2D time-domain finite-difference modeling for viscoelastic seismic wave propagation
NASA Astrophysics Data System (ADS)
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-07-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Stochastic finite-difference time-domain
NASA Astrophysics Data System (ADS)
Smith, Steven Michael
2011-12-01
This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.
Finite difference time domain grid generation from AMC helicopter models
NASA Technical Reports Server (NTRS)
Cravey, Robin L.
1992-01-01
A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.
Finite difference time domain calculations of antenna mutual coupling
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain (FDTD) technique was applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been exclusively applied to antennas. Here, calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained during the method of moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.
Finite difference time domain calculations of antenna mutual coupling
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain (FDTD) technique has been applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been extensively applied to antennas. In this short paper calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained using the Method of Moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.
Finite difference time domain modeling of spiral antennas
NASA Technical Reports Server (NTRS)
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Finite difference time domain analysis of chirped dielectric gratings
NASA Technical Reports Server (NTRS)
Hochmuth, Diane H.; Johnson, Eric G.
1993-01-01
The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.
Effects of sources on time-domain finite difference models.
Botts, Jonathan; Savioja, Lauri
2014-07-01
Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed. PMID:24993210
Finite difference time domain implementation of surface impedance boundary conditions
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A 1-D implementation for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique.
NASA Astrophysics Data System (ADS)
Mejdoubi, Abdelilah; Brosseau, Christian
2006-03-01
Currently, there is a great interest in tailoring the polarization properties of composite materials with the goal of controlling the dielectric behavior. This paper reports finite-difference time-domain (FDTD) modeling of the dielectric behavior of two-dimensional (2D) lossless two-phase heterostructures. More specifically, we present extensive results of 2D FDTD computations on the quasistatic effective permittivity of a single inclusion, with arbitrarily complex geometry (regular polygons and fractals), embedded in a plane. The uniaxial perfectly matched layer-absorbing boundary condition is found adequate for truncating the boundary of the 2D space because it leads to only very small backreflections. The effectiveness of the method is demonstrated by the variety of geometries modeled, i.e., regular polygons and fractals, and permittivity contrast ratios which allows us to distinguish between effects of surface fraction and effects of morphology. Our calculations show that geometrical effects can give rise to significant modifications of the surface fraction dependence of the permittivity. The results are compared with Maxwell-Garnett (MG) and symmetric Bruggeman (SBG) formulas. As expected the effective permittivity in the situations considered here deviates from the MG and SBG results at high surface fractions and/or high permittivity ratios between the inclusion and the host medium. In addition, the results show that a two-phase composite containing a fractal-boundary inclusion, e.g., Koch's snowflake, can have a permittivity which is several tens of percent lower between the first and the fourth iteration of the structure at a fixed perimeter-to-surface ratio. This feature is consistent with the fact that as the surface fraction becomes higher, the inclusion rough boundaries dominate the overall geometry. We believe that simplified modeling such as the modeling done here can serve as a useful purpose in understanding the interplay between the structure and
NASA Astrophysics Data System (ADS)
Ramadan, Omar
2014-12-01
Systematic split-step finite difference time domain (SS-FDTD) formulations, based on the general Lie-Trotter-Suzuki product formula, are presented for solving the time-dependent Maxwell equations in double-dispersive electromagnetic materials. The proposed formulations provide a unified tool for constructing a family of unconditionally stable algorithms such as the first order split-step FDTD (SS1-FDTD), the second order split-step FDTD (SS2-FDTD), and the second order alternating direction implicit FDTD (ADI-FDTD) schemes. The theoretical stability of the formulations is included and it has been demonstrated that the formulations are unconditionally stable by construction. Furthermore, the dispersion relation of the formulations is derived and it has been found that the proposed formulations are best suited for those applications where a high space resolution is needed. Two-dimensional (2-D) and 3-D numerical examples are included and it has been observed that the SS1-FDTD scheme is computationally more efficient than the ADI-FDTD counterpart, while maintaining approximately the same numerical accuracy. Moreover, the SS2-FDTD scheme allows using larger time step than the SS1-FDTD or ADI-FDTD and therefore necessitates less CPU time, while giving approximately the same numerical accuracy.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.
1991-01-01
Surface impedance boundary conditions are used to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be used to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A one dimensional implementation is presented for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique. In order to illustrate the FDTD surface impedance boundary condition, a planar air-lossy dielectric interface is considered.
Finite-Difference Time-Domain solution of Maxwell's equations for the dispersive ionosphere
NASA Astrophysics Data System (ADS)
Nickisch, L. J.; Franke, P. M.
1992-10-01
The Finite-Difference Time-Domain (FDTD) technique is a conceptually simple, yet powerful, method for obtaining numerical solutions to electromagnetic propagation problems. However, the application of FDTD methods to problems in ionospheric radiowave propagation is complicated by the dispersive nature of the ionospheric plasma. In the time domain, the electric displacement is the convolution of the dielectric tensor with the electric field, and thus requires information from the entire signal history. This difficulty can be avoided by returning to the dynamical equations from which the dielectric tensor is derived. By integrating these differential equations simultaneously with the Maxwell equations, temporal dispersion is fully incorporated.
Three-dimensional finite difference time domain modeling of the Earth-ionosphere cavity resonances
NASA Astrophysics Data System (ADS)
Yang, Heng; Pasko, Victor P.
2005-02-01
Comparison of results from a three-dimensional (3-D) finite difference time domain (FDTD) model of Schumann resonances (SR) with a set of classical eigenfrequency and quality factor solutions for laterally uniform spherically symmetric Earth-ionosphere cavity and recent SR observations during solar proton events (SPEs) and X-ray bursts demonstrate the potential and applicability of the FDTD technique for studies of realistic SR problems.
Finite-difference, time-domain analysis of a folded acoustic transmission line.
Jackson, Charles M
2005-03-01
Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method. PMID:15857045
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
McLeod, R.; Hawkins, R.J.; Kallman, J.S.
1991-04-01
Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector. 3 refs., 1 fig.
Finite difference time domain analysis of microwave ferrite devices and mobile antenna systems
NASA Astrophysics Data System (ADS)
Yildirim, Bahadir Suleyman
This dissertation presents analysis and design of shielded mobile antenna systems and microwave ferrite devices using a finite-difference time-domain method. Novel shielded antenna structures suitable for cellular communications have been analyzed and designed with emphasize on reducing excessive radiated energy absorbed in user's head and hand, while keeping the antenna performance at its peak in the presence of user. These novel antennas include a magnetically shielded antenna, a dual-resonance shielded antenna and, a shorted and truncated microstrip antenna. The effect of magnetic coating on the performance of a shielded monopole antenna is studied extensively. A parametric study is performed to analyze the dual-resonance phenomenon observed in the dual-resonance shielded antenna, optimize the antenna design within the cellular communications band, and improve the antenna performance. Input impedance, near and far fields of the dual-resonance shielded antenna are calculated using the finite-difference time-domain method. Experimental validation is also presented. In addition, performance of a shorted and truncated microstrip antenna has been investigated over a wide range of substrate parameters and dimensions. Objectives of the research work also include development of a finite-difference time-domain technique to accurately model magnetically anisotropic media, including the effect of non-uniform magnetization within the finite-size ferrite material due to demagnetizing fields. A slow wave thin film isolator and a stripline disc junction circulator are analyzed. An extensive parametric study calculates wide-band frequency-dependent parameters of these devices for various device dimensions and material parameters. Finally, a ferrite-filled stripline configuration is analyzed to study the non- linear behaviour of ferrite by introducing a modified damping factor.
NASA Astrophysics Data System (ADS)
Lin, M. C.; Nieter, C.; Stoltz, P. H.; Smithe, D. N.
2009-05-01
This work introduces a conformal finite difference time domain (CFDTD) method to accurately determine the dispersion relation of an A6 relativistic magnetron. The accuracy is measured by comparing with accurate SUPERFISH calculations based on finite element method. The results show that an accuracy of 99.4% can be achieved by using only 10,000 mesh points with Dey-Mittra algorithm. By comparison, a mesh number of 360,000 is needed to preserve 99% accuracy using conventional FDTD method. This suggests one can efficiently and accurately study the hot tests of microwave tubes using CFDTD particle-in-cell method instead of conventional FDTD one.
NASA Astrophysics Data System (ADS)
Yamamoto, Kaho; Iwai, Yosuke; Uchida, Yoshiaki; Nishiyama, Norikazu
2016-08-01
We numerically analyzed the light propagation in cholesteric liquid crystalline (CLC) droplet array by the finite-difference time-domain (FDTD) method. The FDTD method successfully reproduced the experimental light path observed in the complicated photonic structure of the CLC droplet array more accurately than the analysis of CLC droplets by geometric optics with Bragg condition, and this method help us understand the polarization of the propagating light waves. The FDTD method holds great promise for the design of various photonic devices composed of curved photonic materials like CLC droplets and microcapsules.
The electromagnetic modeling of thin apertures using the finite-difference time-domain technique
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.
Finite-difference time-domain simulation of thermal noise in open cavities
Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem |; Cao Changqi
2008-02-15
A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes.
Finite Difference Time Domain Electromagnetic Scattering from Frequency-Dependent Lossy Materials
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
During this effort the tasks specified in the Statement of Work have been successfully completed. The extension of Finite Difference Time Domain (FDTD) to more complicated materials has been made. A three-dimensional FDTD code capable of modeling interactions with both dispersive dielectric and magnetic materials has been written, validated, and documented. This code is efficient and is capable of modeling interesting targets using a modest computer work station platform. However, in addition to the tasks in the Statement of Work, a significant number of other FDTD extensions and calculations have been made. RCS results for two different plate geometries have been reported. The FDTD method has been extended to computing far zone time domain results in two dimensions. Finally, the capability to model nonlinear materials has been incorporated into FDTD and validated. The FDTD computer codes developed have been supplied, along with documentation, and preprints describing the other FDTD advances have been included with this report as attachments.
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.
Transient analysis of printed lines using finite-difference time-domain method
Ahmed, Shahid
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
Numerical analysis of polarization gratings using the finite-difference time-domain method
Oh, Chulwoo; Escuti, Michael J.
2007-10-15
We report the first full numerical analysis of polarization gratings (PGs), and study their most general properties and limits by using the finite-difference time-domain (FDTD) method. In this way, we avoid limiting assumptions on material properties or grating dimensions (e.g., no paraxial approximations) and provide a more complete understanding of PG diffraction behavior. We identify the fundamental delineation between diffraction regimes (thin versus thick) for anisotropic gratings and determine the conditions for {approx_equal}100% diffraction efficiency in the framework of the coupled-wave {rho} and Q parameters. Diffraction characteristics including the efficiency, spectral response, and polarization sensitivity are investigated for the two primary types of PGs with linear and circular birefringence. The angular response and finite-grating behavior (i.e., pixelation) are also examined. Comparisons with previous analytic approximations, where applicable, show good agreement.
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
Sha, Wei . E-mail: ws108@ahu.edu.cn; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-07-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources.
Finite Difference Time Domain Analysis for a Sound Field Including a Plate in Water
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Naoi, Jun; Kikuchi, Toshiaki
2004-05-01
In marine research, measures against self-noise of an observatory ship are important. Generally, the self-noise is measured after the completion of ships. It is difficult to predict this noise level beforehand. Then, an attempt is made to determine the noise emitted from various elements of a structure. The finite difference time domain method is applied to obtain sound fields, including that of a plate in water. The time behavior of the sound wave emitted from a sound source placed near the upper part of a plate is investigated. As a result, the reflected and re-radiated waves from the plate including the head wave resulting from the longitudinal and traverse waves in the plate are able to be visualized. In the case of the plate with a branch plate, the suppression of the wave which propagates at the inside of the plate with the length of the branch plate is shown.
A finite difference-time domain technique for modeling narrow apertures in conducting scatterers
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
The finite difference-time domain (FDTD) technique has proven to be a valuable tool for the calculation of the transient and steady state scattering characteristics of relatively complex scatterer and source configurations. In spite of its usefulness, it exhibits serious deficiencies when used to analyze geometries that contain fine detail. An FDTD technique is described that utilizes Babinet's principle to decouple the regions on both sides of the aperture. The result is an FDTD technique that is capable of modeling apertures that are much smaller than the spatial grid used in the analysis and yet is not perturbed by numerical noise when used in the 'scattered field' mode. Numerical results are presented that show the field penetration through cavity-backed apertures that are much smaller than the spatial grid used during the solution.
Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.
Zhao, Yan; Argyropoulos, Christos; Hao, Yang
2008-04-28
This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are 'invisible' to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being 'visible'. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance. PMID:18545374
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
Skolski, J. Z. P. Vincenc Obona, J.; Römer, G. R. B. E.; Huis in 't Veld, A. J.
2014-03-14
A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.
Inclusion of lumped elements in finite difference time domain electromagnetic calculations
Thomas, V.A.; Jones, M.E.; Mason, R.J.
1994-12-31
A general approach for including lumped circuit elements in a finite difference, time domain (FD-TD) solution of Maxwell`s equations is presented. The methodology allows the direct access to SPICE to model the lumped circuits, while the full 3-Dimensional solution to Maxwell`s equations provides the electromagnetic field evolution. This type of approach could be used to mode a pulsed power machine by using a SPICE model for the driver and using an electromagnetic PIC code for the plasma/electromagnetics calculation. The evolution of the driver can be made self consistent with the behavior of the plasma load. Other applications are also possible, including modeling of nonlinear microwave circuits (as long as the non-linearities may be expressed in terms of a lumped element) and self-consistent calculation of very high speed computer interconnections and digital circuits.
Finite difference time domain calculation of transients in antennas with nonlinear loads
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent
1991-01-01
In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.
CUDA Fortran acceleration for the finite-difference time-domain method
NASA Astrophysics Data System (ADS)
Hadi, Mohammed F.; Esmaeili, Seyed A.
2013-05-01
A detailed description of programming the three-dimensional finite-difference time-domain (FDTD) method to run on graphical processing units (GPUs) using CUDA Fortran is presented. Two FDTD-to-CUDA thread-block mapping designs are investigated and their performances compared. Comparative assessment of trade-offs between GPU's shared memory and L1 cache is also discussed. This presentation is for the benefit of FDTD programmers who work exclusively with Fortran and are reluctant to port their codes to C in order to utilize GPU computing. The derived CUDA Fortran code is compared with an optimized CPU version that runs on a workstation-class CPU to present a realistic GPU to CPU run time comparison and thus help in making better informed investment decisions on FDTD code redesigns and equipment upgrades. All analyses are mirrored with CUDA C simulations to put in perspective the present state of CUDA Fortran development.
Accuracy issues in the finite difference time domain simulation of photomask scattering
NASA Astrophysics Data System (ADS)
Pistor, Thomas V.
2001-09-01
As the use of electromagnetic simulation in lithography increases, accuracy issues are uncovered and must be addressed. A proper understanding of these issues can allow the lithographer to avoid pitfalls in electromagnetic simulation and to know what can and can not be accurately simulated. This paper addresses the important accuracy issues related to the simulation of photomask scattering using the Finite Difference Time Domain (FDTD) method. Errors related to discretization and periodic boundary conditions are discussed. Discretization-related issues arise when derivatives are replaced by finite differences and when integrals are replaced by summations. These approximations can lead to mask features that do not have exact dimensions. The effects of discretization error on phase wells and thin films are shown. The reflectivity of certain thin film layers is seen to be very sensitive to the layer thickness. Simulation experiments and theory are used to determine how fine a discretization is necessary and various discretization schemes that help minimize error are presented. Boundary-condition-related errors arise from the use of periodic boundary conditions when simulating isolated mask features. The effects of periodic boundary conditions are assessed through the use of simulation experiments. All errors are associated with an ever-present trade-off between accuracy and computational resources. However, choosing the cell size wisely can, in many cases, minimize error without significantly increasing computation resource requirements.
Bringuier, Jonathan N.; Mittra, Raj
2012-01-01
A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data. PMID:23012575
Finite difference time domain calculation of transients in antennas with nonlinear loads
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent
1991-01-01
Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Tanev, S.; Videen, G.
2004-01-01
The two-dimensional (2-D) finite-difference time domain (FDTD) method is applied to calculate light scattering and absorption by an arbitrarily shaped infinite column embedded in an absorbing dielectric medium. A uniaxial perfectly matched layer (UPML) absorbing boundary condition (ABC) is used to truncate the computational domain. The single-scattering properties of the infinite column embedded in the absorbing medium, including scattering phase functions, extinction and absorption efficiencies, are derived using an area integration of the internal field. An exact solution for light scattering and absorption by a circular cylinder in an absorbing medium is used to examine the accuracy of the 2-D UPML FDTD code. With use of a cell size of 1/120 incident wavelength in the FDTD calculations, the errors in the extinction and absorption efficiencies and asymmetry factors from the 2-D UPML FDTD are generally smaller than approx .1%. The errors in the scattering phase functions are typically smaller than approx .4%. Using the 2-D UPML FDTD technique, light scattering and absorption by long noncircular columns embedded in absorbing media can be accurately solved.
