. All participants showed a preserved priming effect for item…

  20. Assessing Schematic Knowledge of Introductory Probability Theory

    ERIC Educational Resources Information Center

    Birney, Damian P.; Fogarty, Gerard J.; Plank, Ashley

    2005-01-01

    The ability to identify schematic knowledge is an important goal for both assessment and instruction. In the current paper, schematic knowledge of statistical probability theory is explored from the declarative-procedural framework using multiple methods of assessment. A sample of 90 undergraduate introductory statistics students was required to…

  1. Automatic Item Generation of Probability Word Problems

    ERIC Educational Resources Information Center

    Holling, Heinz; Bertling, Jonas P.; Zeuch, Nina

    2009-01-01

    Mathematical word problems represent a common item format for assessing student competencies. Automatic item generation (AIG) is an effective way of constructing many items with predictable difficulties, based on a set of predefined task parameters. The current study presents a framework for the automatic generation of probability word problems…

  2. Phonotactic Probability Effects in Children Who Stutter

    ERIC Educational Resources Information Center

    Anderson, Julie D.; Byrd, Courtney T.

    2008-01-01

    Purpose: The purpose of this study was to examine the influence of "phonotactic probability", which is the frequency of different sound segments and segment sequences, on the overall fluency with which words are produced by preschool children who stutter (CWS) as well as to determine whether it has an effect on the type of stuttered disfluency…

  3. Estimating the Probability of Negative Events

    ERIC Educational Resources Information Center

    Harris, Adam J. L.; Corner, Adam; Hahn, Ulrike

    2009-01-01

    How well we are attuned to the statistics of our environment is a fundamental question in understanding human behaviour. It seems particularly important to be able to provide accurate assessments of the probability with which negative events occur so as to guide rational choice of preventative actions. One question that arises here is whether or…

  4. Large Deviations: Advanced Probability for Undergrads

    ERIC Educational Resources Information Center

    Rolls, David A.

    2007-01-01

    In the branch of probability called "large deviations," rates of convergence (e.g. of the sample mean) are considered. The theory makes use of the moment generating function. So, particularly for sums of independent and identically distributed random variables, the theory can be made accessible to senior undergraduates after a first course in…

  5. Probability & Perception: The Representativeness Heuristic in Action

    ERIC Educational Resources Information Center

    Lu, Yun; Vasko, Francis J.; Drummond, Trevor J.; Vasko, Lisa E.

    2014-01-01

    If the prospective students of probability lack a background in mathematical proofs, hands-on classroom activities may work well to help them to learn to analyze problems correctly. For example, students may physically roll a die twice to count and compare the frequency of the sequences. Tools such as graphing calculators or Microsoft Excel®…

  6. Simplicity and Probability in Causal Explanation

    ERIC Educational Resources Information Center

    Lombrozo, Tania

    2007-01-01

    What makes some explanations better than others? This paper explores the roles of simplicity and probability in evaluating competing causal explanations. Four experiments investigate the hypothesis that simpler explanations are judged both better and more likely to be true. In all experiments, simplicity is quantified as the number of causes…

  7. Exploring Concepts in Probability: Using Graphics Calculators

    ERIC Educational Resources Information Center

    Ghosh, Jonaki

    2004-01-01

    This article describes a project in which certain key concepts in probability were explored using graphics calculators with year 10 students. The lessons were conducted in the regular classroom where students were provided with a Casio CFX 9850 GB PLUS graphics calculator with which they were familiar from year 9. The participants in the…

  8. The Smart Potential behind Probability Matching

    ERIC Educational Resources Information Center

    Gaissmaier, Wolfgang; Schooler, Lael J.

    2008-01-01

    Probability matching is a classic choice anomaly that has been studied extensively. While many approaches assume that it is a cognitive shortcut driven by cognitive limitations, recent literature suggests that it is not a strategy per se, but rather another outcome of people's well-documented misperception of randomness. People search for patterns…

  9. Monte Carlo, Probability, Algebra, and Pi.

    ERIC Educational Resources Information Center

    Hinders, Duane C.

    1981-01-01

    The uses of random number generators are illustrated in three ways: (1) the solution of a probability problem using a coin; (2) the solution of a system of simultaneous linear equations using a die; and (3) the approximation of pi using darts. (MP)

  10. On the bound of first excursion probability

    NASA Technical Reports Server (NTRS)

    Yang, J. N.

    1969-01-01

    Method has been developed to improve the lower bound of the first excursion probability that can apply to the problem with either constant or time-dependent barriers. The method requires knowledge of the joint density function of the random process at two arbitrary instants.

  11. Rethinking the learning of belief network probabilities

    SciTech Connect

    Musick, R.

    1996-03-01

    Belief networks are a powerful tool for knowledge discovery that provide concise, understandable probabilistic models of data. There are methods grounded in probability theory to incrementally update the relationships described by the belief network when new information is seen, to perform complex inferences over any set of variables in the data, to incorporate domain expertise and prior knowledge into the model, and to automatically learn the model from data. This paper concentrates on part of the belief network induction problem, that of learning the quantitative structure (the conditional probabilities), given the qualitative structure. In particular, the current practice of rote learning the probabilities in belief networks can be significantly improved upon. We advance the idea of applying any learning algorithm to the task of conditional probability learning in belief networks, discuss potential benefits, and show results of applying neural networks and other algorithms to a medium sized car insurance belief network. The results demonstrate from 10 to 100% improvements in model error rates over the current approaches.

  12. Quantum temporal probabilities in tunneling systems

    NASA Astrophysics Data System (ADS)

    Anastopoulos, Charis; Savvidou, Ntina

    2013-09-01

    We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines 'classical' time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems.

  13. Conceptual Variation and Coordination in Probability Reasoning

    ERIC Educational Resources Information Center

    Nilsson, Per

    2009-01-01

    This study investigates students' conceptual variation and coordination among theoretical and experimental interpretations of probability. In the analysis we follow how Swedish students (12-13 years old) interact with a dice game, specifically designed to offer the students opportunities to elaborate on the logic of sample space,…

  14. Teaching Mathematics with Technology: Probability Simulations.

    ERIC Educational Resources Information Center

    Bright, George W.

