Science.gov

Sample records for 1s0-3p0 optical clock

  1. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.

    PubMed

    Hoyt, C W; Barber, Z W; Oates, C W; Fortier, T M; Diddams, S A; Hollberg, L

    2005-08-19

    We report the direct excitation of the highly forbidden (6s2) 1S0 <--> (6s6p) 3P0 optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at approximately 70 microK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,591.6 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,847.6 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10(6)-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be approximately 10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. PMID:16196856

  2. Studies of Yb ^1S0 -- ^3P0 clock transitions

    NASA Astrophysics Data System (ADS)

    Hong, Tao

    2005-05-01

    We are exploring two quite different methods for observing the ultra-sharp 6s^2 ^1S0 -- 6s6p ^3P0 optical interval in atomic Yb, which is considered a primary candidate for future optical frequency standards [1].In the first method, we observe the 578 nm single photon transition allowed in the odd isotopes through internal hyperfine coupling of the nuclear spin.† We shine a 578 nm laser beam on cold Yb atoms held in a magneto-optical trap (MOT), and detect a decrease in MOT fluorescence when the laser is resonant with the clock transition.† Our second approach is to use the even Yb isotopes, connecting the ^1S0 and ^3P0 states† by† a multi- photon transition [2]. Sharp electromagnetically induced transparency and absorption (EITA) resonance features appear when the photon frequencies combine to equal† the ^1S0 -- ^3P0 clock interval.† We will describe our initial studies of† 2 and 3 photon resonances in Yb, including Doppler-free 3 photon EITA. [1]S. G.† Porsev, A. Derevianko, E. N. Fortson, Phys. Rev. A 69, 021403(R)† (2004); H. Katori, in Proc. 6th Symposium Frequency Standards and Metrology, edited by P. Gill (World Scienti.c, Singapore, 2002), pp. 323-330 [2]Tao Hong, Claire Cramer, Warren Nagourney, E. N. Fortson, physics/0409051 and to be published in Phys. Rev. Lett.; Robin Santra, Ennio Arimondo, Tetsuya Ido, Crhis H. Greene, Jun Ye, physics/0411197

  3. Absolute frequency measurement of the ^1S0<->^3P0 clock transition at 578.4 nm in ytterbium

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad; Barber, Zeb; Oates, Chris; Fortier, Tara; Diddams, Scott

    2005-05-01

    We report the first precision absolute frequency measurements of the highly forbidden (6s^2)^1S0<->(6s6p)^3P0 optical clock transition at 578.4 nm in two odd isotopes of ytterbium. Atoms are cooled to tens of microkelvins in two successive stages of laser cooling and magneto-optical trapping that use transitions at 398.9 nm and 555.8 nm, respectively. The resulting trapped atomic cloud is irradiated with excitation light at 578.4 nm and absorption is detected by monitoring trapped atom depletion. With the laser on resonance, we demonstrate trap depletions of more than 80 % relative to the off-resonance case. Absolute frequency measurements are made for ^171Yb (I=1/2) and ^173Yb (I=5/2) with an uncertainty of 4.4 kHz using a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock. The natural linewidth of these J=0 to J=0 transitions is ˜10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice. Lattice-based optical clocks have the potential to surpass the performance of the best current atomic clocks by orders of magnitude. The accurate ytterbium frequency knowledge presented here (nearly a million-fold reduction in uncertainty) will greatly expedite Doppler- and recoil-free lattice spectroscopy.

  4. Towards a Mg Lattice Clock: Observation of the 1S0-3P0 Transition and Determination of the Magic Wavelength

    NASA Astrophysics Data System (ADS)

    Kulosa, A. P.; Fim, D.; Zipfel, K. H.; Rühmann, S.; Sauer, S.; Jha, N.; Gibble, K.; Ertmer, W.; Rasel, E. M.; Safronova, M. S.; Safronova, U. I.; Porsev, S. G.

    2015-12-01

    We optically excite the electronic state 3 s 3 p 3P0 in 24Mg atoms, laser cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift, and the transition frequency to be 468.46(21) nm, -206.6 (2.0 ) MHz /T2 , and 655 058 646 691(101) kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also develop a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift, and discuss a clock based on bosonic magnesium.

  5. Spectroscopy of the forbidden 1S0 -->3P0 transition on ultra-cold ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Dareau, Alexandre; Scholl, Matthias; Beaufils, Quentin; Döring, Daniel; Beugnon, Jérôme; Gerbier, Fabrice

    2015-05-01

    Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping. Ytterbium, with its long lived metastable state (3P0), is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground (1S0) and meta-stable (3P0) states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity. I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the 1S0 -->3P0 transition of an ytterbium BEC.

  6. A transportable optical lattice clock using 171Yb

    NASA Astrophysics Data System (ADS)

    Mura, Gregor; SOC2 Team

    2013-07-01

    We present first results on the spectroscopy of the 1S0 - 3P0 transition at 578nm in a transportable 171Yb optical lattice clock. With the Yb atoms confined in a one-dimensional optical lattice, we have observed linewidths below 200 Hz, limited by saturation broadening. Currently the system is being upgraded towards full clock operation and use of more compact and robust subsystems.

  7. The NIM Sr Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, Q.; Li, Y.; Meng, F.; Lin, B.; Zang, E.; Sun, Z.; Fang, F.; Li, T.; Fang, Z.

    2016-06-01

    A 87Sr optical lattice clock is built at the National Institute of Metrology (NIM) of China. The atoms undergo two stages of laser cooling before being loaded into a horizontal optical lattice at the magic wavelength of 813 nm. After being interrogated by a narrow linewidth 698 nm clock laser pulse, the normalized excitation rate is measured to get the frequency error, which is then used to lock the clock laser to the ultra-narrow 1S0-3P0 clock transition. The total systematic uncertainty of the clock is evaluated to be 2.3 × 10-16, and the absolute frequency of the clock is measured to be 429 228 004 229 873.7(1.4) Hz with reference to the NIM5 cesium fountain.

  8. The absolute frequency of the 87Sr optical clock transition

    NASA Astrophysics Data System (ADS)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian; Thomsen, Jan W.; Martin, Michael J.; de Miranda, Marcio H. G.; Zelevinsky, Tanya; Boyd, Martin M.; Ye, Jun; Diddams, Scott A.; Heavner, Thomas P.; Parker, Thomas E.; Jefferts, Steven R.

    2008-10-01

    The absolute frequency of the 1S0-3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10-16, the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals.

  9. An Aluminum Ion Optical Clock Using Quantum Logic

    NASA Astrophysics Data System (ADS)

    Rosenband, T.; Schmidt, P. O.; Hume, D. B.; Fortier, T. M.; Oskay, W. H.; Koelemeij, J. C. J.; Kim, K.; Itano, W. M.; Diddams, S. A.; Bergquist, J. C.; Drullinger, R. E.; Wineland, D. J.

    2006-05-01

    The 267 nm ^1S0->^3P0 transition in ^27Al^+ combines several attractive characteristics as an atomic reference for an optical clock with high stability and accuracy. Its sharp clock transition (7 mHz natural linewidth) has a very small electric quadrupole moment, a low quadratic Zeeman coefficient (0.7 Hz/gauss^2), as well as a small room temperature blackbody shift (δν/ν< 10-17). We have used quantum logic based spectroscopy^a,b to operate an Al^+ optical frequency standard in which a stable laser oscillator at 534 nm is doubled and locked to the Al^+ ^1S0->^3P0 transition. The frequency of this optical standard was compared to the NIST ^199Hg^+ optical frequency standard using a femtosecond frequency comb, resulting in a frequency ratio measurement with δν/ν< 10-16 statistical uncertainty. The systematic uncertainty in the Al^+ clock frequency has a similar magnitude, and is dominated by second order Doppler shifts due to secular motion and micromotion. [a] D. J. Wineland et al., Proc. 6th Symp. on Freq. Standards and Metrology, 361 (2002) [b] P. O. Schmidt et al., Science 309, 749 (2005)

  10. Spectroscopy of the 199Hg Optical Clock Transition at 265.5 nm

    NASA Astrophysics Data System (ADS)

    Lytle, Christian; Paul, Justin; Jones, R.

    2013-05-01

    Neutral Hg is an excellent candidate for a stable and accurate atomic clock. The doubly-forbidden clock transition at 265.5 nm can provide an extremely high-quality resonance factor (Q) when confined in an optical lattice at the Stark-shift free ``magic'' wavelength. A key feature of the Hg system is the expected reduced uncertainty of black-body radiation induced Stark shifts compared to other optically-based neutral atom clocks. We demonstrate precision spectroscopy of the 1S0 - 3P0 clock transition in 199Hg in a MOT. The MOT population of 106 atoms was depleted by over 70% using 3 mW from a cavity-stabilized probe laser tuned to the clock transition. We present our characterization of the transition and efforts to implement a stable Hg clock system.

  11. Modified hyper-Ramsey methods for the elimination of probe shifts in optical clocks

    NASA Astrophysics Data System (ADS)

    Hobson, R.; Bowden, W.; King, S. A.; Baird, P. E. G.; Hill, I. R.; Gill, P.

    2016-01-01

    We develop a method of modified hyper-Ramsey spectroscopy in optical clocks, achieving complete immunity to the frequency shifts induced by the probing fields themselves. Using particular pulse sequences with tailored phases, frequencies, and durations, we can derive an error signal centered exactly at the unperturbed atomic resonance with a steep discriminant which is robust against variations in the probe shift. We experimentally investigate the scheme using the magnetically induced 1S0-3P0 transition in 88Sr, demonstrating automatic suppression of a sizable 2 ×10-13 probe Stark shift to below 1 ×10-16 even with very large errors in shift compensation.

  12. Systematic Study of the ^87Sr Clock Transition in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Boyd, Martin; Ludlow, Andrew; Zelevinsky, Tanya; Foreman, Seth; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye, Jun

    2006-05-01

    The ^1S0-^3P0 transition in ^87Sr is studied for the realization of an optical atomic clock, using μK atoms in a magic wavelength optical lattice [1]. The probe laser frequency is measured with an octave-spanning fs comb, which is referenced to a hydrogen maser (directly calibrated by the NIST primary Cs fountain clock) allowing high precision evaluation of potential systematic frequency shifts . By varying the lattice wavelength and trapping depth we find that the magic wavelength for the clock transition is 813.418(10) with a clock sensitivity to lattice deviations of ˜2 mHz/MHz for lattice intensities of 10 kW/cm^2. To explore the effect of atomic collisions on the clock frequency we varied the atomic density by a factor of 50 and did not find any shifts at the 3 x10-14 level. Dependence of the clock transition on magnetic fields has been examined as the hyperfine interaction (I = 9/2), which provides the small transition moment for the doubly forbidden clock transition, also results in a differential g factor of the ^3P0 and ^1S0 levels. We will report the latest results of this optical clock system. [1] A.D. Ludlow et al., Phys Rev Lett 96, 033003 (2006).

  13. A Two-Photon E1-M1 Optical Clock

    NASA Astrophysics Data System (ADS)

    Alden, Emily A.

    Innovations in precision frequency measurement advance popular technologies such as global positioning systems (GPS), permit the testing of fundamental physics constants, and have the potential to measure local variations in gravity. Driving optical transitions for frequency measurement using an E1-M1 excitation scheme in a hot mercury (Hg) vapor cell is viable and could be the basis of a portable optical frequency standard with comparable accuracy to the most precise atomic clocks in the world. This dissertation explores the fundamental physics of the new E1-M1 method of high-precision frequency measurement in an optical, atomic clock and describes the construction of a high-power E1-M1 clock laser. The value of this new scheme compared to existing optical frequency standards is the simplicity and portability of the experimental setup. Such an optical frequency standard would permit frequency measurement in far-flung locations on earth and in space. Analysis of both the E1-M1 optical transition and thermal properties of the candidate clock atoms are presented. These models allow a stability estimate of an E1-M1 optical clock and recommend experimental settings to optimize the standard. The experimental work that has been performed in pursuit of observing the E1-M1 clock transition in Hg is also discussed. An optical clock operates by making a precision frequency measurement of a laser that has been brought into resonance with a clock atom's oscillator: a high quality atomic level transition. Group II type atoms, such as Hg, have the 1S0-3P0 transition that is an ideal basis for a clock. The E1-M1 excitation is performed by driving the two-photon allowed transition 1S0-3P1-3P0. This is in contrast to the single-photon E1 transition used in other systems. Single-photon schemes must use ultracold atoms to reduce atomic motion to attain high levels of accuracy. Driving the clock transition with a pair of degenerate counter-propagating photons in an E1-M1 scheme

  14. Optical clocks and relativity.

    PubMed

    Chou, C W; Hume, D B; Rosenband, T; Wineland, D J

    2010-09-24

    Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics. PMID:20929843

  15. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  16. Clock Laser System for a Strontium Lattice Clock

    NASA Astrophysics Data System (ADS)

    Legero, T.; Lisdat, Ch.; Vellore Winfred, J. S. R.; Schnatz, H.; Grosche, G.; Riehle, F.; Sterr, U.

    2009-04-01

    We describe the setup and the characterization of a 698 nm master-slave diode laser system to probe the 1S0-3P0 clock transition of strontium atoms confined in a 1D optical lattice. The frequency noise and the linewidth of the laser system have been measured with respect to an ultrastable 657 nm diode laser with 1 Hz linewidth. The large frequency difference of more than 25 THz was bridged using a femtosecond fiber comb as transfer oscillator. In a second step the virtual beat was used to establish a phase lock between the narrow line 657 nm laser and the strontium clock laser. This technique allowed to transfer the stability from the 657 nm to the 698 nm laser.

  17. Optical atomic clocks and metrology

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew

    2014-05-01

    The atomic clock has long demonstrated the capability to measure time or frequency with very high precision. Consequently, these clocks are used extensively in technological applications such as advanced synchronization or communication and navigation networks. Optical atomic clocks are next- generation timekeepers which reference narrowband optical transitions between suitable atomic states. Many optical time/frequency standards utilize state-of-the-art quantum control and precision measurement. Combined with the ultrahigh quality factors of the atomic resonances at their heart, optical atomic clocks have promised new levels of timekeeping precision, orders of magnitude higher than conventional atomic clocks based on microwave transitions. Such measurement capability enables and/or enhances many of the most exciting applications of these clocks, including the study of fundamental laws of physics through the measurement of time evolution. Here, I will highlight optical atomic clocks and their utility, as well as review recent advances in their development and performance. In particular, I will describe in detail the optical lattice clock and the realization of frequency measurement at the level of one part in 1018. To push the performance of these atomic timekeepers to such a level and beyond, several key advances are being explored worldwide. These will be discussed generally, with particular emphasis on our recent efforts at NIST in developing the optical lattice clock based on atomic ytterbium.

  18. Pulsed Optically Pumped Rb clock

    NASA Astrophysics Data System (ADS)

    Micalizio, S.; Levi, F.; Godone, A.; Calosso, C. E.; François, B.; Boudot, R.; Affolderbach, C.; Kang, S.; Gharavipour, M.; Gruet, F.; Mileti, G.

    2016-06-01

    INRIM demonstrated a Rb vapour cell clock based on pulsed optical pumping (POP) with unprecedented frequency stability performances, both in the short and in the medium-long term period. In the frame of a EMRP project, we are developing a new clock based on the same POP principle but adopting solutions aimed at reducing the noise sources affecting the INRIM clock. At the same time, concerning possible technological applications, particular care are devoted in the project to reduce the size and the weight of the clock, still keeping the excellent stability of the INRIM clock. The paper resumes the main results of this activity.

  19. A transportable optical lattice clock

    NASA Astrophysics Data System (ADS)

    Vogt, Stefan; Häfner, Sebastian; Grotti, Jacopo; Koller, Silvio; Al-Masoudi, Ali; Sterr, Uwe; Lisdat, Christian

    2016-06-01

    We present the experimental setup and first results of PTB's transportable 87Sr clock. It consists of a physics package, several compact laser breadboards, and a transportable high finesse cavity for the clock laser. A comparison of the transportable system with our stationary optical lattice clock yields an instability of 2.2 x 10-15 √s/τ for the transportable clock. The current fractional uncertainty of 1 × 10-15 is still limited by the not yet fully evaluated light shift from the free running optical lattice laser operated near the magic wavelength. We are currently improving our transportable system to reach an uncertainty at or below the 10-17 level, which will finaly be limited by the uncertainty in blackbody radiation shift correction.

  20. Hanle Detection for Optical Clocks

    PubMed Central

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  1. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  2. Colloquium: Physics of optical lattice clocks

    SciTech Connect

    Derevianko, Andrei; Katori, Hidetoshi

    2011-04-01

    Recently invented and demonstrated optical lattice clocks hold great promise for improving the precision of modern time keeping. These clocks aim at the 10{sup -18} fractional accuracy, which translates into a clock that would neither lose nor gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here the principles of operation of these clocks are discussed and, in particular, a novel concept of magic trapping of atoms in optical lattices. Recently proposed microwave lattice clocks are also highlights and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

  3. Frequency Metrology with Optical Lattice Clocks

    NASA Astrophysics Data System (ADS)

    Hong, Feng-Lei; Katori, Hidetoshi

    2010-08-01

    The precision measurement of time and frequency is of great interest for a wide range of applications, including fundamental science and technologies that support broadband communication networks and the navigation with global positioning systems (GPSs). The development of optical frequency measurement based on frequency combs has revolutionized the field of frequency metrology, especially research on optical frequency standards. The proposal and realization of the optical lattice clock have further stimulated studies in the field of optical frequency metrology. Optical carrier transfer using optical fibers has been used to disseminate optical frequencies or compare two optical clocks without degrading their stability and accuracy. In this paper, we review the state-of-the-art development of optical frequency combs, standards, and transfer techniques with emphasis on optical lattice clocks. We address recent results achieved at the University of Tokyo and the National Metrology Institute of Japan in respect of frequency metrology with Sr and Yb optical lattice clocks.

  4. Spin-1/2 Optical Lattice Clock

    SciTech Connect

    Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.

    2009-08-07

    We experimentally investigate an optical clock based on {sup 171}Yb (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4x10{sup -16}, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

  5. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock

    NASA Astrophysics Data System (ADS)

    Lodewyck, Jérôme; Bilicki, Sławomir; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Le Targat, Rodolphe; Nicolodi, Daniele; Le Coq, Yann; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien

    2016-08-01

    Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.

  6. A low maintenance Sr optical lattice clock

    NASA Astrophysics Data System (ADS)

    Hill, I. R.; Hobson, R.; Bowden, W.; Bridge, E. M.; Donnellan, S.; Curtis, E. A.; Gill, P.

    2016-06-01

    We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the stabilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of 2 x 10-17 was reached after 105 s of averaging in an interleaved self-comparison of the clock.

  7. The NIST 27 Al+ quantum-logic clock

    NASA Astrophysics Data System (ADS)

    Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David

    2016-05-01

    Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 <--> 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.

  8. Nuclear spin effects in optical lattice clocks

    SciTech Connect

    Boyd, Martin M.; Zelevinsky, Tanya; Ludlow, Andrew D.; Blatt, Sebastian; Zanon-Willette, Thomas; Foreman, Seth M.; Ye Jun

    2007-08-15

    We present a detailed experimental and theoretical study of the effect of nuclear spin on the performance of optical lattice clocks. With a state-mixing theory including spin-orbit and hyperfine interactions, we describe the origin of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition and the differential g factor between the two clock states for alkaline-earth-metal(-like) atoms, using {sup 87}Sr as an example. Clock frequency shifts due to magnetic and optical fields are discussed with an emphasis on those relating to nuclear structure. An experimental determination of the differential g factor in {sup 87}Sr is performed and is in good agreement with theory. The magnitude of the tensor light shift on the clock states is also explored experimentally. State specific measurements with controlled nuclear spin polarization are discussed as a method to reduce the nuclear spin-related systematic effects to below 10{sup -17} in lattice clocks.

  9. The Sr optical lattice clock at JILA: A new record in atomic clock performance

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Bloom, Benjamin; Williams, Jason; Campbell, Sara; Bishof, Michael; Zhang, Xibo; Zhang, Wei; Bromley, Sarah; Hutson, Ross; McNally, Rees; Ye, Jun

    2014-05-01

    The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by highly accurate atomic clocks. Optical clocks have been the most accurate frequency standards for the better part of a decade, surpassing even the cesium microwave fountains upon which the SI second is based. Two classes of optical clocks have outperformed cesium: single-ion clocks and optical lattice clocks. Historically ion clocks have always been more accurate, and the precision of ion clocks and lattice clocks has been comparable. For years it has been unclear if lattice clocks can overcome key systematics and become more accurate than ion clocks. In this presentation I report the first lattice clock that has surpassed ion clocks in both precision and accuracy. These measurements represent a tenfold improvement in precision and a factor of 20 improvement in accuracy over the previous best lattice clock results. This work paves the way for a better realization of SI units, the development of more sophisticated quantum sensors, and precision tests of the fundamental laws of nature.

  10. Blackbody radiation shifts in optical atomic clocks.

    PubMed

    Safronova, Marianna; Kozlov, Mikhail; Clark, Charles

    2012-03-01

    A review of recent theoretical calculations of blackbody radiation (BBR) shifts in optical atomic clocks is presented. We summarize previous results for monovalent ions that were obtained by a relativistic all-order single-double method, where all single and double excitations of the Dirac- Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms is then presented. This approach combines the relativistic all-order method and the configuration interaction method, which provides for accurate treatment of correlation corrections in atoms with two valence electrons. Calculations of the BBR shifts in B+, Al+, and In+ have enabled us to reduce the present fractional uncertainties in the frequencies of their clock transitions as measured at room temperature: to 4 × 10-19 for Al+ and 10-18 for B+ and In+. These uncertainties approach recent estimates of the limits of precision of currently proposed optical atomic clocks. We discuss directions of future theoretical developments for reducing clock uncertainties resulting from blackbody radiation shifts. PMID:22481777

  11. Optical clocks and their contribution to gravity modeling

    NASA Astrophysics Data System (ADS)

    Naeimi, Mohammad; Mohamadhosseini, Babak; Hatami, Mohsen

    2016-04-01

    Optical clocks, as one of the latest achievements in atomic and molecular physics, have applications more than timing, due to their accuracy and stability. In general relativity, gravitational potential differences in space and time, cause frequency difference in optical clocks. Hence, ultra precise optical clocks can be used as a tool to observe potential differences and consequently as a new gravimetry technique. In this contribution, we investigate the latest optical clocks based on atomic transition in Al+ and derive a simple equation for frequency change related to geo-potential differences. Moreover, we consider the capability of optical clocks for gravity modeling in combination with other gravity observations. Finally, the possibility to detect potential changes in geo-dynamically active zones, such as East-Asia and the requirements for such studies are discussed.