Prepeliță, Sebastian; Geronazzo, Michele; Avanzini, Federico; Savioja, Lauri
2016-05-01
The scattering around the human pinna that is captured by the Head-Related Transfer Functions (HRTFs) is a complex problem that creates uncertainties in both acoustical measurements and simulations. Within the simulation framework of Finite Difference Time Domain (FDTD) with axis-aligned staircase boundaries resulting from a voxelization process, the voxelization-based uncertainty propagating in the HRTF-captured sound field is quantified for one solid and two surface voxelization algorithms. Simulated results utilizing a laser-scanned mesh of Knowles Electronics Manikin for Acoustic Research (KEMAR) show that in the context of complex geometries with local topology comparable to grid spacing such as the human pinna, the voxelization-related uncertainties in simulations emerge at lower frequencies than the generally used accuracy bandwidths. Numerical simulations show that the voxelization process induces both random error and algorithm-dependent bias in the simulated HRTF spectral features. Frequencies fr below which the random error is bounded by various dB thresholds are estimated and predicted. Particular shortcomings of the used voxelization algorithms are identified and the influence of the surface impedance on the induced errors is studied. Simulations are also validated against measurements. PMID:27250145
Finite-difference time-domain analysis for the dynamics and diffraction of exciton-polaritons.
Chen, Minfeng; Chang, Yia-Chung; Hsieh, Wen-Feng
2015-10-01
We adopted a finite-difference time-domain (FDTD) scheme to simulate the dynamics and diffraction of exciton-polaritons, governed by the coupling of polarization waves with electromagnetic waves. The polarization wave, an approximate solution to the Schrödinger's equation at low frequencies, essentially captures the exciton behavior. Numerical stability of the scheme is analyzed and simple examples are provided to prove its validity. The system considered is both temporally and spatially dispersive, for which the FDTD analysis has attracted less attention in the literature. Here, we demonstrate that the FDTD scheme could be useful for studying the optical response of the exciton-polariton and its dynamics. The diffraction of a polariton wave from a polaritonic grating is also considered, and many sharp resonances are found, which manifest the interference effect of polariton waves. This illustrates that the measurement of transmittance or reflectance near polariton resonance can reveal subwavelength features in semiconductors, which are sensitive to polariton scattering. PMID:26479940
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
Transfer-matrix approach for finite-difference time-domain simulation of periodic structures.
Deinega, Alexei; Belousov, Sergei; Valuev, Ilya
2013-11-01
Optical properties of periodic structures can be calculated using the transfer-matrix approach, which establishes a relation between amplitudes of the wave incident on a structure with transmitted or reflected waves. The transfer matrix can be used to obtain transmittance and reflectance spectra of finite periodic structures as well as eigenmodes of infinite structures. Traditionally, calculation of the transfer matrix is performed in the frequency domain and involves linear algebra. In this work, we present a technique for calculation of the transfer matrix using the finite-difference time-domain (FDTD) method and show the way of its implementation in FDTD code. To illustrate the performance of our technique we calculate the transmittance spectra for opal photonic crystal slabs consisting of multiple layers of spherical scatterers. Our technique can be used for photonic band structure calculations. It can also be combined with existing FDTD methods for the analysis of periodic structures at an oblique incidence, as well as for modeling point sources in a periodic environment. PMID:24329377
Yu, Ji-Tong; Chen, Ji-Yao; Lin, Zhi-Fang; Xu, Lei; Wang, Pei-Nan; Gu, Min
2005-01-01
The surface stress on the real shape (biconcave disklike) of an erythrocyte under laser irradiation is theoretically studied according to the finite-difference time-domain (FDTD) method. The distribution of the surface stresses depends on the orientation of erythrocytes in the laser beam. Typically when the erythrocyte was irradiated from the side direction (the laser beam was perpendicular to the normal of the erythrocyte plane), the surface stresses were so asymmetrical and nonuniform that the magnitude of the surface stress on the back surface was three times higher than that on the front surface, and the highest-to-lowest ratio of the stress reached 16 times. For comparison, the surface stress was also calculated according to the ray optics (RO) method. The tendency of the stress distribution from the RO calculation was roughly similar to that of the FDTD method. However the RO calculation produced some unphysical results, such as the infinite stress on some surface region and the zero stress on the most parts of the erythrocyte surface, which is due to the neglecting of light diffraction. The results obtained from the FDTD calculation are believed quantitatively reliable, because the FDTD method automatically takes into account of the diffraction and interference effects of the light wave. Thus, the FDTD method is more suitable than the RO method for the stress study of erythrocytes. PMID:16409078
Evaluation of a thin-slot formalism for finite-difference time-domain electromagnetics codes
Turner, C.D.; Bacon, L.D.
1987-03-01
A thin-slot formalism for use with finite-difference time-domain (FDTD) electromagnetics codes has been evaluated in both two and three dimensions. This formalism allows narrow slots to be modeled in the wall of a scatterer without reducing the space grid size to the gap width. In two dimensions, the evaluation involves the calculation of the total fields near two infinitesimally thin coplanar strips separated by a gap. A method-of-moments (MoM) solution of the same problem is used as a benchmark for comparison. Results in two dimensions show that up to 10% error can be expected in total electric and magnetic fields both near (lambda/40) and far (1 lambda) from the slot. In three dimensions, the evaluation is similar. The finite-length slot is placed in a finite plate and an MoM surface patch solution is used for the benchmark. These results, although less extensive than those in two dimensions, show that slightly larger errors can be expected. Considering the approximations made near the slot in incorporating the formalism, the results are very promising. Possibilities also exist for applying this formalism to walls of arbitrary thickness and to other types of slots, such as overlapping joints. 11 refs., 25 figs., 6 tabs.
Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
de Groot-Hedlin, C
2008-09-01
Equations applicable to finite-difference time-domain (FDTD) computation of infrasound propagation through an absorbing atmosphere are derived and examined in this paper. It is shown that over altitudes up to 160 km, and at frequencies relevant to global infrasound propagation, i.e., 0.02-5 Hz, the acoustic absorption in dB/m varies approximately as the square of the propagation frequency plus a small constant term. A second-order differential equation is presented for an atmosphere modeled as a compressible Newtonian fluid with low shear viscosity, acted on by a small external damping force. It is shown that the solution to this equation represents pressure fluctuations with the attenuation indicated above. Increased dispersion is predicted at altitudes over 100 km at infrasound frequencies. The governing propagation equation is separated into two partial differential equations that are first order in time for FDTD implementation. A numerical analysis of errors inherent to this FDTD method shows that the attenuation term imposes additional stability constraints on the FDTD algorithm. Comparison of FDTD results for models with and without attenuation shows that the predicted transmission losses for the attenuating media agree with those computed from synthesized waveforms. PMID:19045635
Finite-difference time-domain studies of the optical properties of nanoshell dimers.
Oubre, C; Nordlander, P
2005-05-26
The optical properties of metallic nanoshell dimers are investigated using the finite difference time domain (FDTD) method. We discuss issues of numerical convergence specific for the dimer system. We present results for both homodimers and heterodimers. The results show that retardation effects must be taken into account for an accurate description of realistic size nanoparticle dimers. The optical properties of the nanoshell dimer are found to be strongly polarization dependent. Maximal coupling between the nanoshells in a dimer occurs when the electric field of the incident pulse is aligned parallel to the dimer axis. The wavelengths of the peaks in the extinction cross section of the dimer are shown to vary by more than 100 nm, depending on the incident electric field polarization. The calculations show that electric field enhancements in the dimer junctions depend strongly on dimer separation. The maximum field enhancements occur in the dimer junction and at the expense of a reduced electric field enhancement in other regions of space. We investigate the usefulness of nanoshell dimers substrates for SERS by integrating the fourth power of the electric field enhancements around the surfaces of the nanoparticles as a function of dimer separation and wavelength. The SERS efficiency is shown to depend strongly on dimer separation but much weaker than the fourth power of the maximum electric field enhancement at a particular point. The SERS efficiency is also found to depend strongly on the wavelength of the incident light. Maximum SERS efficiency occurs for resonant excitation of the dimer plasmons. PMID:16852215
NASA Astrophysics Data System (ADS)
Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.
1994-03-01
Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.
Finite-difference time-domain modelling of through-the-Earth radio signal propagation
NASA Astrophysics Data System (ADS)
Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.
2015-12-01
This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.
Inkinen, Satu I; Liukkonen, Jukka; Malo, Markus K H; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha
2016-07-01
Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10(6) cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound. PMID:27475127
Simulation of optical devices using parallel finite-difference time-domain method
NASA Astrophysics Data System (ADS)
Li, Kang; Kong, Fanmin; Mei, Liangmo; Liu, Xin
2005-11-01
This paper presents a new parallel finite-difference time-domain (FDTD) numerical method in a low-cost network environment to stimulate optical waveguide characteristics. The PC motherboard based cluster is used, as it is relatively low-cost, reliable and has high computing performance. Four clusters are networked by fast Ethernet technology. Due to the simplicity nature of FDTD algorithm, a native Ethernet packet communication mechanism is used to reduce the overhead of the communication between the adjacent clusters. To validate the method, a microcavity ring resonator based on semiconductor waveguides is chosen as an instance of FDTD parallel computation. Speed-up rate under different division density is calculated. From the result we can conclude that when the decomposing size reaches a certain point, a good parallel computing speed up will be maintained. This simulation shows that through the overlapping of computation and communication method and controlling the decomposing size, the overhead of the communication of the shared data will be conquered. The result indicates that the implementation can achieve significant speed up for the FDTD algorithm. This will enable us to tackle the larger real electromagnetic problem by the low-cost PC clusters.
NASA Astrophysics Data System (ADS)
Wei, Xiao-Kun; Shao, Wei; Shi, Sheng-Bing; Zhang, Yong; Wang, Bing-Zhong
2015-07-01
An efficient conformal locally one-dimensional finite-difference time-domain (LOD-CFDTD) method is presented for solving two-dimensional (2D) electromagnetic (EM) scattering problems. The formulation for the 2D transverse-electric (TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit (ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field (TF/SF) boundary and the perfectly matched layer (PML), the radar cross section (RCS) of two 2D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331007 and 61471105).
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
NASA Astrophysics Data System (ADS)
Hochgraf, Kelsey
Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a
Use of the finite-difference time-domain method in electromagnetic dosimetry
Sullivan, D.M.
1987-01-01
Although there are acceptable methods for calculating whole body electromagnetic absorption, no completely acceptable method for calculating the local specific absorption rate (SAR) at points within the body has been developed. Frequency domain methods, such as the method of moments (MoM) have achieved some success; however, the MoM requires computer storage on the order of (3N)/sup 2/, and computation time on the order of (3N)/sup 3/ where N is the number of cells. The finite-difference time-domain (FDTD) method has been employed extensively in calculating the scattering from metallic objects, and recently is seeing some use in calculating the interaction of EM fields with complex, lossy dielectric bodies. Since the FDTD method has storage and time requirements proportional to N, it presents an attractive alternative to calculating SAR distribution in large bodies. This dissertation describes the FDTD method and evaluates it by comparing its results with analytic solutions in 2 and 3 dimensions. The results obtained demonstrate that the FDTD method is capable of calculating internal SAR distribution with acceptable accuracy. The construction of a data base to provide detailed, inhomogeneous man models for use with the FDTD method is described. Using this construction method, a model of 40,000 1.31 cm. cells is developed for use at 350 MHz, and another model consisting of 5000 2.62 cm. cells is developed for use at 100 MHz. To add more realism to the problem, a ground plane is added to the FDTD software. The needed changes to the software are described, along with a test which confirms its accuracy. Using the CRAY II supercomputer, SAR distributions in human models are calculated using incident frequencies of 100 MHz and 350 MHz for three different cases: (1) A homogeneous man model in free space, (2) an inhomogeneous man model in free space, and (3) an inhomogeneous man model standing on a ground plane.
A finite-difference time-domain technique was used to calculate the specific absorption rate (SAR) at various sites in a heterogeneous block model of man. he block model represented a close approximation to a full-scale heterogeneous phantom model. oth models were comprised of a ...
Silva, F. da; Hacquin, S.
2005-03-01
We present a novel numerical signal injection technique allowing unidirectional injection of a wave in a wave-guiding structure, applicable to 2D finite-difference time-domain electromagnetic codes, both Maxwell and wave-equation. It is particularly suited to continuous wave radar-like simulations. The scheme gives an unidirectional injection of a signal while being transparent to waves propagating in the opposite direction (directional coupling). The reflected or backscattered waves (returned) are separated from the probing waves allowing direct access to the information on amplitude and phase of the returned wave. It also facilitates the signal processing used to extract the phase derivative (or group delay) when simulating radar systems. Although general, the technique is particularly suited to swept frequency sources (frequency modulated) in the context of reflectometry, a fusion plasma diagnostic. The UTS applications presented here are restricted to fusion plasma reflectometry simulations for different physical situations. This method can, nevertheless, also be used in other dispersive media such as dielectrics, being useful, for example, in the simulation of plasma filled waveguides or directional couplers.
NASA Astrophysics Data System (ADS)
Maloney, James G.; Smith, Glenn S.; Scott, Waymond R., Jr.
1990-07-01
Two antennas are considered, a cylindrical monopole and a conical monopole. Both are driven through an image plane from a coaxial transmission line. Each of these antennas corresponds to a well-posed theoretical electromagnetic boundary value problem and a realizable experimental model. These antennas are analyzed by a straightforward application of the time-domain finite-difference method. The computed results for these antennas are shown to be in excellent agreement with accurate experimental measurements for both the time domain and the frequency domain. The graphical displays presented for the transient near-zone and far-zone radiation from these antennas provide physical insight into the radiation process.
Study of two-dimensional transient cavity fields using the finite-difference time-domain technique
Crisp, J.L.
1988-06-01
This work is intended to be a study into the application of the finite-difference time-domain, or FD-TD technique, to some of the problems faced by designers of equipment used in modern accelerators. In particular it discusses using the FD-TD algorithm to study the field distribution of a simple two-dimensional cavity in both space and time. 18 refs.
Memory cost of absorbing conditions for the finite-difference time-domain method.
Chobeau, Pierre; Savioja, Lauri
2016-07-01
Three absorbing layers are investigated using standard rectilinear finite-difference schemes. The perfectly matched layer (PML) is compared with basic lossy layers terminated by two types of absorbing boundary conditions, all simulated using equivalent memory consumption. Lossy layers present the advantage of being scalar schemes, whereas the PML relies on a staggered scheme where both velocity and pressure are split. Although the PML gives the lowest reflection magnitudes over all frequencies and incidence angles, the most efficient lossy layer gives reflection magnitudes of the same order as the PML from mid- to high-frequency and for restricted incidence angles. PMID:27475200
Finite difference time domain electromagnetic scattering from frequency-dependent lossy materials
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Four different FDTD computer codes and companion Radar Cross Section (RCS) conversion codes on magnetic media are submitted. A single three dimensional dispersive FDTD code for both dispersive dielectric and magnetic materials was developed, along with a user's manual. The extension of FDTD to more complicated materials was made. The code is efficient and is capable of modeling interesting radar targets using a modest computer workstation platform. RCS results for two different plate geometries are reported. The FDTD method was also extended to computing far zone time domain results in two dimensions. Also the capability to model nonlinear materials was incorporated into FDTD and validated.
NASA Astrophysics Data System (ADS)
McLeod, R.; Hawkins, R. J.; Kallman, J. S.
1991-04-01
Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector.
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
Sprague, Mark W; Luczkovich, Joseph J
2016-01-01
This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources. PMID:26611072
Finite-difference time-domain methods to analyze ytterbium-doped Q-switched fiber lasers.
Hattori, Haroldo T; Khaleque, Abdul
2016-03-01
Q-switched lasers are widely used in material processing, laser ranging, medicine, and nonlinear optics--in particular, Q-switched lasers in optical fibers are important since they cannot only generate high peak powers but can also concentrate high peak powers in small areas. In this paper, we present new finite-difference time-domain methods that analyze the dynamics of Q-switched fiber lasers, which are more flexible and robust than previous methods. We extend the method to analyze fiber ring lasers and compare the results with our experiments. PMID:26974625
White, W.T. III; Taflove, A.; Stringer, J.C.; Kluge, R.F.
1986-12-01
As computers get larger and faster, demands upon electromagnetics codes increase. Ever larger volumes of space must be represented with increasingly more accuracy and detail. This requires continually more efficient EM codes. To meet present and future needs in DOE and DOD, we are developing FDTD3D, a three-dimensional finite-difference, time-domain EM solver. When complete, the code will efficiently solve problems with tens of millions of unknowns. It already operates faster than any other 3D, time-domain EM code, and we are using it to model linear coupling to a generic missile section. At Lawrence Livermore National Laboratory (LLNL), we anticipate the ultimate need for such a code if we are to model EM threats to objects such as airplanes or missiles. This article describes the design and implementation of FDTD3D. The first section, ''Design of FDTD3D,'' contains a brief summary of other 3D time-domain EM codes at LLNL followed by a description of the efficiency of FDTD3D. The second section, ''Implementation of FDTD3D,'' discusses recent work and future plans.
