Science.gov

Sample records for 2-aminophenoxazin-3-one-functionalized multiwalled carbon

  1. Multiwall carbon nanotube microcavity arrays

    NASA Astrophysics Data System (ADS)

    Ahmed, Rajib; Rifat, Ahmmed A.; Yetisen, Ali K.; Dai, Qing; Yun, Seok Hyun; Butt, Haider

    2016-03-01

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm2) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170-180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  2. Electrical properties of multiwalled carbon nanotube film

    SciTech Connect

    Antonenko, S. V. Malinovskaya, O. S.; Mal'tsev, S. N.

    2007-07-15

    The multiwalled carbon nanotube films examined in this study are produced by two methods: current annealing of carbon paper and dc magnetron sputtering. The conductivity and the temperature dependence of resistance of the samples are measured. The thermal conductivity of the film-substrate system is evaluated.

  3. Ultralight multiwalled carbon nanotube aerogel.

    PubMed

    Zou, Jianhua; Liu, Jianhua; Karakoti, Ajay Singh; Kumar, Amit; Joung, Daeha; Li, Qiang; Khondaker, Saiful I; Seal, Sudipta; Zhai, Lei

    2010-12-28

    Ultralight multiwalled carbon nanotube (MWCNT) aerogel is fabricated from a wet gel of well-dispersed pristine MWCNTs. On the basis of a theoretical prediction that increasing interaction potential between CNTs lowers their critical concentration to form an infinite percolation network, poly(3-(trimethoxysilyl) propyl methacrylate) (PTMSPMA) is used to disperse and functionalize MWCNTs where the subsequent hydrolysis and condensation of PTMSPMA introduces strong and permanent chemical bonding between MWCNTs. The interaction is both experimentally and theoretically proven to facilitate the formation of a MWCNT percolation network, which leads to the gelation of MWCNT dispersion at ultralow MWCNT concentration. After removing the liquid component from the MWCNT wet gel, the lightest ever free-standing MWCNT aerogel monolith with a density of 4 mg/cm(3) is obtained. The MWCNT aerogel has an ordered macroporous honeycomb structure with straight and parallel voids in 50-150 μm separated by less than 100 nm thick walls. The entangled MWCNTs generate mesoporous structures on the honeycomb walls, creating aerogels with a surface area of 580 m(2)/g which is much higher than that of pristine MWCNTs (241 m(2)/g). Despite the ultralow density, the MWCNT aerogels have an excellent compression recoverable property as demonstrated by the compression test. The aerogels have an electrical conductivity of 3.2 × 10(-2) S·cm(-1) that can be further increased to 0.67 S·cm(-1) by a high-current pulse method without degrading their structures. The excellent compression recoverable property, hierarchically porous structure with large surface area, and high conductivity grant the MWCNT aerogels exceptional pressure and chemical vapor sensing capabilities. PMID:21090673

  4. Carbon linear chains inside multiwalled nanotubes

    NASA Astrophysics Data System (ADS)

    Cazzanelli, E.; Caputi, L.; Castriota, M.; Cupolillo, A.; Giallombardo, C.; Papagno, L.

    2007-09-01

    Multiwalled carbon nanotubes have been deposited on graphite cathodes by using an arc discharge technique in He atmosphere, with the insertion of a catalytic Ni-Cr mixture as well as without catalysers. The topography of such deposition has been investigated by SEM, while a parallel micro-Raman study has revealed, in particular regions of the deposited cathodes, strong bands in the range 1780-1860 cm -1, assignable to linear carbon chains inside the nanotubes. The variation of intensity, frequency and bandwidth of such bands has been investigated, in relation with the spectral characters of the host multiwalled carbon nanotube. In the cathode deposited without catalyst a quite ordered configuration of multiwalled carbon nanotubes is obtained in the central zone, while the maximum concentration of linear carbon chains is found in a ring shaped zone just inside the border. In sample obtained with catalyst the deposited multiwalled carbon nanotubes appear always more disordered, and a remarkable concentration of carbon chains appears in some zones, with a more casual distribution.

  5. Multiwalled Carbon nanotube - Strength to polymer composite

    NASA Astrophysics Data System (ADS)

    Pravin, Jagdale; Khan, Aamer. A.; Massimo, Rovere; Carlo, Rosso; Alberto, Tagliaferro

    2016-02-01

    Carbon nanotubes (CNTs), a rather fascinating material, are among the pillars of nanotechnology. CNTs exhibit unique electrical, mechanical, adsorption, and thermal properties with high aspect ratio, exceptional stiffness, excellent strength, and low density, which can be exploited in the manufacturing of revolutionary smart nano composite materials. The demand for lighter and stronger polymer composite material in various applications is increasing every day. Among all the possibilities to research and exploit the exceptional properties of CNTs in polymer composites we focused on the reinforcement of epoxy resin with different types of multiwalled carbon nano tubes (MWCNTs). We studied mechanical properties such as stress, strain, ultimate tensile strength, yield point, modulus and fracture toughness, and Young's modulus by plotting and calculating by means of the off-set method. The mechanical strength of epoxy composite is increased intensely with 1 and 3 wt.% of filler.

  6. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    EPA Science Inventory

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  7. A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.

    SciTech Connect

    Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.

    2006-02-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  8. Multiwalled carbon nanotube film for strain sensing

    NASA Astrophysics Data System (ADS)

    Li, X.; Levy, C.; Elaadil, L.

    2008-01-01

    We have studied the possibility of using multiwalled carbon nanotube (MWCNT) films as strain sensors. The MWCNT films were prepared by a solution/filtration method and were bonded directly onto specimens by a nonconductive adhesive. For comparison, conventional foil strain gages were also bonded to the structure on the opposite side. The specimens then underwent a uniaxial tensile load-unload cycle to evaluate them as strain sensors. To ensure good electrical contact between carbon nanotube film and the wires, a thin layer of copper was thermally deposited on both ends of the film as electrodes, and the wires were connected to the electrodes by silver ink. Wheatstone bridges were used to convert the resistance changes of the MWCNTs to voltage output. Results indicated that the output voltages were proportional to the strain readings from the stain indicator. The effect of temperature on the resistance was measured and the MWCNT film resistance was found to be independent of temperature over the range 273-363 K. The optimal film dimension for strain sensing was evaluated as well. Dynamic tests suggest that the MWCNTs were able to extract the structural signature. Our results indicate that MWCNT film is potentially useful for structural health monitoring and vibration control applications.

  9. Multi-Walled Carbon Nanotube Growth in Multi-Walled Carbon Nanotubes by Chemical Vapor Deposition.

    PubMed

    Hasegawa, Takayuki; Arenas, Daniel J; Kohno, Hideo

    2015-02-01

    We report chemical vapor deposition (CVD) growth of a multi-walled carbon nanotube (MWCNT) inside another MWCNTs from a cementite (Fe3C) catalyst nanoparticles. The CNTs have bi or tri-layered core(s)-sheath structure with various crystallinity. The sheath grows first at a lower temperature, and then the catalyst nanoparticle works again to grow the core(s) at a higher temperature in the tip or root growth mode. Transmission electron microscopy (TEM) observation provides a clear piece of evidence of reverse-inward growth. PMID:26353735

  10. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for...

  11. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Functionalized multi-walled carbon... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under...

  12. 40 CFR 721.10663 - Functionalized multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Functionalized multi-walled carbon... Specific Chemical Substances § 721.10663 Functionalized multi-walled carbon nanotubes (generic). (a... generically as functionalized multi-walled carbon nanotubes (PMN P-12-44) is subject to reporting under...

  13. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for...

  14. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for...

  15. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for...

  16. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for...

  17. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for...

  18. 40 CFR 721.10671 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10671 Multi-walled carbon nanotubes (generic). (a) Chemical substances... multi-walled carbon nanotubes (PMNs P-09-198 and P-09-199) are subject to reporting under this...

  19. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for...

  20. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for...

  1. Ag-catalysed cutting of multi-walled carbon nanotubes.

    PubMed

    La Torre, A; Rance, G A; Miners, S A; Herreros Lucas, C; Smith, E F; Fay, M W; Zoberbier, T; Giménez-López, M C; Kaiser, U; Brown, P D; Khlobystov, A N

    2016-04-29

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes. PMID:26987452

  2. Ag-catalysed cutting of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    La Torre, A.; Rance, G. A.; Miners, S. A.; Herreros Lucas, C.; Smith, E. F.; Fay, M. W.; Zoberbier, T.; Giménez-López, M. C.; Kaiser, U.; Brown, P. D.; Khlobystov, A. N.

    2016-04-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

  3. Unzipped multiwalled carbon nanotube oxide/multiwalled carbon nanotube hybrids for polymer reinforcement.

    PubMed

    Fan, Jinchen; Shi, Zixing; Tian, Ming; Wang, Jialiang; Yin, Jie

    2012-11-01

    Multiwalled carbon nanotubes (MWNTs) have been widely used as nanofillers for polymer reinforcement. However, it has been restricted by the limited available interface area of MWNTs in the polymer matrices. Oxidation unzipping of MWNTs is an effective way to solve this problem. The unzipped multiwalled carbon nanotube oxides (UMCNOs) exhibit excellent enhancement effect with low weight fractions, but agglomeration of UMCNOs at a relatively higher loading still hampered the mechanical reinforcement of polymer composites. In this paper, we interestingly found that the dispersion of UMCNOs in polymer matrices can be significantly improved with the combination of pristine MWNTs. The hybrids of MWNTs and UMCNOs (U/Ms) can be easily obtained by adding the pristine MWNTs into the UMCNOs aqueous dispersion, followed by sonication. With a π-stacking interaction, the UMCNOs were attached onto the outwalls of MWNTs. The morphologies and structure of the U/Ms were characterized by several measurements. The mechanical testing of the resultant poly(vinyl alcohol) (PVA)-based composites demonstrated that the U/Ms can be used as ideal reinforcing fillers. Compared to PVA, the yield strength and Young's modulus of U/M-PVA composites with a loading of 0.7 wt % of the U/Ms approached ∼145.8 MPa and 6.9 GPa, respectively, which are increases of ∼107.4% and ∼122.5%, respectively. The results of tensile tests demonstrated that the reinforcement effect of U/Ms is superior to the individual UMCNOs and MWNTs, because of the synergistic interaction of UMCNOs and MWNTs. PMID:23121120

  4. Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Fernández-Luna, José L; Flahaut, Emmanuel; Rodríguez-Fernández, Lidia; Villegas, Juan C; González, Jesús; Fanarraga, Mónica L

    2015-08-01

    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells. PMID:26097131

  5. Buckling Test under Axial Compression for Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Nishio, Mitsumasa; Akita, Seiji; Nakayama, Yoshikazu

    2005-08-01

    We have investigated buckling phenomena under axial compression for multiwall carbon nanotubes with the same outer diameter with different wall thicknesses obtained by the extraction of inner shells. According to the Euler’s buckling model described by the continuum model, Young’s moduli of the nanotube before and after the extraction of the inner shells were evaluated to be 0.77 and 0.80 TPa, respectively. This good agreement between the two values indicates that the classical continuum model is effective for describing the mechanical behaviors of multiwall nanotubes.

  6. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    SciTech Connect

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  7. Structural and surface features of multiwall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Rao, G. Mohan

    2011-04-01

    We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the π orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress.

  8. Tensile Yielding of Multi-Wall Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, Kyeongjae; Srivastava, Deepak; Parks, John W. (Technical Monitor)

    2002-01-01

    The tensile yielding of multiwall carbon nanotubes (MWCNTs) has been studied using Molecular Dynamics simulations and a Transition State Theory based model. We find a strong dependence of the yielding on the strain rate. A critical strain rate has been predicted above/below which yielding strain of a MWCNT is larger/smaller than that of the corresponding single-wall carbon nanotubes. At experimentally feasible strain rate of 1% /hour and T = 300K, the yield strain of a MWCNT is estimated to be about 3-4 % higher than that of an equivalent SWCNT (Single Wall Carbon Nanotube), in good agreement with recent experimental observations.

  9. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals. PMID:17980962

  10. Determination of the intershell conductance in a multiwall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Stetter, A.; Vancea, J.; Back, C. H.

    2008-10-01

    We have measured the current induced voltage drop along an individual multiwall carbon nanotube as a function of the distance to the current injecting electrode. The measurements have been performed at room temperature using scanning probe potentiometry combined with scanning electron microscopy. For a nanotube with an incomplete outer shell, a sharp potential jump was observed at the end of the outermost shell. The electric potential variation along the carbon nanotube has been used to determine the contact resistance between metal electrodes and the tube, the intrashell resistance, and the intershell conductance.

  11. Quantum conductance steps in solutions of multiwalled carbon nanotubes.

    PubMed

    Urbina, A; Echeverría, I; Pérez-Garrido, A; Díaz-Sánchez, A; Abellán, J

    2003-03-14

    We have prepared solutions of multiwalled carbon nanotubes in Aroclor 1254, a mixture of polychlorinated biphenyls. The solutions are stable at room temperature. Transport measurements were performed using a scanning-tunneling probe on a sample prepared by spin coating the solution on gold substrates. Conductance steps were clearly seen. A histogram of a high number of traces shows maximum peaks at integer values of the conductance quantum G(0)=2e(2)/h, demonstrating ballistic transport at room temperature along the carbon nanotube over distances longer than 1.4 microm. PMID:12689021

  12. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes.

    PubMed

    Lu, Xunyu; Yim, Wai-Leung; Suryanto, Bryan H R; Zhao, Chuan

    2015-03-01

    Large-scale storage of renewable energy in the form of hydrogen (H2) fuel via electrolytic water splitting requires the development of water oxidation catalysts that are efficient and abundant. Carbon-based nanomaterials such as carbon nanotubes have attracted significant applications for use as substrates for anchoring metal-based nanoparticles. We show that, upon mild surface oxidation, hydrothermal annealing and electrochemical activation, multiwall carbon nanotubes (MWCNTs) themselves are effective water oxidation catalysts, which can initiate the oxygen evolution reaction (OER) at overpotentials of 0.3 V in alkaline media. Oxygen-containing functional groups such as ketonic C═O generated on the outer wall of MWCNTs are found to play crucial roles in catalyzing OER by altering the electronic structures of the adjacent carbon atoms and facilitates the adsorption of OER intermediates. The well-preserved microscopic structures and highly conductive inner walls of MWCNTs enable efficient transport of the electrons generated during OER. PMID:25658670

  13. 40 CFR 721.10274 - Multi-walled carbon nanotubes (generic) (P-09-188).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to undergo further processing except for mechanical processing. (2) The significant new uses are: (i... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10274 Multi-walled carbon nanotubes (generic) (P-09-188). (a)...

  14. 40 CFR 721.10275 - Multi-walled carbon nanotubes (generic) (P-09-0417).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that is not intended to undergo further processing, except for mechanical processing. (2) The... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10275 Multi-walled carbon nanotubes (generic) (P-09-0417). (a)...

  15. 40 CFR 721.10703 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... into an article as defined at 40 CFR 721.3(c). (2) The significant new uses are: (i) Protection in the... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10703 Multi-walled carbon nanotubes (generic). (a) Chemical...

  16. Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres.

    PubMed

    Kim, Young-Jin; Yamamoto, Seiichiro; Takahashi, Haruko; Sasaki, Naruo; Matsunaga, Yukiko T

    2016-08-19

    This work describes the fabrication and characterization of hydroxypropyl cellulose (HPC)-based biomimetic bundled gel fibres. The bundled gel fibres were reinforced with multiwalled carbon nanotubes (MWCNTs). A phase-separated aqueous solution with MWCNT and HPC was transformed into a bundled fibrous structure after being injected into a co-flow microfluidic device and applying the sheath flow. The resulting MWCNT-bundled gel fibres consist of multiple parallel microfibres. The mechanical and electrical properties of MWCNT-bundled gel fibres were improved and their potential for tissue engineering applications as a cell scaffold was demonstrated. PMID:27200527

  17. Macrodispersion of multi-walled carbon nanotubes for conductive films.

    PubMed

    Kim, Duckjong; Zhu, Lijing; Kim, Jae-Hyun; Han, Chang-Soo; Baik, Seunghyun

    2012-04-01

    Understanding of the effect of the multi-walled carbon nanotube (MWCNT) dispersion process on physical properties of MWCNT film is crucial in process optimization of MWCNT film-based products. In the present work, the electrical conduction property of MWCNT films according to various conditions in MWCNT dispersion is investigated. Spectroscopic analysis of dispersed MWCNTs show that the electrical resistance of the MWCNT conductive film is affected by an increase in the electrical contacts between adjacent CNTs due to CNT debundling and physical damage caused by ultrasonic processing. Based on the two conflicting parameters, dispersion guidelines for highly conductive MWCNT film are presented. PMID:22849134

  18. Reversible thermal switching of aqueous dispersibility of multiwalled carbon nanotubes.

    PubMed

    O'Driscoll, Luke J; Welsh, Daniel J; Bailey, Steven W D; Visontai, David; Frampton, Harry; Bryce, Martin R; Lambert, Colin J

    2015-03-01

    Easily reversible aqueous dispersion/precipitation of multiwalled carbon nanotubes (MWNTs) has been demonstrated using small-molecule non-ionic pyrene-based surfactants, which exhibit lower critical solution temperature (LCST) phase behaviour. The MWNTs are dispersed by means of non-covalent interactions. The dispersibility can be switched "off" (i.e., MWNTs precipitated) upon heating and switched "on" (i.e., MWNTs re-dispersed) upon cooling and merely swirling the sample at room temperature, that is, under very mild conditions. This effect is also observed under high ionic strength conditions with NaCl in the aqueous phase. PMID:25639258

  19. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    SciTech Connect

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-27

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950 deg. C. The lowest resistances were obtained mainly from MWNTs grown at 900 deg. C. The MWNT resistance is larger on average at lower (800 deg. C) and higher (950 deg. C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  20. Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lan, Chun; Amama, Placidus B.; Fisher, Timothy S.; Reifenberger, Ronald G.

    2007-08-01

    A correlation between growth temperature and electrical resistance of multiwalled carbon nanotubes (MWNTs) has been established by measuring the resistance of individual MWNTs grown by microwave plasma-enhanced chemical vapor deposition (PECVD) at 800, 900, and 950°C. The lowest resistances were obtained mainly from MWNTs grown at 900°C. The MWNT resistance is larger on average at lower (800°C) and higher (950°C) growth temperatures. The resistance of MWNTs correlated well with other MWNT quality indices obtained from Raman spectra. This study identifies a temperature window for growing higher-quality MWNTs with fewer defects and lower resistance by PECVD.

  1. Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit, Lance

    2002-01-01

    Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and substrate power has been conducted, and these parameters are found to influence the growth rate, diameter, and morphology. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

  2. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  3. Controlled modification of multiwalled carbon nanotubes with Zno nanostructures

    SciTech Connect

    Wang Xiuying; Xia Baiying; Zhu Xingfu; Chen Jiesheng; Qiu Shilun; Li Jixue

    2008-04-15

    Multiwalled carbon nanotubes (MWNTs) have been successfully modified with ZnO nanostructures by zinc-ammonitum complex ion covalently attached to the MWNTs through the C-N bonds. Flower-like ZnO on the tips of MWNTs and ZnO nanoparticles on the surface of MWNTs have been obtained, respectively, via adjusting the reaction time. The modified MWNTs have been characterized with X-ray diffraction, scanning electron and transmission electron microscopy. A growth mechanism has been proposed in which the soaking time plays a key role in controlling the size, morphology, and site of ZnO nanostructures. Photoluminescence properties of the as-synthesized products have also been investigated. - Multiwalled carbon nanotube (MWNT)/flower-like ZnO heterojunctions and MWNT/ZnO nanoparticle composites were prepared by zinc-ammonitum complex ion covalently attached to the MWNTs through the C-N bonds via adjusting the reaction time. A growth mechanism has been proposed in which the soaking time plays a key role in controlling the size, morphology, and site of ZnO nanostructures.

  4. Modeling Composites of Multi-Walled Carbon Nanotubes in Polycarbonate

    NASA Astrophysics Data System (ADS)

    Jindal, Prashant; Goyal, Meenakshi; Kumar, Navin

    2013-10-01

    High strain rate experiments performed on multi-walled carbon nanotubes, polycarbonate composites (MWCNT-PC) have exhibited enhanced impact resistance under a dynamic strain rate of nearly 2500/s with composition of only 0.5 to 2.0% multi-walled carbon nanotubes (MWCNTs) in pure polycarbonate (PC). Similarly, hardness and elastic modulus under static loads resulted in a significant increase, depending upon the composition of MWCNTs in PC. The present work aims to analyze these results by correlating the data to fit expressions in generalizing the behavior of MWCNTs composition for MWCNT-PC composites under both static and impact loads. As a result, we found that an optimum composition of 2.1 weight % of MWCNTs exhibits maximum stress resistance within elastic range under strain rates of nearly 2500/s for MWCNT-PC composites. The composition of MWCNTs plays a crucial role in maximizing modification of static and dynamic impact-based mechanical properties of polycarbonates. Further, a simple model based on Lennard-Jones 6-12 atom-atom based potential is formulated and used to compute preliminary estimates of static properties of pure as well as composite PC with the aim to modify this in subsequent approaches.

  5. Dislocation dynamics in multiwalled carbon nanotubes at high temperatures.

    PubMed

    Huang, J Y; Ding, F; Yakobson, B I

    2008-01-25

    Dislocation dynamics dictate the mechanical behavior of materials. Dislocations in periodic crystalline materials have been well documented. On the contrary, dislocations in cylindrical carbon nanotubes, particularly in multiwalled carbon nanotubes (MWCNTs), remain almost unexplored. Here we report that a room temperature 1/2<0001> sessile dislocation in a MWCNT becomes highly mobile, as characterized by its glide, climb, and the glide-climb interactions, at temperatures of about 2000 degrees C. The dislocation glide leads to the cross-linking of different shells; dislocation climb creates nanocracks; and the interaction of two 1/2<0001> dislocations creates kinks. We found that dislocation loops act as channels for mass transport. These dislocation dynamics are drastically different from that in conventional periodic crystalline materials due to the cylindrical, highly anisotropic structures of MWCNTs. PMID:18232998

  6. Covalent conjugation of multi-walled carbon nanotubes with proteins.

    PubMed

    Yi, Changqing; Qi, Suijian; Zhang, Dawei; Yang, Mengsu

    2010-01-01

    Linkage of proteins to carbon nanotubes (CNTs) is fundamentally important for applications of CNTs in medicinal and biological fields, as well as in biosensor or chemically modulated nanoelectronic devices. In this contribution, we provide a detailed protocol for the synthesis and characterization of covalent CNT-protein adducts. Functionalization of multiwalled carbon nanotubes (MWCNTs) with proteins has been achieved by the initial carboxylation of MWCNTs followed by amidation with the desired proteins. Attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) measurements validated the presence of a covalent linkage between MWCNTs and proteins. The visualization of proteins on the surface of MWCNTs was furthermore achieved using atomic force microscopy (AFM). The protein-conjugated nanocomposites can also be assembled into multidimensional addressable heterostructures through highly specific biomolecular recognition system (e.g., antibody-antigen). PMID:20422377

  7. Gate-controlled superconductivity in diffusive multiwalled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hakonen, Pertti

    2007-03-01

    We have investigated electrical transport in a diffusive, PECVD-grown multiwalled carbon nanotube contacted using superconducting leads made of Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to Icm= 1.3 nA, tunable by gate voltage. The supercurrent branch displays a finite zero bias resistance which varies as R0Icm^-α with α=0.74. We discuss the interpretation of these findings in terms of the RCSJ-model as well as the diffusive junction model for long SNS structures. In addition, we will compare the results with our recent data on proximity-induced supercurrents in singlewalled carbon nanotubes.

  8. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake

    PubMed Central

    Miralles, Pola; Johnson, Errin; Church, Tamara L.; Harris, Andrew T.

    2012-01-01

    Data on the bioavailability and toxicity of carbon nanotubes (CNTs) in the environment, and, in particular, on their interactions with vascular plants, are limited. We investigated the effects of industrial-grade multiwalled CNTs (75 wt% CNTs) and their impurities on alfalfa and wheat. Phytotoxicity assays were performed during both seed germination and seedling growth. The germinations of both species were tolerant of up to 2560 mg l−1 CNTs, and root elongation was enhanced in alfalfa and wheat seedlings exposed to CNTs. Remarkably, catalyst impurities also enhanced root elongation in alfalfa seedlings as well as wheat germination. Thus the impurities, not solely the CNTs, impacted the plants. CNT internalization by plants was investigated using electron microscopy and two-dimensional Raman mapping. The latter showed that CNTs were adsorbed onto the root surfaces of alfalfa and wheat without significant uptake or translocation. Electron microscopy investigations of internalization were inconclusive owing to poor contrast, so Fe3O4-functionalized CNTs were prepared and studied using energy-filter mapping of Fe3O4. CNTs bearing Fe3O4 nanoparticles were detected in the epidermis of one wheat root tip only, suggesting that internalization was possible but unusual. Thus, alfalfa and wheat tolerated high concentrations of industrial-grade multiwalled CNTs, which adsorbed onto their roots but were rarely taken up. PMID:22977097

  9. Thermal expansion of multiwall carbon nanotube reinforced nanocrystalline silver matrix composite

    SciTech Connect

    Sharma, Manjula Sharma, Vimal; Pal, Hemant

    2014-04-24

    Multiwall carbon nanotube reinforced silver matrix composite was fabricated by novel molecular level mixing method, which involves nucleation of Ag ions inside carbon nanotube dispersion at the molecular level. As a result the carbon nanotubes get embedded within the powder rather than on the surfaces. Micro structural characterization by X- ray diffraction and scanning electron microscopy reveals that the nanotubes are homogeneously dispersed and anchored within the matrix. The thermal expansion of the composite with the multiwall nanotube content (0, 1.5 vol%) were investigated and it is found that coefficient of thermal expansion decreases with the addition of multiwall nanotube content and reduce to about 63% to that of pure Ag.

  10. Lithiation-induced embrittlement of multiwalled carbon nanotubes.

    PubMed

    Liu, Yang; Zheng, He; Liu, Xiao Hua; Huang, Shan; Zhu, Ting; Wang, Jiangwei; Kushima, Akihiro; Hudak, Nicholas S; Huang, Xu; Zhang, Sulin; Mao, Scott X; Qian, Xiaofeng; Li, Ju; Huang, Jian Yu

    2011-09-27

    Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 Å, corresponding to about 5.9% radial and circumferential expansions and ∼50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compression and tension tests show that the lithiated MWCNTs were brittle with sharp fracture edges. Such a failure mode is in stark contrast with that of the pristine MWCNTs which are extremely flexible and fail in a "sword-in-sheath" manner upon tension. The lithiation-induced embrittlement is attributed to the mechanical effect of a "point-force" action posed by the intertubular lithium that induces the stretch of carbon-carbon bonds in addition to that by applied strain, as well as the chemical effect of electron transfer from lithium to the antibonding π orbital that weakens the carbon-carbon bond. The combined mechanical and chemical weakening leads to a considerable decrease of the fracture strain in lithiated MWCNTs. Our results provide direct evidence and understanding of the degradation mechanism of carbonaceous anodes in lithium ion batteries. PMID:21819128

  11. Multiwalled Carbon Nanotubes Inhibit Tumor Progression in a Mouse Model.

    PubMed

    García-Hevia, Lorena; Villegas, Juan C; Fernández, Fidel; Casafont, Íñigo; González, Jesús; Valiente, Rafael; Fanarraga, Mónica L

    2016-05-01

    Understanding the molecular mechanisms underlying the biosynthetic interactions between particular nanomaterials with specific cells or proteins opens new alternatives in nanomedicine and nanotoxicology. Multiwalled carbon nanotubes (MWCNTs) have long been explored as drug delivery systems and nanomedicines against cancer. There are high expectations for their use in therapy and diagnosis. These filaments can translocate inside cultured cells and intermingle with the protein nanofilaments of the cytoskeleton, interfering with the biomechanics of cell division mimicking the effect of traditional microtubule-binding anti-cancer drugs such as paclitaxel. Here, it is shown how MWCNTs can trigger significant anti-tumoral effects in vivo, in solid malignant melanomas produced by allograft transplantation. Interestingly, the MWCNT anti-tumoral effects are maintained even in solid melanomas generated from paclitaxel-resistant cells. These findings provide great expectation in the development of groundbreaking adjuvant synthetic microtubule-stabilizing chemotherapies to overcome drug resistance in cancer. PMID:26866927

  12. Features of the oxidation of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savilov, S. V.; Ivanov, A. S.; Chernyak, S. A.; Kirikova, M. N.; Ni, J.; Lunin, V. V.

    2015-11-01

    Features of the functionalization of multiwalled carbon nanotubes (MWCNTs) with a conical (Ni precursor) and cylindrical (Fe precursor) arrangement of graphene layers using various oxidizing agents are studied. The initial diameter of pyrolytically prepared tubes varies from 20 to 80 nm with a maximum at 40-45 nm and from 10 to 30 nm with a maximum at 18 nm in the first and second cases, respectively. Oxidative modification of the MWCNT surfaces is conducted using HNO3 and H2O2 with ultrasound activation, ozonation in a glow discharge plasma of oxygen, and treatment with liquid ozone. Thermal and elemental analyses and IR spectroscopy show that the highest content of functional groups is achieved in the samples treated with nitric acid, where the conical MWCNTs are subject to surface functionalization. It is concluded that in order to achieve a similar result, cylindrical tubes must be treated with liquid ozone.

  13. Microwave attenuation of multiwalled carbon nanotube-fused silica composites

    SciTech Connect

    Xiang Changshu; Pan Yubai; Liu Xuejian; Sun Xingwei; Shi Xiaomei; Guo Jingkun

    2005-09-19

    Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5 vol % MWCNTs into the composites. The average magnitude of microwave transmission reaches -33 dB at 11-12 GHz in the 10 vol % MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.

  14. Electric current distribution of a multiwall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Chen, Li-Ying; Chen, Yu-Jyun; Chang, Chia-Seng

    2016-07-01

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT's diameter is, the easier the electronic carriers can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.

  15. Magnetic Multi-Walled Carbon Nanotubes for Tumor Theranostics.

    PubMed

    Wang, Lei; Shi, Jinjin; Hao, Yongwei; Zhang, Panpan; Zhao, Yalin; Meng, Dehui; Li, Dong; Chang, Junbiao; Zhang, Zhenzhong

    2015-09-01

    Current diagnostic techniques do not reliably detect cancer at early stages, and traditional chemotherapy lacks specificity and causes systemic toxicity. To address these issues, multifunctional nanomaterials are becoming more widely studied as a means of cancer detection, therapy, and monitoring. Here, iron oxide (Fe3O4) nanoparticles were conjugated onto the surface of multi-walled carbon nanotubes (MWNTs), which were then modified with polyethylenimine (PEI) and polyethylene glycol (PEG) to improve their solubility and biocompatibility. Finally, human telomerase reverse transcriptase (hTERT) siRNA was loaded on the MWNT surface by electrostatic interaction to obtain a multifunctional delivery system (MWNT-Fe3O4-PEI-PEG/siRNA). This delivery system efficiently delivered siRNA, allowed targeting of certain sites by magnetic fields, facilitated photothermal heating by near infrared irradiation, and enabled magnetic resonance imaging, thereby indicating great potential for cancer theranostic applications. PMID:26485934

  16. Control of growth mode of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Quang, Nguyen Hong; Kim, Do-Hyung

    2009-09-01

    We have conducted an experimental study to investigate the synthesis of multi-walled carbon nanotubes (CNTs) by a dc plasma-enhanced chemical vapour deposition (PECVD) technique. The synthesis of base and tip-type of CNTs was selectively controlled by changing the catalyst size, catalyst film thickness correlated with altering the NH3 pretreatment plasma current. These types of CNT showed distinctive properties in nanotube structure, growth rate and vertical alignment, which were confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and in situ optical interference measurement. The vertically aligned behaviour of CNT was systematically studied by using a fine-patterned catalyst layer with diverse critical dimensions. Freestanding single CNT was successfully realized by optimum tip-type CNT growth, conventional photolithography and wet-etch process.

  17. Microwave conductance of aligned multiwall carbon nanotube textile sheets

    NASA Astrophysics Data System (ADS)

    Brown, Brian L.; Bykova, Julia S.; Howard, Austin R.; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark

    2014-12-01

    Multiwall carbon nanotube (MWNT) sheets are a class of nanomaterial-based multifunctional textile with potentially useful microwave properties. To understand better the microwave electrodynamics, complex AC conductance measurements from 0.01 to 50 GHz were made on sheets of highly aligned MWNTs with the alignment texture both parallel and perpendicular to the microwave electric field polarization. In both orientations, the AC conductance is modeled to first order by a parallel frequency-independent conductance and capacitance with no inductive contribution. This is consistent with low-frequency diffusive Drude AC conduction up to 50 GHz, in contrast to the "universal disorder" AC conduction reported in many types of single-wall nanotube materials.

  18. On the tensile strength distribution of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barber, Asa H.; Andrews, Rodney; Schadler, Linda S.; Wagner, H. Daniel

    2005-11-01

    Individual multiwalled carbon nanotubes grown by chemical vapor deposition (CVD) were tensile tested within the chamber of an electron microscope using an atomic force microscope-based technique. Weibull-Poisson statistics could accurately model the nanotube tensile strength data. Weibull shape and scale parameters of 1.7 and 109GPa were obtained. The former reflects a wide variability in strength similar to that observed for high-modulus graphite fibers, while the latter indicates that the irregular CVD-grown tube wall structure requires, in some cases, higher breaking forces than more regular tube wall structures. This apparent strengthening mechanism is most likely caused by an enhanced interaction between the walls of the nanotube.

  19. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; Corat, Evaldo José; May, Paul William; Cardoso, Lays Dias Ribeiro; Lelis, Pedro Almeida; Zanin, Hudson

    2016-08-01

    We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge-discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

  20. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-01

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability. PMID:26549532

  1. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.

    PubMed

    Dunens, Oscar M; MacKenzie, Kieran J; Harris, Andrew T

    2009-10-15

    Carbon nanotubes (CNTs) are an allotrope of carbon with unique properties that make them potentially useful in a vast range of applications. However, CNTs are predominantly produced using expensive and/or nonrecyclable catalyst supports, e.g., mesoporous silica and alumina. In this work, coal combustion fly ash, a bulk waste product with limited uses, was impregnated with iron nitrate and successfully used as a substrate to produce industrial grade multiwalled carbon nanotubes (MWNTs) by fluidized bed chemical vapor deposition. CNTs were analyzed using thermogravimetric analysis, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The most successful catalyst trialed at 650 degrees C using ethylene as a carbon source was a 5 wt % Fe fly ash catalyst, which produced a CNT yield in respect to metal loading of approximately 82.5%. The MWNTs had outer diameters of between 12 and 20 nm with a reasonable degree of wall graphitization (I(G)/I(D) of 1.17). Advantages of utilizing fly ash as a catalyst support are its availability at low cost at the megaton scale, its high thermal stability, and suitability for use in industrial fluidized bed reactors. Potential applications for the fly ash produced CNTs include use in composite materials. PMID:19921910

  2. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    EPA Science Inventory

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  3. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    EPA Science Inventory

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  4. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    NASA Astrophysics Data System (ADS)

    Arora, Neha; Sharma, N. N.

    2016-04-01

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  5. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes.

    PubMed

    Guan, Wen-Jun; Li, Yu; Chen, Yu-Quan; Zhang, Xiao-Bin; Hu, Gui-Quan

    2005-09-15

    This paper describes a disposable electrochemical biosensor for glucose monitoring. The sensor was based on multi-wall carbon nanotubes (MWCNTs) immobilized with glucose oxidase and upon screen printed carbon electrode. The effect of MWCNTs on the response of amperometric glucose oxidase electrode for glucose was examined. Results obtained, of interest for basic and applied biochemistry, represent a first step in construction of a MWCNT-enzyme electrode biosensor with potentialities for a successful application in the biosensor area. PMID:16076441

  6. Electromagnetic properties of texture composite materials based on hexagonal ferrites/multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dotsenko, O. A.; Frolov, K. O.; Wagner, D. V.

    2016-02-01

    In this article, the frequency dependence of the absorption coefficient and electromagnetic losses of the composite based on ferrite powder and / or multi-walled carbon nanotubes are presented. The dielectric and magnetic losses in the composite were measured in the range of 0.01 - 20 GHz. It has been found to increase the absorption of electromagnetic radiation and increased losses in the samples containing multi-walled carbon nanotubes.

  7. Transversely isotropic elastic properties of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shen, Lianxi; Li, Jackie

    2005-01-01

    Five independent effective elastic moduli of a transversely isotropic multiwalled carbon nanotube (MWNT) are studied by analyzing its deformations under four loading conditions, i.e., axial tension, torsional moment, in-plane biaxial tension, and in-plane tension-compression stress. Two distributions of the tension loading on the outermost tube and on all tubes are considered, which correspond to the tensile and compressive Young’s moduli. The general relations between the interwall stresses and strains are linearized due to the small strain condition, where the interwall stresses correspond to the variation of the interwall van der Waals forces. Three interwall elastic constants are used to characterize the linear relations associated with three basic interwall deformation modes, i.e., normal deformation in radial direction and two shear deformations in axial and circumferential directions. By taking each tube as a single-walled carbon nanotube, the analytical expressions for the interwall shear stress under the tensile loading on the outermost tube and five elastic moduli of a double-walled carbon nanotube are first obtained. Then, a replacement method is proposed to derive the corresponding expressions for the cases of more walls than two. These analytical expressions are plotted for the case of MWNT’s composed of armchair tubes, where the interwall elastic constants are approximated as the corresponding ones of the graphite. The effect of the wall number, diameter, chirality, and length of the MWNT on the shear stress and five elastic moduli are displayed and discussed.

  8. Growth of vertically aligned multiwall carbon nanotubes columns

    NASA Astrophysics Data System (ADS)

    Shahzad, M. I.; Giorcelli, M.; Perrone, D.; Virga, A.; Shahzad, N.; Jagdale, P.; Cocuzza, M.; Tagliaferro, A.

    2013-06-01

    Capability of patterning carbon nanotubes (CNTs) growth is of tantamount importance for a number of applications ranging from thermal to electronic. This article reports on the columnar growth of vertically aligned multiwall carbon nanotubes (VA-MWCNTs) on patterned Silicon (Si) surface. We have developed procedures based on negative as well as positive masking approaches which allows the growth of predetermined MWCNTs patterns. We describe in detail the process steps leading to Si surface patterning. As quoted above, patterns are exploited to grow VA-MWCNTs. We have focused in particular on the growth of CNT pillars by chemical vapor despoition (CVD) technique at 850°C with camphor and ferrocene as carbon precursors and catalyst respectively. Field emission scanning electron microscopy (FESEM) is employed at low magnification to verify the correct patterning, and at high magnification to examine the surface morphology of CNTs pillars. The pillars are up to 2 mm high, their height being tailored through the deposition time. The diameter of each MWCNT is in the range 30-70 nm and the length is up to few hundred micrometers. The small CNT pillars produced, have several electrical and thermal applications. For instance they can be very useful for heat transfer systems as the lower thermal conductivity of fluids can be improved by the inclusion of nanotubes thanks to their peculiar 1-dimensional heat transfer characteristics.

  9. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.

    PubMed

    Randeniya, Lakshman K; Bendavid, Avi; Martin, Philip J; Tran, Canh-Dung

    2010-08-16

    Unique macrostructures known as spun carbon-nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room-temperature conductivities of about 5 x 10(2) S cm(-1). Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal-CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self-fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu-CNT and Au-CNT composite yarns prepared by this method have metal-like electrical conductivities (2-3 x 10(5) S cm(-1)) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30-50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications. PMID:20665629

  10. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  11. Surface modification of multiwall carbon nanotubes by sulfonitric treatment

    NASA Astrophysics Data System (ADS)

    Gómez, Sofía; Rendtorff, Nicolás M.; Aglietti, Esteban F.; Sakka, Yoshio; Suárez, Gustavo

    2016-08-01

    Carbon nanotubes are widely used for electronic, mechanical, and optical devices due to their unique structural and quantum characteristics. The species generated by oxidation on the surface of these materials permit binding new reaction chains, which improves the dispersibility, processing and compatibility with other materials. Even though different acid treatments and applications of these CNT have been reported, relatively few research studies have focused on the relationship between the acid treatment and the formation of nanodefects, specific oxidized species or CNT surface defects. In this work, multiwall carbon nanotube (MWCNT) oxidation at 90 °C was characterized in order to determine the acid treatment effect on the surface. It was found that oxidized species are already present in MWCNT without an acid treatment, but there are not enough to cause water-based dispersion. The species were identified and quantified by infrared spectroscopy and X-ray photoelectron spectroscopy. Also, transmission electron microscopy observations showed not only modifications of the oxidized species, but also morphological damage on the surfaces of MWCNT after being subjected to the acid treatment. This effect was also confirmed by Raman spectroscopy. The acid treatment generates higher oxidized species, decreasing the zeta potential in the whole pH range.

  12. Heat Dissipation for Microprocessor Using Multiwalled Carbon Nanotubes Based Liquid

    PubMed Central

    Trinh, Pham Van; Chuc, Nguyen Van; Khoi, Phan Hong; Minh, Phan Ngoc

    2013-01-01

    Carbon nanotubes (CNTs) are one of the most valuable materials with high thermal conductivity (2000 W/m · K compared with thermal conductivity of Ag 419 W/m · K). This suggested an approach in applying the CNTs in thermal dissipation system for high power electronic devices, such as computer processor and high brightness light emitting diode (HB-LED). In this work, multiwalled carbon nanotubes (MWCNTs) based liquid was made by COOH functionalized MWCNTs dispersed in distilled water with concentration in the range between 0.2 and 1.2 gram/liter. MWCNT based liquid was used in liquid cooling system to enhance thermal dissipation for computer processor. By using distilled water in liquid cooling system, CPU's temperature decreases by about 10°C compared with using fan cooling system. By using MWCNT liquid with concentration of 1 gram/liter MWCNTs, the CPU's temperature decreases by 7°C compared with using distilled water in cooling system. Theoretically, we also showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results have confirmed the advantages of the MWCNTs for thermal dissipation systems for the μ-processor and other high power electronic devices. PMID:24453829

  13. Turning refuse plastic into multi-walled carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Oh, Eugene; Lee, Jaegeun; Jung, Seung-Ho; Cho, Seungho; Kim, Hye-Jin; Lee, Sung-Hyun; Lee, Kun-Hong; Song, Kyong-Hwa; Choi, Chi-Hoon; Han, Do Suck

    2012-04-01

    A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ~2.5 μm min-1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20-30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs). We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries.

  14. A mediatorless biosensor for putrescine using multiwalled carbon nanotubes.

    PubMed

    Rochette, J-F; Sacher, E; Meunier, M; Luong, J H T

    2005-01-15

    Poly(diallyldimethylammonium) chloride, having a capability of dispersing multiwalled carbon nanotubes (MWCNTs), permits the modification of electrode surfaces. Together with putrescine oxidase, a MWCNT modified glassy carbon electrode was constructed for the development of a mediatorless putrescine biosensor. Nanoscale "dendrites" of MWCNTs were reasoned to form a network, projecting outward from the electrode surface acting like bundled ultra-microelectrodes, thereby permitting access to the active site and facilitating direct electron transfer to the immobilized enzyme. Our biosensor was capable of efficiently monitoring the direct electroactivity of putrescine oxidase at the electrode surface. Direct electron transfer permits the detection of putrescine at negative potentials, circumventing the interference of endogenous ascorbic and uric acids, which often complicate the analysis of important compounds in plasma. Compared with the most common interfering species, such as spermine, spermidine, cadaverine, and histamine, a detection limit of 5 microM and a response 20 times greater were found for putrescine. Tests performed on plasma of cancerous mice demonstrated that the detection of putrescine could be carried out very quickly on mammalian plasma without previous purification. PMID:15620897

  15. Multi-walled carbon nanotubes with rectangular or square cross-section

    NASA Astrophysics Data System (ADS)

    Mizutani, Kanako; Kohno, Hideo

    2016-06-01

    Multi-walled carbon nanotubes with rectangular or square cross-section are formed. The nanotubes are about 50-200 nm in width, and their walls are around 5-30 nm thick. It is very likely that the rectangular cross-section is shaped simultaneously when nanotubes are formed from catalyst Fe nanoparticles during chemical vapor deposition process, and the shape is stabilized by the bonding between adjoining graphene layers in the multi-walled structure.

  16. Mobility of Multi-walled Carbon Nanotubes in Porous Media

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Liu, X.; Petersen, E.; Huang, Q.; Anderson, L.

    2007-12-01

    Engineered multi-walled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However concerns have been raised regarding their potential environmental and health risks. The mobility of MWCNTs in porous media is examined in this study through one dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. The goal of this work was to determine dominant MWCNT removal mechanisms and factors that control MWCNT transport. Results demonstrate that pore water velocity strongly influenced MWCNT transport, a result that stands in contrast to traditional colloid filtration theory, which suggests a relatively minor effect of flow velocity in comparison to Brownian diffusion. Experiments conducted at different ionic strengths indicate that both particle deposition and straining are important MWCNT removal mechanisms from the aqueous phase. Given these findings, traditional colloid filtration theory may not be appropriate for the prediction of MWCNT mobility in porous media. This may be due to the large aspect ratio of the MWCNTs and the importance of straining in MWCNT removal.

  17. Multi-walled carbon nanotube-based RF antennas

    NASA Astrophysics Data System (ADS)

    Elwi, Taha A.; Al-Rizzo, Hussain M.; Rucker, Daniel G.; Dervishi, Enkeleda; Li, Zhongrui; Biris, Alexandru S.

    2010-01-01

    A novel application that utilizes conductive patches composed of purified multi-walled carbon nanotubes (MWCNTs) embedded in a sodium cholate composite thin film to create microstrip antennas operating in the microwave frequency regime is proposed. The MWCNTs are suspended in an adhesive solvent to form a conductive ink that is printed on flexible polymer substrates. The DC conductivity of the printed patches was measured by the four probe technique and the complex relative permittivity was measured by an Agilent E5071B probe. The commercial software package, CST Microwave Studio (MWS), was used to simulate the proposed antennas based on the measured constitutive parameters. An excellent agreement of less than 0.2% difference in resonant frequency is shown. Simulated and measured results were also compared against identical microstrip antennas that utilize copper conducting patches. The proposed MWCNT-based antennas demonstrate a 5.6% to 2.2% increase in bandwidth, with respect to their corresponding copper-based prototypes, without significant degradation in gain and/or far-field radiation patterns.

  18. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg's reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm-1 corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  19. Biological effects of agglomerated multi-walled carbon nanotubes.

    PubMed

    Song, Zheng-Mei; Wang, Lin; Chen, Ni; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2016-06-01

    The physicochemical properties of nanomaterials play crucial roles in determining their biological effects. Agglomeration of nanomaterials in various systems is a common phenomenon, however, how agglomeration affects the biological consequence of nanomaterials has not been well investigated because of its complexity. Herein, we prepared variable sized agglomerates of oxidized multi-walled carbon nanotubes (O-MWCNTs) by using Ca(2+) and studied their cellular uptake and cytotoxicity in HeLa cells. We found the altered property of O-MWCNTs agglomerates could be controlled and adjusted by the amount of Ca(2+). Agglomeration remarkably facilitated the cellular uptake of O-MWCNTs at the initial contact stage, due to the easy contact of agglomerates with cells. But agglomeration did not induce evident cytotoxicity when the concentration of O-MWCNTs was less than 150μg/mL. That was assayed by cell proliferation, membrane integrity, apoptosis and ROS generation. This study suggests us that the biological behaviors of nanomaterials could be altered by their states of agglomeration. PMID:26930035

  20. Nanoporous silica membranes fabricated using multiwalled carbon nanotubes.

    PubMed

    Kim, Hun-Sik; Kwon, Ha Il; Yun, Young Soo; Bak, Hyeonseong; Yoon, Jin-San; Jin, Hyoung-Joon

    2011-05-01

    Nanoporous silica membranes were fabricated using 3-aminopropyltriethoxysilane (APS) and acyl chloride-functionalized multiwalled carbon nanotubes (MWCNTs). The amine groups of silane reacted with the functional groups (e.g., acid chloride) that were attached to the sidewall of the MWCNTs. The APS that was grafted to the sidewall of the MWCNTs was polymerized in order to coat the MWCNTs wall through heating. The thickness of the silica layer on the surface of the MWCNTs was controlled by adjusting the growth time of the SiO2 layer. Approximately 20 nm-sized pores were formed through the removal of the MWCNTs using a simple thermal process, but some traces of the MWCNTs still remained. The porous properties of the nanoporous silica membrane were analyzed from the nitrogen adsorption-desorption isotherms that were obtained using a surface area and porosimetry analyzer. The structure and composition of the silane-modified MWCNTs were characterized using scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy. PMID:21780471

  1. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Delozier, Donavon M.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multi-functionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approx. 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy and Raman spectroscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites,

  2. Electrical properties of multiwalled carbon nanotube reinforced fused silica composites.

    PubMed

    Xiang, Changshu; Pan, Yubai; Liu, Xuejian; Shi, Xiaomei; Sun, Xingwei; Guo, Jingkun

    2006-12-01

    Multiwalled carbon nanotube (MWCNT)-fused silica composite powders were synthesized by solgel method and dense bulk composites were successfully fabricated via hot-pressing. This composite was characterized by XRD, HRTEM, and FESEM. MWCNTs in the hot-pressed composites are in their integrity observed by HRTEM. The electrical properties of MWCNT-fused silica composites were measured and analyzed. The electrical resistivity was found to decrease with the increase in the amount of the MWCNT loading in the composite. When the volume percentage of the MWCNTs increased to 5 vol%, the electrical resistivity of the composite is 24.99 omega cm, which is a decrease of twelve orders of value over that of pure fused silica matrix. The electrical resistivity further decreases to 1.742 omega. cm as the concentration of the MWCNTs increased to 10 vol%. The dielectric properties of the composites were also measured at the frequency ranging from 12.4 to 17.8 GHz (Ku band) at room temperature. The experimental results reveal that the dielectric properties are extremely sensitive to the volume percentage of the MWCNTs, and the permittivities, especially the imaginary permittivities, increase dramatically with the increase in the concentration of the MWCNTs. The improvement of dielectric properties in high frequency region mainly originates from the greatly increasing electrical properties of the composite. PMID:17256338

  3. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    NASA Astrophysics Data System (ADS)

    Brown, Brian L.; Martinez, Patricia; Zakhidov, Anvar A.; Shaner, Eric A.; Lee, Mark

    2015-07-01

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. This is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  4. Ionization Gas Sensor using Aligned Multiwalled Carbon Nanotubes Array

    SciTech Connect

    Kermany, A. R.; Mohamed, N. M.; Singh, B. S. M.