  12. Prospects for Optical Clocks with a Blue-Detuned Lattice

    SciTech Connect

    Takamoto, M.; Katori, H.; Marmo, S. I.; Ovsiannikov, V. D.; Pal'chikov, V. G.

    2009-02-13

    We investigated the properties of optical lattice clocks operated with a repulsive light-shift potential. The magic wavelength, where light-shift perturbation for the clock transition cancels, was experimentally determined to be 389.889(9) nm for {sup 87}Sr. The hyperpolarizability effects on the clock transition were investigated theoretically. With minimal trapping field perturbation provided by the blue-detuned lattice, the fractional uncertainty due to the hyperpolarizability effects was found to be 2x10{sup -19} in the relevant clock transition.

  13. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.

    PubMed

    Wall, Michael L; Koller, Andrew P; Li, Shuming; Zhang, Xibo; Cooper, Nigel R; Ye, Jun; Rey, Ana Maria

    2016-01-22

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s-wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p- and s-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures. PMID:26849600

  14. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  15. Using a transportable optical clock for chronometric levelling

    NASA Astrophysics Data System (ADS)

    Vogt, Stefan; Grotti, Jacopo; Koller, Silvio; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali; Grosche, Gesine; Denker, Heiner; Sterr, Uwe; Lisdat, Christian

    2016-04-01

    With their supreme accuracy and precision, optical clocks and new methods of long distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks. We are developing transportable optical clocks and optical fibre-based means for clock comparisons that can bridge distances of hundredths of kilometres without accumulation of measurement errors. In this talk, we will focus on the transportable strontium lattice clock we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10‑17 after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 9 × 10‑17. We expect rapid improvements to an uncertainty of few parts in 10‑17. This clock will be connected via stabilized optical fibre links with other, stationary frequency standards. The measured red shifts will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

  16. Using a transportable optical clock for chronometric levelling

    NASA Astrophysics Data System (ADS)

    Lisdat, Christian; Sterr, Uwe; Koller, Silvio; Grotti, Jacopo; Vogt, Stefan; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali

    2016-07-01

    With their supreme accuracy and precision, optical clocks in combination with new methods of long-distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks without accumulation of measurement errors, as in classical levelling. We are developing transportable optical clocks for this purpose that will also serve for the technology development regarding optical clocks in Space and for international comparisons between optical clocks that cannot be linked with sufficient accuracy otherwise. In this talk we will focus on the transportable strontium lattice clock that we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10^{-17} after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 7 × 10^{-17}. We expect rapid improvements to an uncertainty of a few parts in 10^{17}. The clock is now located within a car trailer, which requires compact and rugged lasers systems and physics package. Special care has been taken in the design of the ultra-frequency stable interrogation laser that has to achieve fractional frequency instabilities of considerably below 10^{-15}. Typical laboratory constructions of the reference resonator system used to pre-stabilize the laser frequency are not compatible with the requirement of transportability. In an actual levelling campaign, this clock will be connected via a stabilized optical fibre link with another, stationary frequency standard. The measured gravitational red shift will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded

  17. Progress Towards a Compact Optical Clock at JPL

    NASA Astrophysics Data System (ADS)

    Sullivan, Scott; Rellergert, Wade; Grudinin, Ivan; Baumgartel, Lukas; Yu, Nan

    2014-05-01

    The unprecedented stability and accuracy provided by optical clocks allows improved navigation and planetary science in space applications as well as more precise tests of fundamental laws of physics. However, technological advances towards the miniaturization of the physical volume and reduced power consumption of these clocks must be made to suit space-based application. We will describe JPL's effort towards the development of a compact, low-power optical clock based on 171Yb+. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Partial support from NASA Fundamental Physics Program is acknowledged.

  18. Using optical clock to probe quantum many-body physics

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    2016-05-01

    The progress of optical lattice clock has benefited greatly from the understanding of atomic interactions. At the same time, the precision of clock spectroscopy has been applied to explore many-body spin interactions including SU(N) symmetry. Our recent work on this combined front of quantum metrology and many-body physics includes the probe of spin-orbital physics in the lattice clock and the investigation of a Fermi degenerate gas of 105 87Sr atoms in a three-dimensional magic-wavelength optical lattice.

  19. Automatic minimisation of micromotion in a 88Sr+ optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Huang, G.; Klein, H. A.; Gill, P.

    2015-07-01

    Optical clocks based on narrow linewidth transitions in single cold ions confined in RF traps are being developed at a number of laboratories worldwide. For these ion clock systems, excess micromotion can cause both Stark and Doppler frequency shifts and also a degradation of frequency stability as a result of a reduced excitation rate to the clock transition. At NPL, we detect micromotion in our 88Sr+ optical clocks by observing the correlation between photon arrival times and the zero crossing of the RF trap drive signal. Recently, two nominally identical 88Sr+ optical clocks have been operated over several days and their frequencies compared against one another. During this time the dc voltages on the endcap and compensation voltage electrodes required to minimise the micromotion can change significantly, particularly following the loading of an ion. This paper describes an automatic method to monitor and minimise micromotion applicable to single ion clocks and which we demonstrate using our two NPL 88Sr+ ion clocks.

  20. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    SciTech Connect

    Beloy, K.

    2010-09-15

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  1. Optical clock signal distribution and packaging optimization

    NASA Astrophysics Data System (ADS)

    Wu, Linghui

    Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with

  2. A mercury optical lattice clock at LNE-SYRTE

    NASA Astrophysics Data System (ADS)

    De Sarlo, L.; Favier, M.; Tyumenev, R.; Bize, S.

    2016-06-01

    We describe the development of an optical lattice clock based on mercury and the results obtained since the 7 th SFSM. We briefly present a new solution for the cooling laser system and an improved lattice trap that allows us to interrogate a few thousand atoms in parallel. This translates into a fractional short term stability of 1.2 x 10-15 at the clock frequency of 1.129 PHz.

  3. Rapid evaluation of time scale using an optical clock

    NASA Astrophysics Data System (ADS)

    Ido, T.; Hachisu, H.; Nakagawa, F.; Hanado, Y.

    2016-06-01

    Feasibility of steering a time scale using an optical clock is investigated. Since the high stability of optical frequency standards enables rapid evaluation of the scale interval, the requirement for the continuous operation is mitigated. Numerical simulations with the input of real calibration data by a 87Sr lattice clock indicated that the calibrations once in two weeks maintain the time scale within 5 ns level using a currently available hydrogen maser at NICT. “Optical” steering of a time scale by the intermittent calibrations frees an optical frequency standard from being dedicated to the steering, enabling other applications using the same apparatus.

  4. Development of a strontium optical lattice clock for space applications

    NASA Astrophysics Data System (ADS)

    Singh, Yeshpal

    2016-07-01

    With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and

  5. Ultracold lanthanides: from optical clock to a quantum simulator

    NASA Astrophysics Data System (ADS)

    Vishnyakova, G. A.; Golovizin, A. A.; Kalganova, E. S.; Sorokin, V. N.; Sukachev, D. D.; Tregubov, D. O.; Khabarova, K. Yu; Kolachevsky, N. N.

    2016-02-01

    We review the current research on precision spectroscopy and quantum optics applications of laser-cooled lanthanides. We discuss the specific electronic structure of hollow atoms, which determine prospects for application in optical frequency standards and in quantum simulators based on spin interactions in optical lattices. Using the example of the thulium atom, we describe the specifics of laser cooling, optical lattice trapping techniques, and clock transition spectroscopy using spectrally narrow lasers.

  6. Towards a lattice based neutral magnesium optical frequency standard

    NASA Astrophysics Data System (ADS)

    Kelkar, Hrishikesh; Riedmann, Matthias; Wuebbena, Temmo; Kulosa, Andre; Friebe, Jan; Pape, Andre; Amairi, Sana; Malobabic, Sina; Zipfel, Klaus; Ruehmann, Steffen; -Maria Rasel, Ernst; Ertmer, Wolfgang

    2010-03-01

    Magnesium is a promising candidate for a high performance neutral atom optical frequency standard. It offers a low sensitivity to frequency shifts of the ^1S0-^3P0 clock transition by room temperature blackbody radiation and has several isotopes of suitable abundance (two bosonic, one fermionic) to realize an optical clock. We report on recent progress towards creating a lattice clock of magnesium. ^24Mg atoms are pre-cooled in two stages. The singlet Magneto Optical Trap (MOT) captures and cools atoms from an atomic beam which are then loaded into a triplet MOT. The triplet MOT has a decay channel to the dark ^3P0 state which is used to load atoms into a 1064 nm dipole trap. The cooling stages are on simultaneously and atoms are continuously loaded in the dipole trap. We capture upto 9 10^4 atoms at a temperature below 100 μK. We are exploring different avenues for further cooling which will enable reaching the Lamb-Dicke regime in a magic wavelength lattice.

  7. Micromagic Clock: Microwave Clock Based on Atoms in an Engineered Optical Lattice

    SciTech Connect

    Beloy, K.; Derevianko, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-03-27

    We propose a new class of atomic microwave clocks based on the hyperfine transitions in the ground state of aluminum or gallium atoms trapped in optical lattices. For such elements magic wavelengths exist at which both levels of the hyperfine doublet are shifted at the same rate by the lattice laser field, canceling its effect on the clock transition. A similar mechanism for the magic wavelengths may work in microwave hyperfine transitions in other atoms which have the fine-structure multiplets in the ground state.

  8. Accurate Optical Lattice Clock with {sup 87}Sr Atoms

    SciTech Connect

    Le Targat, Rodolphe; Baillard, Xavier; Fouche, Mathilde; Brusch, Anders; Tcherbakoff, Olivier; Rovera, Giovanni D.; Lemonde, Pierre

    2006-09-29

    We report a frequency measurement of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition of {sup 87}Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2x10{sup -13}, i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

  9. Spin-orbit coupling in a strontium optical lattice clock

    NASA Astrophysics Data System (ADS)

    Bothwell, Tobias; Bromley, Sarah; Kolkowitz, Shimon; Zhang, Xibo; Wall, Michael; Rey, Ana Maria; Ye, Jun

    2016-05-01

    Synthetic gauge fields are a promising tool for creating complex Hamiltonians with ultracold neutral atoms that may mimic the fractional Quantum Hall effect and other topological states. A promising approach is to use spin-orbit coupling to treat an internal degree of freedom as an effective `synthetic' spatial dimension. Here, this synthetic dimension is comprised by the internal ground and excited states used for high-precision clock spectroscopy in a fermionic strontium optical lattice clock. We report on our progress towards this goal in a system where atoms tunnel through a 1D optical lattice during clock interrogation. We present measurements of the lattice band structure under varying Lamb-Dicke parameters and in a regime where s-wave collisions are expected to contribute density dependent frequency shifts.

  10. Synchronization of Distant Optical Clocks at the Femtosecond Level

    NASA Astrophysics Data System (ADS)

    Deschênes, Jean-Daniel; Sinclair, Laura C.; Giorgetta, Fabrizio R.; Swann, William C.; Baumann, Esther; Bergeron, Hugo; Cermak, Michael; Coddington, Ian; Newbury, Nathan R.

    2016-04-01

    The use of optical clocks or oscillators in future ultraprecise navigation, gravitational sensing, coherent arrays, and relativity experiments will require time comparison and synchronization over terrestrial or satellite free-space links. Here, we demonstrate full unambiguous synchronization of two optical time scales across a free-space link. The time deviation between synchronized time scales is below 1 fs over durations from 0.1 to 6500 s, despite atmospheric turbulence and kilometer-scale path length variations. Over 2 days, the time wander is 40 fs peak to peak. Our approach relies on the two-way reciprocity of a single-spatial-mode optical link, valid to below 225 attoseconds across a turbulent 4-km path. This femtosecond level of time-frequency transfer should enable optical networks using state-of-the-art optical clocks or oscillators.

  11. Remote atomic clock synchronization via satellites and optical fibers

    NASA Astrophysics Data System (ADS)

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-07-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at the Physikalisch-Technische Bundesanstalt (PTB) without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 40 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of Coordinated Universal Time UTC. Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems.

  12. Recent progress on the 27Al+ ion optical clock

    NASA Astrophysics Data System (ADS)

    Xu, Z. T.; Yuan, W. H.; Zeng, X. Y.; Che, H.; Shi, X. H.; Deng, K.; Zhang, J.; Lu, Z. H.

    2016-06-01

    An aluminium ion optical clock is under development at Huazhong University of Science and Technology. The 25Mg+ ion is chosen as logic ion to sympathetically cool an Al+ ion and to detect its states. The 25Mg+ ion is cooled to the motional ground state through Raman sideband cooling as the first step for quantum logic spectroscopy. Ultra-stable lasers for the interrogation of the clock transition are developed. The instability of the laser beat frequency is 1.2 x 10-15 at 1 s, which is close to the thermal noise limit of the reference cavity.

  13. Trapped Ion Optical Clocks at NPL

    SciTech Connect

    Margolis, H. S.; Barwood, G. P.; Hosaka, K.; Klein, H. A.; Lea, S. N.; Walton, B. R.; Webster, S. A.; Gill, P.; Huang, G.; Stannard, A.

    2006-11-07

    Forbidden transitions in single laser-cooled trapped ions provide highly stable and accurate references for optical frequency standards. This paper describes recent progress on strontium and ytterbium ion optical frequency standards under development at NPL.

  14. Optical clock distribution in supercomputers using polyimide-based waveguides

    NASA Astrophysics Data System (ADS)

    Bihari, Bipin; Gan, Jianhua; Wu, Linghui; Liu, Yujie; Tang, Suning; Chen, Ray T.

    1999-04-01

    Guided-wave optics is a promising way to deliver high-speed clock-signal in supercomputer with minimized clock-skew. Si- CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitters. Surface-normal couplers can couple the optical clock signals into and out from the H-tree polyimide waveguides surface-normally, which facilitates the integration of photodetectors to convert optical-signal to electrical-signal. A 45-degree surface- normal couplers has been integrated at each output end. The measured output coupling efficiency is nearly 100 percent. The output profile from 45-degree surface-normal coupler were calculated using Fresnel approximation. the theoretical result is in good agreement with experimental result. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  15. Hyper-Ramsey spectroscopy of optical clock transitions

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Oates, C. W.; Barber, Z. W.; Lemke, N. D.; Ludlow, A. D.; Sterr, U.; Lisdat, Ch.; Riehle, F.

    2010-07-15

    We present nonstandard optical Ramsey schemes that use pulses individually tailored in duration, phase, and frequency to cancel spurious frequency shifts related to the excitation itself. In particular, the field shifts and their uncertainties can be radically suppressed (by two to four orders of magnitude) in comparison with the usual Ramsey method (using two equal pulses) as well as with single-pulse Rabi spectroscopy. Atom interferometers and optical clocks based on two-photon transitions, heavily forbidden transitions, or magnetically induced spectroscopy could significantly benefit from this method. In the latter case, these frequency shifts can be suppressed considerably below a fractional level of 10{sup -17}. Moreover, our approach opens the door for high-precision optical clocks based on direct frequency comb spectroscopy.

  16. The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-Hertz Accuracy

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew

    2009-05-01

    Atomic clocks find significant roles in a number of scientific and technological settings. One interesting approach to a next-generation clock based on an optical transition uses atomic strontium confined in an optical lattice. The tight atomic confinement eliminates motional effects which otherwise trouble the atomic interrogation. At the same time, the optical lattice is equally perturbs the two electronic clock states so that the confinement introduces a net zero shift of the natural transition frequency. Here I describe the design and realization of an optical frequency standard using ^87Sr confined in a 1-D optical lattice. With an ultra-stable laser light source, atomic spectral linewidths of the optical clock transition are observed below 2 Hz. High accuracy spectroscopy of the clock transition is carried out utilizing a frequency comb referenced to the NIST-F1 Cs fountain. To explore the performance of an improved, spin-polarized Sr standard, a coherent optical phase transfer link is established between JILA and NIST. This enables remote comparison of the Sr standard against optical standards at NIST. The high frequency stability of a Sr-Ca comparison (3x10-16 at 200 s) is used to make measurements of Sr transition frequency shifts at the fractional frequency level below 10-16. These systematic shifts are discussed in detail, resulting in a total uncertainty of the Sr clock frequency at 1.5x10-16, the smallest for a neutral atom system.

  17. Laser Cooling of Lanthanides: from Optical Clocks to Quantum Simulators

    NASA Astrophysics Data System (ADS)

    Golovizin, A.; Kalganova, E.; Vishnyakova, G.; Tregubov, D.; Khabarova, K.; Sorokin, V.; Kolachevsky, N.

    2015-09-01

    We discuss current progress in laser cooling of lanthanides (Er, Yb, Dy, Tm etc.) focusing on applications. We describe some important peculiarities taking Thulium atom as an example: Two stage laser cooling, trapping in an optical lattice, anisotropic interactions and spectroscopy of narrow transitions. Specific level structure and presence of magic wavelengths make ultracold Thulium a favorable candidate for optical clock applications. On the other hand, abundance of Feshbach resonances allow to tune interactions in ultracold gases and thus reach quantum degeneracy. It opens intriguing perspectives for novel quantum simulators employing dipole-dipole interactions in an optical lattice.

  18. Stability improvements for the NIST Yb optical lattice clock

    NASA Astrophysics Data System (ADS)

    Fasano, R. J.; Schioppo, M.; McGrew, W. F.; Brown, R. C.; Hinkley, N.; Yoon, T. H.; Beloy, K.; Oates, C. W.; Ludlow, A. D.

    2016-05-01

    To reach the fundamental limit given by quantum projection noise, optical lattice clocks require advanced laser stabilization techniques. The NIST ytterbium clock has benefited from several generations of extremely high finesse optical cavities, with cavity linewidths below 1 kHz. Characterization of the cavity drift rate has allowed compensation to the mHz/s level, improving the medium-term stability of the cavity. Based on recent measurements using Ramsey spectroscopy with synchronous interrogation, we report a fractional instability σy(1s) <=10-16 , dominated by atom number fluctuation noise. We also provide updates on our cryogenic sapphire cavity with a reduced thermal noise floor, which will improve our Dick-limited fractional instability at 1 s to below 10-16. Also at University of Colorado.

  19. Optical Lattice Induced Light Shifts in an Yb Atomic Clock

    SciTech Connect

    Barber, Z. W.; Stalnaker, J. E.; Lemke, N. D.; Poli, N.; Oates, C. W.; Fortier, T. M.; Diddams, S. A.; Hollberg, L.; Hoyt, C. W.; Taichenachev, A. V.; Yudin, V. I.

    2008-03-14

    We present an experimental study of the lattice-induced light shifts on the {sup 1}S{sub 0}{yields}{sup 3}P{sub 0} optical clock transition ({nu}{sub clock}{approx_equal}518 THz) in neutral ytterbium. The 'magic' frequency {nu}{sub magic} for the {sup 174}Yb isotope was determined to be 394 799 475(35) MHz, which leads to a first order light shift uncertainty of 0.38 Hz. We also investigated the hyperpolarizability shifts due to the nearby 6s6p{sup 3}P{sub 0}{yields}6s8p{sup 3}P{sub 0}, 6s8p{sup 3}P{sub 2}, and 6s5f{sup 3}F{sub 2} two-photon resonances at 759.708, 754.23, and 764.95 nm, respectively. By measuring the corresponding clock transition shifts near these two-photon resonances, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 {mu}K deep, lattice at the magic wavelength. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below 10{sup -17}.

  20. High accuracy measurement of optical atomic clock polarizability

    NASA Astrophysics Data System (ADS)

    Sherman, Jeff; Lemke, Nathan; Hinkley, Nathan; Pizzocaro, Marco; Fox, Richard; Ludlow, Andrew; Oates, Chris

    2012-06-01

    The differential static polarizability of ytterbium optical clock states αclock≡α(^3 0) - α(^1 0) is known theoretically to ˜10%. We report an experimental value of this polarizability, αclock= 36.2612(7) kHz (kV/cm)-2 at 20 parts-per-million (ppm) accuracy [1]. Ultracold ^171Yb atoms held in an optical lattice at the ac-Stark balancing ``magic'' wavelength (759 nm) are surrounded by rigidly spaced transparent conductive planar electrodes. An ultrastable laser (578 nm) is locked to the ^1 0<->^3 0 transition in an interleaved fashion for three electrode conditions: voltage applied, reversed, and grounded. These integrated error signals yield the quadratic Stark shift and a measure of stray fields. The electrode spacing is measured interferometrically in situ. The applied electric field at the site of the atoms deviates at the few ppm level from an infinite-planar model. When last evaluated, the ytterbium optical clock frequency uncertainty was dominated by that of the blackbody Stark shift. We show how this measurement reduces this uncertainty contribution an order of magnitude to a fractional level of 3x10-17.[4pt] [1] J.A. Sherman et al., arXiv:1112.2766 (2011).

  1. Experimental realization of an optical second with strontium lattice clocks.

    PubMed

    Le Targat, R; Lorini, L; Le Coq, Y; Zawada, M; Guéna, J; Abgrall, M; Gurov, M; Rosenbusch, P; Rovera, D G; Nagórny, B; Gartman, R; Westergaard, P G; Tobar, M E; Lours, M; Santarelli, G; Clairon, A; Bize, S; Laurent, P; Lemonde, P; Lodewyck, J

    2013-01-01

    Progress in realizing the SI second had multiple technological impacts and enabled further constraint of theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4 × 10(-16), have already been overtaken by atomic clocks referenced to an optical transition, which are both more stable and more accurate. Here we present an important step in the direction of a possible new definition of the second. Our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.5 × 10(-16). Their comparison with three independent caesium fountains shows a degree of accuracy now only limited by the best realizations of the microwave-defined second, at the level of 3.1 × 10(-16). PMID:23839206

  2. Generating and probing entangled states for optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  3. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    SciTech Connect

    Bishof, M.; Lin, Y.; Swallows, M. D.; Ye, J.; Rey, A. M.; Gorshkov, A. V.