Numerical analysis of curved frequency selective surface by finite-difference time-domain
NASA Astrophysics Data System (ADS)
Chen, Xin-yi; Wang, Jian-bo; Chen, Gui-bo; Sun, Guan-cheng; Lu, Jun
2011-08-01
Frequency selective surface is a monolayer or multilayer 2D periodic structure which is composed of multiple resonance units scattering by a two-dimensional periodic array on dielectric layer. FSS can't absorb radio frequency energy, but can filter the frequency which is therefore applied in microwave technique or stealth technology. The relative research on curved FSS is relatively scarce since the curved FSS structure can be obtained only when FSS is attached on the materials surfaces of curved structures in engineering application. However, curved FSS is widely applied in practical engineering; therefore, the research on curved FSS structure has important significance. In this paper, a curved FSS structure model of Y-pore unit is established and numerical simulated by means of FDTD. The influence of curvature on FSS transmission characteristics is studied according to the analysis on the changing of radar cross section (RCS). The results show: the center frequency point of the plane band pass FSS structure drifts after the curve surface deformation of the structure; the center frequency point of the curved band pass FSS structure drifts with the changing of the curvature radius, i. e. with the decreasing of curvature radius, the frequency point drifts towards high points and the transmittance decreases. The design of FSS radome demands of accurate and stable center resonance frequency; therefore, the actual situation of curved surface should be considered in practical engineering application when band pass FSS is made into frequency selection filtering radome. The curvature radius should be long enough to avoid center frequency drifting and transmittance deceasing.
Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith
2005-05-01
This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.
NASA Technical Reports Server (NTRS)
Vinh, Hoang; Dwyer, Harry A.; Van Dam, C. P.
1992-01-01
The applications of two CFD-based finite-difference methods to computational electromagnetics are investigated. In the first method, the time-domain Maxwell's equations are solved using the explicit Lax-Wendroff scheme and in the second method, the second-order wave equations satisfying the Maxwell's equations are solved using the implicit Crank-Nicolson scheme. The governing equations are transformed to a generalized curvilinear coordinate system and solved on a body-conforming mesh using the scattered-field formulation. The induced surface current and the bistatic radar cross section are computed and the results are validated for several two-dimensional test cases involving perfectly-conducting scatterers submerged in transverse-magnetic plane waves.
Silva, F. da
2008-10-15
The EU will supply the plasma position reflectometer for ITER. The system will have channels located at different poloidal positions, some of them obliquely viewing a plasma which has a poloidal density divergence and curvature, both adverse conditions for profile measurements. To understand the impact of such topology in the reconstruction of density profiles a full-wave two-dimensional finite-difference time domain O-mode code with the capability for frequency sweep was used. Simulations show that the reconstructed density profiles still meet the ITER radial accuracy specifications for plasma position (1 cm), except for the highest densities. Other adverse effects such as multireflections induced by the blanket, density fluctuations, and MHD activity were considered and a first understanding on their impact obtained.
NASA Technical Reports Server (NTRS)
Taflove, A.; Umashankar, K. R.
1987-01-01
The formulation and recent applications of the finite-difference time-domain (FD-TD) method for the numerical modeling of electromagnetic scattering and interaction problems are considered. It is shown that improvements in FD-TD modeling concepts and software implementation often make it a preferable choice for structures which cannot be easily treated by conventional integral equations and asymptotic approaches. Recent FD-TD modeling validations in research areas including coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, and radiation condition theory, are reviewed. Finally, the advantages and disadvantages of FD-TD, and guidelines concerning when FD-TD should and should not be used in high-frequency electromagnetic modeling problems, are summarized.
NASA Astrophysics Data System (ADS)
Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.
2015-03-01
Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.
Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.
2014-01-01
Birds-of-paradise are nature’s prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes’ parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system. PMID:24591592
Wilts, Bodo D; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G
2014-03-25
Birds-of-paradise are nature's prime examples of the evolution of color by sexual selection. Their brilliant, structurally colored feathers play a principal role in mating displays. The structural coloration of both the occipital and breast feathers of the bird-of-paradise Lawes' parotia is produced by melanin rodlets arranged in layers, together acting as interference reflectors. Light reflection by the silvery colored occipital feathers is unidirectional as in a classical multilayer, but the reflection by the richly colored breast feathers is three-directional and extraordinarily complex. Here we show that the reflection properties of both feather types can be quantitatively explained by finite-difference time-domain modeling using realistic feather anatomies and experimentally determined refractive index dispersion values of keratin and melanin. The results elucidate the interplay between avian coloration and vision and indicate tuning of the mating displays to the spectral properties of the avian visual system. PMID:24591592
NASA Astrophysics Data System (ADS)
Zhang, Di; Capoglu, Ilker; Li, Yue; Cherkezyan, Lusik; Chandler, John; Spicer, Graham; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim
2016-06-01
Combining finite-difference time-domain (FDTD) methods and modeling of optical microscopy modalities, we previously developed an open-source software package called Angora, which is essentially a "microscope in a computer." However, the samples being simulated were limited to nondispersive media. Since media dispersions are common in biological samples (such as cells with staining and metallic biomarkers), we have further developed a module in Angora to simulate samples having complicated dispersion properties, thereby allowing the synthesis of microscope images of most biological samples. We first describe a method to integrate media dispersion into FDTD, and we validate the corresponding Angora dispersion module by applying Mie theory, as well as by experimentally imaging gold microspheres. Then, we demonstrate how Angora can facilitate the development of optical imaging techniques with a case study.
Ford, Patrick J.; Beeson, Sterling R.; Krompholz, Hermann G.; Neuber, Andreas A.
2012-07-15
A finite-difference algorithm was developed to calculate several RF breakdown parameters, for example, the formative delay time that is observed between the initial application of a RF field to a dielectric surface and the formation of field-induced plasma interrupting the RF power flow. The analysis is focused on the surface being exposed to a background gas pressure above 50 Torr. The finite-difference algorithm provides numerical solutions to partial differential equations with high resolution in the time domain, making it suitable for simulating the time evolving interaction of microwaves with plasma; in lieu of direct particle tracking, a macroscopic electron density is used to model growth and transport. This approach is presented as an alternative to particle-in-cell methods due to its low complexity and runtime leading to more efficient analysis for a simulation of a microsecond scale pulse. The effect and development of the plasma is modeled in the simulation using scaling laws for ionization rates, momentum transfer collision rates, and diffusion coefficients, as a function of electric field, gas type and pressure. The incorporation of plasma material into the simulation involves using the Z-transform to derive a time-domain algorithm from the complex frequency-dependent permittivity of plasma. Therefore, the effect of the developing plasma on the instantaneous microwave field is calculated. Simulation results are compared with power measurements using an apparatus designed to facilitate surface flashover across a polycarbonate boundary in a controlled N{sub 2}, air, or argon environment at pressures exceeding 50 Torr.
Saarelma, Jukka; Botts, Jonathan; Hamilton, Brian; Savioja, Lauri
2016-04-01
Finite-difference time-domain (FDTD) simulation has been a popular area of research in room acoustics due to its capability to simulate wave phenomena in a wide bandwidth directly in the time-domain. A downside of the method is that it introduces a direction and frequency dependent error to the simulated sound field due to the non-linear dispersion relation of the discrete system. In this study, the perceptual threshold of the dispersion error is measured in three-dimensional FDTD schemes as a function of simulation distance. Dispersion error is evaluated for three different explicit, non-staggered FDTD schemes using the numerical wavenumber in the direction of the worst-case error of each scheme. It is found that the thresholds for the different schemes do not vary significantly when the phase velocity error level is fixed. The thresholds are found to vary significantly between the different sound samples. The measured threshold for the audibility of dispersion error at the probability level of 82% correct discrimination for three-alternative forced choice is found to be 9.1 m of propagation in a free field, that leads to a maximum group delay error of 1.8 ms at 20 kHz with the chosen phase velocity error level of 2%. PMID:27106330
NASA Astrophysics Data System (ADS)
Steich, David James
1995-01-01
The Finite Difference Time Domain (FDTD) method is a simple yet powerful method for numerically solving electromagnetic wave phenomenon on computers. The FDTD technique discretizes Maxwell's equations with finite difference equations. These finite difference equations, which approximate local field behavior, are applied to large spatial lattices allowing calculation of a vast array of electromagnetical phenomenon. The greatest strengths of the FDTD method are in its simplicity, efficiency, and diversity. FDTD is capable of modeling the scattering and coupling to lossy dielectrics, lossy magnetics, anisotropic media, dispersive media, and nonlinear materials for general geometric shapes. Wideband frequency information can be obtained using FDTD for both near and far field observation points in a single computational run. However, along with all of its benefits, the FDTD algorithm has some deficiencies. For most problems of interest, poor accuracy at geometry interfaces of differing media and at outer problem space boundarys where the spatial lattice must be truncated are the two largest error sources of the FDTD algorithm. Although most accuracy issues can be circumvented by expending large amounts of computer memory and cpu time, using excessive computer resources is not always possible and is never appealing. The purpose of this thesis is to generalize, analyze, and test various mainstream local Outer Radiating Boundary Conditions (ORBCs) for the FDTD method applied to Maxwell's equations in order to help gain a better understanding of present ORBC limitations. A common mathematical model is presented for the boundary conditions. Boundary conditions shown to fit the model include Mur, Superabsorption, Liao, Higdon, and Lindman ORBCs of varying orders. Simple operators are defined and then used to generate the final discretized equations for each of the boundary conditions, automatically, without requiring complicated high order equations. The procedure also allows
NASA Astrophysics Data System (ADS)
Tira, Cristian; Tira, Daniela; Simon, Timea; Astilean, Simion
2014-08-01
We employ Finite-Difference Time-Domain (FDTD) simulations to analyze the electromagnetic far- and near-field response of gold nanoparticles (NPs) organized in chain-like structures as function of the number of particles and inter-particle distance in structures. As a result an empirical formula to predict the position of collective localized surface plasmon resonance (LSPR) as function of number of particles in the chain is devised. On the other hand the experimental LSPR spectrum recorded from a colloidal solution exhibiting a certain degree of aggregation has been effectively reconstructed by linear combination of individual LSPR contribution as calculated for NP ensembles of different size (monomers, dimers, trimers, etc.). Notably, we find that the maximum of electric field intensity (E2) in between adjacent NPs increases from dimeric to trimeric and tetrameric ensembles, followed by a steady state decrease as the number of NPs per chain further increases. The central gap in a long chain of NPs accommodate the highest field enhancement (‘hot-spots'). Our findings are relevant for designing effective substrates for Surface-Enhanced Raman Scattering (SERS) and plasmonic waveguides.
NASA Astrophysics Data System (ADS)
Riley, D. J.
1993-04-01
A technique to integrate a dense, locally non-uniform mesh into finite-difference time-domain (FDTD) codes is presented. The method is designed for the full-wave analysis of multi-material layers that are physically thin, but perhaps electrically thick. Such layers are often used for the purpose of suppressing electromagnetic reflections from conducting surfaces. Throughout the non-uniform local mesh, average values for the conductivity and permittivity are used, where as variations in permeability are accommodated by splitting H-field line integrals and enforcing continuity of the normal B field. A unique interpolation scheme provides accuracy and late-time stability for mesh discontinuities as large as 1000 to 1. Application is made to resistive sheets, the absorbing Salisbury screen, crosstalk on printed circuit boards, and apertures that are narrow both in width and depth with regard to a uniform cell. Where appropriate, comparisons are made with the MoM code CARLOS and transmission-line theory. The hybrid mesh formulation has been highly optimized for both vector and parallel-processing on Cray Y-MP architectures.
NASA Astrophysics Data System (ADS)
Bohlen, Thomas; Wittkamp, Florian
2016-03-01
We analyse the performance of a higher order accurate staggered viscoelastic time-domain finite-difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order accurate time integrators are used for temporal discretization. ABS is a multistep method that uses previously calculated wavefields to increase the order of accuracy in time. The analysis shows that the numerical dispersion is much lower than that of the widely used second-order leapfrog method. Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order than third-order accuracy. In 1-D and 3-D simulation experiments, we verify the convincing improvements of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario, the computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase the simulation accuracy in time by investing computer memory instead of computing time.
Tsarev, Andrei V
2007-04-30
The results of numerical simulation of acousto-optic (AO) tunable filters of a new type based on multireflection beam expanding in waveguide structures are discussed. Planar waveguide filters based on thin chalcogenide (As{sub 2}S{sub 3}) films of lithium niobate (LiNbO{sub 3}) are considered. The operation of filters is analysed by the finite-difference time-domain (FDTD) method by using the license FullWAVE software package (RSoft Design Group, Inc.). It is shown that AO filters have very good dispersion properties and AO filters of extremely small size provide a narrow filtration line within the tuning range of more than 100 nm (at a wavelength of 1.54 {mu}m). It is important that the normalised linewidth (measured in units of the reciprocal filter length) is an order of magnitude smaller than the theoretical limit for AO filters produced from the same material in the conventional way, without the use of multireflection beam expanding. (acoustooptics)
The inclusion of wall loss in electromagnetic finite-difference time-domain thin-slot algorithms
Riley, D.J.; Turner, C.D.
1990-09-01
Sub-gridding techniques enable finite-difference time-domain (FDTD) electromagnetic codes to model apertures that are much narrower than the spatial resolution of the FDTD mesh. Previous thin-slot methods have assumed that the slot walls are perfectly conducting. As the slot depth-to-width ratio becomes large, interior wall losses for realistic materials can significantly affect the coupling through the slot, and therefore these loss effects should not be neglected. This paper presents two methods for incorporating loss for walls with good, but not perfect conductivity, into the FDTD calculations. The first method modifies an FDTD equation internal to the slot to include a surface-impedance contribution. This method is appropriate for the usual FDTD thin-slot formalisms. The second method includes the losses into a half-space'' integral equation that can be used by the recently introduced Hybrid Thin-Slot Algorithm. Results based on the two methods are compared for a variety of slot parameters and wall conductivities.
High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.
2015-12-01
Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod's field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Fu, Q.
2002-01-01
The three-dimensional (3-D) finite-difference time-domain (FDTD) technique has been extended to simulate light scattering and absorption by nonspherical particles embedded in an absorbing dielectric medium. A uniaxial perfectly matched layer (UPML) absorbing boundary condition is used to truncate the computational domain. When computing the single-scattering properties of a particle in an absorbing dielectric medium, we derive the single-scattering properties including scattering phase functions, extinction, and absorption efficiencies using a volume integration of the internal field. A Mie solution for light scattering and absorption by spherical particles in an absorbing medium is used to examine the accuracy of the 3-D UPML FDTD code. It is found that the errors in the extinction and absorption efficiencies from the 3-D UPML FDTD are less than similar to 2%. The errors in the scattering phase functions are typically less than similar to 5%. The errors in the asymmetry factors are less than similar to 0.l%. For light scattering by particles in free space, the accuracy of the 3-D UPML FDTD scheme is similar to a previous model.
Lo, F. S.; Lee, T. H.; Lu, P. S.; Ragan-Kelley, B.; Minnich, A.; Lin, M. C.; Verboncoeur, J. P.
2014-02-15
A thermionic energy converter (TEC) is a static device that converts heat directly into electricity by boiling electrons off a hot emitter surface across a small inter-electrode gap to a cooler collector surface. The main challenge in TECs is overcoming the space charge limit, which limits the current transmitted across a gap of a given voltage and width. We have verified the feasibility of studying and developing a TEC using a bounded finite-difference time-domain particle-in-cell plasma simulation code, OOPD1, developed by Plasma Theory and Simulation Group, formerly at UC Berkeley and now at Michigan State University. In this preliminary work, a TEC has been modeled kinetically using OOPD1, and the accuracy has been verified by comparing with an analytically solvable case, giving good agreement. With further improvement of the code, one will be able to quickly and cheaply analyze space charge effects, and seek designs that mitigate the space charge effect, allowing TECs to become more efficient and cost-effective.
High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas
Jenkins, Thomas G. Smithe, David N.
2015-12-10
Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.
NASA Astrophysics Data System (ADS)
Yang, Ping; Liou, K. N.
1995-01-01
We have developed a finite-difference time domain (FDTD) method and a novel geometric ray-tracing model for the calculation of light scattering by hexagonal ice crystals. In the FDTD method we use a staggered Cartesian grid with the implementation of an efficient absorbing boundary condition for the truncation of the computation domain. We introduce the Maxwell-Garnett rule to compute the mean values of the dielectric constant at grid points to reduce the inaccuracy produced by the staircasing approximation. The phase matrix elements and the scattering efficiencies for the scattering of visible light by two-dimensional long circular ice cylinders match closely those computed from the exact solution for size parameters as large as 60, with maximum differences less than 5%. In the new ray-tracing model we invoke the principle of geometric optics to evaluate the reflection and the refraction of localized waves, from which the electric and magnetic fields at the particle surface (near field) can be computed. Based on the equivalence theorem, the near field can subsequently be transformed to the far field, in which the phase interferences are fully accounted for. The phase functions and the scattering efficiencies for hexagonal ice crystals computed from the new geometric ray-tracing method compare reasonably well with the FDTD results for size parameters larger than approximately 20. When absorption is involved in geometric ray tracing,
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-01-01
Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-02-01
Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.
Riley, D.J.
