2D FEM Heat Transfer & E&M Field Code
Energy Science and Technology Software Center (ESTSC)
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
Breakdown of wave diffusion in 2D due to loops.
Haney, Matthew; Snieder, Roel
2003-08-29
The validity of the diffusion approximation for the intensity of multiply scattered waves is tested with numerical simulations in a strongly scattering 2D medium of finite extent. We show that the diffusion equation underestimates the intensity and attribute this to both the neglect of recurrent scattering paths and interference within diffusion theory. We present a theory to quantify this discrepancy based on counting all possible scattering paths between point scatterers. Interference phenomena, due to loop paths, are incorporated in a way similar to coherent backscattering. PMID:14525183
Nonlinear Heat Transfer 2d Structure
Energy Science and Technology Software Center (ESTSC)
1987-09-01
DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less
What carries heat in novel 2D semiconductors?
NASA Astrophysics Data System (ADS)
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Mauri, Francesco; Marzari, Nicola
When materials are scaled down to the microscopic scale, or when dimensionality is reduced, thermal transport exhibits new intriguing behaviors that are not present in conventional bulk crystals. While phonons are typically considered to be the excitations responsible for carrying heat through a crystal, as dimensionality is reduced, the motion of phonons driven by a temperature perturbation becomes correlated, and collective excitations of many phonons arise. This leads to a wealth of complex phenomena, such as very high thermal conductivity (the highest known conductivities are indeed found in 2D materials), or wave-like heat diffusion, with second sound, hitherto found only in a few exotic materials at cryogenic temperatures, routinely present at room temperature. In this contribution, we show that heat transport in crystals can be described exactly with the kinetic theory of a gas of collective phonon excitations, termed relaxons. In this way, it is possible to recover a microscopic interpretation based on mean free paths and relaxation times without any simplification of the linearised phonon Boltzmann equation.
2-D Finite Element Heat Conduction
Energy Science and Technology Software Center (ESTSC)
1989-10-30
AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less
Radiative heat transfer in 2D Dirac materials
Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.
2015-05-12
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
TOPAZ2D heat transfer code users manual and thermal property data base
NASA Astrophysics Data System (ADS)
Shapiro, A. B.; Edwards, A. L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
NASA Astrophysics Data System (ADS)
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it
Differencing the diffusion equation on unstructured meshes in 2-D
Palmer, T.S.
1994-10-24
During the last few years, there has been an increased effort to devise robust transport differencings for unstructured meshes, specifically arbitrarily connected grids of polygons. Adams has investigated unstructured mesh discretization techniques for the even- and odd-parity forms of the transport equation, and for the more traditional first-order form. Conversely, development of unstructured mesh diffusion methods has been lacking. While Morel, Kershaw, Shestakov and others have done a great deal of work on diffusion schemes for logically-rectangular grids, to the author`s knowledge there has been no work on discretizations of the diffusion equation on unstructured meshes of polygons. In this paper, the authors introduce a point-centered diffusion differencing for two-dimensional unstructured meshes. They have designed the method to have the following attractive properties: (1) the scheme is equivalent to the standard five-point point-centered scheme on an orthogonal mesh; (2) the method preserves the homogeneous linear solution; (3) the method gives second-order accuracy; (4) they have strict conservation within the control volume surrounding each point; and (5) the numerical solution converges to the exact result as the mesh is refined, regardless of the smoothness of the mesh. A potential disadvantage of the method is that the diffusion matrix is asymmetric, in general.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals
NASA Astrophysics Data System (ADS)
Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene
2015-07-01
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.
Latent heat induced rotation limited aggregation in 2D ice nanocrystals.
Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene
2015-07-21
The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037
Energy Science and Technology Software Center (ESTSC)
2010-02-01
Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).
Heat transfer, diffusion, and evaporation
NASA Technical Reports Server (NTRS)
Nusselt, Wilhelm
1954-01-01
Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.
A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere
NASA Astrophysics Data System (ADS)
Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.
2004-12-01
Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.
Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans
2009-11-01
We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna. PMID:19880733
Noel, B.W.; Borella, H.M. ); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. ); Turley, W.D. . Santa Barbara Operations)
1991-07-01
This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.
Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition
NASA Astrophysics Data System (ADS)
Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M.; Knoester, Jasper; Cao, Jianshu
2016-05-01
The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.
Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition.
Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M; Knoester, Jasper; Cao, Jianshu
2016-05-13
The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality. PMID:27232033
2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile
NASA Astrophysics Data System (ADS)
Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2015-04-01
The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.
NASA Astrophysics Data System (ADS)
Cortés-Vega, Luis
2015-09-01
We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.
Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D
2013-02-01
The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated. PMID:23464209
NASA Astrophysics Data System (ADS)
Gan, K. F.; Ahn, J.-W.; Park, J.-W.; Maingi, R.; McLean, A. G.; Gray, T. K.; Gong, X.; Zhang, X. D.
2013-02-01
The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.
3D hydrodynamic interactions lead to divergences in 2D diffusion.
Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin
2015-05-20
We investigate the influence of 3D hydrodynamic interactions on confined colloidal suspensions, where only the colloids are restricted to one or two dimensions. In the absence of static interactions among the colloids, i.e., an ideal gas of colloidal particles with a finite hydrodynamic radius, we find a divergent collective diffusion coefficient. The origin of the divergence is traced back to the dimensional mismatch of 3D hydrodynamic interactions and the colloidal particles moving only in 1D or 2D. Our results from theory are confirmed by Stokesian dynamics simulations and supported by light scattering observational data for particles at a fluid interface. PMID:25923320
3D hydrodynamic interactions lead to divergences in 2D diffusion
NASA Astrophysics Data System (ADS)
Bleibel, Johannes; Domínguez, Alvaro; Oettel, Martin
2015-05-01
We investigate the influence of 3D hydrodynamic interactions on confined colloidal suspensions, where only the colloids are restricted to one or two dimensions. In the absence of static interactions among the colloids, i.e., an ideal gas of colloidal particles with a finite hydrodynamic radius, we find a divergent collective diffusion coefficient. The origin of the divergence is traced back to the dimensional mismatch of 3D hydrodynamic interactions and the colloidal particles moving only in 1D or 2D. Our results from theory are confirmed by Stokesian dynamics simulations and supported by light scattering observational data for particles at a fluid interface.
Turbulent resistivity, diffusion and heating
NASA Technical Reports Server (NTRS)
Fried, B. D.; Kennel, C. F.; Mackenzie, K.; Coroniti, F. V.; Kindel, J. M.; Stenzel, R.; Taylor, R. J.; White, R.; Wong, A. Y.; Bernstein, W.
1971-01-01
Experimental and theoretical studies are reported on ion acoustic and ion cyclotron turbulence and their roles in anomalous resistivity, viscosity, diffusion and heating and in the structure of collisionless electrostatic shocks. Resistance due to ion acoustic turbulence has been observed in experiments with a streaming cesium plasma in which electron current, potential rise due to turbulent resistivity, spectrum of unstable ion acoustic waves, and associated electron heating were all measured directly. Kinetic theory calculations for an expanding, unstable plasma, give results in agreement with the experiment. In a strong magnetic field, with T sub e/T sub i approximately 1 and current densities typical for present Tokomaks, the plasma is stable to ion acoustic but unstable to current driven electrostatic ion cyclotron waves. Relevant characteristics of these waves are calculated and it is shown that for ion, beta greater than m sub e/m sub i, the electromagnetic ion cyclotron wave has a lower instability threshold than the electrostatic one. However, when ion acoustic turbulence is present experiments with double plasma devices show rapid anomalous heating of an ion beam streaming through a plasma.
NASA Astrophysics Data System (ADS)
Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.
2016-05-01
Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.
Heat Diffusion with Frozen Boundary
NASA Astrophysics Data System (ADS)
Florescu, Laura; Ganguly, Shirshendu; Peres, Yuval; Spencer, Joel
2015-11-01
Consider "frozen random walk" on Z: n particles start at the origin. At any discrete time, the leftmost and rightmost lfloor {n/4}rfloor particles are "frozen" and do not move. The rest of the particles in the "bulk" independently jump to the left and right uniformly. The goal of this note is to understand the limit of this process under scaling of mass and time. To this end we study the following deterministic mass splitting process: start with mass 1 at the origin. At each step the extreme quarter mass on each side is "frozen". The remaining "free" mass in the center evolves according to the discrete heat equation. We establish diffusive behavior of this mass evolution and identify the scaling limit under the assumption of its existence. It is natural to expect the limit to be a truncated Gaussian. A naive guess for the truncation point might be the 1 / 4 quantile points on either side of the origin. We show that this is not the case and it is in fact determined by the evolution of the second moment of the mass distribution.
Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)
2000-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)
1999-01-01
A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise,
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
NASA Astrophysics Data System (ADS)
Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.
2011-11-01
A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.
HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D
NASA Technical Reports Server (NTRS)
Vigue, Y.
1994-01-01
HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are
Residual resistance of 2D and 3D structures and Joule heat release.
Gurevich, V L; Kozub, V I
2011-06-22
We consider a residual resistance and Joule heat release in 2D nanostructures as well as in ordinary 3D conductors. We assume that elastic scattering of conduction electrons by lattice defects is predominant. Within a rather intricate situation in such systems we discuss in detail two cases. (1) The elastic scattering alone (i.e. without regard of inelastic mechanisms of scattering) leads to a transition of the mechanical energy (stored by the electrons under the action of an electric field) into heat in a traditional way. This process can be described by the Boltzmann equation where it is possible to do the configuration averaging over defect positions in the electron-impurity collision term. The corresponding conditions are usually met in metals. (2) The elastic scattering can be considered with the help of the standard electron-impurity collision integral only in combination with some additional averaging procedure (possibly including inelastic scattering or some mechanisms of electron wavefunction phase destruction). This situation is typical for degenerate semiconductors with a high concentration of dopants and conduction electrons. Quite often, heat release can be observed via transfer of heat to the lattice, i.e. via inelastic processes of electron-phonon collisions and can take place at distances much larger than the size of the device. However, a direct heating of the electron system can be registered too by, for instance, local measurements of the current noise or direct measurement of an electron distribution function. PMID:21628783
Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Cooper, C. M.; Lenardic, A.
2010-12-01
Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.
A 2D inverse problem of predicting boiling heat transfer in a long fin
NASA Astrophysics Data System (ADS)
Orzechowski, Tadeusz
2015-12-01
A method for the determination of local values of the heat transfer coefficient on non-isothermal surfaces was analyzed on the example of a long smooth-surfaced fin made of aluminium. On the basis of the experimental data, two cases were taken into consideration: one-dimensional model for Bi < 0.1 and two-dimensional model for thicker elements. In the case when the drop in temperature over the thickness could be omitted, the rejected local values of heat fluxes were calculated from the integral of the equation describing temperature distribution on the fin. The corresponding boiling curve was plotted on the basis of temperature gradient distribution as a function of superheat. For thicker specimens, where Bi > 0.1, the problem was modelled using a 2-D heat conduction equation, for which the boundary conditions were posed on the surface observed with a thermovision camera. The ill-conditioned inverse problem was solved using a method of heat polynomials, which required validation.
Anomalous diffusion of an ellipsoid in quasi-2D active fluids
NASA Astrophysics Data System (ADS)
Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang
Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.
AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS
Li, Pak Shing; Myers, Andrew; McKee, Christopher F. E-mail: atmyers@berkeley.edu
2012-11-20
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of {approx}1 and AD Reynolds numbers of {approx}20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.
Yu, Yongzhi; Zhou, Qing; Wang, Jigang
2016-02-16
The 2D g-C3N4 nanosheets were ultra-rapidly prepared via a direct microwave heating approach. The as-synthesized g-C3N4 possessed a large surface area, few stacking layers, a large aspect ratio and an enlarged bandgap. As a consequence, the excellent field emission properties of 2D g-C3N4 nanosheets were exhibited with extremely low turn-on fields. PMID:26879135
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
NASA Astrophysics Data System (ADS)
Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.
2015-05-01
In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo,
Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D
2015-05-14
In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system. PMID:25978898
Diffusive heat blanketing envelopes of neutron stars
NASA Astrophysics Data System (ADS)
Beznogov, M. V.; Potekhin, A. Y.; Yakovlev, D. G.
2016-06-01
We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H-He, He-C, C-Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density ρb ˜ 108 - 1010 g cm-3) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses ΔM of lighter ions in the envelope. Our principal result is that the Ts-Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on ΔM. The obtained relations are approximated by analytic expressions which are convenient for modelling the evolution of neutron stars.
An exact and efficient first passage time algorithm for reaction–diffusion processes on a 2D-lattice
Bezzola, Andri; Bales, Benjamin B.; Alkire, Richard C.; Petzold, Linda R.
2014-01-01
We present an exact and efficient algorithm for reaction–diffusion–nucleation processes on a 2D-lattice. The algorithm makes use of first passage time (FPT) to replace the computationally intensive simulation of diffusion hops in KMC by larger jumps when particles are far away from step-edges or other particles. Our approach computes exact probability distributions of jump times and target locations in a closed-form formula, based on the eigenvectors and eigenvalues of the corresponding 1D transition matrix, maintaining atomic-scale resolution of resulting shapes of deposit islands. We have applied our method to three different test cases of electrodeposition: pure diffusional aggregation for large ranges of diffusivity rates and for simulation domain sizes of up to 4096×4096 sites, the effect of diffusivity on island shapes and sizes in combination with a KMC edge diffusion, and the calculation of an exclusion zone in front of a step-edge, confirming statistical equivalence to standard KMC simulations. The algorithm achieves significant speedup compared to standard KMC for cases where particles diffuse over long distances before nucleating with other particles or being captured by larger islands.
An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion
NASA Astrophysics Data System (ADS)
Gou, J.; Ward, M. J.
2016-04-01
A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell
An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion
NASA Astrophysics Data System (ADS)
Gou, J.; Ward, M. J.
2016-08-01
A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell
NASA Astrophysics Data System (ADS)
Puyate, Y. T.; Rim-Rukeh, A.
A 2D model that describes diffusion of oxygen with biochemical reaction during biofilm formation process in static aqueous medium is presented. The analysis is based on X60 steel placed at the bottom of a container containing produced water inoculated with Leptothrix discophora (iron-oxidizing bacteria). These bacteria form biofilms on the exposed surfaces of the metal. The biofilm-microorganisms absorb oxygen from the produced water through biochemical reaction, resulting in transfer of oxygen from the bulk liquid phase to the biofilm. Predictions of the model are compared with experimental data and good agreement is obtained.
Coupled diffusion processes and 2D affinities of adhesion molecules at synthetic membrane junctions
NASA Astrophysics Data System (ADS)
Peel, Christopher; Choudhuri, Kaushik; Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.; Journot, Celine; Turberfield, Andrew; Wallace, Mark; Dustin, Michael
A more complete understanding of the physically intrinsic mechanisms underlying protein mobility at cellular interfaces will provide additional insights into processes driving adhesion and organization in signalling junctions such as the immunological synapse. We observed diffusional slowing of structurally diverse binding proteins at synthetic interfaces formed by giant unilamellar vesicles (GUVs) on supported lipid bilayers (SLBs) that shows size dependence not accounted for by existing models. To model the effects of size and intermembrane spacing on interfacial reaction-diffusion processes, we describe a multistate diffusion model incorporating entropic effects of constrained binding. This can be merged with hydrodynamic theories of receptor-ligand diffusion and coupling to thermal membrane roughness. A novel synthetic membrane adhesion assay based on reversible and irreversible DNA-mediated interactions between GUVs and SLBs is used to precisely vary length, affinity, and flexibility, and also provides a platform to examine these effects on the dynamics of processes such as size-based segregation of binding and non-binding species.
NASA Astrophysics Data System (ADS)
Castro, Maria Clara; Patriarche, Delphine; Goblet, Patrick
2005-09-01
Because helium and heat production results from a common source, a continental 4He crustal flux of 4.65 * 10 - 14 mol m - 2 s - 1 has been estimated based on heat flow considerations. In addition, because the observed mantle He / heat flux ratio at the proximity of mid-ocean ridges (6.6 * 10 - 14 mol J - 1 ) is significantly lower than the radiogenic production ratio (1.5 * 10 - 12 mol J - 1 ), the presence of a terrestrial helium-heat imbalance was suggested. The latter could be explained by the presence of a layered mantle in which removal of He is impeded from the lower mantle [R.K. O'Nions, E.R. Oxburgh, Heat and helium in the Earth, Nature 306 (1983) 429-431; E.R. Oxburgh, R.K. O'Nions, Helium loss, tectonics, and the terrestrial heat budget, Science 237 (1987) 1583-1588]. van Keken et al. [P.E. van Keken, C.J. Ballentine, D. Porcelli, A dynamical investigation of the heat and helium imbalance, Earth Planet, Sci. Lett. 188 (2001) 421-434] have recently claimed that the helium-heat imbalance remains a robust observation. Such conclusions, however, were reached under the assumption that a steady-state regime was in place for both tracers and that their transport properties are similar at least in the upper portion of the crust. Here, through 2-D simulations of groundwater flow, heat transfer and 4He transport carried out simultaneously in the Carrizo aquifer and surrounding formations in southwest Texas, we assess the legitimacy of earlier assumptions. Specifically, we show that the driving transport mechanisms for He and heat are of a fundamentally different nature for a high range of permeabilities ( k ≤ 10 - 16 m 2) found in metamorphic and volcanic rocks at all depths in the crust. The assumption that transport properties for these two tracers are similar in the crust is thus unsound. We also show that total 4He / heat flux ratios lower than radiogenic production ratios do not reflect a He deficit in the crust or mantle original reservoir. Instead, they
NASA Astrophysics Data System (ADS)
Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus
2015-04-01
Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2012-03-01
The massively parallel, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, PIC, Cartesian geometry UCAN code, with particle ions and adiabatic electrons, has been successfully exercised to identify non-diffusive transport characteristics in DIII-D-like tokamak discharges. The limitation in applying UCAN to larger scale discharges is the 1D domain decomposition in the toroidal (or z-) direction for massively parallel implementation using MPI which has restricted the calculations to a few hundred ion Larmor radii per minor radius. To exceed these sizes, we have implemented 2D domain decomposition in UCAN with the addition of the y-direction to the processor mix. This has been facilitated by use of relevant components in the 2D domain decomposed PLIB2 library of field and particle management routines developed for UCLA's UPIC framework of conventional PIC codes. The gyro-averaging in gyrokinetic codes has necessitated the use of replicated arrays for efficient charge accumulation and particle push. The 2D domain-decomposed UCAN2 code reproduces the original 1D domain results within roundoff. Production calculations at large system sizes have been performed with UCAN2 on 131072 processors of the Cray XE6 at NERSC.
Turcksin, Bruno Ragusa, Jean C.
2014-10-01
In this paper, a Diffusion Synthetic Acceleration (DSA) technique applied to the S{sub n} radiation transport equation is developed using Piece-Wise Linear Discontinuous (PWLD) finite elements on arbitrary polygonal grids. The discretization of the DSA equations employs an Interior Penalty technique, as is classically done for the stabilization of the diffusion equation using discontinuous finite element approximations. The penalty method yields a system of linear equations that is Symmetric Positive Definite (SPD). Thus, solution techniques such as Preconditioned Conjugate Gradient (PCG) can be effectively employed. Algebraic MultiGrid (AMG) and Symmetric Gauss–Seidel (SGS) are employed as conjugate gradient preconditioners for the DSA system. AMG is shown to be significantly more efficient than SGS. Fourier analyses are carried out and we show that this discontinuous finite element DSA scheme is always stable and effective at reducing the spectral radius for iterative transport solves, even for grids with high-aspect ratio cells. Numerical results are presented for different grid types: quadrilateral, hexagonal, and polygonal grids as well as grids with local mesh adaptivity.
High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla
Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.
2012-01-01
The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941
2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
NASA Astrophysics Data System (ADS)
Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning
2016-08-01
Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.
Lattice Boltzmann methods for some 2-D nonlinear diffusion equations:Computational results
Elton, B.H.; Rodrigue, G.H. . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Levermore, C.D. . Dept. of Mathematics)
1990-01-01
In this paper we examine two lattice Boltzmann methods (that are a derivative of lattice gas methods) for computing solutions to two two-dimensional nonlinear diffusion equations of the form {partial derivative}/{partial derivative}t u = v ({partial derivative}/{partial derivative}x D(u){partial derivative}/{partial derivative}x u + {partial derivative}/{partial derivative}y D(u){partial derivative}/{partial derivative}y u), where u = u({rvec x},t), {rvec x} {element of} R{sup 2}, v is a constant, and D(u) is a nonlinear term that arises from a Chapman-Enskog asymptotic expansion. In particular, we provide computational evidence supporting recent results showing that the methods are second order convergent (in the L{sub 1}-norm), conservative, conditionally monotone finite difference methods. Solutions computed via the lattice Boltzmann methods are compared with those computed by other explicit, second order, conservative, monotone finite difference methods. Results are reported for both the L{sub 1}- and L{sub {infinity}}-norms.
Colon flattening using heat diffusion Riemannian metric.
Gurijala, Krishna Chaitanya; Shi, Rui; Zeng, Wei; Gu, Xianfeng; Kaufman, Arie
2013-12-01
We propose a new colon flattening algorithm that is efficient, shape-preserving, and robust to topological noise. Unlike previous approaches, which require a mandatory topological denoising to remove fake handles, our algorithm directly flattens the colon surface without any denoising. In our method, we replace the original Euclidean metric of the colon surface with a heat diffusion metric that is insensitive to topological noise. Using this heat diffusion metric, we then solve a Laplacian equation followed by an integration step to compute the final flattening. We demonstrate that our method is shape-preserving and the shape of the polyps are well preserved. The flattened colon also provides an efficient way to enhance the navigation and inspection in virtual colonoscopy. We further show how the existing colon registration pipeline is made more robust by using our colon flattening. We have tested our method on several colon wall surfaces and the experimental results demonstrate the robustness and the efficiency of our method. PMID:24051852
Heat diffusion: thermodynamic depth complexity of networks.
Escolano, Francisco; Hancock, Edwin R; Lozano, Miguel A
2012-03-01
In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power. PMID:22587160
Heat diffusion: Thermodynamic depth complexity of networks
NASA Astrophysics Data System (ADS)
Escolano, Francisco; Hancock, Edwin R.; Lozano, Miguel A.
2012-03-01
In this paper we use the Birkhoff-von Neumann decomposition of the diffusion kernel to compute a polytopal measure of graph complexity. We decompose the diffusion kernel into a series of weighted Birkhoff combinations and compute the entropy associated with the weighting proportions (polytopal complexity). The maximum entropy Birkhoff combination can be expressed in terms of matrix permanents. This allows us to introduce a phase-transition principle that links our definition of polytopal complexity to the heat flowing through the network at a given diffusion time. The result is an efficiently computed complexity measure, which we refer to as flow complexity. Moreover, the flow complexity measure allows us to analyze graphs and networks in terms of the thermodynamic depth. We compare our method with three alternative methods described in the literature (Estrada's heterogeneity index, the Laplacian energy, and the von Neumann entropy). Our study is based on 217 protein-protein interaction (PPI) networks including histidine kinases from several species of bacteria. We find a correlation between structural complexity and phylogeny (more evolved species have statistically more complex PPIs). Although our methods outperform the alternatives, we find similarities with Estrada's heterogeneity index in terms of network size independence and predictive power.
NASA Astrophysics Data System (ADS)
Karthick Kumar, S. K.; Tamimi, A.; Fayer, M. D.
2012-11-01
Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum
Luo, Wenbin; Yao, Xiaolan; Hong, Mei
2005-05-01
One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348
FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599
Moisture Diffusivity Characteristics of Rough Rice Under Infrared Radiation Heating
Technology Transfer Automated Retrieval System (TEKTRAN)
To design an efficient infrared (IR) dryer for rough rice, it is important to understand the drying behavior of rice grains under infrared heating. The objective of this study was to determine the moisture diffusivity and moisture diffusivity coefficient of rough rice under IR heating and cooling. ...
Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani
2014-04-01
This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. PMID:24262540
Karthick Kumar, S K; Tamimi, A; Fayer, M D
2012-11-14
Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement. PMID:23163363
NASA Technical Reports Server (NTRS)
Hammel, R. L. (Editor); Smith, A. G. (Editor)
1974-01-01
The design and application of a supplementary power and heat rejection kit for the Spacelab are discussed. Two subsystems of electric power and thermal control were analyzed to define the requirements for the power and heat rejection kit (PHRK). Twelve exemplary experiments were defined and power timelines were developed. From these timeline, the experiment requirements for sustained power, peak power, and energy were determined. The electrical power subsystem of the PHRK will consist of two fuel cells, oxygen and hydrogen reactant tank assemblies, water storage tanks, plumbing, cabling, and inverters to convert the nominal 28 volt dc fuel cell output to ac power.
TOPAZ - a finite element heat conduction code for analyzing 2-D solids
Shapiro, A.B.
1984-03-01
TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.