    2011-06-24

    We report the observation of resolved atomic interaction sidebands (ISB) in the {sup 87}Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.

  4. Probing many-body interactions in an optical lattice clock

    SciTech Connect

    Rey, A.M.; Gorshkov, A.V.; Kraus, C.V.; Martin, M.J.; Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J.; Lemke, N.D.; Ludlow, A.D.

    2014-01-15

    We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.

  5. Optical lattice clock with atoms confined in a shallow trap

    SciTech Connect

    Lemonde, Pierre; Wolf, Peter

    2005-09-15

    We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large depths [(50-100)E{sub r} for Sr] to avoid any frequency shift or line broadening of the atomic transition at the 10{sup -17}-10{sup -18} level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g., higher-order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose the use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show that using the Earth's gravity, much shallower traps (down to 5E{sub r} for Sr) can be used for the same accuracy goal.

  6. Laser Cooling and Trapping of Neutral Mercury Atoms Using an Optically-Pumped External-Cavity Semiconductor Laser

    NASA Astrophysics Data System (ADS)

    Paul, Justin; Lytle, Christian; Jones, R. Jason

    2011-05-01

    The level structure of the Hg atom is similar to other alkaline earth-like atoms, offering the possibility to realize an extremely high quality resonance factor (Q) on the ``clock'' transition (1S0- 3P0) when confined in an optical lattice at the Stark-shift free wavelength. A key feature of the Hg system is the reduced uncertainty due to black-body induced Stark shifts, making it an interesting candidate as an optical frequency standard. One challenge to laser-cooling neutral Hg atoms is finding a reliable source for cooling on the 1S0-3 P1 transition at 253.7 nm. We employ an optically pumped semiconductor laser (OPSEL) operating at 1015 nm, whose frequency is quadrupled in two external-cavity doubling stages to generate over 120 mW at 253.7 nm. With this new laser source we have trapped Hg199 from a background vapor in a standard MOT. We trap up to 2 × 106 atoms with a 1/e2 radius of our MOT of ~310 microns, corresponding to a density of 1.28 × 1010 atoms/cm3. We report on the progress of our Hg system and plans for precision lattice-based spectroscopy of the clock transition. Support for this work is supported through the U.S. Air Force Office of Scientific Research (AFOSR) through grant no. FA9550-09-1-0563.

  7. Clock recovery from 40 Gbps optical signal with optical phase-locked loop based on a terahertz optical asymmetric demultiplexer

    NASA Astrophysics Data System (ADS)

    Jhon, Young Min; Ki, Ho Jin; Kim, Sun Ho

    2003-05-01

    10 GHz clock recovery from 40 Gbps optical time-division-multiplexed (OTDM) signal pulses is experimentally demonstrated using optical phase lock loop based on a terahertz optical asymmetric demultiplexer (TOAD) with a local-reference-oscillator-free electronic feedback circuit. The clock pulse that was used as the control pulse had energy of 800 fJ and the SNR of the time-extracted 10 GHz RF signal to the side components was larger than 40 dB.

  8. Optimized geometries for future generation optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Krämer, S.; Ostermann, L.; Ritsch, H.

    2016-04-01

    Atoms deeply trapped in magic wavelength optical lattices provide a Doppler- and collision-free dense ensemble of quantum emitters ideal for high-precision spectroscopy and they are the basis of some of the best optical atomic clocks to date. However, despite their minute optical dipole moments the inherent long-range dipole-dipole interactions in such lattices still generate line shifts, dephasing and modified decay. We show that in a perfectly filled lattice line shifts and decay are resonantly enhanced depending on the lattice constant and geometry. Potentially, this yields clock shifts of many atomic linewidths and reduces the measurement by optimizing the lattice geometry. Such collective effects can be tailored to yield zero effective shifts and prolong dipole lifetimes beyond the single-atom decay. In particular, we identify dense 2D hexagonal or square lattices as the most promising configurations for an accuracy and precision well below the independent ensemble limit. This geometry should also be an ideal basis for related applications such as superradiant lasers, precision magnetometry or long-lived quantum memories.

  9. A magnetoplasmonic electrical-to-optical clock multiplier

    NASA Astrophysics Data System (ADS)

    Firby, C. J.; Elezzabi, A. Y.

    2016-02-01

    We propose and investigate an electrical-to-optical clock multiplier, based on a bismuth-substituted yttrium iron garnet (Bi:YIG) magnetoplasmonic Mach-Zehnder interferometer (MZI). Transient magnetic fields induce a precession of the magnetization vector of the Bi:YIG, which in turn modulates the nonreciprocal phase shift in the MZI arms, and hence the intensity at the output port. We show that the device is capable of modulation depth of 16.26 dB and has a tunable output frequency between 279.9 MHz and 5.6 GHz. Correspondingly, the input electrical modulation frequency can be multiplied by factors of up to 2.1 × 10 3 in the optical signal. Such a device is envisioned as a critical component in the development of hybrid electrical-optical circuitry.

  10. Development of 171Yb optical lattice clock at KRISS

    NASA Astrophysics Data System (ADS)

    Mun, Jongchul; Park, Chang Yong; Yu, Dai-Hyuk; Lee, Won-Kyu; Eon Park, Sang; Kwon, Taeg Yong; Lee, Sang-Bum

    2012-06-01

    We measured the absolute frequency of the optical clock transition 1S0 (F = 1/2) - 3P0 (F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 865.7 (9.2) Hz. The measured frequency was calibrated to the Coordinated Universal Time (UTC) by using an optical frequency comb of which frequency was phase-locked to a hydrogen maser as a flywheel oscillator traceable to the UTC. The magic wavelength was also measured as 394 798.48 (79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work.

  11. Entanglement and spin squeezing in a network of distant optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Polzik, Eugene S.; Ye, Jun

    2016-02-01

    We propose an approach for the collective enhancement of precision for remote optical lattice clocks and a way of generating the Einstein-Podolsky-Rosen (EPR) state of remote clocks. In the first scenario, a distributed spin-squeezed state (SSS) of M clocks is generated by a collective optical quantum nondemolition measurement on clocks with parallel Bloch vectors. Surprisingly, optical losses, which usually present the main limitation to SSS, can be overcome by an optimal network design which provides close to Heisenberg scaling of the time precision with the number of clocks M . We provide an optimal network solution for distant clocks as well as for clocks positioned within close proximity of each other. In the second scenario, we employ collective dissipation to drive two clocks with oppositely oriented Bloch vectors into a steady-state entanglement. The corresponding EPR state provides secret time sharing beyond the projection noise limit between the two quantum synchronized clocks protected from eavesdropping. An important application of the EPR-entangled clock pair is the remote sensing of, for example, gravitational effects and other disturbances to which clock synchronization is sensitive.

  12. Collisional shifts in optical-lattice atom clocks

    SciTech Connect

    Band, Y. B.; Vardi, A.

    2006-09-15

    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of {pi} between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.

  13. Clock recovering characteristics of adaptive finite-impulse-response filters in digital coherent optical receivers.

    PubMed

    Kikuchi, Kazuro

    2011-03-14

    We analyze the clock-recovery process based on adaptive finite-impulse-response (FIR) filtering in digital coherent optical receivers. When the clock frequency is synchronized between the transmitter and the receiver, only five taps in half-symbol-spaced FIR filters can adjust the sampling phase of analog-to-digital conversion optimally, enabling bit-error rate performance independent of the initial sampling phase. Even if the clock frequency is not synchronized between them, the clock-frequency misalignment can be adjusted within an appropriate block interval; thus, we can achieve an asynchronous clock mode of operation of digital coherent receivers with block processing of the symbol sequence. PMID:21445201

  14. The strontium optical lattice clock: Optical spectroscopy with sub-hertz accuracy

    NASA Astrophysics Data System (ADS)

    Ludlow, Andrew D.

    One of the most well-developed applications of coherent interaction with atoms is atomic frequency standards and clocks. Atomic clocks find significant roles in a number of scientific and technological settings. State-of-the-art, laser-cooled, Cs-fountain microwave clocks have demonstrated impressive frequency measurement accuracy, with fractional uncertainties below the 10-15 level. On the other hand, frequency standards based on optical transitions have made substantial steps forward over the last decade, benefiting from their high operational frequencies. An interesting approach to such an optical standard uses atomic strontium confined in an optical lattice. The tight atomic confinement allows for nearly complete elimination of Doppler and recoil-related effects which can otherwise trouble the precise atomic interrogation. At the same time, the optical lattice is designed to equally perturb the two electronic clock states so that the confinement introduces a net zero shift of the natural transition frequency. This thesis describes the design and realization of an optical frequency standard using 87Sr confined in a 1-D optical lattice. Techniques for atomic manipulation and control are described, including two-stage laser cooling, proper design of atomic confinement in a lattice potential, and optical pumping techniques. With the development of an ultra-stable coherent laser light source, atomic spectral linewidths of the optical clock transition are observed below 2 Hz. High accuracy spectroscopy of the clock transition is carried out utilizing a femtosecond frequency comb referenced to the NIST-F1 Cs fountain. To explore the performance of an improved, spin-polarized Sr standard, a coherent optical phase transfer link is established between JILA and NIST. This enables remote comparison of the Sr standard against optical standards at NIST, such as the cold Ca standard. The high frequency stability of a Sr-Ca comparison (3 x 10-16 at 200 s) is used to make

  15. All-optical frame clock recovery from even-multiplexed OTDM signals

    NASA Astrophysics Data System (ADS)

    Yin, Lina; Liu, Guoming; Wu, Jian; Lin, Jintong

    2005-02-01

    Frame clock is useful for packet processing such as header detection and payload demultiplexing. A novel all-optical frame clock recovery scheme based on "intensity reshaper" and mode-locked semiconductor fiber ring laser is demonstrated. The "intensity reshaper" including a polarization controller and a polarizer is the key element to realize frame clock recovery from equal-amplitude even-multiplexed OTDM signals. In theory, a mathematical expression is given to analyze the intensity of harmonic of clock-frequency component. The relative intensity of each clock-frequency component will change with the alterative angle caused by adjusting the PC in the "intensity reshaper", so the desirable clock-frequency component can be enhanced, which is helpful for clock recovery. Moreover, the intensity of harmonic of clock-frequency component is also related to the pulse amplitude, width and period in the multiplexed data. In experiment, 2.5GHz frame clock is extracted from even-multiplexed 4x2.5GHz and 8x2.5GHz OTDM signals respectively. At the same time, bit clock is also recovered by using this scheme. The extracted clock pulses have several desirable features such as low timing jitter, broad wavelength tuning range and polarization independence. This scheme simplifies signal generation and propagation in OTDM systems, which can be applied to clock recovery in high-speed OTDM network.

  16. Frequency ratios of optical lattice clocks at the 17th decimal place

    NASA Astrophysics Data System (ADS)

    Katori, Hidetoshi

    2016-05-01

    Optical lattice clocks benefit from a low quantum-projection noise by simultaneously interrogating a large number of atoms, which are trapped in an optical lattice tuned to the ``magic wavelength'' to largely cancel out light shift perturbation in the clock transition. About a thousand atoms enable the clocks to achieve 10-18 instability in a few hours of operation, allowing intensive investigation and control of systematic uncertainties. As optical lattice clocks have reached inaccuracies approaching 10-18, it is now the uncertainty of the SI second (~ 10-16) itself that restricts the measurement of the absolute frequencies of such optical clocks. Direct comparisons of optical clocks are, therefore, the only way to investigate and utilize their superb performance beyond the SI second. In this presentation, we report on frequency comparisons of optical lattice clocks with neutral strontium (87 Sr), ytterbium (171 Yb) and mercury (199 Hg) atoms. By referencing cryogenic Sr clocks, we determine frequency ratios, νYb/νSr and νHg/νSr, of a cryogenic Yb clock and a Hg clock with uncertainty at the mid 10-17 level. Such ratios provide an access to search for temporal variation of the fundamental constants. We also present remote comparisons between cryogenic Sr clocks located at RIKEN and the University of Tokyo over a 30-km-long phase-stabilized fiber link. The gravitational red shift Δν /ν0 ~ 1.1× 10-18 Δh cm-1 reads out the height difference of Δh ~ 15 m between the two clocks with uncertainty of 5 cm, which demonstrates a step towards relativistic geodesy. ERATO, JST.

  17. Al+ Optical Clocks for Fundamental Physics and Geodesy

    SciTech Connect

    Chou, James Chin-wen

    2011-07-13

    Laser-cooled trapped atoms have long been recognized as potentially very accurate frequency standards for clocks. Ultimate accuracies of 10-18 to 10-19 appear possible, limited by the time-dilation of trapped ions that move at laser-cooled velocities. The Al+ ion is an attractive candidate for high accuracy, owing to its narrow electronic transition in the optical regime and low sensitivity to ambient field perturbations. Precision spectroscopy on Al+ is enabled by quantum information techniques. With Al+ “quantum-logic” clocks, the current accuracy of 8.6×10-18 has enabled a geo-potential-difference measurement that detected a height change of 37±17 cm due to the gravitational red-shift. We have also observed quantum coherence between two Al+ ions with a record Q-factor of 3.4×1016, and compared the Al+ resonance frequency to that of a single Hg+ ion to place limits on the temporal variation of the fine-structure constant.

  18. Al+ optical clocks for fundamental physics, geodesy, and quantum metrology

    NASA Astrophysics Data System (ADS)

    Chou, Chin-Wen

    2011-05-01

    Laser-cooled trapped atoms have long been recognized as potentially very accurate frequency standards for clocks. Ultimate accuracies of 10-18 to 10-19 appear possible, limited by the time-dilation of trapped ions that move at laser-cooled velocities. The Al+ ion is an attractive candidate for high accuracy, owing to its narrow electronic transition in the optical regime and low sensitivity to ambient field perturbations. Precision spectroscopy on Al+ is enabled by quantum information techniques. With Al+ ``quantum-logic'' clocks, the current accuracy of 8.6 ×10-18 has enabled a geo-potential-difference measurement that detected a height change of 37 +/- 17 cm due to the gravitational red-shift. We have also observed quantum coherence between two Al+ ions with a record Q-factor of 3.4 ×1016, and compared the Al+ resonance frequency to that of a single Hg+ ion to place limits on the temporal variation of the fine-structure constant. This work is done in collaboration with D. B. Hume, M. J. Thorpe, D. J. Wineland, and T. Rosenband. Work supported by ONR, AFOSR, DARPA, NSA, and IARPA.

  19. All-optical clock recovery for 40Gbs using an amplified feedback DFB laser

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Pan, J. Q.; Zhao, L. J.; Chen, W. X.; Wang, W.; Wang, L.; Zhao, X. F.; Lou, C. Y.

    2009-11-01

    All-optical clock recovery is a key technology in all-optical 3R signal regeneration (Re-amplification, Retiming, and Reshaping) process. In this paper, a monolithic integrated three-section amplified feedback semiconductor laser (AFL) is demonstrated as an all optical clock regenerator. We fabricated a three-section AFL using quantum well intermixing process without regrowth instead of butt-joint process. The tunable characteristics of three-section AFL were investigated, and all optical clock recovery for 40Gb/s return to zero (RZ) 231-1 pseudorandom binary sequence (PRBS) is demonstrated experimentally using AFL with time jitter about 689.2fs.

  20. Towards a portable optical clock based on a two-photon transition

    NASA Astrophysics Data System (ADS)

    Potnis, Shreyas; Jackson, Shira; Vutha, Amar

    2016-05-01

    Optical clocks based on narrow linewidth atomic transitions have achieved an unprecedented level of precision. These clocks rely on tight confinement of atoms by light, to mitigate Doppler shifts and atomic recoil, with the trapping light appropriately tuned to a ``magic'' wavelength to eliminate light shifts. An alternative approach is construct optical clocks using inherently Doppler-free two-photon transitions, which can lead to a substantially simplified architecture. The short cycle time and large atom numbers available with such a scheme enable rapid, high signal-to-noise measurements, paving the way for portable and autonomous clocks. We report on experimental progress towards constructing an optical clock based on the 4s21S0 --> 4 s 3 d1D2 two-photon transition in laser cooled 40Ca atoms.

  1. Collisional Losses, Decoherence, and Frequency Shifts in Optical Lattice Clocks with Bosons

    SciTech Connect

    Lisdat, Ch.; Winfred, J. S. R. Vellore; Middelmann, T.; Riehle, F.; Sterr, U.

    2009-08-28

    We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition {sup 1}S{sub 0}-{sup 3}P{sub 0} at 698 nm with bosonic {sup 88}Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with {sup 88}Sr shows no degradation due to collisions on the fractional uncertainty level of 10{sup -16}.

  2. Is the time right for a redefinition of the second by optical atomic clocks?

    NASA Astrophysics Data System (ADS)

    Gill, Patrick

    2016-06-01

    Given the dramatic rate of progress in optical atomic clocks over the last decade, this paper presents the current state of play, and considers the possibilities, implications and timescales for a potential redefinition of the SI second in terms of an optical reference transition. In particular, the question of choice of a future standard is addressed, together with the requirements to accurately compare realisations of such standards, both for clocks local to, and remote from each other. Current performances of various optical clock systems are examined and possibilities for moving beyond potential limitations by alternative strategies are outlined.

  3. Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks

    SciTech Connect

    Hachisu, H.; Takamoto, M.; Katori, H.; Miyagishi, K.; Porsev, S. G.; Derevianko, A.; Ovsiannikov, V. D.; Pal'chikov, V. G.

    2008-02-08

    We report vapor-cell magneto-optical trapping of Hg isotopes on the {sup 1}S{sub 0}-{sup 3}P{sub 1} intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for ''new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10{sup -18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.

  4. Trapping of neutral mercury atoms and prospects for optical lattice clocks.

    PubMed

    Hachisu, H; Miyagishi, K; Porsev, S G; Derevianko, A; Ovsiannikov, V D; Pal'chikov, V G; Takamoto, M; Katori, H

    2008-02-01

    We report vapor-cell magneto-optical trapping of Hg isotopes on the (1)S(0)-(3)P(1) intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for "new physics" beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10;{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant. PMID:18352368

  5. Three-dimensional optical lattice clock with bosonic {sup 88}Sr atoms

    SciTech Connect

    Akatsuka, Tomoya; Takamoto, Masao; Katori, Hidetoshi

    2010-02-15

    We present detailed analyses of our recent experiment on the three-dimensional (3D) optical lattice clock with bosonic {sup 88}Sr atoms in which the collisional frequency shift was suppressed by applying a single-occupancy lattice. Frequency shifts in magnetically induced spectroscopy on the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition ({lambda}=698 nm) of {sup 88}Sr were experimentally investigated by referencing a one-dimensional (1D) lattice clock based on spin-polarized {sup 87}Sr atoms. We discuss that the clock stability is limited by the current laser stability as well as the experimental sequence of the clock operation, which may be improved to {sigma}{sub y}({tau})=2x10{sup -16}/{radical}({tau}) by optimizing the cycle time of the clock operation.

  6. A superradiant clock laser on a magic wavelength optical lattice.

    PubMed

    Maier, Thomas; Kraemer, Sebastian; Ostermann, Laurin; Ritsch, Helmut

    2014-06-01

    An ideal superradiant laser on an optical clock transition of noninteracting cold atoms is predicted to exhibit an extreme frequency stability and accuracy far below mHz-linewidth. In any concrete setup sufficiently many atoms have to be confined and pumped within a finite cavity mode volume. Using a magic wavelength lattice minimizes light shifts and allows for almost uniform coupling to the cavity mode. Nevertheless, the atoms are subject to dipole-dipole interaction and collective spontaneous decay which compromises the ultimate frequency stability. In the high density limit the Dicke superradiant linewidth enhancement will broaden the laser line and nearest neighbor couplings will induce shifts and fluctuations of the laser frequency. We estimate the magnitude and scaling of these effects by direct numerical simulations of few atom systems for different geometries and densities. For Strontium in a regularly filled magic wavelength configuration atomic interactions induce small laser frequency shifts only and collective spontaneous emission weakly broadens the laser. These interactions generally enhance the laser sensitivity to cavity length fluctuations but for optimally chosen operating conditions can lead to an improved synchronization of the atomic dipoles. PMID:24921521

  7. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-01

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit. PMID:24463513

  8. Systematic Study of the {sup 87}Sr Clock Transition in an Optical Lattice

    SciTech Connect

    Ludlow, Andrew D.; Boyd, Martin M.; Zelevinsky, Tanya; Foreman, Seth M.; Blatt, Sebastian; Notcutt, Mark; Ido, Tetsuya; Ye Jun

    2006-01-27

    With ultracold {sup 87}Sr confined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to date of the {sup 1}S{sub 0}-{sup 3}P{sub 0} optical clock transition with a detailed analysis of systematic shifts (19 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 869 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its hertz-level linewidth characterized by an octave-spanning femtosecond frequency comb.

  9. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock

    SciTech Connect

    Chang, D.E.; Lukin, M.D.; Ye Jun

    2004-02-01

    Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.

  10. p-Wave Cold Collisions in an Optical Lattice Clock

    SciTech Connect

    Lemke, N. D.; Sherman, J. A.; Oates, C. W.; Ludlow, A. D.; Stecher, J. von; Rey, A. M.

    2011-09-02

    We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms' internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.

  11. Optical lattice polarization effects on magnetically induced optical atomic clock transitions

    SciTech Connect

    Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.

    2007-08-15

    We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.

  12. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.