1993-04-01
A technique to integrate a dense, locally non-uniform mesh into finite-difference time-domain (FDTD) codes is presented. The method is designed for the full-wave analysis of multi-material layers that are physically thin, but perhaps electrically thick. Such layers are often used for the purpose of suppressing electromagnetic reflections from conducting surfaces. Throughout the non-uniform local mesh, average values for the conductivity and permittivity are used, where as variations in permeability are accommodated by splitting H-field line integrals and enforcing continuity of the normal B field. A unique interpolation scheme provides accuracy and late-time stability for mesh discontinuities as large as 1000 to 1. Application is made to resistive sheets, the absorbing Salisbury screen, crosstalk on printed circuit boards, and apertures that are narrow both in width and depth with regard to a uniform cell. Where appropriate, comparisons are made with the MoM code CARLOS and transmission-line theory. The hybrid mesh formulation has been highly optimized for both vector and parallel-processing on Cray YMP architectures.
NASA Astrophysics Data System (ADS)
Eyuboglu, S.; Daniels, J. J.; Lee, R.; Yeh, J. T.
2006-12-01
Ground Penetrating Radar (GPR) is a non-invasive tool commonly used to characterize the physical properties of the subsurface. The translation of the physical measurements of geologic and hydrogeologic conditions is the culmination of many geophysical investigations. When numerical modeling is applied parallel to GPR data, it allows understanding of the effects of complex electromagnetic phenomena by defining and solving problems, as well as predicting the performance of radar in a complex heterogeneous environment. Finite difference time domain (FDTD) has been widely used for numerical modeling of GPR, but most of the previous algorithms are limited in their ability to model the electrical conductivity and permittivity. In this research, a highly efficient robust algorithm was developed to enhance the effectiveness of the FDTD forward modeling in surroundings characterized by an arbitrary distribution of all electrical properties in three dimensional space. In the first part of this research, two different FDTD codes which include different absorbing boundary conditions, Enquist and Majda absorbing boundary condition (ABC) and perfectly matched layer (PML), were used and compared. In the second part, the modeling algorithm was developed for a heterogeneous half-space medium to facilitate statistical modeling of complex distributions of electrical properties in the subsurface. The results produced by the simulation compared with real GPR results reveal high accuracy using the robust algorithm to optimize three dimensional FDTD forward modeling of GPR responses in heterogeneous surroundings.
NASA Astrophysics Data System (ADS)
Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter
2015-03-01
Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).
NASA Astrophysics Data System (ADS)
Panayappan, Kadappan
With the advent of sub-micron technologies and increasing awareness of Electromagnetic Interference and Compatibility (EMI/EMC) issues, designers are often interested in full- wave solutions of complete systems, taking to account a variety of environments in which the system operates. However, attempts to do this substantially increase the complexities involved in computing full-wave solutions, especially when the problems involve multi- scale geometries with very fine features. For such problems, even the well-established numerical methods, such as the time domain technique FDTD and the frequency domain methods FEM and MoM, are often challenged to the limits of their capabilities. In an attempt to address such challenges, three novel techniques have been introduced in this work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain (RUFD) and New Finite Difference Time Domain ( vFDTD). Furthermore, the efficacy of the above techniques has been illustrated, via several examples, and the results obtained by proposed techniques have been compared with other existing numerical methods for the purpose of validation. The DM method is a new physics-based approach for formulating MoM problems, which is based on the use of dipole moments (DMs), as opposed to the conventional Green's functions. The absence of the Green's functions, as well as those of the vector and scalar potentials, helps to eliminate two of the key sources of difficulties in the conventional MoM formulation, namely the singularity and low-frequency problems. Specifically, we show that there are no singularities that we need to be concerned with in the DM formulation; hence, this obviates the need for special techniques for integrating these singularities. Yet another salutary feature of the DM approach is its ability to handle thin and lossy structures, or whether they are metallic, dielectric-type, or even combinations thereof. We have found that the DM formulation can handle these
NASA Astrophysics Data System (ADS)
de Larquier, S.; Pasko, V. P.; Stenbaek-Nielsen, H. C.; Wilson, C. R.; Olson, J. V.
2009-12-01
Atmospheric infrasonic waves are acoustic waves with frequencies ranging from 0.02 to 10 Hz, slightly higher than the acoustic cut-off frequency (approximately 0.032 Hz), but lower than the audible frequencies (typically 20 Hz-15 kHz) [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. A number of natural events have been identified as generating atmospheric infrasound, such as volcanoes, tornadoes, avalanches, earthquakes [e.g., Bedard and Georges, Physics Today, S3, 32, 2000], ocean surfaces [e.g., Gossard and Hooke, Waves in the Atmosphere, Elsevier, 1975, Ch. 9], lightning [e.g., Assink et al., GRL, 35, L15802, 2008; Pasko, JGR, 114, D08205, 2009], or transient luminous events in the middle atmosphere termed sprites [e.g., Farges, Lightning: Principles, Instruments and Applications, H.D. Betz et al. (eds), Springer, 2009, Ch. 18]. The importance of infrasound studies has been emphasized in the past ten years from the Comprehensive Nuclear-Test-Ban Treaty verification perspective [e.g., Le Pichon et al., JGR, 114, D08112, 2009]. A proper understanding of infrasound propagation in the atmosphere is required for identification and classification of different infrasonic waves and their sources [Drob et al., JGR, 108, D21, 4680, 2003]. The goal of the present work is to provide a quantitative interpretation and explanation of infrasonic signatures from pulsating auroras reported recently by Wilson et al. [GRL, 32, L14810, 2005]. The infrasound signals observed with an infrasonic array at Fairbanks, Alaska had a mean amplitude of 0.05 Pa, a delay of about 5 minutes from the pulsating aurora, and an almost normal incidence on the ground plane [Wilson et al., 2005]. We employ a finite-difference time-domain (FDTD) model of infrasound propagation in a realistic atmosphere. We use the absorption model of infrasound introduced by Sutherland and Bass [J. Acoust. Soc. Am., 115, 1012, 2004]. Classical absorption mechanisms as well as molecular relaxation mechanisms are taken into
NASA Astrophysics Data System (ADS)
Yang, Heng
2007-12-01
Resonance properties of the Earth-ionosphere cavity were predicted by W. O. Schumann in 1952. Since then observations of electromagnetic signals in the frequency range 1-500 Hz have become a powerful tool for variety of remote sensing applications, which in recent years included studies of thunderstorm related transient luminous events in the middle atmosphere and related lightning discharges. In this thesis, a three dimensional Finite Difference Time Domain (FDTD) model is developed to study the propagation of the extremely low frequency (ELF) waves in the Earth-ionosphere cavity and in similar cavities on other celestial bodies of the Solar System. A comparison of the results from this FDTD model with a set of classical eigen-frequency (fn) and quality factor ( Qn) solutions for laterally uniform spherically symmetric Earth-ionosphere cavity and with recent observations of Schumann resonance (SR) during solar proton events (SPEs) and X-ray bursts is provided. The FDTD fn and Qn solutions for the uniform cavity appear to be in excellent agreement (within several %) with well-known experimental results documented in the literature. The related analysis indicates that the frequency of the first SR mode decreases during SPEs and increases during X-ray bursts by a fraction of a Hz, in agreement with physical arguments presented in previously published literature and with observations. The FDTD model is extended to include the effects of the geomagnetic field on SR parameters. A higher penetration height of SR electric and magnetic components is found with the presence of the geomagnetic field. In a realistic cavity, the conductivity distribution is not laterally uniform and spherically symmetric, but varies with local time and seasons reflecting related variations in the effects of solar radiation on the conductivity of the lower ionosphere. The global lightning activity in the three main areas (Africa, South-East Asia, and South America) also has diurnal and seasonal
NASA Astrophysics Data System (ADS)
Lee, H.; Min, D.; Lim, S.; Yang, J.; Kwon, B.; Yoo, H.
2009-12-01
In a conventional marine seismic data analysis, pressure data have been usually interpreted on the basis of acoustic wave equation. The acoustic wave equation, however, only deals with P-wave propagation, and it cannot correctly describe the wave propagation in acoustic-elastic (fluid-solid) coupled media. Recently, in 4C OBC survey (4-component ocean bottom cable), it is possible to acquire both pressure and 3-component displacements (measured at the sea-bottom). Combining pressure and displacement data allows us to interpret subsurface structures more accurately. In order to accurately simulate wave propagation in fluid-solid coupled media, we need an acoustic-elastic coupled modeling algorithm, which deals with displacements in elastic region and pressure in acoustic region. For waveform inversion and reverse-time migration that require a great number of forward modeling, it is essential to develop an efficient scheme that reduces computing time and computer core memory. In this study, we present a 3D time-domain acoustic-elastic coupled modeling algorithm on the basis of the cell-based finite difference method. The cell-based method has proven to properly describe the free-surface boundary, which indicates that it will also properly describe the fluid-solid interface boundaries. In the acoustic-elastic coupled modeling, we first compose cell-based finite differences individually for the 3D acoustic and elastic media, and then combine the differences using the fluid-solid interface boundary conditions. Considering that the 2D acoustic-elastic coupled modeling algorithm gives numerical solutions comparable to analytic solutions, we expect that the 3D acoustic-elastic coupled modeling will correctly describe wave propagation in the fluid-solid coupled media. We apply our algorithm to 3D horizontal two- and three-layer models. Numerical experiments show that the cell-based coupled modeling algorithm properly describes S- and converted waves as well as P-waves. The
NASA Technical Reports Server (NTRS)
Yefet, Amir; Petropoulos, Peter G.
1999-01-01
We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-05-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Charles, Cédric; Martin, Nicolas; Devel, Michel
2012-12-01
Optical transmittance spectra between 1.55 eV (800 nm) and 3.10 eV (400 nm) of tungsten oxide (WO3) thin films nanostructured thanks to the Glancing Angle Deposition technique are investigated both experimentally and theoretically, as a function of geometrical parameters. A Finite-Difference Time-Domain code was used to numerically model the films structure and to calculate their optical properties. The corresponding optical index and porosity are considered. It is found that the optical index of columnar structures always follows Cauchy's law as a function of energy and is reduced as the incident angle increases (alpha = 0 to 80 degrees) from n633 = 2.2 to 1.98 for experimental data against 2.1 to 1.75 for those computed with the Finite-Difference Time-Domain code. For zigzag architectures, an increase of the zigzag number from 0.5 to 8, amplifies interference fringes and improves the measured refractive indices. It agrees with modeled optical characteristics since n633 increases from 2.18 to 2.30. PMID:23447966
Simulations of SH wave scattering due to cracks by the 2-D finite difference method
NASA Astrophysics Data System (ADS)
Suzuki, Y.; Kawahara, J.; Okamoto, T.; Miyashita, K.
2006-05-01
We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media in cluding traction-freecracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based oncomparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation for crack densities of up to about 01. The presence of a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity will not change even for multi-scale cracks.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
NASA Astrophysics Data System (ADS)
Martowicz, A.; Ruzzene, M.; Staszewski, W. J.; Rimoli, J. J.; Uhl, T.
2014-03-01
The work deals with the reduction of numerical dispersion in simulations of wave propagation in solids. The phenomenon of numerical dispersion naturally results from time and spatial discretization present in a numerical model of mechanical continuum. Although discretization itself makes possible to model wave propagation in structures with complicated geometries and made of different materials, it inevitably causes simulation errors when improper time and length scales are chosen for the simulations domains. Therefore, by definition, any characteristic parameter for spatial and time resolution must create limitations on maximal wavenumber and frequency for a numerical model. It should be however noted that expected increase of the model quality and its functionality in terms of affordable wavenumbers, frequencies and speeds should not be achieved merely by denser mesh and reduced time integration step. The computational cost would be simply unacceptable. The authors present a nonlocal finite difference scheme with the coefficients calculated applying a Fourier series, which allows for considerable reduction of numerical dispersion. There are presented the results of analyses for 2D models, with isotropic and anisotropic materials, fulfilling the planar stress state. Reduced numerical dispersion is shown in the dispersion surfaces for longitudinal and shear waves propagating for different directions with respect to the mesh orientation and without dramatic increase of required number of nonlocal interactions. A case with the propagation of longitudinal wave in composite material is studied with given referential solution of the initial value problem for verification of the time-domain outcomes. The work gives a perspective of modeling of any type of real material dispersion according to measurements and with assumed accuracy.
Raulot, Victorien; Gérard, Philippe; Serio, Bruno; Flury, Manuel; Kress, Bernard; Meyrueis, Patrick
2010-08-16
A new rigorous vector-based design and analysis approach of diffractive lenses is presented. It combines the use of two methods: the Finite-Difference Time-Domain for the study in the near field, and the Radiation Spectrum Method for the propagation in the far field. This approach is proposed to design and optimize effective medium cylindrical diffractive lenses for high efficiency structured light illumination systems. These lenses are realised with binary subwavelength features that cannot be designed using the standard scalar theory. Furthermore, because of their finite and high frequencies characteristics, such devices prevent the use of coupled wave theory. The proposed approach is presented to determine the angular tolerance in the cases of binary subwavelength cylindrical lenses by calculating the diffraction efficiency as a function of the incidence angle. PMID:20721184
NASA Astrophysics Data System (ADS)
Ramadan, Omar
2015-09-01
In this paper, systematic wave-equation finite difference time domain (WE-FDTD) formulations are presented for modeling electromagnetic wave-propagation in linear and nonlinear dispersive materials. In the proposed formulations, the complex conjugate pole residue (CCPR) pairs model is adopted in deriving a unified dispersive WE-FDTD algorithm that allows modeling different dispersive materials, such as Debye, Drude and Lorentz, in the same manner with the minimal additional auxiliary variables. Moreover, the proposed formulations are incorporated with the wave-equation perfectly matched layer (WE-PML) to construct a material independent mesh truncating technique that can be used for modeling general frequency-dependent open region problems. Several numerical examples involving linear and nonlinear dispersive materials are included to show the validity of the proposed formulations.
Riley, D.J.; Turner, C.D.
1991-06-01
Two methods for modeling arbitrary narrow apertures in finite- difference time-domain (FDTD) codes are presented in this paper. The first technique is based on the hybrid thin-slot algorithm (HTSA) which models the aperture physics using an integral equation approach. This method can model slots that are narrow both in width and depth with regard to the FDTD spatial cell, but is restricted to planar apertures. The second method is based on a contour technique that directly modifies the FDTD equations local to the aperture. The contour method is geometrically more flexible than the HTSA, but the depth of the aperture is restricted to the actual FDTD mesh. A technique to incorporate both narrow-aperture algorithms into the FDTD code, TSAR, based on a slot data file'' is presented in this paper. Results for a variety of complex aperture contours are provided, and limitations of the algorithms are discussed.
NASA Astrophysics Data System (ADS)
Hwang, Dae Kun; Rey, Alejandro D.
2006-02-01
Optical images of textured liquid-crystal films containing various types of twist disclination loops are computed using an approximate matrix method and a direct numerical simulation based on the finite-difference time-domain (FDTD) method. The selected defects introduce large multidirectional spatial gradients in the optic axis, mimicking the orientation textures that arise in the construction and use of biosensors based on liquid-crystal vision. It is shown that under these experimentally relevant conditions, the matrix method fails to capture important signatures in the transmitted light intensity under crossed polarizers. The differences between the predictions by the two methods are analyzed with respect to gradients in the optic axis. We show that the FDTD method is a useful tool to perform computational optics of textured liquid-crystal films.
NASA Astrophysics Data System (ADS)
Lin, M. C.; Loverich, J.; Stoltz, P. H.; Nieter, C.
2013-10-01
This work introduces a conformal finite difference time domain (CFDTD) particle-in-cell (PIC) method with an improved field emission algorithm to accurately and efficiently study field emission devices. The CFDTD method is based on the Dey-Mittra algorithm or cut-cell algorithm, as implemented in the Vorpal code. For the field emission algorithm, we employ the elliptic function v(y) found by Forbes and a new fitting function t(y)2 for the Fowler-Nordheim (FN) equation. With these improved correction factors, field emission of electrons from a cathode surface is much closer to the prediction of the exact FN formula derived by Murphy and Good. This work was supported in part by both the U.S. Department of Defense under Grant No. FA9451-07-C-0025 and the U.S. Department of Energy under Grant No. DE-SC0004436.
NASA Astrophysics Data System (ADS)
Fujita, Yoshihisa; Ikuno, Soichiro; Kubo, Shin; Nakamura, Hiroaki
2016-01-01
The effect of the polarizer miter bend (PMB) reflector on polarization is numerically investigated by using the finite-difference time-domain (FDTD) method. The Drude model is implemented to take into account the fact that the waveguide wall is prepared from a dispersive medium. In electron cyclotron resonance heating (ECRH), the corrugated waveguide and miter bend are adopted for transmitting millimeter electromagnetic waves. In addition, PMB is employed to improve the plasma heating efficiency. The results of computations show that modes other than the input mode are also generated owing to the reflection at the miter bend mirror/PMB reflector. Moreover, it is found that elliptical polarization is observed after the linear polarization passes through PMB.
Fitzgerald, Anthony J.; Pickwell-MacPherson, Emma; Wallace, Vincent P.
2014-01-01
The aim of this work was to evaluate the capabilities of Debye theory combined with Finite Difference Time Domain (FDTD) methods to simulate the terahertz (THz) response of breast tissues. Being able to accurately model breast tissues in the THz regime would facilitate the understanding of image contrast parameters used in THz imaging of breast cancer. As a test case, the model was first validated using liquid water and simulated reflection pulses were compared to experimental measured pulses with very good agreement (p = 1.00). The responses of normal and cancerous breast tissues were simulated with Debye properties and the correlation with measured data was still high for tumour (p = 0.98) and less so for normal breast (p = 0.82). Sections of the time domain pulses showed clear differences that were also evident in the comparison of pulse parameter values. These deviations may arise from the presence of adipose and other inhomogeneities in the breast tissue that are not accounted for when using the Debye model. In conclusion, the study demonstrates the power of the model for simulating THz reflection imaging; however, for biological tissues extra Debye terms or a more detailed theory may be required to link THz image contrast to physiological composition and structural changes of breast tissue associated with differences between normal and tumour tissues. PMID:25010734
Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.