    2011-05-25

    The challenge with current conventional gas sensors which are operating using semiconducting oxides is their size. After the introduction of nanotechnology and in order to reduce the dimension and consequently the power consumption and cost, new materials such as carbon nanotubes (CNTs) are being introduced. From previous works and characterization results, it was proven that the CNTs based gas sensor has better sensitivity, selectivity and faster response time in compared with semiconducting oxides based gas sensors. As in this work, a fabrication and successful testing of an ionization-based gas sensor using aligned Multiwalled CNTs (MWCNTs) as sensing element is discussed, in which MWCNTs array and Al film are used as anode and cathode plates respectively with electrode separation ranging from 80 {mu}m to 140 {mu}m. Aligned MWCNTs array was incorporated into a sensor configuration in the gas chamber for testing of gases such as argon, air, and mixed gas of 2%H{sub 2} in air. Obtained results show that among the three gases, argon has the lowest breakdown voltage whilst air has the highest value and the breakdown voltage was found to decrease as the electrode spacing was reduced from 140 {mu}m to 80 {mu}m for all three gases.

  5. Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.

    2005-01-01

    As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, moldings

  6. Reinforcing multiwall carbon nanotubes by electron beam irradiation

    SciTech Connect

    Duchamp, Martial; Meunier, Richard; Smajda, Rita; Mionic, Marijana; Forro, Laszlo; Magrez, Arnaud; Seo, Jin Won; Song, Bo; Tomanek, David

    2010-10-15

    We study the effect of electron beam irradiation on the bending modulus of multiwall carbon nanotubes grown by chemical vapor deposition. Atomic force microscopy observations of the nanotube deflection in the suspended-beam geometry suggest an internal, reversible stick-slip motion prior to irradiation, indicating presence of extended defects. Upon electron beam irradiation, nanotubes with an initial bending modulus exceeding 10 GPa initially get stiffer, before softening at high doses. Highly defective nanotubes with smaller initial bending moduli do not exhibit the initial reinforcement. These data are explained by ab initio molecular dynamics calculations suggesting a spontaneous cross-linking of neighboring nanotube walls at extended vacancy defects created by the electron beam, in agreement with electron microscopy observations. At low defect concentration, depending on the edge morphology, the covalent bonds between neighboring nanotube walls cause reinforcement by resisting relative motion of neighboring walls. At high concentration of defects that are present initially or induced by high electron beam dose, the structural integrity of the entire system suffers from increasing electron beam damage.

  7. Surface studies of hydroxylated multi-wall carbon nanotubes

    SciTech Connect

    Bradley, Robert; Cassity, Kelby; Andrews, Rodney; Meier, Mark; Osbeck, Susan; Andreu, Aurik; Johnston, Colin; Crossley, Alison

    2012-01-01

    CVD grown MWCNTs, of typical diameter 5 to 50 nm and with approximately 15-20 concentric graphene layers in the multi-walls, have been surface functionalised using the Fenton hydroxylation reaction. HRTEM reveals little physical difference between the treated and untreated materials; images from both exhibit similar multi-wall structure and contain evidence for some low-level disruption of the very outermost layers. Raman spectra from the two types of nanotubes are almost identical displaying the disorder (D) peaks at approximately 1350 cm{sup -1} and graphite (G) peaks at approximately 1580 cm{sup -1}, characteristic of graphene-based carbon materials, in approximately equal intensity ratios. Equilibrium adsorption data for nitrogen at 77 K leads to BET surface areas of 60.4 m{sup 2} g{sup -1} for the untreated and 71.8 m{sup 2} g{sup -1} for the hydroxylated samples; the increase in area being due to separation of the tube-bundles during functionalization. This is accompanied by a decrease in measured porosity, mostly at high relative pressures of nitrogen, i.e. where larger (meso 2-5 nm and macro >5 nm) pores are being filled, which is consistent with an attendant loss of inter-tube capillarity. X-ray photoelectron spectroscopy (XPS) shows that hydroxylation increases the nanotube surface oxygen level from 4.3 at.% to 22.3 at.%; chemical shift data indicate that approximately 75% of that oxygen is present as hydroxyl (-OH) groups. Water vapour adsorption by the hydroxylated surfaces leads to Type II isotherms which are characteristic of relatively high numbers of hydrogen bonding interactions compared to the untreated materials which exhibit Type III curves. This difference in polar surface energy is confirmed by calorimetric enthalpies of immersion in water which are -54 mJ m{sup -2} for the untreated and -192 mJ m{sup -2} for the hydroxylated materials. The treated materials therefore have significantly increased water wettability/dispersivity and a greater

  8. Fabrication and characterization of the composites reinforced with multi-walled carbon nanotubes.

    PubMed

    Her, Shiuh-Chuan; Yeh, Shun-Wen

    2012-10-01

    Carbon nanotubes with superior mechanical, electrical and thermal properties have received intensive attention in recent years. In this study, multi-walled carbon nanotubes (MWCNT) were infused into a liquid epoxy, and the solution was sonicated for three hours to separate the aggregation of the MWCNTs and achieve good dispersion. The trapped air was removed from the mixture using a high vacuum. To investigate the effect of matrix stiffness on the mechanical properties of the MWCNT nanocomposites, the mixture ratio between the epoxy and hardener was varied. Two different contents (1% wt. and 2% wt.) of the multi-walled carbon nanotubes were added into the epoxy matrix. Tensile tests were conducted to determine the Young's modulus, yielding stress and tensile strength of the nanocomposites. The natural frequency and damping ratio of the nanocomposites were evaluated using free vibration tests. Experimental results show that the Young's modulus and natural frequency of MWCNT/epoxy nanocomposites increase with increase of the addition of multi-walled carbon nanotubes. While the damping ratio of the nanocomposites decreases with increase of the multi-walled carbon nanotubes. The reinforcement role of the multi-walled carbon nanotubes is less significant in a hard matrix when compares with a soft matrix. PMID:23421186

  9. Multiwalled carbon nanotube hybrids as MRI contrast agents

    PubMed Central

    Tomczyk, Mateusz Michał

    2016-01-01

    Summary Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  10. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  11. Multiwalled carbon nanotube hybrids as MRI contrast agents.

    PubMed

    Kuźnik, Nikodem; Tomczyk, Mateusz Michał

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  12. The effects of multi-walled carbon nanotubes on soil microbial community functional and structural diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applications of nanomaterials, including carbon nanotubes (CNTs), are increasing; however, their impact on the environment is still not well understood. A semi-arid soil was treated with multi-walled carbon nanotubes (MWCNTs) at four different concentrations (10-10000 mgMWCNTs kg-1soil), and incubat...

  13. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  14. 75 FR 44198 - Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... public comment period established in the Federal Register of February 3, 2010 (75 FR 5546) (FRL-8796-7... AGENCY 40 CFR Part 721 RIN 2070-AB27 Proposed Significant New Use Rule for Multi-walled Carbon Nanotubes... multi-walled carbon nanotubes (P-08-199). In order to address public comments, EPA is adding...

  15. Nanostructured copper phthalocyanine-sensitized multiwall carbon nanotube films.

    PubMed

    Hatton, Ross A; Blanchard, Nicholas P; Stolojan, Vlad; Miller, Anthony J; Silva, S Ravi P

    2007-05-22

    We report a detailed study of the interaction between surface-oxidized multiwall carbon nanotubes (o-MWCNTs) and the molecular semiconductor tetrasulfonate copper phthalocyanine (TS-CuPc). Concentrated dispersions of o-MWCNT in aqueous solutions of TS-CuPc are stable toward nanotube flocculation and exhibit spontaneous nanostructuring upon rapid drying. In addition to hydrogen-bonding interactions, the compatibility between the two components is shown to result from a ground-state charge-transfer interaction with partial charge transfer from o-MWCNT to TS-CuPc molecules orientated such that the plane of the macrocycle is parallel to the nanotube surface. The electronegativity of TS-CuPc as compared to unsubsubtituted copper phthalocyanine is shown to result from the electron-withdrawing character of the sulfonate substituents, which increase the molecular ionization potential and promote cofacial molecular aggregation upon drying. Upon spin casting to form uniform thin films, the experimental evidence is consistent with an o-MWCNT scaffold decorated with phthalocyanine molecules self-assembled into extended aggregates reminiscent of 1-D linearly stacked phthalocyanine polymers. Remarkably, this self-organization occurs in a fraction of a second during the spin-coating process. To demonstrate the potential utility of this hybrid material, it is successfully incorporated into a model organic photovoltaic cell at the interface between a poly(3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction layer and an indium-tin oxide-coated glass electrode to increase the light-harvesting capability of the device and facilitate hole extraction. The resulting enhancement in power conversion efficiency is rationalized in terms of the electronic, optical, and morphological properties of the nanostructured thin film. PMID:17439261

  16. The hepatotoxicity of multi-walled carbon nanotubes in mice

    NASA Astrophysics Data System (ADS)

    Ji, Zongfei; Zhang, Danying; Li, Ling; Shen, Xizhong; Deng, Xiaoyong; Dong, Ling; Wu, Minhong; Liu, Yuanfang

    2009-11-01

    The hepatotoxicity of two types of multi-walled carbon nanotubes (MWCNTs), acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs), were investigated with Kunming mice exposed to 10 and 60 mg kg-1 by intravenous injection for 15 and 60 d. Compared with the PBS group, the body-weight gain of the mice decreased and the level of total bilirubin and aspartate aminotransferase increased in the MWCNT-exposed group with a significant dose-effect relationship, while tumor necrosis factor alpha level did not show significant statistical change within 60 d. Spotty necrosis, inflammatory cell infiltration in portal region, hepatocyte mitochondria swelling and lysis were observed with a significant dose-effect relationship in the MWCNT groups. Liver damage of the T-MWCNT group was more severe than that of the O-MWCNT group according to the Roenigk classification system. Furthermore, T-MWCNTs induce slight liver oxidative damage in mice at 15 d, which was recovered at 60 d. Part of the gene expressions of mouse liver in the MWCNT groups changed compared to the PBS group, including GPCRs (G protein-coupled receptors), cholesterol biosynthesis, metabolism by cytochrome P450, natural-killer-cell-mediated cytotoxicity, TNF- α, NF-κB signaling pathway, etc. In the P450 pathway, the gene expressions of Gsta2 (down-regulated), Cyp2B19 (up-regulated) and Cyp2C50 (down-regulated) had significant changes in the MWCNT groups. These results show that a high dose of T-MWCNTs can induce hepatic toxicity in mice while O-MWCNTs seem to have less toxicity.

  17. Buckling of Multiwall Carbon Nanotubes under Axial Compression

    NASA Astrophysics Data System (ADS)

    Akita, Seiji; Nishio, Mitsumasa; Nakayama, Yoshikazu

    2006-06-01

    We have investigated the axial buckling of multiwall nanotubes under the axial compression using nanomanipulation experiments and molecular dynamics (MD) simulations. Experimentally, Young’s moduli of nanotubes with different inner hollow diameters for the same outer diameters are consistent with the Eulers buckling model based on the continuum analysis. The MD simulations for the buckling behavior of triple- and double-walled nanotubes are also consistent with the continuum analysis. This good agreement indicates that Euler’s buckling model is applicable to the analysis of the axial buckling behavior of the multiwall nanotubes.

  18. Quantum oscillations and ferromagnetic hysteresis observed in iron filled multiwall carbon nanotubes.

    PubMed

    Barzola-Quiquia, J; Klingner, N; Krüger, J; Molle, A; Esquinazi, P; Leonhardt, A; Martínez, M T

    2012-01-13

    We report on the electrical transport properties of single multiwall carbon nanotubes with and without an iron filling as a function of temperature and magnetic field. For the iron filled nanotubes the magnetoresistance shows a magnetic behavior induced by iron, which can be explained by taking into account a contribution of s-d hybridization. In particular, ferromagnetic-like hysteresis loops were observed up to 50 K for the iron filled multiwall carbon nanotubes. The magnetoresistance shows quantum interference phenomena such as universal conductance fluctuations and weak localization effects. PMID:22155967

  19. Evaluation of Fibrogenic Potential of Industrial Multi-Walled Carbon Nanotubes in Acute Aspiration Experiment

    PubMed Central

    Khaliullin, T. O.; Shvedova, A. A.; Kisin, E. R.; Zalyalov, R. R.; Fatkhutdinova, L. M.

    2015-01-01

    Local inflammatory response in the lungs and fibrogenic potential of multi-walled carbon nanotubes were studied in an acute aspiration experiment in mice. The doses were chosen based on the concentration of nanotubes in the air at a workplace of the company-producer. ELISA, flow cytometry, enhanced darkfield microscopy, and histological examination showed that multi-walled carbon nanotubes induced local inflammation, oxidative stress, and connective tissue growth (fibrosis). Serum levels of TGF-β1 and osteopontin proteins can serve as potential exposure biomarkers. PMID:25778660

  20. Numerical simulation of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wu, Xingxing; Yun, Maojin; Wang, Mei; Liu, Chao; Li, Kai; Qin, Xiheng; Kong, Weijin; Dong, Lifeng

    2015-12-01

    A kind of polarization beam splitter with triangular lattice of multi-walled carbon nanotube arrays is designed and simulated. In the employed structure transverse-electric (TE) light is confined in the line defect with photonic band gap effect, while transverse-magnetic (TM) light is guided through it with extremely low diffraction. The performance of the designed polarization beam splitter is evaluated by utilizing optical properties of multi-walled carbon nanotubes, finite element modeling of wave propagation and transmission through periodic arrays. Simulation results indicate that the designed polarization beam splitter has low loss and less cross talk, and thereby may have practical applications in the integrated optical field.

  1. a Diffusive-Transport Approach to Determine the Electrical Conductance of AN Imperfect Multiwalled Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Grado-Caffaro, Maria Angeles; Grado-Caffaro, Martin

    2014-05-01

    In this paper, we propose a diffusive-transport-based analytical formulation to calculate the linear electrical conductance through a multiwalled carbon nanotube with defects. In fact, on the one hand, by considerations on diffusive transport and, on the other hand, using the Drude model, we find out that the conductance (at Fermi energy) of an imperfect multiwalled carbon nanotube is approximately equal to the fundamental conductance quantum multiplied by the number of layers (or shells) of the tube. Our result agrees with experimental data.

  2. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    NASA Astrophysics Data System (ADS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-05-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  3. Synthesis and characterization of polyaniline grafted multiwalled carbon nanotube loaded Nafion-silica nanocomposite membrane.

    PubMed

    Ragupathy, D; Gopalan, A; Kim, Kyeong-Wung; Lee, Kwang Pill

    2011-01-01

    The preparation and characterization results of a new nanocomposite, polyaniline (PANI) grafted multiwalled carbon nanotube (MWNT) loaded Nafion-silica, (designated as Nafion-silica/MWNT-g-PANI), are reported in this paper. The preparation involves the formation of a silica network in a Nafion membrane and the subsequent loading of polyaniline-grafted multiwalled carbon nanotubes (MWNT-g-PANI) onto the Nafion-silica nanocomposite. The new nanocomposite, Nafion-silica/ MWNT-g-PANI, was characterized as to its morphology, structure and properties. The conductivity and methanol permeability of the nanocomposite membranes were evaluated. PMID:21446537

  4. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    EPA Science Inventory

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  5. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development.

    PubMed

    Huang, Xinglu; Zhang, Fan; Sun, Xiaolian; Choi, Ki-Young; Niu, Gang; Zhang, Guofeng; Guo, Jinxia; Lee, Seulki; Chen, Xiaoyuan

    2014-01-01

    In many cases cancer is caused by gene deficiency that is being passed along from generation to generation. Soluble carbon nanotubes (CNTs) have shown promising applications in the diagnosis and therapy of cancer, however, the potential relationship between cancer-prone individuals and response to CNT exposure as a prerequisite for development of personalized nanomedicine, is still poorly understood. Here we report that intravenous injections of multi-walled carbon nanotubes into p53 (a well-known cancer-susceptible gene) heterozygous pregnant mice can induce p53- dependent responses in fetal development. Larger sized multi-walled carbon nanotubes moved across the blood-placenta barrier (BPB), restricted the development of fetuses, and induced brain deformity, whereas single-walled and smaller sized multi-walled carbon nanotubes showed no or less fetotoxicity. A molecular mechanism study found that multi-walled carbon nanotubes directly triggered p53-dependent apoptosis and cell cycle arrest in response to DNA damage. Based on the molecular mechanism, we also incorporated N-acetylcysteine (NAC), an FDA approved antioxidant, to prevent CNTs induced nuclear DNA damage and reduce brain development abnormalities. Our findings suggest that CNTs might have genetic background-dependent toxic effect on the normal development of the embryo, and provide new insights into protection against nanoparticle-induced toxicity in potential clinical applications. PMID:24344357

  6. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development

    PubMed Central

    Huang, Xinglu; Zhang, Fan; Sun, Xiaolian; Choi, Ki Young; Niu, Gang; Zhang, Guofeng; Guo, Jinxia; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    In many cases cancer is caused by gene deficiency that is being passed along from generation to generation. Soluble carbon nanotubes (CNTs) have shown promising applications in the diagnosis and therapy of cancer, however, the potential relationship between cancer-prone individuals and response to CNT exposure as a prerequisite for development of personalized nanomedicine, is still poorly understood. Here we report that intravenous injections of multi-walled carbon nanotubes into p53 (a well-known cancer susceptible gene) heterozygous pregnant mice can induce p53- dependent responses in fetal development. Larger sized multi-walled carbon nanotubes moved across the blood-placenta barrier (BPB), restricted the development of fetuses, and induced brain deformity, whereas single-walled and smaller sized multi-walled carbon nanotubes showed no or less fetotoxicity. A molecular mechanism study found that multi-walled carbon nanotubes directly triggered p53-dependent apoptosis and cell cycle arrest in response to DNA damage. Based on the molecular mechanism, we also incorporated N-acetylcysteine (NAC), a FDA approved antioxidant, to prevent CNTs induced nuclear DNA damage and reduce brain development abnormalities. Our findings suggest that CNTs might have genetic background-dependent toxic effect on the normal development of the embryo, and provide new insights into protection against nanoparticle-induced toxicity in potential clinical applications. PMID:24344357

  7. Multiwalled carbon nanotube CVD synthesis, modification, and composite applications

    NASA Astrophysics Data System (ADS)

    Qian, Dali

    Well-aligned carbon multiwall nanotube (MWNT) arrays have been continuously synthesized by a floating catalytic chemical vapor deposition (CVD) method involving the pyrolysis of xylene-ferrocene mixtures. The CVD parameters have been studied to selectively synthesize nanotubes with required dimensions. A mixed tip-root growth model has been proposed for the floating catalytic CVD synthesis. Coarsening of the catalyst particle at the root end promoted MWNT wall coarsening (addition of new concentric graphene shells), while the smaller catalyst particle at the tip contributed to MWNT elongation. A two-step process in which ferrocene was fed for only five minutes to nucleate the DTs was developed to understand if a continuous supply of catalyst was necessary for continued growth. The results show that the ferrocene was only necessary for initial nucleation. To simplify the CVD process further, another two-step synthesis method was developed in which the ferrocene was pre-decomposed so that the nanotube nucleation could be isolated from the growth, enabling quantification of growth mechanisms and kinetics. Mass spectra and hydrocarbon analyses of the CVD reactor tail gas were performed to understand the pyrolysis chemistry. Well-aligned N-doped and Ru-doped MWNT arrays have been produced by pyrolysis of pyridine ferrocene mixtures and xylene-ferrocene-ruthenocene mixtures, respectively. Various material characterization techniques were used to measure the dopant distributions and correlate the catalyst phase with the novel nanotube structures. High-temperature annealing has been shown to be a viable means to remove both the catalyst particles and certain microstructural defects within the CVD-derived DTs. The phase transformation of catalyst during annealing has also been studied. Homogeneous distribution of MWNTs in polystyrene matrices was achieved by an ultrasonic assisted solution-evaporation method. Addition of only 1 wt % DTs to polystyrene increased the polymer

  8. Infrared photoluminescence of composite films containing quasi-isolated multiwalled carbon nanotubes and carbon nanoshells.

    PubMed

    Reyes-Reyes, M; Segura-Cardenas, E; Gorbatchev, A Yu; López-Sandoval, R

    2010-07-01

    Films of small irregular-shaped aggregates composed by several layers of turbostratic graphite encapsulating iron nanoparticles, like carbon nanoshells, and quasi-isolated multi-walled carbon nanotubes (MWCNTs), were synthesized by the chemical vapor deposition method on glass substrates. Quasi-isolated MWCNTs were found emerging in different directions on the agglomerates composed of carbon nanoshells. The morphological properties of the films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy, whereas their optical properties were investigated using optical absorption and photoluminescence (PL) spectroscopy. The studies show a high-intensity PL signal in the infrared at room temperature. This PL signal shows several peaks, which cannot be explained by a blackbody emission. However, the overall PL signal could be a combination of the black emission and electronic transitions. Furthermore, the observed infrared PL emission could be ideal for potential applications such as in gas sensors, infrared detectors and so on. PMID:21128424

  9. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites.

    PubMed

    Yang, Yonglai; Gupta, Mool C; Dudley, Kenneth L; Lawrence, Roland W

    2005-06-01

    Electromagnetic interference shielding properties of carbon nanofiber- and multi-walled carbon nanotube-filled polystyrene composites were investigated in the frequency range of 8.2-12.4 GHz (X-band). It was observed that the shielding effectiveness of composites was frequency independent, and increased with the increase of carbon nanofiber or nanotube loading. At the same filler loading, multi-walled carbon nanotube-filled polystyrene composites exhibited higher shielding effectiveness compared to those filled with carbon nanofibers. In particular, carbon nanotubes were more effective than nanofibers in providing high EMI shielding at low filler loadings. The experimental data showed that the shielding effectiveness of the composite containing 7 wt% carbon nanotubes could reach more than 26 dB, implying that such a composite can be used as a potential electromagnetic interference shielding material. The dominant shielding mechanism of carbon nanotube-filled polystyrene composites was also discussed. PMID:16060155

  10. Comprehensive Environmental Assessment Applied to Multiwalled Carbon Nanotube Flame-Retardant Coatings in Upholstery Textiles: A Case Study Presenting Priority Research Gaps for Future Risk Assessments (Final Report)

    EPA Science Inventory

    multiwalled_cover.jpg" alt="Cover of the Multiwalled Carbon Nanotube Case Study Final Report" vspace = "5" hspace="5" align="right" border="1" /> This final report presents a case study of multiwalled carbon nanotube...

  11. 40 CFR 721.10279 - Multi-walled carbon nanotubes (generic) (P-10-246).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic) (P-10-246). 721.10279 Section 721.10279 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  12. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  13. Enhanced sensing of NH3 gas by decorated multiwalled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hasnahena, S. T.; Satpati, Biswarup; Roy, Madhusudan

    2016-05-01

    The present study describes synthesis of Barium Oxide Nanoparticles decorated Multiwalled Carbon Nanotubes and its gas sensing behavior towards NH3 and CO gases. The decorated MWCNT sensor has an enhanced sensing towards NH3 gas compare to pure MWCNT sensor and also has much reduced response and recovery time. The prepared sensing material is characterized by TEM, XRD and Thermal Gravimetric analysis.

  14. 40 CFR 721.10276 - Multi-walled carbon nanotubes (generic) (P-10-39).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., metal, glass, or ceramic form that is not intended to undergo further processing except for mechanical processing. (2) The significant new uses are: (i) Protection in the workplace. Requirements as specified in... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes...

  15. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  16. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment...

  17. 77 FR 39236 - Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ...EPA is announcing a 60-day public comment period for the external review draft document titled, ``Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether Flame-Retardant Coatings Applied to Upholstery Textiles'' (EPA/600/R- 12/043A). The draft document is being issued by the National Center for Environmental Assessment (NCEA) within EPA's Office of......

  18. Diffusion, swelling and electrical properties of polyisoprene/multiwall carbon nanotube composites in organic solvent vapours.

    PubMed

    Knite, M; Sakale, G; Teteris, V

    2012-10-01

    Polyisoprene/nanostructured carbon composites have been fabricated utilizing multiwall carbon nanotubes and carbon black nanoparticles as electrically conductive filler materials. Simultaneous measurements of (1) absorbed mass of organic solvent vapours (OSV), (2) swelling predicted elongation of sample and (3) electrical resistance changes versus the time of the presence of polyisoprene/multiwall carbon nanotube composites (PCNTC) in the OSV ambience were carried out by an in-house computerized setup. Non-Fickian anomalous diffusion has been found for all PCNTC samples as well as for reference samples of polyisoprene/high structure carbon black composites (PCBC). Obtained results indicate that the filler material content can play a substantial role in vapour diffusion into the composite. An advanced tunneling-percolation model was developed and used for describing of the OSV sensing effect in PCNTC and PCBC. PMID:23421188

  19. Effect of pulsed ion irradiation on the electronic structure of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bolotov, V. V.; Korusenko, P. M.; Nesov, S. N.; Povoroznyuk, S. N.

    2014-04-01

    The effect of pulsed ion irradiation and vacuum annealing on the ratio of sp 2- and sp 3-hybridized orbitals of carbon atoms in the layers of oriented multi-walled carbon nanotubes has been studied by analyzing the photoemission spectra of the C1 s core level and the valence band of carbon, which were obtained using the equipment of the BESSY II Russian-German beamline of synchrotron radiation and a Riber analytical system. It has been shown that the ion irradiation leads to a significant decrease in the fraction of atoms with the sp 3 hybridization of electrons. On the contrary, the annealing reduces the fraction of the sp 3-component in the spectra of carbon. Typical features of the valence band of multi-walled carbon nanotubes in the annealed and irradiated states have been established.

  20. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not intended to undergo further processing except for mechanical processing. (2) The significant new... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled and multi-walled carbon... Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled...

  1. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  2. Effect of multi-walled carbon nanotubes and conducting polymer on capacitance of mesoporous carbon electrode.

    PubMed

    Wang, Anmiao; Cheng, Yingwen; Zhang, Hongbo; Hou, Ye; Wang, Yanqin; Liu, Jie

    2014-09-01

    Porous carbon is the most widely used electrode materials in energy storage devices. It is generally accepted that in such electrodes, mesoporosity is more desired in supercapacitor than microporosity for the ions tranportation. However, the relatively poor conductivity of porous carbon often leads to low capacitance. To improve the capacity of mesoporous carbon based electrode, we designed a composite film composed of mesoporous carbon, multiwalled carbon nanotubes (MWNTs) and conducting polymer, Poly-3,4-ethylenedioxythiophene/poly(styrenesulfonate) (PEDOT-PSS), and hoped that each component in the composed film could contribute synergetically to improve electrochemical properties. The electrochemical performance of the film was evaluated by cyclic voltammetry and constant current charge/discharge method. With the assistance of MWNTs and conducting polymer, the specific capacitance of the mesoporous carbon based electrode was amplified six times. The electrode also presented excellent charge/discharge rate and good cycling stability, retaining about 94% of its initial capacitance after 1000 cycles. The results demonstrated that mesoporous carbon is more effectively utilized with assistance of MWNTs and conducting polymer in the electrode. Such method is very promising for the future applications of the porous carbon in electrode materials for high performance electrochemical supercapacitors. PMID:25924364

  3. Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Ming; Hwang, Chi-Chuang; Kuo, Qu-Yuan; Wang, Yun-Che

    2008-03-01

    Buckling strengths, in terms of compressive strain, of single-, double- and triple-walled carbon nanotubes (CNTs) are investigated to study the effects of slenderness ratio ( SR) via the molecular dynamics (MD) simulations with the Tersoff potential. Under constant ratio of slenderness, the CNTs with small SR behave like a continuum shell object. For large SR's, multi-walled CNTs exhibit the characteristics of the Euler columns. In addition, smaller nanotubes possess higher buckling-resistance. The buckling strength of multi-walled nanotubes is controlled by the size of their outermost shell.

  4. In situ tuning and probing the ambipolar field effect on multiwall carbon nanotubes

    SciTech Connect

    Chen, Li-Ying; Chang, Chia-Seng

    2014-12-15

    We report a method of fabricating ultra-clean and hysteresis-free multiwall carbon nanotube field-effect transistors (CNFETs) inside the ultra-high vacuum transmission electron microscope equipped with a movable gold tip as a local gate. By tailoring the shell structure of the nanotube and varying the drain-source voltage (V{sub ds}), we can tune the electronic characteristic of a multiwall CNFET in situ. We have also found that the Schottky barriers of a multiwall CNFET are generated within the nanotube, but not at the nanotube/electrode contacts, and the barrier height has been derived. We have subsequently demonstrated the ambipolar characteristics of the CNFET with concurrent high-resolution imaging and local gating.

  5. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion. PMID:21936376

  6. Fabrication and Characterization of Multi-Walled Carbon Nanotube (MWCNT) and Ni-Coated Multi-Walled Carbon Nanotube (Ni-MWCNT) Repair Patches for Carbon Fiber Reinforced Composite Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Brienne; Caraccio, Anne; Tate, LaNetra; Jackson, Dionne

    2011-01-01

    Multi-walled carbon nanotube (MWCNT)/epoxy and nickel-coated multi-walled carbon nanotube (Ni-MWCNT)/epoxy systems were fabricated into carbon fiber composite repair patches via vacuum resin infusion. Two 4 ply patches were manufactured with fiber orientations of [90/ 90/ 4590] and [0/90/ +45/ -45]. Prior to resin infusion, the MWCNT/Epoxy system and NiMWCNT/ epoxy systems were optimized for dispersion quality. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to determine the presence ofcarbon nanotubes and assess dispersion quality. Decomposition temperatures were determined via thermogravametric analysis (TGA). SEM and TGA were also used to evaluate the composite repair patches.

  7. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.

    PubMed

    Steiner, Stephen A; Baumann, Theodore F; Bayer, Bernhard C; Blume, Raoul; Worsley, Marcus A; MoberlyChan, Warren J; Shaw, Elisabeth L; Schlögl, Robert; Hart, A John; Hofmann, Stephan; Wardle, Brian L

    2009-09-01

    We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 degrees C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol-formaldehyde polymer aerogel precursor at 800 degrees C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures. PMID:19663436

  8. Synthesis and Characterization of Magnetic Metal-encapsulated Multi-walled Carbon Nanobeads

    PubMed Central

    2008-01-01

    A novel, cost-effective, easy and single-step process for the synthesis of large quantities of magnetic metal-encapsulated multi-walled carbon nanobeads (MWNB) and multi-walled carbon nanotubes (MWNT) using catalytic chemical vapour deposition of methane over Mischmetal-based AB3alloy hydride catalyst is presented. The growth mechanism of metal-encapsulated MWNB and MWNT has been discussed based on the catalytically controlled root-growth mode. These carbon nanostructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM and HRTEM), energy dispersive analysis of X-ray (EDAX) and thermogravimetric analysis (TGA). Magnetic properties of metal-filled nanobeads have been studied using PAR vibrating sample magnetometer up to a magnetic field of 10 kOe, and the results have been compared with those of metal-filled MWNT.

  9. Deformation and Failure of a Multi-Wall Carbon Nanotube Yarn Composite

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2008-01-01

    Forests of multi-walled carbon nanotubes can be twisted and manipulated into continuous fibers or yarns that exhibit many of the characteristics of traditional textiles. Macro-scale analysis and test may provide strength and stiffness predictions for a composite composed of a polymer matrix and low-volume fraction yarns. However, due to the nano-scale of the carbon nanotubes, it is desirable to use atomistic calculations to consider tube-tube interactions and the influence of simulated twist on the effective friction coefficient. This paper reports laboratory test data on the mechanical response of a multi-walled, carbon nanotube yarn/polymer composite from both dynamic and quasi-static tensile tests. Macroscale and nano-scale analysis methods are explored and used to define some of the key structure-property relationships. The measured influence of hot-wet aging on the tensile properties is also reported.

  10. Characterization of fluorinated multiwalled carbon nanotubes by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M. M.; Vinogradov, N. A.; Muradyan, V. E.; Shul'Ga, Yu. M.; Polyakova, N. V.; Vinogradov, A. S.

    2008-03-01

    The C 1 s and F 1 s x-ray absorption spectra of fluorinated multiwalled carbon nanotubes with different fluorine contents and reference compounds (highly oriented pyrolytic graphite crystals and "white" graphite fluoride) were measured using the equipment of the Russian-German beamline at the BESSY II storage ring with a high energy resolution. The spectra obtained were analyzed with the aim of characterizing multiwalled carbon nanotubes and their products formed upon treatment of the nanotubes with fluorine at a temperature of 420°C. It was established that, within the probing depth (˜15 nm) of carbon nanotubes, the process of fluorination occurs uniformly and does not depend on the fluorine concentration. The interaction of fluorine atoms with multiwalled carbon nanotubes in this case proceeds through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton and is accompanied by a change in the hybridization of the 2 s and 2 p valence electron states of the carbon atom from the trigonal ( sp 2) to tetrahedral ( sp 3) hybridization.

  11. Enhanced rate performance of multiwalled carbon nanotube encrusted olivine type composite cathode material using polyol technique

    NASA Astrophysics Data System (ADS)

    Muruganantham, R.; Sivakumar, M.; Subadevi, R.

    2015-12-01

    Olivine type multi-walled carbon nanotube encrusted LiFePO4/C composites have been prepared using economic and energy efficient simple polyol technique without any subsequent heat treatment. The prepared material has an olivine type orthorhombic phase. Also, the iron oxidation state is 2+, which is identified by X-ray diffraction and X-ray photoelectron spectroscopy. It is possible to attain the discharge capacity almost close to theoretical capacity of LiFePO4 as in high temperature methods with ∼100% coulombic efficiency. The specific surface area has been increased upon encrusting multi walled carbon nano tube on LiFePO4/C, which results in enhanced reversible capacity upto 166 mAh g-1 at C/10. Also, it exhibits 89 mAh g-1 even at 30 C rate. This is due to the formation of conductive networks by carbon nanotube, and excellent attachment of LiFePO4/C composite particles on multi-walled carbon nanotube, which induced the kinetics during intercalation/deintercalation process. Multi-walled carbon nanotube acts as the electro-conductive filler on the LiFePO4 surface. The direct addition of MWCNT would result better performances than blending the MWCNT with LiFePO4/C.

  12. Enhanced preconcentration of selected chlorofluorocarbons on multiwalled carbon nanotubes with polar functionalities.

    PubMed

    Saridara, Chutarat; Hussain, Chaudhery Mustansar; Ragunath, Smruti; Mitra, Somenath

    2015-02-01

    Chromatographic monitoring of chlorofluorocarbons in air requires the preconcentration of these highly volatile species. In this paper, we present functionalized multiwalled carbon nanotubes as effective sorbents for a microtrap designed for chlorofluorocarbons preconcentration. Among the commercial carbons and carbon nanotubes studied, functionalization via carboxylation and propyl amine was most effective for dichlorofluoromethane and trichlorofluoromethane (Freon 11), which were selected as representative chlorofluorocarbons. The results show that carbon nanotubes functionalized with a polar groups led to as much as a 300% increase in breakthrough volume and the desorption bandwidth was reduced by 2.5 times. PMID:25403651

  13. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  14. Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite

    PubMed Central

    2012-01-01

    Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the electric conductivity is similar to the pure silver nanowires that Ag/CNT would be promising as building blocks for integrated circuits. PACS: 81.05.uj, carbon nanotubes, carbon-based materials, diamond/nanocarbon composites. PMID:22444640

  15. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.

    PubMed

    Dalkıran, Berna; Erden, Pınar Esra; Kılıç, Esma

    2016-06-01

    In this study, two enzyme electrodes based on graphene (GR), Co3O4 nanoparticles and chitosan (CS) or multi-walled carbon nanotubes (MWCNTs), Co3O4 nanoparticles, and CS, were fabricated as novel biosensing platforms for galactose determination, and their performances were compared. Galactose oxidase (GaOx) was immobilized onto the electrode surfaces by crosslinking with glutaraldehyde. Optimum working conditions of the biosensors were investigated and the analytical performance of the biosensors was compared with respect to detection limit, linearity, repeatability, and stability. The MWCNTs-based galactose biosensor provided about 1.6-fold higher sensitivity than its graphene counterpart. Moreover, the linear working range and detection limit of the MWCNTs-based galactose biosensor was superior to the graphene-modified biosensor. The successful application of the purposed biosensors for galactose biosensing in human serum samples was also investigated. PMID:27074783

  16. SEPARATION OF CO2 FROM FLUE GASES BY CARBON-MULTIWALL CARBON NANOTUBE MEMBRANES

    SciTech Connect

    Rodney Andrews

    2001-03-01

    Multiwalled carbon nanotubes (MWNT) were found to be an effective separation media for removing CO{sub 2} from N{sub 2}. The separation mechanism favors the selective condensation of CO{sub 2} from the flowing gas stream. Significant uptakes of CO{sub 2} were measured at 30 C and 150 C over the pressure range 0.5 to 5 bar. No measurable uptake of nitrogen was found for this range of conditions. The mass uptake of CO{sub 2} by MWNT was found to increase with increasing temperature. A packed bed of MWNT completely removed CO{sub 2} from a flowing stream of CO{sub 2}/N{sub 2}, and exhibited rapid uptake kinetics for CO{sub 2}.

  17. Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates.

    PubMed

    Delmas, M; Pinault, M; Patel, S; Porterat, D; Reynaud, C; Mayne-L'Hermite, M

    2012-03-16

    Well aligned, long and dense multi-walled carbon nanotubes (CNT) can be grown on both carbon fibres and any metal substrates compatible with the CNT synthesis temperature. The injection-CVD process developed involves two stages, including fibre pretreatment by depositing a SiO(2)-based sub-layer from an organometallic precursor followed by CNT growth from toluene/ferrocene precursor mixture. Carbon substrates, as well as metals, can easily be treated with this process, which takes place in the same reactor and does not need any handling in between the two stages. The aligned CNT carpets obtained are similar to the ones grown on reference quartz substrates. The CNT growth rate is fairly high (ca. 30 μm min(-1)) and it is possible to control CNT length by varying the CNT synthesis duration. The thickness of the SiO(2)-based sub-layer can be varied and is shown to have an influence on the CNT growth. This layer is assumed to play a diffusion barrier layer role between the substrate and the iron based catalyst nanoparticles producing CNT. The CNT anchorage to the carbon fibres has been checked and good overall adhesion proved, which is in favour of a good transfer of electrical charge and heat between the nanotubes and fibre. PMID:22362164

  18. Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes

    SciTech Connect

    Kim, Ji-Il; Park, Soo-Jin

    2011-08-15

    In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N{sub 2} adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H{sub 2}SO{sub 4} at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors. - Graphical Abstract: The N{sub 1s} spectra of nitrogen functionalized multi-walled carbon nanotubes are measured by X-ray photoelectron spectroscopy. Highlights: > Facile method of increasing elemental composition of nitrogen functional groups on carbon materials. > Increased specific capacitance multi-walled carbon nanotubes (MWNTs) for electrode materials as high as general chemical activation process. > Enhanced capacitive behaviors via introducing pyridinic and pyridinic-N-oxides nitrogen species onto the MWNTs. > Improvement of electron transfer at high current loads.

  19. Synthesis and characterization of multiwalled carbon nanotube/IPMC actuator for imitating locomotion of gecko's toes

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Ding, Yan; Dai, Zhendong

    2012-04-01

    A multi-walled carbon nanotube (MCNT)/Nafion nanocomposite was fabricated by dispersion of treated MCNTs in a Nafion solution. The multi-walled carbon nanotube (MCNT) filler was prepared with the cationic surfactant cetyl trimethyl ammonium bromide. Starting from cast Nafion membranes, IPMCs were manufactured by electroless plating. The current and the blocking force were measured with an IPMC actuation testing apparatus. Compared with a bare Nafion-based IPMC, the blocking force of the new IPMC improved 1-1.4 times, and the current increased by 33%-67%. The clearly enhanced performance of the new MCNT filler-based IPMC is attributed to the well-distributed MCNTs that improved the electrical properties of the IPMC. Finally, the new IPMC was successfully employed to directly actuate gecko-inspired adhesive arrays that we fabricated by ourselves.

  20. Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Nagy, L.; Kukovecz, Á.; Kónya, Z.

    2014-07-01

    Multiwalled carbon nanotubes were synthesized by chemical vapor deposition over an Fe-Co/alumina catalyst. Nanotubes were then oxidized and grafted with polyvinyl alcohol (PVA). The obtained nanostructure was characterized by Raman spectroscopy, XRD, FTIR, EDX, SEM, TEM and TGA methods. FTIR confirmed the presence of the characteristic peaks of the anticipated ester group. The formation of polymer nanocomposites based on polyvinyl alcohol and multiwalled carbon nanotubes was confirmed by SEM and TEM. High resolution electron micrographs revealed that the primary binding sites for PVA grafting are the sidewall defects of the nanotubes. The novelty of this work is the use of the Fischer esterification reaction for creating the permanent link between the nanotubes and the PVA matrix.

  1. Immobilization of Bovine Serum Albumin Upon Multiwall Carbon Nanotube for High Speed Humidity Sensing Application.

    PubMed

    Bhattacharya, Sankhya; Sasmal, Milan

    2016-01-01

    We present a high-speed humidity sensor based on immobilization of bovine serum albumin upon multiwall carbon nanotube (IBC). A simple and versatile drop casting technique was employed to make the humidity sensor using novel material IBC at room temperature. IBC was synthesized using easy solution process technique. The working principle of the IBC humidity sensor depends upon the variation of output current or conductance with the exposure of different humidity level. Humidity sensing properties of our device is explained on the basis of charge transfer from water molecules to IBC and bovine serum albumin to multiwall carbon nanotube (MWCNT). Our sensor exhibits faster response time around 1.2 s and recovery time 1.5 s respectively. PMID:26841403

  2. Synthesis of Multi-Walled Carbon Nanotubes/TiO2 Composite and Its Photocatalytic Activity.

    PubMed

    Dong, Hongying; Qu, Caifeng; Zhang, Tingting; Zhu, Liwei; Ma, Wen

    2016-03-01

    TiO2 particles coated Multi-walled carbon nanotubes (MWCNT/TiO2 composite) were prepared via a sol-gel method using Multi-walled carbon nanotubes (MWCNT) and tetrabutyl titanate as raw materials. The phase constitutes and microstructures of the prepared composite were analyzed by XRD and TEM, respectively. Their photocatalytic activities were investigated under simulated ultra-violet light and visible-light irradiation for the degradation of methyl orange (MO) and methylene blue (MB) aqueous solution, respectively. The experimental results indicated that TiO2 calcined at temperatures of 400-600 degrees C in the MWCNT/TiO2 composite was mainly composed of nanometric anatase. The composite exhibited enhanced absorption properties in the visible-light region compared to pure TiO2, which was attributed to the enhanced light electron-hole separation by adding MWCNTs. PMID:27455683

  3. Synthesis of Meltspun Multiwall Carbon Nanotube/Polycarbonate Fibers Through Solvent Casting and Melt Extrusion.

    PubMed

    Yadav, Poonam; Park, Sang Whan; Lee, Dong Bok

    2015-11-01

    Films and strands consisting of polycarbonate (PC) containing 0.55 or 0.75 wt% multiwall carbon nanotubes (MWNTs) were synthesized through solvent casting and melt extrusion methods, respectively. They were further processed into fibers through melt spinning. Fibers made from melt-extruded strands exhibited a smoother surface, more uniform morphology, and better dispersion of MWNTs in PC than those made from solvent-cast films. PMID:26726657

  4. Structural ordering of multi-walled carbon nanotubes (MWCNTs) caused by gamma (γ)-ray irradiation

    SciTech Connect

    Silambarasan, D. Vasu, V.; Iyakutti, K.; Asokan, K.

    2015-06-24

    Multi-walled carbon nanotubes (MWCNTs) were irradiated by Gamma (γ)-rays in air with absorbed doses of 25 and 50 kGy. As a result of γ-ray irradiation, the inter-wall distance of MWCNTs was decreased and their graphitic order was improved. The reduction in inter-wall distance and structural ordering was improved with the increasing dosage of irradiation. Experimental evidences are provided by powder XRD and micro-Raman analyses.

  5. Mapping functional groups on oxidised multi-walled carbon nanotubes at the nanometre scale.

    PubMed

    Goode, A E; Hine, N D M; Chen, S; Bergin, S D; Shaffer, M S P; Ryan, M P; Haynes, P D; Porter, A E; McComb, D W

    2014-06-28

    Despite voluminous research on the acid oxidation of carbon nanotubes (CNTs), there is a distinct lack of experimental results showing distributions of functional groups at the nanometre length scale. Here, functional peaks have been mapped across individual multi-walled CNTs with low-dose, monochromated electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Density functional theory simulations show that the EELS features are consistent with oxygenated functional groups, most likely carboxyl moieties. PMID:24827593

  6. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGESBeta

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; Fulvio, Pasquale F.; Chen, Jihua; Binder, Andrew J.; Tian, Chengcheng; Dai, Sheng

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  7. Carboxyl multiwalled carbon nanotubes modified polypyrrole (PPy) aerogel for enhanced electromagnetic absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Xie, Aming; Wu, Fan; Jiang, Wanchun; Wang, Mingyang; Dong, Wei

    2016-05-01

    Polypyrrole (PPy) aerogel is a low-cost and lightweight material with high-performance electromagnetic absorption (EA). However, it does not always meet the requirements of practical applications. In this study, we used trace amounts of carboxyl multiwalled carbon nanotubes to regulate the dielectric property of PPy aerogel, thus enhancing the EA performance. Furthermore, the reason for enhanced EA performance can be elaborated by an electron blocking mechanism.

  8. Pyrolytic deposition of nanostructured titanium carbide coatings on the surface of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kremlev, K. V.; Ob"edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Tatarskii, D. A.; Yunin, P. A.

    2016-05-01

    Nanostructured titanium carbide coatings have been deposited on the surface of multiwalled carbon nanotubes (MWCNTs) by the MOCVD method with bis(cyclopentadienyl)titanium dichloride precursor. The obtained TiC/MWCNT hybrid materials were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is established that a TiC coating deposits onto the MWCNT surface with the formation of a core-shell (MWSNT-TiC) type structure.

  9. Origin of enhanced field emission characteristics postplasma treatment of multiwalled carbon nanotube array

    SciTech Connect

    Lee, Kyu; Lim, Seong Chu; Lee, Young Hee; Choi, Young Chul

    2008-08-11

    Field emission properties of chemical-vapor-deposition-grown multiwalled carbon nanotubes (MWCNTs) with plasma treatment have been investigated. Origin of the enhanced field emission current was interpreted in terms of surface morphology of MWCNTs, work function, field enhancement factor, and emission area. Contrary to the general belief, the change in the work function increased slightly with the plasma treatment time, whereas the field enhancement factor decreased. We found that the number of emittable MWCNTs played a dominant role in the current enhancement.

  10. Stack growth of aligned multiwalled carbon nanotubes using floating catalyst chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti

    2015-04-01

    The Letter reports another approach to grow vertically aligned millimeter length multiwalled carbon nanotubes (MWCNT) using chemical vapor deposition technique. In this stack growth, the first grown MWCNT layer is observe to have been lift-off from the substrate surface by the newly grown underneath layer as a result of the diffusion of iron catalyst and carbon source through the first layer. The first grown layer acts as a permeable membrane allowing the catalyst vapor and carbon to reach the bottom layer and the top surface of the substrate, resulting in the growth of another layer of MWCNT underneath it.

  11. Multiwalled carbon nanotubes as masks against carbon and argon irradiation. A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Denton, Cristian D.; Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago

    2016-04-01

    Experiments showed that multiwalled carbon nanotubes (MWCNT) can be used as masks against irradiation to create metallic nanowires in a substrate. In order to understand the limitations of this application, it is interesting to know the energy and number of carbon atoms emerging from the MWCNT after the irradiation and how the structure of the MWCNT is modified. Using a molecular dynamics code that we have previously developed, we have simulated the continuous irradiation of MWCNT with carbon and argon projectiles. We have obtained that the use of carbon instead of argon to irradiate the MWCNT increases de effectiveness of the MWCNTs as masks, due to the ability of the carbon projectiles to be part of the MWCNT structure and partially mend the damage produced during irradiation. We have analyzed the number, energy, and spatial distribution of the recoils generated during irradiation and the change of the MWCNT structure as a function of the incident energy (100 and 500 eV), fluence (up to 4.5 ·1015ions /cm2), and number of shells (up to 5-shells) of the MWCNT. These results determine the effectiveness of MWCNT as a mask, being useful to understand whether the atoms emerging from the MWCNT produce damage in the substrate or not. We find that for carbon projectiles the efficiency of MWCNT as masks does not depend much on the fluence, but on the number of nanotube shells and projectile incident energy. On the other hand, for a given nanotube and fluence, we observe a threshold incident energy below which the nanotube acts as a perfect mask.

  12. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    SciTech Connect

    Kozulin, Alexander A. Vorozhtsov, Sergey A. Kulkov, Sergey S.; Kulkov, Sergey N.; Teipel, U.

    2015-10-27

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m{sup 2}/g, and increases the pore volume and average size from 0.04 to 0.06 cm{sup 3}/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  13. Processing route to disentangle multi-walled carbon nanotube towards ceramic composite.

    PubMed

    Belmonte, M; Vallés, C; Maser, W K; Benito, A M; Martinez, M T; Miranzo, P; Osendi, M I

    2009-10-01

    Multi-walled carbon nanotubes were highly aggregated into ropes after their synthesis by chemical vapour deposition and, therefore, two different methods for disentangling the bundles of nanotubes were studied. One method compared the use of mild and vigorous mechanical treatments in ethanol and the other one employed dispersants in aqueous media. For comparison purposes and according to their different exfoliating behaviour, sodium dodecyl sulphate and gum arabic were selected as dispersants. The results evidenced that mechanical sonication was insufficient for disentangling the ropes, whereas, the combined action of mild sonication in an ultrasonic bath with the addition of gum arabic to an aqueous suspension containing nanotubes improved the exfoliating performance. Stable suspensions of unbundled multi-walled carbon nanotubes were obtained adding only 0.05 wt% of gum arabic with a dispersant/MWNTs concentration ratio of 0.25. These values corresponded to a reduction in the dispersant concentration between 1 to 2 orders of magnitude compared to those commonly employed. In addition, a processing route for manufacturing dense and homogenous silicon nitride composites using spark plasma sintering with 1.8 vol% of multi-walled carbon nanotubes almost free of organics was developed without nanotubes degradation and aggregation. PMID:19908510

  14. Ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotube mixtures

    NASA Astrophysics Data System (ADS)

    Kozulin, Alexander A.; Vorozhtsov, Sergey A.; Kulkov, Sergey S.; Teipel, U.; Kulkov, Sergey N.