    1989-01-01

    Discussed are the use of probability simulations in a mathematics classroom. Computer simulations using regular dice and special dice are described. Sample programs used to generate 100 rolls of a pair of dice in BASIC and Logo languages are provided. (YP)

  15. Probability in Action: The Red Traffic Light

    ERIC Educational Resources Information Center

    Shanks, John A.

    2007-01-01

    Emphasis on problem solving in mathematics has gained considerable attention in recent years. While statistics teaching has always been problem driven, the same cannot be said for the teaching of probability where discrete examples involving coins and playing cards are often the norm. This article describes an application of simple probability…

  16. Confusion between Odds and Probability, a Pandemic?

    ERIC Educational Resources Information Center

    Fulton, Lawrence V.; Mendez, Francis A.; Bastian, Nathaniel D.; Musal, R. Muzaffer

    2012-01-01

    This manuscript discusses the common confusion between the terms probability and odds. To emphasize the importance and responsibility of being meticulous in the dissemination of information and knowledge, this manuscript reveals five cases of sources of inaccurate statistical language imbedded in the dissemination of information to the general…

  17. Posterior Probabilities for a Consensus Ordering.

    ERIC Educational Resources Information Center

    Fligner, Michael A.; Verducci, Joseph S.

    1990-01-01

    The concept of consensus ordering is defined, and formulas for exact and approximate posterior probabilities for consensus ordering are developed under the assumption of a generalized Mallows' model with a diffuse conjugate prior. These methods are applied to a data set concerning 98 college students. (SLD)

  18. Probability & Statistics: Modular Learning Exercises. Student Edition

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2012

    2012-01-01

    The purpose of these modules is to provide an introduction to the world of probability and statistics to accelerated mathematics students at the high school level. The materials are centered on the fictional town of Happy Shores, a coastal community which is at risk for hurricanes. Actuaries at an insurance company figure out the risks and…

  19. Learning a Probability Distribution Efficiently and Reliably

    NASA Technical Reports Server (NTRS)

    Laird, Philip; Gamble, Evan

    1988-01-01

    A new algorithm, called the CDF-Inversion Algorithm, is described. Using it, one can efficiently learn a probability distribution over a finite set to a specified accuracy and confidence. The algorithm can be extended to learn joint distributions over a vector space. Some implementation results are described.

  20. Five-Parameter Bivariate Probability Distribution

    NASA Technical Reports Server (NTRS)

    Tubbs, J.; Brewer, D.; Smith, O. W.

    1986-01-01

    NASA technical memorandum presents four papers about five-parameter bivariate gamma class of probability distributions. With some overlap of subject matter, papers address different aspects of theories of these distributions and use in forming statistical models of such phenomena as wind gusts. Provides acceptable results for defining constraints in problems designing aircraft and spacecraft to withstand large wind-gust loads.

  1. Probability & Statistics: Modular Learning Exercises. Teacher Edition

    ERIC Educational Resources Information Center

    Actuarial Foundation, 2012

    2012-01-01

    The purpose of these modules is to provide an introduction to the world of probability and statistics to accelerated mathematics students at the high school level. The modules also introduce students to real world math concepts and problems that property and casualty actuaries come across in their work. They are designed to be used by teachers and…

  2. Independent Events in Elementary Probability Theory

    ERIC Educational Resources Information Center

    Csenki, Attila

    2011-01-01

    In Probability and Statistics taught to mathematicians as a first introduction or to a non-mathematical audience, joint independence of events is introduced by requiring that the multiplication rule is satisfied. The following statement is usually tacitly assumed to hold (and, at best, intuitively motivated): If the n events E[subscript 1],…

  3. Probability distribution functions in turbulent convection

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Sirovich, L.

    1991-01-01

    Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented.

  4. Code System to Calculate Probability of Reactor Vessel Failure.

    Energy Science and Technology Software Center (ESTSC)

    2000-04-24

    Version: 00 VISA2 (Vessel Integrity Simulation Analysis) was developed to estimate the failure probability of nuclear reactor pressure vessels under pressurized thermal shock conditions. The deterministic portion of the code performs heat transfer, stress, and fracture mechanics calculations for a vessel subjected to a user-specified temperature and pressure transient. The probabilistic analysis performs a Monte Carlo simulation to estimate the probability of vessel failure. Parameters such as initial crack size and position, copper and nickelmore » content, fluence, and the fracture toughness values for crack initiation and arrest are treated as random variables. Linear elastic fracture mechanics methods are used to model crack initiation and growth. This includes cladding effects in the heat transfer, stress, and fracture mechanics calculations. The simulation procedure treats an entire vessel and recognizes that more than one flaw can exist in a given vessel. The flaw model allows random positioning of the flaw within the vessel wall thickness, and the user can specify either flaw length or length-to-depth aspect ratio for crack initiation and arrest predictions. The flaw size distribution can be adjusted on the basis of different inservice inspection techniques and inspection conditions. The toughness simulation model includes a menu of alternative equations for predicting the shift in the reference temperature of the nil-ductility transition. VISA2 is an upgraded release from the original VISA program developed by U.S. Nuclear Regulatory Commission staff. Improvements include a treatment of cladding effects; a more general simulation of flaw size, shape and location; a simulation of inservice inspection; a revised simulation of the reference temperature of the nil-ductility transition; and treatment of vessels with multiple welds and initial flaws.« less

  5. Metric transition

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes NASA's metric transition in terms of seven major program elements. Six are technical areas involving research, technology development, and operations; they are managed by specific Program Offices at NASA Headquarters. The final program element, Institutional Management, covers both NASA-wide functional management under control of NASA Headquarters and metric capability development at the individual NASA Field Installations. This area addresses issues common to all NASA program elements, including: Federal, state, and local coordination; standards; private industry initiatives; public-awareness initiatives; and employee training. The concluding section identifies current barriers and impediments to metric transition; NASA has no specific recommendations for consideration by the Congress.