2012-10-15
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
Chaudhury, Bhaskar; Chaturvedi, Shashank
2006-12-15
Power-flow trajectories of electromagnetic waves through a spatially nonuniform plasma have been computed using direct solutions of Maxwell's equations using the three-dimensional finite-difference time-domain (FDTD) method. This method yields accurate information on refraction as well as absorption effects. The method can be used to compute power-flow trajectories for plasmas with arbitrarily varying density profiles, including effects due to arbitrarily shaped conducting or dielectric surfaces bounding the plasma. Furthermore, since FDTD is computationally expensive, especially for parametric studies, it is desirable to use ray tracing to estimate refraction effects. A quantitative comparison is performed between two different methods of obtaining exact and approximate solutions of Maxwell's equations in order to assess their relative utility in different situations. In the present work, we limit ourselves to a cold, collisional, unmagnetized plasma, where the response to electromagnetic waves is fully specified by a dispersion relation based on magnetoionic theory. It is shown that ray tracing in such plasmas yields accurate results only when two conditions are satisfied. Firstly, the density scale length should be long as compared to the free-space wavelength of the incident wave. Secondly, the conduction current should be small as compared to the displacement current in the medium. The second condition is one which has been identified for the first time.
Smithe, David N.; Hakim, Ammar H.
2007-09-28
Time domain simulation of plasmas in the rf time scale range is difficult because the time-scale is long compared to the electron plasma wave period, and in addition, the various cutoff and resonance behaviors within the plasma insure that any explicit finite-difference scheme would be numerically unstable. We resolve this dilemma with a new algorithm [1] based upon a semi-implicit method (e.g., explicit Maxwell, implicit plasma), such that all linear plasma dispersion behavior are faithfully reproduced at the available temporal and spatial resolution, despite the fact that the simulation time-step may exceed the electron gyro and electron plasma time scales by orders of magnitude. This new algorithm is now available in the Vorpal parallel computing simulation framework, which can provide complex boundary modeling of edge geometry such as antenna, limiters, and other 3-D structures. The result is a unified model joining the power delivery system to the bulk plasma. We report on benchmarking of the new capability for several classical benchmarks, including tunneling through low density edge plasma, cyclotron resonance, and mode-conversion to ICW (ion cyclotron wave). We also report on initial efforts to include 3-D edge geometry, including wave launcher with realistic edge density profiles.
NASA Astrophysics Data System (ADS)
Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.
2008-03-01
This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org
NASA Astrophysics Data System (ADS)
Hwang, Dae Kun; Rey, Alejandro D.
2005-07-01
The finite-difference time-domain (FDTD) method is used to compute propagation of light through textured uniaxial nematic-liquid crystal (NLC) films containing various types of twist disclination (defect) lines. Computational modeling by the FDTD method provides an accurate prediction of the optical response in multidimensional and multiscale heterogeneities in NLC films in which significant spatial optic axis gradients are present. The computations based on the FDTD method are compared with those of the classic Berreman matrix-type method. As expected, significant deviations between predictions from the two methods are observed near the twist disclination line defects because lateral optic axis gradients are ignored in the matrix Berreman method. It is shown that the failure of Berreman's method to take into account lateral optic axis gradient effects leads to significant deviations in optical output. In addition, it is shown that the FDTD method is able to distinguish clearly different types of twist disclination lines. The FDTD optical simulation method can be used for understanding fundamental relationships between optical response and complex NLC defect textures in new liquid-crystal applications including liquid-crystal-based biosensors and rheo-optical characterization of flowing liquid crystals.
NASA Technical Reports Server (NTRS)
Sun, W.; Loeb, N. G.; Videen, G.; Fu, Q.
2004-01-01
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional micro-roughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 mum, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than similar to 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than similar to 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than similar to 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light.
Sun, Wenbo; Loeb, Norman G; Videen, Gorden; Fu, Qiang
2004-03-20
Natural particles such as ice crystals in cirrus clouds generally are not pristine but have additional microroughness on their surfaces. A two-dimensional finite-difference time-domain (FDTD) program with a perfectly matched layer absorbing boundary condition is developed to calculate the effect of surface roughness on light scattering by long ice columns. When we use a spatial cell size of 1/120 incident wavelength for ice circular cylinders with size parameters of 6 and 24 at wavelengths of 0.55 and 10.8 microm, respectively, the errors in the FDTD results in the extinction, scattering, and absorption efficiencies are smaller than approximately 0.5%. The errors in the FDTD results in the asymmetry factor are smaller than approximately 0.05%. The errors in the FDTD results in the phase-matrix elements are smaller than approximately 5%. By adding a pseudorandom change as great as 10% of the radius of a cylinder, we calculate the scattering properties of randomly oriented rough-surfaced ice columns. We conclude that, although the effect of small surface roughness on light scattering is negligible, the scattering phase-matrix elements change significantly for particles with large surface roughness. The roughness on the particle surface can make the conventional phase function smooth. The most significant effect of the surface roughness is the decay of polarization of the scattered light. PMID:15065727
Conil, E; Hadjem, A; Lacroux, F; Wong, M F; Wiart, J
2008-03-21
This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. PMID:18367785
NASA Astrophysics Data System (ADS)
Eyuboglu, S.; Daniels, J. J.; Pyke, K.
2005-12-01
Ground Penetrating Radar (GPR) is a commonly used non-invasive tool to characterize the physical properties of the subsurface. The translation of the physical measurements to geologic and hydrogeologic conditions is the culmination of many geophysical investigations. Numerical modeling increases the applicability of GPR in the geophysics area when applied parallel to the GPR data, allowing to understand the effects of complex electromagnetic phenomena by defining and solving problems, as well as predicting the performance of radar in a complex heterogeneous environment. Finite difference time domain (FDTD) has been widely used for numerical modeling of GPR, but most of the previous algorithms are limited in their ability to model the electrical conductivity and permittivity. In this research, a highly efficient robust algorithm was developed to enhance the effectiveness of the FDTD forward modeling in surroundings characterized by an arbitrary distribution of all electrical properties in three dimensional space. The modeling algorithm was developed for a heterogeneous half-space medium to facilitate statistical modeling of complex distributions of hydrologic properties in the subsurface. The results produced by the simulation reveal high accuracy using the robust algorithm to optimize three dimensional FDTD forward modeling of GPR responses in heterogeneous surroundings.
NASA Astrophysics Data System (ADS)
Guan, Zhen; Heinonen, Vili; Lowengrub, John; Wang, Cheng; Wise, Steven M.
2016-09-01
In this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
Brinkman, D.; Heitzinger, C.; Markowich, P.A.
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Okamura, Yoshimasa; Yamamoto, Yoshito; Fujita, Kazuhiro; Miyoshi, Taiki; Teramoto, Koji; Kawaguchi, Hideki; Kagami, Shin; Furukawa, Masakazu
2007-07-15
Numerical studies of microwave propagation properties in a conical horn and an adjustable waveguides, and for plasmas generated under disk-plate windows of a 220 mm diameter and in a vacuum chamber are studied by a finite-difference time-domain (FDTD) method including plasma equations. In the numerical studies, a TM01-mode microwave of 2.45 GHz at a power of 1 kW is supplied from the top of the conical horn waveguide. In addition, numerical results by the FDTD method are compared with experimental results, and a validity of the numerical results is investigated. From the numerical results, it is found that the TM01-mode microwave changes its field shape and propagates along inner surfaces of the conical horn and the adjustable waveguides. Then electromagnetic fields of the TM01-mode microwave concentrate at the center surfaces of the disk-plate windows [quartz ({epsilon}{sub r}=3.8), alumina ({epsilon}{sub r}=9.7), and WG20 ({epsilon}{sub r}=20.0)]. A diameter of higher concentration is within 80 mm, and the orientation of electric field is almost vertical to the disk-plate window. The diameters within 80 mm are equivalent to a diameter at a higher electron density in an oxygen plasma experiment in the volume mode at 1 kW and 133 Pa with a quartz window. When heights of the adjustable waveguide are changed from 64 to 244 mm, peaks of electric fields in the heights, where microwave power is estimated to be strongly absorbed into the plasmas, appear and peak positions of the electric fields are observed periodically in surface-wave mode plasmas as well as the volume mode plasmas. Heights of the peaks increase with increasing dielectric constant and peak-to-peak distances of the peak positions decrease with increasing dielectric constant. The peak positions agree to the minimum microwave power reflections tuned by a combination of an autotuning unit and adjustable waveguide heights in experiments. Furthermore, peak positions of relatively absorbed microwave powers in
NASA Astrophysics Data System (ADS)
Chen, Jinyuan
The three-dimensional finite-difference time-domain (FDTD) method has been used to calculate local, layer-averaged and whole-body averaged specific absorption rates (SARs) and internal radio-frequency (RF) currents in an anatomically -based model of a human for plane-wave (far-field) exposures from 20 to 100 MHz and for spatially variable electromagnetic fields of a parallel-plate applicator representative of RF dielectric heaters used in industry (near-field). The calculated results are in agreement with the experimental data of Hill and others. While the existence of large foot currents has been known previously, substantial RF currents (600-800 mA) induced over much of the body are obtained for E-polarized fields suggested in the 1982 ANSI RF safety guideline. The FDTD method has also been used for simulating Annular Phased Array (APA) of dipole antennas for hyperthermia of deep-seated tumors. Anatomically-based models based on two different regions of the human body (14,417 and 13,133 cells) were used to calculated the SAR distributions with a resolution of 1.31 cm. Annular-phased arrays of eight dipole antennas couple to the human body through either a homogeneous or a tapered water bolus with air assumed outside the ring of dipoles. The objective of the calculations was to focus the energy to a couple of assumed tumor sites in the liver or the prostate. The geometrical optics approximation and principle of focused arrays were used to estimate the phases for individual dipoles to focus the electromagnetic energy into the tumor and its surrounding. Considerably focused power distributions with SARs on the order of 100 W/Kg for input powers of 400-700 W have been obtained for assumed tumor sites in the liver and the prostate using tapered boluses and optimized magnitudes and phases of power to the various dipoles. Lastly the FDTD technique is used to calculate the internal fields and the induced current densities in anatomically based models of a human using 5
Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro
2014-12-01
The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump. PMID:25001051
Simulations of P-SV wave scattering due to cracks by the 2-D finite difference method
NASA Astrophysics Data System (ADS)
Suzuki, Yuji; Shiina, Takahiro; Kawahara, Jun; Okamoto, Taro; Miyashita, Kaoru
2013-12-01
We simulate P-SV wave scattering by 2-D parallel cracks using the finite difference method (FDM). Here, special emphasis is put on simplicity; we apply a standard FDM (second-order velocity-stress scheme with a staggered grid) to media including traction-free, infinitesimally thin cracks, which are expressed in a simple manner. As an accuracy test of the present method, we calculate the displacement discontinuity along an isolated crack caused by harmonic waves using the method, which is compared with the corresponding results based on a reliable boundary integral equation method. The test resultantly indicates that the present method yields sufficient accuracy. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation, if the crack density is sufficiently low. The theory appears valid with a crack density up to at least 0.1 for SV wave incidence, whereas the validity limit appears lower for P wave incidence.
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang; Sen, Mrinal K.
2016-07-01
The 2D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2 M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2 M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional 2nd-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2 M)th-order accuracy in space and (2 N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra computational
NASA Astrophysics Data System (ADS)
Yasui, Takashi; Hasegawa, Koji; Hirayama, Koichi
2016-07-01
The finite-difference time-domain (FD-TD) method using a staggered grid with the collocated grid points of velocities (SGCV) was formulated for elastic waves propagating in anisotropic solids and for a rectangular SGCV. Resonant frequency analysis of Lamé-mode resonators on a quartz plate was carried out to confirm the accuracy and validity of the proposed method. The resonant frequencies for the fundamental and higher-order Lamé-modes calculated by the proposed method agreed very well with their theoretical values.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1999-01-01
Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.
Chang, Xijiang; Graduate School of Science and Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561 ; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki; Graduate School of Engineering, Shizuoka University,3-5-1 Johoku, Hamamatsu 432-8561
2013-11-14
A large-area planar plasma source with a resonant cavity type launcher driven by a 915 MHz ultra-high frequency wave was developed. Theoretical analysis with the three-dimensional finite difference time-domain simulation was carried out to determine the optimized launcher structure by analyzing the resonant transverse magnetic mode in the resonant cavity. Numerical result expects that the resonant electric field distribution inside the cavity dominantly consists of the TM{sub 410} mode. The resonant cavity type launcher having 8 holes in an octagonal geometry was designed to fit the resonant transverse magnetic mode. Adjusting 8 hole positions of the launcher to the field pattern of the resonant TM{sub 410} mode, we found that the plasma density increased about 40%∼50% from 1.0∼1.1 × 10{sup 11} cm{sup −3} to ∼1.5 × 10{sup 11} cm{sup −3} at the same incident power of 2.5 kW, compared with the previous results with the launcher having 6 holes in the hexagonal geometry. It is also noted that the electron density changes almost linearly with the incident wave power without any mode jumps.
NASA Astrophysics Data System (ADS)
Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.
2014-11-01
The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial
NASA Astrophysics Data System (ADS)
Suter, John
Nanocrystalline beta-NaYF4:17% Yb3+, 3% Er 3+ has significant potential for applications in a wide variety of fields including solar technologies, security printing, and biological imaging and sensing. In order to increase the potential of these nanocrystals for these applications, we have developed a method for the real-time, in situ, spectroscopic monitoring of nanocrystal growth and shell-addition. In situ real-time monitoring of upconversion emission is applied to study the reaction mechanism for the synthesis of beta-NaYF 4:17% Yb3+, 3% Er3++ nanoparticles in oleic acid and octadecene via the heat-up method. Transmission electron microscopy is used to correlate the spectroscopic signature of the reaction mixture with its composition. The power of real-time spectroscopic monitoring to precisely time the duration of the various stages of the reaction, and to accurately identify the transitions between those stages, including the completion of the reaction, is demonstrated. Real-time spectroscopic monitoring is used to study the effect of increasing the oleic acid concentration on the duration of these stages as well as the size and shape of resulting nanocrystals. The use of real-time spectroscopic monitoring to study shell-addition, specifically, the addition of an un-doped NaYF4 shell, is also discussed. Patterned gold surfaces are known to enhance the upconversion efficiency of lanthanide based upconversion materials, such as nanocrystalline beta-NaYF 4:17% Yb3+, 3% Er3+. Here, spherical microwell arrays are shown to provide up to a 40x enhancement of upconversion emission from beta-NaYF4:17% Yb3+, 3% Er 3+ nanocrystals. Finite-Difference Time-Domain (FDTD) is a method to solve, numerically, the Maxwell equations across a 3D simulation grid and has been used to simulate the interaction of light with a variety of materials, including metal surfaces and particles. FDTD simulations is used to investigate the nature of the enhancement from the patterned gold
NASA Astrophysics Data System (ADS)
Torii, Hajime
2012-12-01
A time-domain computational method for calculating 1D and 2D spectra of resonantly-coupled vibrations in condensed-phase systems is presented. This method simultaneously takes into account the diagonal frequency modulations, the off-diagonal vibrational couplings, and the dynamics of the system, and is applicable to systems of wide interest, e.g., the O-H stretching modes of water and alcohols, and the amide I modes of proteins. The case of the amide I mode of (Ala-d)4 in D2O solution is shown as an example.
A two-dimensional time domain near zone to far zone transformation
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.
1991-01-01
In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.
NASA Astrophysics Data System (ADS)
Gao, Zhensen; Dai, Bo; Wang, Xu; Kataoka, Nobuyuki; Wada, Naoya
2010-12-01
We propose and experimentally demonstrate a reconfigurable two-dimensional (temporal-spectral) time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access (OCDMA) application. The time-domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. A Fiber Bragg Gratings array is used for generating the two-dimensional wavelength hopping pattern while the high speed phase modulator is used for generating the spectral phase pattern. The proposed scheme can enable simultaneous generation of the time domain spectral phase encoding and DPSK data modulation using only a single phase modulator. In the experiment, the two-dimensional SPE codes have been generated and modulated with 2.5-Gb/s DPSK data using a single phase modulator. Transmission of the 2.5-Gb/s DPSK data over 49km fiber with BER<10-9 has been demonstrated successfully. The proposed scheme exhibits the potential to simplify the architecture and improve the security of the OCDMA system.
A Fourier collocation time domain method for numerically solving Maxwell's equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1991-01-01
A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Nonstandard finite difference schemes
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1995-01-01
The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.
Mimetic finite difference method
NASA Astrophysics Data System (ADS)
Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail
2014-01-01
The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.
Casimir forces in the time domain: Theory
Rodriguez, Alejandro W.; McCauley, Alexander P.; Joannopoulos, John D.; Johnson, Steven G.