    2015-10-01

    Comprehensive investigations of aluminum nanopowders, multi-walled carbon nanotubes, and aluminum mixtures with multi-walled carbon nanotubes subjected to ultrasonic deagglomeration in a liquid medium were performed, using microstructural, X-ray diffraction, thermogravimetric, and calorimetric analyses, and specific surface area measurements. The regime of ultrasonic deagglomeration of aluminum nanopowders with multi-walled carbon nanotubes in a liquid medium is described, during which the division of large agglomerates and creation of homogeneous distribution of mixtures components in the volume takes place. It was determined that ultrasonic treatment influences the morphology and crystalline structure of investigated mixtures, contributes to the appearance of X-ray amorphous phase, decreases the specific surface area of the aluminum nanopowder from 13 to 12 m2/g, and increases the pore volume and average size from 0.04 to 0.06 cm3/g and from 12 to 19 nm, respectively. The size of coherently-diffracting domain was determined by the X-ray diffraction analysis is close to that estimated from the specific surface area and corresponds to average crystallites size in the materials under study.

  15. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    NASA Astrophysics Data System (ADS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-10-01

    The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e-MWCNTs caused an enhancement in the glass transition temperature of the composites. Wear tests have shown that the friction coefficient of e-MWCNT/PEEK composites decreased significantly during the test after the running-in period. This suggests that there is an obvious improvement in tribological properties of e-MWCNT/PEEK composites. Overall, the e-MWCNT/PEEK composites have exhibited improved properties and are promising for their applications in industry.

  16. Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Jin; Park, Jung Hoon; Park, Jeunghee

    2000-06-01

    The vertically aligned multiwalled carbon nanotubes (CNT) are synthesized in high density on a large area of cobalt deposited silicon oxide substrate, by thermal chemical vapor deposition using C 2H 2 gas, at 950°C. The diameter of CNTs is distributed in the range of 80-120 nm and the length is about 20 μm. High-resolution transmission electron microscopy analysis reveals that the multiwalled CNTs have the crystalline graphite sheets and the bamboo structure that the tube consists of hollow compartments separated with graphite layers. A possible growth mechanism is suggested to explain the structure of CNTs. The emission current density is 1.1 mA cm -2 at 4.5 V μm -1, showing the Fowler-Nordheim behavior.

  17. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines.

    PubMed

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-05-28

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of EiIi, d, and γ, where EiIi and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates. PMID:24880308

  18. Improvement of the identification of multiwall carbon nanotubes carpet thermal conductivity by pulsed photothermal method

    SciTech Connect

    Amin-Chalhoub, E.; Wattieaux, G.; Semmar, N.; Gaillard, M.; Petit, A.; Leborgne, C.

    2012-11-01

    Thermal properties in multiwall carbon nanotubes carpets and micro-devices are investigated using a nanosecond photothermal method. Gradually, the identification model and experimental protocol are performed to increase the method accuracy for the thermal conductivity determination. In the experimental protocol, a nanosecond UV monopulse laser beam is used to heat the surface of a multilayer (600 nm of Ti/20 {mu}m of carbon nanotube carpet) sample. In the 1D identification model with two layers and a thermal contact resistance, the effect of the laser excitation temporal shape is taken into account. In this study, this first approach allows to improve the accuracy of apparent thermal conductivity measurements of multiwall carbon nanotubes carpet. The carbon nanotubes carpet apparent thermal conductivity value went from being to 180 {+-} 5 W Multiplication-Sign m{sup -1} Multiplication-Sign K{sup -1}. In the second approach, two laser beams are coupled in order to increase the interaction time duration from 27 ns to 60 ns. It becomes possible to probe different depths in the carpet. The obtained value (180 W Multiplication-Sign m{sup -1} Multiplication-Sign K{sup -1}) confirms the pulsed photothermal method consistency for porous samples. Finally, assuming that the carbon nanotubes are parallel and without any defects, the equivalent intrinsic thermal conductivity of a single carbon nanotube is estimated to be around 3600 W Multiplication-Sign m{sup -1} Multiplication-Sign K{sup -1}.

  19. Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes.

    PubMed

    Zhang, Wei; Stolojan, Vlad; Silva, S Ravi P; Wu, Cheng Wei

    2014-01-01

    Iron oxide particles with the diameter being 5-10 nm were attached onto the sidewalls of multi-walled carbon nanotubes (MWCNTs) by the thermal decomposition of cyclopentadieny iron (II) dicarbonyl dimmer. The red shift of G-mode from 1579 cm(-1) to 1571 cm(-1) in the Raman profile of the decorated MWCNTs is indicative of the attachment of nanoparticles. Electron energy loss spectroscopy and X-ray photoelectron spectroscopy analyses reveals that the attached nanoparticles are composed of a maghemite phase. Transmission electron microscopy suggests the maghemite particles are covered with amorphous carbon materials and form a core-shell structure. PMID:24374884

  20. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Feng, Yiyu; Wu, Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-07-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO2-s-MWNTs) was prepared from a suspension of TiO2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO2-s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO2 into consideration.

  1. Methane preconcentration in a microtrap using multiwalled carbon nanotubes as sorbents.

    PubMed

    Saridara, Chutarat; Ragunath, Smruti; Pu, Yong; Mitra, Somenath

    2010-09-10

    The GC monitoring of green house gases is a challenging task because the concentration of organic species such as methane are relatively low (ppm to ppb) and their analysis requires some level of preconcentration. Since methane is highly volatile, it is not easily retained on conventional sorbents. In this paper we present multiwalled carbon nanotubes (MWNTs) as an effective sorbent for a microtrap designed for methane preconcentration. Its performance was compared to other commercially available carbon based sorbents, and it was found to be the most effective sorbent in terms of breakthrough volume and enthalpy of adsorption. PMID:20850589

  2. Covalently linked deoxyribonucleic acid with multi-walled carbon nanotubes: synthesis and characterization.

    PubMed

    Chen, Weiwei; Yi, Changqing; Chi-Hung, Tzang; Lee, Shuit-Tong; Yang, Mengsu

    2010-01-01

    In this chapter, a multi-step protocol for covalently linking functionalized multi-walled carbon nanotubes (MWCNT) to deoxyribonucleic acid (DNA) oligonucleotides is provided. X-ray photoelectron spectroscopy (XPS) is used to characterize the initially formed amine-terminated MWCNTs, to which DNA is covalently anchored. Atomic force microscopy (AFM) investigation of the DNA-MWCNT conjugates reveals that the chemical functionalization occurs at both the ends and sidewalls of the nanotubes. The described methodology represents an important step toward the realization of DNA-guided self-assembly for carbon nanotubes. PMID:20422378

  3. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    NASA Astrophysics Data System (ADS)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  4. Chemical modification of multi-walled carbon nanotubes using a tetrazine derivative

    NASA Astrophysics Data System (ADS)

    Hayden, Hugh; Gun'ko, Yurii K.; Perova, Tatiana S.

    2007-02-01

    Multi-walled carbon nanotubes (MWNTs) have been reacted with 3,6-diaminotetrazine under heating. This process involves series of interactions between tetrazines and carbon nanotubes including π-π interactions, cycloaddition (Diels-Alder) and cross-linking reactions. These interactions resulted in coating of the MWNTs and in the formation of Y-junctions between nanotubes. Long heating (48 h) of MWNTs with the terazine resulted in a partial destruction of nanotubes due to their excessive functionalisation. The new nanocomposites have been studied by TEM, FTIR and Raman spectroscopy.

  5. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  6. Parameterizing A Surface Water Model for Multiwalled Carbon Nanotubes

    EPA Science Inventory

    The unique electronic, mechanical, and structural properties of carbon nanotubes (CNTs) has lead to increasing production of these versatile materials; currently, the use of carbon-based nanomaterials in consumer products is second only to that of nano-scale silver. Although ther...

  7. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells

    PubMed Central

    Mihalchik, Amy L.; Ding, Weiqiang; Porter, Dale W.; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D.; Stefaniak, Aleksandr B.; Snyder-Talkington, Brandi N.; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-01-01

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose–response cell proliferation assay showed that low doses of ND-MWCNT (1.2 mg/ml) or MWCNT-7 (0.1 mg/ml) increased cellular proliferation, while the highest dose of 120 mg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6 h and were internalized by 24 h. ROS were elevated at 6 and 24 h in ND-MWCNT exposed cells, but only at 6 h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2 mg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. PMID:25797581

  8. Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes: The differences and similarities

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Damian; Pramudita, James C.; Choucair, Mohammad; Rawal, Aditya; Sharma, Neeraj

    2016-05-01

    A comparative study on the sodium-ion insertion and extraction of commercially-available multi-wall and single-wall carbon nanotubes is reported. Single-wall carbon nanotubes exhibit charge/discharge capacities of 126 mA h g-1 and multi-wall carbon nanotubes produce a lower capacity of 28 mA h g-1 after 50 cycles at 25 mA g-1. To understand these differences, a combination of X-ray diffraction and solid state nuclear magnetic resonance measurements were performed at various states of sodium insertion and extraction.23Na nuclear magnetic resonance studies, a technique previously rarely used for characterising electrodes from sodium-ion batteries, shows differences in the sodium chemical environment near multi-wall compared to single-wall carbon nanotubes with distinct sodium sites found to be active during sodium insertion and extraction for the carbon nanotubes. Both types of carbon nanotubes show a similar amount of reversible sodium available for insertion/extraction reactions, but multi-wall carbon nanotubes feature half the initial insertion capacity relative to single-wall carbon nanotubes. The electrochemical performance of the carbon nanotube electrodes are discussed in relation to the observed mechanism of sodium insertion.

  9. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functional diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing application of carbon nanotubes (CNTs) triggers the need for an assessment of their effects on organisms in the environment. Soil microbial communities play a significant role in soil organic matter dynamics and nutrient cycling. This study evaluated the impacts of multi-walled carbon nan...

  10. Ferromagnetic behaviour of anthropogenic multi-walled carbon nanotubes trapped in spider web indoor.

    PubMed

    Sonkar, Sumit Kumar; Tripathi, Kumud Malika; Sarkar, Sabyasachi

    2014-03-01

    Black carbon (BC) (as partly burnt black particulate matter) present indoor are deposited on interior surfaces of the indoors (easily visualize over the blades of electric fan/exhausts and over domestic spider webs) are known to be a potential indoor pollution problem. We detect with the help of indoor spider webs the floating BC contains a significant amount of defective multiwalled carbon nanotubes (MWCNTs) possessing room temperature ferromagnetism. Microscopic studies shows a lot of internal and surfacial defects in these indoor-MWCNTs. Electron paramagnetic resonance (EPR) showed the presence of very stable carbon centred radicals in these indoor-MWCNTs. Room temperature ferromagnetism most importantly originated by the presence of a large amount of unpaired spin frustrated carbon centred radicals (trapped in defects, junctions and fractures) which are inadvertently formed during the pyrolysis of carbonaceous materials through routine domestic activities. PMID:24745259

  11. Distinct electrical effects of multi-walled carbon nanotubes in two composites

    NASA Astrophysics Data System (ADS)

    Wang, Leizhi; Wang, Hua; Datta, Timir; Yin, Ming; Tian, Xingyou

    2014-11-01

    The temperature dependent conductivity of multi-walled carbon nanotube film (MWNT) is reported and the different electrical properties of nanotubes in two composites are compared. Due to the disordered structures, our carbon nanotube film displays variable range hopping behavior. While the geometric distributions of carbon nanotubes in the conducting polyaniline (PANI) and insulating polyamide (PA66) are similar, charge carriers transport distinctly. The conductive PANI, following one-dimensional variable range hopping, dominates the electrical properties of MWNT/PANI composites. The effect of MWNTs becomes prominent only at low temperature range. However, the contact junctions composed by adjacent carbon nanotubes, instead of nanotubes themselves or the polymer matrix, determine the electrical properties of MWNT/PA66 composites, showing the fluctuation induced tunneling characteristic.

  12. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells

    SciTech Connect

    Park, Seh K.; Shao, Yuyan; Kou, Rong; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Lin, Yuehe; Wang, Yong

    2011-03-01

    The electrochemical behavior for Pt catalysts supported on multiwalled carbon nanotubes and Vulcan XC-72 in proton exchange membrane fuel cells under accelerated stress test was examined by cyclic voltammetry, electrochemical impedance spectroscopy, and polarization technique. Pt catalyst supported on multiwalled carbon nanotubes exhibited highly stable electrochemical surface area, oxygen reduction kinetics, and fuel cell performance at a highly oxidizing condition, indicating multiwalled carbon nanotubes show high corrosion resistance and strong interaction with Pt nanoparticles. The Tafel slope, ohmic resistances, and limiting current density determined were used to differentiate kinetic, ohmic, mass-transfer polarization losses from the actual polarization curve. Kinetic contribution to the total overpotential was larger throughout the stress test. However, the fraction of kinetic overpotential decreased and mass-transfer overpotential portion remained quite constant during accelerated stress test, whereas the fraction of ohmic overpotential primarily originating from severe proton transport limitation in the catalyst layer increased under the anodic potential hold.

  13. Direct Oxidation of Tryptophan on Multi-Wall Carbon Nanotubes Modified Carbon Electrode and its Application to Fuel Cell

    NASA Astrophysics Data System (ADS)

    Yabutani, Tomoki; Shoda, Yoshio; Tani, Yuji; Yamada, Yohei; Motonaka, Junko

    Direct oxidation of tryptophan on multi-wall carbon nanotubes modified glassy carbon electrode was examined. Surface poisoning, which was suppression of oxidative current caused from adsorption of oxidized compounds of amino acids through multiple redox scan, was observed on carbon material electrodes (multi-wall carbon nano tube(CNT), carbon powder(CP), Ketjen Black (KB) and glassy carbon(GC). It was found that CNT showed a highly inhibitory effect on the surface poisoning and high current value in the direct oxidation of tryptophan because of a π-π interaction between CNT and indole ring of tryptophan results from orbital mixing. This CNT modified GC electrode was applied to an anode in a fuel cell used with amino acids as fuel. As a result, the maximum of the power density showed 0.36 mW cm-2 at 2.5 mA cm-2 of the current density and 140 mV of the cell voltage.

  14. UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Fushan; Cho, Sung Hwan; Son, Dong Ick; Kim, Tae Whan; Lee, Sun-Kyun; Cho, Yong-Hoon; Jin, Sungho

    2009-03-01

    In situ growth of ZnO quantum dots (QDs) on the surface of multiwalled carbon nanotubes (MWCNTs) was realized via a mild solution-process method, which resulted in an improvement in photoinduced charge separation and transport of carriers to the collecting electrode. The charge transfer efficiency was significantly increased by more than 90% due to the conjugation of ZnO QDs with MWCNTs, as confirmed by photoluminescence measurements. Ultraviolet photovoltaic cells based on the charge transfer at the ZnO QD-MWCNT heterostructures were fabricated, and their power conversion efficiency was measured to be above 1%.

  15. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  16. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Yao, Zhiwen; Tang, Changyu; Darvell, B. W.; Zhang, Hualin; Pan, Lingzhan; Liu, Jingsong; Chen, Zhiqing

    2009-07-01

    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  17. Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Tingmei

    2009-12-01

    A new, facile, and mild approach was developed to cut the conventional long and entangled multiwalled carbon nanotubes (MWCNTs) to short and dispersed ones with length of less than 1 μm by ultrasonic-assisted chemical oxidation with ammonium persulfate (APS) in neutral aqueous solution at room temperature. The resulting products were characterized with Fourier transform infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscope (TEM) techniques. The shortened MWCNTs formed stable dispersion state in water without the help of surfactants that provided possibility for further functionalizations and applications.

  18. Effect of Multiwall Carbon Nanotubes on Electrical and Structural Properties of Polyaniline

    NASA Astrophysics Data System (ADS)

    Nagaraja, M.; Mahesh, H. M.; Manjanna, J.; Rajanna, K.; Kurian, M. Z.; Lokesh, S. V.

    2012-07-01

    Polyaniline (PANI) and PANI/CNT (multiwall carbon nanotubes, CNT) composites were prepared using an oxidative chemical polymerization method with ammonium persulfate and dodecyl benzene sulfonic acid as the oxidizing agent and surfactant, respectively. Fourier-transform infrared spectroscopy spectra illustrate the presence of PANI in the composite and show that some interaction exists between PANI and CNT. Embedding of CNT in the PANI matrix is confirmed by scanning electron micrography. Conductivity of the PANI/CNT composites was higher than that of pure PANI, and the maximum conductivity obtained was 4.44 S/cm at 20 wt.% CNT.

  19. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-04-01

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications. PMID:19947917

  20. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  1. Thermal properties of multi-walled carbon nanotubes-graphite nanosheets/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Ramana, G. Venkata; Padya, Balaji; Srikanth, Vadali V. S. S.; Jain, P. K.

    2013-06-01

    Multi-walled carbon nanotubes (MWCNTs) and graphite nanosheets (GNS) reinforced epoxy nanocomposites are synthesized by solution mixing process. Various surface active groups on filler materials are analyzed and their effect on dispersion, interfacial bonding was correlated to the thermal conductivity and dimensional stability of the nanocomposites. Thermal conductivity of MWCNTs/epoxy nanocomposites was enhanced by 34% when compared to GNS/epoxy nanocomposites at room temperature. Improved dimensional stability was also observed in the case of MWCNTs/epoxy nanocomposites. Poor thermal properties of GNS/epoxy nanocomposites are due to formation of GNS agglomerates in the nanocomposites.

  2. Biofunctionalization of multiwalled carbon nanotubes by electropolymerized poly(pyrrole-concanavalin A) films.

    PubMed

    Papper, Vladislav; Elouarzaki, Kamal; Gorgy, Karine; Sukharaharja, Ayrine; Cosnier, Serge; Marks, Robert S

    2014-10-13

    The synthesis and electropolymerization of a pyrrolic concanavalin A derivative (pyrrole-Con A) onto a multiwalled carbon nanotube (MWCNT) deposit is reported. Glucose oxidase was then immobilized onto the MWCNT-poly(pyrrole-Con A) coating by affinity carbohydrate interactions with the polymerized Con A protein. The resulting enzyme electrode was applied to the amperometric detection of glucose exhibiting a high sensitivity of 36 mA cm(-2) mol(-1) L and a maximum current density of 350 μA cm(-2) . PMID:25179428

  3. Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor

    SciTech Connect

    Yan Shancheng; Qu Peng; Wang Haitao; Tian Tian; Xiao Zhongdang

    2008-10-02

    An efficient way to decorate multiwalled carbon nanotubes with Ru had been developed. In this method, Ru nanoparticles were prepared by water-in-oil reverse microemulsion, and the produced Ru anchored on MWCNTs. Transmission electron microscopy (TEM) result showed that RuO{sub 2} nanoparticles had the uniform size distribution after electrochemical oxidation. Energy dispersive X-rays (EDX) spectra elucidated the presence of ruthenium oxide in the as-prepared composites after electrochemical oxidation. Cyclic voltammetry result demonstrated that a specific capacitance of deposited ruthenium oxide electrode was significantly greater than that of the pristine MWCNTs electrode in the same medium.

  4. Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy.

    PubMed

    Cacace, T; García-García, A; Zito, G; Tkachenko, V; Rusciano, G; Geday, M A; Otón, J M; Marino, A; Sasso, A

    2016-07-11

    We have studied the formation of topological defects in liquid crystal (LC) matrices induced by multiwalled carbon nanotubes (MWCNTs) and external electric fields. The defects are ascribable to a distortion of the LC molecular director in proximity of the MWCNT surface. The system is analyzed macroscopically using spectroscopic variable angle ellipsometry. Concurrently, confocal micro-Raman spectroscopy is used to study the system state at the microscale. This allows to acquire a three-dimensional, spatially-resolved map of the topological defect, determining scale length variations and orientation topography of the LC molecules around the MWCNT. PMID:27410863

  5. New synthesis and physical property of low resistivity boron-doped multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Watanabe, T.; Ueda, S.; Tsuda, S.; Yamaguchi, T.; Takano, Y.

    2008-09-01

    A novel growth technique of boron-doped multi-walled carbon nanotubes (MWNTs) was developed. Our new technique uses a methanol solution of boric acid as a source material. Resistivity of the boron-doped MWNTs was successfully reduced independently of chirality by our technique. Temperature dependence of resistivity in each individual boron-doped MWNT was measured by using small-sized four-point contacts, which were fabricated by electron beam (EB) lithography technique. Conduction carriers were introduced into the MWNT effectively by boron-doping.

  6. Application of multiwalled carbon nanotubes-graphene hybrid nanocomposite for nonenzymatic H2O2 biosensor

    NASA Astrophysics Data System (ADS)

    Nayak, Pranati; Santhosh, P. N.; Ramaprabhu, S.

    2013-02-01

    In the present work, we report the fabrication of nonenzymatic hydrogen peroxide (H2O2) biosensor using multiwalled carbon nanotubes-solar exfoliated graphene hybrid nanocomposite (MWCNTs-sG) as a transducer candidate. The hybrid material has been synthesized by solar reduction technique from a mixture of MWCNTs and graphite oxide (GO). The fabricated MWCNTs-sG based biosensor shows a high catalytic response towards H2O2 reduction at a low potential of -0.4 V and good linearity over a wide range of concentration from 2 mM to 344 mM.

  7. Time-resolved laser-induced incandescence from multiwalled carbon nanotubes in air

    SciTech Connect

    Mitrani, J. M.; Shneider, M. N.

    2015-01-26

    We observed temporal laser-induced incandescence (LII) signals from multiwalled carbon nanotubes(MWCNTs) suspended in ambient air. Unlike previous LII experiments with soot particles, which showed that primary particles with larger diameters cool at slower timescales relative to smaller particles, we observed that thicker MWCNTs with larger outer diameters (ODs) cool at faster timescales relative to thinner MWCNTs with smaller ODs. We suggested a simple explanation of this effect, based on the solution of one-dimensional nonstationary heat conduction equation for the initial non-uniform heating of MWCNTs with ODs greater than the skin depth.

  8. Direct evaluation of ballistic phonon transport in a multi-walled carbon nanotube

    SciTech Connect

    Hayashi, Hiroyuki; Takahashi, Koji; Ikuta, Tatsuya; Nishiyama, Takashi; Takata, Yasuyuki; Zhang, Xing

    2014-03-17

    Phonon confinement and in situ thermal conductance measurements in an individual multi-walled carbon nanotube (MWNT) are reported. Focused ion beam (FIB) irradiation was used to successively shorten a 4.8 μm long MWNT, eventually yielding a 0.3 μm long MWNT. After the first FIB irradiation, a 41% reduction in conductance was achieved, compared with that of the pristine MWNT. This was because the contributions from phonons with long free paths were excluded by scattering at FIB-induced defects. Phonon transport in linked multiple-length nanotubes was also investigated.

  9. Multiwalled carbon nanotubes for dielectric sensing of biological systems: An effective treatment of polarization

    NASA Astrophysics Data System (ADS)

    Picaud, F.; Girardet, C.

    We determine the efficiency of semi-conducting multiwalled carbon nanotubes in resonator configuration acting as sensors of biological systems. The resonance frequency shifts due to the dielectric changes of the resonator upon adsorption of highly idealized micelles schematized by a set of concentric shells of polarizable centers surrounded by a water shell to mimic the solvent are calculated on the basis of an effective polarizability distribution in the tube and the sensed system. Cylindrical and spherical geometries including different sizes are considered for the micelles to show that size and geometry selectivity could be reached with such an approach.

  10. Fabrication of multi-walled carbon nanotubes-aluminum matrix composite by powder metallurgy technique

    NASA Astrophysics Data System (ADS)

    Bunakov, N. A.; Kozlov, D. V.; Golovanov, V. N.; Klimov, E. S.; Grebchuk, E. E.; Efimov, M. S.; Kostishko, B. B.

    We report on fabrication of an aluminum matrix composite containing multi-walled carbon nanotubes (MWCNTs) produced by MOCVD method and functionalized via acid treatment by a H2SO4/HNO3 mixture. Specimens were prepared by spark plasma sintering (SPS) of the aluminum powder with different amounts of functionalized MWCNTs (FMWCNTs) in the range of 0.1-1 wt.%. We studied the effect of FMWCNTs amount on microstructure and mechanical properties of composites. It is shown that functionalization allows homogeneous dispersing of the MWCNTs in Al powder. The maximal increase in micro-hardness and tensile strength is registered at 0.1 wt.%.

  11. Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Mei-Juan; Dang, Zhi-Min; Bozlar, Michael; Miomandre, Fabien; Bai, Jinbo

    2009-10-01

    Broad-frequency dielectric behaviors of multiwalled carbon nanotubes (MWCNTs) embedded in room temperature vulcanization silicone rubber (RT-SR) matrix were studied by analyzing alternating current (ac) impedance spectra, which would make a remarkable contribution for understanding some fundamental electrical properties in the MWCNT/RT-SR nanocomposites. Equivalent circuits of the MWCNT/RT-SR nanocomposites were built, and the law of polarization and mechanism of electric conductance under the ac field were acquired. Two parallel RC circuits in series are the equivalent circuits of the MWCNT/RT-SR composites. At different frequency ranges, dielectric parameters including conductivity, dielectric permittivity, dielectric loss, impedance phase, and magnitude present different behaviors.

  12. Multiwalled carbon nanotubes sensor for organic liquid detection at room temperature

    NASA Astrophysics Data System (ADS)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-04-01

    We have explored the possibility of using multiwalled carbon nanotubes (MWCNTs) as room temperature chemical sensor for the detection of organic liquids such as ethanol, propanol, methanol and toluene. MWCNTs were synthesized by thermal chemical vapor deposition (TCVD) technique. The interdigitated electrodes were fabricated by conventional photolithography technique. The sensor was fabricated by drop depositing MWCNT suspension onto the interdigitated electrodes. The sensing properties of MWCNTs sensor was studied for organic liquids detection. The resistance of sensor was found to increase upon exposure to these liquids. Sensor shows good reversibility and fast response at room temperature. Charge transfer between the organic liquid and sensing element is the dominant sensing mechanism.

  13. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes.

    PubMed

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-14

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm(-2) even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. PMID:27101973

  14. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    SciTech Connect

    Tang Yuechao; Yang Dong; Qin Feng; Hu Jianhua; Wang Changchun; Xu Hualong

    2009-08-15

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.

  15. Strain and Temperature Sensing Properties of Multiwalled Carbon Nanotube Yarn Composites

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gates, Thomas S.; Jefferson, Gail D.

    2008-01-01

    Strain and temperature response of Multiwalled Carbon Nanotube (MWCNT/CNT) yarns on a stainless steel test beam has been studied. The carbon nanotube yarns are spun from a multiwalled carbon nanotube forest grown on a silicon substrate to a 4-ply yarn with a diameter of about 15-20 microns. Four of the 4-ply CNT yarns are arranged in a Wheatstone bridge configuration on the stainless steel test beam using a thin layer of polyurethane resin that insulates and protects the yarns from the test beam. Strain sensitivities of the CNT yarn sensors range from 1.39 to 1.75 mV/V/1000 microstrain at room temperature, and temperature sensitivity of the CNT yarn bridge is 91 microA/degC. Resistance of the yarns range from 215 to 270 ohms for CNT yarn length of approximately 5 mm. Processes used in attaching the CNT yarns on the test beam and experimental procedures used for the measurements are described. Conventional metallic foil strain gages are attached to the test beam to compare with the CNT sensors. The study demonstrates multifunctional capability of the sensor for strain and temperature measurements and shows its applicability where engineering strain is less than 3%.

  16. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  17. Facile Synthesis of Highly Aligned Multiwalled Carbon Nanotubes from Polymer Precursors

    DOE PAGESBeta

    Han, Catherine Y.; Xiao, Zhi-Li; Wang, H. Hau; Lin, Xiao-Min; Trasobares, Susana; Cook, Russell E.

    2009-01-01

    We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20 nm pore membranes. The synthesized carbonmore » nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors.« less

  18. Controllable purification, cutting and unzipping of multi-walled carbon nanotubes with a microwave method

    NASA Astrophysics Data System (ADS)

    Pelalak, R.; Baniadam, M.; Maghrebi, M.

    2013-06-01

    A rapid microwave-assisted method was developed for the purification, cutting and unzipping of arrays of multi-walled carbon nanotubes (MWCNTs) using a mixture of KMnO4 and H2SO4. To harness the extent of treatment, MWCNT products were fully characterized at different reaction times by UV-visible and Raman spectroscopies as well as scanning and transmission electron microscopies. The results show that the carbon nanoparticles and the amorphous carbon which coated the MWCNTs were removed after about 10 minutes. The excessive oxidation of MWCNTs then leads to cutting and unzipping of graphitic walls. Moreover, while the catalyst residues outside the MWCNTs were rapidly extracted up to 10 minutes, the removal of catalyst residues inside the MWCNTs did not begin before 20 minutes. This method can be considered as an efficient route for the purification, cutting and unzipping of MWCNTs due to its fast and controllable procedure.

  19. Tunneling phenomena in aligned multi-walled carbon nanotube sheets: conductivity and Raman correlations

    NASA Astrophysics Data System (ADS)

    del Corro, E.; Castillo-Martínez, E.; Taravillo, M.; Baonza, V. G.

    2014-12-01

    We performed simultaneous Raman spectroscopy and electrical conductivity measurements on self-standing aligned multi-walled carbon nanotubes sheets at varying inter-tube distances. A sapphire anvil cell is used here to modulate the inter-tube distance and promote the subsequent electronic tunneling phenomena. We observe a singular correlation between the intensity of the so called defect bands of carbon materials and their conductivity. This indicates that the conditions of the resonant processes that originate these bands are modified by the tunneling phenomena. Such an issue has never been reported before and has potential technological applications. Additionally, the provided AFM images evidence the debundling of the carbon nanotubes that had been described to occur after small compression.

  20. Dielectric constants of multiwall carbon nanotubes from direct current to microwave frequencies.

    PubMed

    Wang, Y C; Lue, J T; Pauw, K F

    2009-03-01

    A cylindrical rod constructed from a uniform mixture of multiwall carbon nanotubes and alumina powders dissolved in paraffin was inserted in the center of a radio frequency cavity. The real and imaginary dielectric constants of carbon tubes at various frequencies were measured, respectively, from the resonant frequencies and the quality factors, by a resistance-inductance-cacitance (RLC) meter and a microwave network analyzer. The dielectric rod benefits the protection of the sample from adsorbing moisture and preventing the rod from filling with air, thus making accurate measurments. A tunable probe specifically designed for the field pattern of a TM010 mode is delineated to improve the microwave coupling of the dielectric microwave resonator. This refined design is expected to facilitate the measurement yielding a significant manner. The real and imaginary parts of the dielectric constant of carbon nanotubes increase and decrease, respectively as frequencies increase satisfactorily in complying with the description from the free electron Drude model. PMID:19435033

  1. A novel silica-coated multiwall carbon nanotube with CdTe quantum dots nanocomposite

    NASA Astrophysics Data System (ADS)

    Fei, Qiang; Xiao, Dehai; Zhang, Zhiquan; Huan, Yanfu; Feng, Guodong

    2009-10-01

    A novel silica-coated multiwall carbon nanotube (MWNTs) with CdTe quantum dots nanocomposite was synthesized in this paper. Here, we show the in situ growth of crystalline CdTe quantum dots on the surfaces of oxidized MWNTs. The approach proposed herein differs from previous attempts to synthesize nanotube assemblies in that we mix the oxidized MWNTs into CdCl 2 solution of CdTe nanocrystals synthesized in aqueous solution. Reinforced the QD-MWNTs heterostructures with silica coating, this method is not invasive and does not introduce defects to the structure of carbon nanotubes (CNTs), and it ensures high stability in a range of organic solvents. Furthermore, a narrow SiO 2 layer on the MWNT-CdTe heterostructures can eliminate the biological toxicity of quantum dots and carbon nanotubes. This is not only a breakthrough in the synthesis of one-dimensional nanostructures, but also taking new elements into bio-nanotechnology.

  2. Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes.

    PubMed

    Wang, X J; Flicker, J D; Lee, B J; Ready, W J; Zhang, Z M

    2009-05-27

    This work investigates the reflection and scattering from vertically aligned carbon nanotubes, fabricated on silicon substrate using thermally enhanced chemical vapor deposition with both tip-growth and base-growth mechanisms. The directional-hemispherical reflectance in the visible and near-infrared wavelengths was measured with an integrating sphere. The polarization-dependent bidirectional reflectance distribution function was characterized with a laser scatterometer at the wavelength of 635 nm. The effective medium theory was used to elucidate the mechanism of high absorptance (greater than 0.97 in the spectral region from 400 to 1800 nm) of the multi-walled carbon nanotube samples. It is observed that scattering by impurities on the top of the nanotubes, by the nanotube tips, and by defects and misalignment can significantly increase the reflectance and introduce retroreflection. This study may facilitate application of carbon nanotubes in pyroelectric detectors as well as thermophotovoltaic emitters and absorbers. PMID:19423943

  3. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    PubMed Central

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  4. Atomic-Scale Investigations of Multiwall Carbon Nanotube Growth

    NASA Astrophysics Data System (ADS)

    Behr, Michael John

    The combination of unique mechanical, thermal, optical, and electronic properties of carbon nanotubes (CNTs) make them a desirable material for use in a wide range of applications. Many of these unique properties are highly sensitive to how carbon atoms are arranged within the graphene nanotube wall. Precise structural control of this arrangement remains the key challenge of CNT growth to realizing their technological potential. Plasma-enhanced chemical vapor deposition (PECVD) from methane-hydrogen gas mixtures using catalytic nanoparticles enables large-scale growth of CNT films and controlled spatial placement of CNTs on a substrate, however, much is still unknown about what happens to the catalyst particle during growth, the atomistic mechanisms involved, and how these dictate the final nanotube structure. To investigate the fundamental processes of CNT growth by PECVD, a suite of characterization techniques were implemented, including attenuated total-reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical emission spectroscopy (OES), Raman spectroscopy, convergent-beam electron diffraction (CBED), high-resolution transmission and scanning-transmission electron microscopy (TEM, STEM), energy dispersive x-ray spectroscopy, and electron energy-loss spectroscopy (EELS). It is found that hydrogen plays a critical role in determining the final CNT structure through controlling catalyst crystal phase and morphology. At low hydrogen concentrations in the plasma iron catalysts are converted to Fe3C, from which high-quality CNTs grow; however, catalyst particles remain as pure iron when hydrogen is in abundance, and produce highly defective CNTs with large diameters. The initially faceted and equiaxed catalyst nanocrystals become deformed and are elongated into a teardrop morphology once a tubular CNT structure is formed around the catalyst particles. Although catalyst particles are single crystalline, they exhibit combinations of small-angle (˜1°-3

  5. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  6. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  7. Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking.

    PubMed

    Liu, Min; Chen, Biao; Xue, Yanan; Huang, Jie; Zhang, Liming; Huang, Shiwen; Li, Qingwen; Zhang, Zhijun

    2011-11-16

    Functionalized multiwalled carbon nanotubes (f-MWNTs) are of great interest and designed as a novel gene delivery system. In this paper, we presented synthesis of polyamidoamine-functionalized multiwalled carbon nanotubes (PAA-g-MWNTs) and their application as a novel gene delivery system. The PAA-g-MWNTs, obtained from amide formation between PAA and chemically oxidized MWNTs, were stable in aqueous solution and much less toxic to cells than PAA and PEI 25KDa. More importantly, PAA-g-MWNTs showed comparable or even higher transfection efficiency than PAA and PEI at optimal w/w ratio. Intracellular trafficking of Cy3-labeled pGL-3 indicated that a large number of Cy3-labeled pGL-3 were attached to nucleus membrane, the majority of which was localized in nucleus after incubation with cells for 24 h. We have demonstrated that PAA modification of MWNTs facilitate higher DNA uptake and gene expression in vitro. All these facts suggest potential application of PAA-g-MWNTs as a novel gene vector with high transfection efficiency and low cytotoxicity. PMID:21995530

  8. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-01

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors.Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08791k

  9. Multiwalled carbon nanotube films as small-sized temperature sensors

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, A.; Sarno, M.; Giubileo, F.; Altavilla, C.; Iemmo, L.; Piano, S.; Bobba, F.; Longobardi, M.; Scarfato, A.; Sannino, D.; Cucolo, A. M.; Ciambelli, P.

    2009-03-01

    We present the fabrication of thick and dense carbon nanotube networks in the form of freestanding films (CNTFs) and the study of their electric resistance as a function of the temperature, from 4 to 420 K. A nonmetallic behavior with a monotonic R(T ) and a temperature coefficient of resistance around -7×10-4 K-1 is generally observed. A behavioral accordance of the CNTF conductance with the temperature measured by a solid-state thermistor (ZnNO, Si, or Pt) is demonstrated, suggesting the possibility of using CNTFs as temperature small-sized (freely scalable) sensors, besides being confirmed by a wide range of sensitivity, fast response, and good stability and durability. Concerning electric behavior, we also underline that a transition from nonmetal to metal slightly below 273 K has been rarely observed. A model involving regions of highly anisotropic metallic conduction separated by tunneling barrier regions can explain the nonmetallic to metallic crossover based on the competing mechanisms of the metallic resistance rise and the barrier resistance lowering.

  10. Multi-walled carbon nanotube-based carbon/carbon composites with three-dimensional network structures

    NASA Astrophysics Data System (ADS)

    Jin, Yuguang; Zhang, Yingying; Zhang, Qiang; Zhang, Rufan; Li, Peng; Qian, Weizhong; Wei, Fei

    2013-06-01

    Multi-walled carbon nanotube (MWCNT)-based carbon/carbon composites were fabricated by the chemical vapor infiltration of pyrolytic carbon into pre-compressed MWCNT blocks. The pyrolytic carbon was deposited on the surface of the MWCNTs and filled the gaps between the MWCNTs, which improved the connection between the MWCNTs and formed a three-dimensional network structure. The mechanical and electrical properties were improved significantly. The values of the maximum compressed deformation, maximum breaking strength, Young's modulus and energy absorption are measured as 10.9%, 148.6 MPa, 1588.6 MPa and 13.8 kJ kg-1, respectively. The conductivity reached about 204.4 S cm-1, more than 10 times larger than that of pre-compressed MWCNT blocks. After annealing at 1800 °C in vacuum, the graphitization improved remarkably. The pyrolytic carbon deposited on the surface of the MWCNTs was rearranged along the walls, and resulted in an increase of the number of walls of the MWCNTs.Multi-walled carbon nanotube (MWCNT)-based carbon/carbon composites were fabricated by the chemical vapor infiltration of pyrolytic carbon into pre-compressed MWCNT blocks. The pyrolytic carbon was deposited on the surface of the MWCNTs and filled the gaps between the MWCNTs, which improved the connection between the MWCNTs and formed a three-dimensional network structure. The mechanical and electrical properties were improved significantly. The values of the maximum compressed deformation, maximum breaking strength, Young's modulus and energy absorption are measured as 10.9%, 148.6 MPa, 1588.6 MPa and 13.8 kJ kg-1, respectively. The conductivity reached about 204.4 S cm-1, more than 10 times larger than that of pre-compressed MWCNT blocks. After annealing at 1800 °C in vacuum, the graphitization improved remarkably. The pyrolytic carbon deposited on the surface of the MWCNTs was rearranged along the walls, and resulted in an increase of the number of walls of the MWCNTs. Electronic supplementary

  11. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells. PMID:27108281

  12. Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube

    SciTech Connect

    Wang, Ning; Xu, Jiaoxing; Guan, Lunhui

    2011-09-15

    Highlights: {yields} SnO{sub 2} nanoparticles were uniformly deposited on carbon nanotubes. {yields} MWNT@SnO{sub 2} showed excellent photocatalytic activity. {yields} The quenched PL proved the existence of electron transfer between SnO{sub 2} and MWNT. -- Abstract: A nanocomposite of SnO{sub 2} nanoparticles coated on multi-walled carbon nanotube (MWNT@SnO{sub 2}) was synthesized and characterized by thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, nitrogen physisorption measurements, photoluminescence. The results show that the SnO{sub 2} nanoparticles with a narrow size of 4 nm are uniformly deposited on MWNT. The photocatalytic activity of the nanocomposite was studied using methyl orange as a model organic pollutant. MWNT@SnO{sub 2} exhibits much higher photocatalytic activity than that of commercial TiO{sub 2} (P-25). The promotion is mainly contributed from electron transfer between SnO{sub 2} and MWNT.

  13. Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Rojas, J. V.; Castano, C. H.

    2012-01-01

    Palladium nanoparticles were produced and supported on multiwalled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a specific ratio of 2:1 of water-isopropanol was prepared and mixed with palladium chloride and the surfactant sodium dodecyl sulfate (SDS). The gamma radiolysis of water ultimately produces Pd metallic particles that serve as nucleation seeds. Isopropanol is used as an ion scavenger to balance the reaction, and the coalescence of the metal nanoparticles was controlled by the addition of SDS as a stabilizer. The size and distribution of nanoparticles on the carbon nanotubes (CNT) were studied at different surfactant concentrations and radiation doses. SEM, STEM and XPS were used for morphological, chemical and structural characterization of the nanostructure. Nanoparticles obtained for doses between 10 and 40 kGy, ranged in size 5-30 nm. The smaller nanoparticles were obtained at the higher doses and vice versa. Histograms of particle size distributions at different doses are presented.

  14. Conductivity enhancement of multiwalled carbon nanotube thin film via thermal compression method

    NASA Astrophysics Data System (ADS)

    Tsai, Wan-Lin; Wang, Kuang-Yu; Chang, Yao-Jen; Li, Yu-Ren; Yang, Po-Yu; Chen, Kuan-Neng; Cheng, Huang-Chung

    2014-08-01

    For the first time, the thermal compression method is applied to effectively enhance the electrical conductivity of carbon nanotube thin films (CNTFs). With the assistance of heat and pressure on the CNTFs, the neighbor multiwalled carbon nanotubes (CNTs) start to link with each other, and then these separated CNTs are twined into a continuous film while the compression force, duration, and temperature are quite enough for the reaction. Under the compression temperature of 400°C and the compression force of 100 N for 50 min, the sheet resistance can be reduced from 17 to 0.9 k Ω/sq for the CNTFs with a thickness of 230 nm. Moreover, the effects of compression temperature and the duration of thermal compression on the conductivity of CNTF are also discussed in this work.

  15. Multi-Walled Carbon Nanotube Functionalization by Radical Addition Using Hydroxymethylene Groups.

    PubMed

    Rodríguez-Jiménez, Rubén; Alonso-Núñez, Gabriel; Paraguay-Delgado, Francisco; Espinoza-Gómez, Heriberto; Vélez-López, Ernesto; Rogel-Hernández, Eduardo

    2016-01-01

    Synthetic methodology and characterization of multi-walled carbon nanotubes (MWCNTs) function- alized with hydroxymethylene groups are reported. The MWCNTs were synthesized by the spray pyrolysis technique using toluene as carbon source and ferrocene as catalyst. Hydroxymethylation of MWCNTs was carried out by methanol using benzoyl peroxide (BPO) at different quantities (300 to 900 mg); the optimum BPO quantity was 300 mg. The resulting materials were characterized by FT-IR, Raman Spectroscopy, Thermal Gravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). The presence of the hydroxymethylene group on the MWCNTs surface was demonstrated by FT-IR, Raman Spectroscopy, TGA, EDS, TEM and Mass Spectrometry. The func- tionalized MWCNTs were not damaged by this methodology. PMID:27398563

  16. Unzipped Nanotube Sheet Films Converted from Spun Multi-Walled Carbon Nanotubes by O2 Plasma.

    PubMed

    Jangr, Hoon-Sik; Jeon, Sang Koo; Shim, Dae Seob; Lee, Nam Hee; Nahm, Seung Hoon

    2015-11-01

    Large-scale graphene or carbon nanotube (CNT) films are good candidates for transparent flexible electrodes, and the strong interest in graphene and CNT films has motivated the scalable production of a good-conductivity and an optically transmitting film. Unzipping techniques for converting CNTs to graphene are especially worthy of notice. Here, we performed nanotube unzipping of the spun multi-walled carbon nanotubes (MWCNTs) to produce networked graphene nanoribbon (GNR) sheet films using an 02 plasma etching method, after which we produced the spun MWCNT film by continually pulling MWCNTs down from the vertical well aligned MWCNTs on the substrate. The electrical resistance was slightly decreased and the optical transmittance was significantly increased when the spun MWCNT films were etched for 20 min by O2 plasma of 100 mA. Plasma etching for the optimized time, which does not change the thickness of the spun MWCNT films, improved the electrical resistance and the optical transmittance. PMID:26726645

  17. Magnetic studies of multi-walled carbon nanotube mats: Ultra-high temperature ferromagnetism or superconductivity?

    NASA Astrophysics Data System (ADS)

    Beeli, Pieder; Zhao, Guo-Meng

    2008-03-01

    We report magnetic measurements up to 1200 K on multi-walled carbon nanotube mats using a Quantum Design vibrating sample magnetometer. Extensive magnetic data consistently show two ferrromagnetic-like transitions at about 1000 K and 1275 K, respectively. The lower transition at about 1000 K is associated with an Fe impurity and its saturation magnetization is in quantitative agreement with the Fe concentration measured from an inductively coupled plasma mass spectrometer. On the other hand, the saturation magnetization for the higher transition phase corresponds to about 0.6% Co impurity concentration, which is about four orders of magnitude larger than that measured from the mass spectrometer. We show that this transition at about 1275 K is not consistent with ferromagnetism of any carbon-based phases or magnetic impurities but with the paramagnetic Meissner effect due to the existence of π Josephson junctions in a granular superconductor.

  18. Ultra-high crystallinity millimeter long multiwall carbon nanotubes fabricated by mechanothermal method

    NASA Astrophysics Data System (ADS)

    Manafi, S. A.; Rahimipour, M. R.; Soltanmoradi, A.

    2012-09-01

    In this work, multi-walled carbon nanotubes (MWCNTs) with ultra-high crystalline structure have been prepared by mechanothermal (MT) method. The novel super nanostructure is introduced for the first time as an extraordinary fullerene-carbon based material which, due to its special electronic and mechanical properties, can be used to construct unique building blocks for nanoengineering. Initially, high ultra-active graphite powder has been obtained by mechanical activation under Ar atmosphere. Finally, the mechanically activated product is heat-treated at 1350 °C for 3-4 h under an Ar gas flow. However, the crystallite size and crystallinity degree of the MWCNTs increased with the increase in annealing temperature.

  19. Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-06-01

    Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.

  20. Microstructure and mechanical properties of silicon carbide ceramics reinforced with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barmin, A.; Bortnikova, V.; Ivanov, A.; Kornev, V.; Lurie, S.; Solyaev, Y.

    2016-04-01

    A microstructure, a composition and mechanical properties of multi-walled carbon of nanotube-reinforced silicon carbide ceramics were examined. The amount of carbon nanotubes was up to 1% wt. Samples was prepared by spark plasma sintering. It has been found that the optimal sintering temperature is 2000°C with an exposure duration of 5 minutes and a pressure of 50 MPa. The effect of the CNT mass fraction on the Young modulus of silicon carbide ceramics composites was investigated for different temperatures and processing conditions of samples using ultrasonic techniques. It has been established that Young's modulus of ceramics decreases due to addition of CNT. Elastic properties of the composites cross section were characterized using nano-indentation. It has been revealed that the stiffness of the ceramics intergranular phase decreases due to addition of CNT.

  1. Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Ahn, K. S.; Kim, C. O.; Hong, J. P.

    2003-03-01

    Simple laser irradiation of well-aligned multiwall carbon nanotubes (MWCNTs) was performed to intentionally modify structural defects and to ablate possible contamination of the MWCNTs. Scanning electron microscopy and transmission electron microscopy confirmed the clear presence of the MWCNTs with open tips. A Raman spectra exhibited a decrease in an intensity ratio (ID/IG) of 1352 cm-1 (D band) over 1583 cm-1 (G band) peaks by significantly reducing the amorphous carbon phases of D band peaks. The structural improvement in the MWCNTs after optimum laser exposure resulted in a reduction of the turn-on voltage from 1.0 to 0.6 V/μm and an increase in the emission current.

  2. Reinforcement of CVD grown multi-walled carbon nanotubes by high temperature annealing

    NASA Astrophysics Data System (ADS)

    Elumeeva, K. V.; Kuznetsov, V. L.; Ischenko, A. V.; Smajda, R.; Spina, M.; Forró, L.; Magrez, A.

    2013-11-01

    We report on the increase of the Young's modulus (E) of chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) upon high temperature heat treatment. The post heat-treatment at 2200-2800°C in a controlled atmosphere results in a considerable improvement of the microstructure, chemical stability and electro-physical properties of the nanotubes. The Young's modulus of MWNTs of different diameters was measured by the deflection of a single tube suspended across the hole of silicon nitride membrane and loaded by an atomic force microscope tip. Contrary to previous reports, a strong increase of E was feasible due to the improved growth conditions of pristine carbon nanotubes and to the improved heat treatment conditions. However, the elastic modulus of CVD grown MWNTs still shows strong diameter dependence resulting from the remaining structural inhomogeneities in large diameter nanotubes.

  3. Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2007-01-01

    Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.

  4. On-chip purification via liquid immersion of arc-discharge synthesized multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hokkanen, Matti J.; Lautala, Saara; Shao, Dongkai; Turpeinen, Tuomas; Koivistoinen, Juha; Ahlskog, Markus

    2016-07-01

    Arc-discharge synthesized multiwalled carbon nanotubes (AD-MWNT) have been proven to be of high quality, but their use is very limited due to difficulties in obtaining them in a clean and undamaged form. Here, we present a simple method that purifies raw AD-MWNT material in laboratory scale without damage, and that in principle can be scaled up. The method consists of depositing raw AD-MWNT material on a flat substrate and immersing the substrate slowly in water, whereby the surface tension force of the liquid-substrate contact line selectively sweeps away the larger amorphous carbon debris and leaves relatively clean MWNTs on the substrate. We demonstrate the utility of the method by preparing clean individual MWNTs for measurement of their Raman spectra. The spectra exhibit the characteristics of high-quality tubes free from contaminants. We also show how one concomitantly with the purification process can obtain large numbers of clean suspended MWNTs.

  5. Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine.