  6. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  7. The albedo effect on neutron transmission probability.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    The aim of this study is to evaluate the albedo effect on the neutron transmission probability through slab shields. For this reason we have considered an infinite homogeneous slab having a fixed thickness equal to 20 lambda (lambda is the mean free path of the neutron in the slab). This slab is characterized by the factor Ps (scattering probability) and contains a vacuum channel which is formed by two horizontal parts and an inclined one (David, M. C. (1962) Duc and Voids in shields. In Reactor Handbook, Vol. III, Part B, p. 166). The thickness of the vacuum channel is taken equal to 2 lambda. An infinite plane source of neutrons is placed on the first of the slab (left face) and detectors, having windows equal to 2 lambda, are placed on the second face of the slab (right face). Neutron histories are sampled by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) using exponential biasing in order to increase the Monte Carlo calculation efficiency (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Abouker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco) and we have applied the statistical weight method which supposes that the neutron is born at the source with a unit statistical weight and after each collision this weight is corrected. For different values of the scattering probability and for different slopes of the inclined part of the channel we have calculated the neutron transmission probability for different positions of the detectors versus the albedo at the vacuum channel-medium interface. Some analytical representations are also presented for these transmission probabilities. PMID:9463883

  8. Quantum temporal probabilities in tunneling systems

    SciTech Connect

    Anastopoulos, Charis Savvidou, Ntina

    2013-09-15

    We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.

  9. Neural representation of probabilities for Bayesian inference.

    PubMed

    Rich, Dylan; Cazettes, Fanny; Wang, Yunyan; Peña, José Luis; Fischer, Brian J

    2015-04-01

    Bayesian models are often successful in describing perception and behavior, but the neural representation of probabilities remains in question. There are several distinct proposals for the neural representation of probabilities, but they have not been directly compared in an example system. Here we consider three models: a non-uniform population code where the stimulus-driven activity and distribution of preferred stimuli in the population represent a likelihood function and a prior, respectively; the sampling hypothesis which proposes that the stimulus-driven activity over time represents a posterior probability and that the spontaneous activity represents a prior; and the class of models which propose that a population of neurons represents a posterior probability in a distributed code. It has been shown that the non-uniform population code model matches the representation of auditory space generated in the owl's external nucleus of the inferior colliculus (ICx). However, the alternative models have not been tested, nor have the three models been directly compared in any system. Here we tested the three models in the owl's ICx. We found that spontaneous firing rate and the average stimulus-driven response of these neurons were not consistent with predictions of the sampling hypothesis. We also found that neural activity in ICx under varying levels of sensory noise did not reflect a posterior probability. On the other hand, the responses of ICx neurons were consistent with the non-uniform population code model. We further show that Bayesian inference can be implemented in the non-uniform population code model using one spike per neuron when the population is large and is thus able to support the rapid inference that is necessary for sound localization. PMID:25561333

  10. 750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury.

    PubMed

    Scheid, Martin; Markert, Frank; Walz, Jochen; Wang, Jiayu; Kirchner, Martin; Hänsch, Theodor W

    2007-04-15

    A high-power continuous-wave coherent light source at 253.7 nm is described. It is based on a solid-state Yb:YAG disk laser with two successive frequency doubling stages and is capable of generating stable output powers of up to 750 mW. Spectroscopy of the 6 (1)S(0)-6 (3)P(1) transition of mercury has been demonstrated. PMID:17375166

  11. Using High-Probability Foods to Increase the Acceptance of Low-Probability Foods

    ERIC Educational Resources Information Center

    Meier, Aimee E.; Fryling, Mitch J.; Wallace, Michele D.

    2012-01-01

    Studies have evaluated a range of interventions to treat food selectivity in children with autism and related developmental disabilities. The high-probability instructional sequence is one intervention with variable results in this area. We evaluated the effectiveness of a high-probability sequence using 3 presentations of a preferred food on…

  12. A Comprehensive Probability Project for the Upper Division One-Semester Probability Course Using Yahtzee

    ERIC Educational Resources Information Center

    Wilson, Jason; Lawman, Joshua; Murphy, Rachael; Nelson, Marissa

    2011-01-01

    This article describes a probability project used in an upper division, one-semester probability course with third-semester calculus and linear algebra prerequisites. The student learning outcome focused on developing the skills necessary for approaching project-sized math/stat application problems. These skills include appropriately defining…

  13. Killeen's Probability of Replication and Predictive Probabilities: How to Compute, Use, and Interpret Them

    ERIC Educational Resources Information Center

    Lecoutre, Bruno; Lecoutre, Marie-Paule; Poitevineau, Jacques

    2010-01-01

    P. R. Killeen's (2005a) probability of replication ("p[subscript rep]") of an experimental result is the fiducial Bayesian predictive probability of finding a same-sign effect in a replication of an experiment. "p[subscript rep]" is now routinely reported in "Psychological Science" and has also begun to appear in other journals. However, there is…

  14. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    SciTech Connect

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-08-26

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  15. From data to probability densities without histograms

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Harris, Robert C.

    2008-09-01

    When one deals with data drawn from continuous variables, a histogram is often inadequate to display their probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that, the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step function, so that its differentiation does not give a smooth probability density. Based on Fourier series expansion and Kolmogorov tests, we introduce a simple method, which overcomes this problem. Error bars on the estimated probability density are calculated using a jackknife method. We give several examples and provide computer code reproducing them. You may want to look at the corresponding figures 4 to 9 first. Program summaryProgram title: cdf_to_pd Catalogue identifier: AEBC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2758 No. of bytes in distributed program, including test data, etc.: 18 594 Distribution format: tar.gz Programming language: Fortran 77 Computer: Any capable of compiling and executing Fortran code Operating system: Any capable of compiling and executing Fortran code Classification: 4.14, 9 Nature of problem: When one deals with data drawn from continuous variables, a histogram is often inadequate to display the probability density. It deals inefficiently with statistical noise, and binsizes are free parameters. In contrast to that, the empirical cumulative distribution function (obtained after sorting the data) is parameter free. But it is a step function, so that its differentiation does not give a smooth probability density. Solution method: Based on Fourier series expansion and Kolmogorov tests, we introduce a simple method, which