2009-07-15
We present a method to compute Casimir forces in arbitrary geometries and for arbitrary materials based on the finite-difference time-domain (FDTD) scheme. The method involves the time evolution of electric and magnetic fields in response to a set of current sources, in a modified medium with frequency-independent conductivity. The advantage of this approach is that it allows one to exploit existing FDTD software, without modification, to compute Casimir forces. In this paper, we focus on the derivation, implementation choices, and essential properties of the time-domain algorithm, both considered analytically and illustrated in the simplest parallel-plate geometry.
Gross, M.B.
1984-10-01
STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structural response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.
THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)
A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1989-01-01
The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
D Multicomponent Time Domain Elastic Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Silva, R. U.; De Basabe, J. D.; Gallardo, L. A.
2015-12-01
The search of hydrocarbon reservoirs between the finest stratigraphic and structural traps relies on the detailed surveying and interpretation of multicomponent seismic waves. This need makes Full Waveform Inversion (FWI) one of the most active topics in seismic exploration research and there are a limited number of FWI algorithms that undertake the elastic approach required to model these multicomponent data. We developed an iterative Gauss-Newton 2D time-domain elastic FWI scheme that reproduces the vertical and horizontal particle velocity as measured by common seismic surveys and obtains simultaneously the distribution of three elastic parameters of our subsurface model (density ρ and the Lame parameters λ and μ). The elastic wave is propagated in a heterogeneous elastic media using a time domain 2D velocity-stress staggered grid finite difference method. Our code observes the necessary stability conditions and includes absorbing boundary conditions and basic multi-thread parallelization. The same forward modeling code is also used to calculate the Frechet's derivatives with respect to the three parameters of our model following the sensitivity equation approach and perturbation theory. We regularized our FWI algorithm applying two different criteria: (1) First order Tikhonov regularization (maximum smoothness) and (2) Minimum Gradient Support (MGS) that adopts an approximate zero-norm of the several property gradients. We applied our algorithm to various test models and demonstrated that their structural information resemble closely those of the original three synthetic model parameters (λ, µ and ρ). Finally, we compared the role of both regularization criteria in terms of data fit, model stability and structural resemblance.
Finite element and finite difference methods in electromagnetic scattering
NASA Astrophysics Data System (ADS)
Morgan, Michael A.
Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.
Time-Domain Simulation of RF Couplers
Smithe, David; Carlsson, Johan; Austin, Travis
2009-11-26
We have developed a finite-difference time-domain (FDTD) fluid-like approach to integrated plasma-and-coupler simulation [1], and show how it can be used to model LH and ICRF couplers in the MST and larger tokamaks.[2] This approach permits very accurate 3-D representation of coupler geometry, and easily includes non-axi-symmetry in vessel wall, magnetic equilibrium, and plasma density. The plasma is integrated with the FDTD Maxwell solver in an implicit solve that steps over electron time-scales, and permits tenuous plasma in the coupler itself, without any need to distinguish or interface between different regions of vacuum and/or plasma. The FDTD algorithm is also generalized to incorporate a time-domain sheath potential [3] on metal structures within the simulation, to look for situations where the sheath potential might generate local sputtering opportunities. Benchmarking of the time-domain sheath algorithm has been reported in the references. Finally, the time-domain software [4] permits the use of particles, either as field diagnostic (test particles) or to self-consistently compute plasma current from the applied RF power.
Exponential Finite-Difference Technique
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1989-01-01
Report discusses use of explicit exponential finite-difference technique to solve various diffusion-type partial differential equations. Study extends technique to transient-heat-transfer problems in one dimensional cylindrical coordinates and two and three dimensional Cartesian coordinates and to some nonlinear problems in one or two Cartesian coordinates.
Finite-Difference Time-Domain Modeling of Infrasonic Waves Generated by Supersonic Auroral Arcs
NASA Astrophysics Data System (ADS)
Pasko, V. P.
2010-12-01
Atmospheric infrasonic waves are acoustic waves with frequencies ranging from ˜0.02 to ˜10 Hz [e.g., Blanc, Ann. Geophys., 3, 673, 1985]. The importance of infrasound studies has been emphasized in the past ten years from the Comprehensive Nuclear-Test-Ban Treaty verification perspective [e.g., Le Pichon et al., JGR, 114, D08112, 2009]. A proper understanding of infrasound propagation in the atmosphere is required for identification and classification of different infrasonic waves and their sources [Drob et al., JGR, 108, D21, 4680, 2003]. In the present work we employ a FDTD model of infrasound propagation in a realistic atmosphere to provide quantitative interpretation of infrasonic waves produced by auroral arcs moving with supersonic speed. We have recently applied similar modeling approaches for studies of infrasonic waves generated from thunderstorms [e.g., Few, Handbook of Atmospheric Electrodynamics, H. Volland (ed.), Vol. 2, pp.1-31, CRC Press, 1995], quantitative interpretation of infrasonic signatures from pulsating auroras [Wilson et al., GRL, 32, L14810, 2005], and studies of infrasonic waves generated by transient luminous events in the middle atmosphere termed sprites [e.g., Farges, Lightning: Principles, Instruments and Applications, H.D. Betz et al. (eds.), Ch.18, Springer, 2009]. The related results have been reported in [Pasko, JGR, 114, D08205, 2009], [de Larquier et al., GRL, 37, L06804, 2010], and [de Larquier, MS Thesis, Penn State, Aug. 2010], respectively. In the FDTD model, the altitude and frequency dependent attenuation coefficients provided by Sutherland and Bass [J. Acoust. Soc. Am., 115, 1012, 2004] are included in classical equations of acoustics in a gravitationally stratified atmosphere using a decomposition technique recently proposed by de Groot-Hedlin [J. Acoust. Soc. Am., 124, 1430, 2008]. The auroral infrasonic waves (AIW) in the frequency range 0.1-0.01 Hz associated with the supersonic motion of auroral arcs have been extensively studied for over four decades [e.g., Wilson and Nichparenko, Nature, 214, 1299, 1967; Wilson, JGR, 74, 1813,1969; JGR, 77, 1820, 1972; JATP, 37, 973, 1975; Inframatics, (10), 1, 2005]. The Lorentz force and Joule heating are discussed in the existing literature as primary sources producing infrasound waves associated with auroral electrojet [Chimonas and Hines, Planet. Space Sci., 18, 565, 1970; Chimonas and Peltier, Planet. Space Sci., 18, 599, 1970; Wilson, 1972; Swift, JGR, 78, 8305, 1973; Wilson et al., Planet. Space Sci., 24, 1155, 1976; Chimonas, JATP, 39, 799, 1977; Brekke, JATP, 41, 475, 1979]. We emphasize that up to now no quantitative multi-dimensional modeling of infrasound generation and propagation in a realistic atmosphere in association with supersonic auroras has been conducted. Results indicate, in particular, that a body force ˜10-8 N/m3 acting in the electrojet volume with cross-sectional area 10 km by 10 km is fully sufficient to produce the observed pressure perturbations on the ground ˜0.2 Pa (2 dynes/cm2) [Wilson, 1969]. We will report quantitative modeling of complex infrasonic waveforms including direct shock and reflected shockwaves, which are refracted back to the earth by the thermosphere [Wilson, 1969].
Chen, Hao; Tang, Juming; Liu, Fang
2007-01-01
Due to the complexity of interactions between microwaves and food products, a reliable and efficient simulation model can be a very useful tool to guide the design of microwave heating systems and processes. This research developed a model to simulate coupled phenomena of electromagnetic heating and conventional heat transfer by combining commercial electromagnetic software with a customer built heat transfer model. Simulation results were presented and compared with experimental results for hot water and microwave heating in a single mode microwave system at 915 MHz. Good agreement was achieved, showing that this model was able to provide insight into industrial electromagnetic heating processes. PMID:18351003
The Complex-Step-Finite-Difference method
NASA Astrophysics Data System (ADS)
Abreu, Rafael; Stich, Daniel; Morales, Jose
2015-07-01
We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Nowara, Ewa; Johnson, Bruce
2015-03-01
The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.
NASA Astrophysics Data System (ADS)
Bodin, Jacques
2015-03-01
In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.
The Gouy phase anomaly for harmonic and time-domain paraxial Gaussian beams
NASA Astrophysics Data System (ADS)
Nowack, Robert L.; Kainkaryam, Sribharath M.
2011-02-01
The Gouy phase anomaly resulting from the focusing of wave solutions is illustrated using 2-D paraxial Gaussian beams. For harmonic Gaussian beams, this gives rise to a continuous variation of the Gouy phase as a function of propagation distance. This is in contrast to the discontinuous phase anomaly at caustics for ray solutions. However, as the beam-width of a Gaussian beam at a focus gets smaller, the Gouy phase anomaly becomes more concentrated near the focus and approaches that of the ray solution. The Gouy phase for a harmonic Gaussian beam is first illustrated in a homogeneous medium, and then in a quadratic velocity waveguide where the beam can pass through multiple focus points. However for multiple focus points, care must be taken to ensure that the phase remains continuous. Finally, an example is shown of the Gouy phase for a time-domain signal using a Gabor wavelet. This is validated using the finite difference method, and illustrates the progressive phase advance of a time-domain signal modifying the pulse shape with distance. Intuitively, as a wave solution gets `squeezed' at a focus, it `squirts' forward by slightly increasing its apparent speed in the propagation direction and modifying the pulse shape. However, this is a phase advance and not a group or energy advance and does not violate causality. Nonetheless, this could potentially influence the interpretation of travel-times using correlation techniques when using sources that generate beamed signals, for example from transducer sources in the laboratory.
NASA Technical Reports Server (NTRS)
Dawson, C. T.; Eggleston, T. W.; Goris, A. C.; Fashano, M.; Paynter, D.; Tranter, W. H.
1980-01-01
Complex systems are simulated by engineers without extensive computer experience. Analyst uses free-form engineering-oriented language to input "black box" description. System Time Domain (SYSTID) Simulation Program generates appropriate algorithms and proceeds with simulation. Program is easily linked to postprocessing routines. SYSTID program is written in FORTRAN IV for batch execution and has been implemented on UNIVAC 1110 under control of EXEC 8, Level 31.
Casimir forces in the time domain: Applications
McCauley, Alexander P.; Rodriguez, Alejandro W.; Joannopoulos, John D.; Johnson, Steven G.
2010-01-15
Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir pistonlike problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of perfectly matched layer (PML) absorbing boundaries and/or periodic boundaries. In addition, we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.
Flexible time domain averaging technique
NASA Astrophysics Data System (ADS)
Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng
2013-09-01
Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.
Characteristic-based time domain method for antenna analysis
NASA Astrophysics Data System (ADS)
Jiao, Dan; Jin, Jian-Ming; Shang, J. S.
2001-01-01
The characteristic-based time domain method, developed in the computational fluid dynamics community for solving the Euler equations, is applied to the antenna radiation problem. Based on the principle of the characteristic-based algorithm, a governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of body-of-revolution antennas and also to achieve the exact Riemann problem. A finite difference scheme with second-order accuracy in both time and space is constructed from the eigenvalue and eigenvector analysis of the derived governing equation. Rigorous boundary conditions for all the field components are formulated to improve the accuracy of the characteristic-based finite difference scheme. Numerical results demonstrate the validity and accuracy of the proposed technique.
NASA Astrophysics Data System (ADS)
Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.
2015-12-01
The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).
NASA Astrophysics Data System (ADS)
Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri
2016-07-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.
Finite-difference modeling of commercial aircraft using TSAR
Pennock, S.T.; Poggio, A.J.
1994-11-15
Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.
Time domain electromagnetic metal detectors
Hoekstra, P.
1996-04-01
This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.
Finite-difference modelling of wavefield constituents
NASA Astrophysics Data System (ADS)
Robertsson, Johan O. A.; van Manen, Dirk-Jan; Schmelzbach, Cedric; Van Renterghem, Cederic; Amundsen, Lasse
2015-11-01
The finite-difference method is among the most popular methods for modelling seismic wave propagation. Although the method has enjoyed huge success for its ability to produce full wavefield seismograms in complex models, it has one major limitation which is of critical importance for many modelling applications; to naturally output up- and downgoing and P- and S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield constituents can be isolated in finite-difference-computed synthetics in complex models with high numerical precision by means of a simple algorithm. The description focuses on up- and downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-difference modelling method. However, the same principles can also be applied to acoustic, electromagnetic and other wave equations.
Applications of an exponential finite difference technique
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Keith, Theo G., Jr.
1988-01-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
Calculation of nonzero-temperature Casimir forces in the time domain
Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.
2011-04-15
We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.
Spread spectrum time domain reflectometry
NASA Astrophysics Data System (ADS)
Smith, Paul Samuel
For many years, wiring has been treated as a system that could be installed and expected to work for the life of the aircraft. As aircraft age far beyond their original expected life span, this attitude is rapidly changing. Wiring problems have recently been identified as the cause of several tragic mishaps and hundreds of thousands of lost mission hours. Intermittent wiring faults have been and continue to be difficult to resolve. Test methods that pinpoint faults on the ground can miss intermittent failures. New test methods involving spread spectrum signals are investigated that could be used in flight to locate intermittent failures, including open circuits, short circuits, and arcs. Spread spectrum time domain reflectometry (SSTDR) and sequence time domain reflectometry (STDR) are analyzed in light of the signals commonly present on aircraft wiring. Pseudo noise codes used for the generation of STDR and SSTDR signals are analyzed for application in a STDR/SSTDR test system in the presence of noise. The effects of Mil-Std 1553 and white noise on the STDR and SSTDR signals are discussed analytically, through simulations, and with the use of test hardware. A test system using STDR and SSTDR is designed, built, and used to collect STDR and SSTDR test data. The data collected with the STDR/SSTDR test hardware is analyzed and compared to the theoretical results. Experimental data for open and short circuits collected using SSTDR and a curve fitting algorithm shows a maximum range estimation error of +/-0.2 ft for 75O coaxial cable up to 100ft, and +/-0.6ft for a sample 32.5ft non-controlled impedance aircraft cable. Mil-Std 1553 is specified to operate reliably with a signal-to-noise ratio of 17.5dB, and the SSTDR test system was able to locate an open circuit on a cable also carrying simulated Mil-Std 1553 data where the SSTDR signal was 50dB below the Mil-Std 1553 signal. STDR and SSTDR are shown to be effective in detecting and locating dry and wet arcs on wires.
A two-dimensional time domain near zone to far zone transformation
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.
1991-01-01
A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.
Energy Science and Technology Software Center (ESTSC)
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Optical properties of GaAs 2D hexagonal and cubic photonic crystal
Arab, F. Assali, A.; Grain, R.; Kanouni, F.
2015-03-30
In this paper we present our theoretical study of 2D hexagonal and cubic rods GaAs in air, with plan wave expansion (PWE) and finite difference time domain (FDTD) by using BandSOLVE and FullWAVE of Rsoft photonic CAD package. In order to investigate the effect of symmetry and radius, we performed calculations of the band structures for both TM and TE polarization, contour and electromagnetic propagation and transmission spectra. Our calculations show that the hexagonal structure gives a largest band gaps compare to cubic one for a same filling factor.
Dispersion properties of a 2D magnetized plasma metallic photonic crystal
Fu, T.; Yang, Z.; Shi, Z.; Lan, F.; Li, D.; Gao, X.
2013-02-15
This is a study on a 2D magnetized plasma-filled metal photonic crystal (PMPC). We analyze the dispersion relation of the magnetized PMPC by using the finite-difference time-domain method. Results show a cutoff frequency for the PMPC, and two flat bands and new forbidden band gaps appear due to the external magnetic field. Adjusting the external magnetic field can control the positions of the flat bands, cutoff frequency, and location and width of the local gap. These results provide theoretical basis for designing tunable photonic crystal devices.
NASA Astrophysics Data System (ADS)
Clifton, Yeaton H.
We simulated light scattering by objects similar to biological cells using the FDTD method. The characteristics of the cell-like objects were based on electron micrographs of cells grown in vitro. Three homogeneous cell-like objects were created from micrographs depicting normal prostate cells, and three from micrographs depicting malignant prostate cells. These six models used as the basis of our light scattering simulations led to the following conclusions: (1) The populations of normal and abnormal cell-like objects could be distinguished in terms of forward light scattering in a flow cytometry experiment; (2) The phase functions of light scattered by irregular objects averaged over several angles of incidence and several angles of observations are much smoother than the phase function of a perfect sphere; (3) There is a significant decrease in the ratio of scattering cross section of the non-spherical object to the scattering cross-section of the perfect sphere with equal volume, as the ratio of largest axis to smallest axis of the non-spherical object decreases; (4) For certain cell-like objects the phase functions of the scattered light obtained using the Henyey-Greenstein approximation or Mie theory are very different from those generated by FDTD calculations. Further calculations compared a homogeneous cell-like object, to a cell-like object of identical shape with heterogeneities added. The following are the results from the comparison of light scattering by a homogeneous cell-like object to heterogeneous cell-like object: (1) There are indications that there is a smoothing effect on the phase function data (for light scattered by the heterogeneous cell-like object) created by organelles both in data averaged over a range of orientations and in data collected at single orientations. This smoothing effect (unlike the one discussed for homogeneous cell-like objects) is observable from a single azimuth angle of observation and a single orientation of the cell relative to the direction incident light. (2) The light scattered by the homogeneous cell-like object based on normal cell A contained significant cross polarization. This effect was greatly suppressed by the introduction of organelles.