    PubMed

    Hong, Xiaoping; Zhu, Yan; Ma, Jingying

    2012-12-01

    A highly sensitive amperometric sulfadiazine sensor based on coating multiwalled carbon nanotubes (MWCNTs) and N-octyl-pyridinium-hexafluorophosphate (OPPF(6)) ionic liquid composite on a glassy carbon (GC) electrode is described. The MWCNTs/OPPF(6) composite contributed new properties to electrochemical sensors by combining the advantages of both ionic liquids and MWCNTs. Compared with bare GC electrode, the electrocatalytic activity of MWCNTs/OPPF(6) generated a greatly improved electrochemical detection of sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the MWCNTs/OPPF(6) coated GC electrode were proportional to the concentration of sulfadiazine within the range of 3.3-35.4 μM with a detection limit of 0.21 μM. PMID:21953836

  6. Conductivity enhancement of multiwalled carbon nanotube thin film via thermal compression method

    PubMed Central

    2014-01-01

    For the first time, the thermal compression method is applied to effectively enhance the electrical conductivity of carbon nanotube thin films (CNTFs). With the assistance of heat and pressure on the CNTFs, the neighbor multiwalled carbon nanotubes (CNTs) start to link with each other, and then these separated CNTs are twined into a continuous film while the compression force, duration, and temperature are quite enough for the reaction. Under the compression temperature of 400°C and the compression force of 100 N for 50 min, the sheet resistance can be reduced from 17 to 0.9 k Ω/sq for the CNTFs with a thickness of 230 nm. Moreover, the effects of compression temperature and the duration of thermal compression on the conductivity of CNTF are also discussed in this work. PMID:25232300

  7. Spatial Frequency Heterodyne Imaging of Water Filled Multi-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schunk, Francisco; Rand, Danielle; Rose-Petruck, Christoph

    2015-03-01

    Evaporation and condensation of water on multi-walled carbon nanotube (MWCNT) surfaces was monitored as a function of both temperature and time using x-ray Spatial Frequency Heterodyne Imaging (SFHI). SFHI is an imaging method that produces an absorption and scatter image from a single exposure, with increased sensitivity to variations in electron density relative to more common place x-ray imaging techniques. Different features seen in the temporal scatter intensity profiles recorded during evaporation and condensation revealed the existence of an absorption-desorption hysteresis. Effects on the previously mentioned phenomena due to chemical functionalization of the carbon nanotube surfaces were also observed. Functionalization increased the interaction potential between the MWCNT walls and water molecules, altering the evaporation event time scale and increasing the temperature at which condensation could take place. The observed temperature dependent changes in evaporation time scales coincide with the boiling point for confined water predicted by the Kelvin equation.

  8. Preparation and Characterization of Iodine-doped Multi-wall Carbon Nanotubes

    SciTech Connect

    Zainal, N. F. A.; Kudin, T. I. Tunku; Azira, A.; Ahmed, A. Z.; Abdullah, S.; Rusop, M.

    2008-05-20

    Multi-wall carbon nanotubes (MWCNTs) were synthesized by thermal chemical vapor deposition (CVD) and were intercalated with iodine at several different temperatures. Iodine doping was achieved by immersing the nanotubes in molten iodine. The sample produced was characterized by means of infrared IR as a point to the presence of covalent C-I bonds in the sample with retention of the sp{sup 2}-hybridizated carbon atoms. For all samples doped at different temperatures, the C-I bonding happen to occur based on IR spectra which was indicated by peaks around 600-650 cm{sup -1}. X-ray diffraction (XRD) characterization was used to study on the crystallinity of the undoped and iodine-doped MWCNTs. It was shown that, iodine-doping of the MWCNTs gives significant changes in the XRD spectra compared to the undoped MWCNTs. With various doping temperature, the XRD spectra shows the different crystallinity.

  9. Effect of Acid and Alcohol Network Forces within Functionalized Multiwall Carbon Nanotubes Bundles on Adsorption of Copper (II) Species

    EPA Science Inventory

    Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...

  10. 40 CFR 721.10266 - Multi-walled carbon nanotubes (generic) (P-08-733 and P-08-734).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... matrix (does not include slurries) that is not intended to undergo further processing, except for mechanical processing. (2) The significant new uses are: (i) Protection in the workplace. Requirements as... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Multi-walled carbon nanotubes...

  11. Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid

    NASA Astrophysics Data System (ADS)

    Ishii, Satoshi; Watanabe, Tohru; Ueda, Shinya; Tsuda, Shunsuke; Yamaguchi, Takahide; Takano, Yoshihiko

    2008-05-01

    Boron-doped multiwalled carbon nanotubes (MWNTs) were synthesized using a methanol solution of boric acid as a source material. Accurate measurements of the electrical resistivity of an individual boron-doped MWNT was performed with a four-point contact, which was fabricated using an electron beam lithography technique. The doped boron provides conduction carriers, which reduces the resistivity of the MWNT.

  12. ZnO Functionalization of Multi-walled Carbon Nanotubes for Methane Sensing at Single Parts Per Million Concentration Levels

    EPA Science Inventory

    This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pre-treated multi-walled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanopart...

  13. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as single-walled and multi-walled carbon nanotubes (PMN P-10-40... nanotubes (generic) (P-10-40). 721.10277 Section 721.10277 Protection of Environment...

  14. Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-saturated column experiments were conducted to investigate the effect of input concentration (Co) and sand grain size on the transport and retention of low concentrations (1, 0.01, and 0.005 mg L/1) of functionalized 14C-labeled multi-walled carbon nanotubes (MWCNT) under repulsive electrostat...

  15. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh; Novinrooz, Abdul; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs' diameter.

  16. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh Z.; Novinrooz, Abdul J.; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs’ diameter.

  17. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  18. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  19. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  20. Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes.

    PubMed

    Bocharova, Vera; Kiriy, Anton; Oertel, Ulrich; Stamm, Manfred; Stoffelbach, François; Jérôme, Robert; Detrembleur, Christophe

    2006-08-01

    Deposition of multiwalled carbon nanotubes modified by poly(2-vinylpyridine) (CNT-g-P2VP) from aqueous dispersions at low pH is an effective method to prepare homogeneous ultrathin films with a tunable CNTs density. A percolation threshold of 0.25 mug/cm2 and a critical exponent alpha = 1.24 have been found from dc conductivity measurements. The sheet resistance value agrees with the percolation theory for 2D films. According to AFM and electrical measurements, even when only 5% of the surface is covered by CNT-g-P2VPs, the sheet resistance is of the order of 1 MOmega/sq, which indicates that conductivity is imparted by a network of an ultralow density. When the film transmittance decreases down to approximately 70% at 550 nm, the occupied surface area is approximately 15% and sheet resistance falls down to approximately 90 kOmega/sq. These data show that undesired in-plane clustering does not occur upon the dispersion casting of the films and that high-quality networks of CNT-g-P2VPs are built up. The electrosteric stabilization of the CNT-g-P2VP dispersions in water at low pH is at the origin of this desired behavior. Although the multiwalled CNT films prepared in this work are less conductive and less transparent than the SWNTs films, they could find applications, e.g., in touch screens, reflective displays, EMI shielding, and static charge dissipation. PMID:16869566

  1. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    SciTech Connect

    Zhao, Junhua E-mail: timon.rabczuk@uni-weimar.de; Lu, Lixin; Rabczuk, Timon E-mail: timon.rabczuk@uni-weimar.de

    2014-05-28

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E{sub i}I{sub i}, d, and γ, where E{sub i}I{sub i} and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates.

  2. Growth of multiwalled carbon nanotube arrays by chemical vapour deposition over iron catalyst and the effect of growth parameters

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, J. K.; Pandian, P. S.; Padaki, V. C.; Bhusan, H.; Rao, K. U. B.; Xie, J.; Abraham, J. K.; Varadan, V. K.

    2009-04-01

    Multiwalled carbon nanotube (CNT) arrays were grown by catalytic thermal decomposition of acetylene, over Fe-catalyst deposited on Si-wafer in the temperature range 700-750 °C. The growth parameters were optimized to obtain dense arrays of multiwalled CNTs of uniform diameter. The vertical cross-section of the grown nanotube arrays reveals a quasi-vertical alignment of the nanotubes. The effect of varying the thickness of the catalyst layer and the effect of increasing the growth duration on the morphology and distribution of the grown nanotubes were studied. A scotch-tape test to check the strength of adhesion of the grown CNTs to the Si-substrate surface reveals a strong adhesion between the grown nanotubes and the substrate surface. Transmission electron microscopy analysis of the grown CNTs shows that the grown CNTs are multiwalled nanotubes with a bamboo structure, and follow the base-growth mechanism.

  3. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  4. Dispersion of multi-wall carbon nanotubes in polyhistidine: characterization and analytical applications.

    PubMed

    Dalmasso, Pablo R; Pedano, María L; Rivas, Gustavo A

    2012-01-13

    We report for the first time the use of polyhistidine (Polyhis) to efficiently disperse multiwall carbon nanotubes (MWCNTs). The optimum dispersion MWCNT-Polyhis was obtained by sonicating for 30 min 1.0 mg mL(-1) MWCNTs in 0.25 mg mL(-1) Polyhis solution prepared in 75:25 (v/v) ethanol/0.200 M acetate buffer solution pH 5.00. The dispersion was characterized by scanning electron microscopy, and by cyclic voltammetry and amperometry using ascorbic acid as redox marker. The modification of glassy carbon electrodes with MWCNT-Polyhis produces a drastic decrease in the overvoltage for the oxidation of ascorbic acid (580 mV) at variance with the response observed at glassy carbon electrodes modified just with Polyhis, where the charge transfer is more difficult due to the blocking effect of the polymer. The reproducibility for the sensitivities obtained after 10 successive calibration plots using the same surface was 6.3%. The MWCNT-modified glassy carbon electrode demonstrated to be highly stable since after 45 days storage at room temperature the response was 94.0% of the original. The glassy carbon electrode modified with MWCNT-Polyhis dispersion was successfully used to quantify dopamine or uric acid at nanomolar levels, even in the presence of large excess of ascorbic acid. Determinations of uric acid in human blood serum samples demonstrated a very good correlation with the value reported by Wienner laboratory. PMID:22123112

  5. Growth of Vertically Aligned Carbon Nanotube Films: Single- versus Multi-walled

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju; Wang, Yunyu

    2005-03-01

    Vertically aligned high density small diameter carbon nanotube films were deposited by microwave CVD technique. The iron catalyst was prepared by E-beam evaporation on thermally grown silicon dioxide n-type Si(100) substrates. Experiments show that by continuous reduction in the thickness of Fe (˜ 3-5), smaller diameter carbon nanotube can be achieved. Scanning electron and high-resolution transmission electron microscopy show that the diameter of carbon nanotubes ranged ˜ 1 - 5 nm and the films are comprised of both the single- and double-wall carbon nanotubes. Visible Raman spectroscopy was used to further verify the diameter of nanotubes. A thick iron film (80 nm) was also used to grow nanotubes for comparison. The results show that the catalyst islands become greater than hundred nanometers with increasing thickness and induce multi-wall and bamboo-like microstructures. While for thinner layer of iron films smaller sizes of catalyst particles/droplets produce hollow concentric tubes without bamboo structure and with less number of walls (single-wall and double-wall carbon nanotubes). The base growth was the most appropriate model to describe the growth mechanism for our films. The electron field emission properties such as field electron emission microscopy (FEEM) in conjunction with the temperature dependence (T-FEEM) were measured to investigate the emission site density and their intensity variation. These findings in terms of the role of adsorption will be briefly discussed.

  6. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth. PMID:22437017

  7. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    SciTech Connect

    Lee, Min-Sang; Park, Soo-Jin

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  8. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    PubMed

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure. PMID:20644821

  9. Effect of top metal contact on the electrical properties of suspended spiral multiwalled carbon nanotube

    SciTech Connect

    Dhall, Shivani Jaggi, Neena

    2014-04-24

    The electrical transport behavior of individual spiral multiwalled carbon nanotube (MWCNT), functionalized via chemical route, has been investigated. The electrical current and conductance of such dangling bond attached tube, has been increased, after deposition of platinum (Pt) metal contacts at the two ends using electron beam induced deposition technique (EBID). The increment in the conductance is explained in terms of the change in the density of the states (DOS) near the Fermi level by dangling bonds and Pt atoms presence on the tube. Scanning electron microscope (SEM) image confirms its spiral nature after functionalization. Current –voltage measurements reveal a significant enhancement in the electrical transport of the same tube after the deposition of side metal contact. These results can be useful for the fabrication of nanoelectronic devices.

  10. Properties and electrochemical characteristics of boron-doped multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tsierkezos, Nikos G.; Ritter, Uwe; Nugraha Thaha, Yudi; Krischok, Stefan; Himmerlich, Marcel; Downing, Clive

    2015-10-01

    Boron-doped multi-walled carbon nanotubes were synthesized upon decomposition of ethyl alcohol and boric acid via chemical vapor deposition. The boron-doped nanotubes were treated with hydrochloric acid and were characterized by means of scanning electron and transmission electron microscopy in conjunction with energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. The electrochemistry of ferrocyanide/ferricyanide on boron-doped nanotubes was studied in temperature range of 283.15-303.15 K. The findings exhibit an improvement of films' current response and kinetics of electron transfer with the rise in temperature. The kinetics for electron transfer enhances and the redox process occurs slightly more spontaneously upon acid treatment.

  11. Conductivity of multiwall carbon nanotubes: Role of multiple shells and defects

    NASA Astrophysics Data System (ADS)

    Stetter, A.; Vancea, J.; Back, C. H.

    2010-09-01

    We report on laterally resolved measurements of the current-induced gradient in the electrochemical potential of multiwall carbon nanotubes. Nanotubes with different classes of defects were studied at room temperature. The potential profile of the outermost shell along the tube was measured in a local as well as in a nonlocal geometry. The data have been used to separate the contributions of various shells to the total resistance of the whole tube. For this purpose, a classical resistivity model was used that describes the measured potential profiles well. Additionally, the influence of structural defects on the conductivity has been quantified. Particularly, defects such as an ending outermost shell, an intratube junction, and a plastically stretched tube with a kink were investigated.

  12. Optical properties of fluorescent zigzag graphene quantum dots derived from multi-walled carbon nanotubes

    SciTech Connect

    Chen, Wei; Li, Fushan Wu, Chaoxing; Guo, Tailiang

    2014-02-10

    Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating electronic and optical properties due to their quantum confinement and edge effect. In this paper, GQDs were synthesized by using acid treatment and chemical exfoliation of multi-walled carbon nanotubes (MWCNTs). The structure of the GQDs was investigated by transmission electron microscope. The GQDs have a uniform size distribution, zigzag edge structure and two-dimensional morphology. The results indicated that the GQDs have bright blue emission upon UV excitation. The highly fluorescent GQDs exhibited high water solubility and good stability. It is shown that the acid treatment of MWCNTs leads to the formation of the functional group in zigzag sites, which results in the pH-dependent fluorescence of the GQDs.

  13. Laser heating effect on Raman spectra of styrene-butadiene rubber/multiwalled carbon nanotube nanocomposites

    NASA Astrophysics Data System (ADS)

    Yan, Xinlei; Kitahama, Yasutaka; Sato, Harumi; Suzuki, Toshiaki; Han, Xiaoxia; Itoh, Tamitake; Bokobza, Liliane; Ozaki, Yukihiro

    2012-01-01

    The laser heating effect on MWCNTs in styrene-butadiene rubber/multiwalled carbon nanotube (SBR/MWCNT) composites were studied by Raman spectra. The intensity ratio of the D band to G band (ID/IG) of SBR/MWCNT composites largely decreased with temperature. This indicates the self-rearranging behavior of MWCNTs in the SBR/MWCNTs system during temperature increase. In addition, the temperature-dependent downward shift of the G band of SBR/MWCNT composites was smaller than that of MWCNTs samples. The self-rearrangement of MWCNTs in SBR/MWCNT composites and a mechanical compression were explained as two possible reasons for the different behavior of the G band shift.

  14. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mokarian, Zahra; Rasuli, Reza; Abedini, Yousefali

    2016-04-01

    A facile approach to fabricate a stable superhydrophobic composite comprising multi-walled carbon nanotubes and silicone rubber has been reported. Contact angle of de-ionized water droplets on the prepared surface was measured with the value of near 159°; while water droplets easily rolled off and bounced on it. Surface free energy of the superhydrophobic coating was examined by three methods about 26 mJ/m2. The prepared film shows good stability under high stress conditions such as ultraviolet exposure, heating, pencil hardness test, attacking with different pH value and ionic-strength solutions. In addition, remarkable stability of the coating was observed after soaking in condensed hydrochloric acid, 5 wt.% NaCl aqueous solution, boiling water and tape test.

  15. The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes.

    PubMed

    Oleszczuk, Patryk; Jośko, Izabela; Xing, Baoshan

    2011-02-15

    The aim of this study was to evaluate the toxicity of sewage sludges containing multiwalled carbon nanotubes (CNTs) with an outer diameter <10 nm (CNT10) or 40-60 nm (CNT60) to Lepidium sativum (cress), Sorghum saccharatum (sorgo), Solanum lycopersicon (tomato), Raphanus sativus (radish) and Cucumis sativus (cucumber). CNTs were also incubated in sewage sludge for 7 or 31 days to determine the effect of CNT aging on sewage sludge phytotoxicity. The influence of CNTs on 4 different sewage sludges was tested. The CNTs' influence on sludge toxicity varied with respect to the CNTs' outer diameter, type of sewage sludges and the plants tested. No significant influence of CNT concentration on phytotoxicity was noted. In the case of two sludges, a positive influence of CNTs on seed germination and root growth was observed. Depending on the CNTs' outer diameter, CNT aging decreased (CNT10) or increased (CNT60) sewage sludge phytotoxicity. PMID:21145166

  16. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    SciTech Connect

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly; Kohls, Doug J.; Bunk, Oliver; Schaefer, Dale W.; Pötschke, Petra

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.

  17. Nickel and nickel oxide nanocrystals selectively grafting on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prabhu, Yendrapati Taraka; Rao, Kalagadda Venkateswara; Kumari, Bandla Siva; Sai, Vemula Sesha; Pavani, Tambur

    2015-01-01

    Nickel and nickel oxide nanocrystals in their pure phase are carefully embellished by a facial method on oxygen-functionalized multi-walled carbon nanotubes (O-MWCNTs) using nickel nitrate (NN) was effectively accomplished for the first time by calcining them in hydrogen, nitrogen and air, respectively, at suitable temperatures. Nickel and nickel oxide nanocrystals impregnated O-MWCNTs were examined for its structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. The nanocrystals on the O-MWCNTs were determined of 15-20 nm size. Decorated nanocrystals on CNT's have potential applications in semiconductor industries.

  18. Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Coleman, J. N.; O'Brien, D. F.; Dalton, A. B.; McCarthy, B.; Lahr, B.; Barklie, R. C.; Blau, W. J.

    2000-12-01

    We have described a method that maximizes the phase separation of graphitic particles (GP) and multiwalled carbon nanotubes (MWNT) in solutions of various organic polymeric hosts. This involves the formation of sediment and a solute. These components were characterized for MWNT and GP content using electron paramagnetic resonance (EPR) measurements. All EPR signals could be deconvoluted into nanotube and GP components. When normalized, these components are representative of the mass of MWNT and GP present. This allows us to make quantitative measurements of nanotube and GP content in different environments. The most successful polymer host was poly (m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV). In this case the solute contained 63% of the added nanotubes with only 2% of the added graphite remaining.

  19. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel

    2015-01-01

    The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low. PMID:25821679

  20. Externally limited defect generation in multiwalled carbon nanotubes upon thermal annealing, and possible mechanism

    NASA Astrophysics Data System (ADS)

    Bhalerao, G. M.; Sinha, A. K.; Srivastava, A. K.; Sathe, V.; Amarendra, G.

    2016-09-01

    Structural defects in multiwalled carbon nanotubes (MWCNTs) are found to increase upon moderate thermal annealing below 1400 K in an argon atmosphere. The defects are estimated using the ID/IG ratio in Raman spectroscopy of MWCNTs and confirmed by a direct observation using high-resolution transmission electron microscopy (HRTEM). HRTEM shows that the structural defects are created due to large damage to the outer walls of the nanotubes, while inner walls do not sustain any damage. The generation of defects on MWCNTs is attibuted to mechanical abrasion between the MWCNTs in contact, augmented by the momentum transfer from the flow of hot gas. A possible mechanism is proposed and experimentally validated by means of modulating the chemical environment of annealing from argon to hydrogen.

  1. Rheology, Morphology and Temperature Dependency of Nanotube Networks in Polycarbonate/Multiwalled Carbon Nanotube Composites

    SciTech Connect

    Abbasi, Samaneh; Carreau, Pierre J.; Derdouri, Abdessalem

    2008-07-07

    We present several issues related to the state of dispersion and rheological behavior of polycarbonate/multiwalled carbon nanotube (MWCNT) composites. The composites were prepared by diluting a commercial masterbatch containing 15 wt% nanotubes using optimized melt-mixing conditions. The state of dispersion was then analyzed by scanning and transmission electron microscopy (SEM, TEM). Rheological characterization was also used to assess the final morphology. Further, it was found that the rheological percolation threshold decreased significantly with increasing temperature and finally reached a constant value. This is described in terms of the Brownian motion, which increases with temperature. However, by increasing the nanotube content, the temperature effects on the complex viscosity at low frequency decreased significantly. Finally, the percolation thresholds were found to be approximately equal to 0.3 and 2 wt% for rheological and electrical conductivity measurements, respectively.

  2. Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline

    NASA Astrophysics Data System (ADS)

    Chakraborty, Goutam; Gupta, Kajal; Rana, Dipak; Meikap, Ajit Kumar

    2012-09-01

    An in situ chemical polymerization method was applied in order to prepare polyaniline-multiwalled carbon nanotube (PANI-MWCNT) composites with different concentrations of MWCNT. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, optical absorption and photoluminescence analyses of the composites were performed to investigate the structural, morphological and optical properties of the composites. Electrical transport properties of different PANI-MWCNT composites were investigated in the temperature range 77 K ⩽ T ⩽ 300 K in the presence and also in the absence of a magnetic field up to 1 T. The dc resistivity of the composites follows Mott's variable range hopping theory. Two different slopes have been observed in temperature variation of resistivity, which occurs due to the presence of MWCNT in the polymer matrix. The magnetoconductivity of the samples at different temperatures is negative, which can be explained by the wavefunction shrinkage effect.

  3. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    SciTech Connect

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F.; Jiang, L.; Silvain, J.-F.

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  4. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage

    NASA Astrophysics Data System (ADS)

    Begum, Parvin; Ikhtiari, Refi; Fugetsu, Bunshi; Matsuoka, Makoto; Akasaka, Tsukasa; Watari, Fumio

    2012-12-01

    Abundant experimental data have shown that multi-walled carbon nanotubes (MWNTs) are toxic to plants, but the potential impacts of exposure remain unclear. The objective of the present study was to evaluate possible phytotoxicity of MWNTs at 0, 20, 200, 1000, and 2000 mg/L with red spinach, lettuce, rice, cucumber, chili, lady's finger, and soybean based on root and shoot growth, cell death, and electrolyte leakage at the seedling stage. After 15 days of hydroponic culture, the root and shoot lengths of red spinach, lettuce, and cucumber were significantly reduced following exposure to 1000 mg/L and 2000 mg/L MWNTs. Similar toxic effects occurred regarding cell death and electrolyte leakage. Red spinach and lettuce were most sensitive to MWNTs, followed by rice and cucumber. Very little or no toxic effects were observed for chili, lady's finger, and soybean.

  5. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    SciTech Connect

    Pérez del Pino, Ángel Cabana, Laura; Tobias, Gerard; György, Enikö; Ballesteros, Belén

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  6. Externally limited defect generation in multiwalled carbon nanotubes upon thermal annealing, and possible mechanism.

    PubMed

    Bhalerao, G M; Sinha, A K; Srivastava, A K; Sathe, V; Amarendra, G

    2016-09-01

    Structural defects in multiwalled carbon nanotubes (MWCNTs) are found to increase upon moderate thermal annealing below 1400 K in an argon atmosphere. The defects are estimated using the ID/IG ratio in Raman spectroscopy of MWCNTs and confirmed by a direct observation using high-resolution transmission electron microscopy (HRTEM). HRTEM shows that the structural defects are created due to large damage to the outer walls of the nanotubes, while inner walls do not sustain any damage. The generation of defects on MWCNTs is attibuted to mechanical abrasion between the MWCNTs in contact, augmented by the momentum transfer from the flow of hot gas. A possible mechanism is proposed and experimentally validated by means of modulating the chemical environment of annealing from argon to hydrogen. PMID:27456152

  7. Substituted copper phthalocyanine/multiwalled carbon nanotubes hybrid material for Cl{sub 2} sensing application

    SciTech Connect

    Sharma, Anshul Kumar Saini, Rajan Singh, Rajinder Mahajan, Aman Bedi, R. K.; Aswal, D. K.

    2014-04-24

    In this work, hybrid of soluble copper phthalocyanine (CuPcOC{sub 8}) and functionalized multi-walled carbon nanotubes (MWCNTs) has been synthesized. The formation of CuPcOC{sub 8}-MWCNTs hybrid is confirmed by atomic force microscopy, UV-Visible and FTIR spectroscopy. Subsequently, a chemi-resistive sensor is fabricated by drop casting CuPcOC{sub 8}-MWCNTs hybrid onto glass substrate. It has been demonstrated that CuPcOC{sub 8}-MWCNTs hybrid is highly selective towards Cl{sub 2} gas with minimum detection limit of 100 ppb. The response of sensor increases linearly with increase in the concentration of Cl{sub 2} gas. For 2000 ppb of Cl{sub 2}, CuPcOC{sub 8}-MWCNTs hybrid gives a response as large as 53% in 40 seconds.

  8. Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

    SciTech Connect

    Rochford, C.; Limmer, S. J.; Howell, S. W.; Beechem, T. E.; Siegal, M. P.

    2014-11-26

    Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO3 layer. The WO3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grown by thermal chemical vapor deposition, with the W also serving as a back electrical contact. As a result, Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.

  9. Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions: Evaluating chemical modifications on true nanotube surface

    NASA Astrophysics Data System (ADS)

    Pacheco, Flávia G.; Cotta, Alexandre A. C.; Gorgulho, Honória F.; Santos, Adelina P.; Macedo, Waldemar A. A.; Furtado, Clascídia A.

    2015-12-01

    The influence of extensive purification on oxidized multiwalled carbon nanotube surface composition was studied through the characterization and differentiation of the actual surface submitted to three oxidation methods: microwave-assisted acid oxidation, hydrogen peroxide reflux, and Fenton reaction. The oxidized samples were purified by a multi-step procedure including the sequential use of basic reflux and dispersion in dimethylformamide (DMF). The results showed a significant increase in the amount of oxidation debris with hydrogen peroxide and Fenton reaction times longer than 8 h and strong surface characteristic modification. With regard to sample purification, basic reflux led to a reduction in oxygenated group concentration of only 10% in the samples treated by acid oxidation. On the other hand, the subsequent use of DMF led to a further decrease in concentration of 39%, proving to be a more efficient method for the removal of oxidation debris.

  10. The functionalization and characterization of multi-walled carbon nanotubes (MWCNTs)

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Pauzi; Zulkepli, Siti Aminah

    2015-09-01

    Functionalization is the process of introducing chemical functional groups on the surface of the material. In this study, a multi-walled carbon nanotube (MWCNTs) was functionalized by oxidation treatment using concentrated nitric acid. The functionalized and pristine MWCNTs were analyzed by using Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The XRD patterns exhibit the graphitic properties for all samples. Besides, the XRD results also demonstrate that the percent of crystallinity of MWCNTs increases as the duration of acid treatment increases. The percent of crystallinity increases from 66% to 80% when the pristine MWCNT treated for 12 hours with additional 12 hours reflux process with nitric acid. The IR spectrum for the 12 hours-treated MWCNTs shows the formation of carboxyl functional group. Additional 12 hours reflux process with nitric acid on the 12 hours-treated MWCNTs have shown the loss of existing carboxyl group and only hydroxyl group formed.

  11. Transparent conductive multiwall carbon nanotubes-polymer composite for electrode applications.

    PubMed

    Nayak, Sasmita; Behura, Sanjay Kumar; Bhattacharjee, Sarama; Singh, Bimal P; Jani, Omkar; Mukhopadhyay, Indrajit

    2014-04-01

    Disperse Multiwall carbon nanotubes (MWCNTs) are incorporated aqueous N-hydroxy methyl acrylamide, which is subjected to crosslinking to develop a transparent conductive composite free standing film. The effects of the concentration of MWCNTs and temperature on optical and electrical properties of nano-composites are investigated. Interestingly, only 0.06 mg/ml of MWCNTs is sufficient to reach the percolation threshold (Phi) for transition in electrical conductivity up to 10(-4) S/cm, with a visible transmittance over 85%, which is well above the reported for such a low level of MWCNTs loading. The electrical conductivity of the composite was measured at 120 degrees C. It has been observed that electrical conductivity increases significantly with the increase in temperature, signifying the semiconducting nature of nano-composites. Finally, current-voltage (I-V) characteristics show liner behaviour, confirms Ohmic nature of nano-composites and metal contact. PMID:24734695

  12. Preparation and electrochemical properties of multiwalled carbon nanotubes-nickel oxide porous composite for supercapacitors

    SciTech Connect

    Zheng Yanzhen; Zhang Milin . E-mail: dhyzyz@yahoo.com.cn; Gao Peng

    2007-09-04

    Porous nickel oxide/multiwalled carbon nanotubes (NiO/MWNTs) composite material was synthesized using sodium dodecyl phenyl sulfate as a soft template and urea as hydrolysis-controlling agent. Scanning electron microscopy (SEM) results show that the as-prepared nickel oxide nanoflakes aggregate to form a submicron ball shape with a porous structure, and the MWNTs with entangled and cross-linked morphology are well dispersed in the porous nickel oxide. The composite shows an excellent cycle performance at a high current of 2 A g{sup -1} and keeps a capacitance retention of about 89% over 200 charge/discharge cycles. A specific capacitance approximate to 206 F g{sup -1} has been achieved with NiO/MWNTs (10 wt.%) in 2 M KOH electrolyte. The electrical conductivity and the active sites for redox reaction of nickel oxide are significantly improved due to the connection of nickel nanoflakes by the long entangled MWNTs.

  13. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites.

    PubMed

    Zhang, Kun; Davis, Marauo; Qiu, Jingjing; Hope-Weeks, Louisa; Wang, Shiren

    2012-09-28

    Porous polyaniline (PANI)-coated multi-walled carbon nanotube (MWNT) core/shell nanohybrids were fabricated through in situ polymerization and subsequently assembled into macroscopic composites. N(2) adsorption/desorption analysis indicated that the volume of nanopores increased significantly, which could make a significant contribution to phonon scattering. Thermal annealing was also carried out to improve the Seebeck coefficient of the as-produced nanocomposites. The optimal sample showed electrical conductivity of 14.1 S cm(-1), a Seebeck coefficient of 79.8 μV K(-1) and thermal conductivity of 0.27 W mK(-1), resulting in a highest figure of merit (ZT) of 0.01 at a very low loading of MWNTs (<1 wt%). These results will provide a potential direction to enhance thermoelectric performance of organic materials and also facilitate the application of organic materials in thermal energy harvesting or cooling. PMID:22947620

  14. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Davis, Marauo; Qiu, Jingjing; Hope-Weeks, Louisa; Wang, Shiren

    2012-09-01

    Porous polyaniline (PANI)-coated multi-walled carbon nanotube (MWNT) core/shell nanohybrids were fabricated through in situ polymerization and subsequently assembled into macroscopic composites. N2 adsorption/desorption analysis indicated that the volume of nanopores increased significantly, which could make a significant contribution to phonon scattering. Thermal annealing was also carried out to improve the Seebeck coefficient of the as-produced nanocomposites. The optimal sample showed electrical conductivity of 14.1 S cm-1, a Seebeck coefficient of 79.8 μV K-1 and thermal conductivity of 0.27 W mK-1, resulting in a highest figure of merit (ZT) of 0.01 at a very low loading of MWNTs (<1 wt%). These results will provide a potential direction to enhance thermoelectric performance of organic materials and also facilitate the application of organic materials in thermal energy harvesting or cooling.

  15. The functionalization and characterization of multi-walled carbon nanotubes (MWCNTs)

    SciTech Connect

    Abdullah, Mohd Pauzi; Zulkepli, Siti Aminah

    2015-09-25

    Functionalization is the process of introducing chemical functional groups on the surface of the material. In this study, a multi-walled carbon nanotube (MWCNTs) was functionalized by oxidation treatment using concentrated nitric acid. The functionalized and pristine MWCNTs were analyzed by using Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The XRD patterns exhibit the graphitic properties for all samples. Besides, the XRD results also demonstrate that the percent of crystallinity of MWCNTs increases as the duration of acid treatment increases. The percent of crystallinity increases from 66% to 80% when the pristine MWCNT treated for 12 hours with additional 12 hours reflux process with nitric acid. The IR spectrum for the 12 hours-treated MWCNTs shows the formation of carboxyl functional group. Additional 12 hours reflux process with nitric acid on the 12 hours-treated MWCNTs have shown the loss of existing carboxyl group and only hydroxyl group formed.

  16. Nanobubbles stability and multiwall carbon nanotubes straightening on few-layer graphene surfaces

    NASA Astrophysics Data System (ADS)

    Al-Harthi, S. H.; Al-Barwani, M.; Elzain, M.; Al-Naamani, N.; Hysen, T.

    2011-08-01

    The formation of nanobubbles, straightening, and orientation of multiwalled carbon nanotubes (MWCNTs) are investigated by preparing thin films employing dip casting of colloidal solutions on few-layer graphene (FLG) surfaces. In contrast to what is known, it is observed that nanobubbles are formed on an ultrathin dewetted layer of 0.5 nm thickness and exhibit unusual stability at ultrahigh vacuum conditions. Further, nanobubble rings are observed at atmospheric pressure. The results provide direct experimental evidence of the interaction between MWCNTs and nanobubbles at air-liquid-solid triple contact line and at lower step edge of the FLG, which together lead to the alignment of MWCNTs. Due to the balance between the surface tension forces and the strain forces arising from tube bending, MWCNTs attained straight rod-like shape. This enabled us to evaluate the elastic modulus of the MWCNT as E = 0.9 TPa.

  17. In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor

    SciTech Connect

    Labbaye, T.; Gaillard, M.; Lecas, T.; Kovacevic, E.; Boulmer-Leborgne, Ch.; Guimbretière, G.; Canizarès, A.; Raimboux, N.; Simon, P.; Ammar, M. R.; Strunskus, T.

    2014-11-24

    Portable and highly sensitive Raman setup was associated with a plasma-enhanced chemical vapor deposition reactor enabling in situ growth monitoring of multi-wall carbon nanotubes despite the combination of huge working distance, high growth speed and process temperature and reactive plasma condition. Near Edge X-ray absorption fine structure spectroscopy was used for ex situ sample analysis as a complementary method to in situ Raman spectroscopy. The results confirmed the fact that the “alternating” method developed here can accurately be used for in situ Raman monitoring under reactive plasma condition. The original analytic tool can be of great importance to monitor the characteristics of these nanostructured materials and readily define the ultimate conditions for targeted results.

  18. Morphology adjustments of multi-walled carbon nanotubes by laser irradiation

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Chen, Jimin

    2016-06-01

    In this study, nanoscale welding quality and morphology changes of multi-walled carbon nanotubes are investigated by changing laser wavelengths and the irradiation time. Lasers with 1064 nm and 355 nm are used in our experiments. The 1064 nm laser can lead to nanowelding with good quality, while the 355 nm laser changes the curvature. The experiments demonstrate that the morphology, structures and the welding quality can be adjusted by changing laser wavelengths. In this letter, the dynamic process of nanostructures changing is studied by changing the irradiation time. The experimental results show that the morphology and structures can be controlled by adjusting the irradiation time. The detailed dynamic process of nanostructures changing confirms the formation mechanism of nano-welding and the thermal effects during the process.

  19. Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes.

    PubMed

    Gavello, Daniela; Vandael, David H F; Cesa, Roberta; Premoselli, Federica; Marcantoni, Andrea; Cesano, Federico; Scarano, Domenica; Fubini, Bice; Carbone, Emilio; Fenoglio, Ivana; Carabelli, Valentina

    2012-02-01

    We studied the effects of multi-walled carbon nanotubes (MWCNTs) on the electrophysiological properties of cultured mouse chromaffin cells, a model of spontaneously firing cells. The exposure of chromaffin cells to MWCNTs at increasing concentrations (30-263 μg/ml) for 24 h reduced, in a dose-dependent way, both the cell membrane input resistance and the number of spontaneously active cells (from 80-52%). Active cells that survived from the toxic effects of MWCNTs exhibited more positive resting potentials, higher firing frequencies and unaltered voltage-gated Ca(2+), Na(+) and K+ current amplitudes. MWCNTs slowed down the inactivation kinetics of Ca(2+)-dependent BK channels. These electrophysiological effects were accompanied by MWCNTs internalization, as confirmed by transmission electron microscopy, indicating that most of the toxic effects derive from a dose-dependent MWCNTs-cell interaction that damages the spontaneous cell activity. PMID:21322767

  20. Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage

    SciTech Connect

    Wu, Ping Xie, Kongwei; Xu, Xiali; Li, Jianping; Tang, Yawen; Zhou, Yiming Lu, Tianhong

    2015-04-15

    Highlights: • γ-Fe{sub 2}O{sub 3} nanocrystals uniformly anchored on MWCNT via facile layer-by-layer technique. • The hybrid exhibits enhanced structural stability and charge transport capability. • Superior lithium storage performance by virtue of unique structural characteristics. - Abstract: In this paper, we have anchored maghemite (γ-Fe{sub 2}O{sub 3}) nanocrystals compactly and uniformly on multiwalled carbon nanotubes (MWCNT) via a polyelectrolyte-assisted layer-by-layer assembly approach based on electrostatic attraction. When evaluated as an anode for lithium-ion batteries (LIBs), the as-synthesized MWCNT-γ-Fe{sub 2}O{sub 3} nanohybrid displays high reversible capacities, remarkable cycling stability, and magnificent high rate capability, facilitating its application as an advanced anode for high-energy, long-life, and high-power LIBs.

  1. Growth of small diameter multi-walled carbon nanotubes by arc discharge process

    NASA Astrophysics Data System (ADS)

    T. Chaudhary, K.; J., Ali; P. Yupapin, P.

    2014-03-01

    Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.

  2. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali

    2005-01-01

    To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.

  3. Incorporation of Multiwalled Carbon Nanotubes into High Temperature Resin Using Dry Mixing Techniques

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Delozier, Donavon M.; Working, Dennis C.; Siochi, Emilie J.; Connell, John W.

    2006-01-01

    As part of an ongoing effort to develop multifunctional advanced composites, blends of PETI330 and multiwalled carbon nanotubes (MWNTs) were prepared and characterized. Dry mixing techniques were employed and the maximum loading level of the MWNT chosen was based primarily on its effect on melt viscosity. The PETI330/ MWNT mixtures were prepared at concentrations ranging from 3 to 25 wt %. The resulting powders were characterized for homogeneity, thermal and rheological properties and extrudability as continuous fibers. Based on the characterization results, samples containing 10, 15 and 20 wt % MWNTs were chosen for more comprehensive evaluation. Samples were also prepared using in situ polymerization and solution mixing techniques and their properties were compared with the ball-mill prepared samples. The preparation and characterization of PETI330/ MWNT nanocomposites are discussed herein.

  4. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  5. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions

    PubMed Central

    2011-01-01

    We perform large-scale quasi-continuum simulations to determine the stable cross-sectional configurations of free-standing multi-walled carbon nanotubes (MWCNTs). We show that at an inter-wall spacing larger than the equilibrium distance set by the inter-wall van der Waals (vdW) interactions, the initial circular cross-sections of the MWCNTs are transformed into symmetric polygonal shapes or asymmetric water-drop-like shapes. Our simulations also show that removing several innermost walls causes even more drastic cross-sectional polygonization of the MWCNTs. The predicted cross-sectional configurations agree with prior experimental observations. We attribute the radial corrugations to the compressive stresses induced by the excessive inter-wall vdW energy release of the MWCNTs. The stable cross-sectional configurations provide fundamental guidance to the design of single MWCNT-based devices and shed lights on the mechanical control of electrical properties.

  6. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films

    NASA Astrophysics Data System (ADS)

    Son Hoang, Anh

    2011-06-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in a pure polyurethane resin by grinding in a planetary ball mill. The structure and surface morphology of the MWCNTs and MWCNT/polyurethane composites were studied by filed emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) methods. The electrical conductivity at room temperature and electromagnetic interference (EMI) shielding effectiveness (SE) of the composite films with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in a frequency range of 8–12 GHz (X-band). The experimental results show that with a low MWCNT concentration the composite films could achieve a high conductivity and their EMI SE has a strong dependence on MWCNT content. For the composite films with 22 wt% of MWCNTs, the EMI SE attained an average value of 20 dB, so that the shielding effect reduced the penetrating power to 1%.

  7. Adsorption of Arsenic on Multiwall Carbon Nanotube–Zirconia Nanohybrid for Potential Drinking Water Purification

    PubMed Central

    AddoNtim, Susana; Mitra, Somenath

    2012-01-01

    The adsorptive removal of arsenic from water using a multiwall carbon nanotube-zirconia nanohybrid (MWCNT-ZrO2) is presented. The MWCNT-ZrO2 with 4.85% zirconia was effective in meeting the drinking water standard levels of 10 μg L−1. The absorption capacity of the composite were 2000 μg g−1 and 5000 μg g−1 for As (III) and As (V) respectively, which were significantly higher than those reported previously for iron oxide coated MWCNTs. The adsorption of As (V) on MWCNT-ZrO2 was faster than that of As (III), and a pseudo-second order rate equation effectively described the uptake kinetics. The adsorption isotherms for As (III) and As (V) fitted both the Langmuir and Freundlich models. A major advantage of the MWCNT-ZrO2 was that the adsorption capacity was not a function of pH. PMID:22424815

  8. Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study

    SciTech Connect

    Maniwa, Yutaka; Fujiwara, Ryuji; Kira, Hiroshi; Tou, Hideki; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Fujiwara, Akihiko; Zhao, Xinluo; Iijima, Sumio

    2001-08-15

    X-ray diffraction study of multiwalled carbon nanotube (MWNT) grown by arc discharge in hydrogen atmosphere is presented. It is found that the thermal-expansion coefficient along the radial direction of MWNT is widely distributed in a range from 1.6 x 10{sup -5} K{sup -1} to 2.6 x 10{sup -5} K{sup -1}, indicating the existence of both of Russian doll MWNT and highly defective MWNT. Russian doll MWNT is suggested to have the outer diameter less than {approx}100 Aa. Thicker MWNT's are typically highly defective, and may have the jelly roll (scroll) or defective polygonal structure consisting of flat graphite domains.

  9. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  10. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies. PMID:23421212

  11. Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction

    NASA Astrophysics Data System (ADS)

    Brković, Danijela V.; Ivić, Milka L. Avramov; Rakić, Vesna M.; Valentini, Luca; Uskoković, Petar S.; Marinković, Aleksandar D.

    2015-08-01

    Covalent sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) has been performed using two approaches, direct and indirect cycloaddition through diethyl malonate, based on the Bingel reaction. The results revealed that functionalized MWCNTs demonstrated enhanced electrical properties and significantly lower sheet resistance, especially after electric field thermal assisted annealing at 80 °C was performed. The presence of 1,3-dicarbonyl compounds caused the surface of MWCNTs to be more hydrophilic, approachable for the electrolyte and improved the capacitance performance of Au/MWCNTs electrodes. The modified MWCNTs have been incorporated into nanocomposites by using solution mixing method with polyaniline and drop-casting resulting mixture on the paper substrate. The reduction in the sheet resistance with increasing the content of MWCNTs in the prepared nanocomposite films has been achieved.

  12. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids

    SciTech Connect

    Jha, Neetu; Ramaprabhu, S.

    2009-10-15

    High thermal conducting metal nanoparticles have been dispersed on the multiwalled carbon nanotubes (MWNTs) outer surface. Structural and morphological characterizations of metal dispersed MWNTs have been carried out using x-ray diffraction analysis, high resolution transmission electron microscopy, energy dispersive x-ray analysis, and Fourier transform infrared spectroscopy. Nanofluids have been synthesized using metal-MWNTs in de-ionized water (DI water) and ethylene glycol (EG) base fluids. It has been observed that nanofluids maintain the same sequence of thermal conductivity as that of metal nanoparticles Ag-MWNTs>Au-MWNTs>Pd-MWNTs. A maximum enhancement of 37.3% and 11.3% in thermal conductivity has been obtained in Ag-MWNTs nanofluid with DI water and EG as base fluids, respectively, at a volume fraction of 0.03%. Temperature dependence study also shows enhancement of thermal conductivity with temperature.

  13. Hydrogen Gas Sensing Characteristics of Multiwalled Carbon Nanotubes Based Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Dhall, Shivani; Jaggi, Neena

    2016-01-01

    In the present work, hydrogen (H2) gas sensing characteristics of hybrid composites prepared by sputtering of platinum (Pt) metal on the synthesized composites of functionalized multiwalled carbon nanotubes (F-MWCNTs) with selective metal oxides (nickel oxide and cuprous oxide) have been investigated. Both of these sensors are found to have fast response, complete resistance recovery, and good baseline stability at room temperature (25°C). These sensors stably and reversibly respond to 0.05% concentration of H2 gas at 25°C. This sensing material was characterized by x-ray diffraction, Raman spectroscopy ,and scanning electron microscopy. To the best of our knowledge, detection of such low concentration of H2 gas is reported here for the first time using F-MWCNTs/NiO/Pt and F-MWCNTs/Cu2O/Pt hybrid nanostructures at 25°C.

  14. Preparation, purification and characterization of high purity multi-wall carbon nanotube.

    PubMed

    Morsy, Mohamed; Helal, Magdy; El-Okr, Mohamed; Ibrahim, Medhat

    2014-11-11

    Chemical vapor deposition (CVD) was optimized in order to prepare multi-wall carbon nanotubes (MWCNTs). Preparation of MWCNTs was achieved by the help of ferrocene as a catalyst with continuous flow of xylene. Morphology and structure of as grown and purified MWCNTs were characterized by Scanning Electron Microscope (SEM) and High-Resolution Transmission Electron Microscope (HRTEM). Energy Dispersive X-ray (EDX) spectra for the as grown MWCNTs confirm that the deposits are carbonaceous materials. XRD pattern of purified sample indicates that the Fe peaks at 44.6 and 50.9 have been decreased. This confirms that purification process is effectively reducing Fe component. Further qualitative information on the purification process are indicated and confirmed by the thermal analysis measurements. Finally, FTIR studies have been performed for the identification of the functional group attached on the surface of the MWCNTs. Collecting these results revealed that the optimized CVD is suitable for the production of MWCNTs. PMID:24892539

  15. Preparation, purification and characterization of high purity multi-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Morsy, Mohamed; Helal, Magdy; El-Okr, Mohamed; Ibrahim, Medhat

    2014-11-01

    Chemical vapor deposition (CVD) was optimized in order to prepare multi-wall carbon nanotubes (MWCNTs). Preparation of MWCNTs was achieved by the help of ferrocene as a catalyst with continuous flow of xylene. Morphology and structure of as grown and purified MWCNTs were characterized by Scanning Electron Microscope (SEM) and High-Resolution Transmission Electron Microscope (HRTEM). Energy Dispersive X-ray (EDX) spectra for the as grown MWCNTs confirm that the deposits are carbonaceous materials. XRD pattern of purified sample indicates that the Fe peaks at 44.6 and 50.9 have been decreased. This confirms that purification process is effectively reducing Fe component. Further qualitative information on the purification process are indicated and confirmed by the thermal analysis measurements. Finally, FTIR studies have been performed for the identification of the functional group attached on the surface of the MWCNTs. Collecting these results revealed that the optimized CVD is suitable for the production of MWCNTs.

  16. Effect of gases on the temperature dependence of the electric conductivity of CVD multiwalled carbon nanotubes

    SciTech Connect

    Buryakov, T. I. Romanenko, A. I.; Anikeeva, O. B.; Kuznetsov, V. L.; Usol'tseva, A. N.; Tkachev, E. N.

    2007-07-15

    The influence of various gaseous media on the temperature dependence of the electric conductivity {sigma} of multiwalled carbon nanotubes (MWNTs) synthesized using the method of catalytical chemical vapor deposition (CVD) has been studied. The {sigma}(T) curves were measured in a temperature range from 4.2 to 300 K in helium and its mixtures with air, methane, oxygen, and hydrogen. The introduction of various gaseous components into a helium atmosphere leads to a significant decrease in the conductivity of MWNTs in the interval between the temperatures of condensation and melting of the corresponding gas. Upon a heating-cooling cycle, the conductivity restores on the initial level. It is concluded that a decrease in {sigma} is caused by the adsorption of gases on the surface of nanotubes.

  17. One-step preparation of multiwall carbon nanotube/silicon hybrids for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lobiak, Egor V.; Bychanok, Dzmitry S.; Shlyakhova, Elena V.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    The hybrid material consisting of a thin layer of multiwall carbon nanotubes (MWCNTs) on an n-doped silicon wafer was obtained in one step using an aerosol-assisted catalytic chemical vapor deposition. The MWCNTs were grown from a mixture of acetone and ethanol with ˜0.2 wt.% of iron polyoxomolybdate nanocluster of the keplerate-type structure. The samples produced at 800°C and 1050°C were tested as a solar energy converter. It was shown that photoresponse of the hybrid material significantly depends on the presence of structural defects in MWCNTs, being much higher in the case of more defective nanotubes. This is because defects lead to p-doping of nanotubes, whereas the p-n heterojunction between MWCNTs and silicon provides a high efficiency of the solar cell.

  18. Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

    DOE PAGESBeta

    Rochford, C.; Limmer, S. J.; Howell, S. W.; Beechem, T. E.; Siegal, M. P.

    2014-11-26

    Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO3 layer. The WO3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grown by thermalmore » chemical vapor deposition, with the W also serving as a back electrical contact. As a result, Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.« less

  19. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, Mohamed; Farghali, Ahmed Ali; El Rouby, Waleed; Khedr, Mohamed; Mohassab-Ahmed, Mohassab Y.