SU-E-T-196: Heat Diffusion Modeling for Digital Holographic Interferometry Dosimetry
Cavan, A; Meyer, J
2014-06-01
Purpose: We have previously demonstrated that with Digital Holographic Interferometry (DHI) 2D spatial calorimetric measurements of high dose rate radiation sources can be obtained. The impact of heat transfer must be considered when undertaking any form of calorimetric measurement, as the radiation induced temperature distributions are subject to degradation due to heat diffusion. Unaccounted for, this limits the accuracy of the approach especially for long delivery times. Methods: 3D modelling of the heat diffusion in water was undertaken, and two different approaches developed to account for this effect. The mathematical framework to describe heat diffusion in 3D was applied, with the differential equations solved numerically using an implicit method. The first approach involved the comparison of the DHI measurements to an independent dose model of the source. The model was forward modeled to account for the heat diffusion during irradiation, allowing a direct comparison to validate the measured results. The second approach involved the correction of the measured data directly, by comparing the temperature distribution of two instances and subtracting the effects of heat diffusion of the first distribution from the second instance. This required the use of the Abel transform to approximate the 3D dose distribution from the 2D DHI results, thus limiting the approach to radiation applications possessing cylindrical symmetry. Results: The first approach resulted in higher accuracy and was more straightforward, but has a major limitation in that the measured results are only able to be utilized in comparison with an independent dose model. The applicability of the second approach is affected by noise in the measurement data and introduces higher uncertainties, but results in higher usability of the final data. Conclusion: Both approaches were implemented, and if used in conjunction would provide the most utility for the interpretation and use of DHI measurements.
Effect of radiation heat transfer on thermal diffusivity measurements
NASA Astrophysics Data System (ADS)
Araki, N.
1990-03-01
Experimental data on thermal conductivity and thermal diffusivity of a semitransparent material generally include an error due to the radiation heat transfer. This error varies in accordance with the experimental conditions such as the temperature level of the sample and the measuring method. In this paper, research on the influence of radiation heat transfer on thermal diffusivity are reviewed, and as an example, the method to correct the radiation component in the apparent thermal diffusivity measured by the stepwise heating technique is presented. The transient heat transfer by simultaneous thermal conduction and radiation in a semitransparent material is analyzed when the front surface is subjected to stepwise heating. The apparent thermal diffusivity, which includes the radiation component, is calculated for various parameters.
A 2-D oscillating flow analysis in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.; Ibrahim, Mounir B.
1991-01-01
A two-dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.
A 2-D oscillating flow analysis in Stirling engine heat exchangers
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.; Ibrahim, Mounir B.
1991-01-01
A two dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.
Measurement of residual radioactive surface contamination by 2-D laser heated TLD
Jones, S.C.
1997-06-01
The feasibility of applying and adapting a two-dimensional laser heated thermoluminescence dosimetry system to the problem of surveying for radioactive surface contamination was studied. The system consists of a CO{sub 2} laser-based reader and monolithic arrays of thin dosimeter elements. The arrays consist of 10,201 thermoluminescent phosphor elements of 40 micron thickness, covering a 900 cm{sup 2} area. Array substrates are 125 micron thick polyimide sheets, enabling them to easily conform to regular surface shapes, especially for survey of surfaces that are inaccessible for standard survey instruments. The passive, integrating radiation detectors are sensitive to alpha and beta radiation at contamination levels below release guideline limits. Required contact times with potentially contaminated surfaces are under one hour to achieve detection of transuranic alpha emission at 100 dpm/100 cm{sup 2}. Positional information obtained from array evaluation is useful for locating contamination zones. Unique capabilities of this system for survey of sites, facilities and material include measurement inside pipes and other geometrical configurations that prevent standard surveys, and below-surface measurement of alpha and beta emitters in contaminated soils. These applications imply a reduction of material that must be classified as radioactive waste by virtue of its possibility of contamination, and cost savings in soil sampling at contaminated sites.
NASA Astrophysics Data System (ADS)
Monkewitz, Peter A.; Mingori, D. L.
1992-04-01
Close to the onset of self-excited fluid oscillations the generic complex Ginzburg-Landau is proposed as the lowest order model for the plant. Its linear part which provides the stability boundaries is derived from first principles for both doubly-infinite and semi-infinite flow domains. Concentrating on a single global mode, the model is further simplified to the Stuart-Landau equation. For this latter model, a methodology is developed for the design of single-input single-output controllers. The so designed controllers have been implemented on a self-excited, heated two-dimensional jet with one hot wire as sensor and an acoustic speaker as actuator, and are shown to be effective within their limitations in suppressing or enhancing limit-cycle oscillations. Finally, the effect of of a controller designed to suppress the most unstable global mode on other modes is investigated experimentally in the wake of a cylinder at low Reynolds number, where an encouraging semi-quantitative correspondence to the Ginzburg-Landau model is found.
NASA Astrophysics Data System (ADS)
Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali
2016-07-01
In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.
Critical Heat Flux Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section
Jeong, Yong Hoon; Chang, Soon Heung; Baek, Won-Pil
2005-11-15
The critical heat flux (CHF) on the reactor vessel outer wall was measured using the two-dimensional slice test section. The radius and the channel area of the test section were 2.5 m and 10 cm x 15 cm, respectively. The flow channel area and the heater width were smaller than those of the ULPU experiments, but the radius was greater than that of the ULPU. The CHF data under the inlet subcooling of 2 to 25 deg. C and the mass flux 0 to 300 kg/m{sup 2}.s had been acquired. The measured CHF value was generally slightly lower than that of the ULPU. The difference possibly comes from the difference of the test section material and the thickness. However, the general trend of CHF according to the mass flux was similar with that of the ULPU. The experimental CHF data were compared with the predicted values by SULTAN correlation. The SULTAN correlation predicted well this study's data only for the mass flux higher than 200 kg/m{sup 2}.s, and for the exit quality lower than 0.05. The local condition-based correlation was developed, and it showed good prediction capability for broad quality (-0.01 to 0.5) and mass flux (<300 kg/m{sup 2}.s) conditions with a root-mean-square error of 2.4%. There were increases in the CHF with trisodium phosphate-added water.
A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields
Zigh, Ghani; Solis, Jorge; Fort, James A.
2011-01-14
In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as
NASA Astrophysics Data System (ADS)
Polukhin, V. A.; Kurbanova, E. D.
2016-02-01
Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).
NASA Astrophysics Data System (ADS)
Ghazanfarian, J.; Abbassi, A.
2012-03-01
Analytical and numerical solutions of the 2D transient dual-phase-lag (DPL) heat conduction equation are presented in this article. The geometry is that of a simplified metal oxide semiconductor field effect transistor with a heater placed on it. A temperature jump boundary condition is used on all boundaries in order to consider boundary phonon scattering at the micro- and nanoscale. A combination of a Laplace transformation technique and separation of variables is used to solve governing equations analytically, and a three-level finite difference scheme is employed to generate numerical results. The results are illustrated for three Knudsen numbers of 0.1, 1, and 10 at different instants of time. It is seen that the wave characteristic of the DPL model is strengthened by increasing the Knudsen number. It is found that the combination of the DPL model with the proposed mixed-type temperature boundary condition has the potential to accurately predict a 2D temperature distribution not only within the transistor itself but also in the near-boundary region.
Heat diffusion in the disordered electron gas
NASA Astrophysics Data System (ADS)
Schwiete, G.; Finkel'stein, A. M.
2016-03-01
We study the thermal conductivity of the disordered two-dimensional electron gas. To this end, we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the subtemperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat density correlation function, the balance of various terms turns out to be rather different from that for the correlation functions of other conserved quantities such as the density-density or spin density-spin density correlation function.
NASA Astrophysics Data System (ADS)
Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko
2016-08-01
We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0±15.4kJ/mol/RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
NASA Astrophysics Data System (ADS)
Popescu, Maria-Cristina; Froidevaux, Julien; Navi, Parviz; Popescu, Carmen-Mihaela
2013-02-01
It is known that heat treatment of wood combined with a low percent of relative humidity causes transformations in the chemical composition of it. The modifications and/or degradation of wood components occur by hydrolysis, oxidation, and decarboxylation reactions. The aim of this study was to give better insights on wood chemical modifications during wood heat treatment under low temperature at about 140 °C and 10% percentage of relative humidity, by infrared, principal component analysis and two dimensional infrared correlation spectroscopy. For this purpose, hardwood samples of lime (Tilia cordata) were investigated and analysed. The infrared spectra of treated samples were compared with the reference ones, the most important differences being observed in the "fingerprint" region. Due to the complexity of this region, which have contributions from all the wood constituents the chemical changes during hydro-thermal treatment were examined in detail using principal component analysis and 2D IR correlation spectroscopy. By hydro-thermal treatment of wood results the formation of acetic acid, which catalyse the hydrolysis reactions of hemicelluloses and amorphous cellulose. The cleavage of the β-O-4 linkages and splitting of the aliphatic methoxyl chains from the aromatic lignin ring was also observed. For the first treatment interval, a higher extent of carbohydrates degradation was observed, then an increase of the extent of the lignin degradation also took place.
Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes
Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia
2013-03-01
The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.
Diffusion of Heat from a Line Source in Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Uberoi, Mahinder S; Corrsin, Stanley
1953-01-01
An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.
Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain
NASA Astrophysics Data System (ADS)
Ren, Xiaoxia; Xiang, Zhaoyin; Zhang, Zhifei
2016-04-01
We study the initial boundary value problem of two dimensional MHD equations without magnetic diffusion in a strip domain. It was proved that the MHD equations have a unique global strong solution around the equilibrium state ≤ft(0,{{\\mathbf{e}}1}\\right) for both the non-slip boundary condition and Navier slip boundary condition on the velocity.
NASA Astrophysics Data System (ADS)
Ahn, J.-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.
2013-07-01
Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2-D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. The degree of asymmetry (ɛDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.
Conklin, Chris J.; Middleton, Devon M.; Alizadeh, Mahdi; Finsterbusch, Jürgen; Raunig, David L.; Faro, Scott H.; Shah, Pallav; Krisa, Laura; Sinko, Rebecca; Delalic, Joan Z.; Mulcahey, M.J.; Mohamed, Feroze B.
2016-01-01
Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms
Conklin, Chris J; Middleton, Devon M; Alizadeh, Mahdi; Finsterbusch, Jürgen; Raunig, David L; Faro, Scott H; Shah, Pallav; Krisa, Laura; Sinko, Rebecca; Delalic, Joan Z; Mulcahey, M J; Mohamed, Feroze B
2016-01-01
Magnetic resonance based diffusion imaging has been gaining more utility and clinical relevance over the past decade. Using conventional echo planar techniques, it is possible to acquire and characterize water diffusion within the central nervous system (CNS); namely in the form of Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI). While each modality provides valuable clinical information in terms of the presence of diffusion and its directionality, both techniques are limited to assuming an ideal Gaussian distribution for water displacement with no intermolecular interactions. This assumption neglects pathological processes that are not Gaussian therefore reducing the amount of potentially clinically relevant information. Additions to the Gaussian distribution measured by the excess kurtosis, or peakedness, of the probabilistic model provide a better understanding of the underlying cellular structure. The objective of this work is to provide mathematical and experimental evidence that Diffusion Kurtosis Imaging (DKI) can offer additional information about the micromolecular environment of the pediatric spinal cord. This is accomplished by a more thorough characterization of the nature of random water displacement within the cord. A novel DKI imaging sequence based on a tilted 2D spatially selective radio frequency pulse providing reduced field of view (FOV) imaging was developed, implemented, and optimized on a 3 Tesla MRI scanner, and tested on pediatric subjects (healthy subjects: 15; patients with spinal cord injury (SCI):5). Software was developed and validated for post processing of the DKI images and estimation of the tensor parameters. The results show statistically significant differences in mean kurtosis (p < 0.01) and radial kurtosis (p < 0.01) between healthy subjects and subjects with SCI. DKI provides incremental and novel information over conventional diffusion acquisitions when coupled with higher order estimation algorithms
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.
2015-08-01
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
Ivanov, Konstantin L; Sadovsky, Vladimir M; Lukzen, Nikita N
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
Ivanov, Konstantin L. Lukzen, Nikita N.; Sadovsky, Vladimir M.
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting
NASA Astrophysics Data System (ADS)
Vukadinovic, J.; Dedits, E.; Poje, A. C.; Schäfer, T.
2015-08-01
We consider the two-dimensional advection-diffusion equation (ADE) on a bounded domain subject to Dirichlet or von Neumann boundary conditions involving a Liouville integrable Hamiltonian. Transformation to action-angle coordinates permits averaging in time and angle, resulting in an equation that allows for separation of variables. The Fourier transform in the angle coordinate transforms the equation into an effective diffusive equation and a countable family of non-self-adjoint Schrödinger equations. For the corresponding Liouville-Sturm problem, we apply complex-plane WKB methods to study the spectrum in the semi-classical limit for vanishing diffusivity. The spectral limit graph is found to consist of analytic curves (branches) related to Stokes graphs forming a tree-structure. Eigenvalues in the neighborhood of branches emanating from the imaginary axis are subject to various sublinear power laws with respect to diffusivity, leading to convection-enhanced rates of dissipation of the corresponding modes. The solution of the ADE converges in the limit of vanishing diffusivity to the solution of the effective diffusion equation on convective time scales that are sublinear with respect to the diffusive time scales.
Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers
R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge
2011-04-01
The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)
1998-01-01
We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.
2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion.
Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning
2016-08-01
Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility. PMID:27159015
Fan, D.; Geng, C.; Chen, L.Q.
1997-03-01
The local kinetics and topological phenomena during normal grain growth were studied in two dimensions by computer simulations employing a continuum diffuse-interface field model. The relationships between topological class and individual grain growth kinetics were examined, and compared with results obtained previously from analytical theories, experimental results and Monte Carlo simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant and the linear relationship between the mean radii of individual grains and topological class n was reproduced. The moments of the shape distribution were determined, and the differences among the data from soap froth. Potts model and the present simulation were discussed. In the limit when the grain size goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental observations on thin films. Based on the simulation results, the conditions for the applicability of the familiar Mullins-Von Neumann law and the Hillert`s equation were discussed.
Diffusion in mixed solvents. II - The heat of mixing parameter
NASA Technical Reports Server (NTRS)
Carapellucci, P. A.
1975-01-01
Correlation of second-order rate constants for many reactions involving electron transfer between organic molecules, solvated electron reactions, iodine diffusion coefficients, and triplet state electron transfer reactions has been made with the heat of mixing parameter (HMP) for the aqueous binary solvent systems. The aqueous binary solvents studied are those containing methanol or ethanol (type I solvent); 1-propanol or tert-butyl alcohol (type II solvent); or sucrose or glycerol (type III solvent). A plot of the HMP vs. the diffusion parameter for each reaction yields superimposable curves for these reactions in a particular solvent mixture over the entire solvent mixture range, irrespective of the value of the reaction's rate constant or diffusion coefficient in water.
NASA Astrophysics Data System (ADS)
Ju, Ning
2016-07-01
New results are obtained for global regularity and long-time behavior of the solutions to the 2D Boussinesq equations for the flow of an incompressible fluid with positive viscosity and zero diffusivity in a smooth bounded domain. Our first result for global boundedness of the solution {(u, θ)} in {D(A)× H^1} improves considerably the main result of the recent article (Hu et al. in J Math Phys 54(8):081507, 2013). Our second result on global boundedness of the solution {(u, θ)} in {V× H^1} for both bounded domain and the whole space {{R}2} is a new one. It has been open and also seems much more challenging than the first result. Global regularity of the solution {(u, θ)} in {D(A)× H2} is also proved.
A microscale thermophoretic turbine driven by external diffusive heat flux
NASA Astrophysics Data System (ADS)
Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke
2014-10-01
We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling.We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03990d
Manipulation of heat-diffusion channel in laser thermal lithography.
Wei, Jingsong; Wang, Yang; Wu, Yiqun
2014-12-29
Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system. PMID:25607209
NASA Astrophysics Data System (ADS)
Insfrán, J. F.; Ubal, S.; Di Paolo, y. J.
2016-04-01
A simplified model of a proximal convoluted tubule of an average human nephron is presented. The model considers the 2D axisymmetric flow of the luminal solution exchanging matter with the tubule walls and the peritubular fluid by means of 0D models for the epithelial cells. The tubule radius is considered to vary along the conduit due to the trans-epithelial pressure difference. The fate of more than ten typical solutes is tracked down by the model. The Navier-Stokes and Reaction-Diffusion-Advection equations (considering the electro-neutrality principle) are solved in the lumen, giving a detailed picture of the velocity, pressure and concentration fields, along with trans-membrane fluxes and tubule deformation, via coupling with the 0D model for the tubule wall. The calculations are carried out numerically by means of the finite element method. The results obtained show good agreement with those published by other authors using models that ignore the diffusive transport and disregard a detailed calculation of velocity, pressure and concentrations. This work should be seen as a first approach towards the development of a more comprehensive model of the filtration process taking place in the kidneys, which ultimately helps in devising a device that can mimic/complement the renal function.
NASA Astrophysics Data System (ADS)
Sharapov, V. N.; Cherepanov, A. N.; Popov, V. N.; Bykova, V. G.
2012-11-01
A model describing two-dimensional (2D) dynamics of heat transfer in the fluid systems with a localized sink of a magmatic fluid into local fractured zones above the roof of crystallizing crustal intrusions is suggested. Numerical modeling of the migration of the phase boundaries in 2D intrusive chambers under retrograde boiling of magma with relatively high initial water content in the melt shows that, depending on the character of heat dissipation from a magmatic fluid into the host rock, two types of fluid magmatic systems can arise. (1) At high heat losses, the zoning of fluidogenic ore formation is determined by the changes in temperature of the rocks within the contact aureole of the intrusive bodies. These temperature variations are controlled by the migration of the phase boundaries in the cooling melt towards the center of the magmatic bodies from their contacts. (2) In the case of a localized sink of the magmatic fluid in different parts of the top of the intrusive chambers, a specific characteristic scenario of cooling of the magmatic bodies is probably implemented. In 2D systems with a heat transfer coefficient α k < 5 × 104 W/m2 K, an area with quasi-stationary phase boundaries develops close to the region of fluid drainage through the fractured zone in the intrusion. Therefore, as the phase boundaries contract to the sink zone of a fluid, specific thermal tubes arise, whose characteristics depend on the width of the fluid-conductive zone and the heat losses into the side rocks. (3) The time required for the intrusion to solidify varies depending on the particular position of the fluid conductor above the top of the magmatic body.
Marinak, M. )
1990-02-01
The problem of deducing {chi}{sub e} from measurements of the propagation of a monopole heatpulse is considered. An extended diffusive model, which takes into account perturbed sources and sinks is extended to the case of a monopole heat input. {chi}{sub e} is expressed as a function of two observables, the heat pulse velocity and the radial damping rate. Two simple expressions valid for two different ranges of the radius of the poloidal waist of the beam power profile are given. The expressions are valid in the heat pulse measurement region, extending radially 0.05a beyond the beam power waist to near 0.6a. The inferred {chi}{sub e} is a local value, not an average value of the radial {chi}{sub e} profile. 7 refs., 6 figs., 1 tab.
A microscale thermophoretic turbine driven by external diffusive heat flux.
Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke
2014-11-21
We propose a theoretical prototype of a micro-scale turbine externally driven by diffusive heat flux without the need for macroscopic particle flux, which is in sharp contrast to conventional turbines. The prototypes are described analytically and validated by computer simulations. Our results indicate that a micro-scale turbine composed of anisotropic blades can rotate unidirectionally in an external temperature gradient due to the anisotropic thermophoresis effect. The rotational direction and speed depend on the temperature gradient, the geometry and the thermophoretic properties of the turbine. The proposed thermophoretic turbines can be experimentally realized and implemented on micro-devices such as computer-chips to recover waste heat or to facilitate cooling. PMID:25268245
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
Role of heat generation and thermal diffusion during frontal photopolymerization.
Hennessy, Matthew G; Vitale, Alessandra; Cabral, João T; Matar, Omar K
2015-08-01
Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction. PMID:26382412
Role of heat generation and thermal diffusion during frontal photopolymerization
NASA Astrophysics Data System (ADS)
Hennessy, Matthew G.; Vitale, Alessandra; Cabral, João T.; Matar, Omar K.
2015-08-01
Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction.
NASA Astrophysics Data System (ADS)
Yang, PeiPei; Wen, Zhi; Dou, RuiFeng; Liu, Xunliang
2016-08-01
Flow and heat transfer through a 2D random porous medium are studied by using the lattice Boltzmann method (LBM). For the random porous medium, the influence of disordered cylinder arrangement on permeability and Nusselt number are investigated. Results indicate that the permeability and Nusselt number for different cylinder locations are unequal even with the same number and size of cylinders. New correlations for the permeability and coefficient b‧Den of the Forchheimer equation are proposed for random porous medium composed of Gaussian distributed circular cylinders. Furthermore, a general set of heat transfer correlations is proposed and compared with existing experimental data and empirical correlations. Our results show that the Nu number increases with the increase of the porosity, hence heat transfer is found to be accurate considering the effect of porosity.
Mechanisms of folate losses during processing: diffusion vs. heat degradation.
Delchier, Nicolas; Ringling, Christiane; Maingonnat, Jean-François; Rychlik, Michael; Renard, Catherine M G C
2014-08-15
Though folates are sensitive to heat treatments, leaching appears to be a major mechanism involved in folate losses in vegetables during processing. The aim of our study was to study folate diffusivity and degradation from spinach and green beans, in order to determine the proportion of each mechanism involved in folate losses. Folate diffusivity constant, calculated according to Fick's second law (Crank, 1975), was 7.4×10(-12) m(2)/s for spinach and 5.8×10(-10) m(2)/s for green beans, which is the same order of magnitude as for sugars and acids for each vegetable considered. Folate thermal degradation kinetics was not monotonous in spinach and green beans especially at 45 °C and did not follow a first order reaction. The proportion of vitamers changed markedly after thermal treatment, with a better retention of formyl derivatives. For spinach, folate losses were mainly due to diffusion while for green beans thermal degradation seemed to be preponderant. PMID:24679802
Super heat diffusion in one-dimensional momentum-conserving nonlinear lattices
NASA Astrophysics Data System (ADS)
Wang, Lei; Wu, Zhiyuan; Xu, Lubo
2015-06-01
Heat diffusion processes in various one-dimensional total-momentum-conserving nonlinear lattices with symmetric interaction and asymmetric interaction are systematically studied. It is revealed that the asymmetry of interaction largely enhances the heat diffusion; while according to our existing studies for heat conduction in the same lattices, it slows the divergence of heat conductivity in a wide regime of system size. These findings violate the proposed relations that connect anomalous heat conduction and super heat diffusion. The generality of those expectations is thus questioned.
Transport simulations of ITER with empirical heat diffusivity scaling
NASA Astrophysics Data System (ADS)
Becker, G.
1998-02-01
Radiative mantle scenarios of the ignited ITER Engineering Design Activity (EDA) with argon and neon influxing are explored by computer experiments using special versions of the 1.5 dimensional (1.5-D) BALDUR predictive transport code. An empirical scaling law for the effective heat diffusivity, compatible with the ITERH92-P ELMy H mode scaling and validated against experiments, is applied. The prescribed flat density profiles, conductive heat loss across the separatrix of 200 MW and ratio τ*He/ τE,r of 10 are reached in the simulations. Self-sustained thermonuclear burn is achieved for at least 485 s. The helium ash concentrations of up to 9.5% are found to cause significant fuel dilution. Owing to the high electron density, only small argon and neon fractions of 0.07 and 0.27%, respectively, are needed. In the argon scenario, the required radiation corrected thermal energy confinement time τE,r is 4.8 s. The confinement time predicted by the local scaling law is 1.4 times longer and agrees with the global scaling prediction. With argon, the design parameters are reached by radiating 128 MW within the separatrix, thus reducing the energy flow to the divertor to 73 MW. In the neon case with its more peripheral radiation, the radiative loss within the separatrix has to be diminished. Owing to the flat profile of the fuel ion density, the neoclassical drift velocities of argon and neon are directed outwards in the whole plasma. In the argon scenario, the sensitivity of transport to the density profile shape is studied. It is found that τE,r remains almost unchanged, varying between 4.5 and 4.8 s, which is explained by an analytic expression for the thermal energy. Peaking of the electron and impurity densities does not alter the required argon concentration but causes a peaking of the radiation profiles and reduction in the temperatures. Sufficiently narrow fuel ion density profiles are shown to cause inward directed neoclassical drift velocities of argon in the
Defect characterisation based on heat diffusion using induction thermography testing
NASA Astrophysics Data System (ADS)
He, Yunze; Pan, Mengchun; Luo, Feilu
2012-10-01
Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded.
Defect characterisation based on heat diffusion using induction thermography testing.
He, Yunze; Pan, Mengchun; Luo, Feilu
2012-10-01
Pulsed eddy current (PEC) thermography (a.k.a. induction thermography) has been successfully applied to detect defects (corrosion, cracks, impact, and delamination) in metal alloy and carbon fiber reinforced plastic. During these applications, the defect detection mechanism is mainly investigated based on the eddy current interaction with defect. In this paper, defect characterisation for wall thinning defect and inner defect in steel is investigated based on heat diffusion. The paper presents the PEC thermography testing, which integrates the reflection mode and transmission mode by means of configuring two cameras on both sides of sample. The defect characterisation methods under transmission mode and reflection mode are investigated and compared through 1D analytical analysis, 3D numerical studies, and experimental studies. The suitable detection mode for wall thinning and inner defects quantification is concluded. PMID:23126785
NASA Technical Reports Server (NTRS)
Heath, D. M.; Winfree, William P.