NASA Astrophysics Data System (ADS)
Ivanov, Pavlo; Taylor, Richard J. E.; Li, Guangrui; Childs, David T. D.; Khamas, Salam; Sarma, Jayanta; Erdelyi, Robertus; Hogg, Richard A.
2016-03-01
We investigate the beam divergence in far-field region, diffraction loss and optical confinement factors of all-semiconductor and void-semiconductor photonic-crystal surface-emitting lasers (PCSELs), containing either InGaP/GaAs or InGaP/air photonic crystals using a three-dimensional FDTD model. We explore the impact of changing the PC hole shape, size, and lattice structure in addition to the choice of all-semiconductor or void-semiconductor designs. We discuss the determination of the threshold gain from the diffraction losses, and explore limitations to direct modulation of the PCSEL.
Finite-difference migration to zero offset
Li, Jianchao
1992-07-01
Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.
Finite-difference migration to zero offset
Li, Jianchao.
1992-01-01
Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.
On the wavelet optimized finite difference method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1994-01-01
When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.
Test of two methods for faulting on finite-difference calculations
Andrews, D.J.
1999-01-01
Tests of two fault boundary conditions show that each converges with second order accuracy as the finite-difference grid is refined. The first method uses split nodes so that there are disjoint grids that interact via surface traction. The 3D version described here is a generalization of a method I have used extensively in 2D; it is as accurate as the 2D version. The second method represents fault slip as inelastic strain in a fault zone. Offset of stress from its elastic value is seismic moment density. Implementation of this method is quite simple in a finite-difference scheme using velocity and stress as dependent variables.
Software suite for finite difference method models.
Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J
2006-01-01
We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057
TUNED FINITE-DIFFERENCE DIFFUSION OPERATORS
Maron, Jason; Low, Mordecai-Mark Mac E-mail: mordecai@amnh.org
2009-05-15
Finite-difference simulations of fluid dynamics and magnetohydrodynamics generally require an explicit diffusion operator, either to maintain stability by attenuating grid-scale structure, or to implement physical diffusivities such as viscosity or resistivity. If the goal is stability only, the diffusion must act at the grid scale, but should affect structure at larger scales as little as possible. For physical diffusivities the diffusion scale depends on the problem, and diffusion may act at larger scales as well. Diffusivity can undesirably limit the computational time step in both cases. We construct tuned finite-difference diffusion operators that minimally limit the time step while acting as desired near the diffusion scale. Such operators reach peak values at the diffusion scale rather than at the grid scale, but behave as standard operators at larger scales. These operators will be useful for simulations with high magnetic diffusivity or kinematic viscosity such as in the simulation of astrophysical dynamos with magnetic Prandtl number far from unity, or for numerical stabilization using hyperdiffusivity.
Time domain simulation and sound synthesis for the snare drum.
Bilbao, Stefan
2012-01-01
The snare drum is a complex system, relying on the interaction of multiple components: the drumheads, or membranes, a set of snares, the surrounding acoustic field and an internal cavity. Because these components are multidimensional, and due to a strong distributed non-linearity (the snare interaction), many techniques used frequently in physical modeling synthesis applications, such as digital waveguides and modal methods are difficult to apply. In this article, finite difference time domain techniques are applied to a full 3D system, and various features of interest, such as the coupling between membranes, and the interaction between the membranes and the snares, are examined in detail. Also discussed are various numerical features, such as spurious splitting of degenerate modes and bandwidth limitation, and estimates of computational complexity are provided. Sound examples are presented. PMID:22280714
Visualization of elastic wavefields computed with a finite difference code
Larsen, S.; Harris, D.
1994-11-15
The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Radar cross section (RCS) calculations for flat, perfectly conducting plates are readily available through the use of conventional frequency domain techniques such as the Method of Moments (MOM). However, if the plate is covered with a dielectric material that is relatively thick in comparison with the wavelength in the material, these frequency domain techniques become increasingly difficult to apply. We present the application of the Finite Difference Time Domain (FDTD) Technique to the problem of electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate that is coated with a thick layer of lossless dielectric material. Both time domain and RCS calculations are presented and disclosed.
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
Radar cross section (RCS) calculations for flat, perfectly conducting plates are readily available through the use of conventional frequency domain techniques such as the Method of Moments (MOM). However, if the plate is covered with a dielectric material that is relatively thick in comparison with the wavelength in the material, these frequency domain techniques become increasingly difficult to apply. The application is presented of the Finite Difference Time Domain (FDTD) technique to the problem of electromagnetic scattering and RCS calculations from a thin, perfectly conducting plate that is coated with a thick layer of lossless dielectric material. Both time domain and RCS calculations are presented and discussed.
Efficient discretization in finite difference method
NASA Astrophysics Data System (ADS)
Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris
2015-04-01
Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.
NASA Astrophysics Data System (ADS)
Cole, James B.
2014-09-01
The finite difference time domain (FDTD) algorithm is a popular tool for photonics design and simulations, but it also can yield deep insights into the fundamental nature of light and - more speculatively - into the discretization and connectivity and geometry of space-time. The CFL stability limit in FDTD can be interpreted as a limit on the speed of light. It depends not only on the dimensionality of space-time, but also on its connectivity. Thus the speed of light not only tells us something about the dimensionality of space-time but also about its connectivity. The computational molecule in conventional 2-D FDTD is (х +/- h,y)-(x,+/- y h)-(x-y), where h= triangle x = triangle y . It yields the CFL stability limit ctriangle/h<= t/h 1 √2 . Including diagonal nodes (x+/- h, y +/- h) in the computational molecule changes the connectivity of the space and changes the CFL limit. The FDTD model also predicts precursor signals (which physically exist). The Green's function of the FDTD model, which differs from that of the wave equation, may tell us something about underlying periodicities in space-time. It may be possible to experimentally observe effects of space-time discretization and connectivity in optics experiments.
NASA Astrophysics Data System (ADS)
Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri
2016-04-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2D or 3D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.
Time domain reflectometry for SLC BPM system
NASA Astrophysics Data System (ADS)
Thompson, D. R.
1985-03-01
A maintenance manual for troubleshooting installed SLC Position Monitor stripline assemblies and the associated cabling, using time Domain Reflectometry is presented. Once a technician becomes familiar with this manual's procedures, the Table of Contents can serve as a checklist.
A time domain technique for mechanism extraction
NASA Technical Reports Server (NTRS)
Dominek, Allen K.; Peters, Leon, Jr.; Burnside, Walter D.
1987-01-01
The properties of scattered fields from a structure can be better evaluated from the characteristics of the individual scatterers. Decomposition techniques can be classified either as a matrix or an integral formulation. With either formulation, aspect pattern of frequency information of a scattering center can be obtained. Emphasis is placed on an integral (time domain) isolation extraction technique to obtain the frequency characteristics of scattering mechanisms. This technique has its origins in the time domain interpretation of scattered fields.
Energy Science and Technology Software Center (ESTSC)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
NASA Astrophysics Data System (ADS)
Deinega, Alexei; John, Sajeev
2012-10-01
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.
Viscoelastic Finite Difference Modeling Using Graphics Processing Units
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.
2014-12-01
Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size
A time domain, weighted residual formulation of Maxwell's equations
NASA Technical Reports Server (NTRS)
Young, Jeffrey L.; Brueckner, Frank P.
1993-01-01
A finite element model is developed and used to simulate two-dimensional electromagnetic wave propagation and scattering. The spatial discretization of the time-domain electrodynamic equations is accomplished by a Galerkin approach. The semi-discrete equations are solved explicitly using a second-order Runge-Kutta scheme. Both the electric and magnetic fields are discretized using a single grid, with the divergence-free conditions satisfied through a correction approach. Examples depicting the scattering of plane waves in 2D geometries are given to demonstrate the validity of the methodology.
Adaptive finite difference for seismic wavefield modelling in acoustic media.
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-01-01
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333
Adaptive finite difference for seismic wavefield modelling in acoustic media
NASA Astrophysics Data System (ADS)
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-08-01
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.
Adaptive finite difference for seismic wavefield modelling in acoustic media
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-01-01
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333
Time domain reflectometry in time variant plasmas
NASA Technical Reports Server (NTRS)
Scherner, Michael J.
1992-01-01
The effects of time-dependent electron density fluctuations on a synthesized time domain reflectometry response of a one-dimensional cold plasma sheath are considered. Numerical solutions of the Helmholtz wave equation, which describes the electric field of a normally incident plane wave in a specified static electron density profile, are used. A study of the effects of Doppler shifts resulting from moving density fluctuations in the electron density profile of the sheath is included. Varying electron density levels corrupt time domain and distance measurements. Reducing or modulating the electron density levels of a given electron density profile affects the time domain response of a plasma and results in motion of the turning point, and the effective motion has a significant effect on measuring electron density locations.
Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm
Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving
2014-02-01
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.
Two-dimensional time-domain volume integral equations for scattering of inhomogeneous objects
NASA Astrophysics Data System (ADS)
Wang, Jianguo; Fan, Ruyu
2003-08-01
This paper proposes a time-domain volume integral equation based method for analyzing the transient scattering from a two-dimensional inhomogeneous cylinder by invoking the volume equivalence principle for both the transverse magnetic and electric cases. The cylinder is discretized into triangular cells, and the electric flux is chosen as the unknown. For the transverse magnetic case, the electric flux is defined on the surfaces of the triangles. For the transverse electric case, because of the electric charges induced inside and on the surface of the cylinder, the electric flux is defined on the edges of the triangles, and expanded in space in terms of two-dimensional surface roof-top basis functions. The time-domain volume integral equation is solved by using a marching-on-in-time scheme. Numerical results obtained using this method are in excellent agreement with the data obtained using the finite-difference time-domain method.
Time-domain Raman analytical forward solvers.
Martelli, Fabrizio; Binzoni, Tiziano; Sekar, Sanathana Konugolu Venkata; Farina, Andrea; Cavalieri, Stefano; Pifferi, Antonio
2016-09-01
A set of time-domain analytical forward solvers for Raman signals detected from homogeneous diffusive media is presented. The time-domain solvers have been developed for two geometries: the parallelepiped and the finite cylinder. The potential presence of a background fluorescence emission, contaminating the Raman signal, has also been taken into account. All the solvers have been obtained as solutions of the time dependent diffusion equation. The validation of the solvers has been performed by means of comparisons with the results of "gold standard" Monte Carlo simulations. These forward solvers provide an accurate tool to explore the information content encoded in the time-resolved Raman measurements. PMID:27607645
Comparison of finite-difference and analytic microwave calculation methods
Friedlander, F.I.; Jackson, H.W.; Barmatz, M.; Wagner, P.
1996-12-31
Normal modes and power absorption distributions in microwave cavities containing lossy dielectric samples were calculated for problems of interest in materials processing. The calculations were performed both using a commercially available finite-difference electromagnetic solver and by numerical evaluation of exact analytic expressions. Results obtained by the two methods applied to identical physical situations were compared. The studies validate the accuracy of the finite-difference electromagnetic solver. Relative advantages of the analytic and finite-difference methods are discussed.
One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator
Shin, H.C.; Kim, Y.H.; Kim, Y.B.
1999-07-01
This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.
Sénégond, Nicolas; Boulmé, Audren; Plag, Camille; Teston, Franck; Certon, Dominique
2013-07-01
We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response--of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth--order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results. PMID:25004518
High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves
NASA Technical Reports Server (NTRS)
Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.
2012-01-01
In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.
LHC RF System Time-Domain Simulation
Mastorides, T.; Rivetta, C.; /SLAC
2010-09-14
Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.
Time Domain Modelling of a Reciprocating Engine
NASA Astrophysics Data System (ADS)
Li, H.; Stone, B. J.
1999-01-01
This paper describes the application of a time domain systems approach to the modelling of a reciprocating engine. The engine model includes the varying inertia effects resulting from the motion of the piston and con-rod. The cylinder pressure measured under operating conditions is used to force the model and the resulting motion compared with the measured response. The results obtained indicate that the model is very good.
Time-Domain Filtering of Metasurfaces
NASA Astrophysics Data System (ADS)
Wakatsuchi, Hiroki
2015-11-01
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion.
Time-Domain Filtering of Metasurfaces.
Wakatsuchi, Hiroki
2015-01-01
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion. PMID:26564027
Time-domain robotic vision application
NASA Technical Reports Server (NTRS)
Tolliver, C. L.
1987-01-01
The quest for the highest resolution microwaves imaging and the principle of time-domain imaging is the primary motivation for recent developments in time-domain techniques. With the present technology fast time varying signals can now be measured and recorded both in magnitude and in phase. It has also enhanced the ability to extract relevant details concerning the scattering object. In the past, the inference of object geometry or shape from scattered signals has received substantial attention in radar technology. Various inverse scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequenty swept holography, and the synthetic radar imaging, all of which have two things in common: the physical optic far-field approximation and the utilization of the channels as an extra physical dimension, were also advanced significantly. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The use of time-domain imaging for space robotic vision applications was proposed. A multisensor approach to vision was shown to have several advantages over the video-only approach.
Time-Domain Filtering of Metasurfaces
Wakatsuchi, Hiroki
2015-01-01
In general electromagnetic response of each material to a continuous wave does not vary in time domain if the frequency component remains the same. Recently, it turned out that integrating several circuit elements including schottky diodes with periodically metallised surfaces, or the so-called metasurfaces, leads to selectively absorbing specific types of waveforms or pulse widths even at the same frequency. These waveform-selective metasurfaces effectively showed different absorbing performances for different widths of pulsed sine waves by gradually varying their electromagnetic responses in time domain. Here we study time-filtering effects of such circuit-based metasurfaces illuminated by continuous sine waves. Moreover, we introduce extra circuit elements to these structures to enhance the time-domain control capability. These time-varying properties are expected to give us another degree of freedom to control electromagnetic waves and thus contribute to developing new kinds of electromagnetic applications and technologies, e.g. time-windowing wireless communications and waveform conversion. PMID:26564027
Rheological Models in the Time-Domain Modeling of Seismic Motion
NASA Astrophysics Data System (ADS)
Moczo, P.; Kristek, J.
2004-12-01
The time-domain stress-strain relation in a viscoelastic medium has a form of the convolutory integral which is numerically intractable. This was the reason for the oversimplified models of attenuation in the time-domain seismic wave propagation and earthquake motion modeling. In their pioneering work, Day and Minster (1984) showed the way how to convert the integral into numerically tractable differential form in the case of a general viscoelastic modulus. In response to the work by Day and Minster, Emmerich and Korn (1987) suggested using the rheology of their generalized Maxwell body (GMB) while Carcione et al. (1988) suggested using the generalized Zener body (GZB). The viscoelastic moduli of both rheological models have a form of the rational function and thus the differential form of the stress-strain relation is rather easy to obtain. After the papers by Emmerich and Korn and Carcione et al. numerical modelers decided either for the GMB or GZB rheology and developed 'non-communicating' algorithms. In the many following papers the authors using the GMB never commented the GZB rheology and the corresponding algorithms, and the authors using the GZB never related their methods to the GMB rheology and algorithms. We analyze and compare both rheologies and the corresponding incorporations of the realistic attenuation into the time-domain computations. We then focus on the most recent staggered-grid finite-difference modeling, mainly on accounting for the material heterogeneity in the viscoelastic media, and the computational efficiency of the finite-difference algorithms.
Metrology for terahertz time-domain spectrometers
NASA Astrophysics Data System (ADS)
Molloy, John F.; Naftaly, Mira
2015-12-01
In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.
Time-domain multiple-quantum NMR
Weitekamp, D.P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.
Solitons for optical time-domain reflectometry
NASA Astrophysics Data System (ADS)
Levanon, Amikam; Friberg, Stephen R.; Fujii, Yoichi
1996-06-01
We describe the propagation of solitons in an optical time-domain reflectometry geometry. Intense nonsolitons usually broaden nonlinearly as they propagate out to a scatterer and broaden linearly as they return to their origin. In contrast, solitons propagate with a fixed pulse width or narrow on their way out to the scatterer. Returning, they broaden or narrow depending on their chirp at the scattering point. For a fixed return-pulse timing resolution we find 2.6 times or more energy can be launched when solitons are used than for normal dispersion pulses.
3D Finite Difference Modelling of Basaltic Region
NASA Astrophysics Data System (ADS)
Engell-Sørensen, L.
2003-04-01
The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.
A finite-difference contrast source inversion method
NASA Astrophysics Data System (ADS)
Abubakar, A.; Hu, W.; van den Berg, P. M.; Habashy, T. M.
2008-12-01
We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium.
Architectures for Time-domain Astronomy
NASA Astrophysics Data System (ADS)
Seaman, R.; Allan, A.; Pierfederici, F.; Williams, R.
2009-09-01
Wonder at the changing sky predates recorded history. Empirical studies of time-varying celestial phenomena date back to Galileo and Tycho. Telegrams conveying news of transient and recurrent events have been key astronomical infrastructure since the nineteenth century. Recent micro-lensing, supernova and gamma-ray burst studies have lead to a succession of exciting discoveries, but massive new time-domain surveys will soon overwhelm our nineteenth century transient response technologies. Meeting this challenge demands new autonomous architectures for astronomy. These Architectures should reach from proposing new research, through experimental design and the scheduling of telescope operations, to the archiving and pipeline-processing of data to discover new transients, to the publishing of these events, through automated follow-up via robotic and ToO assets, and to the display and analysis of observational results. All will lead to adaptive adjustment of time-domain investigations. The IVOA VOEvent protocol provides an engine for purpose-built astronomical architectures.