    2013-06-01

    This research was carried out to evaluate the capability of multi-walled carbon nanotubes (CNTs) and NiFe2O4-decorated multi-walled carbon nanotubes (NiFe2O4-CNTs) toward waste water treatment relevant to organic dyes. CNTs were prepared via chemical vapor deposition method. NiFe2O4-CNTs were prepared by in-situ chemical precipitation of metal hydroxides followed by hydrothermal processing. The samples were characterized using XRD and TEM. The adsorption efficiency of CNTs and NiFe2O4-CNTs of methyl green dye at various temperatures was examined. The adsorbed amount increased with the CNTs and NiFe2O4-CNTs dosage. The linear correlation coefficients and standard deviations of Langmuir and Freundlich isotherms were determined. It was found that Langmuir isotherm fitted the experimental results well in both adsorption cases n of methyl green onto CNTs and NiFe2O4-CNTs. Kinetics analyses were conducted using pseudo first-order, second-order and the intraparticle diffusion models. The results showed that the adsorption kinetics was controlled by a pseudo second-order model for adsorption of methyl green onto CNTs and best controlled by pseudo first-order in case of NiFe2O4-CNTs. Changes in the free energy of adsorption (Δ G°), enthalpy (Δ H°), entropy (Δ S°), and the activation energy ( E a) were determined. The Δ H°, Δ G° and E a values indicated that the adsorption of methyl green onto MWCNTs and NiFe2O4-MWCNTs was physisorption.

  20. Enhanced-Adhesion Multi-Walled Carbon Nanotubes on Titanium Substrates for Stray Light Control

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Getty, Stephanie; Quijada, Manuel

    2012-01-01

    Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 C nanotube growth process. The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use. Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance. The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude. The purpose of the innovation is to provide an enhanced

  1. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies. PMID:19452959

  2. Graphite nanoplatelets/multiwalled carbon nanotubes hybrid nanostructure for electrochemical capacitor.

    PubMed

    Mishra, Ashish Kumar; Ramaprabhu, S

    2012-08-01

    Recently, the focus on carbon based nanostructures for various applications has been due to their novel properties such as high electrical conductivity, high mechanical strength and high surface area. In the present work, we have investigated the charge storage capacity of modified graphite nanoplatelets and hybrid structure of graphite nanoplatelets-multiwalled carbon nanotubes (MWNTs). These MWNTs can be used as spacers to reduce the possibility of restacking of graphite nanoplatelets and hence increases the surface area of the hybrid carbon nanostructure thereby high degree of metal oxide decoration is achieved over the hybrid structure. MWNTs were prepared by catalytic chemical vapor deposition technique and further purified with air oxidation and acid treatment. Graphite was treated with conc. nitric acid and sulphuric acid in the volumetric ratio of 1:3 for 3 days and these modified graphite nanoplatelets were further stirred with MWNTs in equal weight ratio to form hybrid nanostructure. Further, ruthenium oxide (RuO2) nanoparticles were decorated on this hybrid structure using chemical route followed by calcination. RuO2 decorated hybrid carbon nanostructure was characterized by using X-ray diffraction, Electron microscopy and Raman spectroscopy. The performance of the hybrid structure based nanocomposite as electrochemical capacitor electrodes was analyzed by studing its capacitive and charge-discharge behaviours using cyclic voltammetry and chronopotentiometry techniques and the results have been discussed. PMID:22962803

  3. Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes.

    PubMed

    Giraldo, Luis F; Brostow, Witold; Devaux, Eric; López, Betty L; Pérez, León D

    2008-06-01

    While carbon nanotubes have been used for a variety of purposes, it was not known whether they can improve tribological properties of polymers. Polyamide 6 (PA6) has been reinforced with 0.2, 0.5 and 1.0 wt% of multiwall carbon nanotubes (MWCNTs) by melt mixing process and characterized by scanning electron microscopy (SEM), transmission electron microscopy, thermogravimetric analysis (TGA), scratching, sliding wear and tensile testing. TGA results for the air atmosphere show that MWCNTs shift the onset of thermal degradation to higher temperatures. Sliding wear tests show that the penetration depth decreases as the concentration of carbon nanotubes increases. However, the viscoelastic healing is hampered by the MWCNTs presence and the residual depths increase at the same time. Narrower scratch groove widths are seen in SEM for composites with MWCNTs, and scratch hardness increases. Tensile tests show an increase of 27% in the Young modulus value upon addition of 1.0% of MWCNTs. The stress at yield is also higher for the nanocomposites. PMID:18681065

  4. RAPID COMMUNICATION: Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization

    NASA Astrophysics Data System (ADS)

    Thostenson, Erik T.; Chou, Tsu-Wei

    2002-08-01

    Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale twin-screw extruder was used to achieve dispersion of multi-walled carbon nanotubes in a polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the polymer melt through a rectangular die and drawing the film prior to cooling. Randomly oriented nanocomposites were produced by achieving dispersion first with the twin-screw extruder followed by pressing a film using a hydraulic press. The tensile behaviour of the aligned and random nanocomposite films with 5 wt.{%} loading of nanotubes were characterized. Addition of nanotubes increased the tensile modulus, yield strength and ultimate strengths of the polymer films, and the improvement in elastic modulus with the aligned nanotube composite is five times greater than the improvement for the randomly oriented composite.

  5. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models

    PubMed Central

    Hamilton, Raymond F.; Xiang, Chengcheng; Li, Ming; Ka, Ibrahima; Yang, Feng; Ma, Dongling; Porter, Dale W.; Wu, Nianqiang; Holian, Andrij

    2014-01-01

    This study examined the consequences of surface carboxylation of multiwalled carbon nanotubes (MWCNT) on bioactivity. Since commercial raw MWCNT contain impurities that may affect their bioactivity, HCl refluxing was exploited to purify raw “as-received” MWCNT by removing the amorphous carbon layer on the MWCNT surface and reducing the metal impurities (e.g. Ni). The removal of amorphous carbon layer was confirmed by Raman spectroscopy and thermogravimetric analysis. Furthermore, the HCl-purified MWCNT provided more available reaction sites, leading to enhanced sidewall functionalization. The sidewall of HCl-purified MWCNT was further functionalized with the −COOH moiety by HNO3 oxidation. This process resulted in four distinct MWCNT: raw, purified, −COOH-terminated raw MWCNT, and −COOH-terminated purified MWCNT. Freshly isolated alveolar macrophages from C57Bl/6 mice were exposed to these nanomaterials to determine the effects of the surface chemistry on the bioactivity in terms of cell viability and inflammasome activation. Inflammasome activation was confirmed using inhibitors of cathepsin B and Caspase-1. Purification reduced the cell toxicity and inflammasome activation slightly compared to raw MWCNT. In contrast, functionalization of MWCNT with the −COOH group dramatically reduced the cytotoxicity and inflammasome activation. Similar results were seen using THP-1 cells supporting their potential use for high-throughput screening. This study demonstrated that the toxicity and bioactivity of MWCNT were diminished by removal of the Ni contamination and/or addition of −COOH groups to the sidewalls. PMID:23480196

  6. Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities.

    PubMed

    Velzeboer, I; Peeters, E T H M; Koelmans, A A

    2013-07-01

    To date, chronic effect studies with manufactured nanomaterials under field conditions are scarce. Here, we report in situ effects of 0, 0.002, 0.02, 0.2, and 2 g/kg multiwalled carbon nanotubes (MWCNTs) in sediment on the benthic community composition after 15 months of exposure. Effects observed after 15 months were compared to those observed after 3 months and to community effects of another carbonaceous material (activated carbon; AC), which was simultaneously tested in a parallel study. Redundancy analysis with variance partitioning revealed a total explained variance of 51.7% of the variation in community composition after 15 months, of which MWCNT dose explained a statistically significant 9.9%. By stepwise excluding the highest MWCNT concentrations in the statistical analyses, MWCNT effects were shown to be statistically significant already at the lowest dose investigated, which can be considered environmentally relevant. We conclude that despite prolonged aging, encapsulation, and burial, MWCNTs can affect the structure of natural benthic communities in the field. This effect was similar to that of AC observed in a parallel experiment, which however was applied at a 50 times higher maximum dose. This suggests that the benthic community was more sensitive to MWCNTs than to the bulk carbon material AC. PMID:23713543

  7. Using multi-walled carbon nanotubes (MWNTs) for oilfield produced water treatment with environmentally acceptable endpoints.

    PubMed

    Zaib, Qammer; Aina, Oluwajinmi Daniel; Ahmad, Farrukh

    2014-08-01

    In this study, multi-walled carbon nanotubes (MWNTs) were employed to remove benzene, toluene, ethylbenzene, and xylenes (BTEX) from low and high salinity water pre-equilibrated with crude oil. The treatment endpoint of crude oil-contaminated water is often controlled by BTEX compounds owing to their higher aqueous solubility and human-health toxicity compared to other hydrocarbons. The MWNT sorbent was extensively characterized and the depletion of the organic sorbate from the produced water was monitored by gas chromatography-mass spectrometry (GC-MS) and total organic carbon (TOC) analyses. The equilibrium sorptive removal of BTEX followed the order: ethylbenzene/o-xylene > m-xylene > toluene > benzene in the presence of other competing organics in produced water. Sorption mechanisms were explored through the application of a variety of kinetics and equilibrium models. Pseudo 2(nd) order kinetics and Freundlich equilibrium models were the best at describing BTEX removal from produced water. Hydrophobic interactions between the MWNTs and BTEX, as well as the physical characteristics of the sorbate molecules, were regarded as primary factors responsible for regulating competitive adsorption. Salinity played a critical role in limiting sorptive removal, with BTEX and total organic carbon (TOC) removal falling by 27% and 25%, respectively, upon the introduction of saline conditions. Results suggest that MWNTs are effective in removing risk-driving BTEX compounds from low-salinity oilfield produced water. PMID:24975808

  8. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.

    PubMed

    Parashar, Upendra Kumar; Bhandari, Suraj; Srivastava, Rajesh Kumar; Jariwala, Deep; Srivastava, Anchal

    2011-09-01

    Graphene nanoribbons are emerging as an interesting material for the study of low dimensional physics and for the applications in future electronics due to its finite energy band gap. However, its applicability for large scale nanoelectronics may not be effectively realized unless graphene nanoribbons could be produced using a simple, viable, cost-effective and scalable technique. Here, we report the one step facile synthesis of few layered graphene nanoribbons (GNRs) by catalytically unzipping multi-walled carbon nanotubes (MWCNTs) based on the solubility of carbon atoms in transition metals. The process is free from aggressive oxidants (such as KMnO(4), KClO(4), H(2)SO(4), HNO(3), etc.) and utilizes the in situ grown nickel nanoparticles for nanotube unzipping. This is an additional advantage over previously used techniques to synthesize GNRs. To observe the effect of catalyst particle size and reaction temperature on cutting length of the nanotubes, a simulation study has been done based on solubility of carbon atoms in metal nanoparticles. PMID:21842103

  9. Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications

    NASA Astrophysics Data System (ADS)

    Jyothirmayee Aravind, S. S.; Ramaprabhu, S.

    2012-12-01

    A two step method is employed for the preparation of graphene wrapped multiwalled carbon nanotubes (MWNT) dispersed nanofluids. Graphene wrapped MWNT composite is prepared by simple chemical vapor deposition technique and further purified prior to the synthesis of nanofluids. The functionalization of MWNT with the poly electrolyte, graphene drives out the need for surfactants or long term harsh chemical treatments as in the case of pristine carbon materials based nanofluids. The enhancement in thermal transport properties of surfactant free graphene wrapped MWNT composite in de-ionized (DI) water and ethylene glycol (EG) base fluids than that of pristine carbon nanomaterial based nanofluids indicates the potential usage of the hybrid composite based nanofluids in heat transfer applications. An enhancement in thermal conductivity of 11.3% and 13.7% has been attained with 0.04% volume fraction of hybrid composite based DI water and EG nanofluids at 25 °C. The nanocomposite possesses extreme stability in a variety of aqueous solvents without any surfactant. Electrical conductivity of the nanofluids analyzed as a function of volume fraction of nanoparticles and temperature shows a positive effect. Further, the analysis of forced convective heat transfer coefficients of the nanofluids flowing through a stain less steel tube shows significant enhancement in heat transfer, attributed to good aspect ratio of graphene wrapped MWNT and synergistic effect of high thermally conducting graphene and MWNT.

  10. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  11. Characterization of ion-irradiation-induced defects in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lehtinen, Ossi; Nikitin, Timur; Krasheninnikov, Arkady V.; Sun, Litao; Banhart, Florian; Khriachtchev, Leonid; Keinonen, Juhani

    2011-07-01

    We study the effects of Ar+, He+ and C+ ion irradiation on multi-walled carbon nanotubes at room and elevated temperatures with transmission electron microscopy (TEM) and Raman spectroscopy. Based on the TEM data, we introduce a universal damage scale for the visual analysis and characterization of irradiated nanotubes. We show for the first time that the amount of irradiation-induced damage in nanotubes is larger than the value predicted for bulk materials using the simple binary collision approximation, which may be associated with higher defect production due to electronic stopping in these nanoscale systems. The Raman spectra of the irradiated samples are in qualitative agreement with the TEM data and indicate the presence of irradiation-induced defects. However, it is difficult to obtain quantitative information on defect concentration due to non-uniform distribution of defects in the nanotube films and in part due to the presence of other carbon nanosystems in the samples, such as graphitic crystallites and carbon onions.

  12. Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Palanisami, Thavamani; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons. PMID:26372939

  13. Nanoscale Analysis of Interwall Interaction in a Multiwalled Carbon Nanotube by Tip-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaunchaiyakul, Songpol; Yano, Takeshi; Khoklang, Kamonchanok; Krukowski, Pawel; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    Raman spectroscopy is a useful tool for the study of carbon materials, but its spatial resolution is limited by the optical diffraction limit. Recently, we constructed a scanning tunneling microscope-based tip-enhanced Raman spectroscopy (STM-TERS) system in ultrahigh vacuum, which overcomes the optical diffraction limit, and enables the investigation of single-molecular Raman spectra simultaneously with topographic imaging. We have investigated position-sensitive Raman spectra along the tube axis of an isolated multiwalled carbon nanotube, which is a result of the different number of nanotube walls at each location. We found that the intensity ratio between the 2D to the G band increases with the number of walls. This indicates that the quantum interference between Raman scattering pathways affects each Raman mode differently. The interaction between nanotube walls induces splitting of the π and π* bands which increases the number of the 2D band scattering pathways owing to double resonance, eventually increasing the probability of scattering for the 2D band relative to the G band. These results provide a deeper understanding of the single-molecule interaction of carbon materials in the nanoscale.

  14. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure. PMID:26962674

  15. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer.

    PubMed

    Yang, Guangming; Zhao, Faqiong

    2015-02-15

    Herein, we present a novel electrochemical sensor for the determination of chloramphenicol (CAP), which is based on multiwalled carbon nanotubes@molecularly imprinted polymer (MWCNTs@MIP), mesoporous carbon (CKM-3) and three-dimensional porous graphene (P-r-GO). Firstly, 3-hexadecyl-1-vinylimidazolium chloride (C16VimCl) was synthetized by using 1-vinylimidazole and 1-chlorohexadecane as precursors. Then, C16VImCl was used to improve the dispersion of MWCNT and as monomer to prepare MIP on MWCNT surface to obtain MWCNTs@MIP. After that, the obtained MWCNTs@MIP was coated on the CKM-3 and P-r-GO modified glassy carbon electrode to construct an electrochemical sensor for the determination of CAP. The parameters concerning this assay strategy were carefully considered. Under the optimal conditions, the electrochemical sensor offered an excellent response for CAP. The linear response ranges were 5.0 × 10(-9)-5 × 10(-7)mol L(-1) and 5.0 × 10(-7)-4.0 × 10(-6), respectively, and the detection limit was 1.0 × 10(-10)mol L(-1). The electrochemical sensor was applied to determine CAP in real samples with satisfactory results. PMID:25280341

  16. Effect of carbon nanotubes on laser cutting of multi-walled carbon nanotubes/poly methyl methacrylate nanocomposites

    NASA Astrophysics Data System (ADS)

    Karimzad Ghavidel, Ayob; Azdast, Taher; Shabgard, Mohammad Reza; Navidfar, Amir; Mamaghani Shishavan, Sajjad

    2015-04-01

    This paper studies the effect of carbon nanotubes on laser cutting of injection molded multi-walled carbon nanotubes/poly methyl methacrylate (MWCNT/PMMA) composite. Also the effect of processing parameters on laser cutting of MWCNT/PMMA nanocomposites is investigated in this study. Design of experiments is performed using full factorial method. Variable input factors are considered as MWCNT wt% in four levels, laser power in three levels and feed rate in three levels. Output parameters of this study are heat affected zone (HAZ), the average kerf width, and the taper kerf of the samples. Continuous wave CO2 laser is used in the cutting process of the samples. Output parameters are studied in direction perpendicular to the flow direction. Experiments analysis is performed using analysis of variance method. Regarding the HAZ, results show that the most effective parameters are feed rate and the amount of the carbon nanotubes. High available carbon nanotube percentage causes approximately 50% decrease in the HAZ. Findings also clearly show that average kerf width is influenced by the three variable input factors. The tapering kerf of the samples is also significantly depended on the percentage of the carbon nanotube.

  17. Anomalous thermal hysteresis in the high-field magnetic moments of magnetic nanoparticles embedded in multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Wang, Jun; Ren, Yang; Beeli, Pieder

    2012-02-01

    We report high-temperature (300-1120 K) magnetic properties of Fe and Fe3O4 nanoparticles embedded in multi-walled carbon nanotubes. We unambiguously show that the magnetic moments of Fe and Fe3O4 nanoparticles are seemingly enhanced by a factor of about 3 compared with what they would be expected to have for free (unembedded) magnetic nanoparticles. What is more intriguing is that the enhanced moments were completely lost when the sample was heated up to 1120 K and the lost moments at 1120 K were completely recovered through several thermal cycles below 1020 K. The anomalous thermal hysteresis of the high-field magnetic moments is unlikely to be explained by existing physical models except for the high-field paramagnetic Meissner effect due to the existence of ultrahigh temperature superconductivity in the multi-walled carbon nanotubes.

  18. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Jönsson, M.; Nerushev, O. A.; Campbell, E. E. B.

    2007-08-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 µm min-1) and then drops off rapidly to reach a steady level (2 µm min-1) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer.

  19. Growth of Multi-Walled Carbon Nanotubes by Injection CVD Using Cyclopentadienyliron Dicarbonyl Dimer and Cyclooctatetraene Iron Tricarbonyl

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Raffaelle, Ryne P.; Gennett, Thomas; Landi, Brian J.; Hepp, Aloysius F.

    2004-01-01

    Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cycloctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth of the nanotubes as well as the amount of iron in the deposited material. As deposited the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and preferred orientation.

  20. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant.

    PubMed

    Begum, Parvin; Fugetsu, Bunshi

    2012-12-01

    Carbon nanotubes (CNTs) are a novel nanomaterial with wide potential applications; however the adverse effects of CNTs following environmental exposure have recently received significant attention. Herein, we explore the systemic toxicity and potential influence of 0-1000 mg L(-1) the multi-walled CNTs on red spinach. The multi-walled CNTs exposed plants exhibited growth inhibition and cell death after 15 days of hydroponic culture. The multi-walled CNTs had adverse effects on root and leaf morphology, as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Raman spectroscopy detected the multi-walled CNTs in leaves. Biomarkers of nanoparticle toxicity, reactive oxygen species (ROS), and cell damage in the red spinach were greatly increased 15 days post-exposure to the multi-walled CNTs. These effects were reversed when the multi-walled CNTs were supplemented with ascorbic acid (AsA), suggesting a role of ROS in the multi-walled CNT-induced toxicity and that the primary mechanism of the multi-walled CNTs' toxicity is oxidative stress. PMID:23146354

  1. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  2. TECHNICAL NOTE: Chemical bonding of multiwalled carbon nanotubes to polydimethylsiloxanes and modification of the photoinitiator system for microstereolithography processing

    NASA Astrophysics Data System (ADS)

    Zhang, Nanyan; Xie, Jining; Guers, Manton; Varadan, Vijay K.

    2004-02-01

    Oxidized multiwalled carbon nanotubes (CNT) were functionalized with polydimethylsiloxanes (PDMS) by opening epoxide groups of PDMS under ultrasonic irradiation and the acidic condition provided by ion-exchange resin. The final product is a uniform solution and allowed the wet-casting of thin film. Photoinitiator and sensitizer were added for UV curing using the Penn state microstereolithography (MSL) system which has a wavelength close to 364 nm.

  3. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    NASA Astrophysics Data System (ADS)

    Manafi, S. A.; Amin, M. H.; Rahimipour, M. R.; Salahi, E.; Kazemzadeh, A.

    2009-04-01

    This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs) from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2-4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs). As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  4. Nanomechanical properties of silica-coated multiwall carbon nanotubes-poly(methyl methacrylate) composites.

    PubMed

    Olek, M; Kempa, K; Jurga, S; Giersig, M

    2005-03-29

    The mechanical properties of polymer composites, reinforced with silica-coated multiwall carbon nanotubes (MWNTs), have been studied using the nanoindentation technique. The hardness and the Young's modulus have been found to increase strongly with the increasing content of these nanotubes in the polymer matrix. Similar experiments conducted on thin films containing MWNTs, but without a silica shell, revealed that the presence of these nanotubes does not affect the nanomechanical properties of the composites. While carbon nanotubes (CNTs) have a very high tensile strength due to the nanotube stiffness, composites fabricated with CNTs may exhibit inferior toughness. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt % of the silica-coated MWNTs, display a maximum hardness of 120 +/- 20 MPa, and a Young's modulus of 9 +/- 1 GPa. These are respectively 2 and 3 times higher than those for the polymeric matrix. Here, we describe a method for the silica coating of MWNTs. This is a simple and efficient technique, adaptable to large-scale production, and might lead to new advanced polymer based materials, with very high axial and bending strength. PMID:15779997

  5. Decoration of gold nanoparticles on thin multiwall carbon nanotubes and their use as a glucose sensor

    NASA Astrophysics Data System (ADS)

    Gangwar, Rajesh K.; Dhumale, Vinayak A.; Date, Kalyani S.; Alegaonkar, Prashant; Sharma, Rishi B.; Datar, Suwarna

    2016-03-01

    Thin multiwall carbon nanotubes (MWCNTs) have been decorated with gold nanoparticles (Au NPs) with polyaniline (PANI) as an inter-linker by a simple wet chemical method. The synthesized AuNPs:MWCNT:PANI composite was studied with UV-vis, FTIR, Raman spectroscopy, x-ray diffractometer, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting AFM (C-AFM) images of the composite reveal the role played by the two components in electrochemical reactions. The size of the Au NPs was found to be 13 ± 2 nm in the composite as observed from TEM. The synthesized AuNPs:MWCNT:PANI composite was further drop casted onto a glassy carbon electrode (GCE) for electrocatalytic study. The resulting composite exhibits good electrocatalytic activity towards reduction of H2O2 and O2. A glucose biosensor was developed by immobilizing glucose oxidase into AuNPs:MWCNT:PANI composite film on GCE. The fabricated sensor demonstrates good linear response to glucose (i.e. R = 0.9975) in the range of 2 to 12 mM.

  6. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes

    PubMed Central

    Abdel-Ghani, Nour T.; El-Chaghaby, Ghadir A.; Helal, Farag S.

    2014-01-01

    Individual and competitive adsorption studies were carried out to investigate the removal of phenol and nickel ions by adsorption onto multiwalled carbon nanotubes (MWCNTs). The carbon nanotubes were characterized by different techniques such as X-ray diffraction, scanning electron microscopy, thermal analysis and Fourier transformation infrared spectroscopy. The different experimental conditions affecting the adsorption process were investigated. Kinetics and equilibrium models were tested for fitting the adsorption experimental data. The characterization experimental results proved that the studied adsorbent possess different surface functional groups as well as typical morphological features. The batch experiments revealed that 300 min of contact time was enough to achieve equilibrium for the adsorption of both phenol and nickel at an initial adsorbate concentration of 25 mg/l, an adsorbent dosage of 5 g/l, and a solution pH of 7. The adsorption of phenol and nickel by MWCNTs followed the pseudo-second order kinetic model and the intraparticle diffusion model was quite good in describing the adsorption mechanism. The Langmuir equilibrium model fitted well the experimental data indicating the homogeneity of the adsorbent surface sites. The maximum Langmuir adsorption capacities were found to be 32.23 and 6.09 mg/g, for phenol and Ni ions, respectively. The removal efficiency of MWCNTs for nickel ions or phenol in real wastewater samples at the optimum conditions reached up to 60% and 70%, respectively. PMID:26257938

  7. Non-enzymatic amperometric glucose biosensor from zinc oxide nanoparticles decorated multi-walled carbon nanotubes.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, S

    2011-06-01

    The present work describes the development of novel ZnO dispersed multi-walled carbon nanotubes (MWNT) based non-enzymatic glucose biosensor with 1 M NaOH solution as the supporting electrolyte. For a comparison, the same material has been used for the fabrication of enzymatic biosensor and studied its electrochemical activity with phosphate buffer solution as the electrolyte. MWNT have been synthesized by catalytic chemical vapor decomposition (CCVD) and a simple sol-gel method was used for decorating crystalline ZnO nanoparticles on MWNT. Cyclic voltammetry and chronoamperometry were used to study and optimize the electrochemical performance of the resulting enzymatic and non-enzymatic ZnO/MWNT biosensors. The non enzymatic Nafion/ZnO/MWNT/GC electrode shows linearity in the range 700 nM to 31 mM with the detection limit of 500 nM. Similarly enzymatic biosensor fabricated using Nafion/GOD/ZnO/MWNT on glassy carbon electrode (GCE) shows a linearity from 1 microM to 22 mM. This excellent performance of non enzymatic Nafion/ZnO/MWNT/GC is due to high surface area, good electron transfer rate of ZnO/MWNT and the high electrochemical catalytic activity of ZnO in NaOH solution. PMID:21770093

  8. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements.

    SciTech Connect

    Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D.; Northwestern Univ.

    2008-01-01

    The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are {approx}80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.

  9. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    SciTech Connect

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B.; Pötschke, P.

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  10. Fostering hydroxyapatite bioactivity and mechanical strength by Si-doping and reinforcing with multiwall carbon nanotubes.

    PubMed

    Belmamouni, Younes; Bricha, Meriame; Essassi, El Mokhtar; Ferreira, José M F; El Mabrouk, Khalil

    2014-06-01

    The aim of the present study was to prepare resorbable hydroxyapatite (HA) based bone graft materials reinforced with carbon nanotubes as a way to cope with the inability of pure HA to resorb and its intrinsic brittleness and poor strength that restrict its clinical applications under load-bearing conditions. With this purpose, a Si-doped HA nanopowder (n-Si0.8HA) was prepared by chemical synthesis and used as composite matrix reinforced with different amounts of functionalized multiwall carbon nanotubes (MWCNTs). The effect of the added amounts of MWCNTs on the mechanical properties of nanocomposites and their in vitro biomineralization was assessed by bending strength measurements, immersing tests in simulated body fluid solution (SBF), scanning electron microscopy (SEM), and inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES). The bioactivity and bending strength were enhanced, reaching maximum balanced values for an optimum addition of 3 wt.% f-MWCNTs. These results might contribute to broaden the potential applications of HA-based bone grafts. PMID:24738405

  11. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B.; Pötschke, P.

    2015-05-01

    A combination of high dielectric permittivity (ɛ') and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ɛ' and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ɛ' and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube's arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ɛ'=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ɛ'=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  12. Effects of Functionalized and Raw Multi-Walled Carbon Nanotubes on Soil Bacterial Community Composition

    PubMed Central

    Kerfahi, Dorsaf; Tripathi, Binu M.; Singh, Dharmesh; Kim, Hyoki; Lee, Sujin; Lee, Junghoon; Adams, Jonathan M.

    2015-01-01

    Carbon nanotubes (CNTs) are widely used in industry, but their environmental impacts on soil microbial communities are poorly known. In this paper, we compare the effect of both raw and acid treated or functionalized (fCNTs) multi-walled carbon nanotubes (MWCNTs) on soil bacterial communities, applying different concentrations of MWCNTs (0 µg/g, 50 µg/g, 500 µg/g and 5000 µg/g) to a soil microcosm system. Soil DNA was extracted at 0, 2 and 8 weeks and the V3 region of the 16S rRNA gene was PCR-amplified and sequenced using paired-end Illumina bar-coded sequencing. The results show that bacterial diversity was not affected by either type of MWCNT. However, overall soil bacterial community composition, as illustrated by NMDS, was affected only by fMWCNT at high concentrations. This effect, detectable at 2 weeks, remained equally strong by 8 weeks. In the case of fMWCNTs, overall changes in relative abundance of the dominant phyla were also found. The stronger effect of fMWCNTs could be explained by their intrinsically acidic nature, as the soil pH was lower at higher concentrations of fMWCNTs. Overall, this study suggests that fMWCNTs may at least temporarily alter microbial community composition on the timescale of at least weeks to months. It appears, by contrast, that raw MWCNTs do not affect soil microbial community composition. PMID:25825905

  13. Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers

    PubMed Central

    Tsai, Hsieh-Chih; Lin, Jeng-Yee; Maryani, Faiza; Huang, Chun-Chiang; Imae, Toyoko

    2013-01-01

    In this study, three types of hybrid nanotubes (NTs), ie, oxidized multiwalled carbon NTs (COOH MWCNTs), heparin (Hep)-conjugated MWCNTs (Hep MWCNTs), and diblock copolymer polyglycolic acid (PGA)-co-heparin conjugated to MWCNTs (PGA MWCNTs), were synthesized with improved biocompatibility and drug-loading capacity. Hydrophilic Hep substituents on MWCNTs improved biocompatibility and acted as nucleus-sensitive segments on the CNT carrier, whereas the addition of PGA enhanced drug-loading capacity. In the PGA MWCNT system, the amphiphilic copolymer (PGA-Hep) formed micelles on the side walls of CNTs, as confirmed by electron microscopy. The PGA system encapsulated the hydrophobic drug with high efficiency compared to the COOH MWCNT and Hep MWCNT systems. This is because the drug was loaded onto the PGA MWCNTs through hydrophobic forces and onto the CNTs by π–π stacking interactions. Additionally, most of the current drug-carrier designs that target cancer cells release the drug in the lysosome or cytoplasm. However, nuclear-targeted drug release is expected to kill cancer cells more directly and efficiently. In our study, PGA MWCNT carriers effectively delivered the active anticancer drug doxorubicin into targeted nuclei. This study may provide an effective strategy for the development of carbon-based drug carriers for nuclear-targeted drug delivery. PMID:24277987

  14. Amperometric sulfite sensor based on multiwalled carbon nanotubes/ferrocene-branched chitosan composites.

    PubMed

    Zhou, Hong; Yang, Weiwei; Sun, Changqing

    2008-10-19

    A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (K(s)) and charge transfer coefficient (alpha) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s(-1) and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 microM to 1.5mM and the detection limit was 2.8 microM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility. PMID:18804647

  15. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    NASA Astrophysics Data System (ADS)

    Tang, Yuechao; Yang, Dong; Qin, Feng; Hu, Jianhua; Wang, Changchun; Xu, Hualong

    2009-08-01

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA- g-MWNTs). Due to the strong interaction between Ni 2+ and -COOH, PAA- g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for α, β-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC).

  16. Improved Photoelectrochemical Cell Performance of Tin Oxide with Functionalized Multiwalled Carbon Nanotubes-Cadmium Selenide Sensitizer.

    PubMed

    Bhande, Sambhaji S; Ambade, Rohan B; Shinde, Dipak V; Ambade, Swapnil B; Patil, Supriya A; Naushad, Mu; Mane, Rajaram S; Alothman, Z A; Lee, Soo-Hyoung; Han, Sung-Hwan

    2015-11-18

    Here we report functionalized multiwalled carbon nanotubes (f-MWCNTs)-CdSe nanocrystals (NCs) as photosensitizer in photoelectrochemical cells, where f-MWCNTs were uniformly coated with CdSe NCs onto SnO2 upright standing nanosheets by using a simple electrodeposition method. The resultant blended photoanodes demonstrate extraordinary electrochemical properties including higher Stern-Volmer constant, higher absorbance, and positive quenching, etc., caused by more accessibility of CdSe NCs compared with pristine SnO2-CdSe photoanode. Atomic and weight percent changes of carbon with f-MWCNTs blending concentrations were confirmed from the energy dispersive X-ray analysis. The morphology images show a uniform coverage of CdSe NCs over f-MWCNTs forming a core-shell type structure as a blend. Compared to pristine CdSe, photoanode with f-MWCNTs demonstrated a 257% increase in overall power conversion efficiency. Obtained results were corroborated by the electrochemical impedance analysis. Higher scattering, more accessibility, and hierarchical structure of SnO2-f-MWCNTs-blend-CdSe NCs photoanode is responsible for higher (a) electron mobility (6.89 × 10(-4) to 10.89 × 10(-4) cm(2) V(-1) S(1-)), (b) diffusion length (27 × 10(-6)), PMID:26334564

  17. Characterization of multi-walled carbon nanotube-polymer nanocomposites by scanning spreading resistance microscopy.

    PubMed

    Souier, Tewfik; Stefancich, Marco; Chiesa, Matteo

    2012-10-12

    Nanocomposites of aligned multi-walled carbon nanotubes (CNTs) embedded in a polymer matrix yield a unique combination of thermal and electrical properties and mechanical strength. These properties are intimately related to the composite nanostructure and to the growth and processing conditions. The alignment of the tubes, the filling fraction and the contact junction between the nanotubes are key parameters controlling the composite electrical conductivity. For this purpose, a full description of the composite nanostructure is required. Among the non-destructive scanning probe techniques, scanning spreading resistance microscopy is found to be a powerful technique in identifying the carbon nanotubes with true nanometer resolution, thus competing with SEM and TEM imaging. Additionally, the technique provides valuable information about the electrical conduction mechanism within the composite structure. Indeed, by using a controlled contact force and an appropriate model of conduction at the nanoscale, the tip-CNT contact resistance, the CNT intrinsic resistance and the CNT-epoxy-CNT resistance junction are evaluated. This latter is found to be the factor controlling the overall electrical conductivity of the composite. PMID:22995850

  18. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Ran, Tiecheng; Li, Yuguo; Guo, Jinxue; Li, Wenxin

    2006-09-01

    This study examined the influence of multi-walled carbon nanotubes (MWNTs) on the growth of the unicellular protozoan Tetrahymena pyriformis. Contrary to the findings from most other investigations, our experiment indicated that MWNTs stimulated growth of the cells cultured in proteose peptone yeast extract medium (PPY). Atomic force microscopy images and thermogravimetric analysis showed the spontaneous formation of peptone-MWNT conjugates in the medium by noncovalent binding. Uptake of large amounts of the conjugates by Tetrahymena pyriformis was responsible for growth stimulation, evidenced by images with fluorescently labelled peptone. After the PPY medium was replaced by a filtrated pond water medium (FPW), however, inhibition of the growth of cells exposed to MWNTs occurred. Measurements of the level of malondialdehyde and superoxide dismutase activity demonstrated further that MWNTs might be either toxic or nontoxic, depending on the medium used to cultivate Tetrahymena pyriformis. The biological effects of the interaction of MWNTs with some composites in culture media would be helpful for understanding the mechanisms of the toxicity of carbon nanotubes to living systems.

  19. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.

    PubMed

    Guadarrama-Fernández, Leonor; Chanona-Pérez, Jorge; Manzo-Robledo, Arturo; Calderón-Domínguez, Georgina; Martínez-Rivas, Adrián; Ortiz-López, Jaime; Vargas-García, Jorge Roberto

    2014-10-01

    Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3-H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas. PMID:25156941

  20. Colloidal stability and ecotoxicity of multiwalled carbon nanotubes: Influence of select organic matters.

    PubMed

    Cerrillo, Cristina; Barandika, Gotzone; Igartua, Amaya; Areitioaurtena, Olatz; Uranga, Nerea; Mendoza, Gemma

    2016-01-01

    In the last few years, the release of multiwalled carbon nanotubes (MWCNTs) into the environment has raised serious concerns regarding their fate and potential impacts. Aquatic organisms constitute an important pathway for their entrance and transfer throughout the food web, and the current demand for standardization of methodologies to analyze the interactions of MWCNTs with them requires aquatic media that represent natural systems. However, the inherent hydrophobicity of MWCNTs and the substances present in natural waters may greatly affect their stability and bioavailability. The present study analyzes the influence of the most referenced synthetic and natural organic matters (Sigma-Aldrich humic acid and Suwannee River natural organic matter) in the agglomeration kinetics and ecotoxicity of MWCNTs, with the aim of determining their suitability to fulfill the current standardization requirements. Natural organic matter provides increased colloidal stability to the MWCNTs' dispersions, which results in higher adverse effects on the key invertebrate organism Daphnia magna. Furthermore, the results obtained with this type of organic matter allow for observation of the important role of the outer diameter and content impurities of MWCNTs in their stability and ecotoxicity on daphnids. Sigma-Aldrich humic acid appeared to alter the response of the organisms to carbon nanotubes compared with that observed in the presence of natural organic matter. PMID:26189503

  1. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    PubMed

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, p<0.0001), as might be expected. Positive correlations were observed between gallic acid equivalent AOC of wine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively). PMID:26593508

  2. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells

    PubMed Central

    Tabet, Lyes; Bussy, Cyrill; Amara, Nadia; Setyan, Ari; Grodet, Alain; Rossi, Michel J.; Pairon, Jean-Claude; Boczkowski, Jorge; Lanone, Sophie

    2009-01-01

    The aim of this study was to evaluate adverse effects of multi-walled carbon nanotubes (MWCNT) produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in 2 other media: ethanol (EtOH) and phosphate buffer saline (PBS). Effects of MWCNT were also compared to those of 2 asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells, but also on mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15–35 μm2), that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress were observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines. PMID:19034795

  3. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  4. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups.

    PubMed

    Mohamed, Azmi; Anas, Argo Khoirul; Bakar, Suriani Abu; Ardyani, Tretya; Zin, Wan Manshol W; Ibrahim, Sofian; Sagisaka, Masanobu; Brown, Paul; Eastoe, Julian

    2015-10-01

    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology. PMID:26070188

  5. Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel.

    PubMed

    Camilli, Luca; Scarselli, Manuela; Gobbo, Silvano Del; Castrucci, Paola; Gautron, Eric; De Crescenzi, Maurizio

    2012-01-01

    We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs) by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG). Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE) and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron-hole pairs. PMID:23016140

  6. DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization.

    PubMed

    McShan, Danielle; Yu, Hongtao

    2014-07-01

    Water-soluble carbon nanotubes have been found to be one of the most promising nanomaterials in biological- and biomedical-based applications. However, there have been major concerns on their ability to cause cellular and DNA damages upon exposure. In this work, we explore the toxic effects of three multiwalled carbon nanotubes (MWCNTs: nonpurified, purified and carboxylate-functionalized) on human skin keratinocytes (HaCaT). Cytotoxicity tests using the conventional thiazolyl blue tetrazolium bromide (MTT) and the water-soluble tetrazolium (WST-1) assays for 0.5 or 24 h exposure to 20 μg/mL of MWCNTs show that all three caused minimum cytotoxicity that is generally not statistically significant. Assessment of direct and oxidative DNA damages using both alkaline Comet assay and formamidopyrimidine DNA glycosylase-modified Comet assay reveals that the treatment with 20 μg/mL of MWCNTs does not cause significant direct DNA damages, but causes great amount of oxidative DNA damages in HaCaT cells. The oxidative DNA damage reaches the maximum amount at 4 h of incubation in Dulbecco's minimum essential medium, but decreases to the minimum at 8 and 24 h of incubation, indicating repair of the oxidative damages by the intrinsic DNA repair mechanism of the cells. PMID:23012341

  7. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Narayanan, T. N.; Reena Mary, A. P.; Shaijumon, M. M.; Ci, Lijie; Ajayan, P. M.; Anantharaman, M. R.

    2009-02-01

    Multiwall carbon nanotubes (MWCNTs) possessing an average inner diameter of 150 nm were synthesized by template assisted chemical vapor deposition over an alumina template. Aqueous ferrofluid based on superparamagnetic iron oxide nanoparticles (SPIONs) was prepared by a controlled co-precipitation technique, and this ferrofluid was used to fill the MWCNTs by nanocapillarity. The filling of nanotubes with iron oxide nanoparticles was confirmed by electron microscopy. Selected area electron diffraction indicated the presence of iron oxide and graphitic carbon from MWCNTs. The magnetic phase transition during cooling of the MWCNT-SPION composite was investigated by low temperature magnetization studies and zero field cooled (ZFC) and field cooled experiments. The ZFC curve exhibited a blocking at ~110 K. A peculiar ferromagnetic ordering exhibited by the MWCNT-SPION composite above room temperature is because of the ferromagnetic interaction emanating from the clustering of superparamagnetic particles in the constrained volume of an MWCNT. This kind of MWCNT-SPION composite can be envisaged as a good agent for various biomedical applications.

  8. Spatial frequency heterodyne imaging of aqueous phase transitions inside multi-walled carbon nanotubes.

    PubMed

    Schunk, F M; Rand, D; Rose-Petruck, C

    2015-12-14

    The evaporation and condensation of water on multi-walled carbon nanotube (MWCNT) surfaces was studied as a function of temperature and time using X-ray spatial frequency heterodyne imaging (SFHI). SFHI is an imaging modality that produces an absorption and scatter image in a single exposure, and has increased sensitivity to variations in electron density relative to more common place X-ray imaging techniques. Differing features exhibited in the temporal scatter intensity profiles recorded during evaporation and condensation revealed the existence of an absorption-desorption hysteresis. Effects on the aforementioned phenomena due to chemical functionalization of the carbon nanotube surfaces were also monitored. The increased interaction potential between the functionalized MWCNT walls and water molecules altered the evaporation event time scale and increased the temperature at which condensation could take place. Theoretical calculations were used to correlate the shape of the observed scatter profiles during condensation to changes in the MWCNT cross section geometry and configuration of the contained water volume. Changes in evaporation time scales with temperature coincided with the boiling point for confined water predicted by the Kelvin equation, indicating that a thermodynamic description of mesoscopic confined water is permissible in some instances. PMID:26549826

  9. Cation exchange resin nanocomposites based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awad Allah, Ahmed Elsayed; Alblehy, AbdElhamid

    2014-01-01

    Carbon nanotubes (CNTs) are of great interest due to their potential applications in different fields such as water treatment and desalination. The increasing exploitation of multi-walled carbon nanotubes (MWCNTs) into many industrial processes has raised considerable concerns for environmental applications. The interactions of soluble salt with MWNCTs influence in the total salt content in saline water. In this work, we synthesized two cation exchange resins nano composites from polystyrene divinylbenzene copolymer (PSDVB) and pristine MWNCTs. The prepared compounds were characterized using infra red spectroscopy, thermal stability, X-ray diffraction, and electro scan microscope. Also, the ion capacities of prepared cation exchange resins were determined by titration. Based on the experimental results, it was found that the thermal stability of prepared nanocomposites in the presence of MWNCTs increased up to 617 °C. The X-ray of PSDVB and its sulfonated form exhibits amorphous pattern texture structure, whereas the nano composite exhibits amorphous structure with indication peak at 20° and 26° for the PSDVB and MWCNTs, respectively. The ion-exchange capacity increased from 225.6 meq/100 g to 466 mg/100 g for sulfonated PSDVB and sulfonated PSDVB MWNCTs-pristine, respectively.

  10. Third Sound Generation in Superfluid 4He Films Adsorbed on Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Iaia, Vito; Menachekanian, Emin; Williams, Gary

    2014-03-01

    A technique is developed for generating third sound in superfluid 4He films coating the surface of multiwall carbon nanotubes. Third sound is a thickness and temperature wave of the helium film, and in our case we detect the temperature oscillations with a carbon resistance bolometer. The nanotubes are packed in an annular resonator that is vibrated with a mechanical shaker assembly consisting of a permanent magnet mounted on springs, and surrounded by a superconducting coil. The coil is driven with an oscillating current, vibrating the cell at that frequency. Sweeping the drive frequency over the range 100-200 Hz excites the resonant third sound mode of the cell, seen as a high-Q signal in the FFT analysis of the bolometer signal. A problem with our original cell was that the mechanical drive would also shake the dilution refrigerator cooling the cell to low temperatures, and increasing the drive would start to heat up the refrigerator and the cell, which were rigidly coupled together. A new configuration now suspends the cell as a pendulum on a string, with thermal contact made by copper wires. Piezo sensor measurements show this reduces the vibration reaching the refrigerator by two orders of magnitude, which should allow measurements at lower temperatures.

  11. Third Sound in Superfluid 4He Films Adsorbed on Packed Multiwall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Menachekanian, Emin

    Third sound is studied for superfluid films of 4He adsorbed on multiwall carbon nanotubes packed into an annular resonator. The third sound is generated with mechanical oscillation of the cell, and detected with carbon bolometers. A filling curve at temperatures near 250 mK shows oscillations in the third sound velocity, with maxima at the completion of the 4th and 5th atomic layers. Sharp changes in the Q factor of the third sound are found at partial layer fillings. Temperature sweeps at a number of fill points show strong broadening effects on the Kosterlitz-Thouless (KT) transition, and rapidly increasing dissipation, in qualitative agreement with the predictions of Machta and Guyer. At the 4th layer completion there is a sudden reduction of the transition temperature TKT , and then a recovery back to linear variation with fill, although the slope is considerably smaller than the KT prediction. These effects might be related to changes in the gas-liquid coexistence regions.

  12. Functionalization of multiwall carbon nanotubes with nitrogen containing polyelectrolyte by a simple method

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhsharan; Shin, Mun-Sik; Chae, So-Ryong; Kang, Moon-Sung; Park, Jin-Soo; Singh Sekhon, Satpal

    2015-10-01

    Commercially available multiwall carbon nanotubes (MWCNTs) have been functionalized with poly(diallyl dimethylammonium) chloride (PDDA), a nitrogen containing polyelectrolyte by a simple on-off ultrasonication method. The results obtained from Raman and X-ray photoelectron spectroscopy (XPS) studies confirm the functionalization of MWCNTs with PDDA. An up- shift in the positions of C1s XPS peak and a down-shift in the positions of the N1s XPS peak, has been observed along with an up-shift in the G-peak position in the Raman spectra, which suggest the occurrence of inter-molecular charge transfer from carbon atoms in MWCNTs to N+ centres in PDDA. The preliminary linear sweep voltammetry (LSV) results show good electrocatalytic activity of MWCNTs functionalized with nitrogen containing polyelectrolyte, which is comparable to the results with platinum based electrodes. Thus, MWCNTs non-covalently functionalized with a nitrogen containing polyelectrolyte (PDDA) by a simple on-off ultrasonication method could be advantageous for developing efficient metal-free electrocatalysts for the oxygen reduction reaction (ORR).

  13. A comparison of LLDPE-based nanocomposites containing multi-walled carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Vasileiou, Alexandros; Docoslis, Aristides; Kontopoulou, Marianna

    2015-05-01

    Composites of linear-low density polyethylene (LLDPE) with multi-walled carbon nanotubes (MWCNT) and thermally reduced graphene (TRGO) were produced by melt compounding. The composites were compatibilized by grafting aromatic pyridine groups onto the LLDPE backbone. The aromatic moieties established non-covalent π-π interactions with the carbon nanostructures, thus allowing for efficient dispersion, without compromizing their electrical properties. By using identical matrices, it was possible to investigate the effects of filler geometry on the electrical, mechanical and rheological properties of the composites. The 1-D nature and smaller surface area of the MWCNT facilitated their dispersion within the polymer matrix, whereas the graphene agglomerates appeared to breakup through an erosion mechanism. The resulting mixture of aggregates and individual graphene platelets favored lower electrical and rheological percolation thresholds. However the maximum electrical conductivity achieved in the TRGO/LLDPE was lower by about an order of magnitude compared to the MWCNT/LLDPE composites, probably due to residual oxygen in the graphene's structure. TRGO based composites presented higher moduli at the same filler loadings, while elongations at break were comparable. All composites exhibited time-dependent rheological properties, indicative of their tendency to aggregate. A more pronounced increase in viscoelastic properties was noted in the composites containing TRGO, presumably due to the higher surface area of the graphene platelets, and the presence of larger aggregates.

  14. In vivo detection of magnetic labeled oxidized multi-walled carbon nanotubes by magnetic resonance imaging.

    PubMed

    Li, Ruibin; Wu, Ren'an; Zhao, Liang; Qin, Hongqiang; Wu, Jianlin; Zhang, Jingwen; Bao, Ruyi; Zou, Hanfa

    2014-12-12

    Functionalized carbon nanotubes (f-CNTs) have been widely used in bio-medicine as drug carriers, bio-sensors, imaging agents and tissue engineering additives, which demands better understanding of their in vivo behavior because of the increasing exposure potential to humans. However, there are limited studies to investigate the in vivo biodistribution and elimination of f-CNTs. In this study, superparamagnetic iron oxides (SPIOs) were used to label oxidized multiwalled carbon nanotubes (o-MWCNTs) for in vivo distribution study of o-MWCNTs by magnetic resonance imaging (MRI). SPIO labeled o-MWCNTs (((SPIO))o-MWCNTs) were prepared by a hydrothermal reaction process, and characterized by TEM, XRD and magnetometer. ((SPIO))o-MWCNTs exhibited superparamagnetic property, excellent biocompatibility and stability. The intravenously injected ((SPIO))o-MWCNTs were observed in liver, kidney and spleen, while the subcutaneously injected ((SPIO))o-MWCNTs could be only detected in sub mucosa. Most of the intravenously injected ((SPIO))o-MWCNTs could be eliminated from liver, spleen, kidney and sub mucosa on 4 d post injection (P.I.). However, the residual o-MWCNTs could induce 30-40% MRI signal-to-noise ratio changes in these tissues even on 30 d P.I. This in vivo biodistribution and elimination information of o-MWCNTs will greatly facilitate the application of f-CNT based nanoproducts in biomedicine. In addition, the magnetic labeling method provides an approach to investigate the in vivo biodistribution and clearance of other nanomaterials. PMID:25409786

  15. Interrelationship between single- and multi-wall carbon nanotube growth rates for CVD process

    SciTech Connect

    Wood, Richard F; Pannala, Sreekanth; Wells, Jack C; Puretzky, Alexander A; Geohegan, David B

    2007-01-01

    Recent time-resolved measurements of carbon nanotube (CNT) growth on Fe and Fe/Mo catalysts have identified a maximum growth rate and temperature corresponding to the onset of small-diameter, single-wall CNT (SWNT) formation. A simple model described here emphasizes the essential role of the SWNTs in the growth process of CNTs. Remarkably, it shows that the growth rate (i.e. the time derivative of the length) of a multi-walled CNT (MWNT) is the same as that of a SWNT at the carbon flux and diffusion coefficient corresponding to a given temperature. Moreover, below ~700C, the temperature above which SWNT growth is observed for a 6 sccm C2H2 flow rate, the number of walls as a function of temperature is uniquely determined by the interplay of the incident flux of atomic C and diffusion rates consistent with bulk diffusion. Even partial melting of the catalytic particle is unnecessary to explain the experimental results on growth rate and number of walls. Above 700C, where severe catalyst poisoning ordinarily begins, the growth rate without poisoning is consistent with recent results of Hata and co-workers for "supergrowth".