    PubMed

    Akamatsu, Daisuke; Yasuda, Masami; Inaba, Hajime; Hosaka, Kazumoto; Tanabe, Takehiko; Onae, Atsushi; Hong, Feng-Lei

    2014-04-01

    The frequency ratio of the (1)S(0)(F = 1/2)-(3)P(0)(F = 1/2) clock transition in (171)Yb and the (1)S(0)(F = 9/2)-(3)P(0)(F = 9/2) clock transition in (87)Sr is measured by an optical-optical direct frequency link between two optical lattice clocks. We determined the ratio (ν(Yb)/ν(Sr)) to be 1.207 507 039 343 341 2(17) fractional standard uncertainty of 1.4 × 10(-15) [corrected]. The measurement uncertainty of the frequency ratio is smaller than that obtained from absolute frequency measurements using the International Atomic Time (TAI) link. The measured ratio agrees well with that derived from the absolute frequency measurement results obtained at NIST and JILA, Boulder, CO using their Cs-fountain clock. Our measurement enables the first international comparison of the frequency ratios of optical clocks. The measured frequency ratio will be reported to the International Committee for Weights and Measures for a discussion related to the redefinition of the second. PMID:24718165

  13. Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection.

    PubMed

    Tan, Bozhong; Tian, Yuan; Lin, Huifang; Chen, Jiehua; Gu, Sihong

    2015-08-15

    We propose and investigate a scheme for differential detection of the magneto-optic rotation (MOR) effect, where a linearly polarized bichromatic laser field is coherent population-trapping (CPT)-resonant with alkali atoms, and discuss the application of this effect to CPT-based atomic clocks. The results of our study indicate that laser noise in a vertical cavity surface-emitting laser-based CPT atomic clock can be effectively suppressed by the proposed scheme. The proposed scheme promises to realize a packaged MOR-CPT atomic clock that has significantly better frequency stability coupled with similar power consumption, volume, and cost when compared with currently available packaged CPT atomic clocks. PMID:26274639

  14. Higher-order effects on the precision of clocks of neutral atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, V. D.; Marmo, S. I.; Palchikov, V. G.; Katori, H.

    2016-04-01

    The recent progress in designing optical lattice clocks with fractional uncertainties below 10-17 requires unprecedented precision in estimating the role of higher-order effects of atom-lattice interactions. In this paper, we present results of systematic theoretical evaluations of the multipole, nonlinear, and anharmonic effects on the optical-lattice-based clocks of alkaline-earth-like atoms. Modifications of the model-potential approach are introduced to minimize discrepancies of theoretical evaluations from the most reliable experimental data. Dipole polarizabilities, hyperpolarizabilities, and multipolar polarizabilities for neutral Ca, Sr, Yb, Zn, Cd, and Hg atoms are calculated in the modified approach.

  15. Individual Optical Addressing of Atomic Clock Qubits With Stark Shifts

    NASA Astrophysics Data System (ADS)

    Lee, Aaron; Smith, Jacob; Richerme, Phillip; Neyenhuis, Brian; Hess, Paul; Zhang, Jiehang; Monroe, Chris

    2016-05-01

    In recent years, trapped ions have proven to be a versatile quantum information platform, enabled by their long lifetimes and high gate fidelities. Some of the most promising trapped ion systems take advantage of groundstate hyperfine ``clock'' qubits, which are insensitive to background fields to first order. This same insensitivity also makes σz manipulations of the qubit impractical, eliminating whole classes of operations. We prove there exists a fourth-order light shift, or four-photon Stark shift, of the clock states derived from two coherent laser beams whose beatnote is close to the qubit splitting. Using a mode-locked source generates a large light shift with only modest laser powers, making it a practical σz operation on a clock qubit. We experimentally verify and measure the four-photon Stark shift and demonstrate its use to coherently individually address qubits in a chain of 10 Yb 171 ions with low crosstalk. We use this individual addressing to prepare arbitrary product states with high fidelity and also to apply independent σz terms transverse to an Ising Hamiltonian. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  16. Precise realization of the thermal radiation environment for an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Sherman, Jeff; Phillips, Nathaniel; Hinkley, Nathan; Oates, Chris; Ludlow, Andrew

    2013-05-01

    The Stark shift due to thermal radiation contributes one of the largest known perturbations to the clock transition frequency of optical lattice clocks. Consequently, the uncertainty stemming from this shift has played a dominant role in the total uncertainty of these standards. Following recent works focused on atomic response factors (e.g., the differential polarizability), uncertainty in this perturbation is now limited by imprecise knowledge of the environment itself. Here we present progress towards precise realization of the thermal radiation environment in a Yb optical lattice clock by trapping the atoms in a highly uniform radiation shield at a well-known temperature. We characterize the non-ideal aspects of this approach, including less than unit emissivity, contamination of the blackbody environment from the ambient environment, and thermal non-uniformities.

  17. Trapped ion 88Sr+ optical clock systematic uncertainties - AC Stark shift determination

    NASA Astrophysics Data System (ADS)

    Barwood, GP; Huang, G.; King, SA; Klein, HA; Gill, P.

    2016-06-01

    A recent comparison between two trapped-ion 88Sr+ optical clocks at the UK. National Physical Laboratory demonstrated agreement to 4 parts in 1017. One of the uncertainty contributions to the optical clock absolute frequency arises from the blackbody radiation shift which in turn depends on uncertainty in the knowledge of the differential polarisability between the two clocks states. Whilst a recent NRC measurement has determined the DC differential polarisability to high accuracy, there has been no experimental verification to date of the dynamic correction to the DC Stark shift. We report a measurement of the scalar AC Stark shift at 1064 nm with measurements planned at other wavelengths. Our preliminary result using a fibre laser at 1064 nm agrees with calculated values to within ∼3%.

  18. Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock

    SciTech Connect

    Ludlow, A. D.; Lemke, N. D.; Sherman, J. A.; Oates, C. W.; Quemener, G.; Stecher, J. von; Rey, A. M.

    2011-11-15

    Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a {sup 171}Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold-collision shift is canceled below the 5x10{sup -18} fractional frequency level. We report inelastic two-body loss rates for {sup 3} P{sub 0} -{sup 3} P{sub 0} and {sup 1} S{sub 0} -{sup 3} P{sub 0} scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 {sup 171}Yb system are relevant for high-performance optical clocks as well as strongly interacting systems for quantum information and quantum simulation applications.

  19. New Limits on Coupling of Fundamental Constants to Gravity Using {sup 87}Sr Optical Lattice Clocks

    SciTech Connect

    Blatt, S.; Ludlow, A. D.; Campbell, G. K.; Thomsen, J. W.; Zelevinsky, T.; Boyd, M. M.; Ye, J.; Baillard, X.; Fouche, M.; Le Targat, R.; Brusch, A.; Lemonde, P.; Takamoto, M.; Hong, F.-L.; Katori, H.; Flambaum, V. V.

    2008-04-11

    The {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition frequency {nu}{sub Sr} in neutral {sup 87}Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1x10{sup -15} level makes {nu}{sub Sr} the best agreed-upon optical atomic frequency. We combine periodic variations in the {sup 87}Sr clock frequency with {sup 199}Hg{sup +} and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant {alpha}, electron-proton mass ratio {mu}, and light quark mass. Furthermore, after {sup 199}Hg{sup +}, {sup 171}Yb{sup +}, and H, we add {sup 87}Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of {alpha} and {mu}.

  20. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-01

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts. PMID:25526127

  1. High-Accuracy Optical Clock via Three-Level Coherence in Neutral Bosonic {sup 88}Sr

    SciTech Connect

    Santra, Robin; Arimondo, Ennio; Ido, Tetsuya; Greene, Chris H.; Ye, Jun

    2005-05-06

    An optical atomic clock scheme is proposed that utilizes two lasers to establish coherent coupling between the 5s{sup 2} {sup 1}S{sub 0} ground state of {sup 88}Sr and the first excited state, 5s5p {sup 3}P{sub 0}. The coupling is mediated by the broad 5s5p {sup 1}P{sub 1} state, exploiting the phenomenon of electromagnetically induced transparency. The effective linewidth of the clock transition can be chosen at will by adjusting the laser intensity. By trapping the {sup 88}Sr atoms in an optical lattice, long interaction times with the two lasers are ensured; Doppler and recoil effects are eliminated. Based on a careful analysis of systematic errors, a clock accuracy of better than 2x10{sup -17} is expected.

  2. Accuracy budget of the 88Sr optical atomic clocks at KL FAMO

    NASA Astrophysics Data System (ADS)

    Radzewicz, Czesław; Bober, Marcin; Morzyński, Piotr; Cygan, Agata; Lisak, Daniel; Bartoszek-Bober, Dobrosława; Masłowski, Piotr; Ablewski, Piotr; Zachorowski, Jerzy; Gawlik, Wojciech; Ciuryło, Roman; Zawada, Michał

    2016-08-01

    This paper presents a detailed accuracy budget of two independent strontium optical lattice clocks at the National Laboratory FAMO (KL FAMO) probed with a single shared ultra-narrow laser. The combined instability of the two frequency standards was 7× {10}-17 after 105s of averaging.

  3. Paper Laser: a step towards a time scale generation from an ensemble of optical clocks

    NASA Astrophysics Data System (ADS)

    Ortiz, C. A.; de Carlos, E.; Lopez, J. M.

    2016-06-01

    In this paper a simple and innovative technique to combine n optical frequencies with the aim to produce a virtual laser with superior metrological characteristics is introduced. The algorithms to combine a number of clocks to produce a virtual clock, which is also referred as paper clock, are well known. An example of this is the statistical generation of the UTC time scale by the Bureau International des Poids et Mesures (BIPM) using a recursive algorithm (ALGOS). A similar algorithm to combine n optical frequencies, all of them with same nominal value, to produce a “paper laser” whose frequency is known through its difference with respect to the optical frequencies of the ensemble is proposed here. As a demonstration of this, three optical frequencies stabilized to the D2 Cs-133 line, all of them with similar frequency stability were experimentally combined. A paper laser has been produced during hours whose frequency stability is about 3-1/2 times with respect to the original optical frequencies. This technique can be applied to combine ultra-stable optical frequencies to produce a paper laser that can be materialized by correcting one of the real optical frequencies of the ensemble. The robustness and stability of a paper laser is very attractive to produce a time scale from its operation.

  4. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  5. Recent progress in optically-pumped cesium beam clock at Peking University

    NASA Astrophysics Data System (ADS)

    Liu, C.; Zhou, S.; Wan, J.; Wang, S.; Wang, Y.

    2016-06-01

    A compact, long-life, and low-drift cesium beam clock is investigated at Peking University, where the atoms are magnetic-state selected and optically detected. Stability close to that of the best commercial cesium clocks has been achieved from 10 to 105 s. As previously shown, the short-term stability is determined by atomic shot noise or laser frequency noise. The stabilizations of microwave power and C-field improve the long-term stability, with the help of a digital servo system based on field-programmable gate array.

  6. Rydberg Spectroscopy in an Optical Lattice: Blackbody Thermometry for Atomic Clocks

    SciTech Connect

    Ovsiannikov, Vitali D.; Derevianko, Andrei; Gibble, Kurt

    2011-08-26

    We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of 25-30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions with 10{sup -16} accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition of 10{sup -18}.

  7. Three-photon-absorption resonance for all-optical atomic clocks

    SciTech Connect

    Zibrov, Sergei; Novikova, Irina; Phillips, David F.; Taichenachev, Aleksei V.; Yudin, Valeriy I.; Walsworth, Ronald L.; Zibrov, Alexander S.

    2005-07-15

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D{sub 1} line of {sup 87}Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications.

  8. Magic Wavelength to Make Optical Lattice Clocks Insensitive to Atomic Motion

    SciTech Connect

    Katori, Hidetoshi; Hashiguchi, Koji; Il'inova, E. Yu.; Ovsiannikov, V. D.

    2009-10-09

    In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.

  9. Engineering Stark Potentials for Precision Measurements: Optical Lattice Clock and Electrodynamic Surface Trap

    SciTech Connect

    Katori, Hidetoshi; Takamoto, Masao; Hachisu, Hidekazu; Fujiki, Jun; Higashi, Ryoichi; Yasuda, Masami; Kishimoto, Tetsuo

    2005-05-05

    Employing the engineered electric fields, we demonstrate novel platforms for precision measurements with neutral atoms. (1) Applying the light shift cancellation technique, atoms trapped in an optical lattice reveal 50-Hz-narrow optical spectrum, yielding nearly an order of magnitude improvement over existing neutral-atom-based clocks. (2) Surface Stark trap has been developed to manipulate scalar atoms that are intrinsically robust to decoherence.

  10. Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium

    SciTech Connect

    Kleine Buening, G.; Will, J.; Ertmer, W.; Rasel, E.; Klempt, C.; Arlt, J.; Ramirez-Martinez, F.; Rosenbusch, P.; Piechon, F.

    2011-06-17

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

  11. Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit.

    PubMed

    Yamanaka, Kazuhiro; Ohmae, Noriaki; Ushijima, Ichiro; Takamoto, Masao; Katori, Hidetoshi

    2015-06-12

    We report on a frequency ratio measurement of a (199)Hg-based optical lattice clock referencing a (87)Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of 7.2×10(-17) for the Hg clock. The frequency ratio is measured to be νHg/νSr=2.629 314 209 898 909 60(22) with a fractional uncertainty of 8.4×10(-17), which is smaller than the uncertainty of the realization of the International System of Units (SI) second, i.e., the SI limit. PMID:26196788

  12. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks.

    PubMed

    Lodewyck, Jérôme; Zawada, Michal; Lorini, Luca; Gurov, Mikhail; Lemonde, Pierre

    2012-03-01

    We report on the observation of a dc Stark frequency shift at the 10-(13) level by comparing two strontium optical lattice clocks. This frequency shift arises from the presence of electric charges trapped on dielectric surfaces placed under vacuum close to the atomic sample. We show that these charges can be eliminated by shining UV light on the dielectric surfaces, and characterize the residual dc Stark frequency shift on the clock transition at the 10-(18) level by applying an external electric field. This study shows that the dc Stark shift can play an important role in the accuracy budget of lattice clocks, and should be duly taken into account. PMID:22481773

  13. Development of a prototype compact fibre frequency synthesiser for mobile femtosecond optical clocks

    SciTech Connect

    Pivtsov, V S; Korel', I I; Koliada, N A; Farnosov, S A; Denisov, V I; Nyushkov, B N

    2014-06-30

    A prototype compact fibre frequency synthesiser based on a femtosecond erbium fibre laser and an original hybrid highly nonlinear fibre is developed and preliminarily studied. This synthesiser will ensure an extremely low relative instability of synthesised frequencies (down to 10{sup -17}) with the use of a corresponding optical standard and will be used in mobile optical clocks. The realised frequency stabilisation principle makes the synthesiser universal and allows it to transfer the frequency stability of various types of optical standards to the synthesised radio- and optical frequencies. (extreme light fields and their applications)

  14. All-optical clock recovery from 10-Gb/s NRZ data and NRZ to RZ format conversion

    NASA Astrophysics Data System (ADS)

    Yin, Lina; Yan, Yumei; Zhou, Yunfeng; Wu, Jian; Lin, Jintong

    2006-01-01

    A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the NRZ data are evidently achieved. All-optical clock recovery from NRZ data at 10 Gb/s is successfully demonstrated with the proposed NRZ-to-PRZ converter and a mode-locked SOA fiber laser. Furthermore, NRZ-to-RZ format conversion of 10 Gb/s is realized by using the recovered clock as the control light of terahertz optical asymmetric demultiplexer (TOAD), which further proves that the proposed clock recovery scheme is applicable.

  15. Improved Frequency Measurement of a One-Dimensional Optical Lattice Clock with a Spin-Polarized Fermionic 87Sr Isotope

    NASA Astrophysics Data System (ADS)

    Takamoto, Masao; Hong, Feng-Lei; Higashi, Ryoichi; Fujii, Yasuhisa; Imae, Michito; Katori, Hidetoshi

    2006-10-01

    We demonstrate a one-dimensional optical lattice clock with a spin-polarized fermionic isotope designed to realize a collision-shift-free atomic clock with neutral atom ensembles. To reduce systematic uncertainties, we developed both Zeeman shift and vector light-shift cancellation techniques. By introducing both an H-maser and a global positioning system (GPS) carrier phase link, the absolute frequency of the 1S0(F=9/2)-{}3P0(F=9/2) clock transition of the 87Sr optical lattice clock is determined as 429,228,004,229,875(4) Hz, where the uncertainty is mainly limited by that of the frequency link. The result indicates that the Sr lattice clock will play an important role in the scope of the redefinition of the “second” by optical frequency standards.

  16. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, T.; Derevianko, A.

    2016-07-01

    We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.

  17. Highly reliable optical system for a rubidium space cold atom clock.

    PubMed

    Ren, Wei; Sun, Yanguang; Wang, Bin; Xia, Wenbing; Qu, Qiuzhi; Xiang, Jingfeng; Dong, Zuoren; Lü, Desheng; Liu, Liang

    2016-05-01

    We describe a highly reliable optical system designed for a rubidium space cold atom clock (SCAC), presenting its design, key technologies, and optical components. All of the optical and electronic components are integrated onto an optimized two-sided 300  mm×290  mm×30  mm optical bench. The compact optical structure and special thermal design ensure that the optical system can pass all of the space environmental qualification tests including both thermal vacuum and mechanical tests. To verify its performance, the optical system is carefully checked before and after each test. The results indicate that this optical system is suitably robust for the space applications for which the rubidium SCAC was built. PMID:27140378

  18. Low timing jitter 40 Gb/s all-optical clock recovery based on an amplified feedback laser diode

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Qiu, Jifang; Zhao, Lingjuan; Wu, Jian; Lou, Caiyun; Wang, Wei

    2012-06-01

    We demonstrate 40 Gb/s all-optical clock recovery by using a monolithic integrated amplified-feedback laser (AFL) with coherent injection-locked method. The AFL consists of a gain-coupled DFB laser and an optical amplified feedback external cavity. With proper design and operation of AFL, the device can work at self-pulsation state that resulted from the beating between two lasing modes. The self-pulsation can be injection-locked to the optical clock embedded in input data streams. Due to different work mechanisms, there are two all-optical clock recovery operation modes: incoherent injection-locked and coherent injection-locked. It's predicted that the coherent injection method has various advantages: 1) requiring low injection power recovery, 2) independent of the bit rate and 3) introducing little timing jitter to the recovered clock. The robustness of coherent clock recovery is confirmed by our experimental results. We set up a return-to- zero (RZ) pseudorandom binary sequence (PRBS) data streams all-optical clock recovery system. This coherent injection-locked based clock recovery method is optical signal noise ratio (OSNR) and chromatic dispersion (CD) degeneration tolerant, and has low timing jitter and high sensitivity.

  19. Synthetic gauge fields and many-body physics in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Koller, Andrew P.; Wall, Michael L.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2015-05-01

    We propose the implementation of a synthetic gauge field in a 1D optical lattice clock and explore the resulting single-particle and many-body physics. The system can realize an effective two-leg ladder by using the two clock states as a synthetic dimension, together with the tunneling-coupled 1D lattice sites. A large flux per plaquette is naturally generated because the clock laser imprints a phase that varies significantly across lattice sites. We propose to use standard spectroscopic tools - Ramsey and Rabi spectroscopy - to probe the band structure and reveal signatures of the spin-orbit coupling, including chiral edge states and the modification of single-particle physics due to s-wave and p-wave interactions. These effects can be probed in spite of the relatively high temperatures (~ micro Kelvin) and weak interactions, thanks to the exquisite precision and sensitivity of the JILA Sr optical lattice clock. We also discuss the exciting possibility of using the nuclear spin degrees of freedom to realize more exotic synthetic dimension topologies and flux patterns. Supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and NDSEG.

  20. Towards the next decades of precision and accuracy in a 87Sr optical lattice clock

    NASA Astrophysics Data System (ADS)

    Martin, Michael; Lin, Yige; Swallows, Matthew; Bishof, Michael; Blatt, Sebastian; Benko, Craig; Chen, Licheng; Hirokawa, Takako; Rey, Ana Maria; Ye, Jun

    2011-05-01

    Optical lattice clocks based on ensembles of neutral atoms have the potential to operate at the highest levels of stability due to the parallel interrogation of many atoms. However, the control of systematic shifts in these systems is correspondingly difficult due to potential collisional atomic interactions. By tightly confining samples of ultracold fermionic 87Sr atoms in a two-dimensional optical lattice, as opposed to the conventional one-dimensional geometry, we increase the collisional interaction energy to be the largest relevant energy scale, thus entering the strongly interacting regime of clock operation. We show both theoretically and experimentally that this increase in interaction energy results in a paradoxical decrease in the collisional shift, reducing this key systematic to the 10-17 level. We also present work towards next- generation ultrastable lasers to attain quantum-limited clock operation, potentially enhancing clock precision by an order of magnitude. This work was supported by a grant from the ARO with funding from the DARPA OLE program, NIST, NSF, and AFOSR.

  1. Frequency Comparison of Two (40)Ca(+) Optical Clocks with an Uncertainty at the 10(-17) Level.

    PubMed

    Huang, Y; Guan, H; Liu, P; Bian, W; Ma, L; Liang, K; Li, T; Gao, K

    2016-01-01

    Based upon an over-one-month frequency comparison of two (40)Ca(+) optical clocks, the frequency difference between the two clocks is measured to be 3.2×10(-17) with a measurement uncertainty of 5.5×10(-17), considering both the statistic (1.9×10(-17)) and the systematic (5.1×10(-17)) uncertainties. This is the first performance of a (40)Ca(+) clock better than that of Cs fountains. A fractional stability of 7×10(-17) in 20,000 s of averaging time is achieved. The evaluation of the two clocks shows that the shift caused by the micromotion in one of the two clocks limits the uncertainty of the comparison. By carefully compensating the micromotion, the absolute frequency of the clock transition is measured to be 411 042 129 776 401.7(1.1) Hz. PMID:26799015

  2. An Optical Clock/Frequency Standard at 657 nm Based On Laser-Cooled Neutral Calcium

    NASA Astrophysics Data System (ADS)

    Oates, Chris

    2002-05-01

    Optical atomic clocks are receiving increased attention due to their enormous potential for high stability and accuracy, and because of the revolution in optical metrology that resulted from the development of fs-laser-based optical clockwork.(S. A. Diddams, T. Üdem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).) We have constructed a high performance diode-laser-based optical frequency reference that uses an intercombination line (400 Hz natural linewidth) in laser-cooled neutral Ca at 657 nm. Absolute frequency measurements against the Cs-based NIST time ensemble via fs-laser metrology have led to a determination of the clock frequency (456 THz) with 26 Hz uncertainty.(T. Üdem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, Phys. Rev. Lett. 86, 4996 (2001).) Measurements of the short-term fractional frequency instability against a Hg^+ ion optical clock system (again via the fs-laser comb) yielded an upper limit of 6x10-15 @ 1 s. In order to improve these results by an order of magnitude or more, we are currently developing a second-stage cooling scheme for Ca. This approach uses quenched cooling with the narrow clock transition and can reduce the atomic temperature by nearly three orders of magnitude. Recent cooling results in one and three dimensions will be presented.