  16. Tuning spreading and avalanche-size exponents in directed percolation with modified activation probabilities.

    PubMed

    Landes, François; Rosso, Alberto; Jagla, E A

    2012-10-01

    We consider the directed percolation process as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state. The model is in a critical state when the activation probability is adjusted at some precise value p(c). Criticality is lost as soon as the probability to activate sites at the first attempt, p(1), is changed. We show here that criticality can be restored by "compensating" the change in p(1) by an appropriate change of the second time activation probability p(2) in the opposite direction. At compensation, we observe that the bulk exponents of the process coincide with those of the normal directed percolation process. However, the spreading exponents are changed and take values that depend continuously on the pair (p(1),p(2)). We interpret this situation by acknowledging that the model with modified initial probabilities has an infinite number of absorbing states. PMID:23214572

  17. Nuclear data uncertainties: I, Basic concepts of probability

    SciTech Connect

    Smith, D.L.

    1988-12-01

    Some basic concepts of probability theory are presented from a nuclear-data perspective, in order to provide a foundation for thorough understanding of the role of uncertainties in nuclear data research. Topics included in this report are: events, event spaces, calculus of events, randomness, random variables, random-variable distributions, intuitive and axiomatic probability, calculus of probability, conditional probability and independence, probability distributions, binomial and multinomial probability, Poisson and interval probability, normal probability, the relationships existing between these probability laws, and Bayes' theorem. This treatment emphasizes the practical application of basic mathematical concepts to nuclear data research, and it includes numerous simple examples. 34 refs.

  18. Earthquake probabilities: theoretical assessments and reality

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2013-12-01

    It is of common knowledge that earthquakes are complex phenomena which classification and sizing remain serious problems of the contemporary seismology. In general, their frequency-magnitude distribution exhibit power law scaling. This scaling differs significantly when different time and/or space domains are considered. At the scale of a particular earthquake rupture zone the frequency of similar size events is usually estimated to be about once in several hundred years. Evidently, contemporary seismology does not possess enough reported instrumental data for any reliable quantification of an earthquake probability at a given place of expected event. Regretfully, most of the state-of-the-art theoretical approaches to assess probability of seismic events are based on trivial (e.g. Poisson, periodic, etc) or, conversely, delicately-designed (e.g. STEP, ETAS, etc) models of earthquake sequences. Some of these models are evidently erroneous, some can be rejected by the existing statistics, and some are hardly testable in our life-time. Nevertheless such probabilistic counts including seismic hazard assessment and earthquake forecasting when used on practice eventually mislead to scientifically groundless advices communicated to decision makers and inappropriate decisions. As a result, the population of seismic regions continues facing unexpected risk and losses. The international project Global Earthquake Model (GEM) is on the wrong track, if it continues to base seismic risk estimates on the standard, mainly probabilistic, methodology to assess seismic hazard. It is generally accepted that earthquakes are infrequent, low-probability events. However, they keep occurring at earthquake-prone areas with 100% certainty. Given the expectation of seismic event once per hundred years, the daily probability of occurrence on a certain date may range from 0 to 100% depending on a choice of probability space (which is yet unknown and, therefore, made by a subjective lucky chance

  19. Approximate probability distributions of the master equation

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Grima, Ramon

    2015-07-01

    Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.

  20. Conflict Probability Estimation for Free Flight

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Heinz

    1996-01-01

    The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.

  1. Approaches to Evaluating Probability of Collision Uncertainty

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    While the two-dimensional probability of collision (Pc) calculation has served as the main input to conjunction analysis risk assessment for over a decade, it has done this mostly as a point estimate, with relatively little effort made to produce confidence intervals on the Pc value based on the uncertainties in the inputs. The present effort seeks to try to carry these uncertainties through the calculation in order to generate a probability density of Pc results rather than a single average value. Methods for assessing uncertainty in the primary and secondary objects' physical sizes and state estimate covariances, as well as a resampling approach to reveal the natural variability in the calculation, are presented; and an initial proposal for operationally-useful display and interpretation of these data for a particular conjunction is given.

  2. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  3. Volcano shapes, entropies, and eruption probabilities

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  4. Probability and Statistics in Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  5. Sampling probability distributions of lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.

    2015-03-01

    One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.

  6. Non-signalling Theories and Generalized Probability

    NASA Astrophysics Data System (ADS)

    Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek

    2016-04-01

    We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.

  7. Non-signalling Theories and Generalized Probability

    NASA Astrophysics Data System (ADS)

    Tylec, Tomasz I.; Kuś, Marek; Krajczok, Jacek

    2016-09-01

    We provide mathematically rigorous justification of using term probability in connection to the so called non-signalling theories, known also as Popescu's and Rohrlich's box worlds. No only do we prove correctness of these models (in the sense that they describe composite system of two independent subsystems) but we obtain new properties of non-signalling boxes and expose new tools for further investigation. Moreover, it allows strightforward generalization to more complicated systems.

  8. Computational methods for probability of instability calculations

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Burnside, O. H.

    1990-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of a dynamic system than can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the roots of the characteristics equation or Routh-Hurwitz test functions are investigated. Computational methods based on system reliability analysis methods and importance sampling concepts are proposed to perform efficient probabilistic analysis. Numerical examples are provided to demonstrate the methods.

  9. SureTrak Probability of Impact Display

    NASA Technical Reports Server (NTRS)

    Elliott, John

    2012-01-01

    The SureTrak Probability of Impact Display software was developed for use during rocket launch operations. The software displays probability of impact information for each ship near the hazardous area during the time immediately preceding the launch of an unguided vehicle. Wallops range safety officers need to be sure that the risk to humans is below a certain threshold during each use of the Wallops Flight Facility Launch Range. Under the variable conditions that can exist at launch time, the decision to launch must be made in a timely manner to ensure a successful mission while not exceeding those risk criteria. Range safety officers need a tool that can give them the needed probability of impact information quickly, and in a format that is clearly understandable. This application is meant to fill that need. The software is a reuse of part of software developed for an earlier project: Ship Surveillance Software System (S4). The S4 project was written in C++ using Microsoft Visual Studio 6. The data structures and dialog templates from it were copied into a new application that calls the implementation of the algorithms from S4 and displays the results as needed. In the S4 software, the list of ships in the area was received from one local radar interface and from operators who entered the ship information manually. The SureTrak Probability of Impact Display application receives ship data from two local radars as well as the SureTrak system, eliminating the need for manual data entry.