  16. Analysis of pesticides residues in environmental water samples using multiwalled carbon nanotubes dispersive solid-phase extraction.

    PubMed

    González-Curbelo, Miguel Ángel; Herrera-Herrera, Antonio V; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel

    2013-02-01

    In this manuscript, a dispersive SPE method based on the use of multiwalled carbon nanotubes has been developed for the determination of 15 organophosphorus pesticides residues including some of their metabolites (disulfoton sulfoxide, ethoprophos, cadusafos, dimethoate, terbufos, disulfoton, chlorpyrifos-methyl, malaoxon, fenitrothion, pirimiphos-methyl, malathion, chlorpyrifos, terbufos sulfone, disulfoton sulfone, and fensulfothion) from real environmental waters (run-off, mineral and tap water) by GC with nitrogen phosphorus detection. Factors that affect the enrichment efficiency such as sample volume, multiwalled carbon nanotubes amount, and volume of eluent were studied. The optimized method was validated in terms of matrix-matched calibration, recovery, precision, and accuracy for the three analyzed samples. In this last case, the developed Student's t test demonstrated that there were no significant differences between real and spiked concentrations. Optimum dispersive SPE conditions (extraction of 200 mL of water, pH 6.0, with 130 mg of multiwalled carbon nanotubes, elution with 25 mL of dichloromethane for run-off and tap water and 30 mL for mineral water) allowed the quantitative extraction of analytes at levels lower than the maximum residues limits legislated by the European Union, with LODs between 1.16 and 93.6 ng/L. Absolute recovery values achieved were in the range of 67-107% (RSD values <10.1%). PMID:23303564

  17. Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system

    NASA Astrophysics Data System (ADS)

    Epur, Rigved; Ramanathan, Madhumati; Datta, Moni K.; Hong, Dae Ho; Jampani, Prashanth H.; Gattu, Bharat; Kumta, Prashant N.

    2015-02-01

    A novel electrode fabrication technique involving a manual scribing action of vertically aligned silicon coated multiwall carbon nanotubes (VASCNTs) on a copper foil have been developed as a viable approach to Li-ion battery electrodes. The scribed electrodes were prepared without the use of any conductive additives and binders, and they were directly assembled in a coin cell. These `binder-less' scribed Si-CNT electrodes exhibited a very high discharge capacity in excess of 3000 mA h g-1 and a low first cycle irreversible loss (FIR) (19%). In addition, the electrodes also showed good cyclability with capacity retention of 76% at the end of 50 cycles corresponding to a fade rate of 0.48% loss per cycle rendering the technique attractive for suitable Li-ion applications.A novel electrode fabrication technique involving a manual scribing action of vertically aligned silicon coated multiwall carbon nanotubes (VASCNTs) on a copper foil have been developed as a viable approach to Li-ion battery electrodes. The scribed electrodes were prepared without the use of any conductive additives and binders, and they were directly assembled in a coin cell. These `binder-less' scribed Si-CNT electrodes exhibited a very high discharge capacity in excess of 3000 mA h g-1 and a low first cycle irreversible loss (FIR) (19%). In addition, the electrodes also showed good cyclability with capacity retention of 76% at the end of 50 cycles corresponding to a fade rate of 0.48% loss per cycle rendering the technique attractive for suitable Li-ion applications. Electronic supplementary information (ESI) available: (1) Video S1: video showing the preparation of the SiCNT pellets and subsequent scribing on copper foils to form the electrodes; (2) Fig. S2: TGA plot of CNT/Si heterostructures performed in air from 25 °C to 1000 °C at a heating rate of 10 °C min-1. See DOI: 10.1039/c4nr04288c

  18. A novel method to encapsulate a Au nanorod array in 15 nm radius multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liao, Gaomin; Pan, Yuanyuan; Wu, Qiang; Li, Shaoyun; Weng, Yuyan; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Tsui, Ophelia K. C.

    2014-11-01

    In this paper we demonstrate a novel complex array structure comprising well-aligned Au nanorods (10 nm in diameter) encapsulated inside 15 nm radius multiwalled carbon nanotubes (MWCNTs). A pre-aligned and open-ended nanoporous MWCNT membrane is used as the starting material. Au nanorods are precisely deposited and aligned inside the hollow channels of CNTs by inter-diffusing the HAuCl4 precursor and the reductant solution. Ultra-long Au nanowires and spherical Au nanoparticles are also observed in the CNT cavity with the same diameter in special cases. Using high-resolution TEM (HRTEM), scanning transmission electron microscopy (STEM), 3-dimensional TEM (3D-TEM) and energy dispersive X-ray spectroscopy (EDX), the precise location and composition of the encapsulated Au components with various structures are confirmed. This aligned Au@CNT endohedral material has important potential applications in nanocatalysis, waveguides, as well as in novel plasmonic devices.In this paper we demonstrate a novel complex array structure comprising well-aligned Au nanorods (10 nm in diameter) encapsulated inside 15 nm radius multiwalled carbon nanotubes (MWCNTs). A pre-aligned and open-ended nanoporous MWCNT membrane is used as the starting material. Au nanorods are precisely deposited and aligned inside the hollow channels of CNTs by inter-diffusing the HAuCl4 precursor and the reductant solution. Ultra-long Au nanowires and spherical Au nanoparticles are also observed in the CNT cavity with the same diameter in special cases. Using high-resolution TEM (HRTEM), scanning transmission electron microscopy (STEM), 3-dimensional TEM (3D-TEM) and energy dispersive X-ray spectroscopy (EDX), the precise location and composition of the encapsulated Au components with various structures are confirmed. This aligned Au@CNT endohedral material has important potential applications in nanocatalysis, waveguides, as well as in novel plasmonic devices. Electronic supplementary information (ESI

  19. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-08-01

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ~17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of

  20. Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Gupta, Tejendra K.; Singh, Bhanu Pratap; Mathur, Rakesh B.; Dhakate, Sanjay R.

    2013-12-01

    The multiphase approach was adapted to enhance the electromagnetic interference (EMI) shielding effectiveness (SE) of polyaniline (PANI) based nanocomposites. The natural graphite flakes (NGF) incorporated modified PANI was used for the development of multi-walled carbon nanotubes (MWCNTs) based nanocomposites. In PANINGF-MWCNTs composites, multilayer graphene was synthesized in situ by ball milling. The resultant PANINGF-MWCNTs nanocomposites were characterized by different techniques. It was revealed from the transmission electron microscope (TEM) observation that in situ derived multilayer graphene acts as a bridge between PANI and MWCNTs, and plays a significant role for improving the properties of multiphase nanocomposites. It was observed that EMI-SE increases with increasing the MWCNTs content from 1 to 10 wt% in the multiphase nanocomposites. The maximum value of total EMI-SE was -98 dB of nanocomposite with 10 wt% of MWCNTs content. The high value of EMI-SE is dominated by the absorption phenomenon which is due to the collective effect of increase in space charge polarization and decrease in carrier mobility. The decrease in carrier mobility has a positive effect on the shore hardness value due to the strong interaction between the reinforcing constituent in multiphase nanocomposites. As a consequence, shore hardness increases from 56 to 91 at 10 wt% of MWCNTs.The multiphase approach was adapted to enhance the electromagnetic interference (EMI) shielding effectiveness (SE) of polyaniline (PANI) based nanocomposites. The natural graphite flakes (NGF) incorporated modified PANI was used for the development of multi-walled carbon nanotubes (MWCNTs) based nanocomposites. In PANINGF-MWCNTs composites, multilayer graphene was synthesized in situ by ball milling. The resultant PANINGF-MWCNTs nanocomposites were characterized by different techniques. It was revealed from the transmission electron microscope (TEM) observation that in situ derived multilayer

  1. SnO2-decorated multiwalled carbon nanotubes and Vulcan carbon through a sonochemical approach for supercapacitor applications.

    PubMed

    Vinoth, Victor; Wu, Jerry J; Asiri, Abdullah M; Lana-Villarreal, Teresa; Bonete, Pedro; Anandan, Sambandam

    2016-03-01

    Multiwalled carbon nanotubes (MWCNTs) and Vulcan carbon (VC) decorated with SnO2 nanoparticles were synthesized using a facile and versatile sonochemical procedure. The as-prepared nanocomposites were characterized by means of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infra red spectroscopy. It was evidenced that SnO2 nanoparticles were uniformly distributed on both carbon surfaces, tightly decorating the MWCNTs and VC. The electrochemical performance of the nanocomposites was evaluated by cyclic voltammetry and galvanostatic charge/discharge cycling. The as-synthesized SnO2/MWCNTs nanocomposites show a higher capacity than the SnO2/VC nanocomposites. Concretely, the SnO2/MWCNTs electrodes exhibit a specific capacitance of 133.33 F g(-1), whereas SnO2/VC electrodes exhibit a specific capacitance of 112.14 F g(-1) measured at 0.5 mA cm(-2) in 1 M Na2SO4. PMID:26585000

  2. Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats

    PubMed Central

    Sayapina, Nina V.; Sergievich, Alexander A.; Kuznetsov, Vladimir L.; Chaika, Vladimir V.; Lisitskaya, Irina G.; Khoroshikh, Pavel P.; Batalova, Tatyana A.; Tsarouhas, Kostas; Spandidos, Demetrios; Tsatsakis, Aristidis M.; Fenga, Concettina; Golokhvast, Kirill S.

    2016-01-01

    Studies of the neurobehavioral effects of carbon nanomaterials, particularly those of multi-walled carbon nanotubes (MWCNTs), have concentrated on cognitive effects, but data are scarce. The aim of this study was to assess the influence of MWCNTs on a number of higher nervous system functions of Wistar rats. For a period of 10 days, two experimental groups were fed with MWCNTs of different diameters (MWCNT-1 group, 8–10 nm; MWCNT-2 group, 18–20 nm) once a day at a dosage of 500 mg/kg. In the open-field test, reductions of integral indications of researching activity were observed for the two MWCNT-treated groups, with a parallel significant (P<0.01) increase in stress levels for these groups compared with the untreated control group. In the elevated plus-maze test, integral indices of researching activity in the MWCNT-1 and MWCNT-2 groups reduced by day 10 by 51 and 62%, respectively, while rat stress levels remained relatively unchanged. In the universal problem solving box test, reductions in motivation and energy indices of researching activity were observed in the two experimental groups. Searching activity in the MWCNT-1 group by day 3 was reduced by 50% (P<0.01) and in the MWCNT-2 group the relevant reduction reached 11.2%. By day 10, the reduction compared with controls, was 64% (P<0.01) and 58% (P<0.01) for the MWCNT-1 and MWCNT-2 groups, respectively. In conclusion, a series of specific tests demonstrated that MWCNT-treated rats experienced a significant reduction of some of their cognitive abilities, a disturbing and worrying finding, taking into consideration the continuing and accelerating use of carbon nanotubes in medicine and science. PMID:27588053

  3. Magnesia tuned multi-walled carbon nanotubes–reinforced alumina nanocomposites

    SciTech Connect

    Ahmad, Iftikhar; Islam, Mohammad; Dar, Mushtaq Ahmad; Xu, Fang; Shah, Syed Ismat; Zhu, Yanqiu

    2015-01-15

    Magnesia tuned alumina ceramic nanocomposites, reinforced with multi-walled carbon nanotubes, were condensed using pressureless and hot-press sintering processes. Densification, microstructure and mechanical properties of the produced nanocomposites were meticulously investigated. Electron microscopy studies revealed the homogenous carbon nanotube dispersion within the alumina matrix and confirmed the retention of carbon nanotubes' distinctive tubular morphology and nanoscale features during the extreme mixing/sintering processes. Pressureless sintered nanocomposites showed meagre mechanical responses due to the poorly-integrated microstructures with a slight improvement upon magnesia addition. Conversely, both the magnesia addition and application of hot-press sintering technique resulted in the nanocomposite formation with near-theoretical densities (~ 99%), well-integrated microstructures and superior mechanical properties. Hot-press sintered nanocomposites incorporating 300 and 600 ppm magnesia exhibited an increase in hardness (10 and 11%), flexural strength (5 and 10%) and fracture toughness (15 and 20%) with respect to similar magnesia-free samples. Compared to monolithic alumina, a decent rise in fracture toughness (37%), flexural strength (22%) and hardness (20%) was observed in the hot-press sintered nanocomposites tuned with merely 600 ppm magnesia. Mechanically superior hot-press sintered magnesia tailored nanocomposites are attractive for several load-bearing structural applications. - Highlights: • MgO tailored Al{sub 2}O{sub 3}–2 wt.% CNT nanocomposites are presented. • The role of MgO and sintering on nanocomposite structures and properties was studied. • Well-dispersed CNTs maintained their morphology/structure after harsh sintering. • Hot-pressing and MgO led nanocomposites to higher properties/unified structures. • MgO tuned composites showed higher toughness (37%) and strength (22%) than Al{sub 2}O{sub 3}.

  4. Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition

    SciTech Connect

    Ran Maofei; Sun Wenjing; Liu Yan; Chu Wei; Jiang Chengfa

    2013-01-15

    A simple and novel method, water-assisted chemical vapor deposition (CVD) was developed to functionalize multi-walled carbon nanotubes (MWCNTs) during the synthesis process. The functionalized MWCNTs were characterized using Raman spectroscopy, XPS, TGA, NH{sub 3}-TPD, SEM and HR-TEM. It was found that new defects are introduced and the amount of acidic groups is increased on the MWCNT surface during the water-assisted CVD process. The amount of C-OH and C-O group on the MWCNT surface is found to be increased from 21.1% to 42% with water vapor assistance. Density functional theory (DFT) was employed to study the chemical behavior of water vapor molecule on the catalyst particle surface of Ni(1 1 1) cluster. Based on the experimental and DFT simulation results, a mechanism for functionalization of MWCNTs by water-assisted CVD is proposed. - Graphical abstract: Water is adsorbed and activated on Ni surface, then dissociated into OH and O species, followed by part of OH and O species desorbed from the surface. Finally, the desorbed OH and O species oxidize the unsaturated carbon atoms of carbon nanotubes, form defects and oxygen-containing groups. Highlights: Black-Right-Pointing-Pointer MWCNTs were functionalized by water-assisted CVD method. Black-Right-Pointing-Pointer Defects and weak-medium acidic sites were created on the MWCNT sidewalls. Black-Right-Pointing-Pointer Oxygen-containing groups in functionalized MWCNT were increased from 21.1% to 42%. Black-Right-Pointing-Pointer A mechanism for the influence of water vapor on MWCNTs was proposed.

  5. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer.

    PubMed

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-01-01

    BACKGROUND The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. MATERIAL AND METHODS A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. RESULTS Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. CONCLUSIONS The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells. PMID:27385226

  6. Experimental Study of Magnetic Multi-Walled Carbon Nanotube-Doxorubicin Conjugate in a Lymph Node Metastatic Model of Breast Cancer

    PubMed Central

    Ji, Jian; Liu, Minfeng; Meng, Yue; Liu, Runqi; Yan, Yan; Dong, Jianyu; Guo, Zhaoze; Ye, Changsheng

    2016-01-01

    Background The lymphatic system plays a significant role in the defense of a subject against breast cancer and is one of the major pathways for the metastasis of breast cancer. To improve the prognosis, many means, including surgery, radiotherapy, and chemotherapy, have been used. However, the combination of all these modalities has limited efficacy. Lymph nodes, therefore, have become an exceptionally potential target organ in cancer chemotherapy. Material/Methods A lymph node metastatic model of breast cancer was established in BALB/c mice. Magnetic multi-walled carbon nanotube carrier with good adsorption and lymph node-targeting capacity was prepared and conjugated with doxorubicin to make the magnetic multi-walled carbon nanotube-doxorubicin suspension. Dispersions of doxorubicin, magnetic multi-walled carbon nanotube-doxorubicin, and magnetic multi-walled carbon nanotube were injected into lymph node metastatic mice to compare their inhibitory effects on tumor cells in vivo. Inhibition of these dispersions on EMT-6 breast cancer cells was detected via MTT assay in vitro. Results Although no significant difference was found between the effects of doxorubicin and magnetic multi-walled carbon nanotube-doxorubicin with the same concentration of doxorubicin on EMT-6 breast cancer cells in vitro, in terms of sizes of metastatic lymph nodes and xenograft tumors, apoptosis in metastatic lymph nodes, and adverse reactions, the magnetic multi-walled carbon nanotube-doxorubicin group differed significantly from the other groups. Conclusions The magnetic multi-walled carbon nanotube-doxorubicin clearly played an inhibitory role in lymph node metastases to EMT-6 breast cancer cells. PMID:27385226

  7. Chelerythrine and Fe3O4 Loaded Multi-Walled Carbon Nanotubes for Targeted Cancer Therapy.

    PubMed

    Cao, Liangli; Liang, Yongbo; Zhao, Feijun; Zhao, Xiongjie; Chen, Zhencheng

    2016-06-01

    The work focused on manufacturing improved drug loaded multifunctional magnetic nanoparticles that can overcome the relative non-specificity and potential side-effects of some chemotherapeutic drugs to healthy tissues. A new drug delivery system, Chelerythrine (CHE) and Fe3O4 loaded multi-walled carbon nanotubes (Fe3O4/MWNTs-CHE nanocomposites) that can target hepatocytes when treating malignant tumors, was prepared through a simple adsorption method. The formulation and structure of the Fe3O4/MWNTs-CHE nanocomposites were characterized by vibrating sample magnetometer (VSM), Fourier Transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The cytotoxicity and anti-proliferation effect from the prepared nanocomposites were in vitro tested on human hepatocarcinoma HepG2 and normal liver LO2 cell lines. The results showed the saturated magnetization of Fe3O4/MWNTs-CHE nanocomposites could reach to 45.4O3 emu/g, and the in vitro CHE release behavior exhibited a biphasic release pattern. Moreover, the in vitro cytotoxicity studies revealed that the Fe3O4/MWNTs-CHE nanocomposites showed an efficient inhibition rate to HepG2 cell line and exhibited a lower cytotoxicity to LO2 cell line in comparison to the native CHE. Therefore, the multifunctional Fe3O4/MWNTs-CHE nanocomposites should be a useful and promising candidate for treatment of malignant tumors. PMID:27319224

  8. Enhanced NO2 Gas Sensing Properties of WO3-Coated Multiwall Carbon Nanotube Sensors.

    PubMed

    Ko, Hyunsung; Park, Sunghoon; Park, Suyoung; Lee, Chongmu

    2015-07-01

    WO3-coated multiwall carbon nanotubes (MWCNTs) were fabricated by sputter-deposition of WO3 on MWCNT paste. The outer diameters of WO3-coated MWCNTs ranged from 20 to 40 nm and the lengths ranged up to a few tens of micrometers. The low-magnification TEM image of a typical WO3-coated CNT showed a CNT with an inner diameter of ~20 nm and a tube wall thickness of ~7 nm and WO3 shells with a thickness up to 10 nm at both edges of the tube. The WO3 shells were very nonuniform in thickness not only along the axis of the nanotube but also from one nanotube to the other. The sensing properties of multiple networked WO3-coated CNT sensors toward NO2 gas were examined. The WO3-coated MWCNT sensors showed responses of 120-221% over an NO2 concentration range of 1 to 5 ppm at room temperature. The responses were 1-2 fold higher than those of the pristine MWCNT sensor over the same NO2 concentration range. The origin of the enhancement of the MWCNTs in the response to NO2 by coating them with WO3 is discussed. PMID:26373127

  9. Removal of virus and toxin using heatable multi-walled carbon nanotube web filters

    NASA Astrophysics Data System (ADS)

    Jang, Hoon-Sik; Jeon, Sang Koo; Ryu, Kwon-Sang; Nahm, Seung Hoon

    2016-02-01

    Many studies have used a carbon nanotube (CNT) filter for pathogen removal and/or inactivation by means of electrochemical or electrochlorination. The large surface area, fine pore size and high electrical and thermal conductivity of CNTs make them suitable and distinct to use for the filtering and removal of pathogens. Here, we grew spin-capable multi-walled CNTs (MWCNTs) and manufactured a web filter using the spun MWCNTs. Botulinum toxin type E light chain (BoT/E-LC) and vaccinia virus (VV) were filtered using the MWCNT web filters and were evaporated and removed by applying direct current (DC) voltage to both sides of the MWCNT webs, excluding electrochemical or electrochlorination. The filtering and removal of BoT/E-LC and VV were performed after seven layers of the MWCNT sheets were coated onto a silicon oxide porous plate. The electrical resistance of the webs in the seven layer sheet was 293 Ω. The temperature of MWCNTs webs was linearly increased to ˜300 °C at 210 V of DC voltage. This temperature was enough to remove BoT/E-LC and VV. From the SEM and XPS results, we confirmed that BoT/E-LC and VV on the MWCNT webs were almost removed by applying a DC voltage and that some element (N, Na, Cl, etc.) as residues on the MWCNT webs remained.

  10. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, Su; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2016-04-01

    We show that a high-temperature CCl4 vapor treatment of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) grown on silicon substrate allows carefully detach the array from the substrate. Moreover, this procedure partially purifies the VA-MWCNTs from the residual iron catalyst. To improve electrical connectivity of free-standing VA-MWCNTs in an electrochemical cell, the array was placed between the layers of Ni foam. Such assembly demonstrated the better performance in Li-battery as compared to the disordered MWCNTs. After 50 cycles, the specific capacity of VA-MWCNT array synthesized from 0.5 wt% ferrocene solution in toluene was 350 mAh g-1 at a current density of 0.1 A g-1, while the battery with the disordered MWCNTs achieved 197 mAh g-1 only. By the results of electrochemical impedance spectroscopy, the higher capacity of VA-MWCNTs was attributed to larger surface area available for electrolyte and Li ions due to the absence of binder coating.

  11. Electrochemical properties of myoglobin deposited on multi-walled carbon nanotube/ciprofloxacin film.

    PubMed

    Kumar, S Ashok; Wang, Sea-Fue; Chang, Yu-Tsern; Lu, His-Chuan; Yeh, Chun-Ting

    2011-02-01

    We report the direct electrochemical and electrocatalytic properties of myoglobin (MB) on a multi-walled carbon nanotube/ciprofloxacin (MWCNT/CF) film-modified electrode. A highly homogeneous MWCNT thin-film was prepared on an electrode surface using ciprofloxacin (CF) as a dispersing agent. MB was then electrochemically deposited onto the MWCNT/CF-modified electrode. The MB/MWCNT/CF film was characterized by scanning electron microscopy and UV-visible spectroscopy (UV-vis). UV-vis spectra confirmed that MB retained its original state on the MWCNT/CF film. Direct electrochemical properties of MB on the MWCNT/CF film were investigated by cyclic voltammetry. The formal potential and electron transfer rate constant were evaluated in pH 7.2 buffer solution as -0.327V and 300s(-1), respectively. In addition, the MB/MWCNT/CF-modified electrode showed excellent electrocatalytic properties for the reduction of hydrogen peroxide (H(2)O(2)). The MB/MWCNT/CF-modified electrode was used for the detection of H(2)O(2) at concentrations from 1×10(-6)M to 7×10(-4)M in pH 7.2 buffer solution. Overall, the MB/MWCNT/CF-modified electrode was very stable and has potential for development as a H(2)O(2) sensor. PMID:21115278

  12. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Claussen, Jonathan C.; McLamore, Eric S.; Haque, Aeraj ul; Jaroch, David; Diggs, Alfred R.; Calvo-Marzal, Percy; Rickus, Jenna L.; Porterfield, D. Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM - 1 cm - 2), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H2O2 response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.

  13. Highly selective capture of phosphopeptides using a nano titanium dioxide-multiwalled carbon nanotube nanocomposite.

    PubMed

    Fang, Guozhen; Gao, Wei; Deng, Qiliang; Qian, Kun; Han, Haitao; Wang, Shuo

    2012-04-15

    In this study, a titanium dioxide-multiwalled carbon nanotube (TiO2-MWNT) nanocomposite was first used to enrich phosphopeptides as a binding agent. The TiO2-MWNT nanocomposite was synthesized by the hydrothermal reaction process and characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and X-ray powder diffraction (XRD). The results demonstrated that the anatase phase TiO2 nanoparticles had been successfully linked by MWNTs. The TiO2-MWNT nanocomposite was applied as a sorbent to enrich phosphopeptides, and the results showed that the performance of the TiO2-MWNT nanocomposite was better than 5 μm TiO2, as confirmed by the analysis of phosphopeptides from a tryptic digest of a standard protein (β-casein and bovine serum albumin) using high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS). The use of lactic acid in the loading buffer significantly enhances the selectivity of the TiO2-MWNT nanocomposite. This nanocomposite material was further applied to enrich the phosphopeptides in a protein digest obtained from nonfat milk successfully. PMID:22369891

  14. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    NASA Astrophysics Data System (ADS)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  15. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    PubMed Central

    Wongchoosuk, Chatchawal; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO3) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method. PMID:22163623

  16. Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes.

    PubMed

    Zeeshan, M A; Shou, K; Pané, S; Pellicer, E; Sort, J; Sivaraman, K M; Baró, M D; Nelson, B J

    2011-07-01

    We report on the growth and fabrication of Ni-filled multi-walled carbon nanotubes (Ni-MWNTs) with an average diameter of 115 nm and variable length of 400 nm-1 µm. The Ni-MWNTs were grown using template-assisted electrodeposition and low pressure chemical vapor deposition (LPCVD) techniques. Anodized alumina oxide (AAO) templates were fabricated on Si using a current controlled process. This was followed by the electrodeposition of Ni nanowires (NWs) using galvanostatic pulsed current (PC) electrodeposition. Ni NWs served as the catalyst to grow Ni-MWNTs in an atmosphere of H2/C2H2 at a temperature of 700 °C. Time dependent depositions were carried out to understand the diffusion and growth mechanism of Ni-MWNTs. Characterization was carried out using scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), Raman spectroscopy and energy dispersive x-ray spectroscopy (EDX). TEM analysis revealed that the Ni nanowires possess a fcc structure. To understand the effects of the electrodeposition parameters, and also the effects of the high temperatures encountered during MWNT growth on the magnetic properties of the Ni-MWNTs, vibrating sample magnetometer (VSM) measurements were performed. The template-based fabrication method is repeatable, efficient, enables batch fabrication and provides good control on the dimensions of the Ni-MWNTs. PMID:21606563

  17. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.

    PubMed

    Ormsby, Ross; McNally, Tony; Mitchell, Christina; Dunne, Nicholas

    2010-02-01

    Polymethyl methacrylate (PMMA) bone cement-multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement. PMID:20129413

  18. Reinforcing Effects of Poly(D-Lactide)-g-Multiwall Carbon Nanotubes on Polylactide Nanocomposites.

    PubMed

    Yang, Jeong Hee; Lee, Jae Yun; Chin, In-Joo

    2015-10-01

    Polylactide (PLA) nanocomposites with multi-walled carbon nanotubes (MWNTs) grafted with poly(L-lactide) or poly(D-lactide) were prepared by solution casting, and their thermal and mechanical properties were evaluated. MWNTs containing hydroxyl groups were treated by ring-opening polymerization of either L-lactide or D-lactide. Fourier transform infrared spectroscopy confirmed that the MWNT surfaces had been modified by the PLLA or PDLA chains. The thermal properties were measured by differential scanning calorimetry and thermogravimetric analysis. The mechanical properties were examined using a universal testing machine. The morphology of the fractured surfaces of the PLA nanocomposites was observed by scanning electron microscopy and transmission electron microscopy. PDLA-g-MWNTs were dispersed more uniformly compared to PLLA-g-MWNTs in the PLA matrix. The incorporation of PDLA-g-MWNTs greatly improved the tensile strength of the nanocomposites regardless of the contents. Thermal analysis revealed different characteristics at specific composites depending on the type of modification. PMID:26726467

  19. Multi-Wall Carbon Nanotubes as Lithium Nanopipettes and SPM Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Bharath, Satyaveda; Cullen, William; Reutt-Robey, Janice

    2014-03-01

    A multi-walled carbon nanotube (MWCNT) - terminated SPM cantilever, was utilized to perform nanolithography and surface diffusion measurements on a thin film of vapor-deposited lithium atop a silicon (111) substrate under ultra-high vacuum conditions. In these investigations the MWCNT tip was shown to act as both a lithium nanopipette and a probe for non-contact atomic force microscopy (NC-AFM) measurements. With the application of appropriate bias conditions, the MWCNT could site-selectively extract (expel) nano-scale amounts of lithium from (to) the sample surface. Depressions, mounds, and spikes were generated on the surface in this way and were azimuthally symmetric about the selected point of pipetting. Following lithium transfer to/from the substrate, the MWCNT pipette-induced features were sequentially imaged with NC-AFM using the MWCNT as the probe. Vacancy pits of ca. 300 nm diameter and 1.5 nm depth were observed to decay on a timescale of hours at room temperature, through diffusion-limited decay processes. A continuum model was utilized to simulate the island decay rates, and the lithium surface diffusion coefficient of D =7.5 (+/-1.3)*10-15 cm2/s was extracted. U.S. Department of Energy Award Number DESC0001160.

  20. Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Aziz, Siti Aishah Abdul; Amri Mazlan, Saiful; Intan Nik Ismail, Nik; Ubaidillah, U.; Choi, Seung-Bok; Khairi, Muntaz Hana Ahmad; Azhani Yunus, Nurul

    2016-07-01

    The effect of different types of multiwall carbon nanotubes (MWCNTs) on the morphological, magnetic and viscoelastic properties of magnetorheological elastomers (MREs) are studied in this work. A series of natural rubber MRE are prepared by adding MWCNTs as a new additive in MRE. Effects of functionalized MWCNT namely carboxylated MWCNT (COOH-MWCNT) and hydroxylated MWCNT (OH-MWCNT) on the rheological properties of MREs are investigated and the pristine MWCNTs is referred as a control. Epoxidised palm oil (EPO) is used as a medium to disperse carbonyl iron particle (CIP) and sonicate the MWCNTs. Morphological and magnetic properties of MREs are characterized by field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. Rheological properties under different magnetic field are evaluated by using parallel plate rheometer. From the results obtained, FESEM images indicate that COOH-MWCNT and CIP have better compatibility which leads to the formation of interconnected network in the matrix. In addition, by adding functionalized COOH-MWCNT, it is shown that the saturation magnetization is 5% higher than the pristine MWCNTs. It is also found that with the addition of COOH-MWCNT, the magnetic properties are improved parallel with enhancement of MR effect particularly at low strain amplitude. It is finally shown that the use of EPO also can contribute to the enhancement of MR performance.

  1. Inkjet printing of multi-walled carbon nanotube/polymer composite thin film for interconnection.

    PubMed

    Lok, Boon Keng; Ng, You Min; Liang, Yen Nan; Hu, Xiao

    2010-07-01

    In this paper, multi-walled carbon nanotube (MWCNT) ink was selectively patterned by inkjet printing on substrates to form conductive traces and electrodes for interconnection application. MWCNT was firstly functionalized using concentrated acid and dispersed in deionized water to form a colloidal solution. Various concentrations of MWCNT were formulated to test the stability of the solution. The printability of the MWCNT ink was examined against printing temperature, ink concentration and ink droplet pitch. Rheological properties of the ink were determined by rheometer and sessile drop method. The electrical conductivity of the MWCNT pattern was measured against multiple printing of MWCNT on the same pattern (up to 10 layers). While single layer printing pattern exhibited highest resistance, the CNT entangled together and formed a random network with more printed layers has higher conductivity. The electrical properties of the printed film was compared to a composite ink of CNT and conducting polymer (CNT ink was mixed with conductive polymer solution, Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT:PSS)). Scanning electron microscopy (SEM) was used to observe the surface structure and atomic force microscopy (AFM) was used to study the morphology of the printed film under different conditions. PMID:21128484

  2. Enhanced reaction kinetics and impact strength of cyanate ester reinforced with multiwalled carbon nanotubes.

    PubMed

    Badrinarayanan, Prashanth; Leonard, Josh; Kessler, Michael R

    2011-05-01

    In this work, the effect of multiwalled carbon nanotubes on the properties of a unique, low viscosity bisphenol E cyanate ester (BECy) resin is characterized during various stages of nanocomposite preparation. The effect of surface functionalization, with nanotubes containing hydroxyl groups (OH CNTs) and carboxylic acid groups (COOH CNTs), on the rheological, cure, thermal, and impact properties of the nanocomposite properties are also examined. Based on rheology measurements prior to cure, the unfunctionalized nanotube suspensions are found to exhibit the highest viscosity and the most dramatic shear thinning behavior. Cure characterization using differential scanning calorimetry (DSC) reveals that the nanotubes catalyze the cure of BECy and the OH CNTs exhibiting the most dramatic catalytic effect. The DSC data is well described by an nth order autocatalytic model. The impact strength of fully cured BECy is found to increase by 91% and 63% upon incorporation of 1 wt% COOH and OH CNTs, respectively. While incorporation of 1 wt% unfunctionalized nanotubes results in an 8 degrees C decrease in the glass transition temperature (T(g)) of BECy, chemical functionalization greatly mitigates the magnitude of the reduction. PMID:21780394

  3. Multifunctional properties of multi-wall carbon nanotubes/cyanate-ester nanocomposites and CFRPs

    NASA Astrophysics Data System (ADS)

    Baltopoulos, A.; Fiamegkou, E.; Vavouliotis, A.; Karapappas, P.; Athanasopoulos, N.; Fotiou, I.; Kostopoulos, V.; Maagt, P. D.; Rohr, T.

    2009-07-01

    The incorporation of multi-wall carbon nanotubes at weight fractions of 0.5% wt. and 1% wt. in a PRIMASET cyanate ester system (PT-30) was examined. The thermo-mechanical and electrical properties of the developed nanopolymers were investigated and were compared with the neat matrix properties. A preparation method was developed for the incorporation of the fillers in the resin system. The phenomenon of re-agglomeration of nanotubes took place in the first stages of curing schedule but nevertheless according to the SEM images a good dispersion was generally achieved. DSC, DMA, TGA and thermal conductivity tests were performed for the thermal characterization. For the electrical characterization, AC and DC measurements took place. No significant change in the glass transition temperature (Tg), thermal conductivity and mass loss values was observed in comparison with the neat resin systems. However, in both cases the improvement of electrical conductivity was about nine orders of magnitude, indicating that percolation had been achieved. The elastic modulus in bending was examined and a slight increase was observed in direct comparison with the neat resin. Finally, the developed doped nanopolymer was used as matrix for the CFRPs manufacturing. A full manufacturing protocol was developed in order to overcome the challenging issues concerning the cyanate esters' handling and manufacturing processes. Moreover AC and DC measurements were performed along with thermal conductivity measurements and TMA. The produced modified composites were tested for short beam strength.

  4. Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects

    NASA Astrophysics Data System (ADS)

    Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Yang, Sun A.; Bu, Sang Don; Myung, Sung; Lim, Jongsun; Choi, Moonkang; Lee, Minbaek; Lee, Min Ku

    2016-07-01

    We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials.

  5. Palladium-doped-ZrO2-multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment

    NASA Astrophysics Data System (ADS)

    Anku, William Wilson; Oppong, Samuel Osei-Bonsu; Shukla, Sudheesh Kumar; Agorku, Eric Selorm; Govender, Poomani Penny

    2016-06-01

    The photocatalytic degradation of organic pollutants from water using palladium-doped-zirconium oxide-multiwalled carbon nanotubes (Pd-ZrO2-MWCNTs) nanocomposites is presented. A series of Pd doped-ZrO2-MWCNTs nanocomposites with varying percentage compositions of Pd were prepared by the homogenous co-precipitation method. The photocatalytic applicability of the materials was investigated by the degradation of acid blue 40 dye in water under simulated solar light. The optical, morphological and structural properties of the nanocomposites were evaluated using X-ray powder diffraction, Fourier transformer infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, BET surface area analysis and (UV-Vis) spectroscopy. The Pd-ZrO2-MWCNTs nanocomposites showed enhanced photocatalytic activity toward the degradation of the acid blue 40 dye under visible light compared with bare ZrO2 and ZrO2-MWCNTs alone. The remarkable photocatalytic activity of Pd-ZrO2-MWCNTs nanocomposites in the visible light makes it an ideal photocatalyst for the removal of organic pollutants in water. The 0.5 % Pd-ZrO2-MWCNT was the most efficient photocatalyst with 98 % degradation after 3 h with corresponding K a and band gap values of 16.8 × 10-3 m-1 and 2.79 eV, respectively.

  6. A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors.

    PubMed

    Shi, Jin; Claussen, Jonathan C; McLamore, Eric S; ul Haque, Aeraj; Jaroch, David; Diggs, Alfred R; Calvo-Marzal, Percy; Rickus, Jenna L; Porterfield, D Marshall

    2011-09-01

    This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM(-1) cm(-2)), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H(2)O(2) response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications. PMID:21828892

  7. Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application.

    PubMed

    Das, Madhuri; Goswami, Pranab

    2013-02-01

    Rapid detection of alcohol is important in clinical diagnosis and fermentation industry. An octameric alcohol oxidase (AOx) (Mr 675 kDa) from Pichia pastoris, immobilized on multiwalled carbon nanotubes-Nafion® (MWCNT-Nf) matrix and encapsulated with polyethylenimine (PEI) on gold electrode (AuE), showed a redox peak at 0.21V (vs. Ag/AgCl electrode at pH 7.5) for oxidation of alcohol. The electron transfer rate constant and surface coverage of the immobilized AOx were 1.69±0.15 s⁻¹ and 2.43×10⁻¹² mol cm⁻², respectively. Studies on response and kinetics of Au-MWCNT-Nf-AOx-PEI bioelectrodes for alcohol showed a linear response in the range of 8 μM-42 μM, response time of 55 s for steady state current, and detection limit of 5 μM. The bioelectrode retains ~90% of the original response even after four weeks when stored in potassium phosphate buffer pH 7.5 at 4 °C. The fabricated bioelectrode was found to exclude interference caused by the common electroactive species such as ascorbic acid, uric acid, lactic acid, glucose and urea. The bioelectrode also showed reliable response characteristics in blood serum samples. The findings of the investigation have established the direct electrochemistry of the AOx protein and its potential biosensor application for quantitative detection of alcohol in blood serum. PMID:23000393

  8. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer.

    PubMed

    Mortimer, Monika; Petersen, Elijah J; Buchholz, Bruce A; Orias, Eduardo; Holden, Patricia A

    2016-08-16

    Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels. PMID:27398725

  9. Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects

    PubMed Central

    Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Yang, Sun A.; Bu, Sang Don; Myung, Sung; Lim, Jongsun; Choi, Moonkang; Lee, Minbaek; Lee, Min Ku

    2016-01-01

    We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials. PMID:27406631

  10. Pressureless sintering and mechanical properties of hydroxyapatite/functionalized multi-walled carbon nanotube composite.

    PubMed

    Abden, M J; Afroze, J D; Alam, M S; Bahadur, N M

    2016-10-01

    This work aims to study the optimum sintering conditions of hydroxyapatite/functionalized multi-walled carbon nanotube (HA/f-MWCNT) composite with improved mechanical properties for bone implant applications using a pressureless sintering technique. The carboxyl functional group (COOH) introduced by the acid treatment on the MWCNT surface by which HA molecules are grafted onto the surface of functionalized MWCNT with strong interfacial bonding. The composite exhibits a lower hemolytic rate of 1.27%. The flexible nature of f-MWCNT makes them bend and attached to the HA grains, indicates that f-MWCNT bear significant stress by sharing a portion of the load and it leads to improve their mechanical properties. The maximum Vickers hardness of 3.6GPa is obtained for the HA/f-MWCNT composite sintered at 1100°C, whereas the highest compressive strength of 481.7MPa and fracture toughness of 2.38MPa.m(1/2) achieved after sintering at 1150°C. This study demonstrated that HA/f-MWCNT composite create suitable structures by vacuum pressureless sintering technique to satisfy the mechanical requirements for bone tissues. PMID:27287138

  11. Oxygen diffusion into multiwalled carbon nanotube doped polystrene latex films using fluorescence technique.

    PubMed

    Yargı, Onder; Uğur, Saziye; Pekcan, Onder

    2013-05-01

    This study examines the oxygen diffusion into polystyrene (PS) latex/multiwalled carbon nanotube (MWNT) nanocomposite films (PS/MWNT) consisting of various amounts of MWNT via steady state fluorescence technique (SSF). PS/MWNT films were prepared from the mixture of MWNT and pyrene (P)-labeled PS latexes at various compositions at room temperature. These films were then annealed at 170 °C above glass transition (Tg) temperature of PS. Fluorescence quenching measurements were performed for each film separately to evaluate the effect of MWNT content on oxygen diffusion. The Stern-Volmer equation for fluorescence quenching is combined with Fick's law for diffusion to derive the mathematical expressions. Diffusion coefficients (D) were produced and found to be increased from 1.1 × 10(-12) to 41 × 10(-12) cm(2)s(-1) with increasing MWNT content. This increase was explained via the existence of large amounts of pores in composite films which facilitate oxygen penetration into the structure. PMID:23334487

  12. Detection of organophosphorous pesticides in soil samples with multiwalled carbon nanotubes coating SPME fiber.

    PubMed

    Feng, Xilan; Li, Ying; Jing, Ruijun; Jiang, Xiaoying; Tian, Mengkui

    2014-12-01

    A headspace solid phase microextraction (HS-SPME) technique using stainless steel fiber coated with 20 μm multi-walled carbon nanotubes (MWCNTs) and gas chromatography with thermionic specific detector (GC-TSD) was developed to determine organophosphorous pesticides (OPPs) in soil. Parameters affecting the extraction efficiency such as extraction time and temperature, ionic strength, the volume of water added to the soil, sample solution volume to headspace volume ratio, desorption time, and desorption temperature were investigated and optimized. Compared to commercial polydimethylsiloxane (PDMS, 7 μm) fiber, the PDMS fiber was better to be corrected as phorate, whereas the MWCNTs fiber gave slightly better results for methyl parathion, chlorpyrifos and parathion. The optimized SPME method was applied to analyze OPPs in spiked soil samples. The limits of detection (LODs, S/N = 3) for the four pesticides were <0.216 ng g(-1), and their calibration curves were all linear (r (2) ≥ 0.9908) in the range from 1 to 200 ng g(-1). The precision (RSD, n = 6) for peak areas was 6.5 %-8.8 %. The recovery of the OPPs spiked real soil samples at 50 and 150 ng g(-1) ranged from 89.7 % to 102.9 % and 94.3 % to 118.1 %, respectively. PMID:25227428

  13. Dielectric Properties of Polypropylene-Based Nanocomposites with Ionic Liquid-Functionalized Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Pei; Gui, Haoguan; Hu, Yadong; Bahader, Ali; Ding, Yunsheng

    2014-07-01

    Nanocomposites were prepared from polypropylene (PP) and untreated multiwalled carbon nanotubes (MWCNTs) or MWCNTs surface-functionalized with ionic liquids (MIL), as fillers, and their dielectric properties were compared. The physical (cation-π/π-π) interaction between the ionic liquids and the MWCNTs was apparent from Raman spectroscopy and from thermogravimetric analysis. Morphology characterization revealed that ionic liquids improve the dispersibility of MWCNTs in the PP matrix. It is suggested that the substantial increase in the dielectric permittivity of the nanocomposites compared with that of the PP originates from a remarkable Maxwell-Wagner-Sillars (MWS) effect at percolation threshold where mobile charge carriers are blocked at internal interfaces between the MIL and the PP matrix. The high polarity of ionic liquids may reinforce the MWS effect, and the nonconducting organic groups of the ionic liquids promote the low loss tangent and low conductivity of the MIL/PP nanocomposites. Compared with MWCNTs/PP nanocomposites, lower loss tangent and higher dielectric permittivity were observed for MIL/PP nanocomposites, making the material more attractive for application in electronics.

  14. Hydrophilic modification of neural microelectrode arrays based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Hsiao; Su, Huan-Chieh; Chuang, Shih-Chang; Yen, Shiang-Jie; Chen, Yung-Chan; Lee, Yu-Tao; Chen, Hsin; Yew, Tri-Rung; Chang, Yen-Chung; Yeh, Shih-Rung; Yao, Da-Jeng

    2010-12-01

    To decrease the impedance of microelectrode arrays, for neuroscience applications we have fabricated and tested MEA based on multi-walled carbon nanotubes. With decreasing physical size of a microelectrode, its impedance increases and charge-transfer capability decreases. To decrease the impedance, the effective surface area of the electrode must generally be increased. We explored the effect of plasma treatment on the surface wettability of MWCNT. With a steam-plasma treatment the surface of MWCNT becomes converted from superhydrophobic to superhydrophilic; this hydrophilic property is attributed to -OH bonding on the surface of MWCNT. We reported the synthesis at 400 °C of MWCNT on nickel-titanium multilayered metal catalysts by thermal chemical vapor deposition. Applying plasma with a power less than 25 W for 10 s improved the electrochemical and biological properties, and circumvented the limitation of the surface reverting to a hydrophobic condition; a hydrophilic state is maintained for at least one month. The MEA was used to record neural signals of a lateral giant cell from an American crayfish. The response amplitude of the action potential was about 275 µV with 1 ms period; the recorded data had a ratio of signal to noise up to 40.12 dB. The improved performance of the electrode makes feasible the separation of neural signals and the recognition of their distinct shapes. With further development the rapid treatment will be useful for long-term recording applications.

  15. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.

    PubMed

    Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

    2015-03-15

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery. PMID:25554963

  16. A potassium sensor based on non-covalent functionalization of multi-walled carbon nanotubes.

    PubMed

    Parra, Enrique J; Rius, F Xavier; Blondeau, Pascal

    2013-05-01

    Non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) by a pyrene based benzo-18-crown-6 ether 1 leads to nanostructure assemblies that play both the role of an ion-to-electron transducer and a selective recognition element in solid-contact ion-selective-electrodes (SC-ISEs). The high loading capacity (36 wt%) as well as the suitable dispersion character of the MWCNT hybrid in the ion-selective membrane (ISM) confirmed the benefit of this approach over the covalent one. The sensor has been applied successfully to the detection of potassium. Nernstian response (56.9 ± 0.9 mV per decade) was obtained (10(-5) and 10(-2) M K(+)) and the selectivity pattern was not altered by the immobilization of the ionophore on the MWCNTs. Leakage of the ionophore from the polymeric matrix is therefore avoided while the sensor construction was simplified and the analytical performances were maintained. PMID:23515323

  17. Multiwalled-carbon nanotubes and polyaniline coating on electro-active paper for bending actuator

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Kim, Jaehwan

    2006-06-01

    Multi-walled carbon nanotubes (MWNT) and polyaniline are coated on an electro-active paper (EAPap) to improve the performance of the bending actuator, and its performance is tested. EAPap actuators made with cellulose paper have merits in terms of large bending displacement, ultra-lightweight, dryness, low actuation voltage and power consumption, low cost and biodegradability. However, the force output of actuators is small and the actuation frequency is low. Thus, MWNT and emeraldine salt polyaniline (PANI) are coated on the EAPap material to improve the force and the actuation frequency. The MWNT and PANI solution is made by sonication, and the sonication time and the weight per cents of the MWNT and PANI are optimized to improve the hybrid actuator performance. The optimum condition is associated with conversion of the partial conductive state PANI into the emeraldine formed PANI by the chemical bonding between the MWNT and PANI. The performance improvement of the EAPap actuator coated with MWNT/PANI is investigated in terms of displacement, blocking force and efficiency. In the presence of an electric field (0.35 V µm-1) on the hybrid EAPap actuator, 250% of the output force, 160% of the resonance frequency and 50% of efficiency are improved.

  18. Enzyme Immobilisation on Amino-Functionalised Multi-Walled Carbon Nanotubes: Structural and Biocatalytic Characterisation

    PubMed Central

    Verma, Madan L.; Naebe, Minoo; Barrow, Colin J.; Puri, Munish

    2013-01-01

    Background The aim of this work is to investigate the structure and function of enzymes immobilised on nanomaterials. This work will allow better understanding of enzyme-nanomaterial interactions, as well as designing functional protein-nanomaterial conjugates. Methodology/Principal Findings Multiwalled carbon nanotubes (MWNTs) were functionalised with amino groups to improve solubility and biocompatibility. The pristine and functionalised forms of MWNTs were characterised with Fourier-transform infrared spectroscopy. Thermogravimetric analysis was done to examine the degree of the functionalisation process. An immobilised biocatalyst was prepared on functionalised nanomaterial by covalent binding. Thermomyces lanuginosus lipase was used as a model enzyme. The structural change of the immobilised and free lipases were characterised with transmission electron Microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and Circular dichroism spectroscopy. Biochemical characterisation of immobilised enzyme showed broader pH and thermal optima compared to soluble form. Reusability of the immobilised enzyme for hydrolysis of long chain esters was demonstrated up to ten cycles. Conclusion/Significance Lipase immobilised on MWNTs has exhibited significantly improved thermal stability. The exploration of advanced nanomaterial for enzyme immobilisation support using sophisticated techniques makes nanobiocatalyst of potential interest for biosensor applications. PMID:24069216

  19. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Zahn, D. R. T.; Jha, Menaka; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Schmidt, O. G.

    2014-10-28

    Detailed results from field emission studies of lanthanum hexaboride (LaB{sub 6}) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB{sub 6} films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB{sub 6}-coated MWCNTs compared to pristine MWCNT and pristine LaB{sub 6} films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB{sub 6} nanoparticles on the outer walls of CNTs LaB{sub 6}-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB{sub 6} was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB{sub 6} and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB{sub 6}-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB{sub 6}-coated MWCNT films are correlated with a change in microstructure and work function.

  20. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    PubMed Central

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-01-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3–8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3–8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs. PMID:24937315

  1. Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Li, Yuqing; Huang, Ying; Qi, Shuhua; Niu, Lei; Zhang, Yinling; Wu, Yanfei

    2012-02-01

    Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.

  2. Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, G.; Gupta, K.; Meikap, A. K.; Babu, R.; Blau, W. J.

    2011-02-01

    The dc and ac electrical transport property of polyvinyl alcohol-multiwall carbon nanotubes composites has been investigated within a temperature range 77≤T≤300 K and in the frequency range 20 Hz-1 MHz in presence as well as in absence of a transverse magnetic field up to 1 T. The dc conductivity follows variable range hopping model. The magnetoconductivity of the samples changes a sign from positive to negative with an increase in temperature which can be interpreted by the dominancy of the quantum interference effect over the wave function shrinkage effect. The ac conductivity follows a power law whereas the temperature dependence of frequency exponent s can be explained by correlated barrier hopping model. The dielectric behavior of the samples has been governed by the grain and grain boundary resistance and capacitance. The ac conductivity reduces with the application of magnetic field. Although the theoretical model to explain it, is still lacking, we may conclude that this is due to the increase in grain and grain boundary resistance by the application of magnetic field.