  3. All-optical 20 Gbit/s NRZ-DPSK demodulation and clock recovery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Xinliang; Dong, Jianji; Yu, Yu; Huang, Xi

    2008-11-01

    All-optical clock recovery (CR) from 20-Gbit/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signal is demonstrated experimentally by using Polarization-Maintaining Fiber Loop Mirror Filter and semiconductor optical amplifier (SOA) fiber ring laser. Only by adjusting polarization controller (PC), NRZ-DPSK signal were conveniently and fast converted to pseudo return-to-zero (PRZ) signal via PMF-LMF. Then the PRZ signal is injected into the SOA fiber laser for CR. The recovered clock signals with the extinction ratio of 10 dB and the root-mean-square timing jitter of 850 fs is achieved under 231-1 pseudorandom binary sequence NRZ-DPSK signals measurement.

  4. Clock Shifts of Optical Transitions in Ultracold Atomic Gases

    SciTech Connect

    Yu Zhenhua; Pethick, C. J.

    2010-01-08

    We calculate the shift, due to interatomic interactions, of an optical transition in an atomic Fermi gas trapped in an optical lattice, as in recent experiments of Campbell et al.[Science 324, 360 (2009)]. Using a pseudospin formalism to describe the density matrix of atoms, we derive a Bloch equation which incorporates both spatial inhomogeneity of the probe laser field and interatomic interactions. Expressions are given for the frequency shift as a function of pulse duration, detuning of the probe laser, and the spatial dependence of the electric field of the probe beam. In the low temperature semiclassical regime, we find that the magnitude of the shift is proportional to the temperature.

  5. A compact, high-performance all optical atomic clock based on telecom lasers

    NASA Astrophysics Data System (ADS)

    Burke, John H.; Lemke, Nathan D.; Phelps, Gretchen R.; Martin, Kyle W.

    2016-03-01

    We discuss an optical atomic clock based on a two-photon transition at 778 nm in rubidium. In particular, we discuss the fundamental limitations to the short-term stability of a system based on a commercial C-band telecom laser as opposed to a near infrared laser. We show that this system is fundamentally capable of besting a hydrogen MASER in frequency stability and size.

  6. Polarization Maintaining Fibre Loop Mirror for NRZ-to-PRZ Conversion in All-Optical Clock Recovery

    NASA Astrophysics Data System (ADS)

    Xu, Fan; Zhang, Xin-Liang; Liu, Hai-Rong; Liu, De-Ming; Huang, De-Xiu

    2006-02-01

    We propose a novel configuration for clock extraction by converting the NRZ data into the PRZ data and by employing a polarization-maintaining fibre loop mirror (PMFLM) which is usually used as an optical comb filter. It is found that the PMFLM can simply be constructed by a polarization controller and polarization-maintaining fibre (PMF). We theoretically analyse the principle of PMFLM for the NRZ-to-PRZ conversion. Experimentally we demonstrate 10 Gbit/s all-optical clock recovery through our proposed setup. It is shown that recovered clock signal with an extinction ratio above 10 dB can be achieved.

  7. Exploring spin-orbit coupling in a non-degenerate optical lattice clock

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Rey, Ana Maria

    2015-05-01

    Optical lattice clocks have progressed in recent years to become not only precise timekeepers, but also sensitive probes of many-body physics. We consider a 1D optical lattice clock in which the wavelength of the laser that interrogates the clock transition is comparable to the optical lattice spacing. This light-matter coupling imprints a spatially dependent phase on the atomic internal state superposition, and this phase can be interpreted as a spin-orbit coupling. We show that this spin-orbit coupling manifests itself in Ramsey spectroscopy as an s-wave density shift in otherwise identically prepared fermions, even at temperatures significantly larger than the tunneling. Further, we show that Rabi spectroscopy can be mapped to a Hofstadter model on a two-leg ladder with chiral eigenstates. Using a modified Rabi procedure, we show how to extract momentum-resolved signatures of chirality solely by spectroscopic means. The effects of finite temperature, gaussian transverse confinement, and non-separability between transverse and axial degrees of freedom are discussed. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI, NDSEG, and NRC.

  8. 1 Hz linewidth Ti:sapphire laser as local oscillator for (40)Ca(+) optical clocks.

    PubMed

    Bian, Wu; Huang, Yao; Guan, Hua; Liu, Peiliang; Ma, Longsheng; Gao, Kelin

    2016-06-01

    A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10(-15) frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled (40)Ca(+) ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10(-14)) is observed. This laser is also used as the local oscillator for the comparison experiment of two (40)Ca(+) ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results. PMID:27370440

  9. 1 Hz linewidth Ti:sapphire laser as local oscillator for 40Ca+ optical clocks

    NASA Astrophysics Data System (ADS)

    Bian, Wu; Huang, Yao; Guan, Hua; Liu, Peiliang; Ma, Longsheng; Gao, Kelin

    2016-06-01

    A Ti:sapphire laser at 729 nm is frequency stabilized to an ultra-stable ultra-low thermal expansion coefficient (ULE) cavity by means of Pound-Drever-Hall method. An acousto-optic modulator is used as the fast frequency feedback component. 1 Hz linewidth and 2 × 10-15 frequency stability at 1-100 s are characterized by optical beating with a separated Fabry-Perot cavity stabilized diode laser. Compared to the universal method that the error signal feedback to inject current of a diode laser, this scheme is demonstrated to be simple and also effective for linewidth narrowing. The temperature of zero coefficient of the thermal expansion of the ULE cavity is measured with the help of a femto-second frequency comb. And the performance of the laser is well defined by locking it to the unperturbed clock transition line-center of 4 S1/2-3 D5/2 clock transition of a single laser cooled 40Ca+ ion. A Fourier-transform limited resonance of 6 Hz (Δv/v = 1.5 × 10-14) is observed. This laser is also used as the local oscillator for the comparison experiment of two 40Ca+ ion optical clocks and improves the stability of comparison for an order of magnitude better than the previous results.

  10. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.

    PubMed

    Nicholson, T L; Martin, M J; Williams, J R; Bloom, B J; Bishof, M; Swallows, M D; Campbell, S L; Ye, J

    2012-12-01

    Many-particle optical lattice clocks have the potential for unprecedented measurement precision and stability due to their low quantum projection noise. However, this potential has so far never been realized because clock stability has been limited by frequency noise of optical local oscillators. By synchronously probing two ^{87}Sr lattice systems using a laser with a thermal noise floor of 1×10(-15), we remove classically correlated laser noise from the intercomparison, but this does not demonstrate independent clock performance. With an improved optical oscillator that has a 1×10(-16) thermal noise floor, we demonstrate an order of magnitude improvement over the best reported stability of any independent clock, achieving a fractional instability of 1×10(-17) in 1000 s of averaging time for synchronous or asynchronous comparisons. This result is within a factor of 2 of the combined quantum projection noise limit for a 160 ms probe time with ~10(3) atoms in each clock. We further demonstrate that even at this high precision, the overall systematic uncertainty of our clock is not limited by atomic interactions. For the second Sr clock, which has a cavity-enhanced lattice, the atomic-density-dependent frequency shift is evaluated to be -3.11×10(-17) with an uncertainty of 8.2×10(-19). PMID:23368177

  11. Slot clock recovery in optical PPM communication systems with avalanche photodiode photodetectors

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1989-01-01

    Slot timing recovery in a direct-detection optical PPM communication system can be achieved by processing the photodetector output waveform with a nonlinear device whose output forms the input to a phase-locked loop. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (wavelength = 834 nm) and a silicon avalanche photodiode photodetector. The system used Q = 4 PPM signaling and operated at a source data rate of 25 Mbits/s. The mathematical model developed to compute the rms phase error of the recovered clock is shown to be in good agreement with results of actual measurements of phase errors. The use of the recovered slot clock in the receiver resulted in no significant degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the -6th at a received optical signal energy of 55 detected photons per information bit.

  12. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  13. Characterization of 40-GHz all-optical clock recovery based on a distributed Bragg reflector self-pulsating laser

    NASA Astrophysics Data System (ADS)

    Tang, Xuefeng; Cartledge, John C.; Shen, Alexandre; Dijk, Frederic V.; Duan, Guang-Hua

    2008-06-01

    We investigate the characteristics of 40-GHz all-optical clock recovery based on a distributed Bragg reflector (DBR) self-pulsating laser. With the injection of a low timing jitter clock signal, the timing jitter characteristics of the DBR self-pulsating laser are investigated using both time domain and frequency domain methods. The results reveal that the cause of the timing jitter in the recovered clock signal depends on the injected clock signal power. The system performance of the clock recovery is investigated by the injection of a 40 Gb/s return-to-zero on-off key (RZ-OOK) signal with a 231 - 1 pseudo random bit sequence (PRBS) pattern.

  14. Magic radio-frequency dressing of nuclear spins in high-accuracy optical clocks.

    PubMed

    Zanon-Willette, Thomas; de Clercq, Emeric; Arimondo, Ennio

    2012-11-30

    A Zeeman-insensitive optical clock atomic transition is engineered when nuclear spins are dressed by a nonresonant radio-frequency field. For fermionic species as (87)Sr, (171)Yb, and (199)Hg, particular ratios between the radio-frequency driving amplitude and frequency lead to "magic" magnetic values where a net cancelation of the Zeeman clock shift and a complete reduction of first-order magnetic variations are produced within a relative uncertainty below the 10(-18) level. An Autler-Townes continued fraction describing a semiclassical radio-frequency dressed spin is numerically computed and compared to an analytical quantum description including higher-order magnetic field corrections to the dressed energies. PMID:23368116

  15. A quantum many-body spin system in an optical lattice clock.

    PubMed

    Martin, M J; Bishof, M; Swallows, M D; Zhang, X; Benko, C; von-Stecher, J; Gorshkov, A V; Rey, A M; Ye, Jun

    2013-08-01

    Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in (87)Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks. PMID:23929976

  16. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP.

    PubMed

    Leute, J; Huntemann, N; Lipphardt, B; Tamm, Christian; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E

    2016-07-01

    We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties. PMID:26863657

  17. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  18. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    SciTech Connect

    Zibrov, Sergei A.; Velichansky, Vladimir L.; Novikova, Irina; Phillips, David F.; Walsworth, Ronald L.; Zibrov, Alexander S.; Taichenachev, Alexey V.; Yudin, Valery I.

    2010-01-15

    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D{sub 1} line of {sup 87}Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to approx =25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser-field components. Our theoretical predictions are in good agreement with the experimental results.

  19. Femtosecond Er3+ fiber laser for application in an optical clock

    NASA Astrophysics Data System (ADS)

    Gubin, M. A.; Kireev, A. N.; Tausenev, A. V.; Konyashchenko, A. V.; Kryukov, P. G.; Tyurikov, D. A.; Shelkovikov, A. S.

    2007-11-01

    The main elements needed for the realization of a compact femtosecond methane optical clock are developed and studied. A femtosecond laser system on an Er3+ fiber ( λ = 1.55 μm) contains an oscillator, an amplifier, and a fiber with a relatively high nonlinearity in which the supercontinuum radiation is generated in the range 1 2 μm. In the supercontinuum spectrum, the fragments separated by an interval that is close to the methane-optical reference frequency ( λ = 3.39 μm) exhibit an increase in intensity. The supercontinuum radiation is converted into the difference frequency in a nonlinear crystal to the range of the methane-reference frequency ( λ = 3.3 3.5 μm), so that the frequency components of the transformed spectrum have sufficient intensities for the subsequent frequency-phase stabilization with respect to the methane reference. A system that stabilizes the pulse repetition rate of the femtosecond Er3+ laser is also employed. Thus, the repetition rate of the ultrashort pulses of the femtosecond fiber laser is locked to the methane reference. The pulse repetition rate is compared with the standard second. Thus, the scheme of an optical clock is realized.

  20. Demonstration of a HeNe/CH4-based optical molecular clock.

    PubMed

    Foreman, Seth M; Marian, Adela; Ye, Jun; Petrukhin, Evgeny A; Gubin, Mikhail A; Mücke, Oliver D; Wong, Franco N C; Ippen, Erich P; Kärtner, Franz X

    2005-03-01

    We implement a simple optical clock based on the F2(2) [P(7), v3] optical transition in methane. A single femtosecond laser's frequency comb undergoes difference frequency generation to provide an IR comb at 3.39 microm with a null carrier-envelope offset. This IR comb provides a phase-coherent link between the 88-THz optical reference and the rf repetition rate. Comparison of the repetition rate signal with a second femtosecond comb stabilized to molecular iodine shows an instability of 1.2 x 10(-13) at 1 s, limited by microwave detection of the repetition rates. The single-sideband phase noise of the microwave signal, normalized to a carrier frequency of 1 GHz, is below -93 dBc/Hz at 1-Hz offset. PMID:15789739

  1. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    SciTech Connect

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  2. gb'clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus.

    PubMed

    Moriyama, Yoshiyuki; Kamae, Yuichi; Uryu, Outa; Tomioka, Kenji

    2012-12-01

    Reverse genetic studies have revealed that common clock genes, such as period (per), timeless (tim), cycle (cyc), and Clock (Clk), are involved in the circadian clock mechanism among a wide variety of insects. However, to what degree the molecular oscillatory mechanism is conserved is still to be elucidated. In this study, cDNA of the clock gene Clk was cloned in the cricket Gryllus bimaculatus, and its function was analyzed using RNA interference (RNAi). In adult optic lobes, the Clk mRNA level showed no significant rhythmic changes both under light-dark cycle (LD) and constant darkness (DD). A single injection of Clk double-stranded RNA (dsRNA) resulted in a knockdown of the mRNA level to about 25% of the peak level of control animals. The injected crickets lost their locomotor rhythms in DD. The arrhythmicity in locomotor activity persisted for up to 50 days after the Clk dsRNA injection. Control animals injected with DsRed2 dsRNA showed a clear locomotor rhythm like intact animals. Injection of Clk dsRNA not only suppressed the mRNA levels of both per and tim but also abolished their rhythmic expression. per RNAi down-regulates the Clk mRNA levels, suggesting that per is required for sufficient expression of Clk. These results suggest that Clk is an essential component and plays an important role in the cricket's circadian clock machinery like in Drosophila, but regulation of its expression is probably different from regulation in Drosophila. PMID:23223372

  3. Test of relativistic time dilation with fast optical atomic clocks at different velocities

    NASA Astrophysics Data System (ADS)

    Reinhardt, Sascha; Saathoff, Guido; Buhr, Henrik; Carlson, Lars A.; Wolf, Andreas; Schwalm, Dirk; Karpuk, Sergei; Novotny, Christian; Huber, Gerhard; Zimmermann, Marcus; Holzwarth, Ronald; Udem, Thomas; Hänsch, Theodor W.; Gwinner, Gerald

    2007-12-01

    Time dilation is one of the most fascinating aspects of special relativity as it abolishes the notion of absolute time. It was first observed experimentally by Ives and Stilwell in 1938 using the Doppler effect. Here we report on a method, based on fast optical atomic clocks with large, but different Lorentz boosts, that tests relativistic time dilation with unprecedented precision. The approach combines ion storage and cooling with optical frequency counting using a frequency comb. 7Li+ ions are prepared at 6.4% and 3.0% of the speed of light in a storage ring, and their time is read with an accuracy of 2×10-10 using laser saturation spectroscopy. The comparison of the Doppler shifts yields a time dilation measurement represented by a Mansouri-Sexl parameter , consistent with special relativity. This constrains the existence of a preferred cosmological reference frame and CPT- and Lorentz-violating `new' physics beyond the standard model.

  4. Improved Absolute Frequency Measurement of the 171Yb Optical Lattice Clock towards a Candidate for the Redefinition of the Second

    NASA Astrophysics Data System (ADS)

    Yasuda, Masami; Inaba, Hajime; Kohno, Takuya; Tanabe, Takehiko; Nakajima, Yoshiaki; Hosaka, Kazumoto; Akamatsu, Daisuke; Onae, Atsushi; Suzuyama, Tomonari; Amemiya, Masaki; Hong, Feng-Lei

    2012-10-01

    We demonstrate an improved absolute frequency measurement of the 1S0–3P0 clock transition at 578 nm in 171Yb atoms in a one-dimensional optical lattice. The clock laser linewidth is reduced to ≈2 Hz by phase-locking the laser to an ultrastable neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm through an optical frequency comb with an intracavity electrooptic modulator to achieve a high servo bandwidth. The absolute frequency is determined as 518 295 836 590 863.1(2.0) Hz relative to the SI second, and will be reported to the International Committee for Weights and Measures.

  5. Self-stabilizing optical clock pulse-train generator using SOA and saturable absorber for asynchronous optical packet processing.

    PubMed

    Nakahara, Tatsushi; Takahashi, Ryo

    2013-05-01

    We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity. PMID:23669927

  6. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants.

    PubMed

    Godun, R M; Nisbet-Jones, P B R; Jones, J M; King, S A; Johnson, L A M; Margolis, H S; Szymaniec, K; Lea, S N; Bongs, K; Gill, P

    2014-11-21

    Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of 171Yb+. The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6×10(-16). Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, μ/μ=0.2(1.1)×10(-16)  yr(-1), along with an improved constraint on time variation of the fine structure constant, α/α=-0.7(2.1)×10(-17)  yr(-1). PMID:25479482

  7. Correction of phase-error for phase-resolved k-clocked optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Mo, Jianhua; Li, Jianan; de Boer, Johannes F.

    2012-01-01

    Phase-resolved optical frequency domain imaging (OFDI) has emerged as a promising technique for blood flow measurement in human tissues. Phase stability is essential for this technique to achieve high accuracy in flow velocity measurement. In OFDI systems that use k-clocking for the data acquisition, phase-error occurs due to jitter in the data acquisition electronics. We presented a statistical analysis of jitter represented as point shifts of the k-clocked spectrum. We demonstrated a real-time phase-error correction algorithm for phase-resolved OFDI. A 50 KHz wavelength-swept laser (Axsun Technologies) based balanced-detection OFDI system was developed centered at 1310 nm. To evaluate the performance of this algorithm, a stationary gold mirror was employed as sample for phase analysis. Furthermore, we implemented this algorithm for imaging of human skin. Good-quality skin structure and Doppler image can be observed in real-time after phase-error correction. The results show that the algorithm can effectively correct the jitter-induced phase error in OFDI system.

  8. Suppression of collisional shifts via strong inter-atomic interactions in a 87Sr optical lattice clock

    NASA Astrophysics Data System (ADS)

    Martin, Michael; Swallows, Matthew; Bishof, Michael; Lin, Yige; Blatt, Sebastian; Rey, Ana Maria; Ye, Jun

    2011-05-01

    Optical lattice clocks based on ensembles of neutral atoms have the potential to operate at the highest levels of stability due to the parallel interrogation of many atoms. However, the control of systematic shifts in these systems is correspondingly difficult due to the potential of collisional shifts. Clocks based on ultracold fermionic ensembles still exhibit these density-dependent shifts due to a loss of indistinguishability during the clock excitation process, limiting clock accuracy. By tightly confining samples of ultracold fermionic 87Sr atoms in a two-dimensional optical lattice, as opposed to the conventional one-dimensional geometry, we increase the collisional interaction energy to be the largest relevant energy scale, thus entering the strongly interacting regime of clock operation. We show both theoretically and experimentally that this increase in interaction energy results in a paradoxical decrease in the collisional shift, reducing this key systematic to the 10-17 level. This work was supported by the ARO with funding from the DARPA OLE program, NIST, NSF, and AFOSR.

  9. Optical clock transition in a rare-earth-ion-doped crystal: coherence lifetime extension for quantum storage applications

    NASA Astrophysics Data System (ADS)

    Tongning, Robert-Christopher; Chanelière, Thierry; Le Gouët, Jean-Louis; Florencia Pascual-Winter, María

    2015-04-01

    Atomic clock transitions are desirable for quantum information storage and processing thanks to the protection from decoherence they provide. In the context of rare- earth-ion-doped crystals for quantum information storage, clock Zeeman or hyperfine transitions have been identified and exploited for long-lived storage in spin degrees of freedom. We present a theoretical and experimental analysis on the existence of an optical clock transition in Tm3+:YAG, in view of storage in optical coherences. The combination of a Zeeman-like term and a quadratic electronic Zeeman term in the Hamiltonian, lead to the existence of a magnetic field amplitude (12 mT) for which the derivative of the optical transition energy with respect to the field amplitude vanishes, regardless of the magnetic field orientation. We have verified this prediction through hole-burning spectroscopy experiments. In addition to that, a study of the behavior of the Hamiltonian as a function of the magnetic field orientation yields the direction for which both derivatives with respect to the magnetic field angular coordinates also vanish. The condition for an optical clock transition with three vanishing partial derivatives is met.

  10. Motional dephasing of atomic clock spin waves in an optical lattice

    NASA Astrophysics Data System (ADS)

    Jenkins, S. D.; Zhang, T.; Kennedy, T. A. B.