1990-01-01
An inductive heating technique for making thermal diffusivity images of disbonds between thermal protective coatings and their substrates is presented. Any flaw in the bonding of the coating and the substrate shows as an area of lowered values in the diffusivity image. The benefits of the inductive heating approach lie in its ability to heat the conductive substrate without directly heating the dielectric coating. Results are provided for a series of samples with fabricated disbonds, for a range of coating thicknesses.
Technology Transfer Automated Retrieval System (TEKTRAN)
Diffusive heat flux at the soil surface is commonly determined as a mean value over a time period using heat flux plates buried at some depth (e.g., 5 to 8 cm) below the surface with a correction to surface flux based on the change in heat storage during the corresponding time period in the soil lay...
Non-diffusive heat transport during electron cyclotron heating on the DIII-D tokamak
Petty, C.C.; Luce, T.C.; Lohr, J.; Matsuda, K.; Prater, R.; Stockdale, R. ); Hass, J.C.M. de; James, R.A. )
1991-04-01
Of central importance to magnetic confinement fusion is the understanding of cross-field heat transport, which is usually modeled as a diffusive process down a temperature gradient with a small additional convective term due to particle transport. This paper reports results from off-axis electron cyclotron heating (ECH) experiments which cannot be adequately described in this framework. In particular, net heat appears to be flowing up the temperature gradient in the electron channel. Electron cyclotron heating experiments at 60 GHz have been carried out in the DIII-D tokamak with launched power levels up to 1.4 MW. The ECH launch system, located on the inside wall at z = +13 cm, launches the extraordinary X-mode in a Gaussian pattern with a 12{degrees} half width. Eight antennas direct their power at 15{degrees} and two antennas direct their power at {plus minus}30{degrees} with respect to the major radius. The orientation is such to drive current aiding the Ohmic current for normal operation. 5 refs., 5 figs.
Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers
R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge
2011-12-01
The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved
Augmentation of heat transfer by subsonic diffusion at a nearly separated state
NASA Technical Reports Server (NTRS)
Boldman, D. R.
1972-01-01
Measurements of mean velocity, turbulence intensity, and wall heat transfer were obtained in a 13 deg total angle of divergence conical diffuser coupled to a constant diameter recovery section. The results indicated that the boundary layer was in a nearly separated state. Turbulence intensity levels approaching 0.4 were observed in the latter stages of diffusion. The convective heat transfer was always equal to or higher than corresponding values for fully developed pipe flow at the same Reynolds number. The augmentation in heat transfer was greatest during the latter stages of diffusion where the Stanton number was nearly three times the pipe flow value.
Chen, Tao; Yang, Ming-xing
2012-03-01
Be-diffused, heated and untreated bicolor sapphires (blue and yellow) from Changle City, Shandong Province, China were studied by using standard gemological methods, ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR) spectroscopy, electron microprobe, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain the spectra characterization, and to suggest identification methods for them. Only Fe(3+)-Fe3+ absorption bands formed in ultraviolet region appear in Be-diffused bicolor sapphire, which is especially strong at 377 nm. In IR absorption spectra, absorption peak at 3 310 cm(-1) appears in heated and untreated bicolor sapphires, while it disappears in Be-diffused bicolor sapphire. Therefore, UV-Vis and IR absorption spectra can be used to identify Be-diffused, heated and untreated bicolor sapphires. On the other hand, methylene iodide immersion observation also can be used to identify Be-diffused bicolor sapphire. PMID:22582625
Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific
NASA Astrophysics Data System (ADS)
Cronin, Meghan F.; Pelland, Noel A.; Emerson, Steven R.; Crawford, William R.
2015-11-01
Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20 m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1 × 10-4 m2/s during summer, increasing to ˜3 × 10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivities are found based upon the mixed layer heat budget: ˜ 3 × 10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.
Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific
NASA Astrophysics Data System (ADS)
Cronin, M. F.; Pelland, N.; Emerson, S. R.; Crawford, W. R.
2015-12-01
Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20-m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1×10-4 m2/s during summer, increasing to ~3×10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivity are found based upon the mixed layer heat budget: ~ 3×10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.
Diffusion Welding of Compact Heat Exchangers for Nuclear Applications
Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson
2012-06-01
The next--generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750--900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.
Thermal Diffusion of Heat Pulse in Subcooled Liquid Nitrogen
NASA Astrophysics Data System (ADS)
Chang, H. M.; Byun, J. J.; Choi, J. H.; Ha, C. J.; Kim, M. J.; Kim, H. M.; Ko, T. K.
2006-04-01
Transient heat transfer caused by a heat pulse in subcooled liquid nitrogen is investigated experimentally. This study is part of our ongoing efforts to develop a stable cryogenic cooling system for superconducting fault current limiters (SFCL) in Korea. A thin heater attached by epoxy on one surface of a GFRP plate is immersed in a liquid-nitrogen bath at temperatures between 77 K and 65 K. A strong heat flux up to 150 W/cm2 is generated for 100 ms, and the temperature of the heater surface is measured as a function of time. The behavior of bubbles on the heating surface can be indirectly explained by comparing the measured temperature history for vertical and two different horizontal (up and down) orientations. It is concluded that subcooling liquid nitrogen below 70 K is a very effective method to suppress bubbles and result in better thermal protection and faster recovery from a heat pulse.
NASA Astrophysics Data System (ADS)
Ford, Jason E.; McCoy, Anne B.
2016-02-01
In this work the efficacy of a combined approach for capturing rovibrational coupling is investigated. Specifically, the multi-state rotational DMC method is used in combination with fixed-node DMC in a study of the rotation vibration energy levels of H2D+ and HD2+. Analysis of the results of these calculations shows very good agreement between the calculated energies and previously reported values. Where differences are found, they can be attributed to Coriolis couplings, which are large in these ions and which are not fully accounted for in this approach.
Self-diffusion of vibrational states: Impact on the heat transfer in hypersonic flows
NASA Astrophysics Data System (ADS)
Josyula, E.; Kustova, E. V.; Vedula, P.
2014-12-01
In the present paper, the influence of self-diffusion of vibrationally excited states on the fluid dynamics and surface heat transfer in an axisymmetric Mach 7.2 air flow past a sphere-cone is discussed. Two models for state-to-state transport properties are considered: a simplified model using the Eucken's relation for thermal conductivity and Fick's law for diffusion velocities with the constant Lewis number, and a rigorous kinetic theory based model for the calculation of state-specific thermal conductivity, diffusion and thermal diffusion coefficients. The simplified model is applied for the flowfield simulation to avoid high computational costs. For the application of the accurate kinetic theory approach, a post-processing procedure is used. Inclusion of self-diffusion results in an increase in the surface heat flux of up to 6.5% upstream of a shoulder region. Thermal conductivity is found to be the primary contributor to surface heat flux; the influence of mass and thermal diffusion is found to be negligible. Self-diffusion has a considerably greater influence in decreasing heat flux in the downstream regions far from stagnation point.
NASA Astrophysics Data System (ADS)
Tsitverblit, N.
1999-09-01
This work uncovers the instabilities arising in laterally heated stably stratified systems when the diffusivities of the two involved components are equal. These instabilities are demonstrated to be the result of the differential diffusion caused by the unequal lateral diffusion gradients of the components. Such gradients form in the perturbed state due to the different side-wall boundary conditions. Examination of the bifurcation phenomena in the finite enclosures with equal diffusivities exhibited most qualitative features established by Tsitverblit and Kit [Phys. Fluids A 5, 1062 (1993)] and Tsitverblit [Phys. Fluids 7, 718 (1995)] for such phenomena in the heat-salt problem. In the behavior of singularities and steady flows, a number of the regularities that are not distinct in the heat-salt case were distinguished. Additional results obtained with the solute sidewall boundary conditions being of the same (fixed-value) type as the temperature conditions were also discussed.
NASA Astrophysics Data System (ADS)
Huber, Markus; Tailleux, Remi; Ferreira, David; Kuhlbrodt, Till; Gregory, Jonathan
2015-04-01
The classic vertical advection-diffusion (VAD) balance is a central concept in studying the ocean heat budget, in particular in simple climate models (SCMs). Here we present a new framework to calibrate the parameters of the VAD equation to the vertical ocean heat balance of two fully-coupled climate models that is traceable to the models' circulation as well as to vertical mixing and diffusion processes. Based on temperature diagnostics, we derive an effective vertical velocity w∗ and turbulent diffusivity kν∗ for each individual physical process. In steady state, we find that the residual vertical velocity and diffusivity change sign in middepth, highlighting the different regional contributions of isopycnal and diapycnal diffusion in balancing the models' residual advection and vertical mixing. We quantify the impacts of the time evolution of the effective quantities under a transient 1% CO2 simulation and make the link to the parameters of currently employed SCMs.
Heat production by diffusion of pure spin current
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro; Saslow, Wayne M.
2016-02-01
The theoretical investigation of the dissipation due to a pure spin current generated by spin pumping in a ferromagnetic/nonmagnetic bilayer is studied. The analytical solution of the dissipation is specifically derived. We show that the dissipation becomes zero when the spin diffusion length of the nonmagnet becomes sufficiently longer than its thickness. We also show that the second law of the thermodynamics is guaranteed.
NASA Astrophysics Data System (ADS)
Najafi, Amin
2014-05-01
Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.
1978-01-01
A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.
Wells, Nathan P; Lessard, Guillaume A; Phipps, Marry E; Goodwin, Peter M; Werner, James H; Lidke, Diane S; Wilson, Bridget S
2008-01-01
The ability to follow and observe single molecules as they function in live cells would represent a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in 3 dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based on four spatial filters and closed loop feedback to constantly keep a single quantum dot in the focal spot. Using this microscope, we demonstrate the ability to follow quantum dot-labeled IgE antibodies bound to Fc{epsilon}Rl membrane receptors in live RBL-2H3 cells. The results are consistent with prior studies of 2 dimensional membrane diffusion (Andrews et al., Nat. Cell Biol., 10, 955, 2008). In addition, the microscope captures motion in the axial (Z) direction, which permits tracking of diffusing receptors relative the 'hills and valley' of the dynamically changing membrane landscape. Our novel approach is uniquely capable of following single-molecule dynamics on live cells with 3 dimensional spatial resolution.
Transformed Fourier and Fick equations for the control of heat and mass diffusion
NASA Astrophysics Data System (ADS)
Guenneau, S.; Petiteau, D.; Zerrad, M.; Amra, C.; Puvirajesinghe, T.
2015-05-01
We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.
Transformed Fourier and Fick equations for the control of heat and mass diffusion
Guenneau, S.; Petiteau, D.; Zerrad, M.; Amra, C.; Puvirajesinghe, T.
2015-05-15
We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials.
NASA Technical Reports Server (NTRS)
Chang, C. H.
1999-01-01
The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both total and electron thermal energy equations, using general expressions for multicomponent diffusion in two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and friction between species which represents the resistance experienced by the species moving at different relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy equation includes artificial effects produced by switching the convective velocity from the species velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net energy dissipation.
Accurate determination of specific heat at high temperatures using the flash diffusivity method
NASA Technical Reports Server (NTRS)
Vandersande, J. W.; Zoltan, A.; Wood, C.
1989-01-01
The flash diffusivity method of Parker et al. (1961) was used to measure accurately the specific heat of test samples simultaneously with thermal diffusivity, thus obtaining the thermal conductivity of these materials directly. The accuracy of data obtained on two types of materials (n-type silicon-germanium alloys and niobium), was + or - 3 percent. It is shown that the method is applicable up to at least 1300 K.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Cu diffusion in Nb3Sn internal tin superconductors during heat treatment
NASA Astrophysics Data System (ADS)
Pong, Ian; Oberli, Luc-Rene; Bottura, Luca
2013-10-01
Heat treatments and phase formation of Nb3Sn internal tin superconductors are more complicated than bronze route conductors due to the need to convert low melting/low decomposition temperature Sn-rich phases to higher temperature Cu-rich Cu-Sn phases. Conventionally, the Cu-Sn phase development in internal tin wires and hence heat treatment optimization and microstructure control are typically interpreted as a matter of outward Sn diffusion from the Sn core towards the Nb filaments, and Cu diffusion in the opposite direction is simply assumed. In this paper, we present a perspective of Cu diffusion, based on our investigation of phase development. We shall show that the conventional Sn diffusion perspective cannot explain some of our observations, in particular the subelement core phase development. We shall also show that the distribution of Kirkendall pores is opposite to that of the coarse Nb3Sn grains, thus establishing a direct relationship between copper diffusion and coarse Nb3Sn grain formation and distribution. We shall compare wires of different local Cu:Nb area ratio (LAR) and show how Cu diffusion appears to control the Cu-Sn phase formation across the subelement and the final Nb3Sn microstructure (and hence influences the critical current density). Drawing from what we learnt from our observation, we managed to modify a standard heat treatment and obtained up to over 20% improvement in critical current density in some of the wire designs we investigated.
Self-diffusion in a stochastically heated two-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2016-09-01
Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust–dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.
Numerical modeling of diffusive heat transport across magnetic islands and highly stochastic layers
Hoelzl, M.; Guenter, S.; Yu, Q.; Lackner, K.
2007-05-15
Diffusive heat transport across magnetic islands and highly stochastic layers is studied numerically for realistic values of {chi}{sub parallel}/{chi}{sub perpendicular} in cylindrical geometry, where {chi}{sub parallel} denotes the heat diffusion coefficient parallel and {chi}{sub perpendicular} the one perpendicular to the magnetic field lines. The computations are performed with a second-order finite difference scheme, for which the numerical errors are independent from the value of {chi}{sub parallel}/{chi}{sub perpendicular} [S. Guenter et al., J. Comput. Phys. 209, 354 (2005)]. Sufficient spatial resolution is ensured by using an unsheared helical coordinate system. The heat flux around magnetic islands as well as the effective radial heat diffusivity {chi}{sub r} are examined and compared to analytical theory. The temperature perturbations caused by magnetic islands and the resulting bootstrap current perturbations essential for the stability of neoclassical tearing modes are analyzed and compared to analytical predictions [R. Fitzpatrick, Phys. Plasmas 2, 825 (1995)]. Agreement is found in the 'small' and 'large' island limits, but an enhanced NTM drive is observed in between. A correction factor that can reproduce the numerical results very well is presented. For a highly stochastic layer, produced by five strongly overlapping islands, the radial heat diffusivity {chi}{sub r} is determined and compared to several analytical theories.
Imaging Local Heating and Thermal Diffusion of Nanomaterials with Plasmonic Thermal Microscopy.
Chen, Zixuan; Shan, Xiaonan; Guan, Yan; Wang, Shaopeng; Zhu, Jun-Jie; Tao, Nongjian
2015-12-22
Measuring local heat generation and dissipation in nanomaterials is critical for understanding the basic properties and developing applications of nanomaterials, including photothermal therapy and joule heating of nanoelectronics. Several technologies have been developed to probe local temperature distributions in nanomaterials, but a sensitive thermal imaging technology with high temporal and spatial resolution is still lacking. Here, we describe plasmonic thermal microscopy (PTM) to image local heat generation and diffusion from nanostructures in biologically relevant aqueous solutions. We demonstrate that PTM can detect local temperature change as small as 6 mK with temporal resolution of 10 μs and spatial resolution of submicrons (diffraction limit). With PTM, we have successfully imaged photothermal generation from single nanoparticles and graphene pieces, studied spatiotemporal distribution of temperature surrounding a heated nanoparticle, and observed heating at defect sites in graphene. We further show that the PTM images are in quantitative agreement with theoretical simulations based on heat transport theories. PMID:26435320
NASA Astrophysics Data System (ADS)
Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis
2010-05-01
2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant
Eyler, L.L.; Budden, M.J.
1985-03-01
The objective of this work is to assess prediction capabilities and features of the MAGNUM-2D computer code in relation to its intended use in the Basalt Waste Isolation Project (BWIP). This objective is accomplished through a code verification and benchmarking task. Results are documented which support correctness of prediction capabilities in areas of intended model application. 10 references, 43 figures, 11 tables.
TOPAZ2D validation status report, August 1990
Davis, B.
1990-08-01
Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.
Amra, C.; Petiteau, D.; Zerrad, M.; Guenneau, S.; Soriano, G.; Gralak, B.; Bellieud, M.; Veynante, D.; Rolland, N.
2015-01-01
A new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has been proposed recently by three of the present authors. A detailed derivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermal parameters are related to optical ones in artificial metallic media, thus making possible to use numerical codes developed for optics. Then, the optical admittance formalism is extended to heat conduction in multilayered structures. The concepts of planar microcavities, diffraction gratings and planar transformation optics for heat conduction are addressed. Results and limitations of the analogy are emphasized. PMID:26730214
Influence of a Simple Heat Loss Profile on a Pure Diffusion Flame
NASA Technical Reports Server (NTRS)
Ray, Anjan; Wichman, Indrek S.
1996-01-01
The presence of soot on the fuel side of a diffusion flame results in significant radiative heat losses. The influence of a fuel side heat loss zone on a pure diffusion flame established between a fuel and an oxidizer wall is investigated by assuming a hypothetical sech(sup 2) heat loss profile. The intensity and width of the loss zone are parametrically varied. The loss zone is placed at different distances from the Burke-Schumann flame location. The migration of the temperature and reactivity peaks are examined for a variety of situations. For certain cases the reaction zone breaks through the loss zone and relocates itself on the fuel side of the loss zone. In all cases the temperature and reactivity peaks move toward the fuel side with increased heat losses. The flame structure reveals that the primary balance for the energy equation is between the reaction term and the diffusion term. Extinction plots are generated for a variety of situations. The heat transfer from the flame to the walls and the radiative fraction is also investigated, and an analytical correlation formula, derived in a previous study, is shown to produce excellent predictions of our numerical results when an O(l) numerical multiplicative constant is employed.
Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors
NASA Astrophysics Data System (ADS)
Valvano, J. W.; Cochran, J. R.; Diller, K. R.
1985-05-01
This paper presents an experimental method to measure the thermal conductivity and thermal diffusivity of biomaterials. Self-heated thermistor probes, inserted into the tissue of interest, are used to deliver heat as well as to monitor the rate of heat removal. An empirical calibration procedure allows accurate thermal-property measurements over a wide range of tissue temperatures. Operation of the instrument in three media with known thermal properties shows the uncertainty of measurements to be about 2%. The reproducibility is 0.5% for the thermal-conductivity measurements and 2% for the thermal-diffusivity measurements. Thermal properties were measured in dog, pig, rabbit, and human tissues. The tissues included kidney, spleen, liver, brain, heart, lung, pancreas, colon cancer, and breast cancer. Thermal properties were measured for 65 separate tissue samples at 3, 10, 17, 23, 30, 37, and 45°C. The results show that the temperature coefficient of biomaterials approximates that of water.
Tralshawala, Nilesh; Howard, Don; Knight, Bryon; Plotnikov, Yuri; Ringermacher, Harry
2008-02-28
In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropic carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.
NASA Astrophysics Data System (ADS)
Tralshawala, Nilesh; Howard, Don; Knight, Bryon; Plotnikov, Yuri; Ringermacher, Harry
2008-02-01
In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropic carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.
NASA Astrophysics Data System (ADS)
Zeller, Karl Frederick
Micrometeorological field measurements of the fluxes and the gradients of momentum, sensible heat and ozone are presented and discussed. The eddy-correlation measurement technique was used to obtain the flux data at the heights of three and eight meters. A method to accurately measure mass (ozone) gradients from surface -layer based meteorological towers was developed and used. Both flux and gradient measurements are used for the determination of eddy diffusivities. Exploratory analyses were made with the data to investigate similarity relationships between the eddy diffusivities of momentum K_{ rm m}, sensible heat K_ {rm h}, and mass K_ {rm c}, where ozone was used as the mass tracer. Eddy-diffusivity ratios were computed using dimensionless -gradient ratios classified from the data and from regression models. These ratios were classified by atmospheric stability determined at the geometric mean of the measurement heights. The assumption of similarity between the eddy diffusivities of ozone and sensible heat, K_ {rm c} = K_{ rm h}, based on scalar turbulent transfer theory, was verified for unstable atmospheric conditions. The results for eddy diffusivities of sensible heat and ozone for stable atmospheric conditions however, show that diffusivities of sensible heat are 50% greater than diffusivities of ozone. Chemical reaction of ozone, and/or the need for flux-measurement corrections, decrease the resulting values for ozone diffusivities during stable periods. Established eddy-diffusivity ratios for water vapor and momentum are valid for ozone and momentum under stable-atmospheric conditions over smooth-terrain but not under unstable conditions for flow disturbed by irregular terrain. The relationships between the eddy diffusivities of momentum and the eddy diffusivities of ozone, as well as those between momentum and sensible heat are controlled by free-convection conditions, K_{ rm m} < K_ {rm c} and K_{ rm m} < K_ {rm h}; these results are inconclusive for
A numerical study of the effects of heat diffusion through the base of the mixed layer
NASA Technical Reports Server (NTRS)
Posmentier, E. S.
1980-01-01
In the present paper, a simple numerical model is used to study the warming of the mixed layer during the early summer. It is shown that the springtime temperature increase in the layer below the mixed layer (for example, in the cold pool on a continental shelf) has a maximum value which occurs for a limiting value of the surface heat flux. This is a result of the positive feedback at large Richardson numbers between stability and vertical diffusion of heat. The springtime temperature increase in the mixed layer increases nonlinearly with surface heat flux, because of the same positive feedback. The effects of interseasonal fluctuations of the surface heat flux on the spring and summer mixed layer and deeper temperature increases can be as great as the effect of interseasonal fluctuations of the average heat flux.
Thermal diffusivity and specific heat of dental casting alloys at room and elevated temperatures.
Asaoka, K
1997-06-01
Thermal diffusivity and specific heat of four groups of dental casting alloys (Ag-based, Au-Pd, high karat and Ni-based alloys) were determined. Measurements were carried out from room temperature to 750 degrees C in an evacuated electric furnace with a laser flash thermal constant analyzer. There was no significant difference between the values of thermal diffusivity in the Ag-based and high karat alloys; 18-24 and 40-53 mm2/s, at room temperature and at 600 degrees C, respectively. For Au-Pd and Ni-based alloys, diffusivity was 8-12 and 3-4 mm2/s at room temperature, and 19-22 and 5-6 mm2/s at 600 degrees C, respectively. The thermal diffusivity of the alloys was significantly low compared to that of the pure-metals of which they were composed. Specific heat was determined as 0.14-0.16, 0.24-0.34, 0.17-0.19 and 0.45-0.51 kJ/(kg.K) for high karat, Ag-based, Au-Pd and Ni-based alloys, respectively, at room temperature. Oxidation of the Ni-based alloy at elevated temperature affected the value of specific heat measured. PMID:9550004
Turbulent diffusion from a heated line source in non-equilibrium grid turbulence
NASA Astrophysics Data System (ADS)
Nedic, Jovan; Tavoularis, Stavros
2015-11-01
We have investigated turbulent diffusion of heat injected passively from a line source in equilibrium and non-equilibrium grid-generated turbulence, which are, respectively, flows in which the value of the non-dimensional rate of kinetic energy dissipation is constant or changes with streamwise distance from the grid. We used three grids with uniform square meshes and one fractal square grid (FSG), all of the same solidity, to generate non-equilibrium and equilibrium turbulence in a wind-tunnel. The regular grids have mesh sizes that are comparable to the first (RG160), second (RG80) and fourth (RG18) iterations of the fractal grid. The heated line source was inserted on the centre-plane of the grids at either of two downstream locations or an upstream one and it spanned the entire width of the wind-tunnel. We found that RG160 produced the greatest heat diffusion, followed by FSG, RG80 and RG18, in this order. The apparent turbulent diffusivity produced by the four grids also decreased in the same order. These findings conform with Taylor's theory of diffusion by continuous movements. Moreover, the present study demonstrates that the fractal space-scale unfolding (SSU) mechanism does not apply to grids with the same solidity but different effective mesh sizes. Supported by NSERC.
On flow induced kinetic diffusion and rotary kiln bed burden heat transport
Boateng, A.A.
1997-07-01
The cross-section of a partially-filled cylindrical kiln rotating on its horizontal axis and processing granular solids produces a shear zone (active layer) at the free surface which grows with the kiln's rotational rate. The active layer, although relatively thin, compared with the rest of the bed burden, drives all physical/chemical reactions. This is because of the high rate of surface renewal which, in turn, promotes heat exchange between the exposed surface and the higher temperature freeboard gas. Unlike packed beds, particulate diffusion induced by the flow of granules, adds a significant component to the overall heat transfer in the bed. Problem formulation and modeling of heat conduction using flow fields derived from experiments suggest that at slow kiln speeds the diffusion effect may not be recognized due to long term duration of particle contacts and hence packed-bed heat conduction models may provide adequate characterization. However, at moderate and high kiln speeds particle collisions are short-termed and kinetic diffusion contributes to the effective thermal conductivity by as much as tenfold thereby resulting in a well-mixed conditions and a homogeneous bed temperature. Industrial processing ramifications such as kiln speed control and product quality are discussed hereafter.
Anand, Ajay; Kaczkowski, Peter J
2008-09-01
Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361
Anand, Ajay; Kaczkowski, Peter J.
2009-01-01
Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10°C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying “acoustic strain”, that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361
NASA Astrophysics Data System (ADS)
Ito, Y.; Noborio, K.
2015-12-01
In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.