  3. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material

    NASA Astrophysics Data System (ADS)

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-01-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications.

  4. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-02-15

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

  5. Synthesis of novel poly(amidoxime) grafted multiwall carbon nanotube gel and uranium adsorption.

    PubMed

    Gopalan, A; Philips, M Francklin; Jeong, Jae-Hong; Lee, Kwang-Pill

    2014-03-01

    This is the first report on the synthesis of a new functional nanocomposite gel containing amidoxime functionalized multiwall carbon nanotube (AO-MWNT-FNC GEL). The surface morphology of AO-MWNT-FNC GEL was investigated by field emission scanning electron microscopy. The modification of gel with amidoxine groups was confirmed by Fourier transform infra red spectroscopy. The AO-MWNT-FNC GEL provides effective binding with uranium ions as was ascertained by X-ray photoelectron spectroscopy. The AO-MWNT-FNC GEL was utilized as the new adsorbent for the recovery of uranium ions from aqueous solution. UV-visible spectroscopy was used to monitor the adsorption capacity of the AO-MWNT-FNC GEL toward uranium ions. The influence of initial uranium ion concentration and solution pH on the adsorption capacity of the AO-MWNT-FNC GEL were studied in batch experiments. The new FNC-GEL designed in this study is distinguished by higher adsorption capacity for uranium ions due to the synergistic contributions from high surface area of MWNT and the functional AO groups in FNC-GEL and exhibits potential for efficient recovery of uranium ions. PMID:24745246

  6. Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors.

    PubMed

    Wang, Yaohui; Zhitomirsky, Igor

    2009-09-01

    The cathodic electrophoretic deposition (EPD) method has been developed for the deposition of composite manganese dioxide-multiwalled carbon nanotube (MWCNT) films. Dopamine (DA) was shown to be an effective charging additive, which provides stabilization of manganese dioxide nanoparticles and MWCNTs in the suspensions. The influence of DA concentration on the deposition efficiency has been studied. EPD has been utilized for the fabrication of porous nanostructured films for application in electrochemical supercapacitors (ES). Obtained films were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), cyclic voltammetry (CV), and impedance spectroscopy. CV data for the films tested in the 0.5 M Na(2)SO(4) solutions showed capacitive behavior in the voltage window of 0-0.9 V. The highest specific capacitance (SC) of approximately 650 F g(-1) was obtained at a scan rate of 2 mV s(-1). The SC decreased with an increasing scan rate in the range of 2-100 mV s(-1). The deposition mechanism, kinetics of deposition, and charge storage properties of the films are discussed. PMID:19449813

  7. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  8. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies

    PubMed Central

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M.

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  9. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application.

    PubMed

    Pan, Lanlan; Pei, Xibo; He, Rui; Wan, Qianbing; Wang, Jian

    2012-05-01

    In this study, the multiwall carbon nanotubes (MWNTs)/polycaprolactone composite scaffolds were fabricated by the solution evaporation technique. The morphology, phase composition and the mechanical properties of the composite scaffolds were characterized and the cellular bioactivity of the scaffolds was assessed by using rat bone-marrow-derived stroma cells (BMSCs). The attachment, proliferation and differentiation of the BMSCs on the composite scaffolds were analyzed by scanning electron microscopy (SEM), 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclear staining and fluorescein diacetate (FDA) and propidium iodide (PI) live/dead staining, methylthiazol tetrazolium (MTT) assay and alkaline phosphatase (ALP) activity assay, respectively. Results showed that mechanical properties of the composite scaffolds were improved with the addition of MWNTs (0.25-2 wt%). BMSCs on the composite scaffolds differentiated down the osteogenic lineage and expressed high levels of bone marker ALP. The scaffolds with low concentration (0.5 wt%) of MWNTs can enhance the proliferation and differentiation of the BMSCs more than that with higher concentration of MWNTs. It is concluded that MWNTs/PCL composite scaffolds have the potential for bone tissue engineering and the relatively low concentration of MWNTs (0.5 wt%) is preferred. PMID:22305638

  10. Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Ma, Jie; Han, Sheng

    2014-06-01

    Oxidized multi-walled carbon nanotubes (MWCNTs) with different oxygen contents were investigated for the adsorption of tetracycline (TC) from aqueous solutions. As the surface oxygen content of the MWCNTs increased, the maximum adsorption capacity and adsorption coefficient of TC increased to the largest values and then decreased. The relation can be attributed to the interplay between the nanotubes' dispersibility and the water cluster formation upon TC adsorption. The overall adsorption kinetics of TC onto CNTs-3.2%O might be dependent on both intra-particle diffusion and boundary layer diffusion. The maximum adsorption capacity of TC on CNTs-3.2%O was achieved in the pH range of 3.3-8.0 due to formation of water clusters or H-bonds. Furthermore, the presence of Cu2+ could significantly enhanced TC adsorption at pH of 5.0. However, the solution ionic strength did not exhibit remarkable effect on TC adsorption. In addition, when pH is beyond the range (3.3-8.0), the electrostatic interactions caused the decrease of TC adsorption capacity. Our results indicate that surface properties and aqueous solution chemistry play important roles in TC adsorption on MWCNTs.

  11. Heteroaggregation of Multiwalled Carbon Nanotubes and Hematite Nanoparticles: Rates and Mechanisms

    PubMed Central

    Huynh, Khanh An; McCaffery, J. Michael; Chen, Kai Loon

    2012-01-01

    The heteroaggregation rates of negatively charged multiwalled carbon nanotubes (CNTs) and positively charged hematite nanoparticles (HemNPs) were obtained over a broad range of nanoparticle distributions using time-resolved dynamic light scattering (DLS). Binary systems comprising CNTs and HemNPs were prepared using low ionic strength solutions to minimize the concurrent occurrence of homoaggregation. In order to elucidate the mechanisms of heteroaggregation, the structures of CNT–HemNP aggregates were observed using cryogenic transmission electron microscopy (cryo-TEM). An initial increase in the CNT concentration, while keeping the HemNP concentration constant, resulted in a corresponding increase in the rate of heteroaggregation which occurred through the bridging of HemNPs by CNT strands. At the optimal CNT/HemNP mass concentration ratio of 0.0316, the heteroaggregation rate reached 3.3 times of the HemNP homoaggregation rate in the diffusion-limited regime. Increasing the CNT/HemNP ratio above the optimal value, however, led to a dramatic decrease in the growth rate of heteroaggregates, likely through a blocking mechanism. In the presence of humic acid, the trends in the variation of the heteroaggregation rate with CNT/HemNP ratio were similar to that in the absence of humic acid. However, as the humic acid concentration was increased, the maximum aggregate growth rate decreased due to the lessening in the available surface of the HemNPs that CNTs can attach to through favorable electrostatic interaction. PMID:22545989

  12. Fluorescence Spectrometry of the Interaction of Multi-Walled Carbon Nanotubes with Catalase

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Li, Y.; Cai, H.; Li, J.; Miao, J.; Fu, D.; Yang, Q.

    2014-11-01

    The interaction of multi-walled carbon nanotubes (MWCNTs) with catalase is investigated using fluorescence and circular dichroism spectroscopic techniques. The results of the fluorescence experiments suggest that MWCNTs quench the intrinsic fluorescence of catalase via a static quenching mechanism. The circular dichroism spectral results reveal the unfolding of catalase with a significant decrease in the α-helix content in the presence of MWCNTs, which indicates that the conformation of catalase is changed in the binding process, thereby remarkably decreasing its activity. The binding constants and the number of binding sites of the MWCNT to the catalase are calculated at different temperatures. The thermodynamic parameters, such as the changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), are calculated using thermodynamic equations. The fact that all negative values of ΔG, ΔH, and ΔS are obtained suggests that the interaction of the MWCNTs with catalase is spontaneous, and that hydrogen bonding and van der Waals interactions play an important role in the binding process.

  13. Transport and remobilization of multi-walled carbon nanotubes in porous media during dynamic saturation change

    NASA Astrophysics Data System (ADS)

    Sharma, P.

    2012-04-01

    Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.

  14. Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites

    SciTech Connect

    Shin, S.E.; Bae, D.H.

    2013-09-15

    Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can be evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.

  15. Poly(3-hexylthiophene)/multiwalled carbon hybrid coaxial nanotubes: nanoscale rectification and photovoltaic characteristics.

    PubMed

    Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo

    2010-07-27

    We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT. PMID:20533839

  16. Damaging Effects of Multi-walled Carbon Nanotubes on Pregnant Mice with Different Pregnancy Times

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Bi, Juanjuan; Zhang, Xiaoyong; Wang, Jing; Wang, Jianjun; Liu, Peng; Li, Zhan; Wu, Wangsuo

    2014-03-01

    The mechanism by which nanoparticles cross the placental barrier was studied by using isotopic tracers. The abortion rates and other related data were counted and analysed in pregnant mice with different pregnancy times. Results showed that oxidised multi-walled carbon nanotubes (oMWCNTs) crossed the placental barrier and entered the foetus body. The abortion rates in the pregnant mice depended on pregnancy times. The abortion rates in the first-time, second-time and fourth-time pregnant mice were 70%, 40% and 50%, respectively. The maternal body weight gain was inhibited until gestational ages of 13, 10 and 11 d. oMWCNTs decreased the serum progesterone level and increased the serum oestradiol level in a dose- and time-dependent manner. However, this effect decreased with gestational age. The histology and vascular endothelial growth factor/reactive oxygen species content in the placenta showed that oMWCNTs narrowed the blood vessel and decreased the number of blood vessels in the placenta.

  17. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier

    2015-01-01

    Summary The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low. PMID:25821679

  18. Flexible multiwalled carbon nanotubes/conductive polymer composite electrode for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yeung Terence; Shi, HaoTian Harvey; Lian, Keryn; Naguib, Hani E.

    2015-11-01

    The electrode performance of three types of selected electrically conductive polymers (ECPs), namely polyaniline, polypyrrole (PPy) and poly(3, 4-ethylenedioxythiophene) PEDOT (PSS:PEDOT) composite with multiwalled carbon nanotubes (MWCNTs) were investigated in this study. The capacitor electrode performance has been examined in both three electrodes half-cell and two electrodes device setups. The nano-composites were fabricated via polymerization of pseudocapacitive conductive monomer onto the MWCNT surface through the in situ chemical polymerization approach. Stainless steel thin foils were used as a current collector as well as a flexible backbone. Graphite conductive ink was used as the binder with the composite powder to form a conductive electrode layer. Half-cell electrochemical study was conducted to optimize the weight proportion between MWCNT and ECP in this parametric study. Two-electrode cell electrochemical study assessed the potential performance for the device. MWCNT was found to serve as the framework for polymerization of the ECP into a tubular structure. Among the three composites, it was discovered that the PPy/MWCNT composite has superior capacitor performance up to scan rate of 500 mV s-1.

  19. Optimized network of multi-walled carbon nanotubes for chemical sensing.

    PubMed

    Gohier, A; Chancolon, J; Chenevier, P; Porterat, D; Mayne-L'Hermite, M; Reynaud, C

    2011-03-11

    This work reports the design of a resistive gas sensor based on 2D mats of multi-walled carbon nanotubes (MWCNTs) grown by aerosol-assisted chemical vapour deposition. The sensor sensitivity was optimized using chlorine as analyte by tuning both CNT network morphology and CNT electronic properties. Optimized devices, operating at room temperature, have been calibrated over a large range of concentration and are shown to be sensitive down to 27 ppb of chlorine. The as-grown MWCNT response is compared with responses of 2000 °C annealed CNTs, as well as of nitrogen-doped CNTs and CNTs functionalized with polyethyleneimine (PEI). Under chlorine exposure, the resistance decrease of as-grown and annealed CNTs is attributed to charge transfer from chlorine to CNTs and demonstrates their p-type semiconductor behaviour. XPS analysis of CNTs exposed to chlorine shows the presence of chloride species that confirms electron charge transfer from chlorine to CNTs. By contrast, the resistance of nitrogen-doped and PEI functionalized CNTs exposed to chlorine increases, in agreement with their n-type semiconductor nature. The best response is obtained using annealed CNTs and is attributed to their higher degree of crystallinity. PMID:21289407

  20. Proteomics-based safety evaluation of multi-walled carbon nanotubes

    SciTech Connect

    Haniu, Hisao; Matsuda, Yoshikazu; Takeuchi, Kenji; Kim, Yoong Ahm; Hayashi, Takuya; Endo, Morinobu

    2010-02-01

    This study evaluated the biological responses to multi-walled carbon nanotubes (MWCNTs). Human monoblastic leukemia cells (U937) were exposed to As-grown MWCNTs and MWCNTs that were thermally treated at 1800 deg. C (HTT1800) and 2800 deg. C (HTT2800). Cell proliferation was highly inhibited by As-grown but not HTT2800. However, both As-grown and HTT1800, which include some impurities, were cytotoxic. Proteomics analysis of MWCNT-exposed cells revealed 37 protein spots on 2-dimensional electrophoresis gels that significantly changed (p < 0.05) after exposure to HTT1800 with a little iron and 20 spots that changed after exposure to HTT2800. Peptide mass fingerprinting identified 45 proteins that included heat shock protein beta-1, neutral alpha-glucosidase AB, and DNA mismatch repair protein Msh2. These altered proteins play roles in metabolism, biosynthesis, response to stress, and cell differentiation. Although HTT2800 did not inhibit cell proliferation or cause cytotoxicity in vitro, some proteins related to the response to stress were changed. Moreover, DJ-1 protein, which is a biomarker of Parkinson's disease and is related to cancer, was identified after exposure to both MWCNTs. These results show that the cytotoxicity of MWCNTs depends on their impurities, such as iron, while MWCNTs themselves cause some biological responses directly and/or indirectly in vitro. Our proteomics-based approach for detecting biological responses to nanomaterials is a promising new method for detailed safety evaluations.

  1. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles

    PubMed Central

    Seo, Youngmin; Hwang, Jangsun; Kim, Jieun; Jeong, Yoon; Hwang, Mintai P; Choi, Jonghoon

    2014-01-01

    Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-aspect-ratio nanotubes, may increase the target-specific antibacterial capacity of the consequent nanostructure while retaining an optimal biocompatibility. In this study, multi-walled carbon nanotubes (MWCNTs) were treated with a mixture of acids and decorated with Ag nanoparticles via a chemical reduction of Ag cations by ethanol solution. The synthesized Ag-MWCNT complexes were characterized by transmission electron microscopy, X-ray diffractometry, and energy-dispersive X-ray spectroscopy. The antibacterial function of Ag-MWCNTs was evaluated against Methylobacterium spp. and Sphingomonas spp. In addition, the biocompatibility of Ag-MWCNTs was evaluated using both mouse liver hepatocytes (AML 12) and human peripheral blood mononuclear cells. Finally, we determined the minimum amount of Ag-MWCNTs required for a biocompatible yet effective antibacterial treatment modality. We report that 30 μg/mL of Ag-MWCNTs confers antibacterial functionality while maintaining minimal cytotoxicity toward both human and animal cells. The results reported herein would be beneficial for researchers interested in the efficient preparation of hybrid nanostructures and in determining the minimum amount of Ag-MWCNTs necessary to effectively hinder the growth of bacteria. PMID:25336943

  2. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes

    PubMed Central

    Lin, Zhen; Liu, Yi; Ma, Xueming; Hu, Shaoyu; Zhang, Jiawei; Wu, Qian; Ye, Wenbin; Zhu, Siyuan; Yang, Dehong; Qu, Dongbin; Jiang, Jianming

    2015-01-01

    This study investigates therapeutic efficacy of photothermal therapy (PTT) in an orthotropic xenograft model of bone metastasis of breast cancer. The near-infrared (NIR) irradiation on Multi-Walled Carbon Nanotubes (MWNTs) resulted in a rapid heat generation which increased with the MWNTs concentration up to 100 μg/ml. MWNTs alone exhibited no toxicity, but inclusion of MWNTs dramatically decreased cell viability when combined with laser irradiation. Thermographic observation revealed that treatment with 10 μg MWNTs followed by NIR laser irradiation resulted in a rapid increase in temperature up to 73.4±11.98 °C in an intraosseous model of bone metastasis of breast cancer. In addition, MWNTs plus NIR laser irradiation caused a remarkably greater suppression of tumor growth compared with treatment with either MWNTs injection or NIR irradiation alone, significantly reducing the amount of tumor-induced bone destruction. All these demonstrate the efficacy of PTT with MWNTs for bone metastasis of breast cancer. PMID:26122018

  3. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Zhang, Song; Ni, Yuwei; Huang, Jie

    2008-07-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field.

  4. Facile synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes.

    PubMed

    Wang, Aijian; Fang, Yu; Long, Lingliang; Song, Yinglin; Yu, Wang; Zhao, Wei; Cifuentes, Marie P; Humphrey, Mark G; Zhang, Chi

    2013-10-11

    Two multi-walled carbon nanotube (MWCNT)-based nanohybrids, MWCNT-ZnTPP and MWCNT-TPP (TPP=5-[4-{2-(4-formylphenoxy)- ethyloxy}phenyl]-10,15,20-triphenylporphyrin, ZnTPP=5-[4-{(4-formylphenyl)ethynyl}phenyl]-10,15,20-triphenylporphinatozinc(II)), were prepared directly from pristine MWCNTs through 1,3-dipolar cycloaddition reactions. Covalent attachment of the porphyrins to the surfaces of the MWCNTs was confirmed by Fourier transform infrared spectroscopy, ultraviolet/visible absorption, fluorescence, Raman, and X-ray photoelectron spectroscopy, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin moieties to the surface of the MWCNTs significantly improves the solubility and ease of processing of these MWCNT-porphyrin composite materials. Z-scan studies reveal that these MWCNT-porphyrin nanohybrids exhibit enhanced nonlinear optical properties under both nanosecond and picosecond laser pulses at λ=532 nm in comparison with free MWCNTs and the free porphyrin chromophores, whereas superior optical limiting performance was displayed by MWCNT-porphyrin composite materials rather than MWCNTs/ZnTPP and MWCNTs/TPP blends, which is consistent with a remarkable accumulation effect as a result of the covalent linkage between the porphyrin and the MWCNTs. PMID:24038312

  5. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes.

    PubMed

    Farombi, Ebenezer O; Adedara, Isaac A; Forcados, Gilead E; Anao, Osemudiamen O; Agbowo, Agatha; Patlolla, Anita K

    2016-05-01

    The present study investigated the response of testes, epididymides and sperm in pubertal Wistar rats following exposure to 0, 0.25, 0.5, 0.75, and 1.0 mg kg(-1) functionalized multi-walled carbon nanotubes (f-MWCNTs) for 5 days. The results showed that administration of (f-MWCNTs) significantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner in both testes and sperm compared with control group. Moreover, the significant decrease in the activity of glutathione-S-transferase and glutathione level was accompanied with significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm of (f-MWCNTs)-treated rats. The spermiogram of (f-MWCNTs)-treated rats indicated significant decrease in epididymal sperm number, sperm progressive motility, testicular sperm number and daily sperm production with elevated sperm abnormalities when compared with the control. Exposure to (f-MWCNTs) decreased plasma testosterone level and produced marked morphological changes including decreased geminal epithelium, edema, congestion, reduced spermatogenic cells and focal areas of tubular degeneration in the testes. The lumen of the epididymides contained reduced sperm cells and there was mild to severe hyperplasia epithelial cells lining the duct of the epididymis. Collectively, pubertal exposure of male rats to (f-MWCNTs) elicited oxidative stress response resulting in marked testicular and epididymides dysfunction. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 543-551, 2016. PMID:25410135

  6. Neuroprotective effect of functionalized multi-walled carbon nanotubes on spinal cord injury in rats

    PubMed Central

    Ding, Shenghao; Bao, Yinghui; Lin, Yong; Pan, Yaohua; Fan, Yiling; Wan, Jieqing; Jiang, Jiyao

    2015-01-01

    Traumatic injuries to the brain and spinal cord affect a large percentage of the world’s population. However, there are currently no effective treatments for these central nervous system (CNS) injuries. In our study, we evaluated the neuroprotective role of functionalized multi-walled carbon nanotubes (MWCNTs) carrying brain derived neurotrophic factor (BNDF), nogo-66 receptor (NgR) and Ras homolog gene family member A (RhoA) in spinal cord injury (SCI). Our results showed that transfection into rat cortical neurons with BDNF-DNA significantly elevated the expression of BDNF both in vitro and in vivo. Meanwhile, transfection with NgR-siRNA and RhoA-siRNA resulted in an obvious down-regulation of NgR and RhoA in neuron cells and in injured spinal cords. In addition, the functionalized MWCNTs carrying BDNF-DNA, NgR-siRNA and RhoA-siRNA exhibited remarkable therapeutic effects on injured spinal cord. Taken together, our study demonstrates that functionalized MWCNTs have a potential therapeutic application on repair and regeneration of the CNS. PMID:26884846

  7. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes

    PubMed Central

    Porter, Dale W.; Hubbs, Ann F.; Chen, Bean T.; McKinney, Walter; Mercer, Robert R.; Wolfarth, Michael G.; Battelli, Lori; Wu, Nianqiang; Sriram, Krishnan; Leonard, Stephen; Andrew, Michael; Willard, Patsy; Tsuruoka, Shuji; Endo, Morinobu; Tsukada, Takayuki; Munekane, Fuminori; Frazer, David G.; Castranova, Vincent

    2015-01-01

    This study investigated the in vivo pulmonary toxicity of inhaled multi-walled carbon nanotubes (MWCNT). Mice-inhaled aerosolized MWCNT (10 mg/m3, 5 h/day) for 2, 4, 8 or 12 days. MWCNT lung burden was linearly related to exposure duration. MWCNT-induced pulmonary inflammation was assessed by determining whole lung lavage (WLL) polymorphonuclear leukocytes (PMN). Lung cytotoxicity was assessed by WLL fluid LDH activities. WLL fluid albumin concentrations were determined as a marker of alveolar air–blood barrier integrity. These parameters significantly increased in MWCNT-exposed mice versus controls and were dose-dependent. Histopathologic alterations identified in the lung included (1) bronciolocentric inflammation, (2) bronchiolar epithelial hyperplasia and hypertrophy, (3) fibrosis, (4) vascular changes and (5) rare pleural penetration. MWCNT translocated to the lymph node where the deep paracortex was expanded after 8 or 12 days. Acute inhalation of MWCNT induced dose-dependent pulmonary inflammation and damage with rapid development of pulmonary fibrosis, and also demonstrated that MWCNT can reach the pleura after inhalation exposure. PMID:22881873

  8. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice

    PubMed Central

    2011-01-01

    Background Multi-walled carbon nanotubes (MWCNTs) are widely used in many disciplines due to their unique physical and chemical properties. Therefore, some concerns about the possible human health and environmental impacts of manufactured MWCNTs are rising. We hypothesized that instillation of MWCNTs impairs pulmonary function in C57BL/6 mice due to development of lung inflammation and fibrosis. Methods MWCNTs were administered to C57BL/6 mice by oropharyngeal aspiration (1, 2, and 4 mg/kg) and we assessed lung inflammation and fibrosis by inflammatory cell infiltration, collagen content, and histological assessment. Pulmonary function was assessed using a FlexiVent system and levels of Ccl3, Ccl11, Mmp13 and IL-33 were measured by RT-PCR and ELISA. Results Mice administered MWCNTs exhibited increased inflammatory cell infiltration, collagen deposition and granuloma formation in lung tissue, which correlated with impaired pulmonary function as assessed by increased resistance, tissue damping, and decreased lung compliance. Pulmonary exposure to MWCNTs induced an inflammatory signature marked by cytokine (IL-33), chemokine (Ccl3 and Ccl11), and protease production (Mmp13) that promoted the inflammatory and fibrotic changes observed within the lung. Conclusions These results further highlight the potential adverse health effects that may occur following MWCNT exposure and therefore we suggest these materials may pose a significant risk leading to impaired lung function following environmental and occupational exposures. PMID:21851604

  9. Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers.

    PubMed

    Durga Prakash, Matta; Vanjari, Siva Rama Krishna; Sharma, Chandra Shekhar; Singh, Shiv Govind

    2016-01-01

    This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL) and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as high surface to volume ratio and excellent electrical and transduction properties with the ease of surface functionalization of SU-8. The electrospinning process was optimized to precisely align nanofibers in between two electrodes of a copper microelectrode array. MWCNTs not only enhance the conductivity of SU-8 nanofibers but also act as transduction elements. In this paper, MWCNTs were embedded way beyond the percolation threshold and the optimum percentage loading of MWCNTs for maximizing the conductivity of nanofibers was figured out experimentally. As a proof of concept, the detection of myoglobin, an important biomarker for on-set of Acute Myocardial Infection (AMI) has been demonstrated by functionalizing the nanofibers with anti-myoglobin antibodies and carrying out detection using a chemiresistive method. This simple and robust device yielded a detection limit of 6 fg/mL. PMID:27563905

  10. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells

    PubMed Central

    Maruyama, Kayo; Matsuda, Yoshikazu; Kobayashi, Shinsuke; Tanaka, Manabu; Aoki, Kaoru; Takanashi, Seiji; Okamoto, Masanori; Kato, Hiroyuki

    2015-01-01

    Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs), which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs) are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs) and human mesothelial cells (HMCs). We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis) were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways. PMID:26090445

  11. Spray-Coated Multiwalled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells.

    PubMed

    Holubowitch, Nicolas E; Landon, James; Lippert, Cameron A; Craddock, John D; Weisenberger, Matthew C; Liu, Kunlei

    2016-08-31

    Spray-coated multiwalled carbon nanotube/poly(vinylidene fluoride) (MWCNT/PVDF) composite electrodes, scCNTs, with varying CNT compositions (2 to 70 wt %) are presented for use in a simple thermal energy-scavenging cell (thermocell) based on the ferro/ferricyanide redox couple. Their utility for direct thermal-to-electrical energy conversion is explored at various temperature differentials and cell orientations. Performance is compared to that of buckypaper, a 100% CNT sheet material used as a benchmark electrode in thermocell research. The 30 to 70 wt % scCNT composites give the highest power output by electrode area-seven times greater than buckypaper at ΔT = 50 °C. CNT utilization is drastically enhanced in our electrodes, reaching 1 W gCNT(-1) compared to 0.036 W gCNT(-1) for buckypaper. Superior performance of our spray-coated electrodes is attributed to both wettability with better use of a large portion of electrochemically active CNTs and minimization of ohmic and thermal contact resistances. Even composites with as low as 2 wt % CNTs are still competitive with prior art. The MWCNT/PVDF composites developed herein are inexpensive, scalable, and serve a general need for CNT electrode optimization in next-generation devices. PMID:27510029

  12. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Sirivisoot, Sirinrath; Yao, Chang; Xiao, Xingcheng; Sheldon, Brian W.; Webster, Thomas J.

    2007-09-01

    Titanium (Ti) is the most widely implanted orthopedic material. However, current formulations of Ti have an average orthopedic implant functional lifetime of only 10-15 years. While there are many reasons why orthopedic implants fail, one is a lack of initial and sustained integration into juxtaposed bone. To improve the cytocompatibility properties of Ti for orthopedic applications, parallel multiwalled carbon nanotubes (CNTs) were grown from the pores of anodized nanotubular Ti by a chemical vapor deposition process in the present study. The results of this study provided evidence, for the first time, that osteoblast (bone forming cell) functions (specifically, alkaline phosphatase activity and calcium deposition) were significantly greater on CNTs grown from anodized Ti than on anodized Ti without CNTs and currently-used Ti in orthopedics for up to 21 days. In summary, this study showed that bone growth could possibly be enhanced on currently-used Ti implants with protruding CNTs and, thus, they should be further studied for orthopedic applications.

  13. Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Carbon Nanotube Hybrid Material.

    PubMed

    Benchirouf, Abderrahmane; Müller, Christian; Kanoun, Olfa

    2016-12-01

    In this paper, we propose strain-sensitive thin films based on chemically reduced graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) without adding any further surfactants. In spite of the insulating properties of the thin-film-based GO due to the presence functional groups such as hydroxyl, epoxy, and carbonyl groups in its atomic structure, a significant enhancement of the film conductivity was reached by chemical reduction with hydro-iodic acid. By optimizing the MWCNT content, a significant improvement of electrical and mechanical thin film sensitivity is realized. The optical properties and the morphology of the prepared thin films were studied using ultraviolet-visible spectroscopy (UV-Vis) and scanning electron microscope (SEM). The UV-Vis spectra showed the ability to tune the band gap of the GO by changing the MWCNT content, whereas the SEM indicated that the MWCNTs were well dissolved and coated by the GO. Investigations of the piezoresistive properties of the hybrid nanocomposite material under mechanical load show a linear trend between the electrical resistance and the applied strain. A relatively high gauge factor of 8.5 is reached compared to the commercial metallic strain gauges. The self-assembled hybrid films exhibit outstanding properties in electric conductivity, mechanical strength, and strain sensitivity, which provide a high potential for use in strain-sensing applications. PMID:26732277

  14. Structure and spectroscopic properties of organoclays doped by multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bezrodnaya, T. V.; Nesprava, V. V.; Puchkovskaya, G. A.; Chashechnikova, I. T.; Boyko, Yu. P.; Baran, J.

    2011-03-01

    A method to modify a montmorillonite (MMT) clay mineral (CM) surface by surfactant (SA) cations with simultaneous doping by multiwall carbon nanotubes (MWNT) has been proposed. The structure and spectroscopic properties of composites based on MMT from two deposits (Cherkassy and Pyzhevsk, Ukraine) that differ in the inorganic impurity contents and cation-exchange capacities (CEC) have been investigated. Cetyltrimethylammonium bromide (CTAB) was used as the SA. According to x-ray diffraction analysis, CTA+ cations intercalated into MMT interplanar spaces expand them significantly whereas MWNTs do not affect the MMT galleries due to the much larger sizes of the former. Studies of the composite materials by IR spectroscopy revealed the mutual influence of the components appearing as the ordering of near-surface layers in the aluminosilicate framework and a change in the modifier methylene chain conformation at the interphase boundary. The majority of CTAB (~90%) is shown to be located inside the MMT galleries, the packing arrangement of which depends on the CEC value and affects the interplanar distances in MMT. The alkyl chains of the CTA+ cations on the outer surface of the MMT plates are sorbed by nanotubes, thus providing contact between the organoclay and MWNT surfaces.

  15. Multi-walled carbon nanotube-induced gene expression in vitro: concordance with in vivo studies

    PubMed Central

    Snyder-Talkington, Brandi N.; Dong, Chunlin; Zhao, Xiangyi; Dymacek, Julian; Porter, Dale W.; Wolfarth, Michael G.; Castranova, Vincent; Qian, Yong; Guo, Nancy L.

    2014-01-01

    There is a current interest in reducing the in vivo toxicity testing of nanomaterials in animals by increasing toxicity testing using in vitro cellular assays; however, toxicological results are seldom concordant between in vivo and in vitro models. This study compared global multi-walled carbon nanotube (MWCNT)-induced gene expression from human lung epithelial and microvascular endothelial cells in monoculture and coculture with gene expression from mouse lungs exposed to MWCNT. Using a cutoff of 10% false discovery rate and 1.5 fold change, we determined that there were more concordant genes (gene expression both up- or downregulated in vivo and in vitro) expressed in both cell types in coculture than in monoculture. When reduced to only those genes involved in inflammation and fibrosis, known outcomes of in vivo MWCNT exposure, there were more disease-related concordant genes expressed in coculture than monoculture. Additionally, different cellular signaling pathways are activated in response to MWCNT dependent upon culturing conditions. As coculture gene expression better correlated with in vivo gene expression, we suggest that cellular cocultures may offer enhanced in vitro models for nanoparticle risk assessment and the reduction of in vivo toxicological testing. PMID:25511174

  16. Growth of Ag nanoparticles using plasma-modified multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Hao; Chen, Chuh-Yung

    2008-01-01

    This study presents a novel method for preparing multi-walled carbon nanotubes (MWNTs) grafted with a poly(2-hydroxyethyl methacrylate) (HEMA)-silver complex (CNTs-HEMA-Ag complex) through plasma-induced grafting polymerization. The characteristics of the MWNTs after being grafted with HEMA polymer are monitored by Fourier transform infrared (FT-IR) spectroscopy. The chelating groups in the HEMA polymer grafted on the surface of the CNTs-HEMA are the coordination sites for chelating silver ions, and are further used as nanotemplates for the growing of Ag nanoparticles (quantum dots). Transmission electron microscopy (TEM) reveals that the particle size of Ag nanoparticles on the CNT surfaces increases with the Ag+ chelating concentration, reaction time, and reaction temperature. Moreover, the crystalline phase of Ag nanoparticles is identified by using x-ray diffraction (XRD). In addition, high-resolution x-ray photoelectron spectroscopy (XPS) is used to characterize the functional groups on the surface of the MWNTs after chemical modification through plasma treatment; it demonstrates that the growing amount of the Ag nanoparticles on the nanotubes increases with the Ag+ chelating concentration due to the blocking effect of the Ag particles forming on the MWNTs.

  17. Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs).

    PubMed

    Xue, Shuang-Mei; Xu, Zhen-Liang; Tang, Yong-Jian; Ji, Chen-Hao

    2016-07-27

    In this work, three modified multiwalled carbon nanotubes (MWCNTs) with carboxyl (MWCNT-COOH), hydroxyl (MWCNT-OH) and amino groups (MWCNT-NH), respectively, were added into the aqueous phase containing piperazine (PIP) to fabricate the nanocomposite nanofiltration (NF) membranes via interfacial polymerization. The influences of functional groups of MWCNTs on the performance of modified NF membrane were investigated. The MWCNTs were characterized by TEM, FT-IR and TGA; meanwhile, the properties of the membranes were evaluated by XPS, TEM, AFM and contact angle. The XPS results proved the successful incorporation of MWCNT in the active layer of modified NF membrane. When the MWCNT concentration is 0.01% (w/v), all the nanocomposite membranes possessed the optimal separation properties, among which the membrane incorporated with MWCNT-OH demonstrated the highest water flux of 41.4 L·m(-2)·h(-1) and the Na2SO4 rejection of 97.6% whereas the one with MWCNT-COOH had the relative lowest rejection of 96.6%. Furthermore, the increased hydrophilicity of functional groups in modified MWCNTs resulted in different nodular surface morphologies, thicknesses and hydrophilicities of the nanocomposite membranes. All the membranes possessed a molecular weight cutoff (MWCO) within 300 Da and good operation stability. PMID:27387192

  18. Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness.

    PubMed

    Gupta, Tejendra K; Singh, Bhanu Pratap; Mathur, Rakesh B; Dhakate, Sanjay R

    2014-01-21

    The multiphase approach was adapted to enhance the electromagnetic interference (EMI) shielding effectiveness (SE) of polyaniline (PANI) based nanocomposites. The natural graphite flakes (NGF) incorporated modified PANI was used for the development of multi-walled carbon nanotubes (MWCNTs) based nanocomposites. In PANINGF-MWCNTs composites, multilayer graphene was synthesized in situ by ball milling. The resultant PANINGF-MWCNTs nanocomposites were characterized by different techniques. It was revealed from the transmission electron microscope (TEM) observation that in situ derived multilayer graphene acts as a bridge between PANI and MWCNTs, and plays a significant role for improving the properties of multiphase nanocomposites. It was observed that EMI-SE increases with increasing the MWCNTs content from 1 to 10 wt% in the multiphase nanocomposites. The maximum value of total EMI-SE was -98 dB of nanocomposite with 10 wt% of MWCNTs content. The high value of EMI-SE is dominated by the absorption phenomenon which is due to the collective effect of increase in space charge polarization and decrease in carrier mobility. The decrease in carrier mobility has a positive effect on the shore hardness value due to the strong interaction between the reinforcing constituent in multiphase nanocomposites. As a consequence, shore hardness increases from 56 to 91 at 10 wt% of MWCNTs. PMID:24264356

  19. The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites.

    PubMed

    Shi, Sui-Lin; Liang, Ji

    2008-06-25

    Multi-wall carbon nanotubes (MWCNTs)-3 mol% yttria-stabilized zirconia (3Y-TZP) (MWCNTs-3Y-TZP) composite was prepared by spark plasma sintering. The complex permittivities of the composite have been measured in the Ku-band range (12.4-18 GHz) and it is found that both the real and imaginary permittivities of the composite increase with the increasing content of MWCNTs. The effect of the content of MWCNTs on the electromagnetic interference (EMI) shielding effectiveness (SE) of the composite has been evaluated, and it is found that the EMI SE of the composite increases with the increasing content of MWCNTs. An EMI SE value as high as 25-30 dB has been achieved in the Ku-band range for the composite with 9 wt% content of MWCNTs, indicating that the MWCNTs-3Y-TZP composite can be used as an effective EMI shielding material. PMID:21828667

  20. One-step grown multi-walled carbon nanotubes with Ni filling and decoration

    NASA Astrophysics Data System (ADS)

    Baro, Mahananda; Pal, Arup R.

    2015-06-01

    A single step approach for the synthesis of multi-walled carbon nanotubes filled with Ni nanowires (Ni-MWCNTs) and decorated with Ni nanoparticles has been illustrated. The MWCNTs are grown by a PECVD-sputtering hybrid process at the low temperature of 450 °C having an average diameter of 55   ±   6 nm and length of 1.35   ±   0.08 µm. Thin Ni films of the thickness 10 nm have been used, which act as a catalyst as well as a source material for the filling of MWCNTs with Ni nanowires, whereas sputtering of Ni is the source of decorated Ni particles. This process facilitates the growth of aligned MWCNTs filled with Ni nanowires and also decorated with Ni nanoparticles on the walls. Magnetic properties of the Ni filled and decorated MWCNTs are measured using a vibrating sample magnetometer. Magnetic hysteresis loops of Ni containing MWCNTs show ferromagnetic behavior. These Ni-MWCNTs shows coercivity of 135 Oe, which is significantly greater than that of the bulk Ni at room temperature. The magnetic property measurement reveals that the coercivity of the as grown MWCNTs is dependent on the size and content of Ni. Thus, a novel method has been demonstrated for the synthesis of ferromagnetic Ni-MWCNT which has potential applications in various fields.

  1. Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes.

    PubMed

    García-Merino, J A; Martínez-González, C L; San Miguel, C R Torres; Trejo-Valdez, M; Martínez-Gutiérrez, H; Torres-Torres, C

    2016-08-22

    The impact of vectorial magnetic field effects on electrical conductivity and nonlinear optical transmittance exhibited by multi-wall carbon nanotubes was studied. The samples were synthetized by an aerosol pyrolysis processing route in a thin film form. Optical signals in a two-wave mixing configuration allowed us to identify two orthogonal directions of propagation for a magnetic field travelling through the nanomaterials studied. A selective modification in optical absorption was considered to be induced by magnetic perturbations in the sample. Standard optical Kerr gate measurements were carried out for exploring the third order nonlinear optical behavior of the film. A capacitive effect influenced by optical and magnetic excitations was distinguished to be characteristic of the sample. Magneto-quantum conductivity sensitive to the direction of an external magnetic field interacting with the tubes was analyzed. Magnetically-induced changes in electronic band parameters seem to be the main responsible for the optical and electrical modulation observed in the nanostructures. Immediate applications for developing magneto-optical and magneto-electrical functions can be contemplated. PMID:27557232

  2. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes

    PubMed Central

    Attri, Pankaj

    2015-01-01

    We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85–94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688

  3. Modulation of Apoptotic Pathways of Macrophages by Surface-Functionalized Multi-Walled Carbon Nanotubes

    PubMed Central

    Jiang, Yuanqin; Zhang, Honggang; Wang, Yange; Chen, Min; Ye, Shefang; Hou, Zhenqing; Ren, Lei

    2013-01-01

    Biomedical applications of carbon nanotubes (CNTs) often involve improving their hydrophilicity and dispersion in biological media by modifying them through noncovalent or covalent functionalization. However, the potential adverse effects of surface-functionalized CNTs have not been well characterized. In this study, we functionalized multi-walled CNTs (MWCNTs) via carboxylation, to produce MWCNTs-COOH, and via poly (ethylene glycol) linking, to produce MWCNTs-PEG. We used these functionalized MWCNTs to study the effect of surface functionalization on MWCNTs-induced toxicity to macrophages, and elucidate the underlying mechanisms of action. Our results revealed that MWCNTs-PEG were less cytotoxic and were associated with less apoptotic cell death of macrophages than MWCNTs-COOH. Additionally, MWCNTs-PEG induced less generation of reactive oxygen species (ROS) involving less activation of NADPH oxidase compared with MWCNTs-COOH, as evidenced by membrane translocation of p47phox and p67phox in macrophages. The less cytotoxic and apoptotic effect of MWCNTs-PEG compared with MWCNTs-COOH resulted from the lower cellular uptake of MWCNTs-PEG, which resulted in less activation of oxidative stress-responsive pathways, such as p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB. These results demonstrate that surface functionalization of CNTs may alter ROS-mediated cytotoxic and apoptotic response by modulating apoptotic signaling pathways. Our study thus provides new insights into the molecular basis for the surface properties affecting CNTs toxicity. PMID:23755279

  4. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery.

    PubMed

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Patne, Shashikant C U; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2016-10-01

    The aim of this study was to develop multi-walled carbon nanotubes (MWCNT) which were covalently conjugated with transferrin by carbodiimide chemistry and loaded with docetaxel as a model drug for effective treatment of lung cancer in comparison with the commercial docetaxel injection (Docel™). d-Alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was used as amphiphilic surfactant to improve the aqueous dispersity and biocompatibility of MWCNT. Human lung cancer cells (A549 cells) were employed as an in-vitro model to access cellular uptake, cytotoxicity, cellular apoptosis, cell cycle analysis, and reactive oxygen species (ROS) of the docetaxel/coumarin-6 loaded MWCNT. The cellular uptake results of transferrin conjugated MWCNT showed higher efficiency in comparison with free C6. The IC50 values demonstrated that the transferrin conjugated MWCNT could be 136-fold more efficient than Docel™ after 24h treatment with the A549 cells. Flow cytometry analysis confirmed that cancerous cells appeared significantly (P<0.05) in the sub-G1 phase for transferrin conjugated MWCNT in comparison with Docel™. Results of transferrin conjugated MWCNT have showed better efficacy with safety than Docel™. PMID:27287127

  5. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies.

    PubMed

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  6. Mode I Fracture Toughness Prediction for Multiwalled-Carbon-Nanotube Reinforced Ceramics

    SciTech Connect

    Nguyen, Ba Nghiep; Henager, Charles H.

    2015-08-27

    This article develops a multiscale model to predict fracture toughness of multiwalled-carbon-nanotube (MWCNT) reinforced ceramics. The model bridges different scales from the scale of a MWCNT to that of a composite domain containing a macroscopic crack. From the nano, micro to meso scales, Eshelby-Mori-Tanaka models combined with a continuum damage mechanics approach are explored to predict the elastic damage behavior of the composite as a function of MWCNT volume fraction. MWCNTs are assumed to be randomly dispersed in a ceramic matrix subject to cracking under loading. A damage variable is used to describe matrix cracking that causes reduction of the elastic modulus of the matrix. This damage model is introduced in a modified boundary layer modeling approach to capture damage initiation and development at a tip of a pre-existing crack. Damage and fracture are captured only in a process window containing the crack tip under plane strain Mode I loading. The model is validated against the published experimental fracture toughness data for a MWCNT 3 mol% yttria stabilized zirconia composite system. In addition, crack resistance curves as a function of MWCNT content are predicted and fitted by a power law as observed in the experiments on zirconia.

  7. Magneto-resistance of multiwall carbon nanotube Fermat yarn and coil yarn

    NASA Astrophysics Data System (ADS)

    Truong, Kieu; Kang, Haeyong; Lee, Yourack; Kim, Joong-Gyu; Lee, Young Hee; Suh, Dongseok; IBS CenterIntegrated Nanostructure Physics, InstituteBasic Science (IBS), SKKU, Korea Collaboration; Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea Collaboration; Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea Collaboration

    2015-03-01

    Multiwall carbon nanotube (MWCNT) based yarn has attracted a great attention for the development of multifunctional super-fiber due to its light weight, high flexibility, high conductivity, and strong mechanical properties (Lima et al. 2011, Science). Recently the importance of coiled yarn structure was demonstrated for practical applications (Haines et al. 2014, Science). In this study, we measured the electrical resistance of neat yarns and coiled yarns at different temperatures and magnetic fields. The coiled yarn was formed by twist-insertion into the neat yarn, and the transverse and longitudinal magnetoresistance (MR) measurements were carried out. The logarithmic temperature dependence of normalized resistance and the negative MR can be explained by the combined contribution of weak-localization effect and the tunneling transport at different temperature ranges. The magnitude difference of MR between two configurations and the survival of such difference even at room temperature indicate that one-dimensional transport features are quite significant in this system. Developing Route for sub-micrometer-scale coil is discussed. This work was supported by Project code (IBS - R011-D1).

  8. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    NASA Astrophysics Data System (ADS)

    Singh, Kamal; Garg, Leena; Singh, Jaspal; Kumar, Sanjeev; Sharma, Amit L.

    2016-05-01

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study of electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 101 Scm-1) have better conductivity than the undoped MWNTs/PANI composite (10-4 Scm-1). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.

  9. Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean.

    PubMed

    Zhai, Guangshu; Gutowski, Sarah M; Walters, Katherine S; Yan, Bing; Schnoor, Jerald L

    2015-06-16

    Maize (Zea mays) and soybean (Glycine max) were used as model food-chain plants to explore vegetative uptake of differently charged multiwall carbon nanotubes (MWCNTs). Three types of MWCNTs, including neutral pristine MWCNT (p-MWCNT), positively charged MWCNT-NH2, and negatively charged MWCNT-COOH, were directly taken-up and translocated from hydroponic solution to roots, stems, and leaves of maize and soybean plants at the MWCNT concentrations ranging from 10.0 to 50.0 mg/L during 18-day exposures. MWCNTs accumulated in the xylem and phloem cells and within specific intracellular sites like the cytoplasm, cell wall, cell membrane, chloroplast, and mitochondria, which was observed by transmission electron microscopy. MWCNTs stimulated the growth of maize and inhibited the growth of soybean at the exposed doses. The cumulative transpiration of water in maize exposed to 50 mg/L of MWCNT-COOHs was almost twice as much as that in the maize control. Dry biomass of maize exposed to MWCNTs was greater than that of maize control. In addition, the uptake and translocation of these MWCNTs clearly exhibited cellular, charge, and size selectivity in maize and soybean, which could be important properties for nanotransporters. This is the first report of cellular, charge, and size selectivity on the uptake by whole food plants for three differently charged MWCNTs. PMID:26010305

  10. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application.

    PubMed

    Kandimalla, Vivek Babu; Tripathi, Vijay Shyam; Ju, Huangxian

    2006-03-01

    Highly non-toxic and conductive ormosil composite film was prepared using (3-aminopropyl)triethoxysilane and 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane by doping with ferrocenemonocarboxylic acid-bovine serum albumin (FMC-BSA) conjugate and multiwall carbon nanotubes (MWNTs). With glucose oxidase (GOD) as a model enzyme this film could be used to design an amperometric biosensor for glucose determination. The entrapped FMC-BSA conjugate performed excellent redox electrochemistry and the immobilized GOD was highly stable. Under optimal conditions this biosensor was able to detect glucose with a detection limit of 20 microm (S/N=3) in the linear range of 0.05-20.0 mm in flow system, which was wider than the batch amperometric mode, with an analysis time of 25 s for each sample. The value of K(M)(app) was 6.6 mm. The proximity of these three components FMC-BSA, MWNTs and GOD enhanced the electron transfer between the film and electrode. This film could be used efficiently for the entrapment of other redox bioactive compounds and biosensing/bioelectrochemical applications. PMID:16125221

  11. Temperature-Compensated Force/Pressure Sensor Based on Multi-Walled Carbon Nanotube Epoxy Composites

    PubMed Central

    Dinh, Nghia Trong; Kanoun, Olfa

    2015-01-01

    In this study, we propose a multi-walled carbon nanotube epoxy composite sensor for force and pressure sensing in the range of 50 N–2 kN. A manufacturing procedure, including material preparation and deposition techniques, is proposed. The electrode dimensions and the layer thickness were optimized by the finite element method. Temperature compensation is realized by four nanocomposites elements, where only two elements are exposed to the measurand. In order to investigate the influence of the filler contents, samples with different compositions were prepared and investigated. Additionally, the specimens are characterized by cyclical and stepped force/pressure loads or at defined temperatures. The results show that the choice of the filler content should meet a compromise between sensitivity, temperature influence and noise behavior. At constant temperature, a force of at least 50 N can be resolved. The measurement error due to the temperature influence is 150 N in a temperature range of −20°C−50°C. PMID:25985160

  12. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan

    SciTech Connect

    Phuoc, Tran X.; Massoudi, Mehrdad; Chen, Ruey-Hung

    2011-01-01

    Thermal conductivity, viscosity, and stability of nanofluids containing multi-walled carbon nanotubes (MWCNTs) stabilized by cationic chitosan were studied. Chitosan with weight fraction of 0.1%, 0.2 wt%, and 0.5 wt% was used to disperse stably MWCNTs in water. The measured thermal conductivity showed an enhancement from 2.3% to 13% for nanofluids that contained from 0.5 wt% to 3 wt% MWCNTs (0.24 to 1.43 vol %). These values are significantly higher than those predicted using the Maxwell's theory. We also observed that the enhancements were independent of the base fluid viscosity. Thus, use of microconvection effect to explain the anomalous thermal conductivity enhancement should be reconsidered. MWCNTs can be used either to enhance or reduce the fluid base viscosity depending on the weight fractions. In the viscosity-reduction case, a reduction up to 20% was measured by this work. In the viscosity-enhancement case, the fluid behaved as a non-Newtonian shear-thinning fluid. By assuming that MWCNT nanofluids behave as a generalized second grade fluid where the viscosity coefficient depends upon the rate of deformation, a theoretical model has been developed. The model was found to describe the fluid behavior very well.