    2012-06-01

    In a cold atomic ensemble the weak Raman scattering of an incident laser beam writes a spin-wave grating by transferring an atom between ground-level hyperfine states. These spin-waves serve as a basis for a quantum memory. For clock states, where magnetic dephasing is suppressed, thermal motion of the atoms across the spin-wave is the principal source of dephasing on the sub-millisecond timescale, limiting the quantum memory time achievable. An investigation of the role of the optical lattice in reducing motional dephasing is presented, using Monte Carlo simulations to study the influence of ensemble temperature, trap depth and differential ac Stark shifts in the case of rubidium.

  11. Compact Yb+ optical atomic clock project: design principle and current status

    NASA Astrophysics Data System (ADS)

    Lacroûte, Clément; Souidi, Maël; Bourgeois, Pierre-Yves; Millo, Jacques; Saleh, Khaldoun; Bigler, Emmanuel; Boudot, Rodolphe; Giordano, Vincent; Kersalé, Yann

    2016-06-01

    We present the design of a compact optical clock based on the 2 S 1/2→2 D 3/2 435.5 nm transition in 171 Yb+. The ion trap will be based on a micro-fabricated circuit, with surface electrodes generating a trapping potential to localize a single Yb ion a few hundred μm from the electrodes. We present our trap design as well as simulations of the resulting trapping pseudo-potential. We also present a compact, multi-channel wavelength meter that will permit the frequency stabilization of the cooling, repumping and clear-out lasers at 369.5 nm, 935.2 nm and 638.6 nm needed to cool the ion. We use this wavelength meter to characterize and stabilize the frequency of extended cavity diode lasers at 369.5 nm and 638.6 nm.

  12. Swept source optical coherence tomography with external clocking using voltage controlled oscillator

    NASA Astrophysics Data System (ADS)

    Lee, Eung Je; Kim, Yong Pyung

    2011-05-01

    In this study, a beat signal recalibration method was developed for optical coherence tomography (OCT) with a high-speed wavelength-swept source. By adopting a voltage-controlled oscillator (VCO) modulated by a sinusoidal waveform as a trigger for the OCT system, the broadening of the beat frequency due to laser tuning rate variations was recalibrated. For this study, OCT based on a Fourier domain mode-locked (FDML) laser at a sweep rate of 60.9 kHz was demonstrated. OCT images of 1500×409 pixels were obtained with the sensitivity of 100 dB. Temporal frequency variations in the FDML laser and OCT images obtained with the proposed technique were also described. When compared to a conventional recalibration method using optical components, swept source optical coherence tomography operated with a VCO clock exhibited superior performance and high stability. From the experimental results, it was demonstrated that the proposed method is sufficient to recalibrate the time-frequency variations in interferometry with a high-speed wavelength-swept source.

  13. All-optical clock extraction from 40-Gbit/s NRZ data using cascaded long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Jeon, Sie-Wook; Hann, Swook; Park, Chang-Soo

    2010-06-01

    All-optical clock extraction from a 40-Gbit/s NRZ input signal is demonstrated using a cascaded long-period fiber grating (CLPG) and a mode-locked fiber ring laser. The CLPG has a Mach-Zehnder configuration with two arms along the core and cladding regions. Using the difference in propagation delay between two arms, the non-return-to-zero (NRZ) signal is converted to the pseudo-return-to-zero (PRZ) signal. To obtain repetitive pulses as a clock signal from the PRZ signal, a ring laser with a semiconductor optical amplifier (SOA) is used. Subsequently, the measured carrier-to-noise ratio (CNR) of the PRZ and clock signals are enhanced up to 30 dB and 31 dB, respectively, compared to that of the original NRZ signal. Also, the clock signal centered at 40 GHz has a low timing jitter of <1.3 ps. It is expected that this method can be applied to high speed fiber-optic systems of >40 Gbit/s due to its small time delay between the core and cladding regions.

  14. Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks

    SciTech Connect

    Porsev, Sergey G.; Derevianko, Andrei

    2006-08-15

    Blackbody radiation (BBR) shifts of the {sup 3}P{sub 0}-{sup 1}S{sub 0} clock transition in the divalent atoms Mg, Ca, Sr, and Yb are evaluated. The dominant electric-dipole contributions are computed using accurate relativistic many-body techniques of atomic structure. At room temperatures, the resulting uncertainties in the E1 BBR shifts are large and substantially affect the projected 10{sup -18} fractional accuracy of the optical-lattice-based clocks. A peculiarity of these clocks is that the characteristic BBR wavelength is comparable to the {sup 3}P fine-structure intervals. To evaluate relevant M1 and E2 contributions, a theory of multipolar BBR shifts is developed. The resulting corrections, although presently masked by the uncertainties in the E1 contribution, are required at the 10{sup -18} accuracy goal.

  15. Ratio of the AL+ and HG+ Optical Clock Frequencies to 17 Decimal Places

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Rosenband, T.; Hume, D. B.; Schmidt, P. O.; Chou, C. W.; Brusch, A.; Lorini, L.; Oskay, W. H.; Drullinger, R. E.; Bickman, S.; Fortier, T. M.; Stalnaker, J. E.; Diddams, S. A.; Swann, W. C.; Newbury, N. R.; Wineland, D. J.; Bergquist, J. C.

    2009-06-01

    Frequency standards (atomic clocks) based on narrow optical transitions in 27Al+ and 199Hg+ have been developed over the past several years at NIST. Both types of standards are based on single ions confined in Paul traps, but differ in the methods used to prepare and detect the internal atomic states. Al+ lacks a strong, laser-accessible transition for laser-cooling and for state preparation and detection. Coupling with a Be+ ion, trapped simultaneously with the Al+ ion, enables state manipulation, detection, and cooling of the Al+ ion. Both standards have achieved absolute reproducibilities of a few parts in 1017. Development of femtosecond laser frequency combs makes it possible to directly compare optical frequencies. The present determination of fAl/fHg is 1.052 871 833 148 990 438 (55), where the uncertainty is expressed in units of the least significant digit. Measurements of fAl/fHg made over about one year show a drift rate consistent with zero. This result can be used to place limits on time variations of fundamental constants such as the fine structure constant α.

  16. Direct Excitation of the Forbidden Clock Transition in Neutral {sup 174}Yb Atoms Confined to an Optical Lattice

    SciTech Connect

    Barber, Z.W.; Hoyt, C.W.; Oates, C.W.; Hollberg, L.; Taichenachev, A.V.; Yudin, V.I.

    2006-03-03

    We report direct single-laser excitation of the strictly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} clock transition in {sup 174}Yb atoms confined to a 1D optical lattice. A small ({approx}1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FWHM) with high contrast were observed, demonstrating a resonance quality factor of 2.6x10{sup 13}. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35{+-}0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks and can create new clock possibilities in other alkaline-earth-like atoms such as Mg and Ca.

  17. Temporal-Talbot-effect-based preprocessing for pattern-effect reduction in all-optical clock recovery using a semiconductor-optical-amplifier-based fiber ring laser

    NASA Astrophysics Data System (ADS)

    Oiwa, Masaki; Minami, Shunsuke; Tsuji, Kenichiro; Onodera, Noriaki; Saruwatari, Masatoshi

    2010-01-01

    We propose and experimentally demonstrate the temporal-Talbot-effect (TTE)-based preprocessing for the pattern-effect reduction in the all-optical clock recovery using a semiconductor-optical-amplifier (SOA)-based fiber ring laser (SOA-FRL). The TTE-based preprocessing successfully reduced the pattern effects of the recovered clock pulses, so that the 10-GHz clear optical clock pulses were recovered from a 10-Gbit/s return-to-zero on-off keying (RZ-OOK) pseudo-random bit sequence (PRBS) optical signal. "Peak variation" and "Pattern-dependent intensity noise (PDIN)" were proposed and were utilized as parameters to quantitatively evaluate the pattern effects, from which recovered clock pulses suffer, in the temporal domain and the frequency domain, respectively. Peak variation was reduced from 77.2% to 36.2%, and PDIN was improved from -103 dBc/Hz to -110 dBc/Hz with the aid of the TTE-based preprocessing. Furthermore, we examined the tolerance of the proposed technique by intentionally deviating the input signal's bit-rate by ±190 Mbit/s (±2% of the bit-rate) from the optimum condition for the TTE. As compared with the PDIN value for the pulse train obtained by the direct injection of the non-processed signal into the SOA-FRL, the PDIN of the recovered clock pulses using the preprocessed signal indicated improvements over the entire measurement range of ±190 Mbit/s, which corresponds to the wavelength-dispersion deviation of ±56 ps/nm (±4% of the wavelength-dispersion applied to the input signal) from the optimum value.

  18. High Accuracy Correction of Blackbody Radiation Shift in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Middelmann, Thomas; Falke, Stephan; Lisdat, Christian; Sterr, Uwe

    2012-12-01

    We have determined the frequency shift that blackbody radiation is inducing on the 5s2 S01-5s5p P03 clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to 1×10-16. Now the uncertainty associated with the blackbody radiation shift correction translates to a 5×10-18 relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties.

  19. High accuracy correction of blackbody radiation shift in an optical lattice clock.

    PubMed

    Middelmann, Thomas; Falke, Stephan; Lisdat, Christian; Sterr, Uwe

    2012-12-28

    We have determined the frequency shift that blackbody radiation is inducing on the 5s2 (1)S0-5s5p (3)P0 clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to 1×10(-16). Now the uncertainty associated with the blackbody radiation shift correction translates to a 5×10(-18) relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties. PMID:23368558

  20. Lattice-Induced Frequency Shifts in Sr Optical Lattice Clocks at the 10{sup -17} Level

    SciTech Connect

    Westergaard, P. G.; Lodewyck, J.; Lecallier, A.; Millo, J.; Lemonde, P.; Lorini, L.; Burt, E. A.; Zawada, M.

    2011-05-27

    We present a comprehensive study of the frequency shifts associated with the lattice potential in a Sr lattice clock by comparing two such clocks with a frequency stability reaching 5x10{sup -17} after a 1 h integration time. We put the first experimental upper bound on the multipolar M1 and E2 interactions, significantly smaller than the recently predicted theoretical upper limit, and give a 30-fold improved upper limit on the effect of hyperpolarizability. Finally, we report on the first observation of the vector and tensor shifts in a Sr lattice clock. Combining these measurements, we show that all known lattice related perturbations will not affect the clock accuracy down to the 10{sup -17} level, even for lattices as deep as 150 recoil energies.

  1. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    NASA Astrophysics Data System (ADS)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-06-01

    In this study we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancelation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits respectively two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 {m^2/s^2} based on the clocks' inaccuracy of about 10-17 (s/s) level. Since optical-atomic clocks with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimeter level accuracy in the near future.

  2. Reliability characteristics of microfabricated Rb mini-lamps for optical pumping in miniature atomic clocks and magnetometers

    NASA Astrophysics Data System (ADS)

    Venkatraman, Vinu; Pétremand, Yves; de Rooij, Nico; Shea, Herbert

    2013-03-01

    With the rising need for microfabricated chip-scale atomic clocks to enable high precision timekeeping in portable applications, there has been active interest in developing miniature (optical pumping in double-resonance clocks. We reported in 2012 a first microfabricated chip-scale Rubidium dielectric barrier discharge lamp. The device's preliminary results indicated its high potential for optical pumping applications and wafer-scale batch fabrication. The chip-scale plasma light sources were observed to be robust with no obvious performance change after thousands of plasma ignitions, and with no electrode erosion from plasma discharges since the electrodes are external. However, as atomic clocks have strict lamp performance requirements including less than 0.1% sub-second optical power fluctuations, power consumption less than 20 mW and a device lifetime of at least several years, it is important to understand the long-term reliability of these Rb planar mini-lamps, and identify the operating conditions where these devices can be most reliable and stable. In this paper, we report on the reliability of such microfabricated lamps including a continuous several month run of the lamp where the optical power, electrical power consumption and temperature stability were continuously monitored. We also report on the effects of temperature, rf-power and the lamp-drive parasitics on the optical power stability and discuss steps that could be taken to further improve the device's performance and reliability.

  3. From optical lattice clocks to the measurement of forces in the Casimir regime

    SciTech Connect

    Wolf, Peter; Lemonde, Pierre; Bize, Sebastien; Landragin, Arnaud; Clairon, Andre; Lambrecht, Astrid

    2007-06-15

    We describe an experiment based on atoms trapped close to a macroscopic surface, to study the interactions between the atoms and the surface at very small separations (0.6-10 {mu}m). In this range the dominant potential is the QED interaction (Casimir-Polder and van der Waals) between the surface and the atom. Additionally, several theoretical models suggest the possibility of Yukawa-type potentials with sub-millimeter range, arising from new physics related to gravity. The proposed setup is very similar to neutral atom optical lattice clocks, but with the atoms trapped in lattice sites close to the reflecting mirror. A sequence of pulses of the probe laser at different frequencies is then used to create an interferometer with a coherent superposition between atomic states at different distances from the mirror (in different lattice sites). Assuming atom interferometry state-of-the-art measurement of the phase difference and a duration of the superposition of about 0.1 s, we expect to be able to measure the potential difference between separated states with an uncertainty of {approx_equal}10{sup -4} Hz. An analysis of systematic effects for different atoms and surfaces indicates no fundamentally limiting effect at the same level of uncertainty, but does influence the choice of atom and surface material. Based on those estimates, we expect that such an experiment would improve the best existing measurements of the atom-wall QED interaction by {>=} 2 orders of magnitude, while gaining up to four orders of magnitude on the best present limits on new interactions in the range between 100 nm and 100 {mu}m.

  4. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  5. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.

    PubMed

    Alex, Aneesh; Li, Airong; Zeng, Xianxu; Tate, Rebecca E; McKee, Mary L; Capen, Diane E; Zhang, Zhan; Tanzi, Rudolph E; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  6. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    PubMed Central

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  7. All-optical clock recovery for 100 Gb/s RZ-OOK signal after 25km transmission using a dual-mode beating DBR laser

    NASA Astrophysics Data System (ADS)

    Yu, Liqiang; Pan, Biwei; Lu, Dan; Zhao, Lingjuan

    2014-11-01

    All-optical clock recovery (AOCR) for 100 Gb/s RZ-OOK signal is demonstrated by using a dualmode beating DBR laser. Based on the injection-locking of the DBR (distributed Bragg reflector) laser, a 100-GHz optical clock is recovered. Timing jitter (<1 ps) derived from both phase noise and power fluctuation is measured by an optical sampling oscilloscope (OSO). Furthermore, clock recovery is also realized for the 100 Gb/s signal after 25 km transmission. After the 25-km SMF (5- dB loss) transmission, the signal-to-noise ratio (SNR) of the signal drops from 18 dB to 5.2 dB. The dependence of the timing jitter on the input power is investigated. The lowest timing jitter of 665 fs is realized when the input power is 3 dBm.

  8. Investigation of data-format-transparent multiwavelength all-optical clock recovery using a single FP-SOA

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Xinliang; Xu, Enming

    2011-10-01

    Multiwavelength clock recovery (CR) is desired to perform all-optical parallel processing, which has potential application in optical communication systems that use WDM technology. Fabry-Pérot semiconductor optical amplifier (FP-SOA) can perform the similar filter function as passive FP filter, and can simultaneously provide gain for oscillation pulses in the cavity; it is essentially an active filter. We experimentally demonstrated simultaneous multiwavelength all-optical CR from input 36.47-Gb/s pseudo-return-zero (PRZ) data and non-return-zero (NRZ) data using a single multi-quantum-well (MQW) FP-SOA with facets reflectivity of 30%. The presented multiwavelength CR scheme is also suitable for PSK signals. Dual-channel CR from input two channels 36.47-Gb/s 2 23-1 NRZ-DPSK data located at different wavelength is experimentally demonstrated. This scheme is transparent for data formats, which is very important for next generation optical networks.

  9. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    NASA Astrophysics Data System (ADS)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.

  10. Chromatic dispersion induced PM-AM conversion and its application in the all-optical clock recovery of NRZ-DPSK signals

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Fu, Songnian; Zhong, Wen-de; Wen, Yang Jing; Shum, Ping

    2007-11-01

    We investigated the property of conversion between phase modulation (PM) and amplitude modulation (AM) in optical fiber transmission link due to chromatic dispersion (CD) for the purpose of clock information generation. As a result, a novel all-optical clock recovery (CR) scheme from 10 Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signal has been demonstrated experimentally. We introduce a chromatic dispersion induced clock tone from the NRZ-DPSK signal and feed it into a free-running semiconductor optical amplifier (SOA) based fiber ring laser to achieve an injection mode-locking. The generated mode-locked pulse is the corresponding regenerated clock of the original signal. Since no special component is required for NRZ-DPSK demodulation, our proposed method is very promising because of its simple configuration and higher stability. In experiments, 20km standard single mode fiber is employed to accumulate CD and generate PM-AM conversion hence regenerate clock tone of the NRZ-DPSK signal. The recovered clock signal with the extinction ratio over 15 dB and the root-mean-square timing jitter of 720 fs is achieved under 2 31-1 pseudorandom binary sequence NRZ-DPSK signals measurement. We also demonstrated a similar CR system by using a chirped fiber Bragg grating (CFBG) as the dispersion device. With the same operation principle, it is quite convenient and promising to extend our configuration to implement all-optical CR for NRZ-DPSK signal with data rate up to 40Gbps.

  11. Study of all-optical clock recovery performance by the primary and the secondary temporal Talbot effects in a second-order dispersive medium

    NASA Astrophysics Data System (ADS)

    Oiwa, Masaki; Minami, Shunsuke; Tsuji, Kenichiro; Onodera, Noriaki; Saruwatari, Masatoshi

    2010-08-01

    We theoretically and experimentally study the all-optical clock recovery performance using the primary or the secondary temporal Talbot effects (PTTE or STTE, respectively) in a dispersive medium having the first-order dispersion together with the second-order dispersion (e.g., conventional single-mode fibers: SMFs). Our preliminary numerical simulations have indicated that the STTE-based all-optical clock recovery technique can improve double its performance as compared with the conventional PTTE-based technique when the second-order dispersion (dispersion slope) can be neglected. The following simulation results have revealed that the second-order dispersion, that the normal SMFs possess, limits the performance improvements in the STTE-based clock recovery, whereas the limited performance can be improved by appropriately compensating for the second-order dispersion. On the basis of our simulation results, experiments of the STTE-based clock recovery were conducted by compensating for the second-order dispersion of SMFs used as dispersive media. To be specific, SMFs' second-order dispersion has been reduced to the one-sixteenth of its original value by combining with the reverse-dispersion fibers (RDFs) which can provide the second-order dispersion of the opposite sign to the SMFs. As a result, the performance improvements in the STTE-based clock recovery was demonstrated so that the 10-GHz clear optical clock pulses were successfully recovered from 10-Gbit/s return-to-zero (RZ) pseudo-random bit sequence (PRBS) optical signals.

  12. Selection and amplification of a single optical frequency comb mode for laser cooling of the strontium atoms in an optical clock

    SciTech Connect

    Liu, Hui; Yin, Mojuan; Kong, Dehuan; Xu, Qinfang; Zhang, Shougang; Chang, Hong

    2015-10-12

    In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be applied over a broad spectral band to build narrow linewidth lasers for various applications.

  13. Spin squeezing in a Rydberg lattice clock.

    PubMed

    Gil, L I R; Mukherjee, R; Bridge, E M; Jones, M P A; Pohl, T

    2014-03-14

    We theoretically demonstrate a viable approach to spin squeezing in optical lattice clocks via optical dressing of one clock state to a highly excited Rydberg state, generating switchable atomic interactions. For realistic experimental parameters, these interactions are shown to generate over 10 dB of squeezing in large ensembles within a few microseconds and without degrading the subsequent clock interrogation. PMID:24679291

  14. Tunable millisecond narrow-band Nd:GSGG laser around 1336.6 nm for 27Al+ optical clock

    NASA Astrophysics Data System (ADS)

    Wang, M.-Q.; Zhang, F.-F.; Li, J.-J.; Wang, Z.-M.; Zong, N.; Zhang, S.-J.; Yang, F.; Yuan, L.; Bo, Y.; Cui, D.-F.; Peng, Q.-J.; Xu, Z.-Y.

    2016-05-01

    We developed a narrow-band, Nd:GSGG ring laser tunable around 1336.6 nm with a tuning range more than 24 pm. The maximum output energy is 0.26 J per pulse with a pulse width of 900 μs and a pulse repetition rate of 10 Hz. The root-mean-square of wavelength stability in 1 h is 0.27 pm, and M2 factor is 1.06 at the output energy of 0.16 J per pulse. It can be a good candidate of the fundamental laser, of which the eighth-harmonic generation at 167.0787 nm can be used to induce the 27Al+ ion by the 1S0↔1P1 transition for laser cooling when it is used as the medium for optical clock.

  15. An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock

    NASA Astrophysics Data System (ADS)

    Dawkins, S. T.; Chicireanu, R.; Petersen, M.; Millo, J.; Magalhães, D. V.; Mandache, C.; Le Coq, Y.; Bize, S.

    2010-04-01

    We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfil the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-Pérot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE’s fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 10-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.

  16. Frequency Ratio of Hg 199 and Sr 87 Optical Lattice Clocks beyond the SI Limit

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazuhiro; Ohmae, Noriaki; Ushijima, Ichiro; Takamoto, Masao; Katori, Hidetoshi

    2015-06-01

    We report on a frequency ratio measurement of a Hg 199 -based optical lattice clock referencing a Sr 87 -based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of 7.2 ×10-17 for the Hg clock. The frequency ratio is measured to be νHg/νSr=2.629 314 209 898 909 60 (22 ) with a fractional uncertainty of 8.4 ×10-17, which is smaller than the uncertainty of the realization of the International System of Units (SI) second, i.e., the SI limit.