Enhancement of minority carrier diffusion length in grains of cast Si by hydrogen heat treatments
NASA Astrophysics Data System (ADS)
Mimila-Arroyo, J.; Duenas-Santos, F.; del Valle, J. L.
Minority carrier diffusion length (mcdl) enhancement in the bulk of grains of cast poly-silicon for solar cells has been produced by hydrogen heat treatments. Measurements made by LBIC method, showed an increase of mcdl in the bulk of grains from a mean value of 53 microns to a mean value of 69 microns, before and after the hydrogen heat treatments, respectively, under white light illumination. A mean increase ratio of 33% in the mcdl was obtained in a reproducible way and it was verified that hydrogen was effectively responsible. This result clearly establishes the hydrogen passivating role in this material
Report of the 1988 2-D Intercomparison Workshop, chapter 3
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
Modeling Earth's Outer Radiation Belt Electron Dynamics---Radial Diffusion, Heating, and Loss
NASA Astrophysics Data System (ADS)
Tu, Weichao
Earth's outer radiation belt is a relativistic electron environment that is hazardous to space systems. It is characterized by large variations in the electron flux, which are controlled by the competition between source, transport, and loss processes. One of the central questions in outer radiation belt research is to resolve the relative contribution of radial diffusion, wave heating, and loss to the enhancement and decay of the radiation belt electrons. This thesis studies them together and separately. Firstly, we develop an empirical Fokker-Planck model that includes radial diffusion, an internal source, and finite electron lifetimes parameterized as functions of geomagnetic indices. By simulating the observed electron variations, the model suggests that the required magnitudes of radial diffusion and internal heating for the enhancement of energetic electrons in the outer radiation belt vary from storm to storm, and generally internal heating contributes more to the enhancements of MeV energy electrons at L=4 (L is approximately the radial distance in Earth radii at the equator). However, since the source, transport, and loss terms in the model are empirical, the model results have uncertainties. To eliminate the uncertainty in the loss rate, both the precipitation and the adiabatic loss of radiation belt electrons are quantitatively studied. Based on the observations from Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), a Drift-Diffusion model is applied to quantify electron precipitation loss, which is the dominant non-adiabatic loss mechanism for electrons in the heart of the outer radiation belt. Model results for a small storm, a moderate storm, and an intense storm indicate that fast precipitation losses of relativistic electrons, on the time scale of hours, persistently occur in the storm main phases and with more efficient losses at higher energies over wide range of L regions. Additionally, calculations of adiabatic effects on radiation
Rowley, R.L.; Oscarson, J.L.
1993-01-01
The objective of the work is to provide accurate data on diffusion coefficients and heats of absorption of acid gases in aqueous amine solutions to assist in the design of economical new amine treating systems and to improve the efficiency of existing plants. Specifically covered in the report are measurements of the mutual diffusion coefficient of methyldiethanolamine(MDEA) and diethanolamine in water. Measurements have been made at 25, 50 and 75C and at 0, 20, 35 and 50 wt% amine. Heats of absorption of CO2 into aqueous mixtures of MDEA have also been measured calorimetrically. Results are reported at temperatures of 120 and 260F and pressures of 500 and 1000 psia at total MDEA concentrations of 20, 35 and 50%.
NASA Astrophysics Data System (ADS)
Zhou, K.; Wang, H. P.; Chang, J.; Wei, B.
2015-10-01
The thermophysical properties of liquid and solid titanium such as the surface tension, specific heat and thermal diffusivity have been investigated over a wide temperature range. By using electromagnetic levitation and oscillating drop method, the surface tension of liquid titanium was measured in the temperature range of 1802-2188 K. The viscosity and density of undercooled liquid titanium were calculated by some well-known models using the measured data as input. In addition, the specific heat of liquid titanium was determined over the experimental range using electromagnetic levitation and drop calorimetry obtaining the value of 33.64 J mol-1 K-1. In addition, the thermal diffusivity of solid titanium was measured by laser flash method in the temperature range of 171-1080 K.
Chris Newman; Glen Hansen; Derek Gaston
2009-07-01
The simulation of nuclear reactor fuel performance involves complex thermomechanical processes between fuel pellets, made of fissile material, and the protective cladding barrier that surrounds the pellets. This paper examines asubset of phenomena that are important in the development of a predictive capability for fuel performance calculations, focusing on thermomechanics and diffusion within UO2 fuel pellets. In this study, correlations from the literature are used for thermal conductivity, specific heat, and oxygen diffusion. This study develops a three dimensional thermomechanical model fully-coupled to an oxygen diffusion model. Both steady state and transient results are examined to compare this three dimensional model with the literature. Further, this equation system is solved in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method. Numerical results are presented to explore the efficacy of this approach for examining selected fuel performance problems. INL’s BISON fuels performance code is used to perform this analysis.
A Widder's Type Theorem for the Heat Equation with Nonlocal Diffusion
NASA Astrophysics Data System (ADS)
Barrios, Begoña; Peral, Ireneo; Soria, Fernando; Valdinoci, Enrico
2014-08-01
The main goal of this work is to prove that every non-negative strong solution u( x, t) to the problem can be written as where and This result shows uniqueness in the setting of non-negative solutions and extends some classical results for the heat equation by Widder in [
Shumaker, D E; Woodward, C S
2005-05-03
In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.
Anisotropic thermal-diffusivity measurements by a new laser-spot-heating technique
NASA Astrophysics Data System (ADS)
Kato, Hideyuki; Baba, Tetsuya; Okaji, Masahiro
2001-12-01
A new technique to measure thermal diffusivities of solid materials, including their anisotropic behaviours, has been developed. The technique is based on periodic heating: an intensity-modulated laser beam is focused to make a small heat spot on the front side of a thin-plate specimen and the excited temperature waves are detected by a thin thermocouple attached onto its rear side. The phase lag of temperature waves is monitored as a function of the distance between the heated spot and the sensing point. The accuracy and the applicability of the present technique were well verified by using two kinds of isotropic reference samples, an austenitic stainless steel and pure copper. The typical uncertainty is estimated to be 5% at room temperature. This technique was applied to evaluate the highly anisotropic thermal diffusivity of highly oriented pyrolytic graphite (HOPG). Its anisotropy, Dab/Dc (the ratio of the in-plane thermal diffusivity to the out-of-plane one), was observed to be about 220.
NASA Technical Reports Server (NTRS)
Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam
2013-01-01
We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat
Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals
Shen, Meng; Keblinski, Pawel
2014-04-14
We use non-equilibrium molecular dynamics to study the heat transfer mechanism across sandwich interfacial structures of Si/n-atomic-layers/Si, with 1 ≤ n ≤ 20 and atomic layers composed of WSe{sub 2} and/or graphene. In the case of WSe{sub 2} sheets, we observe that the thermal resistance of the sandwich structure is increasing almost linearly with the number of WSe{sub 2} sheets, n, indicating a diffusive phonon transport mechanism. By contrast in the case of n graphene layers, the interfacial thermal resistance is more or less independent on the number of layers for 1 ≤ n ≤ 10, and is associated with ballistic phonon transport mechanism. We attribute the diffusive heat transfer mechanism across WSe{sub 2} sheets to abundant low frequency and low group velocity optical modes that carry most of the heat across the interface. By contrast, in graphene, acoustic modes dominate the thermal transport across the interface and render a ballistic heat flow mechanism.
NASA Astrophysics Data System (ADS)
Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome
2010-06-01
Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.
NASA Astrophysics Data System (ADS)
Siman-Tov, S.; Affek, H. P.; Matthews, A.; Aharonov, E.; Reches, Z.
2015-12-01
Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the event. Here we examine clumped isotope thermometry for its ability to identify short duration elevated temperature events along frictionally heated carbonate faults. This method is based on measured Δ47 values that indicate the relative atomic order of oxygen and carbon stable isotopes in the calcite lattice, which is affected by heat and thus can serve as a thermometer. We examine three types of calcite rock samples: (1) samples that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples taken from principle slip zones of natural carbonate faults that likely experienced earthquake slip. Experimental results show that Δ47 values decrease rapidly (in the course of seconds) and systematically both with increasing temperature and shear velocity. On the other hand, carbonate shear zone from natural faults do not show such Δ47 reduction. We propose that the experimental Δ47 response is controlled by the presence of high-stressed nano-grains within the fault zone that can reduce the activation energy for diffusion by up to 60%, and thus lead to an increased rate of solid-state diffusion in the experiments. However, the lowering of activation energy is a double-edged sword in terms of clumped isotopes: In laboratory experiments, it allows for rapid disordering so that isotopic signal appears after very short heating, but in natural faults it also leads to relatively fast isotopic re-ordering after the cessation of frictional heating, thus erasing the high temperature signature in Δ47 values within relatively short geological times (<1 Ma).
Cascos, V; Martínez-Coronado, R; Alonso, J A; Fernández-Díaz, M T
2014-06-25
Sr0.7Ho0.3CoO3-δ oxide has been recently described as an excellent cathode material (1274 mW cm(-2) at 850 °C with pure H2 as fuel1) for solid oxide fuel cells (SOFCs) with LSGM as electrolyte. In this work, we describe a detailed study of its crystal structure conducted to find out the correlation between the excellent performance as a cathode and the structural features. The tetragonal crystal structure (e.g., I4/mmm) basically contains layers of octahedrally coordinated Co2O6 units alternated with layers of Co1O4 tetrahedra sharing corners. An "in situ" neutron power diffraction (NPD) experiment, between 25 and 800 °C, reveals the presence of a high oxygen deficiency affecting O4 oxygen atoms, with large displacement factors that suggest a large lability and mobility. Difference Fourier maps allow the visualization at high temperatures of the 2D diffusion pathways within the tetrahedral layers, where O3 and O4 oxygens participate. The measured thermal expansion coefficient is 16.61 × 10(-6) K(-1) between 300 and 850 °C, exhibiting an excellent chemical compatibility with the electrolyte. PMID:24873238
Energy Science and Technology Software Center (ESTSC)
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
NASA Astrophysics Data System (ADS)
Tsuzuki, Yutaka
2015-09-01
This paper is concerned with a system of heat equations with hysteresis and Navier-Stokes equations. In Tsuzuki (J Math Anal Appl 423:877-897, 2015) an existence result is obtained for the problem in a 2-dimensional domain with the Navier-Stokes equation in a weak sense. However the result does not include uniqueness for the problem due to the low regularity for solutions. This paper establishes existence and uniqueness in 2- and 3-dimensional domains with the Navier-Stokes equation in a stronger sense. Moreover this work decides required height of regularity for the initial data by introducing the fractional power of the Stokes operator.
NASA Technical Reports Server (NTRS)
Deb, Rahul; Snyder, Jeff G.
2005-01-01
A viewgraph presentation describing thermoelectric materials, an algorithm for heat capacity measurements and the process of flash thermal diffusivity. The contents include: 1) What are Thermoelectrics?; 2) Thermoelectric Applications; 3) Improving Thermoelectrics; 4) Research Goal; 5) Flash Thermal Diffusivity; 6) Background Effects; 7) Stainless Steel Comparison; 8) Pulse Max Integral; and 9) Graphite Comparison Algorithm.
The heat released during catalytic turnover enhances the diffusion of an enzyme.
Riedel, Clement; Gabizon, Ronen; Wilson, Christian A M; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos
2015-01-01
Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme. PMID:25487146
The heat released during catalytic turnover enhances the diffusion of an enzyme
Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos
2014-12-10
Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). We find this novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme.
The heat released during catalytic turnover enhances the diffusion of an enzyme
Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos
2014-12-10
Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis. Although this observation has been reported and characterized for several different systems, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theorymore » to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). We find this novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme.« less
The heat released during catalytic turnover enhances the diffusion of an enzyme
Riedel, Clement; Gabizon, Ronen; Wilson, Christian A. M.; Hamadani, Kambiz; Tsekouras, Konstantinos; Marqusee, Susan; Pressé, Steve; Bustamante, Carlos
2015-01-01
Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis1,2. Although this observation has been reported and characterized for several different systems3–10, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms11,12. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein–solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme. PMID:25487146
Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.
2007-01-01
Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.
A 2-D dynamical model of mesospheric temperature inversions in winter
Hauchecorne, A.; Maillard, A. )
1990-11-01
A 2-D stratospheric and mesospheric dynamical model including drag and diffusion due to gravity wave breaking is used to simulate winter mesospheric temperature inversions similar to those observed by Rayleigh lidar. It is shown that adiabatic heating associated to descending velocities in the mesosphere is the main mechanism involved in the formation of such inversions. Sensitivity tests are performed with the model and confirm this assumption. It is also explained why other previous similar studies with 2-D models did not show mesospheric inversion layers.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.
2014-06-01
The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence
NASA Astrophysics Data System (ADS)
Minter, Anthony H.; Spangler, Steven R.
1997-08-01
We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being
Effects of heat treatments on the thermal diffusivity of Uranium-Molybdenum alloy
NASA Astrophysics Data System (ADS)
Camarano, D. M.; Mansur, F. A.; Santos, A. M. M.; Ferraz, W. B.; Pedrosa, T. A.
2016-07-01
U-Mo alloys are the most investigated nuclear fuel material to be used in research reactors. The addition of molybdenum stabilizes the gamma phase of uranium and increases its melting point. A research program under development at Nuclear Technology Development Center (CDTN) aims the obtaining of uranium-molybdenum alloys to enable the high enriched uranium (HEU) to low enriched uranium (LEU) conversions. U-Mo ingots with 10% by weight were induction melted and heat treated at 300 °C for 72 h, 120 h and 240 h. Thermal diffusivity was determined by the laser flash method and thermal quadrupole method, from room temperature to 300 oC and 400oC. It was observed that the thermal diffusivity tends to increase with increasing temperature.
The influence of state-to-state kinetics on diffusion and heat transfer behind shock waves
Kunova, O.; Kustova, E.; Mekhonoshina, M.; Nagnibeda, E.
2014-12-09
In the paper, the influence of vibrational and chemical kinetics on heat transfer and diffusion in hypersonic flows of N{sub 2}/N mixture in the relaxation zone behind shock waves is studied on the basis of the state-to-state kinetic theory approach. The results of calculations of vibrational level populations ni, gas temperature T, total energy flux q, diffusion velocities of molecules at different vibrational states V{sub i} and atoms V{sub a} in the relaxation zone behind a shock front are presented for the free stream Mach number M = 10, 15. The contribution of different dissipative processes to the total energy flux is estimated for various flow conditions. The impact of non-equilibrium vibrational distributions in the free stream on molecular level populations and transport properties in the relaxation zone is shown.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties
London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.
1995-03-01
The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.
Transition between ballistic and diffusive heat transport regimes in silicon materials
NASA Astrophysics Data System (ADS)
Maldovan, Martin
2012-09-01
We study the extent of ballistic and diffusive thermal transport and the range of application of the Casimir and Fourier theories in semiconductor materials by using a theoretical model based on the Boltzmann transport equation. We show that combined effects of length scale, temperature, and boundary roughness are responsible for thermal transport transitions in silicon nanowires and thin films. We also introduce a more accurate principle for ballistic transport that considers the balance between internal and surface scattering. Phonon quantum confinement effects as well as the conditions for phonon wave interference in nanoscale heat transport are discussed.
Temperature and Radiative Heat Flux Measurements in Microgravity Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Greenberg, Paul S.
1997-01-01
The objective of this project is to provide detailed measurements and modeling analyses of local soot concentration, temperature and radiation heat flux distributions in laminar and turbulent jet diffusion flames under normal (1-g) and reduced gravity (0-g) conditions. Results published to date by these co-PI's and their co-workers include: 1. thermophoretic sampling and size and morphological analyses of soot aggregates in laminar flames under normal and reduced gravity conditions; 2. full-field absorption imaging for soot volume fraction maps in laminar and turbulent flames under normal and reduced gravity conditions; 3. an accurate solver module for detailed radiation heat transfer in nongray nonhomogeneous media; 4. a complete model to include flame structure, soot formation and an energy equation to couple with radiation solver.
NASA Astrophysics Data System (ADS)
Kranenborg, E. Jurjen; Dijkstra, Henk A.
1995-03-01
Layered double diffusive flow patterns in a laterally heated stably stratified liquid are considered in a configuration which allows for steady states to exist. For the heat/salt system, these flows are characterized by the thermal and solutal Rayleigh numbers RaT and RaS, or equivalently by RaT and the buoyancy ratio Rρ. The bifurcation structure of steady patterns with respect to RaT is computed for two cases: fixed RaS and fixed Rρ. For the first case, results in N. Tsitverblit and E. Kit [Phys. Fluids A 5, 1062 (1993)], are computed and extended, and it is shown that many of the previously found flow patterns are unstable; only in a small interval of RaT, multiple (linearly) stable steady states exist. For the second case, the physical relevance of the unstable steady states with respect to the evolution of the flow toward a stable steady state is demonstrated.
NASA Astrophysics Data System (ADS)
Rau, Gabriel C.; Cuthbert, Mark O.; McCallum, Andrew M.; Halloran, Landon J. S.; Andersen, Martin S.
2015-08-01
Amplitude decay and phase delay of oscillating temperature records measured at two vertical locations in near-surface sediments can be used to infer water fluxes, thermal diffusivity, and sediment scour/deposition. While methods that rely on the harmonics-based analytical heat transport solution assume a steady state water flux, many applications have reported transient fluxes but ignored the possible violation of this assumption in the method. Here we use natural heat tracing as an example to investigate the extent to which changes in the water flux, and associated temperature signal nonstationarity, can be separated from other influences. We systematically scrutinize the assumption of steady state flow in analytical heat tracing and test the capabilities of the method to detect the timing and magnitude of flux transients. A numerical model was used to synthesize the temperature response to different step and ramp changes in advective thermal velocity magnitude and direction for both a single-frequency and multifrequency temperature boundary. Time-variable temperature amplitude and phase information were extracted from the model output with different signal-processing methods. We show that a worst-case transient flux induces a temperature nonstationarity, the duration of which is less than 1 cycle for realistic sediment thermal diffusivities between 0.02 and 0.13 m2/d. However, common signal-processing methods introduce erroneous temporal spreading of advective thermal velocities and significant anomalies in thermal diffusivities or sensor spacing, which is used as an analogue for streambed scour/deposition. The most time-variant spectral filter can introduce errors of up to 57% in velocity and 33% in thermal diffusivity values with artifacts spanning ±2 days around the occurrence of rapid changes in flux. Further, our results show that analytical heat tracing is unable to accurately resolve highly time-variant fluxes and thermal diffusivities and does not allow
NASA Technical Reports Server (NTRS)
Moore, T. J.; Holko, K. H. (Inventor)
1974-01-01
Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.
NASA Astrophysics Data System (ADS)
Angioni, C.
2015-10-01
A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.
Angioni, C.
2015-10-15
A gyrokinetic study based on numerical and analytical calculations is presented, which computes the dependence of the turbulent diffusion of highly charged impurities on the ratio of the electron to the ion heat flux of the plasma. Nonlinear simulations show that the size of the turbulent diffusion of heavy impurities can vary by one order of magnitude with fixed total heat flux and is an extremely sensitive function of the electron to ion heat flux ratio. Numerical linear calculations are found to reproduce the nonlinear results. Thereby, a quasi-linear analytical approach is used to explain the origin of this dependence.
LETTER: Empirical scaling law for the effective heat diffusivity in ELMy H mode plasmas
NASA Astrophysics Data System (ADS)
Becker, G.
1996-04-01
Predictive code simulations of high density scenarios of ITER and other reactor-grade devices require an experimentally validated scaling relation for the one-fluid effective heat diffusivity chi in the ELMy H mode regime. A comprehensive empirical chi scaling compatible with the ITERH92-P ELMy H mode scaling of the thermal energy confinement time is presented. It follows from a power law ansatz for chi and integration of the single-fluid energy equation and recovers all the exponents of the global confinement law. The numerical factor of the global scaling is used to calibrate the heat diffusivity. The dependences of chi on the temperature and temperature gradient, connected with the power degradation of confinement, are inferred from profile information of a high density H mode discharge. The scaling law obtained is successfully tested against JET, ASDEX and ASDEX Upgrade H mode discharges covering a wide parameter range. It is found to predict the strong rise of the experimental chi profiles with increasing effective radius
Reuss, B; Asif, A R
2014-09-01
Children of mothers with prenatal gonococcal infections are of increased risk to develop schizophrenic psychosis in later life. The present study hypothesizes an autoimmune mechanism for this, investigating interactions of a commercial rabbit antiserum directed to Neisseria gonorrhoeae (α-NG) with human NTera2/D1 cells, an established in vitro model for human neuronal differentiation. Immunocytochemistry demonstrated α-NG to label antigens on an intracellular organelle, which by Western blot analysis showed a molecular weight shortly below 72 kDa. An antiserum directed to Neisseria meningitidis (α-NM) reacts with an antigen shortly below 95 kDa, confirming antibody specificity of these interactions. Two-dimensional gel electrophoresis and partial Western transfer, allowed to localize an α-NG reactive protein spot which was identified by LC-Q-TOF MS/MS analysis as mitochondrial heat shock protein Hsp60. This was confirmed by Western blot analysis of α-NG immunoreactivity with a commercial Hsp60 protein sample, with which α-NM failed to interact. Finally, analysis of neurite outgrowth in retinoic acid-stimulated differentiating NTera2-D1 cells, demonstrates that α-NG but not α-NM treatment reduces neurite length. These results demonstrate that α-NG can interact with Hsp60 in vitro, whereas pathogenetic relevance of this interaction for psychotic symptomatology remains to be clarified. PMID:24577885
2-d Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ
Sanford, L.; Hallquist, J.O.
1992-02-24
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Generates 2D Input for DYNA NIKE & TOPAZ
Energy Science and Technology Software Center (ESTSC)
1996-07-15
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser
NASA Astrophysics Data System (ADS)
Cui, H.; Wang, H.; Chen, S.
2015-04-01
In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.
Heat diffusion in the disordered Fermi and electron liquids: the role of inelastic processes
NASA Astrophysics Data System (ADS)
Schwiete, Georg; Finkel'Stein, Alexander
2015-03-01
We study thermal transport in the disordered Fermi and electron liquids at low temperatures. Gravitational potentials are used as sources for finding the heat density and its correlation function. For a comprehensive study, we extend the renormalization group (RG) analysis developed for electric transport by including the gravitational potentials into the RG scheme. The analysis reveals that for the disordered Fermi liquid the Wiedemann-Franz law remains valid even in the presence of quantum corrections caused by the interplay of diffusion modes and the electron-electron interaction. In the present scheme this fundamental relation is closely connected with a fixed point in the multi-parametric RG flow of the gravitational potentials. For the disordered electron liquid we additionally analyze inelastic processes induced by the Coulomb interaction at sub-temperature energies. While the general form of the correlation function has to be compatible with energy conservation, these inelastic processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. The interplay of various terms in the heat density-heat density correlation function therefore differs from that for densities of other conserved quantities, such as total number of particles or spin. A. F. and G. S. acknowledge support by the Alexander von Humboldt foundation. A.F. is supported by the National Science Foundation Grant NSF-DMR-1006752.
NASA Astrophysics Data System (ADS)
Gao, Zhibin; Li, Nianbei; Li, Baowen
2016-02-01
The ding-a-ling model is a kind of half lattice and half hard-point-gas (HPG) model. The original ding-a-ling model proposed by Casati et al. does not conserve total momentum and has been found to exhibit normal heat conduction behavior. Recently, a modified ding-a-ling model which conserves total momentum has been studied and normal heat conduction has also been claimed. In this work, we propose a full-lattice ding-a-ling model without hard point collisions where total momentum is also conserved. We investigate the heat conduction and energy diffusion of this full-lattice ding-a-ling model with three different nonlinear inter-particle potential forms. For symmetrical potential lattices, the thermal conductivities diverges with lattice length and their energy diffusions are superdiffusive signaturing anomalous heat conduction. For asymmetrical potential lattices, although the thermal conductivity seems to converge as the length increases, the energy diffusion is definitely deviating from normal diffusion behavior indicating anomalous heat conduction as well. No normal heat conduction behavior can be found for the full-lattice ding-a-ling model.
NASA Astrophysics Data System (ADS)
Hristov, Jordan
2016-03-01
Closed form approximate solutions to nonlinear heat (mass) diffusion equation with power-law nonlinearity of the thermal (mass) diffusivity have been developed by the integral-balance method avoiding the commonly used linearization by the Kirchhoff transformation. The main improvement of the solution is based on the double-integration technique and a new approach to the space derivative. Solutions to Dirichlet and Neumann boundary condition problems have been developed and benchmarked against exact numerical and approximate analytical solutions available in the literature.
NASA Technical Reports Server (NTRS)
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
LETTER: Scaling law for effective heat diffusivity in ELMy H-mode plasmas
NASA Astrophysics Data System (ADS)
Becker, G.
2004-11-01
Transport simulations of high density scenarios of ITER and other reactor-grade devices require a scaling law for the effective heat diffusivity, χ, in the ELMy H-mode regime. A comprehensive empirical scaling, χH98, compatible with the ITER reference scaling, ITERH-98P(y, 2), for the thermal energy confinement time has been set up. It follows from a power law ansatz for χ and integration of the single-fluid energy equation and recovers all the exponents of the global confinement law. The dependences on temperature and temperature gradient are consistent with the power degradation of confinement and the experimental χ profiles. The χH98 scaling is validated by JET, DIII-D, ASDEX Upgrade and ASDEX discharges covering a wide parameter range. Simulations of the inductive scenario of ITER with χH98 yield an energy confinement time which agrees with the global scaling prediction.