  13. Effect of AOT-assisted multi-walled carbon nanotubes on antibacterial activity.

    PubMed

    Bai, Yu; Park, Il Song; Lee, Sook Jeong; Wen, Pu Shan; Bae, Tae Sung; Lee, Min Ho

    2012-01-01

    The dispersing power of surfactant-modified multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. The MWCNTs were modified using a dioctyl sodium sulfosuccinate (AOT) surfactant. UV-vis spectroscopy and transmission electron microscopy (TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase. Fourier transform infrared spectroscopy confirmed the results of UV-vis spectroscopy and TEM, indicating that the AOT molecules had been adsorbed successfully onto the MWCNT surface. The highly dispersed AOT-modified MWCNTs showed strong antibacterial activity to Streptococcus mutans. The fluorescence images showed that the AOT-modified MWCNTs were capable of capturing bacteria and forming cell aggregates as well as killing them. The optical density growth curves and colony-forming units assays confirmed that the antibacterial activity of the AOT-modified MWCNTs was concentration-dependent and treatment time-dependent. This finding might be useful for applications of AOT-modified MWCNTs as an antibacterial agent to eliminate pathogens from a biocontaminated water phase. PMID:21958539

  14. Interfacial interaction in a composite based on multi-walled carbon nanotubes and amorphous tin oxide

    NASA Astrophysics Data System (ADS)

    Nesov, S. N.; Bolotov, V. V.; Korusenko, P. M.; Povoroznyuk, S. N.; Vilkov, O. Yu.

    2016-05-01

    The specific features of changes in the electronic structure of multi-walled carbon nanotubes (MWCNTs) due to the interaction with an amorphous tin oxide in the SnO x /MWCNT composite formed by magnetron sputtering have been investigated using X-ray spectroscopy. It has been shown that the formation of chemical bonds responsible for significant changes in the local and electronic structures of the outer layers of MWCNTs occurs at the boundaries of the "amorphous oxide/MWCNT" contacts. The vacuum annealing of the composite leads to the disturbance of the chemical interaction at interfaces of the composite and to a partial recovery of the local structure of the outer layers of MWCNTs. A decrease in the amount of oxygen in the tin oxide under vacuum annealing conditions causes an increase in the number of unpaired Sn 5 s electrons, which, in turn, enhances the charge transfer through the interfaces in the composite and leads to a splitting of the π*-subsystem of the outer layers of MWCNTs.

  15. PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging

    NASA Astrophysics Data System (ADS)

    Khandare, Jayant J.; Jalota-Badhwar, Archana; Satavalekar, Sneha D.; Bhansali, Sujit G.; Aher, Naval D.; Kharas, Firuza; Banerjee, Shashwat S.

    2012-01-01

    We report synthesis of a highly versatile multicomponent nanosystem by covalently decorating the surface of multiwalled carbon nanotubes (CNTs) by magnetite nanoparticles (Fe3O4), poly(ethylene glycol) (PEG), and fluorophore fluorescein isothiocyanate (FITC). The resulting Fe3O4-PEG-FITC-CNT nanosystem demonstrates high dispersion ability in an aqueous medium, magnetic responsiveness, and fluorescent capacity. Transmission electron microscopy images revealed that Fe3O4 nanoparticles were well anchored onto the surfaces of the CNT. In vitro time kinetic experiments using confocal microscopy demonstrated a higher uptake of the Fe3O4-PEG-FITC-CNT nanosystem localized at the perinuclear region of MCF7 cells compared to the free FITC. In addition, the CNT nanosystem demonstrated no evidence of toxicity on cell growth. Surface conjugation of multicomponents, combined with in vitro non-toxicity, enhanced cellular uptake for FITC and site specific targeting ability makes this fluorescent Fe3O4-PEG-FITC-CNT nanosystem an ideal candidate for bioimaging, both in vitro and in vivo.

  16. The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method

    NASA Astrophysics Data System (ADS)

    Sahebian, S.; Zebarjad, S. M.; Vahdati Khaki, J.; Lazzeri, A.

    2016-07-01

    In this paper, nickel oxide (NiO) nanoparticles have been fabricated using wet method and deposited on the surface of multi-walled carbon nanotube (MWCNT). To do so, functional groups were introduced on the surface of MWCNTs by treating with concentrated nitric acid. Nickel oxide nanoparticles were formed on the surface of functionalized MWCNTs by incipient wetness impregnation of nickel nitrate, and the resultant product was calcinated in air atmosphere. Characteristics of the NiO/MWCNT were examined by various techniques, for example, Fourier transform spectroscopy (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and nitrogen adsorption-desorption isothermal as well as vibrating sample magnetometer (VSM). The FTIR spectra showed that carboxyl and hydroxyl functional groups existed on the surface of MWNTs after modification by concentrated nitric acid. The pattern of XRD indicated that MWNTs and nickel oxide nanoparticles coexisted in the NiO/MWCNT sample. The TEM images revealed that the NiO nanoparticles were distributed on the surface of the MWNTs, with the size ranging from 5 to 60 nm. Thermogravimetric analysis proved that NiO content decorated on MWCNTs was 80 and 15 wt%. The results of the Brunauer-Emmett-Teller (BET) data showed that the slight increment in the specific surface areas and porosities in the presence of the NiO nanoparticles on the surface of CNT.

  17. Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects.

    PubMed

    Han, Jin Kyu; Jeon, Do Hyun; Cho, Sam Yeon; Kang, Sin Wook; Yang, Sun A; Bu, Sang Don; Myung, Sung; Lim, Jongsun; Choi, Moonkang; Lee, Minbaek; Lee, Min Ku

    2016-01-01

    We report the first attempt to prepare a flexoelectric nanogenerator consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes (mwCNT). Direct-grown piezoelectrics on mwCNTs are formed by a stirring and heating method using a Pb(Zr0.52Ti0.48)O3 (PZT)-mwCNT precursor solution. We studied the unit cell mismatch and strain distribution of epitaxial PZT nanoparticles, and found that lattice strain is relaxed along the growth direction. A PZT-mwCNT nanogenerator was found to produce a peak output voltage of 8.6 V and an output current of 47 nA when a force of 20 N is applied. Direct-grown piezoelectric nanogenerators generate a higher voltage and current than simple mixtures of PZT and CNTs resulting from the stronger connection between PZT crystals and mwCNTs and an enhanced flexoelectric effect caused by the strain gradient. These experiments represent a significant step toward the application of nanogenerators using piezoelectric nanocomposite materials. PMID:27406631

  18. Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response.

    PubMed

    Chang, Xiaojun; Henderson, W Matthew; Bouchard, Dermont C

    2015-06-01

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT). The two tested surfactants [anionic sodium dodecyl sulfate (SDS) and nonionic poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEO-PPO-PEO) triblock copolymers (Pluronic)] could only disperse MWNTs via ultrasonication; while stable aqueous SON/MWNT and LT/MWNT suspensions were formed in the presence of the two model NOMs (Suwannee river humic acid and fulvic acid). Due to the inherent stochastic nature for both methods, the formed MWNT suspensions were highly heterogeneous. Their physicochemical properties, including surface charge, size, and morphology, greatly depended upon the dispersant type and concentration but were not very sensitive to the preparation methods. Aggregation and deposition behaviors of the dispersed MWNTs were controlled by van der Waal and electrostatic forces, as well as other non-DLVO forces (e.g., steric, hydrophobic forces, etc.). Unlike the preparation method-independent physicochemical properties, LT/NOM-MWNTs and SON/NOM-MWNTs differed in their fathead minnow epithelial cell metabolomics profiles. PMID:25924000

  19. Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury.

    PubMed

    Hussain, Salik; Ji, Zhaoxia; Taylor, Alexia J; DeGraff, Laura M; George, Margaret; Tucker, Charles J; Chang, Chong Hyun; Li, Ruibin; Bonner, James C; Garantziotis, Stavros

    2016-08-23

    Commercialization of multiwalled carbon nanotubes (MWCNT)-based applications has been hampered by concerns regarding their lung toxicity potential. Hyaluronic acid (HA) is a ubiquitously found polysaccharide, which is anti-inflammatory in its native high molecular weight form. HA-functionalized smart MWCNTs have shown promise as tumor-targeting drug delivery agents and can enhance bone repair and regeneration. However, it is unclear whether HA functionalization could reduce the pulmonary toxicity potential of MWCNTs. Using in vivo and in vitro approaches, we investigated the effectiveness of MWCNT functionalization with HA in increasing nanotube biocompatibility and reducing lung inflammatory and fibrotic effects. We utilized three-dimensional cultures of differentiated primary human bronchial epithelia to translate findings from rodent assays to humans. We found that HA functionalization increased stability and dispersion of MWCNTs and reduced postexposure lung inflammation, fibrosis, and mucus cell metaplasia compared with nonfunctionalized MWCNTs. Cocultures of fully differentiated bronchial epithelial cells (cultivated at air-liquid interface) and human lung fibroblasts (submerged) displayed significant reduction in injury, oxidative stress, as well as pro-inflammatory gene and protein expression after exposure to HA-functionalized MWCNTs compared with MWCNTs alone. In contrast, neither type of nanotubes stimulated cytokine production in primary human alveolar macrophages. In aggregate, our results demonstrate the effectiveness of HA functionalization as a safer design approach to eliminate MWCNT-induced lung injury and suggest that HA functionalization works by reducing MWCNT-induced epithelial injury. PMID:27459049

  20. Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering

    PubMed Central

    Kim, Duk-Yeon; Han, Young-Hwan; Lee, Jun Hee; Kang, Inn-Kyu; Jang, Byung-Koog; Kim, Sukyoung

    2014-01-01

    Pure HA and 1, 3, 5, and 10 vol% multiwalled carbon nanotube- (MWNT-) reinforced hydroxyapatite (HA) were consolidated using a spark plasma sintering (SPS) technique. The relative density of pure HA increased with increasing sintering temperature, but that of the MWNT/HA composite reached almost full density at 900°C, and then decreased with further increases in sintering temperature. The relative density of the MWNT/HA composites increased with increasing MWNT content due to the excellent thermal conductivity of MWNTs. The grain size of MWNT/HA composites decreased with increasing MWNT content and increased with increasing sintering temperature. Pull-out toughening of the MWNTs of the MWNT/HA composites was observed in the fractured surface, which can be used to predict the improvement of the mechanical properties. On the other hand, the existence of undispersed or agglomerate MWNTs in the MWNT/HA composites accompanied large pores. The formation of large pores increased with increasing sintering temperature and MWNT content. The addition of MWNT in HA increased the hardness and fracture toughness by approximately 3~4 times, despite the presence of large pores produced by un-dispersed MWNTs. This provides strong evidence as to why the MWNTs are good candidates as reinforcements for strengthening the ceramic matrix. The MWNT/HA composites did not decompose during SPS sintering. The MWNT-reinforced HA composites were non-toxic and showed a good cell affinity and morphology in vitro for 1 day. PMID:24724100

  1. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.

    PubMed

    Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    This paper investigates the interaction of ten diverse biomolecules with surfactant detached Multi-Walled Carbon Nanotubes (MWCNTs) using multiple spectroscopic methods. Declining fluorescence intensity of biomolecules in combination with the hyperchromic effect in UV-Visible spectra confirmed the existence of the ground state complex formation. Quenching mechanism remains static and non-fluorescent. 3D spectral data of biomolecules suggested the possibilities of disturbances to the aromatic microenvironment of tryptophan and tyrosine residues arising out of CNTs interaction. Amide band Shifts corresponding to the secondary structure of biomolecules were observed in the of FTIR and FT-Raman spectra. In addition, there exists an increased Raman intensity of tryptophan residues of biomolecules upon interaction with CNTs. Hence, the binding of the aromatic structures of CNTs with the aromatic amino acid residues, in a particular, tryptophan was evidenced. Far UV Circular spectra have showed the loss of alpha-helical contents in biomolecules upon interaction with CNTs. Near UV CD spectra confirmed the alterations in the tryptophan positions of the peptide backbone. Hence, our results have demonstrated that the interaction of biomolecules with OH-MWCNTs would involve binding cum structural changes and alteration to their aromatic micro-environment. PMID:25707749

  2. Binding studies of hydroxylated Multi-Walled Carbon Nanotubes to hemoglobin, gamma globulin and transferrin.

    PubMed

    Sekar, Gajalakshmi; Kandiyil, Shirona Thazae; Sivakumar, Amaravathy; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-12-01

    Biocompatibility of nanoparticles depends on their binding behavior with biomolecules. Herein, we have reported the interaction of three different biological macromolecules such as hemoglobin, gamma globulin and transferrin with hydroxyl group functionalized Multi-Walled Carbon Nanotubes (OH-MWCNTs). Multiple spectroscopic methods were utilized to identify the binding cum structural changes in biomolecules upon their interaction. Hyperchromic effect observed in the UV-visible spectra, and the quenching behavior from fluorescence emission evidences the existence of bio-nanotube complex formation. Synchronous and three-dimensional fluorescence spectra of biomolecules, in correspondence with Trp and Tyr residues showed the possible disturbance towards their aromatic micro-environment. Changes observed in the FTIR and FT-Raman amide bands, and amino acid residue position of biomolecules upon interaction with CNTs showed the possible effect towards their secondary structure. Further studies with CD spectroscopy indicated the loss of alpha-helical structures quantitatively. The study remains significant in evaluating the biosafety profile of functionalized MWCNTs for their in vivo biomedical applications. PMID:26432959

  3. Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells

    PubMed Central

    Funahashi, Satomi; Okazaki, Yasumasa; Ito, Daiki; Asakawa, Atsushi; Nagai, Hirotaka; Tajima, Masafumi; Toyokuni, Shinya

    2015-01-01

    Asbestos exposure is considered a social burden by causing mesothelioma. Despite the use of synthetic materials, multi-walled carbon nanotubes (MWCNTs) are similar in dimension to asbestos and produce mesothelioma in animals. The role of inflammatory cells in mesothelial carcinogenesis remains unclear. Here, we evaluated the differences in inflammatory cell responses following exposure to these fibrous materials using a luminometer and L-012 (8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione) to detect reactive oxygen species (ROS). Rat peripheral blood or RAW264.7 cells were used to assess the effects on neutrophils and macrophages, respectively. Crocidolite and amosite induced significant ROS generation by neutrophils with a peak at 10 min, whereas that of chrysotile was ~25% of the crocidolite/amosite response. MWCNTs with different diameters (~15, 50, 115 and 145 nm) and different carcinogenicity did not induce significant ROS in peripheral blood. However, the MWCNTs induced a comparable amount of ROS in RAW264.7 cells to that following asbestos treatment. The peaks for MWCNTs (0.5–1.5 h) were observed earlier than those for asbestos (1–5 h). Apocynin and superoxide dismutase significantly inhibited ROS generation for each fiber, suggesting an involvement of NADPH oxidase and superoxide. Thus, asbestos and MWCNTs induce different oxidative responses in inflammatory cells, indicating the importance of mesothelial cell evaluation for carcinogenesis. PMID:25759516

  4. Investigation of defectiveness of multiwalled carbon nanotubes produced with Fe-Co catalysts of different composition

    NASA Astrophysics Data System (ADS)

    Bokova-Sirosh, Sofya N.; Kuznetsov, Vladimir L.; Romanenko, Anatoly I.; Kazakova, Mariya A.; Krasnikov, Dmitry V.; Tkachev, Evgeniy N.; Yuzyuk, Yury I.; Obraztsova, Elena D.

    2016-01-01

    We have performed a study of CVD multiwalled carbon nanotubes (MWCNTs) produced with Fe-Co catalysts with a variable ratio of active metals. The Raman data were considered in combination with the temperature dependence of MWCNT conductivity. The data analysis is based on the point that the value of I2D/ID ratio correlates with the graphene fragment size. The fragments are considered as building blocks of MWCNTs. We showed that MWCNT defectiveness depends on the ratio of bimetallic active components in the Fe-Co catalyst. Thus, the ratio of I2D/ID increases and the D-mode intensity decreases while the Fe content in the catalyst increases. This also points to the reduction of defect number in the bigger graphene fragments. These results correlate with the data on conductivity temperature dependence. Namely, the increase of Fe content in the active component of the Fe-Co catalyst results in the increase of charge carrier concentration, which, in turn, indicates a decrease in MWCNT defectiveness.

  5. Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties.

    PubMed

    Shan, Changsheng; Zhao, Wenjie; Lu, X Lucas; O'Brien, Daniel J; Li, Yupeng; Cao, Zeyuan; Elias, Ana Laura; Cruz-Silva, Rodolfo; Terrones, Mauricio; Wei, Bingqing; Suhr, Jonghwan

    2013-01-01

    A three-dimensional (3D) nitrogen-doped multiwall carbon nanotube (N-MWCNT) sponge possessing junctions induced by both nitrogen and sulfur was synthesized by chemical vapor deposition (CVD). The formation of "elbow" junctions as well as "welded" junctions, which are attributed to the synergistic effect of the nitrogen dopant and the sulfur promoter, plays a critically important role in the formation of 3D nanotube sponges. To the best of our knowledge, this is the first report showing the synthesis of macroscale 3D N-MWCNT sponges. Most importantly, the diameter of N-MWCNT can be simply controlled by varying the concentration of sulfur, which in turn controls both the sponge's mechanical and its electrical properties. It was experimentally shown that, with increasing diameter of N-MWCNT, the elastic modulus of the sponge increased while the electrical conductivity decreased. The mechanical behaviors of the sponges have also been quantitatively analyzed by employing strain energy function modeling. PMID:24134742

  6. Multiwalled Carbon Nanotube/nanofiber Arrays as Conductive and Dry Adhesive Interface Materials

    NASA Technical Reports Server (NTRS)

    Tong, Tao; Zhao, Yang; Delzeit, Lance; Majumdar, Arun; Kashani, Ali

    2004-01-01

    We demonstrate the possibility of making conductive and dry adhesive interfaces between multiwalled carbon nanotube (MWNT) and nanofiber (MWNF) arrays grown by chemical vapor deposition with transition-metal as catalyst on highly Boron doped silicon substrates. The maximum observed adhesion force between MWNT and MWNF surfaces is 3.5 mN for an apparent contact area of 2 mm by 4 mm. The minimum contact resistance measured at the same time is approx.20 Omega. Contact resistances of MWNT-MWNT and MWNT-gold interfaces were also measured as pressure forces around several mN were applied at the interface. The resulting minimum contact resistances are on the same order but with considerable variation from sample to sample. For MWNT-MWNT contacts, a minimum contact resistance of approx.1 Omega is observed for a contact area of 2 mm by 1 mm. The relatively high contact resistances, considering the area density of the nanotubes, might be explained by the high cross-tube resistances at the contact interfaces.

  7. A New Sensitive Sensor for Simultaneous Differential Pulse Voltammetric Determination of Codeine and Acetaminophen Using a Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode

    PubMed Central

    Garazhian, Elahe; Shishehbore, M. Reza

    2015-01-01

    A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094

  8. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  9. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  10. The preparation of lysine modified multi-walled carbon nanotubes and the study of its dispersion properties

    NASA Astrophysics Data System (ADS)

    Lu, Hongwei; Zou, Liming; Wei, Yizhe; Ling, Xinlong; Xu, Yongjing

    2015-07-01

    The poor dispersion in aqueous solution limited the application of carbon nanotubes (CNTs) in biological field. Here we used DCC/DMAP as Catalysis to prepare lysine modified multi-walled carbon nanotubes (MWNTs). FT-IR and TGA demonstrated that lysine have been successfully grafted to MWNTs, EA showed that lysine graft rate up to 23.4%. The dispersion of lysine modified MWNTs was investigated by direct visual inspection and microscope observation, the result showed that lysine modified MWNTs can be dispersed in aqueous solution and keep stable for long time.

  11. Measuring inside damage of individual multi-walled carbon nanotubes using scanning transmission X-ray microscopy

    SciTech Connect

    Liu, Jinyin; Bai, Lili; Zhao, Guanqi; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn; Wang, Jian

    2014-06-16

    The electronic structure of individual multi-walled carbon nanotubes (MWCNTs) has been probed using scanning transmission X-ray microscopy (STXM). Although transmission electron microscope (TEM) images show that the exterior of the MWCNTs are clean and straight; the inside structure of some of the MWCNTs is much less well ordered, as revealed by STXM. The amorphization of the interior tubes can be introduced in the growth or modification processes. Moreover, TEM measurement with high dose may also lead to the inside damage. Our results reveal that the structure of individual MWCNTs can be complex and suggest that electronic structure measurements are an important tool for characterizing carbon nanomaterials.

  12. Occupational Exposure to Multi-Walled Carbon Nanotubes During Commercial Production Synthesis and Handling.

    PubMed

    Kuijpers, Eelco; Bekker, Cindy; Fransman, Wouter; Brouwer, Derk; Tromp, Peter; Vlaanderen, Jelle; Godderis, Lode; Hoet, Peter; Lan, Qing; Silverman, Debra; Vermeulen, Roel; Pronk, Anjoeka

    2016-04-01

    The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit-95% upper confidence limit)) 41 μg m(-3) (20-88) versus 43 μg m(-3) (22-86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 μg m(-3) (2-11) and 7 μg m(-3) (2-28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder. PMID:26613611

  13. Reverse capillary flow of condensed water through aligned multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yun, Jongju; Jeon, Wonjae; Alam Khan, Fakhre; Lee, Jinkee; Baik, Seunghyun

    2015-06-01

    Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)—capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water’s phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification.

  14. Improved dispersion method of multi-wall carbon nanotube for inhalation toxicity studies of experimental animals.

    PubMed

    Taquahashi, Yuhji; Ogawa, Yukio; Takagi, Atsuya; Tsuji, Masaki; Morita, Koichi; Kanno, Jun

    2013-01-01

    A multi-wall carbon nanotube (MWCNT) product Mitsui MWNT-7 is a mixture of dispersed single fibers and their agglomerates/aggregates. In rodents, installation of such mixture induces inflammatory lesions triggered predominantly by the aggregates/agglomerates at the level of terminal bronchiole of the lungs. In human, however, pulmonary toxicity induced by dispersed single fibers that reached the lung alveoli is most important to assess. Therefore, a method to generate aerosol predominantly consisting of dispersed single fibers without changing their length and width is needed for inhalation studies. Here, we report a method (designated as Taquann method) to effectively remove the aggregate/agglomerates and enrich the well-dispersed singler fibers in dry state without dispersant and without changing the length and width distribution of the single fibers. This method is base on two major concept; liquid-phase fine filtration and critical point drying to avoid re-aggregation by surface tension. MWNT-7 was suspended in Tert-butyl alcohol, freeze-and-thawed, filtered by a vibrating 25 µm mesh Metallic Sieve, snap-frozen by liquid nitrogen, and vacuum-sublimated (an alternative method to carbon dioxide critical point drying). A newly designed direct injection system generated well-dispersed aerosol in an inhalation chamber. The lung of mice exposed to the aerosol contained single fibers with a length distribution similar to the original and the Taquann-treated sample. Taquann method utilizes inexpensive materials and equipments mostly found in common biological laboratories, and prepares dry powder ready to make well-dispersed aerosol. This method and the chamber with direct injection system would facilitate the inhalation toxicity studies more relevant to human exposure. PMID:23824017

  15. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    PubMed

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. PMID:27262272

  16. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway

    PubMed Central

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian

    2013-01-01

    Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus. PMID:24039418

  17. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani Teodoro; Rezende, Karina Fernandes Oliveira; da Silva, José Roberto Machado Cunha; Alves, Oswaldo Luiz; Barbieri, Edison

    2016-11-01

    Carbofuran is a nematicide insecticide with a broad spectrum of action. Carbofuran has noxious effects in several species and has been banned in the USA and Europe; however, it is still used in Brazil. Aquatic organisms are not only exposed to pesticides but also to manufactured nanoparticles, and the potential interaction of these compounds therefore requires investigation. The aim of this study was to examine the histopathological alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of exposure to carbofuran, nitric acid-treated multiwalled carbon nanotubes (HNO3-MWCNTs) and the combination of carbofuran with nanotubes. Juvenile fish were exposed to different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L), different concentrations of HNO3-MWCNTs (0.5, 1.0 and 2.0mg/L) or different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L) with 1.0mg/L of HNO3-MWCNTs. After 24h of exposure, the animals were removed from the aquarium, the spinal cord was transversely sectioned, and the second gill arch was removed for histological evaluation. Common histological changes included dislocation of the epithelial cells, hyperplasia of the epithelial cells along the secondary lamellae, aneurism, and dilation and disarrangement of the capillaries. All the groups exposed to carbofuran demonstrated a dose-dependent correlation in the Histological Alteration Index; the values found for carbofuran and carbon nanotubes were up to 25% greater than for carbofuran alone. This result indicates an interaction between these toxicants, with enhanced ecotoxic effects. This work contributes to the understanding of the environmental impacts of nanomaterials on aquatic organisms, which is necessary for the sustainable development of nanotechnologies. PMID:27543744

  18. Inhaled Multiwalled Carbon Nanotubes Potentiate Airway Fibrosis in Murine Allergic Asthma

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Tewksbury, Earl W.; Moss, Owen R.; Cesta, Mark F.; Wong, Brian A.; Bonner, James C.

    2009-01-01

    Carbon nanotubes are gaining increasing attention due to possible health risks from occupational or environmental exposures. This study tested the hypothesis that inhaled multiwalled carbon nanotubes (MWCNT) would increase airway fibrosis in mice with allergic asthma. Normal and ovalbumin-sensitized mice were exposed to a MWCNT aerosol (100 mg/m3) or saline aerosol for 6 hours. Lung injury, inflammation, and fibrosis were examined by histopathology, clinical chemistry, ELISA, or RT-PCR for cytokines/chemokines, growth factors, and collagen at 1 and 14 days after inhalation. Inhaled MWCNT were distributed throughout the lung and found in macrophages by light microscopy, but were also evident in epithelial cells by electron microscopy. Quantitative morphometry showed significant airway fibrosis at 14 days in mice that received a combination of ovalbumin and MWCNT, but not in mice that received ovalbumin or MWCNT only. Ovalbumin-sensitized mice that did not inhale MWCNT had elevated levels IL-13 and transforming growth factor (TGF)-β1 in lung lavage fluid, but not platelet-derived growth factor (PDGF)-AA. In contrast, unsensitized mice that inhaled MWCNT had elevated PDGF-AA, but not increased levels of TGF-β1 and IL-13. This suggested that airway fibrosis resulting from combined ovalbumin sensitization and MWCNT inhalation requires PDGF, a potent fibroblast mitogen, and TGF-β1, which stimulates collagen production. Combined ovalbumin sensitization and MWCNT inhalation also synergistically increased IL-5 mRNA levels, which could further contribute to airway fibrosis. These data indicate that inhaled MWCNT require pre-existing inflammation to cause airway fibrosis. Our findings suggest that individuals with pre-existing allergic inflammation may be susceptible to airway fibrosis from inhaled MWCNT. PMID:18787175

  19. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna.

    PubMed

    Stanley, Jacob K; Laird, Jennifer G; Kennedy, Alan J; Steevens, Jeffery A

    2016-01-01

    Carbon nanotubes were previously demonstrated to accumulate on the carapace and in the gut of daphnids in aquatic exposures. The purpose of the present study was to assess the effects of multiwalled carbon nanotube (MWCNT) exposure on the sublethal Daphnia magna endpoints swimming behavior, algal feeding, growth, and reproduction and to determine the relative magnitude of difference between lethal and sublethal toxicity thresholds in 48-h and 14-d exposures. A stable dispersion of MWCNTs was prepared using 100 mg/L natural organic matter (NOM), and all treatments were compared statistically to a NOM control. The swimming behavior endpoints of mean velocity and total distance moved were determined using digital tracking software. For the acute (48-h) exposure, a 50% lethal concentration (LC50) of 29.3 (23.6-36.3) mg/L and a 50% effective concentration (EC50) of 6.7 mg/L in the swimming velocity endpoint were determined. When swimming response was nonmonotonic below 2 mg/L, consistent reductions in velocity were observed at 6.9 mg/L and above. Median effect concentrations were lower in the chronic (14-d) bioassay. The 14-d LC50 was 4.3 mg/L (3.3-5.6 mg/L), and the reproduction EC50 was 5.0 mg/L. Lowest-observed-effect concentrations for survival and reproduction were 5.4 mg/L and 1.7 mg/L, respectively. Significantly fewer (23.1%) algal cells were consumed in the 3.9-mg/L treatment relative to the control. No significant effects on swimming behavior were observed for the 14-d bioassay. Less traditional sublethal endpoints such as swimming behavior and feeding rate may be especially important to assess for MWCNTs and other materials expected to be more physically than chemically toxic through mechanisms such as gut clogging. PMID:26222333

  20. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    PubMed

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. PMID:27474292

  1. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; Xiao, Qingqing; Guo, Xin; Zhang, Xiaoxue; Xue, Yifei; Jing, Lin; Zhai, Xue; Yan, Yi-Ming; Sun, Kening

    2015-03-01

    Cobalt carbonate hydroxide hydrate (CCHH) nanosheets have been densely and strongly anchored onto mildly oxidized multiwalled carbon nanotubes with the assistance of diethylenetriamine (DETA). The resulted hybrid (CCHH/MWCNT) is used as high efficient electrocatalyst for water oxidation with an extremely low onset potential of ∼1.47 V vs. RHE and an overpotential of 285 mV to achieve a current density of 10 mA cm-2 in 1.0 mol L-1 KOH. The CCHH/MWCNT electrode affords a Tafel slope of 51 mV/decade and an exchange current density of 2.5 × 10-7 A cm-2. Moreover, the CCHH/MWCNT catalyst delivers a high faradic efficiency of 95% and possesses remarkable stability for long-term electrolysis of water. By contrast, neither MWCNT nor CCHH exhibits apparent catalytical activity towards water oxidation. Importantly, we demonstrate that DETA plays crucial role in determining the morphology, structure of the CCHH/MWCNT, therefore resulting in an enhanced performance for water oxidation. This work not only provides a novel cobalt-based electrocatalyst for oxygen evolution, but also offers a useful and viable approach to deliberately synthesize functional nanocomposites for applications in energy conversion and storage.

  2. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. PMID:21724329

  3. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  4. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent

    PubMed Central

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    Aim: The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Background: Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. Patients and methods: In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. Results: A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. Conclusion: According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport. PMID:27458512

  5. Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame.

    PubMed

    Bathinapatla, Ayyappa; Kanchi, Suvardhan; Singh, Parvesh; Sabela, Myalowenkosi I; Bisetty, Krishna

    2015-05-15

    A highly sensitive and novel electrochemical sensor for the detection of neotame using differential pulse voltammetry with a modified glassy carbon electrode is presented. The method was further customized by the fabrication of the electrode surface with copper nanoparticles-ammonium piperidine dithiocarbamate-mutiwalled carbon nanotubes assimilated with β-cyclodextrin. The multiwalled carbon nanotubes assimilated with β-cyclodextrin/glassy carbon electrode exhibited catalytic activity towards the oxidation of neotame at a potential of 1.3 V at pH 3.0. The transmission electron microscopy, thermogravimetric analysis, frontier transform infrared spectroscopy and cyclic voltammetry were employed to characterize the electrochemical sensor. The sensitivity and detection limits of the electrode increased two-fold in contrast to the β-CD-MWCNTs/GCE sensor. The developed method was successfully applied for the determination of neotame in food samples, with results similar to those achieved by our modified capillary electrophoresis method with a 96% confidence level. PMID:25216979

  6. Self-assembled multiwalled carbon nanotube films assisted by ureidopyrimidinone-based multiple hydrogen bonds.

    PubMed

    Wang, Sumin; Guo, Hao; Wang, Xiaomin; Wang, Qiguan; Li, Jinhua; Wang, Xinhai

    2014-11-01

    Self-assembled functionalized multiwalled carbon nanotube (MWNT) films were successfully constructed, linked by a kind of strong binding strength from the self-complementary hydrogen-bonding array of ureidopyrimidinone-based modules (UPM) attached. Employing the feasible reaction of isocyanate containing ureidopyrimidinone with amine modified MWNTs, the UPMs composed of ureidopyrimidinone and ureido were attached to MWNTs with the content as low as 0.6 mmol/g MWNTs. Upon multiple hydrogen-bonding interactions from incorporation of the AADD (A, hydrogen-bonding acceptor; D, hydrogen-bonding donor) quadruple hydrogen bonds of ureidopyrimidinone and the double hydrogen bonds of ureido group, UPM functionalized MWNTs (MWNT-UPM) can be well dispersed in the polar solvent of N,N-dimethylformamide (DMF), while they tend to self-assemble to give a self-supported film in the apolar solvent of CHCl3. In addition, by using the multiple hydrogen-bonding interactions as the driving force, the layer-by-layer (LBL) MWNT-UPM films with high coverage on solid slides can be processed. Because of the self-association of MWNT-UPM in apolar solvent, it was found that the LBL assembly of MWNT-UPM was more favorable in the polar solvent of DMF than in the apolar solvent of CHCl3. Moreover, the hydrogen-bonding linked MWNT-UPM films showed good stability upon soaking in different solvents. Furthermore, the as-prepared LBL films showed electrochemical active behaviors, exhibiting a remarkable catalytic effect on the reduction of nifedipine. PMID:25296167

  7. IL-33 Modulates Chronic Airway Resistance Changes Induced by Multi-Walled Carbon Nanotubes

    PubMed Central

    Wang, Xiaojia; Shannahan, Jonathan H.; Brown, Jared M.

    2015-01-01

    Objective Instillation of multi-walled carbon nanotubes (MWCNTs) in C57BL/6 mice results in decrements of pulmonary function specifically characterized by increases in airway resistance. In this study, we examined possible mechanisms responsible for these alterations following MWCNT exposure, including the roles of IL-33 and chronic inflammation. Materials and Methods To elucidate the role of IL-33, we assessed lung histology and pulmonary function in C57BL/6 and IL-33−/− mice 30 days following MWCNT instillation. In addition, the impact of MWCNT instillation on airway hyperresponsiveness (AHR) was assessed by methacholine challenges of C57BL/6 and IL-33−/− mice. To further understand the mechanisms by which MWCNTs may increase airway constriction, C57BL/6 mice were treated with aerosolized albuterol or injected with multiple doses of methylprednisolone via intra-peritoneal injections prior to the assessment of MWCNT-induced changes in pulmonary function. Results Total cell count, macrophages, and neutrophils were increased in the lavage fluid of C57BL/6 mice, but not in IL-33−/− mice, following MWCNT exposure. C57BL/6 mice displayed increased inflammation and fibrosis located proximal to the airways which was absent in IL-33−/− mice. Aerosolized methacholine increased parameters of airway resistance (R and Rn) in a dose-dependent manner in all groups, with MWCNT-instilled C57BL/6 mice responding more robustly compared to controls, while no differences were found in IL-33−/− mice due to MWCNT exposure. Treatment with methylprednisolone reduced both the MWCNT-induced histopathological changes and increases in R and Rn in C57BL/6 mice. Conclusion These findings suggest that IL-33 and chronic inflammation in general are critical in the pulmonary toxicity induced by MWCNT resulting in modified pulmonary function. PMID:24502429

  8. Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Zhan, Li; Juanjuan, Bi; Jing, Wang; Jianjun, Wang; Taoli, Sun; Yi'an, Guo; Wangsuo, Wu

    2012-08-01

    In this work, technetium-99 (99mTc) was used as the radiolabeling isotope to study the biodistribution of oxidized multi-walled carbon nanotubes (oMWCNTs) and/or nanodiamonds (NDs) in mice after intravenous administration. The histological impact of non-radiolabeled oMWCNTs or NDs was investigated in comparison to the co-exposure groups. 99mTc-labeled nanomaterials had high stability in vivo and fast clearance from blood . After a single injection of oMWCNTs, the highest distribution was found in the lungs, with lower uptake in the liver/spleen. As for NDs injected alone, high distribution in the liver, spleen, and lungs was observed right after. However, uptake in the lungs was decreased obviously after 24 h, while high accumulation in the liver or spleen continued. After co-injection of oMWCNTs and NDs, oMWCNTs significantly affected the distribution pattern of NDs in vivo. Meanwhile, the increasing dose of oMWCNTs decreased the hepatic and splenic accumulation of NDs and gradually increased lung retention. On the contrary, the NDs had no significant effects on the distribution of oMWCNTs in mice. Histological photographs showed that oMWCNTs were mainly captured by lung macrophages, and NDs were located in the bronchi and alveoli after co-administration. oMWCNTs and NDs had different modes of micro-cells. In conclusion, the behavior and fate of NDs in mice depended strongly on oMWCNTs, but NDs had a small influence on the biodistribution and excretion pattern of oMWCNTs.

  9. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes

    PubMed Central

    2010-01-01

    Background Multi-walled carbon nanotubes (MWCNT) are new manufactured nanomaterials with a wide spectrum of commercial applications. The durability and fiber-like dimensions (mean length 3.9 μm long × 49 nm diameter) of MWCNT suggest that these fibers may migrate to and have toxicity within the pleural region. To address whether the pleura received a significant and persistent exposure, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 and 80 μg MWCNT or vehicle and the distribution of MWCNT penetrations determined at 1, 7, 28 and 56 days after exposure. Following lung fixation and sectioning, morphometric methods were used to determine the distribution of MWCNT and the number of MWCNT fiber penetrations of three barriers: alveolar epithelium (alveolar penetrations), the alveolar epithelium immediately adjacent to the pleura (subpleural tissue), and visceral pleural surface (intrapleural space). Results At 1 day 18%, 81.6% and 0.6% of the MWCNT lung burden was in the airway, the alveolar, and the subpleural regions, respectively. There was an initial, high density of penetrations into the subpleural tissue and the intrapleural space one day following aspiration which appeared to decrease due to clearance by alveolar macrophages and/or lymphatics by day 7. However, the density of penetrations increased to steady state levels in the subpleural tissue and intrapleural from day 28 - 56. At day 56 approximately 1 in every 400 fiber penetrations was in either the subpleural tissue or intrapleural space. Numerous penetrations into macrophages in the alveolar airspaces throughout the lungs were demonstrated at all times but are not included in the counts presented. Conclusions The results document that MWCNT penetrations of alveolar macrophages, the alveolar wall, and visceral pleura are both frequent and sustained. In addition, the findings demonstrate the need to investigate the chronic toxicity of MWCNT at these sites. PMID:20920331

  10. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Praharaj, A.; Behera, D.; Rath, P.; Bastia, T. K.; Rout, A. K.

    In this work, initially a non-destroyable surface grafting of acid functionalized multiwalled carbon nanotubes (f-MWCNTs) with biopolymer chitosan (CS) was carried out using glutaraldehyde as a cross-linking agent via the controlled covalent deposition method which was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Then, BisGMA (bisphenol-A glycidyldimethacrylate)-polyvinylpyrrolidone (PVP) blend was prepared (50:50 wt%) by a simple sonication method. The CS grafted f-MWCNTs (CS/f-MWCNTs) were finally dispersed in BisGMA-PVP blend (BGP50) system in different compositions i.e. 0, 2, 5 and 7 wt% and pressed into molds for the fabrication of reinforced nanocomposites which were characterized by SEM. Nanocomposites reinforced with 2 wt% raw MWCNTs and acid f-MWCNTs were also fabricated and their properties were studied in detail. The results of comparative study report lower values of the investigated properties in nanocomposites with 2 wt% raw and f-MWCNTs than the one with 2 wt% CS/f-MWCNTs proving it to be a better reinforcing nanofiller. Further, the mechanical behavior of the nanocomposites with various CS/f-MWCNTs content showed a dramatic increase in Young's Modulus, tensile strength, impact strength and hardness along with improved dynamic mechanical, thermal and electrical properties at 5 wt% content of CS/f-MWCNTs. The addition of CS/f-MWCNTs also resulted in reduced corrosion and swelling properties. Thus, the fabricated nanocomposites with optimum nanofiller content could serve as low cost and light weight structural, thermal and electrical materials compatible in various corrosive and solvent based environments.

  11. Selective Electrochemical Detection of Ciprofloxacin with a Porous Nafion/Multiwalled Carbon Nanotube Composite Film Electrode.

    PubMed

    Gayen, Pralay; Chaplin, Brian P

    2016-01-27

    This study focuses on the development of electrochemical sensors for the detection of Ciprofloxacin (CFX) in natural waters and wastewater effluents. The sensors are prepared by depositing a layer of multiwalled carbon nanotubes (MWCNTs) dispersed in a porous Nafion film on to a boron-doped diamond (BDD) electrode substrate. The porous-Nafion-MWCNT/BDD electrode enhanced detection of CFX due to selective adsorption, which was accomplished by a combination of electrostatic attraction at -SO3(-) sites in the porous Nafion film and the formation of charge assisted hydrogen bonding between CFX and -COOH MWCNT surface functional groups. By contrast, the bare BDD electrode did not show any activity for CFX oxidation. The sensors were selective for CFX detection in the presence of other antibiotics (i.e., amoxicillin) and other nontarget water constituents (i.e., Cl(-), Ca(2+), humic acid, sodium dodecylbenzenesulfonate, salicylic acid, 4-aminobenzoic acid, and 4-hydroxybenzoic acid). A limit of detection of 5 nM (S/N = 5.04 ± 0.26) in a 0.1 M KH2PO4 supporting electrolyte (pH = 4.5) was obtained using differential pulse voltammetry. The linear dynamic ranges with respect to CFX concentration were 0.005-0.05 μM and 0.05-10 μM, and the sensitivities were 41 ± 5.2 μA μM(-1) and 2.1 ± 0.22 μA μM(-1), respectively. Sensor fouling was observed at high concentrations of some organic compounds such as 1 mM 4-aminobenzoic acid and 4-hydroxybenzoic acid. However, a short cathodic treatment fully restores sensor response. The results indicate that these sensors have application in detecting CFX in natural waters and wastewater effluents. PMID:26711553

  12. Multi-walled carbon nanotube reinforced ultra-high molecular weight polyethylene composites

    NASA Astrophysics Data System (ADS)

    Ruan, Shilun

    This thesis is concerned with the development of high performance ultrahigh molecular polyethylene (UHMWPE) fibers reinforced using multiwalled carbon nanotubes (MWCNTs). A novel process has been developed, whereby, MWCNT/UHMWPE nanocomposite fibers with Young's modulus up to 137 GPa and tensile strength of ˜4.2 GPa has been produced. This fiber possesses the best specific mechanical properties amongst all current commercial high performance fibers. Systematic investigations were carried out to elucidate the mechanisms of reinforcement. Firstly, systematical experimental studies were carried out to investigate the CNT reinforcing effect on nanocomposite fibers prepared with different PE molecular orientations. The overall effect can be classified into three regions. At low molecular orientation levels, the CNTs act to toughen and strengthen the nanocomposites. At the intermediate molecular orientations, the CNTs have negligible effects on the mechanical properties of the nanocomposites. At very high molecular orientations, the CNTs act to mainly stiffen and strengthen the nanocomposite. Secondly, systematic investigations were carried out to investigate the structure evolution as well as the load transfer between the embedded CNTs and that of the matrix PE. Thermal and morphological studies demonstrate that CNTs act as effective nucleation sites for PE crystal growth. The load transfer mechanisms in both the low and high molecular orientation fibers are similar. Major differences were related to CNT alignment effects. The highly oriented fibers show CNT alignment effect in the initial elastic regime, whereas the CNTs in the fibers of low molecular orientations show no appreciable alignment in the elastic regime. Finally, based on the experimental observations, a mechanistic model has been proposed to elucidate the reinforcement mechanisms. This model proposes that there exists an absorption layer surrounding CNTs. (Abstract shortened by UMI.)

  13. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2012-10-15

    Activated multi-walled carbon nanotubes (A-MWCNTs) were prepared using a chemical activation method to obtain well-developed pore structures for use as hydrogen storage materials. The microstructure and crystallinity of the A-MWCNTs were evaluated by X-ray diffraction and Fourier transform Raman spectroscopy. The textural properties of the A-MWCNTs were investigated by nitrogen gas sorption analysis at 77 K. The hydrogen storage capacity of the A-MWCNTs was evaluated at 77 K and 1 bar. The results showed that the specific surface area of the MWCNTs increased from 327 to 495 m{sup 2}/g as the activation temperature was increased. The highest hydrogen storage capacity was observed in the A-MWCNTs sample activated at 900 Degree-Sign C (0.54 wt%). This was attributed to it having the narrowest microporosity, which is a factor closely related to the hydrogen storage capacity. This shows that the hydrogen storage behaviors depend on the pore volume. Although a high pore volume is desirable for hydrogen storage, it is also severely affected if the pore size in the A-MWCNTs for the hydrogen molecules is suitable for creating the activation process. Highlights: Black-Right-Pointing-Pointer The AT-800 and AT-900 samples were prepared by a chemical activation method at activation temperature of 800 and 900 Degree-Sign C, respectively. Black-Right-Pointing-Pointer The AT-900 sample has the narrowest peak in comparison with the AT-800 sample, resulting from the overlap of the two peaks (Peak I and Peak II). Black-Right-Pointing-Pointer This overlapping effect is due to the newly created micropores or shrinkages of pores in Peak II. So, these determining characteristics are essential for designing materials that are suitable for molecular hydrogen storage.

  14. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    PubMed

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  15. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model

    SciTech Connect

    Inoue, Ken-ichiro Koike, Eiko; Yanagisawa, Rie; Hirano, Seishiro; Nishikawa, Masataka; Takano, Hirohisa

    2009-06-15

    The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 {mu}g/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 {mu}g/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG{sub 1} and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.

  16. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer

    DOE PAGESBeta

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Orias, Eduardo; Holden, Patricia A.

    2016-07-11

    We report that consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using 14C-labeled MWCNT (14C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub μg/kg)more » concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively.Finally, aAlthough MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.« less

  17. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity.

    PubMed

    Poulsen, Sarah S; Jackson, Petra; Kling, Kirsten; Knudsen, Kristina B; Skaug, Vidar; Kyjovska, Zdenka O; Thomsen, Birthe L; Clausen, Per Axel; Atluri, Rambabu; Berthing, Trine; Bengtson, Stefan; Wolff, Henrik; Jensen, Keld A; Wallin, Håkan; Vogel, Ulla

    2016-11-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commercial MWCNT (supplied in three groups of different dimensions, with one pristine and two/three surface modified in each group). We characterized morphology, chemical composition, surface area and functionalization levels. MWCNT were deposited in lungs of female C57BL/6J mice by intratracheal instillation of 0, 6, 18 or 54 μg/mouse. Pulmonary inflammation (neutrophil influx in bronchoalveolar lavage (BAL)) and genotoxicity were determined on day 1, 28 or 92. Histopathology of the lungs was performed on day 28 and 92. All MWCNT induced similar histological changes. Lymphocytic aggregates were detected for all MWCNT on day 28 and 92. Using adjusted, multiple regression analyses, inflammation and genotoxicity were related to dose, time and physicochemical properties. The specific surface area (BET) was identified as a positive predictor of pulmonary inflammation on all post-exposure days. In addition, length significantly predicted pulmonary inflammation, whereas surface oxidation (-OH and -COOH) was predictor of lowered inflammation on day 28. BET surface area, and therefore diameter, significantly predicted genotoxicity in BAL fluid cells and lung tissue such that lower BET surface area or correspondingly larger diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects. PMID:27323647

  18. 'Bucky gel' of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors.

    PubMed

    Singh, Manoj K; Kumar, Yogesh; Hashmi, S A

    2013-11-22

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as 'bucky gel', to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10(-3) S cm(-1), shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g(-1)) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (~10.5 kW kg(-1)). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg(-1) and 2.0 to 4.7 kW kg(-1), respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs. PMID:24157648

  19. Monitoring the chemical vapor deposition growth of multiwalled carbon nanotubes by tapered element oscillating microbalance

    NASA Astrophysics Data System (ADS)

    Švrček, V.; Kleps, I.; Cracioniou, F.; Paillaud, J. L.; Dintzer, T.; Louis, B.; Begin, D.; Pham-Huu, C.; Ledoux, M.-J.; Le Normand, F.

    2006-05-01

    The growth of multiwalled carbon nanotubes (MWCNTs) produced by a catalytic chemical vapor deposition (CCVD) process has been monitored using a tapered element oscillating microbalance (TEOM) probe. This technique displays a high sensitivity (<1μg). Growths in the TEOM microreactor are investigated with catalytic particles (Fe, Ni) dispersed on different supports. First, high surface area Fe /Al2O3 or Fe (Ni) exchanged on zeolite powders is used. Second, growths are performed on array of nickel dots or Fe /Si-nc particles dispersed on large holes patterned on Si(100) substrates. An accurate monitoring of the early stages of growth permits a precise evaluation of the growth rates and shows substantial differences between these samples which greatly differ by the surface area. On catalysts dispersed on Si(100) the mass uptake is linear throughout the process. On high surface area catalysts, however, a saturation of the mass uptake is indifferently observed. This saturation is explained either by diffusion limitation by the growing MWCNTs or by internal diffusion through the pores or external diffusion through the grains of the catalyst. The kinetic dependence with partial pressure of the incoming C2H6:H2 gas mixture is then explored on the Fe /Al2O3 catalyst. A linear dependence of the MWCNT growth an (PC2H6/PH2)1/2 is found. A simple model is then developed that accounts for this dependence only if an associative and competitive adsorption of ethane is the rate determining step of thP overall process. These results thus bring insight to improve and control the CCVD growth kinetics of MWCNTs.P

  20. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo

    PubMed Central

    Jessop, Forrest; Holian, Andrij

    2016-01-01

    Endotoxin is often used to activate NF-κB in vitro when assessing NLRP3 inflammasome activation by various exogenous particles including nanoparticles. However, the endogenous source of this signal 1 is unknown. High-mobility group box 1 (HMGB1) is known to play a critical role in acute lung injury, however the potential contribution of the alarmin HMGB1 to NLRP3 Inflammasome activation has not been determined in response to nanoparticles in vivo. In this study, the ability of multi-walled carbon nanotubes (MWCNT) to cause release of HMGB1 in vitro and in vivo, as well as the potential of HMGB1 to function as signal 1 in vitro and in vivo, was determined. HMGB1 activity in vivo was assessed by administration of HMGB1 neutralization antibodies following MWCNT exposure. Caspase-1−/− mice were utilized to elucidate the dependence of HMGB1 secretion on NLRP3 inflammasome activity. MWCNT exposure increased extracellular HMGB1 levels in primary alveolar macrophages from C57Bl/6 mice and C10 mouse epithelial cell culture supernatants, and in C57Bl/6 mouse lung lavage fluid. MWCNT-induced HMGB1 secretion was dependent upon caspase-1. HMGB1 increased MWCNT-induced IL-1β release from macrophages in vitro, and neutralization of extracellular HMGB1 reduced MWCNT-induced IL-1β secretion in vivo. HMGB1 neutralization was accompanied with overall decreased inflammation. In summary, this study suggests extracellular HMGB1 participates in NLRP3 inflammasome activity and regulates IL-1β associated sterile inflammation induced by MWCNT. PMID:24983895