  17. VCSELs for atomic clocks

    NASA Astrophysics Data System (ADS)

    Serkland, Darwin K.; Peake, Gregory M.; Geib, Kent M.; Lutwak, Robert; Garvey, R. Michael; Varghese, Mathew; Mescher, Mark

    2006-02-01

    The spectroscopic technique of coherent population trapping (CPT) enables an all-optical interrogation of the groundstate hyperfine splitting of cesium (or rubidium), compared to the optical-microwave double resonance technique conventionally employed in atomic frequency standards. All-optical interrogation enables the reduction of the size and power consumption of an atomic clock by two orders of magnitude, and vertical-cavity surface-emitting lasers (VCSELs) are preferred optical sources due to their low power consumption and circular output beam. Several research teams are currently using VCSELs for DARPA's chip-scale atomic clock (CSAC) program with the goal of producing an atomic clock having a volume < 1 cm^3, a power consumption < 30 mW, and an instability (Allan deviation) < 1x10^-11 during a 1-hour averaging interval. This paper describes the VCSEL requirements for CPT-based atomic clocks, which include single mode operation, single polarization operation, modulation bandwidth > 4 GHz, low power consumption (for the CSAC), narrow linewidth, and low relative intensity noise (RIN). A significant manufacturing challenge is to reproducibly obtain the required wavelength at the specified VCSEL operating temperature and drive current. Data are presented that show the advantage of operating at the D1 (rather than D2) resonance of the alkali atoms. Measurements of VCSEL linewidth will be discussed in particular, since atomic clock performance is especially sensitive to this parameter.

  18. Clock drift-tolerant optical bit pattern monitoring technique in asynchronous undersampling system

    NASA Astrophysics Data System (ADS)

    Zhang, Huixing; Zhao, Wei

    2011-10-01

    Based on an asynchronously undersampling system, we present a novel bit pattern monitoring technique in terms of its performance analysis and the implementation aspects. Relying upon an finite impulse response (FIR) filter assisted fine synchronization of the acquired samples, the technique can significantly reduce the random walk clock drift between data signal and sampling source compared to a conventional fine synchronization using a fixed time step. For the performance analysis of this technique, we first present an intuitive understanding of the principle of the FIR filter method under consideration of the filter frequency response. We find that the frequency response of the FIR filter simply serves to extract the spectral component at the aliasing frequency found in the periodogram and diminish all other frequency components. Then we test the tracking limit and discuss the optimized filter length choice of the new bit pattern monitoring technique through numerical examples. It turns out that the optimal filter length is chosen as the one which minimized the measured jitter and can be found iteratively. Finally, we present an experimental verification of this FIR bit pattern synchronization method by measuring and reconstructing bit patterns of 40 Gb/s nonreturn-to-zero and 160 Gb/s return-to-zero data signals, respectively.

  19. Common features in diverse insect clocks.

    PubMed

    Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko

    2015-01-01

    This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks. PMID:26605055

  20. Cascaded optical fiber link using the internet network for remote clocks comparison

    NASA Astrophysics Data System (ADS)

    Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-12-01

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10-16 at 1-s measurement time and 1x10-19 at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.

  1. All-optical clock recovery of 20 Gbit/s NRZ-DPSK signals using polarization-maintaining fiber loop mirror filter and semiconductor optical amplifier fiber ring laser

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yu, Yu; Huang, Xi; Zhang, Xinliang

    2009-06-01

    All-optical clock recovery (CR) from 20 Gbit/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals are demonstrated experimentally by using a polarization-maintaining fiber loop mirror filter (PMF-LMF) and a semiconductor optical amplifier (SOA) fiber ring laser. Only by adjusting polarization controller (PC), NRZ-DPSK signals were conveniently and fast converted to pseudo return-to-zero (PRZ) signal via PMF-LMF. Then the PRZ signals are injected into the SOA fiber laser for CR. The recovered clock signals is with the extinction ratio (ER) of 10 dB and the root-mean-square (RMS) timing jitter of 750 fs in 2 31 - 1 long pseudorandom binary sequence (PRBS) NRZ-DPSK signals measurement. Moreover, the broad wavelength tunability of recovered clock stemmed from the use of SOAs as modulator and the gain medium are shown too.

  2. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    SciTech Connect

    Yoon, Tai Hyun

    2007-07-15

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms.

  3. Differential Stark shift measurement of clock states of Yb+ using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Quraishi*, Qudsia; Hayes, David; Hucul, David; Matsukevich, Dzmitry; Debnath, Shantanu; Clark, Susan; Monroe, Chris

    2011-03-01

    Quantum information processing with trapped ions has traditionally involved state preparation, manipulation (eg. quantum gates) and detection using CW lasers. Quantum gates implemented with ions typically involve optical Raman transitions between two atomic levels. An optical frequency comb, emitted by a pulsed laser, is an excellent tool for bridging atomic frequency differences. Previously, we demonstrated quantum gates and separately, ultrafast spin manipulation, using pulsed lasers [1,2]. Unlike the CW case, employing pulsed lasers has the marked advantage of both low spontaneous emission and low AC Stark shifts, because the high powers available from pulsed lasers allow for larger detunings from optical resonance. Here, we show both experimentally and theoretically the scaling of the differential Stark shift with detuning (6 THz to 20 THz) of the Raman fields, achieving values of 10-3 of the Rabi frequency.

  4. All-optical clock recovery CSRZ-format data at 40Gbit/s using SOA-based ring laser

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin

    2008-11-01

    The paper firstly demonstrates a theoretical investigation of clock recovery from carrier-suppressed return-to-zero (CSRZ) modulation format data at 40Gbit/s by using SOA-based ring laser. And a completely numerical analysis about the clock characteristics at 40Gbit/s is done, which is an effective guide for experiment and necessary to optimize the system performance. Meanwhile, simulation results show high-quality clock recovery from 27-1 PRBS CSRZ data at 40Gbit/s can be achieved by using higher power assist CW light into a SOA-based ring laser.

  5. Frequency Ratio of Two Optical Clock Transitions in Yb+ 171 and Constraints on the Time Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Godun, R. M.; Nisbet-Jones, P. B. R.; Jones, J. M.; King, S. A.; Johnson, L. A. M.; Margolis, H. S.; Szymaniec, K.; Lea, S. N.; Bongs, K.; Gill, P.

    2014-11-01

    Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of Yb+ 171 . The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6 ×1 0-16. Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, μ ˙ /μ =0.2 (1.1 )×1 0-16 yr-1 , along with an improved constraint on time variation of the fine structure constant, α ˙ /α =-0.7 (2.1 )×1 0-17 yr-1 .

  6. Zero-dead-time operation of interleaved atomic clocks.

    PubMed

    Biedermann, G W; Takase, K; Wu, X; Deslauriers, L; Roy, S; Kasevich, M A

    2013-10-25

    We demonstrate a zero-dead-time operation of atomic clocks. This clock reduces sensitivity to local oscillator noise, integrating as nearly 1/τ whereas a clock with dead time integrates as 1/τ(1/2) under identical conditions. We contend that a similar scheme may be applied to improve the stability of optical clocks. PMID:24206471

  7. Inelastic collisions and density-dependent excitation suppression in a {sup 87}Sr optical lattice clock

    SciTech Connect

    Bishof, M.; Martin, M. J.; Swallows, M. D.; Benko, C.; Lin, Y.; Quemener, G.; Rey, A. M.; Ye, J.

    2011-11-15

    We observe two-body loss of {sup 3} P{sub 0} {sup 87}Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate coefficients for atomic samples between 1 and 6 {mu}K that are prepared either in a single nuclear-spin sublevel or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and losses during interrogation of the {sup 1} S{sub 0}-{sup 3} P{sub 0} transition as density increases and Rabi frequency decreases, which suggests the presence of strong interactions in our dynamically driven many-body system.

  8. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation

    SciTech Connect

    Affolderbach, Christoph; Mileti, Gaetano

    2005-07-15

    We present a compact and frequency-stabilized laser head based on an extended-cavity diode laser. The laser head occupies a volume of 200 cm{sup 3} and includes frequency stabilization to Doppler-free saturated absorption resonances on the hyperfine components of the {sup 87}Rb D{sub 2} lines at 780 nm, obtained from a simple and compact spectroscopic setup using a 2 cm{sup 3} vapor cell. The measured frequency stability is {<=}2x10{sup -12} over integration times from 1 s to 1 day and shows the potential to reach 2x10{sup -13} over 10{sup 2}-10{sup 5} s. Compact laser sources with these performances are of great interest for applications in gas-cell atomic frequency standards, atomic magnetometers, interferometers and other instruments requiring stable and narrow-band optical sources.

  9. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  10. High-accuracy optical clock based on the octupole transition in 171Yb+.

    PubMed

    Huntemann, N; Okhapkin, M; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2012-03-01

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz. PMID:22463621

  11. High-Accuracy Optical Clock Based on the Octupole Transition in Yb+171

    NASA Astrophysics Data System (ADS)

    Huntemann, N.; Okhapkin, M.; Lipphardt, B.; Weyers, S.; Tamm, Chr.; Peik, E.

    2012-03-01

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition S1/22(F=0)→F7/22(F=3) in a single trapped Yb+171 ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f136s2 configuration of the upper state. The electric-quadrupole moment of the F7/22 state is measured as -0.041(5)ea02, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10-17. The frequency is measured as 642 121 496 772 645.15(52) Hz.

  12. An Imaging Spectrograph for Ground Based, Round-the-Clock Optical Aeronomy Studies

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Pallamraju, D.

    2004-12-01

    In recent years we have developed a high resolution imaging spectrograph at Boston University that is capable of unambiguously measuring faint airglow/auroral emissions buried in the bright solar background continuum of the daytime (solar zenith angle < 90 deg) sky. Two versions of this instrument have been developed. A multi-wavelength implementation, called High Throughput Imaging Echelle Spectrograph (HiTIES), has been used to simultaneously measure several twilighttime/nighttime optical emissions located anywhere in the visible range at moderate (0.03 nm) resolution, while the High Resolution Imaging Spectrograph using Echelle grating (HIRISE) has been used to study daytime airglow and auroral emissions at higher (0.01 nm) resolution. Both of these rugged instruments have been deployed at Boston University as well as other sites (Sondre Stromfjord, Carmen Alto and Svaalbard) without any technical difficulties. They have been used to investigate such wide-ranging aeronomy problems as 630.0nm dayglow, forecasting of Equatorial Spread F development, sunlit cusp as well as the daytime aurora over Boston on October 30, 2003. These proof-of-concept experiments have demonstrated the value of this new tool for future studies of the dynamical processes in space physics and aeronomy. We are presently incorporating improved capabilities and have plans to deploy more than one spectrograph simultaneously for tomographic applications. In this paper we will review the scientific contributions we have made with these two instruments, our future plans and outline their possible role in the International Heliophysical Year.

  13. Observation and Absolute Frequency Measurements of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Neutral Ytterbium

    SciTech Connect

    Hoyt, C.W.; Barber, Z.W.; Oates, C.W.; Fortier, T.M.; Diddams, S.A.; Hollberg, L.

    2005-08-19

    We report the direct excitation of the highly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} optical transition in two odd isotopes of neutral ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at {approx}70 {mu}K in a magneto-optical trap. The measured frequency in {sup 171}Yb (F=1/2) is 518 295 836 591.6{+-}4.4 kHz. The measured frequency in {sup 173}Yb (F=5/2) is 518 294 576 847.6{+-}4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the National Institute of Standards and Technology cesium fountain clock and represent nearly a 10{sup 6}-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be {approx}10 mHz, making them well suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.

  14. A high-speed photonic clock and carrier regenerator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.

    1995-01-01

    As data communications rates climb toward 10 Gbits/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. The high-speed photonic clock regenerator described in this article may be more suitable for such use. This photonic regenerator is based on a previously reported photonic oscillator capable of fast acquisition and synchronization. With both electrical and optical clock inputs and outputs, the device is easily interfaced with fiber-optic systems. The recovered electrical clock can be used locally and the optical clock can be used anywhere within a several kilometer radius of the clock/carrier regenerator.

  15. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    NASA Technical Reports Server (NTRS)

    Suess, Matthias; Matsakis, Demetrios; Greenhall, Charles A.

    2010-01-01

    Using the GPS Toolkit, the GPS constellation is simulated using 31 satellites (SV) and a ground network of 17 monitor stations (MS). At every 15-minutes measurement epoch, the monitor stations measure the time signals of all satellites above a parameterized elevation angle. Once a day, the satellite clock estimates the station and satellite clocks. The first composite clock (B) is based on the Brown algorithm, and is now used by GPS. The second one (G) is based on the Greenhall algorithm. The composite clock of G and B performance are investigated using three ground-clock models. Model C simulates the current GPS configuration, in which all stations are equipped with cesium clocks, except for masers at USNO and Alternate Master Clock (AMC) sites. Model M is an improved situation in which every station is equipped with active hydrogen masers. Finally, Models F and O are future scenarios in which the USNO and AMC stations are equipped with fountain clocks instead of masers. Model F is a rubidium fountain, while Model O is more precise but futuristic Optical Fountain. Each model is evaluated using three performance metrics. The timing-related user range error having all satellites available is the first performance index (PI1). The second performance index (PI2) relates to the stability of the broadcast GPS system time itself. The third performance index (PI3) evaluates the stability of the time scales computed by the two composite clocks. A distinction is made between the "Signal-in-Space" accuracy and that available through a GNSS receiver.

  16. Collisionally induced atomic clock shifts and correlations

    SciTech Connect

    Band, Y. B.; Osherov, I.

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  17. Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Wynands, Robert

    Time is a strange thing. On the one hand it is arguably the most inaccessible physical phenomenon of all: both in that it is impossible to manipulate or modify—for all we know—and in that even after thousands of years mankind's philosophers still have not found a fully satisfying way to understand it. On the other hand, no other quantity can be measured with greater precision. Today's atomic clocks allow us to reproduce the length of the second as the SI unit of time with an uncertainty of a few parts in 1016—orders of magnitude better than any other quantity. In a sense, one can say [1

  18. Molecular clocks.

    PubMed

    Lee, Michael S Y; Ho, Simon Y W

    2016-05-23

    In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). PMID:27218841

  19. Special Relativistic Clock Comparisons

    NASA Astrophysics Data System (ADS)

    Morton, Tom

    2007-03-01

    Time mappings of a stationary clock's time points onto a moving clock's time line heuristically resolve certain temporal asymmetries in time dilation. Time mapping postulates are identified and transforms are derived. `Clock Re-phasing' vs. `Time Leap' is discussed.

  20. Systematic Effects in Atomic Fountain Clocks

    NASA Astrophysics Data System (ADS)

    Gibble, Kurt

    2016-06-01

    We describe recent advances in the accuracies of atomic fountain clocks. New rigorous treatments of the previously large systematic uncertainties, distributed cavity phase, microwave lensing, and background gas collisions, enabled these advances. We also discuss background gas collisions of optical lattice and ion clocks and derive the smooth transition of the microwave lensing frequency shift to photon recoil shifts for large atomic wave packets.

  1. Performance of single semiconductor optical amplifier-based ultrafast nonlinear interferometer with clock-control signals timing deviation in dual rail-switching mode

    NASA Astrophysics Data System (ADS)

    Siarkos, Thanassis; Zoiros, Kyriakos E.

    2009-08-01

    The performance of a single semiconductor optical amplifier (SOA)-based ultrafast nonlinear interferometer that is simultaneously driven by two ultrafast data streams with respect to the timing deviation between these signals and the standard clock input is theoretically studied and investigated. For this purpose, a numerical model is applied to simulate the operation of the specific module in pattern-operated dual rail-switching mode and under the presence of such imperfect synchronization. The thorough analysis and interpretation of the obtained results allows one to evaluate the impact of this temporal offset on the achievement of both bitwise logical correctness and high quality at the output. In this manner, the conditions that it must necessarily fulfill are derived and the dependence of its permissible margin and accordingly the way the latter can be extended is revealed, while its optimal amount for maximizing the defined metric is quantified by the difference between the orthogonal polarization clock components' relative walk-off and the control pulse width. These findings can help compensate for the existence of this effect as well as strengthen the tolerance against it so that it can be properly handled in the context of the considered type of SOA-based interferometric switch.

  2. Evaluation of trap-induced systematic frequency shifts for a multi-ion optical clock at the 10‑19 level

    NASA Astrophysics Data System (ADS)

    Keller, J.; Burgermeister, T.; Kalincev, D.; Kiethe, J.; Mehlstäubler, T. E.

    2016-06-01

    In order to improve the short-term stability of trapped-ion optical clocks, we are developing a frequency standard based on 115In+ / 172Yb+ Coulomb crystals. For this purpose, we have developed scalable segmented Paul traps which allow a high level of control for multiple ion ensembles. In this article, we detail on our recent results regarding the reduction of the leading sources of frequency uncertainty introduced by the ion trap: 2nd-order Doppler shifts due to micromotion and the heating of secular motion, as well as the black-body radiation shift due to warming of the trap. We show that the fractional frequency uncertainty due to each of these effects can be reduced to well below 10-19.

  3. s-Wave collisional frequency shift of a fermion clock.

    PubMed

    Hazlett, Eric L; Zhang, Yi; Stites, Ronald W; Gibble, Kurt; O'Hara, Kenneth M

    2013-04-19

    We report an s-wave collisional frequency shift of an atomic clock based on fermions. In contrast to bosons, the fermion clock shift is insensitive to the population difference of the clock states, set by the first pulse area in Ramsey spectroscopy, θ(1). The fermion shift instead depends strongly on the second pulse area θ(2). It allows the shift to be canceled, nominally at θ(2)=π/2, but correlations perturb the null to slightly larger θ(2). The frequency shift is relevant for optical lattice clocks and increases with the spatial inhomogeneity of the clock excitation field, naturally larger at optical frequencies. PMID:23679589

  4. Highly precise clocks to test fundamental physics

    NASA Astrophysics Data System (ADS)

    Bize, S.; Wolf, P.

    2012-12-01

    Highly precise atomic clocks and precision oscillators are excellent tools to test founding principles, such as the Equivalence Principle, which are the basis of modern physics. A large variety of tests are possible, including tests of Local Lorentz Invariance, of Local Position Invariance like, for example, tests of the variability of natural constants with time and with gravitation potential, tests of isotropy of space, etc. Over several decades, SYRTE has developed an ensemble of highly accurate atomic clocks and oscillators using a large diversity of atomic species and methods. The SYRTE clock ensemble comprises hydrogen masers, Cs and Rb atomic fountain clocks, Sr and Hg optical lattice clocks, as well as ultra stable oscillators both in the microwave domain (cryogenic sapphire oscillator) and in the optical domain (Fabry-Perot cavity stabilized ultra stable lasers) and means to compare these clocks locally or remotely (fiber links in the RF and the optical domain, femtosecond optical frequency combs, satellite time and frequency transfer methods). In this paper, we list the fundamental physics tests that have been performed over the years with the SYRTE clock ensemble. Several of these tests are done thanks to the collaboration with partner institutes including the University of Western Australia, the Max Planck Institut für Quantenoptik in Germany, and others.

  5. Sr+ single-ion clock

    NASA Astrophysics Data System (ADS)

    Dubé, P.; Madej, A. A.; Jian, B.

    2016-06-01

    The evaluated uncertainty of the 88Sr+ ion optical clock has decreased by several orders of magnitude during the last 15 years, currently reaching a level of 1.2 x 10-17. In this paper, we review the methods developed to control very effectively the largest frequency shifts that once were the main sources of uncertainty for the 88Sr+ single-ion clock. These shifts are the micromotion shifts, the electric quadrupole shift and the blackbody radiation shift. With further improvements to the evaluation of the systematic shifts, especially the blackbody radiation shift, it is expected that the total uncertainty of the single-ion clock transition frequency will reach the low 10-18 level in the near future.

  6. Extended ultrahigh-Q-cavity diode laser.

    PubMed

    Xie, Zhenda; Liang, Wei; Savchenkov, Anatoliy A; Lim, Jinkang; Burkhart, Jan; McDonald, Mickey; Zelevinsky, Tanya; Ilchenko, Vladimir S; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2015-06-01

    We report on a study of a 698 nm extended cavity semiconductor laser with intracavity narrowband optical feedback from a whispering gallery mode resonator. This laser comprises an ultrahigh-Q (>10(10)) resonator supporting stimulated Rayleigh scattering, a diffraction grating wavelength preselector, and a reflective semiconductor amplifier. Single longitudinal mode lasing is characterized with sub-kilohertz linewidth and a 9 nm coarse tuning range. The laser has a potential application for integration with the 1S0-3P0 strontium transition to create compact precision atomic clocks. PMID:26030566

  7. Towards Self-Clocked Gated OCDMA Receiver

    NASA Astrophysics Data System (ADS)

    Idris, S.; Osadola, T.; Glesk, I.

    2013-02-01

    A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.

  8. VLBI clock synchronization. [for atomic clock rate

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.; Rogers, A. E. E.; Hinteregger, H. F.; Knight, C. A.; Whitney, A. R.; Clark, T. A.

    1977-01-01

    The potential accuracy of VLBI (very long baseline interferometry) for clock epoch and rate comparisons was demonstrated by results from long- and short-baseline experiments. It was found that atomic clocks at widely separated sites (several thousand kilometers apart) can be synchronized to within several nanoseconds from a few minutes of VLBI observations and to within one nanosecond from several hours of observations.

  9. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  10. Possibility of an optical clock using the 6 {sup 1}S{sub 0}{yields}6 {sup 3}P{sub 0}{sup o} transition in {sup 171,173}Yb atoms held in an optical lattice

    SciTech Connect

    Porsev, Sergey G.; Derevianko, Andrei; Fortson, E.N.

    2004-02-01

    We report calculations assessing the ultimate precision of an atomic clock based on the 578 nm 6 {sup 1}S{sub 0}{yields}6 {sup 3}P{sub 0} transition in Yb atoms confined in an optical lattice trap. We find that this transition has a natural linewidth less than 10 mHz in the odd Yb isotopes, caused by hyperfine coupling. The shift in this transition due to the trapping light acting through the lowest order ac polarizability is found to become zero at the magic trap wavelength of about 752 nm. The effects of Rayleigh scattering, multipole polarizabilities, vector polarizability, and hyperfine induced electronic magnetic moments can all be held below 1 mHz (about one part in 10{sup 18}). In the case of the hyperpolarizability, however, larger shifts due to nearly resonant terms cannot be ruled out without an accurate measurement of the magic wavelength.

  11. A quantum network of clocks

    NASA Astrophysics Data System (ADS)

    Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail

    2014-05-01

    Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).