  10. Classical probabilities for Majorana and Weyl spinors

    SciTech Connect

    Wetterich, C.

    2011-08-15

    Highlights: > Map of classical statistical Ising model to fermionic quantum field theory. > Lattice-regularized real Grassmann functional integral for single Weyl spinor. > Emerging complex structure characteristic for quantum physics. > A classical statistical ensemble describes a quantum theory. - Abstract: We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function q{sub {tau}}(t) for the Ising states {tau}. The time dependent probability distribution of a generalized Ising model obtains as p{sub {tau}}(t)=q{sub {tau}}{sup 2}(t). The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.

  11. Chemisorptive electron emission versus sticking probability

    NASA Astrophysics Data System (ADS)

    Böttcher, Artur; Niehus, Horst

    2001-07-01

    The chemisorption of N2O on thin Cs films has been studied by monitoring the time evolution of the sticking probability as well as the kinetics of the low-energy electron emission. By combining the data sets, two time domains become distinguishable: the initial chemisorption stage is characterized by a high sticking probability (0.1probability of less than 0.01. Such evident anticoincidence between the exoemission and the chemisorption excludes the model of surface harpooning as the elementary process responsible for the electron emission in the late chemisorption stage. A long-term emission decay has also been observed after turning off the flux of chemisorbing molecules. A model is proposed that attributes both, the late chemisorptive and the nonchemisorptive electron emission to the relaxation of a narrow state originated from an oxygen vacancy in the Cs oxide layer terminating the surface. The presence of such a state has been confirmed by the metastable de-excitation spectroscopy [MDS, He*(21S)].

  12. The Probability Distribution of Daily Streamflow

    NASA Astrophysics Data System (ADS)

    Blum, A.; Vogel, R. M.

    2015-12-01

    Flow duration curves (FDCs) are a graphical illustration of the cumulative distribution of streamflow. Daily streamflows often range over many orders of magnitude, making it extremely challenging to find a probability distribution function (pdf) which can mimic the steady state or period of record FDC (POR-FDC). Median annual FDCs (MA-FDCs) describe the pdf of daily streamflow in a typical year. For POR- and MA-FDCs, Lmoment diagrams, visual assessments of FDCs and Quantile-Quantile probability plot correlation coefficients are used to evaluate goodness of fit (GOF) of candidate probability distributions. FDCs reveal that both four-parameter kappa (KAP) and three-parameter generalized Pareto (GP3) models result in very high GOF for the MA-FDC and a relatively lower GOF for POR-FDCs at over 500 rivers across the coterminous U.S. Physical basin characteristics, such as baseflow index as well as hydroclimatic indices such as the aridity index and the runoff ratio are found to be correlated with one of the shape parameters (kappa) of the KAP and GP3 pdfs. Our work also reveals several important areas for future research including improved parameter estimators for the KAP pdf, as well as increasing our understanding of the conditions which give rise to improved GOF of analytical pdfs to large samples of daily streamflows.

  13. Bacteria survival probability in bactericidal filter paper.

    PubMed

    Mansur-Azzam, Nura; Hosseinidoust, Zeinab; Woo, Su Gyeong; Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2014-05-01

    Bactericidal filter papers offer the simplicity of gravity filtration to simultaneously eradicate microbial contaminants and particulates. We previously detailed the development of biocidal block copolymer micelles that could be immobilized on a filter paper to actively eradicate bacteria. Despite the many advantages offered by this system, its widespread use is hindered by its unknown mechanism of action which can result in non-reproducible outcomes. In this work, we sought to investigate the mechanism by which a certain percentage of Escherichia coli cells survived when passing through the bactericidal filter paper. Through the process of elimination, the possibility that the bacterial survival probability was controlled by the initial bacterial load or the existence of resistant sub-populations of E. coli was dismissed. It was observed that increasing the thickness or the number of layers of the filter significantly decreased bacterial survival probability for the biocidal filter paper but did not affect the efficiency of the blank filter paper (no biocide). The survival probability of bacteria passing through the antibacterial filter paper appeared to depend strongly on the number of collision between each bacterium and the biocide-loaded micelles. It was thus hypothesized that during each collision a certain number of biocide molecules were directly transferred from the hydrophobic core of the micelle to the bacterial lipid bilayer membrane. Therefore, each bacterium must encounter a certain number of collisions to take up enough biocide to kill the cell and cells that do not undergo the threshold number of collisions are expected to survive. PMID:24681395

  14. Detection probabilities in fuel cycle oriented safeguards

    SciTech Connect

    Canty, J.J.; Stein, G.; Avenhaus, R. )

    1987-01-01

    An intensified discussion of evaluation criteria for International Atomic Energy Agency (IAEA) safeguards effectiveness is currently under way. Considerations basic to the establishment of such criteria are derived from the model agreement INFCIRC/153 and include threshold amounts, strategic significance, conversion times, required assurances, cost-effectiveness, and nonintrusiveness. In addition to these aspects, the extent to which fuel cycle characteristics are taken into account in safeguards implementations (Article 81c of INFCIRC/153) will be reflected in the criteria. The effectiveness of safeguards implemented under given manpower constraints is evaluated. As the significant quantity and timeliness criteria have established themselves within the safeguards community, these are taken as fixed. Detection probabilities, on the other hand, still provide a certain degree of freedom in interpretation. The problem of randomization of inspection activities across a fuel cycle, or portions thereof, is formalized as a two-person zero-sum game, the payoff function of which is the detection probability achieved by the inspectorate. It is argued, from the point of view of risk of detection, that fuel cycle-independent, minimally accepted threshold criteria for such detection probabilities cannot and should not be applied.