Spatial interactions in a modified Daisyworld model: Heat diffusivity and greenhouse effects
NASA Astrophysics Data System (ADS)
Alberti, T.; Primavera, L.; Vecchio, A.; Lepreti, F.; Carbone, V.
2015-11-01
In this work we investigate a modified version of the Daisyworld model, originally introduced by Lovelock and Watson to describe in a simple way the interactions between an Earth-like planet, its biosphere, and the incoming solar radiation. Here a spatial dependency on latitude is included, and both a variable heat diffusivity along latitudes and a simple greenhouse effect description are introduced in the model. We show that the spatial interactions between the variables of the system can locally stabilize the coexistence of the two vegetation types. The feedback on albedo is able to generate equilibrium solutions which can efficiently self-regulate the planet climate, even for values of the solar luminosity relatively far from the current Earth conditions.
Spatial interactions in a modified Daisyworld model: Heat diffusivity and greenhouse effects.
Alberti, T; Primavera, L; Vecchio, A; Lepreti, F; Carbone, V
2015-11-01
In this work we investigate a modified version of the Daisyworld model, originally introduced by Lovelock and Watson to describe in a simple way the interactions between an Earth-like planet, its biosphere, and the incoming solar radiation. Here a spatial dependency on latitude is included, and both a variable heat diffusivity along latitudes and a simple greenhouse effect description are introduced in the model. We show that the spatial interactions between the variables of the system can locally stabilize the coexistence of the two vegetation types. The feedback on albedo is able to generate equilibrium solutions which can efficiently self-regulate the planet climate, even for values of the solar luminosity relatively far from the current Earth conditions. PMID:26651733
NASA Technical Reports Server (NTRS)
Tower, L. K.
1973-01-01
The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.
NASA Astrophysics Data System (ADS)
Kuz'min, V. I.; Lysak, V. I.; Kuz'min, S. V.; Kharlamov, V. O.
2015-11-01
Results of a study of the effect of the conditions of heat treatment on the structure and properties of explosion-welded steel-aluminum composite with different diffusion barriers are reported. The creation of diffusion barrier from either nitrated steel layer or chromium sublayer between aluminum and steel was shown to increase the temperature stability of steel-aluminum composite at the expense of deceleration of diffusion processes and shift of the temperature range of the onset of the formation of intermetallics to the high-temperature range.
An implicit scheme for solving the anisotropic diffusion of heat and cosmic rays in the RAMSES code
NASA Astrophysics Data System (ADS)
Dubois, Yohan; Commerçon, Benoît
2016-01-01
Astrophysical plasmas are subject to a tight connection between magnetic fields and the diffusion of particles, which leads to an anisotropic transport of energy. Under the fluid assumption, this effect can be reduced to an advection-diffusion equation, thereby augmenting the equations of magnetohydrodynamics. We introduce a new method for solving the anisotropic diffusion equation using an implicit finite-volume method with adaptive mesh refinement and adaptive time-stepping in the ramses code. We apply this numerical solver to the diffusion of cosmic ray energy and diffusion of heat carried by electrons, which couple to the ion temperature. We test this new implementation against several numerical experiments and apply it to a simple supernova explosion with a uniform magnetic field.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.
Estimation from Soil Temperature of Soil Thermal Diffusivity and Heat Flux in Sub-surface Layers
NASA Astrophysics Data System (ADS)
An, Kedong; Wang, Wenke; Zhao, Yaqian; Huang, Wenfeng; Chen, Li; Zhang, Zaiyong; Wang, Qiangmin; Li, Wanxin
2016-03-01
Soil thermal parameters are important for calculating the surface energy balance and mass transfer. Previous studies have proposed methods to estimate thermal parameters using field data; however, the application of these methods lacks validation and comprehensive evaluation under different climatic conditions. Here, we evaluate four methods (amplitude, phase shift, conduction-convection and harmonic) to estimate thermal diffusivity ( k) under different climatic conditions. Heat flux was simulated and compared with data from heat-flux plates to validate the application of the four methods. The results indicated that, under clear-sky conditions, the harmonic method had the greatest accuracy in estimating k, though it generated large errors on rainy days or under overcast conditions. The conduction-convection method (CCM) provided a reliable estimate of k on rainy days, or under overcast skies, coinciding with increased water movement in the soil profile. The amplitude method, although a simple calculation, had poor accuracy for rainy and overcast conditions. Finally, the phase shift method was shown to be a suitable alternative for CCM to estimate k under overcast conditions, though only when soil moisture content was high.
A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream
E.A. Boiko; S.V. Pachkovskii
2008-12-15
A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.
Fujioka, Yusuke; Yasui, Keizo; Hasegawa, Yasuhiro; Takahashi, Akira; Sobue, Gen
2009-10-01
A 47-year-old man was admitted to the hospital because of general convulsion, loss of consciousness and hyperthermia. A diagnosis of acute heat stroke was made clinically and neuroradiologically. As the consciousness level ameliorated, he developed severe abulia and mutism, then cerebellar ataxic syndrome (viz. truncal ataxia, hypermetria, ataxic speech and nystagmus). An MRI (diffusion weighted image; DWI) disclosed abnormal diffuse high signal intensity of the cerebellar cortex with reduced apparent diffusion coefficient (ADC). Two months later after the onset, truncal ataxia and dysarthria significantly improved, while dysmetria of the extremities rather worsened. At that time, the abnormal signal intensity of the cerebellar cortex disappeared, and the cerebellum became atrophic. The cerebellar blood flow was significantly decreased on brain SPECT (99mTc-ECD). The abnormal DWI signal intensity of the cerebellar cortex in the present patient may represent the cytotoxic edema of Purkinje cells resulting from heat stroke-related hyperthermia It is essential to repeat MRI examination for cerebellar pathology and to obtain better insight into sequelae in patients with acute heat stroke. Protirelin tartrate seemed to be valid for improvement of abulia in the present patient. Further study is indicated. PMID:19999144
NASA Astrophysics Data System (ADS)
Shaw, W. J.; Stanton, T. P.
2006-12-01
During the 2005 Maud Rise Nonlinear Equation of State Study (MaudNESS) field program, more than 1300 profiles of temperature, conductivity and fast-response micro-conductivity were made in the vicinity of Maud Rise, Weddell Sea over a series of 13 drift stations. Stratification is particularly weak on the flanks of Maud Rise and the water column is likely susceptible to cabbeling, thermobaric, and/or double diffusive instabilities. A record of heat flux and turbulent diffusivity within the pycnocline was generated from the micro-conductivity measurements. Although the pycnocline is very unstable to double diffusive instability, the measured fluxes are larger than those predicted based on established double diffusive flux laws. Much of the variability in pycnocline heat flux is related to the stability of the water column with respect to diapycnal cabbeling. Excluding two drifts closest to the summit of Maud Rise, the average heat flux in areas that were stable with respect to cabbeling was ~3 W/m2 and the average heat flux in areas that were unstable was ~30 W/m2.
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma
Velikovich, A. L. Giuliani, J. L.; Zalesak, S. T.
2014-12-15
The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ω{sub e}τ{sub e} effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
2015-04-01
The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
Magnetic flux and heat losses by diffusive, advective, and Nernst effects in MagLIF-like plasma
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
2014-12-01
The MagLIF approach to inertial confinement fusion involves subsonic/isobaric compression and heating of a DT plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot plasma to the cold liner is dominated by the transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ωeτe effective diffusion coefficients determining the losses of heat and magnetic flux are both shown to decrease with ωeτe as does the Bohm diffusion coefficient, which is commonly associated with low collisionality and two-dimensional transport. This family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.
2015-04-15
The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.
NASA Astrophysics Data System (ADS)
Guo, Zhixiong; Maruyama, Shigenao; Togawa, Shinji
1998-01-01
Numerical analyses are conducted to investigate the combined heat transfer in floating zone growth of large Si crystals with needle-eye technique. The radiation element method, REM2, is employed to determine the radiative heat exchange, in which the view factors associated with the components in the float zone furnace and both the diffuse and specular reflection components are incorporated. The boundary element method and the finite difference method are adopted to calculate the electromagnetic field and the heat conduction, respectively. The effect of surface radiative characteristics of Si melt and crystal, i.e., diffuse and/or specular, is discussed in detail. It is found that the consideration of specular surfaces increases the Joulean heat and the radiative heat flux. The temperature fields are obtained for the cases of diffuse and specular, and the difference between the two different cases is obvious in the crystal and molten zone areas. The molten zone is enlarged when the specular surface is accounted for. The interface shape is examined and found to be in good agreement with the experiment.
NASA Astrophysics Data System (ADS)
Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh
2016-09-01
A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Belliard, L. Charron, E.; Vincent, S.; Perrin, B.; Fournier, D.; Frétigny, C.
2015-02-14
We report on thermal investigations performed in a time resolved experimental scheme. The time domain thermoreflectance (TDTR) is applied in an unusual geometry where the pump and probe beams are not superimposed but focused and shifted. In this way, the determination of the in-plane thermal diffusivity is achieved from temperature snapshots at different time delays. In the first part, taking into account the specific generation process and the detection inherent to the time domain thermoreflectance approach, an analytical solution for the temperature field is obtained for bulk samples, and compared to experimental data. A comparison with the frequency domain thermoreflectance microscopy is also outlined. In Part II section, the lateral heat diffusion in a layered structure is investigated. The comparison of the heat diffusion spreading in case of a highly conductive layer deposited on an insulator substrate and the reverse situation are carefully studied. Finally, we show how the time dependence is efficient to probe and identify material thermal properties or thermal interfacial resistance.
NASA Astrophysics Data System (ADS)
Po, Giacomo; Ghoniem, Nasr
2014-05-01
We present a formulation of the discrete Dislocation Dynamics (DD) method based on Onsager's variational principle. The motion of discrete dislocations is treated as a generalized irreversible flux associated with conjugate thermodynamic forces causing internal production of entropy. Intrinsic in the variational principle is the role of physical constraints that limit the choice of generalized fluxes. We leverage the concept of constrained maximization to introduce the requirement that dislocation climb must be sustained by the flux of vacancies into the dislocation core. The constrained variational approach results naturally in the coupling between plastic deformation induced by discrete dislocations, vacancy diffusion, and heat propagation in solid crystals. In particular, this coupling requires that dislocation velocity and chemical potential of vacancies at the dislocation core be found simultaneously. A new numerical formulation of DD that accounts for generalized constraints imposed on dislocations is presented, based on a network discretization of the dislocation configuration. Applications illustrate the significance of constrained motion of dislocations confined in channels and pillars, and the attainment of heterogeneous dislocation structures.
Seasonal changes of thermal diffusivity and their effect on heat transfer in soils
NASA Astrophysics Data System (ADS)
Dedecek, Petr; Correia, Antonio; Safanda, Jan; Cermak, Vladimir; Rajver, Dusan; Pechacova, Blanka
2016-04-01
The aim of the work is to describe the effects of seasonal changes of thermal diffusivity (TD) on the thermal regime in shallow subsurface soils. The long term temperature series from observatories at Prague (Czechia), Evora (Portugal) and Malence (Slovenia) were processed by newly improved code which enables a detailed calculation of time changes of TD of the soils. To determine the effect of climate warming of the recent years and to describe the possible effect of TD changes on the temperature-depth profiles, time dependent numerical models were computed. In the case of Evora, the effect of the TD changes on mean annual temperatures was confirmed. This observatory is located on bare sandy surface and TD in the upper soil layer significantly decreases (up to 50%) in summer months. It is due to local climate, which is typical by alternating winter/wet and summer/dry periods. The negative temperature gradient in the depth of 2-5 cm increases with TD decreasing, the coefficient of determination is 0.6 (2012). The TD decreasing during the summer months substitutes the effect of vegetation and controls the heat transfer to the subsurface. The climate in Prague and Malence is typical by rainy/snowy periods during the whole year and effect of TD changes in bare sandy soils is only short-term, or even insignificant under grassy surfaces.
Transient electron heat diffusivity obtained from trace impurity injection on TFTR
Kissick, M. W.; Fredrickson, E. D.; Callen, J. D.; Bush, C. E.; Chang, Z. Y.; Efthimion, P. C.; Hulse, R. A.; Mansfield, D. K.; Park, H. K.; Schivell, J.; Scott, S. D.; Synakowski, E. J.; Taylor, G.; Zarnstorff, M. C.
1993-08-01
A new method for obtaining a transient (``pulse``) electron heat diffusivity (χe^{p}) in the radial region 0.38 < r/a < 0.56 in TFTR L-mode discharges is presented. Small electron temperature perturbations were caused by single bursts of injected impurities which radiated and cooled the plasma edge. An iron injection case by laser ablation was found to be more definitive than a supporting helium gas puff case. In this new ``cold pulse`` method, we concentrate on modeling just the electron temperature perturbations, tracked with ECE (electron cyclotron emission) diagnostics and on being able to justify separation in space and time from the cooling source. This χe^{p} is obtained for these two cases to be χe^{p} = (6.0m²/s ± 35%) ~ 4χe(power balance) which is consistent with, but more definitive than, results from other studies that are more susceptible to ambiguities in the source profile.
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.
2006-12-01
The dependence of the vibrational component of thermal diffusivity (D) of spinel-family minerals on chemical composition, disorder, and temperature (T) is discerned using laser-flash measurements of single-crystals up to 1850 K, and used along with data on garnets and radiative transfer calculations to constrain heat transport in Earth's transition zone (TZ). Laser-flash analysis lacks the systematic errors associated with conventional methods, namely, corruption with radiative transfer, and thermal contact losses. Chemical compositions are synthetic disordered spinel, 4 natural samples near MgAl2O4; 4 natural hercynites (Mg,Fe,Al)3O4], nearly ZnAl2O4, and 2 magnetites [Fe3O4]. The magnetic transition is manifest as a lambda curve in 1/D, but otherwise, 1/D is described by low-order polynomial fits with temperature. Ordered, MgAl2O4 has D(298K) = 7.78 mm2/s, which should approximate that of γ-Mg2SiO4. At 298 K, D decreases strongly as cation substitution or Mg-Al disorder increases: D(298K) for ringwoodite is estimated as 5.8 mm2/s. However, above 1400 K, D becomes constant: this limit (Dsat=0.70-1.07 mm2/s) weakly depends on composition and disorder and is analogous to the Dulong-Petit limit in heat capacity (Cp). Mantle garnets have Dsat=0.65 mm2/s (Hofmeister 2006 Phys Chem Min.). To obtain TZ values, we use d(lnD)/dP= (4γth 2/3)KT, literature data on bulk modulus and thermal Gruneisen parameter, density from PREM, and Cp=1.3 J/g-K, which depends weakly on composition, T, and P. Average thermal conductivity (k)in the TZ is 5-6 W/m-K, depending on garnet proportion, and increase with P. Radiative transfer provides ca 1 W/m-K, depending on Fe content and grain-size (Hofmeister 2005 J. Geodyn.). Our estimate of large k = 6-7 W/m-K is twice recent estimates, and is a consequence of phonon saturation revealed by laser-flash measurements. Efficient vibrational transport of heat in the TZ and deeper stabilizes against convection, as does the positive temperature
Thermal diffusivity and heat capacity of SiGe/Si superlattice from 374 K to 674 K
NASA Astrophysics Data System (ADS)
Davidson, Anthony L.; Twigg, Mark; Thompson, Phillip E.; Worchesky, Terrance; Aifer, Edward
2015-10-01
In this work, we examine the thermal diffusivity of Si/SiGe thin-film superlattice (SL) structures and use these results with pervious thermal conductivity results to calculate the heat capacity from 374 K to 674 K. The thermal properties of semiconductor layered structures can be altered through the use of SL structures. This alteration occurs through two possible mechanisms: increased phonon scattering due to rough interfaces and phonon zone folding due to boundary conditions of the propagating waves. Examining the heat capacity allows for the observation of phonon zone folding effects while limiting effects due to scattering. Structures studied here consist of SiGe SLs grown at different temperatures and with varying SL spacing allowing the examination of period and crystallinity effects on thermal properties. Previously reported results show that for SL structures both crystalline and polycrystalline have a thermal conductivity of approximately 1 W/mK measured over temperatures ranging from 374 K to 674 K. In this work, thermal diffusivity was measured through laser flash analysis, with crystalline SL structures showing values <1 mm2/s, while the thermal diffusivity of the polycrystalline structure was found to be twice that of the crystalline structure over the temperature range. In all instances, the heat capacities for the SL structures are found to be lower than that for a uniform thin film alloy, indicating a significant contribution of phonon dispersion modification to the heat capacity.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
NASA Astrophysics Data System (ADS)
Branlund, J. M.; Hofmeister, A.; Dong, J.
2013-12-01
Over the course of several years, we have measured heat transport to high temperatures for a large number (ca. 200) of minerals, rocks, glasses and melts using laser flash analysis which eliminates systematic errors (contact losses and boundary-to-boundary radiative transfer gains) that limit utility of conventional, contact techniques. The database is large enough to elucidate patterns. For most samples and particularly for our >60 non-metallic, large single-crystals, >30 glasses and >12 polycrystals, we show that thermal diffusivity is consistently represented by D(T) =F/T ^G + HT, permitting confident extrapolation from conditions in the laboratory to those in the mantle. The two distinct temperature terms describing D(T) suggest that two microscopic mechanisms of conduction exist in the electrical insulators explored. We propose that phonon scattering (the F/T^G term) sums with radiative diffusion of infrared (IR) light in the form of polaritons (the HT term). Speeds near that of sound over unit cell scale lengths exist for the polariton mechanism due to phonon-photon coupling, thereby distinguishing this proposed mechanism from high frequency diffusive radiative transfer which travels near the speed of light, and only is important following transient heating. For 63 single-crystals and many glasses unaffected by disordering or reconstructive phase transitions, G ranges from 0.3 to 2, depending on structure, and H is ~0.0001/ K, and so HT crosses F/T^G by ~1300 K (for most oxides), meaning that radiative diffusion of IR light is more important than phonon scattering inside the Earth. Importantly, the increase in heat transport due to elevated temperature is augmented by the increase due to high P inside planets, providing stability against convection. The popular view of a vigorously convecting interior needs revisiting, given known feedback in the temperature equation and the large size of the HT term. To understand the microscopic basis of HT term, we re
The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin
Atla, Jyothi; Manne, Prakash; Gopinadh, A.; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika
2013-01-01
Aim: This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat–polymerized acrylic resin. Material and Methods: Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. Results were analysed by using one–way analysis of variance (ANOVA). Results: Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm2/sec, followed by D (9.09mm2/sec), C (8.49mm2/sec), B(8.28mm2/sec) and A(6.48mm2/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Conclusion: Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. PMID:24086917
NASA Astrophysics Data System (ADS)
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
NASA Astrophysics Data System (ADS)
Tsitverblit, N.
1995-04-01
As has recently been reported by Tsitverblit and Kit [Phys. Fluids A 5, 1062 (1993)], a vertical rectangular enclosure containing stably stratified brine and differentially heated from its side walls is characterized by complex steady bifurcation phenomena. In the present work, the structure of steady solutions in the enclosure has been studied in detail for several values of the salinity Rayleigh number, RaS, fixed near the commencement of the double-diffusive region. It was found that when the thermal Rayleigh number, RaT, is either very small or sufficiently large, the steady solution is unique while in an intermediate region of this parameter, there exists a great variety of the multiple steady flows, being the result of nondegenerate hysteresis points and isolas of asymmetric solutions forming as RaS is increased. In particular, at the maximal value of RaS considered there have been observed symmetric and asymmetric one-, two-, three-, four-, and five-cell flows. Despite the multiplicity of the flow patterns, a critical interval of the buoyancy ratio has been distinguished, above and below which the generic characteristics of the steady solutions were found to resemble the respective features of the ``successive'' and ``simultaneous'' regimes of layer formation whose existence was established in previous studies. Although the set of the steady solutions has been found to contain no linearly stable multicell flows, the perturbation was so long retained in the close proximity of the unstable steady solutions that such flows could be easily observable in the experiment. In spite of the appreciably different range of the Rayleigh numbers, the physically meaningful parameters suggested in previous studies were found to be represented in the present results.
NASA Astrophysics Data System (ADS)
Graham, Daniel; Khotyaintsev, Yuri; Vaivads, Andris; Norgren, Cecilia; Andre, Mats; Lindqvist, Per-Arne; Le Contel, Olivier; Ergun, Robert; Goodrich, Katherine; Torbert, Roy; Burch, James; Russell, Christopher; Magnes, Werner; Giles, Barbara; Pollock, Craig; Mauk, Barry; Fuselier, Stephen
2016-04-01
Magnetic reconnection is a fundamental process in solar and astrophysical plasmas. The processes operating at electron spatial-scales, which enable magnetic field lines to reconnect, are generally difficult to resolve and identify. However, the recently launched Magnetospheric Multiscale (MMS) mission is specifically designed to resolve electron spatial scales. We use the MMS spacecraft to investigate the process operating within the diffusion region to determine the causes of electron heating and acceleration. In particular, we investigate the type of electrostatic and electromagnetic waves that develop and how they affect the electron distributions. We also compare the roles of wave-particle interactions with DC electric fields to determine which is responsible for the electron heating observed in diffusion regions.
NASA Astrophysics Data System (ADS)
Ishida, Y.; Masuda, H.; Sakai, H.; Ishiwata, S.; Shin, S.
2016-03-01
There is still no general consensus on how one can describe the out-of-equilibrium phenomena in matter induced by an ultrashort light pulse. We investigate the pulse-induced dynamics in a layered Dirac semimetal SrMnBi2 by pump-and-probe photoemission spectroscopy. At ≲1 ps, the electronic recovery slowed upon increasing the pump power. Such a bottleneck-type slowing is expected in a two-temperature model (TTM) scheme, although opposite trends have been observed to date in graphite and in cuprates. Subsequently, an unconventional power-law cooling took place at ˜100 ps, indicating that spatial heat diffusion is still ill defined at ˜100 ps . We identify that the successive dynamics before the emergence of heat diffusion is a canonical realization of a TTM scheme. Criteria for the applicability of the scheme is also provided.
NASA Astrophysics Data System (ADS)
Abdulagatov, I. M.; Abdulagatova, Z. Z.; Kallaev, S. N.; Bakmaev, A. G.; Ranjith, P. G.
2015-04-01
The well-known contact-free, laser-flash method was used for measurement of the thermal diffusivity of natural sandstone samples. The experimental procedure was conducted using the microflash apparatus (LFA 457). The measurements have been made over the temperature range from (302.9 to 774.3) K. The isobaric heat capacities of the same sample were measured over the temperature range from (308 to 763) K using DSC 204 F1. Uncertainties are 3 % and 1 % for and , respectively. Measured values of and together with density data were used to calculate the thermal conductivity of sandstone. Theoretically based correlations for the thermal diffusivity (damped harmonic oscillator, DHO) and heat capacity (Debye and Einstein theories) were adopted to accurately represent the measured data. Correlation equations for the thermal diffusivity and heat capacity have been developed using the well-known theoretical asymptotic behavior of and for various temperature ranges (low- and high-temperature limits). The microscopic nature of the effect of temperature on and behavior of sandstone is discussed. Detailed interpretation and testing of the measured property data for sandstone using various existing theoretical and empirical models, in order to check their accuracy, predictive capability, and applicability, are provided.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
Energy Science and Technology Software Center (ESTSC)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
On the Influence of a Fuel Side Heat-Loss (Soot) Layer on a Planar Diffusion Flame
NASA Technical Reports Server (NTRS)
Wichman, Indrek S.
1994-01-01
A model of the response of a diffusion flame (DF) to an adjacent heat loss or 'soot' layer on the fuel side is investigated. The thermal influence of the 'soot' or heat-loss layer on the DF occurs through the enthalpy sink it creates. A sink distribution in mixture-fraction space is employed to examine possible DF extinction. It is found that (1) the enthalpy sink (or soot layer) must touch the DF for radiation-induced quenching to occur; and (2) for fuel-rich conditions extinction is possible only for a progressively narrower range of values ot the characteristic heat-loss parameter, N(sub R)(Delta Z(sub R)) Various interpretations ot the model are discussed. An attempt is made to place this work into the context created by previous experimental and computational studies.
NASA Astrophysics Data System (ADS)
McDannell, K. T.; Idleman, B. D.; Zeitler, P. K.
2015-12-01
Old, slowly cooled apatites often yield overdispersed helium ages due to factors such as parent zonation, He implantation, radiation damage, crystal defects, and fluid inclusions. Careful mineral selection and many replicate analyses can mitigate the impact of some of these effects. However, this approach adds unnecessary costs in time and resources when dating well-behaved apatites and is generally ineffective at identifying the root cause of age dispersion and providing suitable age corrections for poorly behaved samples. We assess a new technique utilizing static-gas measurement during continuous heating as a means to rapidly screen apatite samples. In about the time required for a conventional total-gas analysis, this method can discriminate between samples showing the volume-diffusion behavior expected for apatite and those showing anomalous release patterns, inconsistent with their use in thermochronologic applications. This method may also have the potential to quantify and discriminate between the radiogenic and extraneous 4He fractions released by a sample. Continuously heated samples that outgas by volume diffusion during a linear heating schedule should produce a characteristic sigmoidal 4He fractional loss profile, with the exact shape and position of these profiles (in loss vs. heating time space) controlled by sample kinetics, grain size, and heating rate. Secondary factors such as sample zoning and alpha-loss distribution have a relatively minor impact on such profiles. Well-behaved examples such as the Durango standard and other apatites with good age reproducibility show the expected smooth, sigmoidal gas release with complete exhaustion by temperatures predicted for volume diffusion using typical apatite kinetics (e.g., by ~900˚C for linear heating at 20˚C/minute). In contrast, "bad actor" samples that do not replicate well show significant degrees of helium release deferred to higher temperatures. We report on screening results for a range of
Heat Diffusion in a Solid Sphere and Fourier Theory: An Elementary Practical Example.