  12. Entangling the lattice clock: Towards Heisenberg-limited timekeeping

    SciTech Connect

    Weinstein, Jonathan D.; Beloy, Kyle; Derevianko, Andrei

    2010-03-15

    A scheme is presented for entangling the atoms of an optical lattice to reduce the quantum projection noise of a clock measurement. The divalent clock atoms are held in a lattice at a 'magic' wavelength that does not perturb the clock frequency - to maintain clock accuracy - while an open-shell J=1/2 'head' atom is coherently transported between lattice sites via the lattice polarization. This polarization-dependent 'Archimedes' screw' transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J=0, clock states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom are used to engineer entanglement and for clock readout.

  13. Entangling the lattice clock: Towards Heisenberg-limited timekeeping

    NASA Astrophysics Data System (ADS)

    Weinstein, Jonathan D.; Beloy, Kyle; Derevianko, Andrei

    2010-03-01

    We present a scheme for entangling the atoms of an optical lattice to reduce the quantum projection noise of a clock measurement. The divalent clock atoms are held in a lattice at a ``magic'' wavelength that does not perturb the clock frequency -- to maintain clock accuracy -- while an open-shell J=1/2 ``head'' atom is coherently transported between lattice sites via the lattice polarization. This polarization- dependent ``Archimedes' screw'' transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J=0, clock states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom are used to engineer entanglement and for clock readout.

  14. Entangling the lattice clock: Towards Heisenberg-limited timekeeping

    NASA Astrophysics Data System (ADS)

    Weinstein, Jonathan D.; Beloy, Kyle; Derevianko, Andrei

    2010-03-01

    A scheme is presented for entangling the atoms of an optical lattice to reduce the quantum projection noise of a clock measurement. The divalent clock atoms are held in a lattice at a “magic” wavelength that does not perturb the clock frequency—to maintain clock accuracy—while an open-shell J=1/2 “head” atom is coherently transported between lattice sites via the lattice polarization. This polarization-dependent “Archimedes’ screw” transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J=0, clock states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom are used to engineer entanglement and for clock readout.

  15. Continuous Nondemolition Measurement of the Cs Clock Transition Pseudospin

    SciTech Connect

    Chaudhury, Souma; Smith, Greg A.; Schulz, Kevin; Jessen, Poul S.

    2006-02-03

    We demonstrate a weak continuous measurement of the pseudospin associated with the clock transition in a sample of Cs atoms. Our scheme uses an optical probe tuned near the D{sub 1} transition to measure the sample birefringence, which depends on the z component of the collective pseudospin. At certain probe frequencies the differential light shift of the clock states vanishes, and the measurement is nonperturbing. In dense samples the measurement can be used to squeeze the collective clock pseudospin and has the potential to improve the performance of atomic clocks and interferometers.

  16. First nuclear clock?

    NASA Astrophysics Data System (ADS)

    2016-06-01

    A nuclear clock that is more precise than any atomic clock available today could soon be a reality after physicists in Germany detected a crucial low-energy transition in the thorium-229 nucleus, which could be used to create a new frequency standard.

  17. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  18. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  19. BUGS system clock distributor

    NASA Astrophysics Data System (ADS)

    Dietrich, Thomas M.

    1991-11-01

    A printed circuit board which will provide external clocks and precisely measure the time at which events take place was designed for the Bristol University Gas Spectrometer (BUGS). The board, which was designed to interface both mechanically and electrically to the Computer Automated Measurement and Control (CAMAC) system, has been named the BUGS system clock control. The board's design and use are described.

  20. Doppler-Free Spectroscopy of the {sup 1}S{sub 0}-{sup 3}P{sub 0} Optical Clock Transition in Laser-Cooled Fermionic Isotopes of Neutral Mercury

    SciTech Connect

    Petersen, M.; Chicireanu, R.; Dawkins, S. T.; Magalhaes, D. V.; Mandache, C.; Le Coq, Y.; Clairon, A.; Bize, S.

    2008-10-31

    We report direct laser spectroscopy of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition at 265.6 nm in fermionic isotopes of neutral mercury in a magneto-optical trap. Measurements of the frequency against the LNE-SYRTE primary reference using an optical frequency comb yield 1 128 575 290 808.4{+-}5.6 kHz in {sup 199}Hg and 1 128 569 561 139.6{+-}5.3 kHz in {sup 201}Hg. The uncertainty, allowed by the observation of the Doppler-free recoil doublet, is 4 orders of magnitude lower than previous indirect determinations. Mercury is a promising candidate for future optical lattice clocks due to its low sensitivity to blackbody radiation.

  1. A Novel Photonic Clock and Carrier Recovery Device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve; Lutes, George; Maleki, Lute

    1996-01-01

    As data communication rates climb toward ten Gb/s, clock recovery and synchronization become more difficult, if not impossible, using conventional electronic circuits. We present in this article experimental results of a high speed clock and carrier recovery using a novel device called a photonic oscillator that we recently developed in our laboratory. This device is capable of recovering clock signals up to 70 GHz. To recover the clock, the incoming data is injected into the photonic oscillator either through the optical injection port or the electrical injection port. The free running photonic oscillator is tuned to oscillate at a nominal frequency equal to the clock frequency of the incoming data. With the injection of the data, the photonic oscillator will be quickly locked to clock frequency of the data stream while rejecting other frequency components associated with the data. Consequently, the output of the locked photonic oscillator is a continuous periodical wave synchronized with the incoming data or simply the recovered clock. We have demonstrated a clock to spur ratio of more than 60 dB of the recovered clock using this technique. Similar to the clock recovery, the photonic oscillator can be used to recover a high frequency carrier degraded by noise and an improvement of about 50 dB in signal-to-noise ratio was demonstrated. The photonic oscillator has both electrical and optical inputs and outputs and can be directly interfaced with a photonic system without signal conversion. In addition to clock and carrier recovery, the photonic oscillator can also be used for (1) stable high frequency clock signal generation, (2) frequency multiplication, (3) square wave and comb frequency generation, and (4) photonic phase locked loop.

  2. Lutetium +: A better clock candidate

    NASA Astrophysics Data System (ADS)

    Arnold, Kyle; Paez, Eduardo; Haciyev, Elnur; Arifin, Arifin; Cazan, Radu; Barrett, Murray

    2015-05-01

    With the extreme precision now reached by optical clocks it is reasonable to consider redefinition of the frequency standard. In doing so it is important to look beyond the current best-case efforts and have an eye on future possibilities. We will argue that singly ionized Lutetium is a strong candidate for the next generation of optical frequency standards. Lu + has a particularly narrow optical transition in combination with several advantageous properties for managing systematic uncertainties compared to the other atomic species. We summarize these properties and our specific strategies for managing the uncertainties due to external perturbations. Finally, we present the status of our ongoing experiments with trapped Lu +, including the results of precision measurements of its atomic structure.

  3. Flies, clocks and evolution.

    PubMed Central

    Rosato, E; Kyriacou, C P

    2001-01-01

    The negative feedback model for gene regulation of the circadian mechanism is described for the fruitfly, Drosophila melanogaster. The conservation of function of clock molecules is illustrated by comparison with the mammalian circadian system, and the apparent swapping of roles between various canonical clock gene components is highlighted. The role of clock gene duplications and divergence of function is introduced via the timeless gene. The impressive similarities in clock gene regulation between flies and mammals could suggest that variation between more closely related species within insects might be minimal. However, this is not borne out because the expression of clock molecules in the brain of the giant silk moth, Antheraea pernyi, is not easy to reconcile with the negative feedback roles of the period and timeless genes. Variation in clock gene sequences between and within fly species is examined and the role of co-evolution between and within clock molecules is described, particularly with reference to adaptive functions of the circadian phenotype. PMID:11710984

  4. Circadian Clocks and Metabolism

    PubMed Central

    Marcheva, Biliana; Ramsey, Kathryn M.; Peek, Clara B.; Affinati, Alison; Maury, Eleonore; Bass, Joseph

    2014-01-01

    Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health. PMID:23604478

  5. Small Mercury Ion Clock for On-board Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang; Le, Thanh; Hamell, R.; Maleki, Lute; Tjoelker, Robert

    2004-01-01

    I.Small Ion Clock Approach and Heritage: a) No lasers, uwave cavities, cryogenics, atomic beams, etc. b) Ions are electrically shuttled between separate optical and microwave traps. II. Each trap is optimized for its task: quadrupole for optical state selection; multi-pole for microwave clock. a) Very good stability shown in USNO. Timescale running "open loop." III. "Open loop" operation means no self-measurements of frequency offsets: (Zeeman, ion temperature,... etc.) a) Fewer parts and procedures, produces stable output continuously. IV. Ion clock is not so sensitive to temperature fluctuations a) Measured u:nshielded temperature coefficient of few 10(exp -15) per C. b) No bulky temperature isolation needed.

  6. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  7. Resetting Biological Clocks

    ERIC Educational Resources Information Center

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  8. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  9. N+CPT clock resonance

    SciTech Connect

    Crescimanno, M.; Hohensee, M.

    2008-12-15

    In a typical compact atomic time standard a current modulated semiconductor laser is used to create the optical fields that interrogate the atomic hyperfine transition. A pair of optical sidebands created by modulating the diode laser become the coherent population trapping (CPT) fields. At the same time, other pairs of optical sidebands may contribute to other multiphoton resonances, such as three-photon N-resonance [Phys. Rev. A 65, 043817 (2002)]. We analyze the resulting joint CPT and N-resonance (hereafter N+CPT) analytically and numerically. Analytically we solve a four-level quantum optics model for this joint resonance and perturbatively include the leading ac Stark effects from the five largest optical fields in the laser's modulation comb. Numerically we use a truncated Floquet solving routine that first symbolically develops the optical Bloch equations to a prescribed order of perturbation theory before evaluating. This numerical approach has, as input, the complete physical details of the first two excited-state manifolds of {sup 87}Rb. We test these theoretical approaches with experiments by characterizing the optimal clock operating regimes.

  10. Recent progress of neutral mercury lattice clock in SIOM

    NASA Astrophysics Data System (ADS)

    Zhao, R. C.; Fu, X. H.; Liu, K. K.; Gou, W.; Sun, J. F.; Xu, Z.; Wang, Y. Z.

    2016-06-01

    Neutral mercury atom is one of good candidates of optical lattice clock. Due to its large atomic number, mercury atom is insensitive to black body radiation, which is the severe limitation for the development of optical clocks. However, the challenge of neutral mercury lattice clock is the requirement of high power deep-UV lasers, especially for both the cooling laser and the lattice laser. Here, we report the recent progress of neutral mercury lattice clock in SIOM, including the development for laser cooling of mercury atom and the cooling laser system with fiber laser amplifier. We have realized the magneto-optical trap of mercury atoms and measured the parameters of cold mercury atoms. A home-made external cavity diode laser works as a seed laser for a room temperature 1014.8 nm fiber laser amplifier. A new efficient frequency-doubling cavity from 1015 nm to 507 nm has been developed.

  11. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect

  12. A clock network for geodesy and fundamental science

    NASA Astrophysics Data System (ADS)

    Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S. M. F.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Robyr, J.-L.; Chiodo, N.; Bilicki, S.; Bookjans, E.; Koczwara, A.; Koke, S.; Kuhl, A.; Wiotte, F.; Meynadier, F.; Camisard, E.; Abgrall, M.; Lours, M.; Legero, T.; Schnatz, H.; Sterr, U.; Denker, H.; Chardonnet, C.; Le Coq, Y.; Santarelli, G.; Amy-Klein, A.; Le Targat, R.; Lodewyck, J.; Lopez, O.; Pottie, P.-E.

    2016-08-01

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10-17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10-17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

  13. A clock network for geodesy and fundamental science

    PubMed Central

    Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S.M.F.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Robyr, J.-L.; Chiodo, N.; Bilicki, S.; Bookjans, E.; Koczwara, A.; Koke, S.; Kuhl, A.; Wiotte, F.; Meynadier, F.; Camisard, E.; Abgrall, M.; Lours, M.; Legero, T.; Schnatz, H.; Sterr, U.; Denker, H.; Chardonnet, C.; Le Coq, Y.; Santarelli, G.; Amy-Klein, A.; Le Targat, R.; Lodewyck, J.; Lopez, O; Pottie, P.-E.

    2016-01-01

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10−17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10−17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second. PMID:27503795

  14. A clock network for geodesy and fundamental science.

    PubMed

    Lisdat, C; Grosche, G; Quintin, N; Shi, C; Raupach, S M F; Grebing, C; Nicolodi, D; Stefani, F; Al-Masoudi, A; Dörscher, S; Häfner, S; Robyr, J-L; Chiodo, N; Bilicki, S; Bookjans, E; Koczwara, A; Koke, S; Kuhl, A; Wiotte, F; Meynadier, F; Camisard, E; Abgrall, M; Lours, M; Legero, T; Schnatz, H; Sterr, U; Denker, H; Chardonnet, C; Le Coq, Y; Santarelli, G; Amy-Klein, A; Le Targat, R; Lodewyck, J; Lopez, O; Pottie, P-E

    2016-01-01

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second. PMID:27503795

  15. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-01

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy. PMID:26799016

  16. Board-level optical clock signal distribution using Si CMOS-compatible polyimide-based 1- to 48-fanout H-tree

    NASA Astrophysics Data System (ADS)

    Wu, Linghui; Bihari, Bipin; Gan, Jianhua; Chen, Ray T.; Tang, Suning

    1998-08-01

    Si-CMOS compatible polymer-based waveguides for optoelectronic interconnects and packaging have been fabricated and characterized. A 1-to-48 fanout optoelectronic interconnection layer (OIL) structure based on Ultradel 9120/9020 for the high-speed massive clock signal distribution for a Cray T-90 supercomputer board has been constructed. The OIL employs multimode polymeric channel waveguides in conjunction with surface-normal waveguide output coupler and 1-to-2 splitter. A total insertion loss of 7.98 dB at 850 nm was measured experimentally.

  17. Room 103, transom woodwork and original clock. All clocks are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 103, transom woodwork and original clock. All clocks are driven by a common signal. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  18. Heme-based Sensing by the Mammalian Circadian Protein, CLOCK

    PubMed Central

    Lukat-Rodgers, Gudrun S.; Correia, Cristina; Botuyan, Maria Victoria; Mer, Georges; Rodgers, Kenton R.

    2010-01-01

    Heme is emerging as a key player in the synchrony of circadian-coupled transcriptional regulation. Current evidence suggests that levels of circadian-linked transcription are regulated in response to both the availability of intracellular heme and by heme-based sensing of carbon monoxide and possibly nitric oxide. The protein CLOCK is central to the regulation and maintenance of circadian rhythms in mammals. CLOCK comprises two PAS domains, each with a heme binding site. Our studies focus on the functionality of the Murine CLOCK PAS–A domain (residues 103-265). We show that CLOCK PAS–A binds Fe(III) protoporhyrin IX to form a complex with 1:1 stoichiometry. Optical absorbance and resonance Raman studies reveal that the heme of ferric CLOCK PAS–A is a six-coordinate, low spin complex whose resonance Raman signature is insensitive to pH over the range of protein stability. Ferrous CLOCK PAS–A is a mixture of five-coordinate, high spin and six-coordinate, low spin complexes. Ferrous CLOCK PAS–A forms complexes with CO and NO. Ferric CLOCK PAS–A undergoes reductive nitrosylation in the presence of NO to generate a CLOCK PAS–A–NO, which is a pentacoordinate {FeNO}7 complex. Formation of the highly stable {FeNO}7 heme complex from either ferrous or ferric heme makes possible the binding of NO at very low concentration, a characteristic of NO sensors. Comparison of the spectroscopic properties and CO binding kinetics of CLOCK PAS–A with other CO sensor proteins reveals that CLOCK PAS–A exhibits chemical properties consistent with a heme-based gas sensor protein. PMID:20666392

  19. A precise clock distribution network for MRPC-based experiments

    NASA Astrophysics Data System (ADS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  20. A fault-tolerant clock

    NASA Technical Reports Server (NTRS)

    Daley, W. P.; Mckenna, J. F., Jr.

    1973-01-01

    Computers must operate correctly even though one or more of components have failed. Electronic clock has been designed to be insensitive to occurrence of faults; it is substantial advance over any known clock.

  1. Tutorial: Clock and Clock Systems Performance Measures

    NASA Technical Reports Server (NTRS)

    Allan, David W.

    1996-01-01

    This tutorial contains basic material - familiar to many. This will be used as a foundation upon which we will build - bringing forth some new material and equations that have been developed especially for this tutorial. These will provide increased understanding toward parameter estimation of clock and clock system's performance. There is a very important International Telecommunications Union (ITU) handbook being prepared at this time which goes much further than this tutorial has time to do. I highly recommend it as an excellent resource document. The final draft is just now being completed, and it should be ready late in 1996. It is an outstanding handbook; Dr. Sydnor proposed to the ITU-R several years ago, and is the editor with my assistance. We have some of the best contributors in the community from around the world who have written the ten chapters in this handbook. The title of the handbook is 'Selection and use of Precise Frequency and Time Systems'. It will be available from the ITU secretariat in Geneva, Switzerland, but NAVTEC Seminars also plans to be a distributor.

  2. Sample-Clock Phase-Control Feedback

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  3. Estimating the instability of a composite clock

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    2004-01-01

    A composite clock created from a local clock ensemble is known by its time offsets from the ensemble clocks. By a geometrical argument, estimate for the instability of the composite clock are calculated from the instabilities of the ensemble clocks, individually and against the composite clock. The method is illustrated by examples using simulated and real ensembles.

  4. An atomic clock with 10(-18) instability.

    PubMed

    Hinkley, N; Sherman, J A; Phillips, N B; Schioppo, M; Lemke, N D; Beloy, K; Pizzocaro, M; Oates, C W; Ludlow, A D

    2013-09-13

    Atomic clocks have been instrumental in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Timekeeping precision at 1 part in 10(18) enables new timing applications in relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests of physics beyond the standard model. Here, we describe the development and operation of two optical lattice clocks, both using spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6 × 10(-18) after only 7 hours of averaging. PMID:23970562

  5. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  6. Narrative Clock Sculptures

    ERIC Educational Resources Information Center

    Popp, Linda

    2005-01-01

    Art teacher Linda Popp and artist H. Ed Smith team up to teach about creating sculptural clocks. This lesson shows how a portrait can be created using various media. Students based projects on someone in their lives they have known for a long time. This sculptural problem was part of a series of portrait and self-portrait lessons with a high…

  7. Precise Measurement of Vibrational Transition Frequency of Optically Trapped Molecules

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Gopakumar, Geetha; Abe, Minori; Hada, Masahiko

    2013-06-01

    We propose to measure the X^{2}Σ(v,N,F,M) =( 0,0,3/2,±3/2) →( v_{u},0,3/2,±3/2) ( v_{u}=1,2,3,4,,,,) transition frequencies of X^{6}Li molecules with the uncertainty lower than 10^{-16} (X: ^{174}Yb, ^{88}Sr, ^{40}Ca). Molecules are produced by photo-association of cold atoms and trapped in the optical lattices. Measurement with molecules in optical lattices is particularly advantageous for precision measurements because (1) the molecules and probe laser interact for a long time, (2) molecules are localized within the Lamb-Dicke region, (3) the measurement is possible with a large number of molecules, and (4) collision effects are suppressed (molecules are trapped at different positions in 2D lattices). Using the proper trap laser frequency, the Stark shift induced by the trap laser is eliminated as the Stark energy shift of the upper and lower states are equal (magic frequency). When the trap laser frequency is shifted from the magic frequency by 1 MHz, the Stark shift is less than 3×10^{-15}. The N=0→0 transition is one-photon forbidden, and it is stimulated by Raman transition using two lasers. When one of two Raman lasers is higher than the magic frequency and another is lower, the total Stark shift induced by two Raman lasers can be eliminated. Measurement of molecular vibrational transition frequencies is useful to test the variation in the proton-to-electron mass ratio. The ^{1}S_{0}-^{3}% P_{0} transition frequencies of ^{27}Al^{+} ion or ^{87}Sr atom are useful as the reference.

  8. Rockets, clocks, and gravity

    NASA Astrophysics Data System (ADS)

    Vessot, R. F. C.

    Uses of atomic clocks, telemetry, and spacecraft to test predictions of the General Theory of Relativity are described. The number of cycles of a signal being generated by an atomic clock on board a satellite and directed toward earth stations allows precise determination of movements away or toward the receiving station, with an accuracy of 1/9,192,631,770 when using the outer shell electron to nucleus magnetic interaction of a cesium 133 isotope. Doppler radar serves the same purpose when reflected off the surface of a spacecraft, and radio transmitters landed on Mars have provided a source of signals which are deflected by the sun when orbital positions of earth and Mars are in favorable positions. Goals of the NASA Starprobe mission to measure the gravitational flattening and time/space warping occurring around the sun are outlined.

  9. Clocks in algae.

    PubMed

    Noordally, Zeenat B; Millar, Andrew J

    2015-01-20

    As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods. PMID:25379817

  10. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.

    PubMed

    Liu, Pei-Liang; Huang, Yao; Bian, Wu; Shao, Hu; Guan, Hua; Tang, Yong-Bo; Li, Cheng-Bin; Mitroy, J; Gao, Ke-Lin

    2015-06-01

    We demonstrate experimentally the existence of magic wavelengths and determine the ratio of oscillator strengths for a single trapped ion. For the first time, two magic wavelengths near 396 nm for the ^{40}Ca^{+} clock transition are measured simultaneously with high precision. By tuning the applied laser to an intermediate wavelength between transitions 4s_{1/2}→4p_{1/2} and 4s_{1/2}→4p_{3/2}, the sensitivity of the clock transition Stark shift to the oscillator strengths is greatly enhanced. Furthermore, with the measured magic wavelengths, we determine the ratio of the oscillator strengths with a deviation of less than 0.5%. Our experimental method may be applied to measure magic wavelengths for other ion clock transitions. Promisingly, the measurement of these magic wavelengths paves the way to building all-optical trapped ion clocks. PMID:26196619