  15. A Quantum Probability Model of Causal Reasoning

    PubMed Central

    Trueblood, Jennifer S.; Busemeyer, Jerome R.

    2012-01-01

    People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause) with diagnostic judgments (i.e., the conditional probability of a cause given an effect). The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment. PMID:22593747

  16. Quantum transitions between classical histories

    NASA Astrophysics Data System (ADS)

    Hartle, James; Hertog, Thomas

    2015-09-01

    In a quantum theory of gravity spacetime behaves classically when quantum probabilities are high for histories of geometry and field that are correlated in time by the Einstein equation. Probabilities follow from the quantum state. This quantum perspective on classicality has important implications. (a) Classical histories are generally available only in limited patches of the configuration space on which the state lives. (b) In a given patch, states generally predict relative probabilities for an ensemble of possible classical histories. (c) In between patches classical predictability breaks down and is replaced by quantum evolution connecting classical histories in different patches. (d) Classical predictability can break down on scales well below the Planck scale, and with no breakdown in the classical equations of motion. We support and illustrate (a)-(d) by calculating the quantum transition across the de Sitter-like throat connecting asymptotically classical, inflating histories in the no-boundary quantum state. This supplies probabilities for how a classical history on one side transitions and branches into a range of classical histories on the opposite side. We also comment on the implications of (a)-(d) for the dynamics of black holes and eternal inflation.

  17. [Humanitarian transition].

    PubMed

    Mattei, Jean-François; Troit, Virginie

    2016-02-01

    In two centuries, modern humanitarian action has experienced several fractures often linked to crises. Although its professionalism and intervention force remain indisputable, it faces, since the 2000s, a new context that limits its ability to act and confronts it with new dilemmas, even though it must deal with needs for aid of unprecedented scale. These difficulties reveal a humanitarian transition period that was not anticipated. This transition period reflects the change from a dominant paradigm of North-South solidarity of Western origin to a much more complex model. This article provides a summary of the current mutations that are dominated by the States' assertion of sovereignty. Among the possible solutions, it argues for an ethical approach and a better integration of the research carried out in the Global South, prerequisites for building a true partnership and placing the victims at the heart of the operations which involve them. PMID:26936180

  18. Eliminating Transitions

    ERIC Educational Resources Information Center

    Gallick, Barb; Lee, Lisa

    2010-01-01

    Adults often find themselves transitioning from one activity to another in a short time span. Most of the time, they do not feel they have a lot of control over their schedules, but wish that they could carve out extended time to relax and focus on one project. Picture a group of children in the block area who have spent 15 or 20 minutes building…

  19. Phase transitions in Nowak Sznajd opinion dynamics

    NASA Astrophysics Data System (ADS)

    Wołoszyn, Maciej; Stauffer, Dietrich; Kułakowski, Krzysztof

    2007-05-01

    The Nowak modification of the Sznajd opinion dynamics model on the square lattice assumes that with probability β the opinions flip due to mass-media advertising from down to up, and vice versa. Besides, with probability α the Sznajd rule applies that a neighbour pair agreeing in its two opinions convinces all its six neighbours of that opinion. Our Monte Carlo simulations and mean-field theory find sharp phase transitions in the parameter space.

  20. CPROB: A COMPUTATIONAL TOOL FOR CONDUCTING CONDITIONAL PROBABILITY ANALYSIS

    EPA Science Inventory

    Conditional probability analysis measures the probability of observing one event given that another event has occurred. In an environmental context, conditional probability analysis helps assess the association between an environmental contaminant (i.e. the stressor) and the ec...

  1. Social Science and the Bayesian Probability Explanation Model

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Zhao, Lei

    2014-03-01

    C. G. Hempel, one of the logical empiricists, who builds up his probability explanation model by using the empiricist view of probability, this model encountered many difficulties in the scientific explanation in which Hempel is difficult to make a reasonable defense. Based on the bayesian probability theory, the Bayesian probability model provides an approach of a subjective probability explanation based on the subjective probability, using the subjectivist view of probability. On the one hand, this probability model establishes the epistemological status of the subject in the social science; On the other hand, it provides a feasible explanation model for the social scientific explanation, which has important methodological significance.

  2. Probability distribution of the order parameter in the directed percolation universality class.

    PubMed

    Martins, P H L

    2012-04-01

    The probability distributions of the order parameter for two models in the directed percolation universality class were evaluated. Monte Carlo simulations have been performed for the one-dimensional generalized contact process and the Domany-Kinzel cellular automaton. In both cases, the density of active sites was chosen as the order parameter. The criticality of those models was obtained by solely using the corresponding probability distribution function. It has been shown that the present method, which has been successfully employed in treating equilibrium systems, is indeed also useful in the study of nonequilibrium phase transitions. PMID:22680423

  3. A Discrete SIRS Model with Kicked Loss of Immunity and Infection Probability

    NASA Astrophysics Data System (ADS)

    Paladini, F.; Renna, I.; Renna, L.

    2011-03-01

    A discrete-time deterministic epidemic model is proposed with the aim of reproducing the behaviour observed in the incidence of real infectious diseases, such as oscillations and irregularities. For this purpose we introduce, in a naïve discrete-time SIRS model, seasonal variability in the loss of immunity and in the infection probability, modelled by sequences of kicks. Restrictive assumptions are made on the parameters of the models, in order to guarantee that the transitions are determined by true probabilities, so that comparisons with stochastic discrete-time previsions can be also provided. Numerical simulations show that the characteristics of real infectious diseases can be adequately modeled.