ERIC Educational Resources Information Center
Unsworth, J.; Duarte, F. J.
1979-01-01
Describes a method to determine the thermal diffusivity of a polymer, which is suitable for the undergraduate laboratory. It serves as a practical demonstration of classical Fourier theory. (Author/HM)
Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team
2015-11-01
The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.
2011-03-01
The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.
NASA Astrophysics Data System (ADS)
Kunova, O.; Kustova, E.; Mekhonoshina, M.; Nagnibeda, E.
2015-12-01
In this paper, the influence of vibrational and dissociation kinetics on heat transfer and diffusion in non-equilibrium flows of N2/N and O2/O mixtures in the relaxation zone behind shock waves is studied on the basis of the state-to-state and one-temperature kinetic theory approaches. The results of calculations of vibrational level populations ni , gas temperature T, total energy flux q, diffusion velocities of molecules at different vibrational states Vi and atoms Va in the relaxation zone behind a shock front are presented for the free stream Mach numbers M = 18, 15, 10. The contribution of different dissipative processes to the total energy flux is evaluated for various flow conditions. Characteristic features of non-equilibrium kinetics, diffusion and energy transfer in two considered mixtures are discussed. The impact of vibrational excitation of N2 and O2 molecules in the free stream on a relaxation zone structure and transport properties behind a shock is shown.
Mihaila, Bogden; Zubelewicz, Aleksander; Stan, Marius; Ramirez, Juan
2008-01-01
We study the thermal expansion of UO{sub 2+x} nuclear fuel rod in the context of a model coupling heat transfer and oxygen diffusion discussed previously by J.C. Ramirez, M. Stan and P. Cristea [J. Nucl. Mat. 359 (2006) 174]. We report results of simulations performed for steady-state and time-dependent regimes in one-dimensional configurations. A variety of initial- and boundary-value scenarios are considered. We use material properties obtained from previously published correlations or from analysis of previously published data. All simulations were performed using the commercial code COMSOL Multiphysics{sup TM} and are readily extendable to include multidimensional effects.
NASA Astrophysics Data System (ADS)
Fabre, Antoine; Hristov, Jordan
2016-04-01
Closed form approximate solutions to nonlinear transient heat conduction with linearly temperature-dependent thermal diffusivity have been developed by the integral-balance integral method under transient conditions. The solutions uses improved direct approaches of the integral method and avoid the commonly used linearization by the Kirchhoff transformation. The main steps in the new solutions are improvements in the integration technique of the double-integration technique and the optimization of the exponent of the approximate parabolic profile with unspecified exponent. Solutions to Dirichlet and Neumann boundary condition problems have been developed as examples by the classical Heat-balance integral method (HBIM) and the Double-integration method (DIM). Additional examples with HBIM and DIM solutions to cases when the Kirchhoff transform is initially applied have been developed.
Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.
2014-01-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435
Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification
Miller, D S
2010-12-03
In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.
Diffusion-absorption heat pump. Final report, November 1990-December 1994
Herold, K.E.
1996-06-01
The gas-fired domestic refrigerator is a successful gas-fired appliance which fills a market niche where either low noise or independence from electric power is important. Such applications include hotel room refrigerators, recreational vehicles and remote area refrigeration. Current diffusion-absorption machines have poor performance. The current work is expected to demonstrate significant performance improvements over current technology.
Energy Science and Technology Software Center (ESTSC)
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
NASA Astrophysics Data System (ADS)
Wang, Z. L.; Tang, D. W.; Liu, S.; Zheng, X. H.; Araki, N.
2007-08-01
A 3 ω technique is developed for simultaneous determination of the thermal conductivity and thermal diffusivity of nanofluids. The 3 ω measuring system is established, in which a conductive wire is used as both heater and sensor. At first, the system is calibrated using water with known thermophysical properties. Then, the thermal conductivity and thermal diffusivity of TiO2/distilled water nanofluids at different temperatures and volume fractions and the thermal conductivity of SiO2 nanofluids with different carrier fluids (water, ethanol, and EG) are determined. The results show that the working temperature and the carrier fluid play important roles in the enhancement of thermal transport in nanofluids. These results agree with the predictions for the temperature dependence effect by the Brownian motion model and the micro-convection model. For SiO2 nanofluids, the thermal-conductance enhancement becomes strong with a decrease in the heat capacity of the carrier fluids. Finally, according to our results and mechanism analysis, a corrected term is introduced to the Brownian motion model for providing better prediction of heat transport performance in nanofluids.
NASA Astrophysics Data System (ADS)
Chen, X.; Miller, G.; Baldocchi, D.; Rubin, Y.
2008-12-01
The heat pulse method is widely used to measure water flux in plants and soil; it works by inferring the velocity of water in a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity: wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtaining the correct transpiration amount from the sap flow measurements at the plant scale and consequently to the up-scaling of water flux to a larger scale and to the water cycle modeling along the soil-vegetation-atmosphere continuum. The purpose of this study is to present a statistical framework to simultaneously estimate these parameters from in-situ heat response curves collected by the implanted probes of heat ratio apparatus. Conditioned on the heat response data, the parameters are inferred using a Bayesian inversion technique with Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that, unlike most of the existing work, it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that multiple tests on the same apparatus are essential to obtain reliable, accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it shows consistency with the seasonal change of tree diameters monitored using tree dendrometer. An empirical factor is adopted to account for flow deformation caused by the implanted probes, and it is also estimated in this study. The proposed methodology is ready to be applied to calibrate
A simple Boltzmann transport equation for ballistic to diffusive transient heat transport
NASA Astrophysics Data System (ADS)
Maassen, Jesse; Lundstrom, Mark
2015-04-01
Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.
A simple Boltzmann transport equation for ballistic to diffusive transient heat transport
Maassen, Jesse Lundstrom, Mark
2015-04-07
Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.
Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR
Fisher, A C; Bailey, D S; Kaiser, T B; Gunney, B N; Masters, N D; Koniges, A E; Eder, D C; Anderson, R W
2009-10-06
The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.
Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process
NASA Technical Reports Server (NTRS)
Holko, K. H. (Inventor)
1974-01-01
Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.
Diffusion-trapping modelling of hydrogen recycling in tungsten under ELM-like heat loads
NASA Astrophysics Data System (ADS)
Schmid, K.
2016-02-01
The recycling of D ions impinging onto a W divertor surface is a key input parameter into the power and momentum balance at the target boundary during SOL modeling. It is described by the ratio R of the flux of recombining D2 molecules to the non-reflected incident ion flux. In steady-state plasmas where the surface is in equilibrium with the incident flux, R equals one due to particle conservation. However, during transient events such as edge localized modes (ELMs) the evolution of R with time is not straightforward to predict. Therefore, detailed diffusion-trapping calculations were performed taking into account the variations in power influx and particle energy during an ELM. They showed that in contrast to the naive expectation, that the ELM would deplete the surface and subsequently lead to ‘pumping’ (R \\ll 1) of the incident flux by the empty surface, R ≈ 1 or even R \\gt 1 occurs. This paper will first describe how the ELM was approximated in the 1D diffusion-trapping code and then discuss the evolution of R during an ELM and in the inter ELM phase. Also, an analytical picture of R will be developed which allows qualitatively understanding the evolution of R as calculated by the diffusion-trapping code.
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
Effect of variable heating on double diffusive flow in a square porous cavity
NASA Astrophysics Data System (ADS)
Badruddin, Irfan Anjum; Khan, T. M. Yunus; Salman Ahmed N., J.; Kamangar, Sarfaraz
2016-05-01
Investigation of heat and mass transfer due to variable heating at the left vertical surface of a square cavity filled with porous medium is carried out. The left surface of cavity is maintained at higher temperature and concentration as compared to right surface which has low temperature and concentration. Finite element method is used to convert the partial differential equations into simpler algebraic form of equations. The governing equations are solved in iterative manner to obtain the solution parameters.Results are presented in terms of isothermal lines, iso-concentration lines and streamlines for variable wall temperature at left surface.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2015-12-01
In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.
NASA Astrophysics Data System (ADS)
Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.
2015-12-01
Existing time-series measurements of temperature and velocity of diffuse hydrothermal fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and field locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent field (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent field.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.
1999-01-01
In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Singh, Ajay V; Gollner, Michael J
2016-01-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827
Singh, Ajay V.; Gollner, Michael J.
2016-01-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827
NASA Astrophysics Data System (ADS)
Hofmeister, A.
2010-12-01
Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi
Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier
Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.
2015-05-01
A monolith fuel design based on U–Mo alloy has been selected as the fuel type for conversion of the United States’ high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U–Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U–Mo foil during fabrication alters the microstructure of both the U–10Mo fuel meat and the U–Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U–Mo fuel meat and the U–Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U–Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ~9, ~13, and ~20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U–Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U–Mo coupon homogenization. The phases in the Zr/U–Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.
Effects of heat treatment on U-Mo fuel foils with a zirconium diffusion barrier
NASA Astrophysics Data System (ADS)
Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D.
2015-05-01
A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were ∼9, ∼13, and ∼20 μm for annealing temperature of 650, 750, and 850 °C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 ± 0.5 μm, 11.1 ± 2.1 μm, 27.1 ± 0.9 μm for annealing temperature of 650, 750, to 850 °C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies.
Collective excitations in 2D hard-disc fluid.
Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij
2015-07-01
Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625
GAS DIFFUSION IN A 2-D SOIL SYSTEM
Technology Transfer Automated Retrieval System (TEKTRAN)
Chemical alternatives for methyl bromide appear to be the only viable short to medium range replacements in pre-plant soil fumigation systems. However, current fumigation practices need to be improved to minimize negative societal and environmental impacts. Often the amount of fumigant applied to so...
Steady-state heat transport: Ballistic-to-diffusive with Fourier's law
Maassen, Jesse Lundstrom, Mark
2015-01-21
It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundary conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.
Modified Chapman-Enskog moment approach to diffusive phonon heat transport.
Banach, Zbigniew; Larecki, Wieslaw
2008-12-01
A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity. PMID:19256832
Ocean Turbulence I: One-Point Closure Model Momentum and Heat Vertical Diffusivities
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
Since the early forties, one-point turbulence closure models have been the canonical tools used to describe turbulent flows in many fields. In geophysics, Mellor and Yamada applied such models using the 1980 state-of-the art. Since then, no improvements were introduced to alleviate two major difficulties: 1) closure of the pressure correlations, which affects the correct determination of the critical Richardson number Ri(sub cr) above which turbulent mixing is no longer possible and 2) the need to express the non-local third-order moments (TOM) in terms of lower order moments rather than via the down-gradient approximation as done thus far, since the latter seriously underestimates the TOMs. Since 1) and 2) are still being dealt with adjustable parameters which weaken the credibility of the models, alternative models, not based on turbulence modeling, have been suggested. The aim of this paper is to show that new information, partly derived from the newest 2-point closure model discussed, can be used to solve these shortcomings. The new one-point closure model, which in its simplest form is algebraic and thus simple to implement, is first shown to reproduce a variety of data. Then, it is used in a Ocean-General Circulation Model (O-GCM) where it reproduces well a large variety of ocean data. While phenomenological models are specifically tuned to ocean turbulence, the present model is not. It is first tested against laboratory data on stably stratified flows and then used in an O-GCM. It is more general, more predictive and more resilient, e.g., it can incorporate phenomena like wave-breaking at the surface, salinity diffusivity, non-locality, etc. One important feature that naturally comes out of the new model is that the predicted Richardson critical value Ri(sub cr) is Ri (sub cr approx. = 1) in agreement with both Large Eddy Simulations (LES) and empirical evidence while all previous models predicted Ri (sub cr approx. = 0.2) which led to a considerable
Evaluation of 2D ceramic matrix composites in aeroconvective environments
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza
1992-01-01
An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.
Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K
2015-05-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. PMID:25791435
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
NASA Astrophysics Data System (ADS)
Karawacki, Ernest; Suleiman, Bashir M.; ul-Haq, Izhar; Nhi, Bui-Thi
1992-10-01
The recently developed dynamic plane source (DPS) technique for simultaneous determination of the thermal properties of fast thermally conducting materials with thermal conductivities between 200 and 2 W/mK has now been extended for studying relatively slow conducting materials with thermal conductivities equal or below 2 W/mK. The method is self-checking since the thermal conductivity, thermal diffusivity specific heat, and effusivity of the material are obtained independently from each other. The theory of the technique and the experimental arrangement are given in detail. The data evaluation procedure is simple and makes it possible to reveal the distortions due to the nonideal experimental conditions. The extension to the DPS technique has been implemented at room temperature to study the samples of cordierite-based ceramic Cecorite 130P (thermal conductivity equal to 1.48 W/mK), rubber (0.403 W/mK), and polycarbonate (0.245 W/mK). The accuracy of the method is within ±5%.
Brandt, Stephen B.; Rasskazov, S.V.; Brandt, I.S.; Ivanov, A.V.; Kunk, M.J.
1997-01-01
Results of two routine 40Ar/39Ar stepwise heating experiments on a biotite and a basanite are interpreted in terms of Fick's and Arrhenius' laws. Both patterns represent a saddle-shaped 39Ar release. Argon isotope spectra are suggested to be controlled by the activation energy of diffusion E and the frequency factor D(o). The activation energy of 39Ar is lower than the one of 40Ar. This results in a preferable release of 40Ar relatively to 39Ar at high-temperature steps and an increasing high-temperature wing in the saddle-shaped age spectrum. At low temperatures, considerable losses and irregularities in release of mainly 39Ar are observed, which cause the decreasing low-temperature wing in the 'saddle'. The suggestion of argon losses (mainly of 39Ar) from a loose, 'unstable' zone of the mineral structures becomes justified. The n-irradiation of the samples and the shift of E of 39Ar towards lower values seems to explain the saddle-shaped age-spectra often encountered in 40Ar/39Ar-geochronometry.
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch
2016-04-01
Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
NASA Astrophysics Data System (ADS)
Kosaka, Masataka; Monde, Masanori
2015-11-01
For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.
NASA Astrophysics Data System (ADS)
Zhu, X.; Yee, J.; Swartz, W. H.; Talaat, E. R.; Coy, L.
2009-12-01
There are three distinct processes by which upward-propagating gravity waves influence the large-scale dynamics and energetics of the middle atmosphere: (i) non-localized transport of momentum through wave propagation in three dimensions (3D) that remotely redistributes atmospheric momentum in both zonal and meridional directions from wave generation to wave dissipation regions, (ii) localized diffusive transport of momentum, heat and tracers due to mixing induced by wave dissipation, and (iii) localized transport of heat by perturbing wave structures due to dissipation that redistributes the thermal energy within a finite domain. These effects become most significant for breaking waves when the "breaking trinity" of the momentum drag, eddy diffusion and wave heating are all imposed on the background state. This paper develops a 3D parameterization scheme that self-consistently includes the "breaking trinity" in large-scale numerical models. The 3D parameterization scheme is developed based on the general relationship between the wave action flux and the subgrid-scale momentum and heat fluxes developed by Zhu in 1987 and a mapping approximation between the wave source spectrum and momentum deposition distribution developed by Alexander and Dunkerton in 1999. For a given input wind profile at each model grid the parameterization scheme outputs the vertical profiles of the subgrid-scale force terms together with the eddy diffusion coefficients in the momentum and energy equations for a 3D background flow.
NASA Astrophysics Data System (ADS)
Lovera, Oscar M.; Grove, Marty; Harrison, T. Mark
2002-04-01
We examine a database containing the results of 40Ar/ 39Ar step-heating experiments performed on 194 basement K-feldspars to recover thermal history information. Qualitative examination of 40Ar/ 39Ar systematics reveals that about half of the K-feldspars examined are sufficiently well behaved to be suitable for thermal history analysis. Correlation algorithms are developed to quantitatively assess the degree to which age and 39Ar release spectra are compatible with the same volume diffusion process. Upon applying these methods, we find that 65% of all samples yield correlation coefficients in excess of 0.8, whereas roughly 40% give values above 0.9. We further compare the observed correlation behavior with that predicted from the multidiffusion domain model and find good agreement for samples with correlation coefficients above 0.9. In contrast, hydrous phases unstable under in vacuo heating and K-feldspars with highly disturbed age spectra yield poorly correlated age and diffusion properties. The high degree of correlation exhibited by the majority of K-feldspars we have analyzed validates extrapolation of experimentally determined diffusion properties to conditions attending natural Ar loss within the crust. Despite this, a significant number of basement K-feldspars analyzed by the step-heating method yield 40Ar/ 39Ar systematics that are clearly problematic for thermal history analysis. We numerically explore the effects of low-temperature alteration of K-feldspar on thermochronological analysis and identify a range of conditions under which information is progressively lost. Finally, we demonstrate the insensitivity of thermal history calculations to detailed knowledge of the diffusion mechanism by introducing the heterogeneous diffusion model. We find that the multidiffusion domain approach can successfully recover imposed thermal histories from heterogeneous diffusion-type crystals and conclude that most details of the interpretive model employed are of
Diffusion across the modified polyethylene separator GX in the heat-sterilizable AgO-Zn battery
NASA Technical Reports Server (NTRS)
Lutwack, R.
1973-01-01
Models of diffusion across an inert membrane have been studied using the computer program CINDA. The models were constructed to simulate various conditions obtained in the consideration of the diffusion of Ag (OH)2 ions in the AgO-Zn battery. The effects on concentrations across the membrane at the steady state and on the fluxout as a function of time were used to examine the consequences of stepwise reducing the number of sources of ions, of stepwise blocking the source and sink surfaces, of varying the magnitude of the diffusion coefficient for a uniform membrane, of varying the diffusion coefficient across the membrane, and of excluding volumes to diffusion.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
2d PDE Linear Symmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
2d PDE Linear Asymmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Thermal conductivity measurements in a 2D Yukawa system
NASA Astrophysics Data System (ADS)
Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.
2007-03-01
Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.
Energy level transitions of gas in a 2D nanopore
Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.
2015-10-27
An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.
Characterization of Porous Medium Properties Using 2D NMR
NASA Astrophysics Data System (ADS)
Sun, Boqin; Dunn, Keh-Jim
2003-03-01
We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Real-time 2-D temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2010-01-01
We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075
Driven microswimmers on a 2D substrate: A stochastic towed sled model
NASA Astrophysics Data System (ADS)
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-01
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-14
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet
NASA Astrophysics Data System (ADS)
Chung, E. M. L.; Lees, M. R.; McIntyre, G. J.; Wilkinson, C.; Balakrishnan, G.; Hague, J. P.; Visser, D.; McK Paul, D.
2004-11-01
The possibilities of two-dimensional (2D) short-range magnetic correlations and frustration effects in the mineral tapiolite are investigated using bulk-property measurements and neutron Laue diffraction. In this study of the magnetic properties of synthetic single-crystals of tapiolite, we find that single crystals of FeTa2O6 order antiferromagnetically at TN = 7.95 ± 0.05 K, with extensive two-dimensional correlations existing up to at least 40 K. Although we find no evidence that FeTa2O6 is magnetically frustrated, hallmarks of two-dimensional magnetism observed in our single-crystal data include: (i) broadening of the susceptibility maximum due to short-range correlations, (ii) a spin-flop transition and (iii) lambda anomalies in the heat capacity and d(χT)/dT. Complementary neutron Laue diffraction measurements reveal 1D magnetic diffuse scattering extending along the c* direction perpendicular to the magnetic planes. This magnetic diffuse scattering, observed for the first time using the neutron Laue technique by VIVALDI, arises directly as a result of 2D short-range spin correlations.
Berkel, M. van; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de
2014-11-15
In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on the heat equation in cylindrical geometry using the symmetry (Neumann) boundary condition at the plasma center. This means that the approximations derived here should be used only to estimate transport coefficients between the plasma center and the off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possible to use semi-infinite domain approximations presented in Part I and Part II of this series. A number of new approximations are derived in this part, Part III, based upon continued fractions of the modified Bessel function of the first kind and the confluent hypergeometric function of the first kind. These approximations together with the approximations based on semi-infinite domains are compared for heat waves traveling towards the center. The relative error for the different derived approximations is presented for different values of the frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can be used to estimate the transport coefficients over a large parameter range for cases without convection and damping, cases with damping only, and cases with convection and damping. The relative error between the approximation and its underlying model is below 2% for the case, where only diffusivity and damping are considered. If also convectivity is considered, the diffusivity can be estimated well in a large region, but there is also a large region in which no suitable approximation is found. This paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part II
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
Chen, Xingyuan; Miller, Gretchen R.; Rubin, Yoram; Baldocchi, Dennis
2012-09-13
The heat pulse method is widely used to measure water flux through plants; it works by inferring the velocity of water through a porous medium from the speed at which a heat pulse is propagated through the system. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale; and consequently, to up-scale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for estimating the wood thermal diffusivity and probe spacing simutaneously from in-situ heat response curves collected by the implanted probes of a heat ratio apparatus. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require known probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential to obtain reliable and accurate solutions. When applied to field conditions, these tests are conducted during different seasons and automated using the existing data logging system. The seasonality of wood thermal diffusivity is obtained as a by-product of the parameter estimation process, and it is shown to be affected by both moisture content and temperature. Empirical factors are often introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and they are estimated in this study as well. The proposed methodology can be applied for
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
NASA Technical Reports Server (NTRS)
Sheng, Y. J.; Wasserburg, G. J.; Hutcheon, I. D.
1992-01-01
An isotopic tracer is used to measure Mg self-diffusion in spinel and coexisting melt at bulk chemical equilibrium. The diffusion coefficients were calculated from the measured isotope profiles using a model that includes the complementary diffusion of Mg-24, Mg-25, and Mg-26 in both phases with the constraint that the Mg content of each phase is constant. The activation energy and preexponential factor for Mg self-diffusion in spinel are, respectively, 384 +/- 7 kJ and 74.6 +/- 1.1 sq cm/s. These data indicate Mg diffusion in spinel is much slower than previous estimates. The activation energy for Mg self-diffusion in coexisting melt is 343 +/- 25 kJ and the preexponential factor is 7791.9 +/- 1.3 sq cm/s. These results are used to evaluate cooling rates of plagioclase-olivine inclusions (POIs) in the Allende meteorite. Given a maximum melting temperature for POIs of about 1500 C, these results show that a 1-micron radius spinel would equilibrate isotopically with a melt within about 60 min.
NASA Astrophysics Data System (ADS)
Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre
2011-05-01
The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems
Angirasa, D.; Srinivasan, J. )
1989-08-01
This paper presents a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The two buoyant mechanisms are thermal diffusion and species diffusion. The species concentration is assumed to be small. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy, and species are nondimensionalized. These equations are solved using a finite-difference method. The results are explained in terms of the basic physical mechanisms that govern these flows. It is observed that the ambient thermal stratification has a profound influence on the transport characteristics. The results show many interesting aspects of the complex interaction of the two buoyant mechanisms.
Stacey, W. M.
2014-04-15
A moments equation formalism for the interpretation of the experimental ion thermal diffusivity from experimental data is used to determine the radial ion thermal conduction flux that must be used to interpret the measured data. It is shown that the total ion energy flux must be corrected for thermal and rotational energy convection, for the work done by the flowing plasma against the pressure and viscosity, and for ion orbit loss of particles and energy, and expressions are presented for these corrections. Each of these factors is shown to have a significant effect on the interpreted ion thermal diffusivity in a representative DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharge.
Optical modulators with 2D layered materials
NASA Astrophysics Data System (ADS)
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
2D-Crystal-Based Functional Inks.
Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia
2016-08-01
The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938
Measurement of 2D birefringence distribution
NASA Astrophysics Data System (ADS)
Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru
1992-10-01
A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-01
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882
Baby universes in 2d quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar
1993-06-01
We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.
Urquhart, Alexander; Bauer, Stephen
2015-05-19
The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivity decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.
NASA Astrophysics Data System (ADS)
Torbert, Roy; Burch, James
2016-07-01
The NASA Magnetospheric Multiscale (MMS) mission was launched on March 13, 2015 UT to investigate magnetic reconnection in near-Earth space. During the first dayside phase ( 1A ), the four MMS spacecraft were deployed in a tetrahedral configuration with separations ranging from 400 km down to 10 km, a scale close to that of electron reconnection diffusion regions. Data is available from very high time resolution 3D plasma measurements (<30 keV, with a cadence of 30 ms and 150 ms for electrons and ions, respectively), 3D magnetic and electric fields (greater than with 1 ms time resolution) and waves (<6 kHz), 3D energetic particles with composition up to 500 keV, and plasma ion composition (< 30 keV/q). This talk with review the results of the first dayside encounters with electron diffusion regions and the acceleration observed during these encounters, where the dissipation during reconnection appears to be significant.
EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES
Iqbal, Sardar S.; Dinwiddie, Ralph Barton; Porter, Wallace D; Lance, Michael J; Fillip, Peter
2011-01-01
Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Static & Dynamic Response of 2D Solids
Energy Science and Technology Software Center (ESTSC)
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less
Stochastic Inversion of 2D Magnetotelluric Data
Energy Science and Technology Software Center (ESTSC)
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Explicit 2-D Hydrodynamic FEM Program
Energy Science and Technology Software Center (ESTSC)
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
NASA Astrophysics Data System (ADS)
Yang, Fan; Dames, Chris
2015-04-01
The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.
Chowdhury, Raju; Parvin, Salma; Khan, Md Abdul Hakim
2016-08-01
The problem of double-diffusive natural convection of Al2O3 -water nanofluid in a porous triangular enclosure in presence of heat generation has been studied numerically in this paper. The bottom wall of the cavity is heated isothermally, the left inclined wall is non-isothermal and the right inclined wall is considered to be cold. The concentration is higher at bottom wall, lower at right inclined wall and non-isoconcentration at left inclined wall of the cavity. The governing equations are transformed to the dimensionless form and solved numerically using Galerkin weighted residual technique of finite element method. The results are obtained in terms of streamlines, isotherms, isoconcentrations, average Nueeslt number (Nu) and average Sherwood number (Sh) for the parameters thermal Rayleigh number (RaT ), dimensionless heat generation parameter (λ), solid volume fraction (ϕ) and Lewis number (Le) while Prandtl number (Pr), Buoyancy ratio (N) and Darcy number (Da) are considered to be fixed. It is observed that flow pattern, temperature fields and concentration fields are affected by the variation of above considered parameters. PMID:27579447
Layer Engineering of 2D Semiconductor Junctions.
He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel
2016-07-01
A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275
NASA Astrophysics Data System (ADS)
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D materials: Graphene and others
NASA Astrophysics Data System (ADS)
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Tomosynthesis imaging with 2D scanning trajectories
NASA Astrophysics Data System (ADS)
Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.
2011-03-01
Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462
Automatic differentiation of the TACO2D finite element code using ADIFOR
Carle, A.; Fagan, M.
1996-04-01
The need for sensitivities in particular applications is becoming increasingly important in problems such as optimal design or control. In this study, the authors use ADIFOR to generate derivative code for TACO2D, a finite element heat transfer code. The study of TACO2D indicates that ADIFOR-generated derivatives yield accurate derivatives at a fraction of the time requirements of finite difference approximations, and space requirements proportional to the number of variables. The primary focus on TACO2D was for the design of chemical vapor deposition reactors.
Enhancement of biomixing by swimming cells in 2D films
NASA Astrophysics Data System (ADS)
Gollub, Jerry; Kurtuldu, Huseyin; Guasto, Jeffrey; Johnson, Karl
2011-11-01
Fluid mixing in active suspensions of microorganisms is important to ecological phenomena and shows surprising statistical behavior. We investigate the mixing produced by swimming unicellular algal cells (Chlamydomonas) in quasi-2D films by tracking the motions of cells and of microscopic passive tracer particles advected by the fluid. The reduced spatial dimension of the system leads to long-range flows and a surprisingly strong dependence of tracer transport on the swimmer concentration. The mean square displacements are well described by a stochastic Langevin model, with an effective diffusion coefficient D growing as the 3/2 power of the swimmer concentration, due to the interaction of tracer particles with multiple swimmers. We also discuss the anomalous probability distributions of tracer displacements, which become Gaussian at high concentration, but show strong power-law tails at low concentration. Supported by NSF Grant DMR-0803153.
Gint2D-T2 correlation NMR of porous media
NASA Astrophysics Data System (ADS)
Zhang, Yan; Blümich, Bernhard
2015-03-01
The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.
Gint2D-T2 correlation NMR of porous media.
Zhang, Yan; Blümich, Bernhard
2015-03-01
The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient G(int) can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T(2) in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of G(int)(2)D and T(2) by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between G(int) and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz (1)H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint(2)D-T(2) maps were obtained to study the sample heterogeneity. PMID:25723135
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau
2008-03-01
We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.
2D foam coarsening in a microfluidic system
NASA Astrophysics Data System (ADS)
Marchalot, J.; Lambert, J.; Cantat, I.; Tabeling, P.; Jullien, M.-C.
2008-09-01
We report an experimental study of 2D microfoam coarsening confined in a micrometer scale geometry, the typical bubbles diameter being of the order of 50-100 μm. These experiments raise both fundamental and applicative issues. For applicative issues: what is the typical time of foam ageing (for a polydisperse foam) in microsystems in scope of gas pocket storage in lab-on-a-chips? Experimental results show that a typical time of 2-3 mn is found, leading to the possibility of short-time storing, depending on the application. For fundamental interests, 2D foam ageing is generally described by von Neumann's law (von Neumann J., Metal Interfaces (American Society of Metals, Cleveland) 1952, p. 108) which is based on the hypothesis that bubbles are separated by thin films. Does this hypothesis still hold for foams confined in a 40 μm height geometry? This problematic is analyzed and it is shown that von Neumann's law still holds but that the diffusion coefficient involved in this law is modified by the confinement which imposes a curvature radius at Plateau borders. More precisely, it is shown that the liquid fraction is high on a film cross-section, in contrast with macrometric experiments where drainage occurs. An analytical description of the diffusion is developped taking into account the fact that soap film height is only a fraction of the cell height. While most of microfoams are flowing, the experimental set-up we describe leads to the achievement of a motionless confined microfoam.
NASA Astrophysics Data System (ADS)
Pedacchia, Augusta; Adrover, Alessandra
2012-11-01
We provide an analytical solution for the combined diffusive and convective 2-d mass transport from a surface film (of arbitrary shape at a given uniform concentration) to a pure solvent flowing in creeping flow conditions into a microchannel, delimited by a flat no-slip surface and by the releasing film itself. Such a problem arises in the study of swelling and dissolution of polimeric thin films under the action of a solvent tangential flow simulating the oral thin film dissolution for drug relase towards the buccal mucosa or oral cavity. We present a similarity solution for laminar forced convection mass (or heat) transfer that generalizes the classical boundary layer solution of the Graetz-Nusselt problem (valid for straight channels or pipes) to a solvent flowing in creeping flow conditions into a 2-d channel with cross-section continuously varying along the axial coordinate x. Close to the releasing boundary, parametrized by a curvilinear abscissa s, both tangential and normal velocity components play a role and their scaling behavior, as a function of wall distance r, should be taken into account in order to have an accurate description of the concentration profile in the boundary layer and of the dependence of the Sherwood number on the curvilinear abscissa s.
Specht, Paul Elliott; Cooper, Marcia A.
2015-02-01
The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25 o C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052 glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300 o C.
Osario, I.; Chang, F.-C.; Gopalsami, N.; Nuclear Engineering Division; Univ. of Kansas
2009-10-01
Automated seizure blockage is a top priority in epileptology. Lowering nervous tissue temperature below a certain level suppresses abnormal neuronal activity, an approach with certain advantages over electrical stimulation, the preferred investigational therapy for pharmacoresistant seizures. A computer model was developed to identify an efficient probe design and parameters that would allow cooling of brain tissue by no less than 21 C in 30 s, maximum. The Pennes equation and the computer code ABAQUS were used to investigate the spatiotemporal behavior of heat diffusivity in brain tissue. Arrays of distributed probes deliver sufficient thermal energy to decrease, inhomogeneously, brain tissue temperature from 37 to 20 C in 30 s and from 37 to 15 C in 60 s. Tissue disruption/loss caused by insertion of this probe is considerably less than that caused by ablative surgery. This model may be applied for the design and development of cooling devices for seizure control.
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.
2006-11-01
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Interparticle Attraction in 2D Complex Plasmas
NASA Astrophysics Data System (ADS)
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
A scalable 2-D parallel sparse solver
Kothari, S.C.; Mitra, S.
1995-12-01
Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Photocurrent spectroscopy of 2D materials
NASA Astrophysics Data System (ADS)
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Chaotic advection in 2D anisotropic porous media
NASA Astrophysics Data System (ADS)
Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico
2015-11-01
Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Santoro, G. J.
1985-01-01
Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzle. The first set exploits the naphthalene sublimation technique to determine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2SO4 vapor deposition experiments is found to be excellent.
NASA Astrophysics Data System (ADS)
Stan, G. E.; Popa, A. C.; Galca, A. C.; Aldica, G.; Ferreira, J. M. F.
2013-09-01
Bioglasses (BG) are the inorganic materials exhibiting the highest indices of bioactivity. Their appliance as films for bio-functionalization of metallic implant surfaces has been regarded as an optimal solution for surpassing their limited bulk mechanical properties. This study reports on magnetron sputtering of alkali-free BG thin films by varying the target-to-substrate working distance, which proved to play an important role in determining the films’ properties. Post deposition heat-treatments at temperatures slightly above the glass transformation temperature were then applied to induce inter-diffusion processes at the BG/titanium substrate interface and strengthening the bonding as determined by pull-out adherence measurements. The morphological and structural features assessed by SEM-EDS, XRD, and FTIR revealed a good correlation between the formations of inter-metallic titanium silicide phases and the films’ bonding strength. The highest mean value of pull-out adherence (60.3 ± 4.6 MPa), which is adequate even for load-bearing biomedical applications, was recorded for films deposited at a working distance of 35 mm followed by a heat-treatment at 750 °C for 2 h in air. The experimental findings are explained on the basis of structural, compositional and thermodynamic considerations.
Wood, T. S.; Garaud, P.; Stellmach, S.
2013-05-10
Regions of stellar and planetary interiors that are unstable according to the Schwarzschild criterion, but stable according to the Ledoux criterion, are subject to a form of oscillatory double-diffusive (ODD) convection often called ''semi-convection''. In this series of papers, we use an extensive suite of three-dimensional (3D) numerical simulations to quantify the transport of heat and composition by ODD convection, and ultimately propose a new 1D prescription that can be used in stellar and planetary structure and evolution models. The first paper in this series demonstrated that under certain conditions ODD convection spontaneously transitions from an initial homogeneous state of weak wave-breaking turbulence into a staircase of fully convective layers, which results in a substantial increase in the transport of heat and composition. Here, we present simulations of ODD convection in this layered regime, we describe the dynamical behavior of the layers, and we derive empirical scaling laws for the transport through layered convection.
Urquhart, Alexander; Bauer, Stephen
2015-05-19
The thermal properties of halite have broad practical importance, from design and long-term modeling of nuclear waste repositories to analysis and performance assessment of underground natural gas, petroleum and air storage facilities. Using a computer-controlled transient plane source method, single-crystal halite thermal conductivity, thermal diffusivity and specific heat were measured from -75°C to 300°C. These measurements reproduce historical high-temperature experiments and extend the lower temperature extreme into cryogenic conditions. Measurements were taken in 25-degree increments from -75°C to 300°C. Over this temperature range, thermal conductivity decreases by a factor of 3.7, from 9.975 to 2.699 W/mK , and thermal diffusivitymore » decreases by a factor of 3.6, from 5.032 to 1.396 mm²/s. Specific heat does not appear to be temperature dependent, remaining near 2.0 MJ/m³K at all temperatures. This work is intended to develop and expand the existing dataset of halite thermal properties, which are of particular value in defining the parameters of salt storage thermophysical models. The work was motivated by a need for thermal conductivity values in a mixture theory model used to determine bulk thermal conductivity of reconsolidating crushed salt.« less
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Nmira, F.
2016-03-01
The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.
Atmospheric Outflows from Hot Jupiters: 2D MHD Simulations
NASA Astrophysics Data System (ADS)
Uribe, A.; Matsakos, T.; Konigl, A.
2015-01-01
Recent observations of stellar hydrogen Ly-α line absorption during transits of some hot Jupiter exoplanets suggest the presence of a dense, fast wind that is blowing from planetary atmosphere tep{2003Natur.422..143V,2007ApJ...671L..61B}. Modeling efforts include 1D hydrodynamic models tep{2009ApJ...693...23M,2004Icar..170..167Y,2007P&SS...55.1426G} and 2D isothermal magnetized wind models tep{2014arXiv1404.5817T}, among others. In this work, we model the 2D structure of the irradiated upper atmosphere of a hot Jupiter planet and its interaction with the planetary magnetic field. We calculate self consistently the heating by stellar UV radiation and the cooling of the atmosphere by Ly-α emission. We solve for the ionization structure assuming a 100% hydrogen atmosphere, accounting for the radiative ionization, recombination and advection of the gas. We show the effect of stellar tides and planetary magnetic field on the planet outflow and calculate the Ly-α transmission spectra of the resulting atmosphere.
NASA Technical Reports Server (NTRS)
Kao, S. K.; Lordi, N. J.
1977-01-01
Analyses of the meteorological rocket data obtained from an experiment conducted at 3-hour intervals at 8 western meridional rocket stations are presented. Large variations in the meridional wind contribute substantially to overall turbulence in the tropical stratosphere. The solar semidiurnal component of wind oscillations in the tropics was observed to be much higher than predicted by theory, often exceeding the magnitude of the diurnal amplitude throughout the stratosphere. The observed value of the solar diurnal amplitude in the stratosphere was in line with theoretical prediction. The solar terdiurnal amplitudes for temperature, meridional and zonal winds were non-negligible and must be considered in any harmonic analysis. Phase angle variation with height was rapid for all harmonics; however, there was general agreement between predicted and observed phase angles. Because of large changes in the mean winds in the mesosphere with season, harmonic determinations are difficult. There appear to be large zonal wind changes even within the same season as mentioned previously. Turbulence diffusivity in the upper stratosphere is greater near the equator than in the mid-latitudes.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Microwave Imaging with Infrared 2-D Lock-in Amplifier
NASA Astrophysics Data System (ADS)
Chiyo, Noritaka; Arai, Mizuki; Tanaka, Yasuhiro; Nishikata, Atsuhiro; Maeno, Takashi
We have developed a 3-D electromagnetic field measurement system using 2-D lock-in amplifier. This system uses an amplitude modulated electromagnetic wave source to heat a resistive screen. A very small change of temperature on a screen illuminated with the modulated electromagnetic wave is measured using an infrared thermograph camera. In this paper, we attempted to apply our system to microwave imaging. By placing conductor patches in front of the resistive screen and illuminating with microwave, the shape of each conductor was clearly observed as the temperature difference image of the screen. In this way, the conductor pattern inside the non-contact type IC card could be visualized. Moreover, we could observe the temperature difference image reflecting the shape of a Konnyaku (a gelatinous food made from devil's-tonge starch) or a dried fishbone, both as non-conducting material resembling human body. These results proved that our method is applicable to microwave see-through imaging.
Interpretive 2-D treatment of scrape-off-layer plasmas
Umansky, M.; Allen, A.; Daughton, W.
1996-12-31
The width of the scrape-off-layer in a tokamak is determined by cross field transport. In Alcator C-mod the plasma parameters in the scrape-off-layer are measured at upstream and divertor plate locations. We solve a 2-D scrape-off-layer heat conduction equation in the flux geometry (as determined by EFIT) of the C-mod experiment. Bolometric measurements are utilized for the radiative loss term. We use the end wall probe measurements of electron temperature as a boundary condition and the fast scanning probe measurements of upstream temperature are treated as constraints to determine the cross field transport and thermal conductivity. Results are compared with 1-D onion-skin-model predictions.
2D Regimes of Non-Fourier Convection
NASA Astrophysics Data System (ADS)
Papanicolaou, N. C.
2010-11-01
In this work, we investigate the 2D flow in a rectangular cavity subject to both vertical and horizontal temperature gradients. The linearized model is studied and the effect of thermal relaxation, as described by the Maxwell-Cattaneo law of heat conduction is examined. To this end, a spectral numerical model is created based on a Galerkin expansion. The basis is the Cartesian product of systems of beam functions and trigonometric functions. The natural modes of the system are derived for both the Fourier and non-Fourier models. The results are compared to earlier works for the plain Fourier law. Our computations show that for the same set of parameters, the Maxwell-Cattaneo law yields modes which are quantitatively different from the Fourier. It is found that the real parts of the eigenvalues increase with the Straughan number Sg, which quantifies the non-Fourier effects. This confirms the destabilizing effect of the MC-law on the convective flow.
Xiong, Wei; Laaser, Jennifer E.; Mehlenbacher, Randy D.; Zanni, Martin T.
2011-01-01
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. PMID:22143772
2D/1D approximations to the 3D neutron transport equation. I: Theory
Kelley, B. W.; Larsen, E. W.
2013-07-01
A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
First measurements with the Munich 2D-ACAR spectrometer on Cr
NASA Astrophysics Data System (ADS)
Ceeh, Hubert; Weber, Josef; Hugenschmidt, Christoph; Leitner, Michael; Böni, Peter
2013-06-01
The Munich 2D-ACAR spectrometer at the Maier-Leibnitz accelerator laboratory in Garching has recently become operational. In the present implementation a 2D-ACAR spectrometer is set up, with a baseline of 16.5 m, a conventional 22Na positron source and two Anger-type gamma-cameras. The positrons are guided onto the sample by a magnetic field generated by a normal conducting electromagnet. The sample can be either cooled by a standard closed-cycle-cryostat to low temperatures or heated by a resistive filament to temperatures up to 500 K. We present the key features of this new 2D-ACAR spectrometer and, in addition, discuss first measurements on the pure metal system Cr. The 2D-ACAR measurements have been performed on Cr at different temperatures: at 5 K and at room temperature in the anti-ferromagnetic phase and at 318K slightly above the paramagnetic phase transition.
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa
2013-09-01
The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590
NASA Astrophysics Data System (ADS)
Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G.
2014-10-01
An in vivo exposure to 197 W/cm2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197 W/cm2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
Huang, Hai; Spencer, Benjamin W.; Cai, Guowei
2015-09-01
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat
Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.
Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D
2016-08-01
Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
Haik, Josef; Nardini, Gil; Goldman, Noga; Galore-Haskel, Gilli; Harats, Moti; Zilinsky, Isaac; Weissman, Oren; Schachter, Jacob; Winkler, Eyal; Markel, Gal
2016-01-19
Immune suppression following major thermal injury directly impacts the recovery potential. Limited data from past reports indicate that natural killer cells might be suppressed due to a putative soluble factor that has remained elusive up to date. Here we comparatively study cohorts of patients with Major and Non-Major Burns as well as healthy donors. MICB and ULBP1 are stress ligands of NKG2D that can be induced by heat stress. Remarkably, serum concentration levels of MICB and ULBP1 are increased by 3-fold and 20-fold, respectively, already within 24h post major thermal injury, and are maintained high for 28 days. In contrast, milder thermal injuries do not similarly enhance the serum levels of MICB and ULBP1. This kinetics coincides with a significant downregulation of NKG2D expression among peripheral blood NK cells. Downregulation of NKG2D by high concentration of soluble MICB occurs in cancer patients and during normal pregnancy due to over production by cancer cells or extravillous trophoblasts, respectively, as an active immune-evasion mechanism. In burn patients this seems an incidental outcome of extensive thermal injury, leading to reduced NKG2D expression. Enhanced susceptibility of these patients to opportunistic viral infections, particularly herpes viruses, could be explained by the reduced NKG2D expression. Further studies are warranted for translation into innovative diagnostic or therapeutic technologies. PMID:26745675
Haik, Josef; Nardini, Gil; Goldman, Noga; Galore-Haskel, Gilli; Harats, Moti; Zilinsky, Isaac; Weissman, Oren; Schachter, Jacob; Winkler, Eyal; Markel, Gal
2016-01-01
Immune suppression following major thermal injury directly impacts the recovery potential. Limited data from past reports indicate that natural killer cells might be suppressed due to a putative soluble factor that has remained elusive up to date. Here we comparatively study cohorts of patients with Major and Non-Major Burns as well as healthy donors. MICB and ULBP1 are stress ligands of NKG2D that can be induced by heat stress. Remarkably, serum concentration levels of MICB and ULBP1 are increased by 3-fold and 20-fold, respectively, already within 24h post major thermal injury, and are maintained high for 28 days. In contrast, milder thermal injuries do not similarly enhance the serum levels of MICB and ULBP1. This kinetics coincides with a significant downregulation of NKG2D expression among peripheral blood NK cells. Downregulation of NKG2D by high concentration of soluble MICB occurs in cancer patients and during normal pregnancy due to over production by cancer cells or extravillous trophoblasts, respectively, as an active immune-evasion mechanism. In burn patients this seems an incidental outcome of extensive thermal injury, leading to reduced NKG2D expression. Enhanced susceptibility of these patients to opportunistic viral infections, particularly herpes viruses, could be explained by the reduced NKG2D expression. Further studies are warranted for translation into innovative diagnostic or therapeutic technologies. PMID:26745675
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
Ion Transport in 2-D Graphene Nanochannels
NASA Astrophysics Data System (ADS)
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
Parallel map analysis on 2-D grids
Berry, M.; Comiskey, J.; Minser, K.
1993-12-31
In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.
2D Turbulence with Complicated Boundaries
NASA Astrophysics Data System (ADS)
Roullet, G.; McWilliams, J. C.
2014-12-01
We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Competing coexisting phases in 2D water.
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2-D wavelet with position controlled resolution
NASA Astrophysics Data System (ADS)
Walczak, Andrzej; Puzio, Leszek
2005-09-01
Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.
2-D Animation's Not Just for Mickey Mouse.
ERIC Educational Resources Information Center
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.
Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T
2010-08-01
We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230
On 2D graphical representation of DNA sequence of nondegeneracy
NASA Astrophysics Data System (ADS)
Zhang, Yusen; Liao, Bo; Ding, Kequan
2005-08-01
Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.
BILL2D - A software package for classical two-dimensional Hamiltonian systems
NASA Astrophysics Data System (ADS)
Solanpää, J.; Luukko, P. J. J.; Räsänen, E.
2016-02-01
We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
Ultrasonic 2D matrix PVDF transducer
NASA Astrophysics Data System (ADS)
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
NASA Technical Reports Server (NTRS)
Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.
1983-01-01
The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.
A fully coupled 2D model of equiaxed eutectic solidification
Charbon, Ch.; LeSar, R.
1995-12-31
We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.
2-D Model for Normal and Sickle Cell Blood Microcirculation
NASA Astrophysics Data System (ADS)
Tekleab, Yonatan; Harris, Wesley
2011-11-01
Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].
A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures
Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.
1998-12-14
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
2-D PSD Diagnostic System for the Pellet Trajectory in LHD Plasmas
NASA Astrophysics Data System (ADS)
Hoshino, Mitsuyasu; Sakamoto, Ryuichi; Yamada, Hiroshi; Itoh, Yasuhiko; Kumagai, Kohki; Kumazawa, Ryuhei; Watari, Tetsuo; LHD Experimental Group
Ablation of a solid hydrogen pellet in hot plasmas of Large Helical Device (LHD) has been studied. A position sensitive detector (PSD) diagnostics has been newly installed to measure the trajectory of ablating pellets. 2-D diagnostics enables the measurement with high time (1 MHz) and spatial resolutions (80 μm). A 3-D pellet trajectory can be described by a combination of 2-D images and information of initial pellet direction and velocity. A deflection of the pellet trajectory in the neutral beam injection (NBI) heated plasmas of LHD has been observed. Means of improving the measurement accuracy of this system are also discussed.
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
Correlated Electron Phenomena in 2D Materials
NASA Astrophysics Data System (ADS)
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
NASA Astrophysics Data System (ADS)
von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan
2016-04-01
Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model
Cooperative dynamics in ultrasoft 2D crystals
NASA Astrophysics Data System (ADS)
Sprakel, Joris; van der Meer, Berend; Dijkstra, Marjolein; van der Gucht, Jasper
2015-03-01
The creation, annihilation, and diffusion of defects in crystal lattices play an important role during crystal melting and deformation. Although it is well understood how defects form and react when crystals are subjected to external stresses, it remains unclear how crystals cope with internal stresses. We report a study in which we create a highly localized internal stress, by means of optical tweezing, in a crystal formed from micrometer-sized colloidal spheres and directly observe how the solid reacts using microscopy. We find that, even though the excitation is highly localized, a collective dance of colloidal particles results; these collective modes take the form of closed rings or open-ended strings, depending on the sequence of events which nucleate the rearrangements. Surprisingly, we find from Brownian Dynamics simulations that these cooperative dynamics are thermally-activated modes inherent to the crystal, and can even occur through a single, sufficiently large thermal fluctuation, resulting in the irreversible displacement of 100s of particles from their lattice sites.
Fast 2D flood modelling using GPU technology - recent applications and new developments
NASA Astrophysics Data System (ADS)
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping
Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea
2016-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.
Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea
2015-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer
Estimation of daily dietary fluoride intake: 3-d food diary v. 2-d duplicate plate.