Time domain characterization for the electric field considering a Chinese female physical phantom
NASA Astrophysics Data System (ADS)
Yang, Xiaodong; Zhang, Qing
2015-02-01
Recently, wireless communications around the human body, which are essential for wireless vital data monitoring, have been widely studied. Besides statistical channel modeling, characterization of time-varying electric field is also highly necessary to understand the communication mechanism in this area; however, few studies have been conducted. In this paper, time-varying electric fields, both on the digital human body and in the two-dimensional space around the human body, were studied through the finite-difference time-domain (FDTD) numerical analysis.
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
Conservative properties of finite difference schemes for incompressible flow
NASA Technical Reports Server (NTRS)
Morinishi, Youhei
1995-01-01
The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.
Techniques for correcting approximate finite difference solutions. [considering transonic flow
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples are given.
Finite-difference solutions of the 3-D eikonal equation
Fei, Tong; Fehler, M.C.; Hildebrand, S.T.
1995-12-31
Prestack Kirchhoff depth migration requires the computation of traveltimes from surface source and receiver locations to subsurface image locations. In 3-D problems, computational efficiency becomes important. Finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference method for computing the first arrival traveltime by solving the eikonal equation has been developed in Cartesian coordinates. The method, which is unconditionally stable and computationally efficient, can handle instabilities due to caustics and provide information about head waves. The comparison of finite-difference solutions of the acoustic wave equation with the traveltime solutions from the eikonal equation in various structure models demonstrate that the method developed here can provide correct first arrival traveltime information even in areas of complex velocity structure.
Practical aspects of prestack depth migration with finite differences
Ober, C.C.; Oldfield, R.A.; Womble, D.E.; Romero, L.A.; Burch, C.C.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatial parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.
Papyrus imaging with terahertz time domain spectroscopy
NASA Astrophysics Data System (ADS)
Labaune, J.; Jackson, J. B.; Pagès-Camagna, S.; Duling, I. N.; Menu, M.; Mourou, G. A.
2010-09-01
Terahertz time domain spectroscopic imaging (THz-TDSI) is a non-ionizing, non-contact and non-destructive measurement technique that has been recently utilized to study cultural heritage artifacts. We will present this technique and the results of non-contact measurements of papyrus texts, including images of hidden papyri. Inks for modern papyrus specimens were prepared using the historical binder, Arabic gum, and two common pigments used to write ancient texts, carbon black and red ochre. The samples were scanned in reflection at normal incidence with a pulse with a spectral range between 0.1 and 1.5 THz. Temporal analysis of the signals provides the depths of the layers, and their frequency spectra give information about the inks.
Gravitational Waves and Time Domain Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan; Nissanke, Samaya; Williams, Roy
2012-01-01
The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.
Time domain cyclostationarity signal-processing tools
NASA Astrophysics Data System (ADS)
Léonard, François
2015-10-01
This paper proposes four different time-domain tools to estimate first-order time cyclostationary signals without the need of a keyphasor signal. Applied to gearbox signals, these tacho-less methods appear intuitively simple, offer user-friendly graphic interfaces to visualize a pattern and allow the retrieval and removal of the selected cyclostationarity components in order to process higher-order spectra. Two of these tools can deal with time-varying operating conditions since they use an adaptive resampled signal driven by the vibration signal itself for order tracking. Three coherency indicators are proposed, one for every sample of the time pattern, one for each impact (tooth shock) observed in the gear mesh pattern, and one for the whole pattern. These indicators are used to detect a cyclostationarity and analyze the pattern repeatability. A gear mesh graph is also proposed to illustrate the cyclostationarity in 3D.
Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion
NASA Astrophysics Data System (ADS)
Faucher, Gabriel Paul
This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.
2D full wave modeling for a synthetic Doppler backscattering diagnostic
Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.
2012-10-15
Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.
NASA Astrophysics Data System (ADS)
Imamura, N.; Schultz, A.
2015-12-01
Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.
Chen, Guang; Yang, Ping; Kattawar, George W
2008-03-01
The pseudospectral time-domain (PSTD) method is a powerful approach for computing the single-scattering properties of arbitrarily shaped particles with small-to-moderate-sized parameters. In the PSTD method, the spatial derivative approximation based on the spectral method is more accurate than its counterpart based on the finite-difference technique. Additionally, the PSTD method can substantially diminish accumulated errors that increase with the spatial scale and temporal duration of simulation. We report on the application of the PSTD method to the scattering of light by nonspherical ice particles. The applicability of the PSTD method is validated against the Lorenz-Mie theory and the T-matrix method. The phase functions computed from the PSTD method and the Lorenz-Mie theory agree well for size parameters as large as 80. Furthermore, the PSTD code is also applied to the scattering of light by nonspherical ice crystals, namely, hollow hexagonal columns and aggregates, which are frequently observed in cirrus clouds. The phase functions computed from the PSTD method are compared with the counterparts computed from the finite-difference time-domain (FDTD) method for a size parameter of 20 and an incident wavelength of 3.7 microm. The comparisons show good agreement between the two methods. PMID:18311250
Modeling of tension-modulated strings using finite difference and digital waveguide techniques
NASA Astrophysics Data System (ADS)
Pakarinen, Jyri
2005-09-01
Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for numerical simulation of the tension modulation nonlinearity from the sound synthesis point of view. The tension modulation is assumed to propagate instantaneously along the string. In the digital waveguide approach, spatially distributed fractional delay filters are used in modulating the string length during run time. Energy-preserving techniques can be used in implementing the fractional delays. In the finite difference approach, time-domain interpolation is used to artificially modulate the wave propagation velocity. The generation of missing harmonics is implemented in the finite difference model by creating an additional excitation point at the string termination. In the waveguide model, the same effect can be obtained by using suitable approximations in the string elongation calculation. Synthesis results for both techniques are presented. Also, a brief comparison of the models with a discussion on stability issues is provided. [This research has been funded by the Academy of Finland (Project No. 104934), S3TK graduate school, and Tekniikan edistamissaatio.
A Time Domain Along-Track SAR Interferometry Method
NASA Astrophysics Data System (ADS)
Cao, N.; Lee, H.; Jung, H. C.
2015-12-01
Differential interferometric synthetic aperture radar (DInSAR) has already been proven to be a useful technique for measuring ground displacement at millimeter level. One major drawback of traditional DInSAR technique is that only 1-D deformation in slant range direction can be detected. In order to obtain along-track displacement using a single InSAR pair, two major attempts have been made. The first one is based on cross-correlation between two SAR amplitude images. The second attempt is based on split-beam processing to generate two SAR images from forward- and backward-looking beams. Comparing with the former method, this multiple-aperture SAR interferometry (MAI) can achieve much better measurement accuracy. The major drawback of the MAI method is degraded signal to noise ratio (SNR) and along-track resolution since total along-track integration time decreases in the split-beam procedure. In order to improve the SNR and along-track resolution as well as to extract the terrain displacement in the along-track direction, a time domain along-track SAR interferometry method is proposed in this study. Using traditional time domain backprojection method, the phase component corresponding to slant range direction offset can be estimated and removed from the range compressed SAR signal. Then a phase estimation procedure is implemented to obtain the phase component in the along-track direction. Using ALOS PALSAR data over Kilauea Volcano area in Hawai'i, our experimental results demonstrate the improved performance of the proposed method in extracting 2-D terrain deformation map from one pair of SAR images.
How Swift is redefining time domain astronomy
NASA Astrophysics Data System (ADS)
Gehrels, N.; Cannizzo, J. K.
2015-09-01
NASA's Swift satellite has completed ten years of amazing discoveries in time domain astronomy. Its primary mission is to chase gamma-ray bursts (GRBs), but due to its scheduling flexibility it has subsequently become a prime discovery machine for new types of behavior. The list of major discoveries in GRBs and other transients includes the long-lived X-ray afterglows and flares from GRBs, the first accurate localization of short GRBs, the discovery of GRBs at high redshift (z > 8), supernova shock break-out from SN Ib, a jetted tidal disruption event, an ultra-long class of GRBs, high energy emission from flare stars, novae and supernovae with unusual characteristics, magnetars with glitches in their spin periods, and a short GRB with evidence of an accompanying kilonova. Swift has developed a dynamic synergism with ground based observatories. In a few years gravitational wave observatories will come on-line and provide exciting new transient sources for Swift to study.
Reengineering observatory operations for the time domain
NASA Astrophysics Data System (ADS)
Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.
2014-07-01
Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.
Theory of mirrored time domain sampling for NMR spectroscopy
NASA Astrophysics Data System (ADS)
Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas
2011-12-01
A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t = 0 to the maximal evolution time tmax, while the second is sampled backward from t = 0 to - tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory
Theory of mirrored time domain sampling for NMR spectroscopy.
Ghosh, Arindam; Wu, Yibing; He, Yunfen; Szyperski, Thomas
2011-12-01
A generalized theory is presented for novel mirrored hypercomplex time domain sampling (MHS) of NMR spectra. It is the salient new feature of MHS that two interferograms are acquired with different directionality of time evolution, that is, one is sampled forward from time t=0 to the maximal evolution time tmax, while the second is sampled backward from t=0 to -tmax. The sampling can be accomplished in a (semi) constant time or non constant-time manner. Subsequently, the two interferograms are linearly combined to yield a complex time domain signal. The manifold of MHS schemes considered here is defined by arbitrary settings of sampling phases ('primary phase shifts') and amplitudes of the two interferograms. It is shown that, for any two given primary phase shifts, the addition theorems of trigonometric functions yield the unique linear combination required to form the complex signal. In the framework of clean absorption mode (CAM) acquisition of NMR spectra being devoid of residual dispersive signal components, 'secondary phase shifts' represent time domain phase errors which are to be eliminated. In contrast, such secondary phase shifts may be introduced by experimental design in order to encode additional NMR parameters, a new class of NMR experiments proposed here. For generalization, it is further considered that secondary phase shifts may depend on primary phase shifts and/or sampling directionality. In order to compare with MHS theory, a correspondingly generalized theory is derived for widely used hypercomplex ('States') sampling (HS). With generalized theory it is shown, first, that previously introduced 'canonical' schemes, characterized by primary phases being multiples of π/4, afford maximal intensity of the desired absorptive signals in the absence of secondary phase shifts, and second, how primary phases can be adjusted to maximize the signal intensity provided that the secondary phase shifts are known. Third, it is demonstrated that theory enables
Generating meshes for finite-difference analysis using a solid modeler
NASA Astrophysics Data System (ADS)
Laguna, G. W.; White, W. T.; Cabral, B. K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
Generating meshes for finite-difference analysis using a solid modeler
Laguna, G.W.; White, W.T.; Cabral, B.K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or ''mesh,'' that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
Improved finite-difference vibration analysis of pretwisted, tapered beams
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1984-01-01
An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.
NASA Astrophysics Data System (ADS)
He, Zi; Chen, Ru-Shan
2016-03-01
An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.
Compact finite difference method for American option pricing
NASA Astrophysics Data System (ADS)
Zhao, Jichao; Davison, Matt; Corless, Robert M.
2007-09-01
A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h is large (h[greater-or-equal, slanted]0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.
NASA Astrophysics Data System (ADS)
Wang, Minshen
The primary interest of the electromagnetic behavior of a periodic structure is in its near field and far field. However, it is still numerically difficult to analyze either one in the time domain. The primary goal of this dissertation is to develop corresponding time domain technique to analyze two topics. The first one is to evaluate the far field of a realistic, large antenna array using an efficient method. The second one is to evaluate the propagation characteristic of a commercially available printed circuit board (PCB) with intentional roughness. Both of which are hot topics in the antenna and signal integrity (SI) society respectively; however, none of them have ever been solved in the time domain. To efficiently evaluate the far field pattern of a realistically large antenna array, the spectral domain method and the reciprocity theorem are implemented in the finite difference time domain (FDTD) technique to avoid the simulation of the near field. By taking advantage of the periodic boundary condition (PBC), the proposed method demonstrates its capability to speed up far field evaluation from hours to minutes. Good agreement of the results is provided for various cases: circular antenna array, arbitrary feeding array, and highly directional leaky wave antenna, etc. Periodic structure modeling with finite sized feedings is developed by the array scanning method (ASM) implemented in the FDTD technique. The minimally coupled electric and magnetic co-mingled antenna array is evaluated by the method. Moreover, a commercially available PCB with very small roughness is modeled by the ASM-FDTD and the propagation characteristic is evaluated. Both are evaluated by time domain method for the first time. Efficiency in terms of memory and computing time is shown for this method and parallelization in the future is proposed.
Finite-Difference Algorithms For Computing Sound Waves
NASA Technical Reports Server (NTRS)
Davis, Sanford
1993-01-01
Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.
Finite difference modeling of rotor flows including wake effects
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Desopper, A.; Tung, C.
1982-01-01
Rotary wing finite difference methods are investigated. The main concern is the specification of boundary conditions to properly account for the effect of the wake on the blade. Examples are given of an approach where wake effects are introduced by specifying an equivalent angle of attack. An alternate approach is also given where discrete vortices are introduced into the finite difference grid. The resulting computations of hovering and high advance ratio cases compare well with experiment. Some consideration is also given to the modeling of low to moderate advance ratio flows.
Miniature terahertz time-domain spectrometry
NASA Astrophysics Data System (ADS)
Schulkin, Brian
This thesis focuses on the design, development and evaluation of novel concepts which enable the miniaturization of terahertz (THz) time-domain spectrometry. Portable THz spectrometry is applied to research and industrial domains for immediate, short and long term applications in nondestructive evaluation, homeland security, and biomedicine respectively. Due to the previous limitation of THz devices for public uses, in particular, the lack of access to a THz spectrometer, applications of THz science and technology have only recently expanded beyond the laboratory. There is an urgent need for compact, even handheld THz time-domain spectrometry (THz-TDS) platforms which can carry out proven-to-be-useful applications developed and tested in laboratory conditions. There are three major challenges restricting THz-TDS to laboratories. Atmospheric absorption severely limits the propagation distance of the THz beam and confines systems to low-moisture environments. The sample's surface roughness, grain size and geometry severely limit the bandwidth of the measurement. Physical size and weight of THz systems are generally limited by large laser sources and optomechanics. The sensitivity and selectivity of THz-TDS systems are the two most significant parameters used to describe the quality of the system. Sensitivity is directly related to the Signal-to-Noise Ratio (SNR) and dynamic range, which may be improved by either lowering the noise floor or increasing the THz signal. On the other hand, selectivity is far more complex as it is related to the sensitivity, sample preparation, baseline correction, and selection method. Sensitivity is gauged using industrial statistical methods, such as Gauge Repeatability and Reproducibility (GR&R), and can transform a not-so-useful SNR value to an extremely useful measure of the minimum detectable amount of a certain material. It is shown that the GR&R value is inversely proportional to the square root of the number of averaged waveforms
NASA Astrophysics Data System (ADS)
Ha, Jiho; Shin, Sungryul; Shin, Changsoo; Chung, Wookeen
2015-05-01
Because complex mixed waves are typically generated in elastic media, wavefield decomposition is required for such media to obtain migration images accurately. In isotropic media, this is achieved according to the Helmholtz decomposition theorem; in particular, the divergence operator is commonly applied to P-wavefield decomposition. In this study, two types of elastic reverse-time migration algorithms are proposed for decomposition of the P-wavefield without requiring the divergence operator. The first algorithm involves formulation of the stress tensor by spatially differentiated displacement according to the stress-strain relationship and is utilized to construct an imaging condition for the decomposed P-wavefield. We demonstrate this approach through numerical testing. The second algorithm allows us to obtain emphasized interfaces through the application of the absolute value function to decomposed wavefield in imaging condition. Because reverse-time migration can be defined by a zero-lag cross-correlation relationship between the partial-derivative wavefield and the observed wavefield data, we derive the virtual source to construct the partial-derivative wavefield based on a 2D staggered-grid finite-difference modeling method in the time domain. The explicitly computed partial-derivative wavefield from virtual sources with the stress tensor is in agreement with the partial-derivative wavefield directly computed from residual by between with and without a perturbation point in the subsurface. Moreover, the back-propagation technique is used to enhance the computational efficiency. To validate our two types of imaging conditions, numerical tests are conducted. The migration images created according to our imaging conditions can represent the subsurface structure accurately. Thus, we can confirm the feasibility of obtaining migration images of the decomposed P-wavefield without requiring the application of the divergence operator.
Computer-Oriented Calculus Courses Using Finite Differences.
ERIC Educational Resources Information Center
Gordon, Sheldon P.
The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…
Using the Finite Difference Calculus to Sum Powers of Integers.
ERIC Educational Resources Information Center
Zia, Lee
1991-01-01
Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…
Scheme For Finite-Difference Computations Of Waves
NASA Technical Reports Server (NTRS)
Davis, Sanford
1992-01-01
Compact algorithms generating and solving finite-difference approximations of partial differential equations for propagation of waves obtained by new method. Based on concept of discrete dispersion relation. Used in wave propagation to relate frequency to wavelength and is key measure of wave fidelity.