  4. A probable probability distribution of a series nonequilibrium states in a simple system out of equilibrium

    NASA Astrophysics Data System (ADS)

    Gao, Haixia; Li, Ting; Xiao, Changming

    2016-05-01

    When a simple system is in its nonequilibrium state, it will shift to its equilibrium state. Obviously, in this process, there are a series of nonequilibrium states. With the assistance of Bayesian statistics and hyperensemble, a probable probability distribution of these nonequilibrium states can be determined by maximizing the hyperensemble entropy. It is known that the largest probability is the equilibrium state, and the far a nonequilibrium state is away from the equilibrium one, the smaller the probability will be, and the same conclusion can also be obtained in the multi-state space. Furthermore, if the probability stands for the relative time the corresponding nonequilibrium state can stay, then the velocity of a nonequilibrium state returning back to its equilibrium can also be determined through the reciprocal of the derivative of this probability. It tells us that the far away the state from the equilibrium is, the faster the returning velocity will be; if the system is near to its equilibrium state, the velocity will tend to be smaller and smaller, and finally tends to 0 when it gets the equilibrium state.

  5. Spin Glass Computations and Ruelle's Probability Cascades

    NASA Astrophysics Data System (ADS)

    Arguin, Louis-Pierre

    2007-03-01

    We study the Parisi functional, appearing in the Parisi formula for the pressure of the SK model, as a functional on Ruelle's Probability Cascades (RPC). Computation techniques for the RPC formulation of the functional are developed. They are used to derive continuity and monotonicity properties of the functional retrieving a theorem of Guerra. We also detail the connection between the Aizenman-Sims-Starr variational principle and the Parisi formula. As a final application of the techniques, we rederive the Almeida-Thouless line in the spirit of Toninelli but relying on the RPC structure.

  6. Snell Envelope with Small Probability Criteria

    SciTech Connect

    Del Moral, Pierre Hu, Peng; Oudjane, Nadia

    2012-12-15

    We present a new algorithm to compute the Snell envelope in the specific case where the criteria to optimize is associated with a small probability or a rare event. This new approach combines the Stochastic Mesh approach of Broadie and Glasserman with a particle approximation scheme based on a specific change of measure designed to concentrate the computational effort in regions pointed out by the criteria. The theoretical analysis of this new algorithm provides non asymptotic convergence estimates. Finally, the numerical tests confirm the practical interest of this approach.

  7. Mapping probability of shipping sound exposure level.

    PubMed

    Gervaise, Cédric; Aulanier, Florian; Simard, Yvan; Roy, Nathalie

    2015-06-01

    Mapping vessel noise is emerging as one method of identifying areas where sound exposure due to shipping noise could have negative impacts on aquatic ecosystems. The probability distribution function (pdf) of sound exposure levels (SEL) is an important metric for identifying areas of concern. In this paper a probabilistic shipping SEL modeling method is described to obtain the pdf of SEL using the sonar equation and statistical relations linking the pdfs of ship traffic density, source levels, and transmission losses to their products and sums. PMID:26093451

  8. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  9. Dynamo Transition

    SciTech Connect

    Verma, M. K.; Yadav, R.; Chandra, M.; Paul, S.; Wahi, P.

    2010-11-23

    In this article we review the experimental and numerical results related to the dynamo transitions. Recent experiments of Von Karman Sodium (VKS) exhibit various dynamo states including constant, time-periodic, and chaotic magnetic fields. Similarly pseudospectral simulations of dynamo show constant, time-periodic, quasiperiodic, and chaotic magnetic field configurations. One of the windows for the magnetic Prandtl number of unity shows period doubling route to chaos. Quasiperiodic route to chaos has been reported for the Prandtl number of 0.5. The dynamo simulations also reveal coexisting multiple attractors that were obtained for different initial conditions.

  10. Classical probability model for Bell inequality

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2014-04-01

    We show that by taking into account randomness of realization of experimental contexts it is possible to construct common Kolmogorov space for data collected for these contexts, although they can be incompatible. We call such a construction "Kolmogorovization" of contextuality. This construction of common probability space is applied to Bell's inequality. It is well known that its violation is a consequence of collecting statistical data in a few incompatible experiments. In experiments performed in quantum optics contexts are determined by selections of pairs of angles (θi,θ'j) fixing orientations of polarization beam splitters. Opposite to the common opinion, we show that statistical data corresponding to measurements of polarizations of photons in the singlet state, e.g., in the form of correlations, can be described in the classical probabilistic framework. The crucial point is that in constructing the common probability space one has to take into account not only randomness of the source (as Bell did), but also randomness of context-realizations (in particular, realizations of pairs of angles (θi, θ'j)). One may (but need not) say that randomness of "free will" has to be accounted for.

  11. On the probability of matching DNA fingerprints.

    PubMed

    Risch, N J; Devlin, B

    1992-02-01

    Forensic scientists commonly assume that DNA fingerprint patterns are infrequent in the general population and that genotypes are independent across loci. To test these assumptions, the number of matching DNA patterns in two large databases from the Federal Bureau of Investigation (FBI) and from Lifecodes was determined. No deviation from independence across loci in either database was apparent. For the Lifecodes database, the probability of a three-locus match ranges from 1 in 6,233 in Caucasians to 1 in 119,889 in Blacks. When considering all trios of five loci in the FBI database, there was only a single match observed out of more than 7.6 million comparisons. If independence is assumed, the probability of a five-locus match ranged from 1.32 x 10(-12) in Southeast Hispanics to 5.59 x 10(-14) in Blacks, implying that the minimum number of possible patterns for each ethnic group is several orders of magnitude greater than their corresponding population sizes in the United States. The most common five-locus pattern can have a frequency no greater than about 10(-6). Hence, individual five-locus DNA profiles are extremely uncommon, if not unique. PMID:1738844

  12. Estimating flood exceedance probabilities in estuarine regions

    NASA Astrophysics Data System (ADS)

    Westra, Seth; Leonard, Michael

    2016-04-01

    Flood events in estuarine regions can arise from the interaction of extreme rainfall and storm surge. Determining flood level exceedance probabilities in these regions is complicated by the dependence of these processes for extreme events. A comprehensive study of tide and rainfall gauges along the Australian coastline was conducted to determine the dependence of these extremes using a bivariate logistic threshold-excess model. The dependence strength is shown to vary as a function of distance over many hundreds of kilometres indicating that the dependence arises due to synoptic scale meteorological forcings. It is also shown to vary as a function of storm burst duration, time lag between the extreme rainfall and the storm surge event. The dependence estimates are then used with a bivariate design variable method to determine flood risk in estuarine regions for a number of case studies. Aspects of the method demonstrated in the case studies include, the resolution and range of the hydraulic response table, fitting of probability distributions, computational efficiency, uncertainty, potential variation in marginal distributions due to climate change, and application to two dimensional output from hydraulic models. Case studies are located on the Swan River (Western Australia), Nambucca River and Hawkesbury Nepean River (New South Wales).