Omid, N; Maguire, A; O'Hare, W T; Zohoori, F V
2015-12-28
The 3-d food diary method (3-d FD) or the 2-d duplicate plate (2-d DP) method have been used to measure dietary fluoride (F) intake by many studies. This study aimed to compare daily dietary F intake (DDFI) estimated by the 3-d FD and 2-d DP methods at group and individual levels. Dietary data for sixty-one healthy children aged 4-6 years were collected using 3-d FD and 2-d DP methods with a 1-week gap between each collection. Food diary data were analysed for F using the Weighed Intake Analysis Software Package, whereas duplicate diets were analysed by an acid diffusion method using an F ion-selective electrode. Paired t test and linear regression were used to compare dietary data at the group and individual levels, respectively. At the group level, mean DDFI was 0·025 (sd 0·016) and 0·028 (sd 0·013) mg/kg body weight (bw) per d estimated by 3-d FD and 2-d DP, respectively. No statistically significant difference (P=0·10) was observed in estimated DDFI by each method at the group level. At an individual level, the agreement in estimating F intake (mg/kg bw per d) using the 3-d FD method compared with the 2-d DP method was within ±0·011 (95 % CI 0·009, 0·013) mg/kg bw per d. At the group level, DDFI data obtained by either the 2-d DP method or the 3-d FD method can be replaced. At an individual level, the typical error and the narrow margin between optimal and excessive F intake suggested that the DDFI data obtained by one method cannot replace the dietary data estimated from the other method. PMID:26568435
Lagrangian statistics in laboratory 2D turbulence
NASA Astrophysics Data System (ADS)
Xia, Hua; Francois, Nicolas; Punzmann, Horst; Shats, Michael
2014-05-01
Turbulent mixing in liquids and gases is ubiquitous in nature and industrial flows. Understanding statistical properties of Lagrangian trajectories in turbulence is crucial for a range of problems such as spreading of plankton in the ocean, transport of pollutants, etc. Oceanic data on trajectories of the free-drifting instruments, indicate that the trajectory statistics can often be described by a Lagrangian integral scale. Turbulence however is a state of a flow dominated by a hierarchy of scales, and it is not clear which of these scales mostly affect particle dispersion. Moreover, coherent structures often coexist with turbulence in laboratory experiments [1]. The effect of coherent structures on particle dispersion in turbulent flows is not well understood. Recent progress in scientific imaging and computational power made it possible to tackle this problem experimentally. In this talk, we report the analysis of the higher order Lagrangian statistics in laboratory two-dimensional turbulence. Our results show that fluid particle dispersion is diffusive and it is determined by a single measurable Lagrangian scale related to the forcing scale [2]. Higher order moments of the particle dispersion show strong self-similarity in fully developed turbulence [3]. Here we introduce a new dispersion law that describes single particle dispersion during the turbulence development [4]. These results offer a new way of predicting dispersion in turbulent flows in which one of the low energy scales are persistent. It may help better understanding of drifter Lagrangian statistics in the regions of the ocean where small scale coherent eddies are present [5]. Reference: 1. H. Xia, H. Punzmann, G. Falkovich and M. Shats, Physical Review Letters, 101, 194504 (2008) 2. H. Xia, N. Francois, H. Punzmann, and M. Shats, Nature Communications, 4, 2013 (2013) 3. R. Ferrari, A.J. Manfroi , W.R. Young, Physica D 154 111 (2001) 4. H. Xia, N. Francois, H. Punzmann and M. Shats, submitted (2014
Zhou, F; Xiang, Z; Peiling, L; Junjie, J; Zhen, L X
2001-05-01
In the present study the role of heat shock protein 70 (HSP70) expression, changes of malonyldialdehyde (MDA) in rat cortex and haemorheology with time after diffuse axonal injury (DAI) only and DAI with secondary insults (SI) were studied. The rat DAI and DAI with SI model were made according to our previous work and animals were divided into a control and another five injury groups with time after injury. Immunohistochemical assay was used to detect the neuronal expression of HSP70 at 0.5h, 3h, 12h, 24h, 72h after DAI or DAI with SI. In the meantime, the high (etah ) and low whole blood viscosity (etaL ), haematocrit (HCT) and RBC aggregation index (AI = etaL/etah ) were also detected and calculated. MDA in the homogenised brain tissue was assayed by thiobarbituric acid (TBA) reaction. The results showed that HSP70 positive neurons were not detected at 30 minutes, but the number of HSP70 positive neurons begin to increase obviously at 3 hours, reach a peak at 24 hours (P< 0.01), and decrease at 72 hours (P= 0.05) after brain injury. The trend of expression of HSP70 was alike for both DAI only or DAI with SI. Meanwhile, MDA, etah, etaL, HCT and AI changes showed the same tendency. Compared with DAI only group, MDA and blood viscosity indexes in DAI with SI were significantly higher at respective time points (P< 0.01). It is concluded that HSP70 expression, MDA and haemorheology indices increased after brain injury and brain injury with SI. Free radicals and haemorheological changes play an important role in the aggravation of brain damage and HSP70 expression upregulation. PMID:11386800
Development of a 2D precision cryogenic chopper for METIS
NASA Astrophysics Data System (ADS)
Paalvast, Sander L.; Janssen, Huub; Teuwen, Maurice; Huisman, Robert; Brandl, Bernhard; Molster, Frank; Venema, Lars
2012-09-01
The Mid-infrared E-ELT Imager and Spectrograph, or METIS, is foreseen as the third instrument for the European Extremely Large Telescope (E-ELT). A key part of METIS is the Cold Chopper (MCC) which switches the optical beam between the target and a nearby reference sky during observation for elimination of the fluctuating IR background signal in post-processing. This paper discusses the development of the MCC demonstrator. The chopper mirror (Ø64mm) has to tip/tilt in 2D with a combined angle of up to 13.6mrad with 1.7μrad stability and repeatability within 5ms (95% duty cycle at 5Hz) at 80K. As these requirements cannot be met in the presence of friction or backlash, the mirror is guided by a monolithically integrated flexure mechanism. The angular position is actuated by three linear actuators and measured by three linear position sensors, resulting in a fast tip, tilt, and focus mirror. Using the third actuator to introduce symmetry, homogeneity in forces and heat flux is obtained. Both the actuators and the sensors are key components. A voice coil actuator had to be custom designed, to achieve the required acceleration force within the specified 1W heat load. The requirements for the displacement measurement can be met with a commercially available, fiber interferometry system. For integration of this system, stray light elimination is a critical design aspect and retro-reflectors have been used to reflect sufficient power into the fiber at large tip/tilt angles.
Collective spin excitations in 2D paramagnet with dipole interaction
NASA Astrophysics Data System (ADS)
Tsiberkin, Kirill
2016-02-01
The collective spin excitations in the unbounded 2D paramagnetic system with dipole interactions are studied. The model Hamiltonian includes Zeeman energy and dipole interaction energy, while the exchange vanishes. The system is placed into a constant uniform magnetic field which is orthogonal to the lattice plane. It provides the equilibrium state with spin ordering along the field direction, and the saturation is reached at zero temperature. We consider the deviations of spin magnetic moments from its equilibrium position along the external field. The Holstein-Primakoff representation is applied to spin operators in low-temperature approximation. When the interaction between the spin waves is negligible and only two-magnon terms are taken into account, the Hamiltonian diagonalisation is possible. We obtain the dispersion relation for spin waves in the square and hexagonal honeycomb lattice. Bose-Einstein statistics determine the average number of spin deviations, and total system magnetization. The lattice structure does not influence on magnetization at the long-wavelength limit. The dependencies of the relative magnetization and longitudinal susceptibility on temperature and external field intensity are found. The internal energy and specific heat of the Bose gas of spin waves are calculated. The collective spin excitations play a significant role in the properties of the paramagnetic system at low temperature and strong external magnetic field.
Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics
Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.
2015-01-01
Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
Atomistic methodologies for material properties of 2D materials at the nanoscale
NASA Astrophysics Data System (ADS)
Zhang, Zhen
Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our
2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films
NASA Astrophysics Data System (ADS)
Williams, Gary A.
2003-03-01
With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.
Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites
NASA Technical Reports Server (NTRS)
Varnai, Tamas
2010-01-01
This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.
Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics
Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan
2015-01-01
Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069
Dynamical symmetry breaking in a 2D electron gas with a spectral node
NASA Astrophysics Data System (ADS)
Ziegler, Klaus
2013-09-01
We study a disordered 2D electron gas with a spectral node in a vicinity of the node. After identifying the fundamental dynamical symmetries of this system, the spontaneous breaking of the latter by a Grassmann field is studied within a nonlinear sigma model approach. This allows us to reduce the average two-particle Green's function to a diffusion propagator with a random diffusion coefficient. The latter has non-degenerate saddle points and is treated by the conventional self-consistent Born approximation. This leads to a renormalized chemical potential and a renormalized diffusion coefficient, where the DC conductivity increases linearly with the density of quasiparticles. Applied to the special case of Dirac fermions, our approach provides a comprehensive description of the minimal conductivity at the Dirac node as well as for the V-shape conductivity inside the bands.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
A Geometric Boolean Library for 2D Objects
Energy Science and Technology Software Center (ESTSC)
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less
A Geometric Boolean Library for 2D Objects
McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.
High accuracy determination of the thermal properties of supported 2D materials
Judek, Jarosław; Gertych, Arkadiusz P.; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz
2015-01-01
We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method. PMID:26179785
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
NASA Astrophysics Data System (ADS)
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
Resonant loop antenna design with a 2-D steady state analysis
Chen, G.I.; Ryan, P.M.; Hoffman, D.J.; Baity, F.W.; Swain, D.W.; Whealton, J.H.
1987-01-01
Evaluation of resonant loop antenna designs for ICRF heating of plasmas requires information concerning the electrical characteristics of the structure. Our 2-D steady state model described herein provides us with current strap inductance and capacitance, surface current distributions, and flux linkage to the plasma. These are used to determine the current and voltage requirements, ohmic dissipation, frequency limits and matching requirements, maximum electric fields, and plasma loading in order to compare antenna designs.
A Single-Material Logical Junction Based on 2D Crystal PdS2.
Ghorbani-Asl, Mahdi; Kuc, Agnieszka; Miró, Pere; Heine, Thomas
2016-02-01
A single-material logical junction with negligible contact resistance is designed by exploiting quantum-confinement effects in 1T PdS2 . The metallic bilayer serves as electrodes for the semiconducting channel monolayer, avoiding contact resistance. Heat dissipation is then governed by tunnel loss, which becomes negligible at channel lengths larger than 2.45 nm. This value marks the integration limit for a conventional 2D transistor. PMID:26632273
NASA Astrophysics Data System (ADS)
Abramov, O.; Mojzsis, S. J.
2009-12-01
Ultra-high spatial resolution ion microprobe depth-profiles of pre-3.9 Ga terrestrial zircons from the Jack Hills (Western Australia) have the potential to record a sharply elevated impactor flux to the inner planets at ca. 3.95 Ga termed the Late Heavy Bombardment (LHB). A putative signature of this is in the form of ~3.95 Ga, 2 to 4 μm mantles over the (oldest) igneous zircon cores (up to 4.3 Ga). These minute mantles show Pb-loss (up to 90% discordance) over narrow domains that could be the result of impact heating. Pre-3.9 Ga lunar zircon grains have not yet been depth-profiled, but it is evident from published spot analyses that grain cores preserve original igneous ages albeit with no clear super-imposition of later thermal events. However, the U-Pb systematics of apatites in the same lunar rocks were reset ca. 3.95 Ga. The motivation of this study is to explain the high degree of Pb (and other cation) loss over very short distances (<6 μm) in terrestrial zircons at ~3.9 Ga, the complete resetting of U-Pb isotope systematics of lunar apatites at approximately the same time, and to make predictions in preparation for depth-profile work on lunar samples. To accomplish these goals, we used existing models that simulate the thermal consequences of LHB, as well as established equations for cation diffusion in zircon and apatite. The main thermal model consists of (i) a stochastic cratering model which populates the surface with craters within constraints derived from the lunar cratering record, the size/frequency distribution of the asteroid belt, and dynamical models; (ii) analytical expressions that calculate a temperature field for each model crater; and (iii) three-dimensional thermal models of lunar and terrestrial lithospheres, where craters are allowed to cool by conduction in the subsurface and radiation at the surface. In addition, a high-resolution near-surface model was used to account for additional thermal pulses due to global deposition of hot
Functional characterization of CYP2D6 enhancer polymorphisms
Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun
2015-01-01
CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333
2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.
Magusin, P C; Hemminga, M A
1995-01-01
Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532
NASA Astrophysics Data System (ADS)
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Upscaling diffusion waves in porous media
NASA Astrophysics Data System (ADS)
Valdés-Parada, Francisco J.; Álvarez Ramírez, José; Ochoa-Tapia, J. Alberto
2016-04-01
The aim of this work is to derive the effective-medium equations and to estimate the related effective diffusivities for diffusion waves in porous media. Effective diffusivities are estimated within the framework of the volume averaging method, where they are obtained from the solution of the associated closure problems in 2D and 3D periodic unit cells. The results showed that the transport of diffusion waves are governed by the diffusion and co-diffusion mechanisms of harmonic waves. In addition, numerical results showed that the effective diffusivities increase with frequency, while the effective co-diffusivities display a resonance-like behavior. Our results also indicate that geometry plays a more significant effect over the predictions of the co-diffusion coefficient at moderate frequencies and it mainly influences the predictions of the direct diffusivity at low frequencies (i . e .,ω∗ ≪ 1).
Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.
Li, Yanfen; Kilian, Kristopher A
2015-12-30
Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366
Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido
2015-01-01
The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710
Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.
Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo
2016-09-01
Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788
Integrating Mobile Multimedia into Textbooks: 2D Barcodes
ERIC Educational Resources Information Center
Uluyol, Celebi; Agca, R. Kagan
2012-01-01
The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…
NASA Astrophysics Data System (ADS)
Kollerov, M. Yu.; Shlyapin, S. D.; Gusev, D. E.; Senkevich, K. S.; Runova, Yu. E.
2015-11-01
The effect of the diffusion welding conditions on the structure and properties of a porous material (PM) made of titanium fibers is studied. It is shown that the use of fibers produced by melt quenching and then joined to form workpieces or articles by diffusion welding can be a promising trend in the production of PMs for medicine applications. A change in the solidification rate of fibers and their contact substantially affects the mechanical properties of PM workpieces. As the diffusion welding temperature of both sheet and cylindrical workpieces increases, the strength of PM increases and the plasticity of PM decreases.
NASA Astrophysics Data System (ADS)
Turichin, Gleb; Klimova, Olga; Valdaytseva, Ekaterina
The article describes mathematical models of diffusion and thermal processes for welding of dissimilar materials and kinetic model of diffusion-controlled deposition and growth of intermetallic inclusions in the weld. Developed models were combined and implemented in the model of weld joint formation for dissimilar materials. To verify a model the microstructure analysis of weld joints and elemental analysis in the diffusion zone by SEM has been made for welding of systems Fe-Cu, Al-Ti, Fe-Al. The good agreement between calculated and experimental data has been obtained. Examples of developed technologies of welding of dissimilar materials using high-power fiber lasers were discussed also.
Van der Waals stacked 2D layered materials for optoelectronics
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.
2016-06-01
The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.
Unitary quantum lattice gas representation of 2D quantum turbulence
NASA Astrophysics Data System (ADS)
Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min
2011-05-01
Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.
CYP2D6 polymorphism in patients with eating disorders.
Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A
2012-04-01
CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
Tracking objects outside the line of sight using 2D intensity images
Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.
2016-01-01
The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1998-04-01
At the 1997 conference DTI first reported on a low cost, thin, lightweight backlight for LCDs that generates a special illumination pattern to create autostereoscopic 3D images and can switch to conventional diffuse illumination for 2D images. The backlight is thin and efficient enough for use in portable computer and hand held games, as well as thin desktop displays. The system has been embodied in 5' (13 cm) diagonal backlights for gambling machines, and in the 12.1' (31 cm) diagonal DTI Virtual Window(TM) desktop product. During the past year, DTI has improved the technology considerably, reducing crosstalk, increasing efficiency, improving components for mass production, and developing prototypes that move the 3D viewing zones in response to the observer's head position. The paper will describe the 2D/3D backlights, improvements that have been made to their function, and their embodiments within the latest display products and prototypes.
Breakdown of Dynamical Scaling for Dilute Polymer Solutions in 2D?
NASA Astrophysics Data System (ADS)
Falck, Emma; Punkkinen, Olli; Ala-Nissila, Tapio; Vattulainen, Ilpo
2004-03-01
The breakdown of dynamical scaling for a dilute polymer solution in 2D has been suggested by Shannon and Choy [1]. However, we show here through extensive computer simulations that dynamical scaling holds when the relevant dynamical quantities are properly extracted from finite systems. To verify dynamical scaling, we present results based on mesoscopic simulations in 2D for a polymer chain in a good solvent with full hydrodynamic interactions. We also present analytical arguments for the size-dependence of the diffusion coefficient and find excellent agreement with the present large-scale simulations. 1. S. R. Shannon and T. C. Choy, Phys. Rev. Lett. 79, 1455 (1997). 2. E. Falck et al., Phys. Rev. E 68, 050102 (2003).
Tracking objects outside the line of sight using 2D intensity images.
Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B
2016-01-01
The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969
Use of finite volume radiation for predicting the Knudsen minimum in 2D channel flow
Malhotra, Chetan P.; Mahajan, Roop L.
2014-12-09
In an earlier paper we employed an analogy between surface-to-surface radiation and free-molecular flow to model Knudsen flow through tubes and onto planes. In the current paper we extend the analogy between thermal radiation and molecular flow to model the flow of a gas in a 2D channel across all regimes of rarefaction. To accomplish this, we break down the problem of gaseous flow into three sub-problems (self-diffusion, mass-motion and generation of pressure gradient) and use the finite volume method for modeling radiation through participating media to model the transport in each sub-problem as a radiation problem. We first model molecular self-diffusion in the stationary gas by modeling the transport of the molecular number density through the gas starting from the analytical asymptote for free-molecular flow to the kinetic theory limit of gaseous self-diffusion. We then model the transport of momentum through the gas at unit pressure gradient to predict Poiseuille flow and slip flow in the 2D gas. Lastly, we predict the generation of pressure gradient within the gas due to molecular collisions by modeling the transport of the forces generated due to collisions per unit volume of gas. We then proceed to combine the three radiation problems to predict flow of the gas over the entire Knudsen number regime from free-molecular to transition to continuum flow and successfully capture the Knudsen minimum at Kn ∼ 1.
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-01
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648
2D vs. 3D mammography observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
Efficient 2D MRI relaxometry using compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.
2015-06-01
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
NKG2D receptor and its ligands in host defense
Lanier, Lewis L.
2015-01-01
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808
2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.
2011-11-01
We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Recent advances in 2D materials for photocatalysis
NASA Astrophysics Data System (ADS)
Luo, Bin; Liu, Gang; Wang, Lianzhou
2016-03-01
Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
NASA Astrophysics Data System (ADS)
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
NASA Astrophysics Data System (ADS)
Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail
2014-05-01
This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.
Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail
2014-05-15
This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.
NASA Astrophysics Data System (ADS)
Yogurtcu, Osman N.; Johnson, Margaret E.
2015-08-01
The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute
Zhang, Zi-Xuan; Ding, Ni-Ni; Zhang, Wen-Hua; Chen, Jin-Xiang; Young, David J; Hor, T S Andy
2014-04-25
A 2D coordination polymer prepared with bulky diethylformamide solvates exhibits channels which allow dipyridyl bridging ligands to diffuse into the crystal lattice. The absorbed dipyridyls thread through the pores of one layer and substitute the surface diethylformamide molecules on the neighboring layers to stitch alternate layers to form flexible interpenetrated metal-orgaic frameworks. The threading process also results in exchange of the bulky diethylformamide solvates for aqua to minimize congestion and, more strikingly, forces the slippage of two-dimensional layers, while still maintaining crystallinity. PMID:24692130
NASA Astrophysics Data System (ADS)
Lützenkirchen-Hecht, D.; Gasse, J.-C.; Bögel, R.; Wagner, R.; Frahm, R.
2016-05-01
XAFS-experiments in transmission and reflection modes have been performed using a Pilatus 100K pixel detector. Transmission mode XAFS spectra from a Co metal foil and Co3O4 were recorded to evaluate the data quality offered by this 2D-detector. Furthermore, the pixel detector was also used to measure reflection mode grazing incidence EXAFS data. Using different regions of interest in the collected scattering patterns, we will show that the diffuse scattering can be separated for the different contributing surfaces and interfaces, allowing simultaneous investigations of surfaces and buried interfaces within multi-layered samples.
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
NASA Astrophysics Data System (ADS)
Döring, Michael; Kobashi, Takuro; Kindler, Philippe; Guillevic, Myriam; Leuenberger, Markus
2016-04-01
In order to study Northern Hemisphere (NH) climate interactions and variability, getting access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. For example, understanding the causes for changes in the strength of the Atlantic meridional overturning circulation (AMOC) and related effects for the NH [Broecker et al. (1985); Rahmstorf (2002)] or the origin and processes leading the so called Dansgaard-Oeschger events in glacial conditions [Johnsen et al. (1992); Dansgaard et al., 1982] demand accurate and reproducible temperature data. To reveal the surface temperature history, it is suitable to use the isotopic composition of nitrogen (δ15N) from ancient air extracted from ice cores drilled at the Greenland ice sheet. The measured δ15N record of an ice core can be used as a paleothermometer due to the nearly constant isotopic composition of nitrogen in the atmosphere at orbital timescales changes only through firn processes [Severinghaus et. al. (1998); Mariotti (1983)]. To reconstruct the surface temperature for a special drilling site the use of firn models describing gas and temperature diffusion throughout the ice sheet is necessary. For this an existing firn densification and heat diffusion model [Schwander et. al. (1997)] is used. Thereby, a theoretical δ15N record is generated for different temperature and accumulation rate scenarios and compared with measurement data in terms of mean square error (MSE), which leads finally to an optimization problem, namely the finding of a minimal MSE. The goal of the presented study is a Matlab based automatization of this inverse modelling procedure. The crucial point hereby is to find the temperature and accumulation rate input time series which minimizes the MSE. For that, we follow two approaches. The first one is a Monte Carlo type input generator which varies each point in the input time series and calculates the MSE. Then the solutions that fulfil a given limit
NASA Astrophysics Data System (ADS)
Döring, Michael; Kobashi, Takuro; Kindler, Philippe; Guillevic, Myriam; Leuenberger, Markus
2016-04-01
In order to study Northern Hemisphere (NH) climate interactions and variability, getting access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. For example, understanding the causes for changes in the strength of the Atlantic meridional overturning circulation (AMOC) and related effects for the NH [Broecker et al. (1985); Rahmstorf (2002)] or the origin and processes leading the so called Dansgaard-Oeschger events in glacial conditions [Johnsen et al. (1992); Dansgaard et al., 1982] demand accurate and reproducible temperature data. To reveal the surface temperature history, it is suitable to use the isotopic composition of nitrogen (δ15N) from ancient air extracted from ice cores drilled at the Greenland ice sheet. The measured δ15N record of an ice core can be used as a paleothermometer due to the nearly constant isotopic composition of nitrogen in the atmosphere at orbital timescales changes only through firn processes [Severinghaus et. al. (1998); Mariotti (1983)]. To reconstruct the surface temperature for a special drilling site the use of firn models describing gas and temperature diffusion throughout the ice sheet is necessary. For this an existing firn densification and heat diffusion model [Schwander et. al. (1997)] is used. Thereby, a theoretical δ15N record is generated for different temperature and accumulation rate scenarios and compared with measurement data in terms of mean square error (MSE), which leads finally to an optimization problem, namely the finding of a minimal MSE. The goal of the presented study is a Matlab based automatization of this inverse modelling procedure. The crucial point hereby is to find the temperature and accumulation rate input time series which minimizes the MSE. For that, we follow two approaches. The first one is a Monte Carlo type input generator which varies each point in the input time series and calculates the MSE. Then the solutions that fulfil a given limit
NASA Astrophysics Data System (ADS)
Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.
2001-05-01
Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of
Recent developments in 2D layered inorganic nanomaterials for sensing
NASA Astrophysics Data System (ADS)
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
2. D Street facade and rear (east) blank wall of ...
2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC
Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.
Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin
2016-03-01
Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
From weakly to strongly interacting 2D Fermi gases
NASA Astrophysics Data System (ADS)
Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris
2014-05-01
We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.
Chemical vapour deposition: Transition metal carbides go 2D
NASA Astrophysics Data System (ADS)
Gogotsi, Yury
2015-11-01
The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.
Dominant 2D magnetic turbulence in the solar wind
NASA Technical Reports Server (NTRS)
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1995-01-01
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.
Dominant 2D magnetic turbulence in the solar wind
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1996-07-20
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.
Efficient framework for deformable 2D-3D registration
NASA Astrophysics Data System (ADS)
Fluck, Oliver; Aharon, Shmuel; Khamene, Ali
2008-03-01
Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.
Computational Design of 2D materials for Energy Applications
NASA Astrophysics Data System (ADS)
Sun, Qiang
2015-03-01
Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Phylogenetic tree construction based on 2D graphical representation
NASA Astrophysics Data System (ADS)
Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa
2006-04-01
A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.
Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.
NASA Astrophysics Data System (ADS)
Tucciarelli, T.
2012-12-01
A new methodology for the solution of irrotational 2D flow problems in domains with strongly unstructured meshes is presented. A fractional time step procedure is applied to the original governing equations, solving consecutively a convective prediction system and a diffusive corrective system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system, of the order of the number of computational cells. A MArching in Space and Time (MAST) approach is applied for the solution of the convective prediction step. The major advantages of the model, as well as its ability to maintain the solution monotonicity even in strongly irregular meshes, are briefly described. The algorithm is applied to the solution of diffusive shallow water equations in a simple domain.