  13. Measures, Probability and Holography in Cosmology

    NASA Astrophysics Data System (ADS)

    Phillips, Daniel

    This dissertation compiles four research projects on predicting values for cosmological parameters and models of the universe on the broadest scale. The first examines the Causal Entropic Principle (CEP) in inhomogeneous cosmologies. The CEP aims to predict the unexpectedly small value of the cosmological constant Lambda using a weighting by entropy increase on causal diamonds. The original work assumed a purely isotropic and homogeneous cosmology. But even the level of inhomogeneity observed in our universe forces reconsideration of certain arguments about entropy production. In particular, we must consider an ensemble of causal diamonds associated with each background cosmology and we can no longer immediately discard entropy production in the far future of the universe. Depending on our choices for a probability measure and our treatment of black hole evaporation, the prediction for Lambda may be left intact or dramatically altered. The second related project extends the CEP to universes with curvature. We have found that curvature values larger than rho k = 40rhom are disfavored by more than $99.99% and a peak value at rhoLambda = 7.9 x 10-123 and rhok =4.3rho m for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work. The third project examines how cosmologists should formulate basic questions of probability. We argue using simple models that all successful practical uses of probabilities originate in quantum fluctuations in the microscopic physical world around us, often propagated to macroscopic scales. Thus we claim there is no physically verified fully classical theory of probability. We

  14. Risks and probabilities of breast cancer: short-term versus lifetime probabilities.

    PubMed Central

    Bryant, H E; Brasher, P M

    1994-01-01

    OBJECTIVE: To calculate age-specific short-term and lifetime probabilities of breast cancer among a cohort of Canadian women. DESIGN: Double decrement life table. SETTING: Alberta. SUBJECTS: Women with first invasive breast cancers registered with the Alberta Cancer Registry between 1985 and 1987. MAIN OUTCOME MEASURES: Lifetime probability of breast cancer from birth and for women at various ages; short-term (up to 10 years) probability of breast cancer for women at various ages. RESULTS: The lifetime probability of breast cancer is 10.17% at birth and peaks at 10.34% at age 25 years, after which it decreases owing to a decline in the number of years over which breast cancer risk will be experienced. However, the probability of manifesting breast cancer in the next year increases steadily from the age of 30 onward, reaching 0.36% at 85 years. The probability of manifesting the disease within the next 10 years peaks at 2.97% at age 70 and decreases thereafter, again owing to declining probabilities of surviving the interval. CONCLUSIONS: Given that the incidence of breast cancer among Albertan women during the study period was similar to the national average, we conclude that currently more than 1 in 10 women in Canada can expect to have breast cancer at some point during their life. However, risk varies considerably over a woman's lifetime, with most risk concentrated after age 49. On the basis of the shorter-term age-specific risks that we present, the clinician can put breast cancer risk into perspective for younger women and heighten awareness among women aged 50 years or more. PMID:8287343

  15. Data-driven probability concentration and sampling on manifold

    NASA Astrophysics Data System (ADS)

    Soize, C.; Ghanem, R.

    2016-09-01

    A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation method for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.

  16. Nonadiabatic transitions in finite-time adiabatic rapid passage

    NASA Astrophysics Data System (ADS)

    Lu, T.; Miao, X.; Metcalf, H.

    2007-06-01

    To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71, 061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire parameter space of the pulses.

  17. The condition of a finite Markov chain and perturbation bounds for the limiting probabilities

    NASA Technical Reports Server (NTRS)

    Meyer, C. D., Jr.

    1979-01-01

    The inequalities bounding the relative error the norm of w- w squiggly/the norm of w are exhibited by a very simple function of E and A. Let T denote the transition matrix of an ergodic chain, C, and let A = I - T. Let E be a perturbation matrix such that T squiggly = T - E is also the transition matrix of an ergodic chain, C squiggly. Let w and w squiggly denote the limiting probability (row) vectors for C and C squiggly. The inequality is the best one possible. This bound can be significant in the numerical determination of the limiting probabilities for an ergodic chain. In addition to presenting a sharp bound for the norm of w-w squiggly/the norm of w an explicit expression for w squiggly will be derived in which w squiggly is given as a function of E, A, w and some other related terms.

  18. Trending in Probability of Collision Measurements

    NASA Technical Reports Server (NTRS)

    Vallejo, J. J.; Hejduk, M. D.; Stamey, J. D.

    2015-01-01

    A simple model is proposed to predict the behavior of Probabilities of Collision (P(sub c)) for conjunction events. The model attempts to predict the location and magnitude of the peak P(sub c) value for an event by assuming the progression of P(sub c) values can be modeled to first order by a downward-opening parabola. To incorporate prior information from a large database of past conjunctions, the Bayes paradigm is utilized; and the operating characteristics of the model are established through a large simulation study. Though the model is simple, it performs well in predicting the temporal location of the peak (P(sub c)) and thus shows promise as a decision aid in operational conjunction assessment risk analysis.

  19. Quantum probabilities for inflation from holography

    NASA Astrophysics Data System (ADS)

    Hartle, James B.; Hawking, S. W.; Hertog, Thomas

    2014-01-01

    The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation (WDWE). For non-zero Λ, we show that solutions of the WDWE at large volume have two domains in which geometries and fields are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically classical de Sitter. Further, the universal complex semiclassical asymptotic structure of solutions of the WDWE implies that the leading order in hbar quantum probabilities for classical, asymptotically de Sitter histories can be obtained from the action of asymptotically anti-de Sitter configurations. This leads to a promising, universal connection between quantum cosmology and holography.

  20. Audio feature extraction using probability distribution function

    NASA Astrophysics Data System (ADS)

    Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.

    2015-05-01

    Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.